WO2018072159A1 - 传输数据的方法、网络设备和终端设备 - Google Patents

传输数据的方法、网络设备和终端设备 Download PDF

Info

Publication number
WO2018072159A1
WO2018072159A1 PCT/CN2016/102635 CN2016102635W WO2018072159A1 WO 2018072159 A1 WO2018072159 A1 WO 2018072159A1 CN 2016102635 W CN2016102635 W CN 2016102635W WO 2018072159 A1 WO2018072159 A1 WO 2018072159A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission resources
transmission
data
resource
terminal device
Prior art date
Application number
PCT/CN2016/102635
Other languages
English (en)
French (fr)
Inventor
林亚男
许华
Original Assignee
广东欧珀移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN202010211590.8A priority Critical patent/CN111405661B/zh
Application filed by 广东欧珀移动通信有限公司 filed Critical 广东欧珀移动通信有限公司
Priority to EP20213763.4A priority patent/EP3809782B1/en
Priority to CN202010211589.5A priority patent/CN111405660B/zh
Priority to CN202010211588.0A priority patent/CN111405659B/zh
Priority to PCT/CN2016/102635 priority patent/WO2018072159A1/zh
Priority to PL16919577T priority patent/PL3451766T3/pl
Priority to US16/308,433 priority patent/US10912060B2/en
Priority to ES16919577T priority patent/ES2845773T3/es
Priority to EP16919577.3A priority patent/EP3451766B1/en
Priority to CN201680087390.8A priority patent/CN109417785B/zh
Priority to TW106130402A priority patent/TWI706649B/zh
Publication of WO2018072159A1 publication Critical patent/WO2018072159A1/zh
Priority to US17/125,869 priority patent/US20210105745A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Embodiments of the present invention relate to the field of wireless communications, and, more particularly, to a method, a network device, and a terminal device for transmitting data.
  • the current 5G New Radio (“NR") system supports Grant Free Up Link Transmission, that is, when the terminal has data to transmit, it does not need to wait for the scheduling of the base station to transmit data by itself.
  • This type of transmission is beneficial to reduce the control signaling overhead in the system, reduce the end-to-end delay, and reduce the power consumption of the terminal. Therefore, it is particularly suitable for low-frequency small packet services and low-latency services.
  • One of the problems with this type of transmission is that, in the case of no base station scheduling, when the base station performs data reception, since it does not know the specific physical resources used by the terminal, a complicated reception scheme is required.
  • the embodiment of the invention provides a method for transmitting data, a network device and a terminal device, which solves a high receiving complexity caused by the network device not knowing the physical resource information used by the terminal device to transmit data.
  • a method for transmitting data which includes:
  • the network device receives data sent by the terminal device on multiple transmission resources by means of unscheduled transmission;
  • the network device independently decodes data on each of the plurality of transmission resources.
  • the network device independently decodes the data received on each transmission resource, so that when the terminal device performs the unscheduled uplink transmission, the network device does not need to acquire the location of each transmission resource to receive the terminal device to send on each transmission resource. After the data is unified and decoded, the receiving complexity of the network device is reduced.
  • the terminal device maps the data to be transmitted to multiple transmission resources, and may independently encode the mapped data on each transmission resource. Further, the terminal device may also map the data on each transmission resource. Perform independent interleaving.
  • each of the transmission resources includes at least one resource unit.
  • each resource when one resource element is included in each transmission resource, the flexibility of the system is high.
  • each resource in combination with the specific situation of the actual application network or the data to be transmitted, each resource may also include multiple resource units.
  • the k is a preset non-negative integer less than N.
  • the value of k may be agreed by the terminal device and the network device, for example, by a protocol, or may be configured by the network device and notified to the terminal device.
  • the at least one resource unit is continuous or discontinuous in the frequency domain.
  • the plurality of transmission resources are consecutive or discontinuous in the frequency domain.
  • the method before the network device receives the data that is sent by the terminal device on the multiple transmission resources by means of the unscheduled transmission, the method further includes: determining, according to the identifier ID of the terminal device, the network device The location of multiple transmission resources.
  • the network device may determine the location of other transmission resources according to the location of the first transmission resource, the ID of the terminal device, and a pre-agreed algorithm or formula.
