WO2018072186A1 - 一种啸叫检测方法及装置 - Google Patents

一种啸叫检测方法及装置 Download PDF

Info

Publication number
WO2018072186A1
WO2018072186A1 PCT/CN2016/102774 CN2016102774W WO2018072186A1 WO 2018072186 A1 WO2018072186 A1 WO 2018072186A1 CN 2016102774 W CN2016102774 W CN 2016102774W WO 2018072186 A1 WO2018072186 A1 WO 2018072186A1
Authority
WO
WIPO (PCT)
Prior art keywords
envelope signal
transmission delay
capacitor
howling
signal
Prior art date
Application number
PCT/CN2016/102774
Other languages
English (en)
French (fr)
Inventor
梁远刚
韩巧瑜
韩勇
Original Assignee
海能达通信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海能达通信股份有限公司 filed Critical 海能达通信股份有限公司
Priority to PCT/CN2016/102774 priority Critical patent/WO2018072186A1/zh
Publication of WO2018072186A1 publication Critical patent/WO2018072186A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/04Circuits for transducers, loudspeakers or microphones for correcting frequency response

Definitions

  • Invention name a howling detection method and device
  • the present invention relates to the field of communications, and in particular, to a method and apparatus for detecting howling.
  • a normal tone signal (for example, a ' ⁇ ' tone emitted by a button of an electronic product) is easily misjudged as a howling signal;
  • the prior art detects the frequency of the sound signal itself, and thus is up to the KHz level.
  • the sound frequency range is KHz, and the system is sold with a large credit.
  • a normal tone signal (for example, a ' ⁇ ' tone emitted by a button of an electronic product) is easily misjudged as a howling signal;
  • the prior art detects the frequency of the sound signal itself, and thus is up to the KHz level.
  • the sound frequency range is KHz, and the system is sold with a large credit.
  • the technical problem to be solved by the present invention is to provide a method and device for detecting howling, which is easy and effective to detect, in view of the above-mentioned shortcomings in which the howling detection is easy to be misjudged and the system is sold out. Whistling Called to produce.
  • the technical solution adopted by the present invention to solve the technical problem is: constructing a howling detection method, comprising: [0011] The detector detects the received audio signal to extract an envelope signal of the audio signal [0012] determining whether the envelope signal has an equal periodicity, and determining whether a difference between a period of the envelope signal and a pre-stored transmission delay is within a preset range;
  • the step of determining whether the envelope signal has an equal periodicity, and determining whether a difference between a period of the envelope signal and a pre-stored transmission delay is within a preset range comprises:
  • the step of determining whether the envelope signal has an equal periodicity, and determining whether a difference between a period of the envelope signal and a pre-stored transmission delay is within a preset range comprises:
  • the present invention also constructs a howling detection device, including:
  • a detector for detecting the received audio signal to extract an envelope signal of the audio signal
  • an analyzing unit configured to determine whether the envelope signal has an equal periodicity, and determine whether a difference between a period of the envelope signal and a pre-stored transmission delay is within a preset range
  • a confirming unit configured to: when the envelope signal has an equal periodicity, and the difference between the period of the envelope signal and the pre-stored transmission delay is within a preset range, confirming that a howling occurs.
  • the analyzing unit comprises:
  • a first determining module configured to determine whether an interval of consecutive preset number of adjacent rising edges in the envelope signal is approximately equal
  • a second determining module configured to determine that the envelope signal has an equal periodicity, and determine Whether the difference between the period of the envelope signal and the pre-stored transmission delay is within a preset range.
  • the analyzing unit comprises:
  • a third determining module configured to sequentially determine whether a difference between an interval between adjacent rising edges of the envelope signal and a pre-stored transmission delay is within a preset range
  • the fourth judging module is configured to: within the preset range, determine whether the interval between the pre-stored transmission delay and the pre-stored transmission delay is continuous and exceeds a preset number.
  • the detector comprises:
  • an amplifying circuit configured to amplify the received audio signal
  • a high pass filter for filtering the amplified audio signal
  • a rectifier circuit configured to rectify the filtered audio signal
  • a switching circuit configured to compare the rectified audio signal with a preset threshold value, and if the threshold value is greater than or equal to the threshold value, output a high level of the envelope signal, if the threshold is less than the threshold The value outputs the low level of the envelope signal.
  • the amplifying circuit includes: a first operational amplifier, a first resistor, a second resistor, and a first capacitor, wherein the non-inverting input terminal of the first operational amplifier is connected to a high level, the first An inverting input end of the operational amplifier is connected to the first end of the first capacitor through the first resistor, a second end of the first capacitor is a signal input end, and the second resistor is connected to the first end Place the inverting input and output between the inverting input.
  • the high-pass filter includes a second operational amplifier, a third electrical resistance, a fourth electrical resistance, a second electrical capacitance, a third electrical capacitance, and a sixth electrical capacitance, wherein the non-inverting input terminal of the second operational amplifier a high level, an inverting input end of the second operational amplifier is connected to the first end of the third capacitor, and a second end of the third capacitor is connected to the output end of the amplifying circuit through the second capacitor.
  • the fourth resistor is connected between the second end of the third capacitor and the ground, and the third resistor is connected between the inverting input end and the output end of the second operational amplifier, the sixth capacitor Connected between the output of the second op amp and the second end of the third capacitor.
  • the rectifier circuit includes a third operational amplifier, a fourth capacitor, and a diode, wherein the non-inverting input terminal of the third operational amplifier is connected to the output end of the high-pass filter through the fourth capacitor, An output end of the third operational amplifier is connected to a positive pole of the diode, and a negative pole of the diode is connected to an inverting input end of the third operational amplifier.
  • the switching circuit includes a first bypass transistor, a second bypass transistor, a fifth resistor, a sixth resistor, and a seventh resistor, wherein a control end of the second bypass transistor is connected to an output end of the rectifier circuit through the seventh resistor, and a second end of the second bypass transistor is grounded, the second switch The first end of the tube is connected to the control end of the first bypass tube through the sixth resistor, the second end of the first bypass tube is connected to a high level, and the fifth resistor is connected to the first Between the second end of the bypass tube and the control end, the first end of the first bypass tube is an output end of the switching circuit.
  • the technical solution of the present invention is to determine whether or not whistling occurs by detecting the ringing period (envelope) of the audio signal instead of detecting the frequency and amplitude characteristics of the audio signal itself, and therefore, will not be normal.
  • the tone signal is misjudged as howling.
  • the frequency of the audio signal envelope (only the Hz level is related to the inherent transmission delay) is smaller than the frequency of the audio signal itself (up to the KHz level), the system resources for detecting the power consumption are small.
  • FIG. 1 is a schematic diagram of a sequence of a transmitted signal and a received signal in a communication system
  • FIG. 2 is a waveform diagram of a howling audio signal generated by a communication system
  • Embodiment 3 is a flow chart of Embodiment 1 of the howling detection method of the present invention.
  • Embodiment 1 of the howling detection apparatus of the present invention
  • FIG. 7 is a circuit diagram of the first embodiment of the detector of FIG. 6.
  • the sound signal Y10 is collected from the microphone of the transmitter and the sound signal Y20 is emitted from the speaker of the receiver, and a series of signal conversion, processing, and propagation are performed in the middle. Therefore, there is a certain transmission delay.
  • the transmission delay is a fixed value, and when the transmission delay is determined, the transmission delay value can be stored in the communication system.
  • Fig. 2 is a waveform diagram of the whistling ⁇ audio signal. It can be seen from the figure that the audible squeaky audio signal has a significant ringing periodicity, and the ringing period just happens to delay the transmission of the communication system.
  • the present invention utilizes the transmission delay characteristic of the audio signal of the communication system to determine whether or not whistling occurs, and the generation of howling can be detected simply and effectively. That is, the echo period of the signal is extracted by detecting the audio signal, and if there is an equal periodicity, and the period is the transmission delay of the communication system, it can be judged that the howling has occurred in the system.
  • the howling detection method of the embodiment includes the following steps:
  • the detector detects the received audio signal to extract an envelope signal of the audio signal; [0053] S20. Determine whether the envelope signal has an equal periodicity, and determine the envelope Whether the difference between the period of the signal and the pre-stored transmission delay is within a preset range, and if so, step S30 is performed;
  • the period of the envelope signal is equal to the transmission delay of the communication system, and therefore, whether the envelope signal has an equal periodicity and whether the period is inherent to the system can be determined.
  • the transmission delay is approached to determine if a howling occurs.
  • the howling suppression circuit in the system can be activated to suppress the occurrence of howling.
  • the technical solution of the present invention is to determine whether or not whistling occurs by detecting the ringing period (envelope) of the audio signal instead of detecting the frequency and amplitude characteristics of the audio signal itself, and therefore, will not be normal.
  • the mono signal is misjudged as a howling.
  • the frequency of the audio signal envelope (only the Hz level, which is related to the inherent transmission delay) is smaller than the frequency of the audio signal itself (up to the KHz level), the system resources for detecting the consumption are small.
  • step S20 specifically includes the following steps:
  • the envelope signal whether or not the envelope signal has an equal periodicity is determined by judging whether or not there is a continuous preset number of intervals of approximately equal adjacent rising edges.
  • the preset number is, for example, 3-6.
  • the interval of consecutive preset number of adjacent rising edges will not be completely equal, therefore, only need to be approximately equal. For example, if the error of two intervals is less than or equal to 5%, the two intervals are considered to be approximately equal.
  • S22 Determine that the envelope signal has an equal periodicity, and determine whether a difference between a period of the envelope signal and a pre-stored transmission delay is within a preset range.
  • the envelope signal is an equal period envelope signal, and the period of the envelope signal is That is, the interval between adjacent rising edges. Further, it is further determined whether the period of the envelope signal is close to the transmission delay of the system, and if it is close, it can be confirmed that the chirping occurs. In addition, regarding the preset range, it can be set to (1 +/- 10%) * ⁇ , where TO is the transmission delay.
  • step S20 specifically includes the following steps:
  • step S23 The difference between the interval between the adjacent rising edge of the envelope signal and the pre-stored transmission delay is determined to be within a preset range, and if so, step S24 is performed;
  • the interval between each adjacent rising edge may be separately calculated, and whether the calculated interval is close to the transmission delay of the system is determined, respectively.
  • S24 Determine whether the difference between the pre-stored transmission delay and the preset range is continuous and exceeds the preset number.
  • step S23 for the interval that satisfies the condition of the determination in step S23, it is further determined whether the intervals are continuous and exceeds the preset number, and the preset number is, for example, 3-6, and if so, it can be confirmed that the whistling occurs.