  • the method before the network device receives the data that is sent by the terminal device on the multiple transmission resources by means of the unscheduled transmission, the method further includes: determining, by the network device, the ID of the terminal device a location of the at least one resource unit in each of the transmission resources.
  • the network device may determine the location of other transmission resources according to the location of one of the plurality of transmission resources, the ID of the terminal device, and a pre-agreed algorithm or formula.
  • the method before the network device independently decodes data on each of the plurality of transmission resources, the method further includes: the network device in each of the transmission resources Receiving decoding information for decoding data on each of the transmission resources on a specific time-frequency resource;
  • Decoding by the network device, data on each of the plurality of transmission resources, including: the network device according to the decoding information used to decode data on each of the transmission resources, The data on each of the transmission resources is independently decoded.
  • the decoding information includes at least one of the following: a modulation coding level MCS corresponding to each transmission resource, and a precoding corresponding to each transmission resource.
  • the data on the plurality of transmission resources belong to the same hybrid automatic repeat request HARQ process.
  • the solution of this embodiment is simpler to implement, but if data decoding on a transmission resource such as transmission resource 1 fails, all transmission resources in the time unit, that is, transmission resource 1, transmission resource 2, and transmission resource 3 pass. Data transmitted without scheduling needs to be retransmitted.
  • the data on each of the transmission resources includes at least one of the following: a total number of the plurality of transmission resources, and other transmission resources of the plurality of transmission resources except the current transmission resource. Index number and location information of the other transmission resources.
  • the data on the plurality of transmission resources includes at least one common cyclic redundancy check CRC code.
  • the unscheduled uplink transmission data received by the network device on multiple transmission resources wherein the data on each transmission resource includes at least one unified CRC code in addition to its own CRC code.
  • the position and number of the common CRC code are not limited in the embodiment of the present invention.
  • the public CRC code can be located on any one of the transmission resources.
  • the data on each of the plurality of transmission resources belongs to an independent HARQ process.
  • the scheme of this embodiment increases the complexity of the system, but if the decoding of data on one transmission resource such as transmission resource 1 fails, and the decoding of data on other transmission resources such as transmission resource 2 and transmission resource 3 is successful, the terminal device only needs Retransmit the part of the data on the transmission resource 1.
  • the data on each of the transmission resources includes: information of a HARQ process number corresponding to the data transmission on each of the transmission resources, and/or a current transmission resource of the plurality of transmission resources. Location information of other transmission resources.
  • a network device which can be used to perform various processes performed by a network device in the method of transmitting data in the foregoing first aspect and various implementations.
  • the network device includes a receiving unit and a processing unit.
  • the receiving unit is configured to receive data that is sent by the terminal device on multiple transmission resources by means of unscheduled transmission
  • the processing unit is configured to: each of the multiple transmission resources received by the receiving unit The data on the transmission resource is independently decoded.
  • a network device which can be used to perform various processes performed by a network device in the method of transmitting data in the foregoing first aspect and various implementations.
  • the network device includes a receiver and a processor.
  • the receiver is configured to receive data that is sent by the terminal device on multiple transmission resources by means of unscheduled transmission; the processor is configured to: each of the multiple transmission resources received by the receiver The data on the transmission resource is independently decoded.
  • a system chip comprising an input interface, an output interface, a processor, and a memory
  • the processor is configured to execute code in the memory, and when the code is executed, the processor can implement the foregoing
  • the input interface is configured to receive data sent by the terminal device on multiple transmission resources by means of unscheduled transmission; the processor is configured to use, for each of the multiple transmission resources received by the input interface The data on the transmission resource is independently decoded.
  • a fifth aspect provides a method for transmitting data, including:
  • the terminal device independently encodes data to be sent on each of the plurality of transmission resources
  • the terminal device sends the independently encoded data to the network device on the each transmission resource by means of unscheduled transmission.
  • the terminal device transmits the data to be transmitted to the network device by means of mapping the data to be transmitted to the plurality of transmission resources, and independently encoding the data mapped on each transmission resource, so that the network device is After receiving the data on each transmission resource, the data on each transmission resource can be independently decoded, which reduces the receiving complexity of the network device.