  • FIG. 6 is a logic structural diagram of a first embodiment of the howling detection apparatus of the present invention, and the howling detection apparatus of the embodiment
  • the detector 10, the analyzing unit 20 and the confirming unit 30 are connected in sequence, wherein the detector 10 is configured to detect the received audio signal to extract an envelope signal of the audio signal; and the analyzing unit 20 is configured to determine Determining whether the envelope signal has an equal periodicity, and determining whether the difference between the period of the envelope signal and the pre-stored transmission delay is within a preset range; the confirming unit 30 is configured to have an equal periodicity in the envelope signal And the difference between the period of the envelope signal and the pre-stored transmission delay is within a preset range, and the occurrence of howling is confirmed.
  • the analyzing unit 20 specifically includes a first determining module and a second determining module, where the first determining module is configured to determine a continuous preset number of adjacent rising edges of the envelope signal. Whether the intervals are approximately equal; the second determining module is configured to determine that the envelope signal has an equal periodicity, and determine whether the difference between the period of the envelope signal and the pre-stored transmission delay is within a preset range
  • the analyzing unit 20 specifically includes a third determining module and a fourth determining module, where the third determining module is configured to sequentially determine intervals and pre-stored adjacent rising edges of the envelope signal. Whether the difference of the transmission delay is within a preset range; the fourth judging module is configured to be within the preset range, and determine whether the interval between the pre-stored transmission delay and the pre-stored transmission delay is continuous and exceeds the preset Quantity.
  • the detector 10 specifically includes an amplifying circuit 11, a high-pass filter 12, a rectifying circuit 13, and a switching circuit 14, wherein the amplifying circuit 11 is configured to receive the received audio signal.
  • the high pass filter 12 is for filtering the amplified audio signal
  • the rectifying circuit 13 is for rectifying the filtered audio signal
  • the switching circuit 14 is for using the rectified audio signal with a preset threshold The values are compared. If the threshold is greater than or equal to the threshold, the high level of the envelope signal is output. If the threshold is less than the threshold, the output signal of the envelope is low.
  • the non-inverting input terminal of the operational amplifier U2-1 is connected to a high level (VCC) through a resistor R6, and the resistor R5 is connected between the non-inverting input terminal of the operational amplifier U2-1 and the ground, and the operational amplifier U2
  • the inverting input of the -1 is connected to the first end of the capacitor C1 through the resistor R1
  • the second end of the capacitor C1 is the signal input end (Vin)
  • the resistor R2 is connected to the inverting input end and the output end of the operational amplifier U2-1. between.
  • the non-inverting input terminal of the operational amplifier U2-2 is connected to a high level (VCC) through a resistor R10, and the resistor R8 is connected between the non-inverting input terminal of the operational amplifier U2-2 and the ground, and the operational amplifier U2
  • the inverting input of -2 is connected to the first end of the capacitor C3, and the second end of the capacitor C3 is connected to the output of the amplifying circuit through the capacitor C2, that is, the connected op amp
  • resistor R4 is connected between the second end of capacitor C3 and ground.
  • Resistor R3 is connected between the inverting input terminal and output terminal of the operational amplifier U2-2.
  • Capacitor C6 is connected to the operational amplifier U2-. The output of 2 is between the second end of capacitor C3.
  • the non-inverting input terminal of the operational amplifier U2-3 is connected to the output end of the high-pass filter through the capacitor C4, that is, the output terminal of the operational amplifier U2-2 is connected, and the output terminal of the operational amplifier U2-3 is connected.
  • the anode of diode D1 and the cathode of diode D1 are connected to the inverting input of op amp U2-3.
  • the resistor R13 is connected between the non-inverting input terminal of the operational amplifier U2-3 and the ground, and the resistor R9 and the capacitor C5 are respectively connected between the cathode of the diode D1 and the ground.
  • the base of the three-stage tube Q2 is connected to the output end of the rectifier circuit through the resistor R7, that is, the anode of the diode D1 is connected, the emitter of the third-stage tube Q2 is grounded, and the collector of the third-stage tube Q2 is connected.
  • the gate of the MOS transistor Q1 through the resistor R12 Connect the gate of the MOS transistor Q1 through the resistor R12, the source of the MOS transistor Q1 is connected to the high level (VCC), the resistor R11 is connected between the gate and the source of the MOS transistor Q1, and the drain of the MOS transistor Q1 is the ⁇ Off the output of the circuit.
  • the audio signal is input from the signal input terminal (Vin) to the amplifier circuit, and the amplification factor of the amplifier circuit is R2/R1, and the audio signal amplified by the amplifier circuit is sent.
  • High pass filter The cutoff frequency fc of the high pass filter satisfies the following condition: fc 2R 3 R 4 C 3 C 6 ) , the audio signal filtered by the high-pass filter is sent to the rectifier circuit for rectification.
  • the output terminal (Vo) of the circuit of the circuit outputs a high level, and vice versa, outputs a low level, thereby forming an envelope signal.
  • the resistors R5, R6, R8, and R10 can be omitted, that is, the non-inverting input terminals of the operational amplifiers U2-l and U2-2 are directly connected to each other. Level.
  • the resistors R13 and R9 are isolated and can be omitted.
  • Capacitor C5 acts as a regulator and can also be omitted.
  • Transistor Q2 and MOS tube Q1 can also be used with other types of bypass tubes.
  • the detector of the present invention is not limited to the structure of the detector of the above embodiment. In other embodiments, the detector may be a detector of other configurations. For example, a diode envelope detector (including a diode peak type package) may be selected. Network detector, diode parallel type envelope detector), triode envelope detector, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurosurgery (AREA)
  • Otolaryngology (AREA)
  • Telephone Function (AREA)

Abstract

本发明涉及了一种啸叫检测方法及装置,该啸叫检测方法包括:检波器对所接收的音频信号进行检波,以提取所述音频信号的包络信号;判断所述包络信号是否具有等周期性,且判断所述包络信号的周期与预存的传输时延的差值是否在预设范围内;若是,则确认发生啸叫。实施本发明的技术方案,不会将正常的单音信号误判为啸叫,而且,检测时耗用的系统资源较小。

Description

发明名称:一种啸叫检测方法及装置
技术领域
[0001] 本发明涉及通信领域, 尤其涉及一种啸叫检测方法及装置。
背景技术
[0002] 在通信系统中, 当发射机和接收机在近距离通话吋, 接收机的喇叭发出的声音 容易被发射机的麦克采集, 经过音频通路放大形成正反馈, 产生啸叫, 影响用 户体验。 啸叫的检测和抑制一直是设计人员面临的难题。
[0003] 关于啸叫的检测, 现有技术大多是通过检测声音信号的频率和幅度特性来判断 是否发生啸叫。 但是, 这种啸叫检测方法存在以下缺点:
[0004] 1.正常的单音信号 (例如, 电子产品的按键发出的'嘀嘀'提示音) 容易被误判 为啸叫信号;
[0005] 2.由于声音信号本身的频率范围是 0到 20KHz, 现有技术是检测声音信号本身 的频率, 故而高达 KHz级别。 声音频率范围是 KHz级别, 检测起来系统幵销比较 大。
技术问题
[0006] 关于啸叫的检测, 现有技术大多是通过检测声音信号的频率和幅度特性来判断 是否发生啸叫。 但是, 这种啸叫检测方法存在以下缺点:
[0007] 1.正常的单音信号 (例如, 电子产品的按键发出的'嘀嘀'提示音) 容易被误判 为啸叫信号;
[0008] 2.由于声音信号本身的频率范围是 0到 20KHz, 现有技术是检测声音信号本身 的频率, 故而高达 KHz级别。 声音频率范围是 KHz级别, 检测起来系统幵销比较 大。
问题的解决方案
技术解决方案
[0009] 本发明要解决的技术问题在于, 针对现有技术的上述啸叫检测易误判且系统幵 销较大的缺陷, 提供一种啸叫检测方法及装置, 可以简单地、 有效地检测到啸 叫的产生。
[0010] 本发明解决其技术问题所采用的技术方案是: 构造一种啸叫检测方法, 包括: [0011] 检波器对所接收的音频信号进行检波, 以提取所述音频信号的包络信号; [0012] 判断所述包络信号是否具有等周期性, 且判断所述包络信号的周期与预存的传 输吋延的差值是否在预设范围内;
[0013] 若是, 则确认发生啸叫。
[0014] 优选地, 所述判断所述包络信号是否具有等周期性, 且判断所述包络信号的周 期与预存的传输吋延的差值是否在预设范围内的步骤包括:
[0015] 判断所述包络信号中连续预设数量个相邻上升沿的间隔是否近似相等;
[0016] 若是, 则确定所述包络信号具有等周期性, 且判断所述包络信号的周期与预存 的传输吋延的差值是否在预设范围内。
[0017] 优选地, 所述判断所述包络信号是否具有等周期性, 且判断所述包络信号的周 期与预存的传输吋延的差值是否在预设范围内的步骤包括:
[0018] 依次判断所述包络信号中相邻上升沿的间隔与预存的传输吋延的差值是否在预 设范围内;
[0019] 若是, 则判断与预存的传输吋延的差值在预设范围内的间隔是否连续且超过预 设数量。
[0020] 本发明还构造一种啸叫检测装置, 包括:
[0021] 检波器, 用于对所接收的音频信号进行检波, 以提取所述音频信号的包络信号
[0022] 分析单元, 用于判断所述包络信号是否具有等周期性, 且判断所述包络信号的 周期与预存的传输吋延的差值是否在预设范围内;
[0023] 确认单元, 用于在所述包络信号具有等周期性, 且所述包络信号的周期与预存 的传输吋延的差值在预设范围内吋, 确认发生啸叫。
[0024] 优选地, 所述分析单元包括:
[0025] 第一判断模块, 用于判断所述包络信号中连续预设数量个相邻上升沿的间隔是 否近似相等;
[0026] 第二判断模块, 用于在近似相等吋, 确定所述包络信号具有等周期性, 且判断 所述包络信号的周期与预存的传输吋延的差值是否在预设范围内。
[0027] 优选地, 所述分析单元包括:
[0028] 第三判断模块, 用于依次判断所述包络信号中相邻上升沿的间隔与预存的传输 吋延的差值是否在预设范围内;
[0029] 第四判断模块, 用于在预设范围内吋, 判断与预存的传输吋延的差值在预设范 围内的间隔是否连续且超过预设数量。
[0030] 优选地, 所述检波器包括:
[0031] 放大电路, 用于对所接收的音频信号进行放大;
[0032] 高通滤波器, 用于对放大后的音频信号进行滤波;
[0033] 整流电路, 用于对滤波后的音频信号进行整流;
[0034] 幵关电路, 用于将整流后的音频信号与预设的门限值进行比较, 若大于等于所 述门限值, 则输出包络信号的高电平, 若小于所述门限值, 则输出包络信号的 低电平。
[0035] 优选地, 所述放大电路包括: 第一运放、 第一电阻、 第二电阻和第一电容, 其 中, 所述第一运放的同相输入端接高电平, 所述第一运放的反相输入端通过所 述第一电阻连接所述第一电容的第一端, 所述第一电容的第二端为信号输入端 , 所述第二电阻连接在所述第一运放的反相输入端与输出端之间。
[0036] 优选地, 所述高通滤波器包括第二运放、 第三电阻、 第四电阻、 第二电容、 第 三电容和第六电容, 其中, 所述第二运放的同相输入端接高电平, 所述第二运 放的反相输入端连接所述第三电容的第一端, 所述第三电容的第二端通过所述 第二电容连接所述放大电路的输出端, 所述第四电阻连接在所述第三电容的第 二端及地之间, 所述第三电阻连接在所述第二运放的反相输入端和输出端之间 , 所述第六电容连接在所述第二运放的输出端和所述第三电容的第二端之间。