  • Each of the transmission resources includes at least one resource unit.
  • the k is a preset non-negative integer less than N.
  • the value of k may be agreed by the terminal device and the network device, for example, by a protocol, or may be configured by the network device and notified to the terminal device.
  • the at least one resource unit is continuous or discontinuous in the frequency domain.
  • the plurality of transmission resources are consecutive or discontinuous in the frequency domain.
  • the method before the terminal device independently encodes data to be sent on each of the plurality of transmission resources, the method further includes: the terminal device according to the identifier ID of the terminal device Determining the location of the plurality of transmission resources.
  • the terminal device may first autonomously select the location of the first transmission resource, and determine the location according to the location of the first transmission resource, the ID of the terminal device, and a pre-agreed algorithm or formula. He transmits the location of the resource.
  • the method before the terminal device independently encodes data to be sent on each of the plurality of transmission resources, the method further includes: the terminal device according to the ID of the terminal device, Determining a location of the at least one resource unit in each of the transmission resources.
  • the terminal device may determine the location of the resource unit in each transmission resource according to the ID of the terminal device and a pre-agreed algorithm or formula.
  • the method further includes: the terminal device transmitting, on a specific time-frequency resource in each of the transmission resources, data for decoding the data on each of the transmission resources to the network device. Decode the information.
  • the decoding information includes at least one of the following: a modulation coding level MCS corresponding to each transmission resource, precoding information corresponding to each transmission resource, and each transmission The information of the reference signal corresponding to the resource, and the size of each of the transmission resources.
  • the data on the plurality of transmission resources belong to the same hybrid automatic repeat request HARQ process.
  • the data on each of the transmission resources includes at least one of the following: a total number of the plurality of transmission resources, and other transmission resources of the plurality of transmission resources except the current transmission resource. Index number and location information of the other transmission resources.
  • the data on the plurality of transmission resources includes at least one common cyclic redundancy check CRC code.
  • the terminal device maps data to be subjected to unscheduled uplink transmission to a plurality of transmission resources, wherein the data on each transmission resource includes at least one unified CRC in addition to its own CRC code. code.
  • the position and number of the common CRC code are not limited in the embodiment of the present invention.
  • the public CRC code can be located on any one of the transmission resources.
  • the data on each of the plurality of transmission resources belongs to an independent HARQ process.
  • the data on each of the transmission resources includes: information of a HARQ process number corresponding to the data transmission on each of the transmission resources, and/or a current transmission resource of the plurality of transmission resources. Location information of other transmission resources.
  • a terminal device configured to perform the foregoing second party And various processes performed by the terminal device in the method of transmitting data in various implementations.
  • the terminal device includes a processing unit and a transmitting unit.
  • the processing unit is configured to independently encode data to be sent on each of the plurality of transmission resources, where the sending unit is configured to use the unscheduled transmission manner on each of the transmission resources.
  • the data that is independently encoded by the processing unit is transmitted to the network device.
  • a terminal device which can be used to execute the processes performed by the terminal device in the method for transmitting data in the foregoing second aspect and various implementation manners.
  • the terminal device includes a processor and a transmitter.
  • the processor is configured to independently encode data to be sent on each of the plurality of transmission resources, where the transmitter is configured to send the network to each network by means of unscheduled transmission.
  • the device transmits the data that is independently encoded by the processor.
  • a system chip comprising an input interface, an output interface, a processor, and a memory
  • the processor is configured to execute code in the memory, and when the code is executed, the processor can implement the foregoing
  • the processor is configured to independently encode data to be sent on each of the plurality of transmission resources, where the output interface is configured to send the network device to each network resource by means of unscheduled transmission. Transmitting the data that is independently encoded by the processor.
  • a computer readable storage medium storing a program causing a network device to perform the first aspect described above, and transmitting the data in any of the various implementations thereof Methods.
  • a tenth aspect a computer readable storage medium storing a program, the program causing a terminal device to perform the above fifth aspect, and any one of its various implementations to transmit data Methods.
  • the terminal device sends the data to be transmitted to multiple transmission resources, and independently encodes the data mapped on each transmission resource, and then sends the data to the network device by means of non-scheduled transmission.