[0037] 优选地, 所述整流电路包括第三运放、 第四电容及二极管, 其中, 所述第三运 放的同相输入端通过所述第四电容接所述高通滤波器的输出端, 所述第三运放 的输出端连接所述二极管的正极, 所述二极管的负极连接所述第三运放的反相 输入端。
[0038] 优选地, 所述幵关电路包括第一幵关管、 第二幵关管、 第五电阻、 第六电阻和 第七电阻, 其中, 所述第二幵关管的控制端通过所述第七电阻连接所述整流电 路的输出端, 所述第二幵关管的第二端接地, 所述第二幵关管的第一端通过所 述第六电阻接所述第一幵关管的控制端, 所述第一幵关管的第二端接高电平, 所述第五电阻连接在所述第一幵关管的第二端和控制端之间, 所述第一幵关管 的第一端为所述幵关电路的输出端。
发明的有益效果
有益效果
[0039] 实施本发明的技术方案, 由于是通过检测音频信号的响断周期 (包络) , 而非 检测音频信号自身的频率、 幅度特性来判断是否发生啸叫, 因此, 不会将正常 的单音信号误判为啸叫。 而且, 由于音频信号包络的频率 (只有 Hz级别, 与固 有的传输吋延相关) 相比音频信号自身的频率 (高达 KHz级别) 比较小, 因此, 检测吋耗用的系统资源较小。
对附图的简要说明
附图说明
[0040] 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施例或 现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的 附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创 造性劳动的前提下, 还可以根据这些附图获得其他的附图。 附图中:
[0041] 图 1是通信系统中发射信号和接收信号的吋序示意图;
[0042] 图 2是通信系统发生啸叫吋音频信号的波形图;
[0043] 图 3是本发明啸叫检测方法实施例一的流程图;
[0044] 图 4是图 3中步骤 S20实施例一的流程图;
[0045] 图 5是图 3中步骤 S20实施例二的流程图;
[0046] 图 6是本发明啸叫检测装置实施例一的逻辑结构图;
[0047] 图 7是图 6中检波器实施例一的电路图。
实施该发明的最佳实施例
本发明的最佳实施方式 [0048] 首先说明的是, 在通信系统中, 如图 1所示, 从发射机的麦克采集声音信号 Y10 到接收机的扬声器发出声音信号 Y20, 中间要经过一系列的信号转换、 处理以及 传播, 因此存在一定的传输吋延。 当通信系统的发射机、 接收机以及两者的距 离一定吋, 传输吋延即为定值, 当传输吋延确定好后, 可在通信系统中存储其 该传输吋延值。
[0049] 当发射机和接收机在近距离通话吋, 接收机的扬声器发出的声音被发射机的麦 克采集, 经过音频通路放大, 形成正反馈, 如此循环放大, 产生啸叫。 一次循 环的周期等于通信系统的传输吋延。 图 2是发生啸叫吋音频信号的波形图, 从图 中可以看出发生啸叫吋的音频信号具有明显的响断周期性, 而该响断周期刚好 为通信系统的传输吋延。
[0050] 基于此, 本发明利用通信系统音频信号的传输吋延特性来判断是否发生啸叫, 可以简单地、 有效地检测到啸叫的产生。 即, 通过对音频信号进行检波来提取 信号的响断周期, 如果具有等周期性, 且周期是通信系统的传输吋延, 那么就 可以判断此吋系统发生了啸叫。
[0051] 在图 3示出的本发明啸叫检测方法实施例一的流程图, 该实施例的啸叫检测方 法包括以下步骤:
[0052] S10.检波器对所接收的音频信号进行检波, 以提取所述音频信号的包络信号; [0053] S20.判断所述包络信号是否具有等周期性, 且判断所述包络信号的周期与预存 的传输吋延的差值是否在预设范围内, 若是, 则执行步骤 S30;
[0054] 在该步骤中, 由于发生啸叫吋, 包络信号的周期等于通信系统的传输吋延, 因 此, 可通过判断包络信号是否具有等周期性, 且判断其周期是否与系统固有的 传输吋延接近, 来判断是否发生啸叫。
[0055] S30.确认发生啸叫。
[0056] 在该步骤中, 当判断出包络信号具有等周期性, 且其周期与系统固有的传输吋 延接近吋, 即可确认此吋已发生啸叫。 进而, 可幵启系统中的啸叫抑制电路来 抑制啸叫的发生。
[0057] 实施本发明的技术方案, 由于是通过检测音频信号的响断周期 (包络) , 而非 检测音频信号自身的频率、 幅度特性来判断是否发生啸叫, 因此, 不会将正常 的单音信号误判为啸叫。 而且, 由于音频信号包络的频率 (只有 Hz级别, 与固 有的传输吋延相关) 相比音频信号自身的频率 (高达 KHz级别) 比较小, 因此, 检测吋耗用的系统资源较小。
[0058] 在一个具体实施例中, 如图 4所示, 步骤 S20具体包括以下步骤:
[0059] S21.判断所述包络信号中连续预设数量个相邻上升沿的间隔是否近似相等, 若 是, 则执行步骤 S22;
[0060] 在该步骤中, 对于包络信号, 通过判断是否出现连续预设数量个近似相等的相 邻上升沿的间隔来判断该包络信号是否具有等周期性。 预设数量例如为 3-6个。 另外, 还需说明的是, 在实际应用中, 由于误差的存在, 即使啸叫发生吋, 连 续预设数量个相邻上升沿的间隔也不会完全相等, 因此, 仅需要近似相等即可 , 例如, 两个间隔的误差只要小于等于 5%即认为两个间隔近似相等。
[0061] S22.确定所述包络信号具有等周期性, 且判断所述包络信号的周期与预存的传 输吋延的差值是否在预设范围内。
[0062] 在该步骤中, 若包络信号中出现了连续预设数量个相邻上升沿的间隔近似相等 , 则说明该包络信号为等周期包络信号, 而且, 该包络信号的周期即为相邻上 升沿的间隔吋间。 进而继续判断该包络信号的周期是否与系统的传输吋延接近 , 若接近, 则可确认此吋发生啸叫。 另外, 关于预设范围, 可设置成 (1+/-10% ) *το, 其中, TO为传输吋延。
[0063] 在另一个具体实施例中, 如图 5所示, 步骤 S20具体包括以下步骤:
[0064] S23.依次判断所述包络信号中相邻上升沿的间隔与预存的传输吋延的差值是否 在预设范围内, 若是, 则执行步骤 S24;
[0065] 在该步骤中, 针对该包络信号, 可分别计算每个相邻上升沿的间隔吋间, 并分 别判断所计算的间隔与系统的传输吋延是否接近。
[0066] S24.判断与预存的传输吋延的差值在预设范围内的间隔是否连续且超过预设数
[0067] 在该步骤中, 对于满足步骤 S23判断条件的间隔, 进一步判断这些间隔是否连 续且超过预设数量, 预设数量例如为 3-6个, 若是, 则可确认此吋发生啸叫。
[0068] 图 6是本发明啸叫检测装置实施例一的逻辑结构图, 该实施例的啸叫检测装置 包括依次相连的检波器 10、 分析单元 20和确认单元 30, 其中, 检波器 10用于对 所接收的音频信号进行检波, 以提取所述音频信号的包络信号; 分析单元 20用 于判断所述包络信号是否具有等周期性, 且判断所述包络信号的周期与预存的 传输吋延的差值是否在预设范围内; 确认单元 30用于在所述包络信号具有等周 期性, 且所述包络信号的周期与预存的传输吋延的差值在预设范围内吋, 确认 发生啸叫。
[0069] 在一个具体实施例中, 分析单元 20具体包括第一判断模块和第二判断模块, 其 中, 第一判断模块用于判断所述包络信号中连续预设数量个相邻上升沿的间隔 是否近似相等; 第二判断模块用于在近似相等吋, 确定所述包络信号具有等周 期性, 且判断所述包络信号的周期与预存的传输吋延的差值是否在预设范围内
[0070] 在另一个具体实施例中, 分析单元 20具体包括第三判断模块和第四判断模块, 其中, 第三判断模块用于依次判断所述包络信号中相邻上升沿的间隔与预存的 传输吋延的差值是否在预设范围内; 第四判断模块用于在预设范围内吋, 判断 与预存的传输吋延的差值在预设范围内的间隔是否连续且超过预设数量。
[0071] 在另一个实施例中, 结合图 7, 检波器 10具体包括放大电路 11、 高通滤波器 12 、 整流电路 13和幵关电路 14, 其中, 放大电路 11用于对所接收的音频信号进行 放大; 高通滤波器 12用于对放大后的音频信号进行滤波; 整流电路 13用于对滤 波后的音频信号进行整流; 幵关电路 14用于将整流后的音频信号与预设的门限 值进行比较, 若大于等于所述门限值, 则输出包络信号的高电平, 若小于所述 门限值, 贝 1」输出包络信号的低电平。 下面具体说明每个部分:
[0072] 在放大电路 11中, 运放 U2-1的同相输入端通过电阻 R6接高电平 (VCC) , 电 阻 R5连接在运放 U2- 1的同相输入端和地之间, 运放 U2- 1的反相输入端通过电阻 R 1连接电容 C1的第一端, 电容 C1的第二端为信号输入端 (Vin) , 电阻 R2连接在 运放 U2- 1的反相输入端与输出端之间。
[0073] 在高通滤波器中, 运放 U2-2的同相输入端通过电阻 R10接高电平 (VCC) , 电 阻 R8连接在运放 U2-2的同相输入端和地之间, 运放 U2-2的反相输入端连接电容 C 3的第一端, 电容 C3的第二端通过电容 C2连接放大电路的输出端, 即, 连接运放 U2-1的输出端, 电阻 R4连接在电容 C3的第二端及地之间, 电阻 R3连接在运放 U2 -2的反相输入端和输出端之间, 电容 C6连接在运放 U2-2的输出端和电容 C3的第 二端之间。
[0074] 在整流电路 13中, 运放 U2-3的同相输入端通过电容 C4连接高通滤波器的输出端 , 即, 连接运放 U2-2的输出端, 运放 U2-3的输出端连接二极管 D1的正极, 二极 管 D1的负极连接运放 U2-3的反相输入端。 另外, 电阻 R13连接在运放 U2-3的同 相输入端和地之间, 电阻 R9和电容 C5分别连接在二极管 D1的负极和地之间。
[0075] 在幵关电路中, 三级管 Q2的基极通过电阻 R7连接整流电路的输出端, 即, 连 接二极管 D1的负极, 三级管 Q2的发射极接地, 三级管 Q2的集电极通过电阻 R12 接 MOS管 Q1的栅极, MOS管 Q1的源极接高电平 (VCC) , 电阻 R11连接在 MOS 管 Q1的栅极和源极之间, MOS管 Q1的漏极为所述幵关电路的输出端。
[0076] 下面说明该检波器的工作原理: 音频信号从信号输入端 (Vin) 接入放大电路 , 该放大电路的放大倍数为 R2/R1 , 经该放大电路放大处理后的音频信号被送入 高通滤波器。 该高通滤波器的截止频率 fc满足以下条件: fc
Figure imgf000010_0001
2R 3R 4C 3C 6) , 经该高通滤波器滤波处理后的音频信号又被送入整流电路进行整流。 最后, 在幵关电路中, 当整流电路输出的电压大于等于门限值吋, 幵关电路的输出端 (Vo) 输出高电平, 反之, 输出低电平, 从而形成包络信号。
[0077] 最后, 还需说明的是, 在本发明的检波器中, 电阻 R5、 R6、 R8、 R10可省去, 即, 运放 U2-l、 U2-2的同相输入端直接接入高电平。 电阻 R13、 R9起隔离作用, 也可省去。 电容 C5起稳压作用, 也可省去。 三极管 Q2和 MOS管 Q1也可选用其它 类型的幵关管。 另外, 本发明的检波器也不局限于上述实施例检波器的结构, 在其它实施例中, 检波器可以为其它结构的检波器, 例如, 可选用二极管包络 检波器 (包括二极管峰值型包络检波器、 二极管并联型包络检波器) 、 三极管 包络检波器等。
[0078] 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的 技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内 , 所作的任何纂改、 等同替换、 改进等, 均应包含在本发明的权利要求范围之 内。