  • the data enables the network device to independently decode the data on each of the transmission resources after receiving the data on each of the transmission resources.
  • the network device does not need to use a complex receiving mechanism to determine the location of each transmission resource to receive the data sent by the terminal device, and then perform unified decoding, and only needs to receive each transmission resource. Data on each transmission resource after the data on it Independent decoding is performed to avoid high reception complexity of network devices.
  • FIG. 1 is a schematic structural diagram of an application scenario according to an embodiment of the present invention.
  • FIG. 2 is a flow interaction diagram of a method of transmitting data according to an embodiment of the present invention.
  • FIG. 3(a) is a schematic diagram of transmission resources of an embodiment of the present invention.
  • FIG. 3(b) is a schematic diagram of transmission resources of an embodiment of the present invention.
  • FIG. 3(c) is a schematic diagram of transmission resources of an embodiment of the present invention.
  • FIG. 4 is a flow interaction diagram of a method of transmitting data according to another embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a CRC code according to an embodiment of the present invention.
  • FIG. 6 is a structural block diagram of a network device according to an embodiment of the present invention.
  • FIG. 7 is a structural block diagram of a network device according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a system chip according to an embodiment of the present invention.
  • FIG. 9 is a structural block diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 10 is a structural block diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a system chip according to an embodiment of the present invention.
  • ком ⁇ онент can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • Application and computing set running on a computing device by illustration The preparation can be a part.
  • One or more components can reside within a process and/or execution thread, and the components can be located on one computer and/or distributed between two or more computers. Moreover, these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on signals having one or more data packets (eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • a terminal device may also be referred to as a User Equipment ("UE"), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, and a wireless communication device. , user agent or user device.
  • UE User Equipment
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol ("SIP") phone, a Wireless Local Loop (WLL) station, or a personal digital assistant (Personal Digital Assistant, Referred to as "PDA”), a handheld device with wireless communication capabilities, a computing device or other processing device connected to a wireless modem, an in-vehicle device, a wearable device, a terminal device in a future 5G network, or a terminal device in a future evolved PLMN network. Wait.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the present invention describes various embodiments in connection with a network device.
  • the network device may be a device for communicating with the terminal device, for example, may be a base station (Base Transceiver Station, abbreviated as "BTS") in the GSM system or CDMA, or may be a base station (NodeB, referred to as "NB” in the WCDMA system. ”), may also be an evolved base station (Evolutional Node B, “eNB” or “eNodeB”) in the LTE system, or the network device may be a relay station, an access point, an in-vehicle device, a wearable device, and a future 5G network.
  • a network side device in a network device or a network device in a future evolved PLMN network.
  • FIG. 1 shows a schematic architectural diagram of a communication system to which an embodiment of the present invention is applied.
  • the communication system may include a network device 10 and a terminal device 20 to a terminal device 70 (referred to as UE in the figure) connected by a wireless connection or a wired connection or other means.
  • UE terminal device 70
  • the network in the embodiment of the present invention may refer to a Public Land Mobile Network (PLMN) or a Device to Device (D2D) network or a Machine to Machine (Machine to Machine). /Man, referred to as "M2M” network or other network
  • PLMN Public Land Mobile Network
  • D2D Device to Device
  • Machine to Machine Machine to Machine
  • FIG. 1 is only a simplified schematic diagram of the example, and other network devices may also be included in the network, which are not shown in FIG.
  • Unscheduled transmission can solve various services in the future network, such as Machine Type Communication (“MTC”) service or Ultra Reliable and Low Latency Communication (URLLC) service, to meet low Delayed, highly reliable service transmission requirements.
  • MTC Machine Type Communication
  • URLLC Ultra Reliable and Low Latency Communication
  • the non-scheduled transmission may refer to data transmission of the terminal device on the authorized carrier, and may also refer to data transmission of the terminal device on the licensed carrier.
  • the terminal device may not wait for the network when there is data to be transmitted.
  • the device's resource scheduling and self-sending data The unscheduled transmission can be directed to the transmission of uplink data.
  • the network device when the terminal device autonomously performs data transmission on multiple transmission resources, the network device independently decodes data on multiple transmission resources based on the agreed resource granularity, so that the network device does not know
  • the terminal device performs physical resource information (for example, the total number of physical resource units used, location, etc.) used by the terminal device
  • the network device can also decode the data sent by the terminal device, thereby reducing the receiving complexity (for example, the network device does not have to be used.
  • the blind detection method detects the physical resources used by the terminal device for data transmission.
  • the transmitting end of the data may be a terminal device or a network device
  • the receiving end of the data number may be a terminal device or a network device.
  • the following is an example in which the transmitting end of the data is the terminal device, and the receiving end of the data is the network device.
  • the embodiment of the present invention is not limited thereto.
  • FIG. 2 shows a network device and a terminal device, which may be, for example, the network device 10 shown in FIG. 1, which may be, for example, any one of the UE 20 to the UE 70 shown in FIG. 1.
  • a non-scheduled uplink transmission may be performed between the terminal device and the network device, and the terminal device may utilize the embodiment of the present invention with multiple network devices including the network device.
  • the method performs data transmission.
  • the method performed by other network devices can refer to the method performed by the network device. For brevity, no further details are provided herein.
  • the method can be applied to the unscheduled uplink transmission, and can also be applied to other scenarios.
  • the unscheduled uplink transmission is used as an example for description, that is, the uplink transmission performed by the terminal device and the network device is a non-scheduled uplink transmission, which is used.
  • the transmission resource is a non-scheduled uplink transmission resource.
  • the terminal device independently encodes data to be transmitted on each of the plurality of transmission resources.
  • each of the transmission resources may be referred to as an independently decoded data area.
  • the terminal device may map the data to be transmitted to the multiple transmission resources, and independently code the data to be transmitted on each of the plurality of transmission resources, so that the network device is on the multiple transmission resources.
  • the data received on each of the plurality of transmission resources may be independently decoded.
  • the terminal device may perform independent interleaving processing on the data to be sent on each of the plurality of transmission resources.
  • the data may be included in service data or signaling data.
  • the terminal device can also transmit data only on one transmission resource. If the data to be transmitted by the terminal device only needs to occupy one transmission resource and does not need multiple transmission resources, the terminal device can only use the transmission resource.
  • the data is encoded and sent to the network device by means of a non-scheduled transmission. After receiving the data on the transmission resource, the network device can only decode the data on the transmission resource.
  • each of the plurality of transmission resources includes at least one resource unit.
  • each resource may also include multiple resource units.
  • each transmission resource includes a plurality of resource units
  • the starting position of the resource unit in each transmission resource may be pre-agreed.
  • the value of k may be agreed by the terminal device and the network device, for example, by a protocol, or may be configured by the network device and notified to the terminal device.
  • the at least one resource unit is continuous or discontinuous in the frequency domain.
  • each transmission resource is continuously distributed in the frequency domain, but the plurality of transmission resources actually used for transmitting data may also be discontinuous in the frequency domain, for example, FIG. 3(b) is a schematic diagram of a transmission resource according to an embodiment of the present invention.
  • Each of the plurality of transmission resources has a certain interval between the transmission resources, the transmission resource 1, the transmission resource 2, and the transmission resource. 3 is discontinuous in the frequency domain.
  • the terminal device may autonomously determine the location of each transmission resource, or the terminal device may determine the location of each transmission resource according to a preset rule.
  • the terminal device may determine the location of the multiple transmission resources according to the identifier ID of the terminal device.
  • the terminal device may first autonomously select the location of the first transmission resource, and determine other according to the location of the first transmission resource, the ID of the terminal device, and a pre-agreed algorithm or formula. The location of the transfer resource.
  • the at least one resource unit included in each transmission resource is continuous or discontinuous in the frequency domain.
  • N resource elements in each transmission resource are contiguous in the frequency domain, that is, N resource elements included in each transmission resource are Continuously distributed.
  • N physical resource blocks of one transmission resource are discontinuous in frequency.
  • the terminal device may determine the location of each resource unit according to a preset rule. For example, the terminal device may determine the location of the resource unit in each transmission resource according to the ID of the terminal device and a pre-agreed algorithm or formula.