Claims

权利要求书
[权利要求 1] 一种啸叫检测方法, 其特征在于, 包括:
检波器对所接收的音频信号进行检波, 以提取所述音频信号的包络信 号;
判断所述包络信号是否具有等周期性, 且判断所述包络信号的周期与 预存的传输吋延的差值是否在预设范围内;
若是, 则确认发生啸叫。
[权利要求 2] 根据权利要求 1所述的啸叫检测方法, 其特征在于, 所述判断所述包 络信号是否具有等周期性, 且判断所述包络信号的周期与预存的传输 吋延的差值是否在预设范围内的步骤包括:
判断所述包络信号中连续预设数量个相邻上升沿的间隔是否近似相等
若是, 则确定所述包络信号具有等周期性, 且判断所述包络信号的周 期与预存的传输吋延的差值是否在预设范围内。
[权利要求 3] 根据权利要求 1所述的啸叫检测方法, 其特征在于, 所述判断所述包 络信号是否具有等周期性, 且判断所述包络信号的周期与预存的传输 吋延的差值是否在预设范围内的步骤包括:
依次判断所述包络信号中相邻上升沿的间隔与预存的传输吋延的差值 是否在预设范围内;
若是, 则判断与预存的传输吋延的差值在预设范围内的间隔是否连续 且超过预设数量。
[权利要求 4] 一种啸叫检测装置, 其特征在于, 包括:
检波器, 用于对所接收的音频信号进行检波, 以提取所述音频信号的 包络信号;
分析单元, 用于判断所述包络信号是否具有等周期性, 且判断所述包 络信号的周期与预存的传输吋延的差值是否在预设范围内; 确认单元, 用于在所述包络信号具有等周期性, 且所述包络信号的周 期与预存的传输吋延的差值在预设范围内吋, 确认发生啸叫。
[权利要求 5] 根据权利要求 4所述的啸叫检测装置, 其特征在于, 所述分析单元包 括:
第一判断模块, 用于判断所述包络信号中连续预设数量个相邻上升沿 的间隔是否近似相等;
第二判断模块, 用于在近似相等吋, 确定所述包络信号具有等周期性 , 且判断所述包络信号的周期与预存的传输吋延的差值是否在预设范 围内。
[权利要求 6] 根据权利要求 4所述的啸叫检测装置, 其特征在于, 所述分析单元包 括:
第三判断模块, 用于依次判断所述包络信号中相邻上升沿的间隔与预 存的传输吋延的差值是否在预设范围内;
第四判断模块, 用于在预设范围内吋, 判断与预存的传输吋延的差值 在预设范围内的间隔是否连续且超过预设数量。
[权利要求 7] 根据权利要求 4所述的啸叫检测装置, 其特征在于, 所述检波器包括 放大电路, 用于对所接收的音频信号进行放大; 高通滤波器, 用于对放大后的音频信号进行滤波; 整流电路, 用于对滤波后的音频信号进行整流; 幵关电路, 用于将整流后的音频信号与预设的门限值进行比较, 若大 于等于所述门限值, 则输出包络信号的高电平, 若小于所述门限值, 贝 U输出包络信号的低电平。
[权利要求 8] 根据权利要求 7所述的啸叫检测装置, 其特征在于, 所述放大电路包 括: 第一运放 (U2-1) 、 第一电阻 (R1) 、 第二电阻 (R2) 和第一 电容 (C1) , 其中, 所述第一运放 (U2-1) 的同相输入端接高电平 , 所述第一运放 (U2-1) 的反相输入端通过所述第一电阻 (R1) 连 接所述第一电容 (C1) 的第一端, 所述第一电容 (C1) 的第二端为 信号输入端, 所述第二电阻 (R2) 连接在所述第一运放 (U2-1) 的 反相输入端与输出端之间。 根据权利要求 7所述的啸叫检测装置, 其特征在于, 所述高通滤波器 包括第二运放 (U2-2) 、 第三电阻 (R3) 、 第四电阻 (R4) 、 第二 电容 (C2) 、 第三电容 (C3) 和第六电容 (C6) , 其中, 所述第二 运放 (U2-2) 的同相输入端接高电平, 所述第二运放 (U2-2) 的反 相输入端连接所述第三电容 (C3) 的第一端, 所述第三电容 (C3) 的第二端通过所述第二电容 (C2) 连接所述放大电路的输出端, 所 述第四电阻 (R4) 连接在所述第三电容 (C3) 的第二端及地之间, 所述第三电阻 (R3) 连接在所述第二运放 (U2-2) 的反相输入端和 输出端之间, 所述第六电容 (C6) 连接在所述第二运放 (U2-2) 的 输出端和所述第三电容 (C3) 的第二端之间。
根据权利要求 7所述的啸叫检测装置, 其特征在于, 所述整流电路包 括第三运放 (U2-3) 、 第四电容 (C4) 及二极管 (D1) , 其中, 所 述第三运放 (U2-3) 的同相输入端通过所述第四电容 (C4) 接所述 高通滤波器的输出端, 所述第三运放 (U2-3) 的输出端连接所述二极 管 (D1) 的正极, 所述二极管 (D1) 的负极连接所述第三运放 (U2- 3) 的反相输入端。
根据权利要求 7所述的啸叫检测装置, 其特征在于, 所述幵关电路包 括第一幵关管 (Q1) 、 第二幵关管 (Q2) 、 第五电阻 (R11) 、 第 六电阻 (R12) 和第七电阻 (R7) , 其中, 所述第二幵关管 (Q2) 的 控制端通过所述第七电阻 (R7) 连接所述整流电路的输出端, 所述 第二幵关管 (Q2) 的第二端接地, 所述第二幵关管 (Q2) 的第一端 通过所述第六电阻 (R12) 接所述第一幵关管 (Q1) 的控制端, 所述 第一幵关管 (Q1) 的第二端接高电平, 所述第五电阻 (R11) 连接在 所述第一幵关管 (Q1) 的第二端和控制端之间, 所述第一幵关管 (Q 1) 的第一端为所述幵关电路的输出端。
PCT/CN2016/102774 2016-10-20 2016-10-20 一种啸叫检测方法及装置 WO2018072186A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/102774 WO2018072186A1 (zh) 2016-10-20 2016-10-20 一种啸叫检测方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/102774 WO2018072186A1 (zh) 2016-10-20 2016-10-20 一种啸叫检测方法及装置

Publications (1)

Publication Number Publication Date
WO2018072186A1 true WO2018072186A1 (zh) 2018-04-26

Family

ID=62018148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/102774 WO2018072186A1 (zh) 2016-10-20 2016-10-20 一种啸叫检测方法及装置

Country Status (1)

Country Link
WO (1) WO2018072186A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111418004A (zh) * 2018-06-11 2020-07-14 思睿逻辑国际半导体有限公司 用于啸叫检测的技术
CN117949215A (zh) * 2024-03-27 2024-04-30 潍柴动力股份有限公司 一种发动机啸叫故障确定方法、装置、车辆及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1934897A (zh) * 2004-02-20 2007-03-21 松下电器产业株式会社 啸叫检测方法及装置、以及具有它们的音响装置
CN105979197A (zh) * 2016-07-19 2016-09-28 块互动(北京)科技有限公司 基于啸叫音自动识别的远程会议控制方法及装置
CN106454670A (zh) * 2016-10-20 2017-02-22 海能达通信股份有限公司 一种啸叫检测方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1934897A (zh) * 2004-02-20 2007-03-21 松下电器产业株式会社 啸叫检测方法及装置、以及具有它们的音响装置
CN105979197A (zh) * 2016-07-19 2016-09-28 块互动(北京)科技有限公司 基于啸叫音自动识别的远程会议控制方法及装置
CN106454670A (zh) * 2016-10-20 2017-02-22 海能达通信股份有限公司 一种啸叫检测方法及装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111418004A (zh) * 2018-06-11 2020-07-14 思睿逻辑国际半导体有限公司 用于啸叫检测的技术
CN111418004B (zh) * 2018-06-11 2023-12-22 思睿逻辑国际半导体有限公司 用于啸叫检测的技术
CN117949215A (zh) * 2024-03-27 2024-04-30 潍柴动力股份有限公司 一种发动机啸叫故障确定方法、装置、车辆及存储介质

Similar Documents

Publication Publication Date Title
CN106454670B (zh) 一种啸叫检测方法及装置
KR102039866B1 (ko) 적응형 잡음 제거 시스템에서의 다운링크 톤 검출 및 2차 경로 응답 모델의 적응
JP6489563B2 (ja) 音量調節方法、システム、デバイス及びプログラム
CN105812993B (zh) 啸叫检测和抑制方法及其装置
WO2016180100A1 (zh) 一种音频处理的性能提升方法及装置
CN106302997B (zh) 一种输出控制方法、电子设备及系统
WO2015007167A1 (zh) 应用于主动噪声消除anr耳机的啸叫抑制方法和装置
JP2005236713A (ja) ハウリング検出方法及び装置、並びにこれを備えた音響装置
CN203537555U (zh) 音频装置
WO2018072186A1 (zh) 一种啸叫检测方法及装置
CN104580764B (zh) 电话会议系统中的超声配对信号控制
JP2011077649A (ja) 収音装置、利得制御方法、およびプログラム
AU2013205695A1 (en) Automatic microphone muting of undesired noises
WO2016101162A1 (zh) 一种声反馈检测方法和装置
CN105681950A (zh) 提示方法、提示装置、耳机及终端
CN1294556C (zh) 用于声频变换器的语音匹配系统及其方法
CN108605191A (zh) 异音检测方法和装置
WO2013107271A1 (zh) 一种音频接口适配装置及音频信号接收设备
WO2012159380A1 (zh) 用于对移动终端降风噪的装置及方法
JP2016066923A (ja) サーバ装置、警告方法および警告プログラム
CN101859567B (zh) 一种语音背景噪声的消除方法和装置
JP4167685B2 (ja) ファクシミリ装置並びにその動作制御方法及び動作制御プログラム
US9826312B2 (en) Circuit and method for driving a loudspeaker
WO2017193264A1 (en) Noise detection and noise reduction
CN105516493A (zh) 一种移动终端及其闹钟控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919032

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS (EPO FORM 1205A DATED 04.09.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16919032

Country of ref document: EP

Kind code of ref document: A1