  • the terminal device sends the data to the network device on the multiple transmission resources by means of unscheduled transmission.
  • the data that is transmitted by the terminal device in the multiple transmission resources by using the unscheduled uplink transmission may be the data that is carried on the physical uplink shared channel (PUSCH), that is, the terminal device is in the data.
  • the PUSCH is transmitted on multiple transmission resources.
  • the network device receives data transmitted by the terminal device on the plurality of transmission resources by means of unscheduled transmission.
  • the method may further include: determining, by the network device, the multiple according to the identifier ID of the terminal device The location of the transfer resource.
  • the network device may determine the location of other transmission resources according to the location of one of the plurality of transmission resources, the ID of the terminal device, and a pre-agreed algorithm or formula.
  • the method may further include: determining, by the network device, the information in each of the transmission resources according to the ID of the terminal device The location of at least one resource unit.
  • the network device may determine the location of the resource unit in each transmission resource according to the identification ID of the terminal device and a pre-agreed algorithm or formula.
  • the network device independently decodes data on each of the plurality of transmission resources.
  • the terminal device transmits the data to be transmitted on the plurality of transmission resources by means of unscheduled transmission and independently encodes the data on each transmission resource, so that the network device is in the multiple transmission resources.
  • the data on each transmission resource can be independently decoded without being affected by the data transmission on other transmission resources.
  • the codec and transmission process of the data on each transmission resource can be They are independent of each other.
  • the network device can independently decode the data on the transmission resource 1 when the data is received on the transmission resource 1, and the network device transmits the resource 2
  • the data on the transmission resource 2 can be independently decoded when the data is received, and the network device can independently decode the data on the transmission resource 3 when receiving the data on the transmission resource 3. Therefore, the network device does not need to obtain a specific location of the transmission resource 1, the transmission resource 2, and the transmission resource 3 used by the terminal device to transmit data through a complex receiving mechanism, so as to unify the terminal after receiving the data on the three transmission resources.
  • the data sent by the device is decoded.
  • the network device may transmit data on each of the plurality of transmission resources based on the granularity of the agreed transmission resource. Receive and perform independent decoding without unified decoding by receiving data on multiple transmission resources through a complex receiving mechanism.
  • the process interaction diagram of the method for transmitting data according to the embodiment of the present invention may further include 410 and 420, where 240 may include 241.
  • the terminal device sends, to the network device, decoding information used to decode data on each of the transmission resources on a specific time-frequency resource in each transmission resource.
  • the network device receives, on a specific time-frequency resource in each transmission resource, decoding information used to decode data on each of the transmission resources.
  • the network device independently decodes data on each transmission resource according to decoding information used to decode data on each transmission resource.
  • the terminal device when the terminal device sends the data to the network device on the multiple transmission resources in a manner of unscheduled transmission, the device may also send the information to the network device on the specific time-frequency resource in each transmission resource. Decoding the decoding information of the data on each transmission resource.
  • the terminal device may determine a specific time-frequency resource in each transmission resource, and when performing the uplink transmission in the unscheduled manner, simultaneously transmit and decode the data of the area at the location of the specific time-frequency resource.
  • the decoding information on each of the transmission resources may be, for example, at least one of the following: a modulation coding level MCS corresponding to each transmission resource, precoding information corresponding to each transmission resource, and a reference corresponding to each transmission resource. Signal information, the size of each transmission resource.
  • the network device When the network device receives the data sent by the terminal device on the multiple transmission resources by means of unscheduled transmission, it can receive the decoding for the specific time-frequency resource in each transmission resource. Decoding information for data on each transmission resource. And after receiving the decoding information, independently decoding the data on the transmission resource according to the decoding information corresponding to each transmission unit.
  • the terminal device sends the data to be transmitted to multiple transmission resources, and independently encodes the data mapped on each transmission resource, and then sends the data to the network device by means of non-scheduled transmission.
  • the data enables the network device to independently decode the data on each of the transmission resources after receiving the data on each of the transmission resources.
  • the network device does not need to use a complex receiving mechanism to determine the location of each transmission resource to receive the data transmitted by the terminal device on each transmission resource, and then perform unified decoding, and only needs to The data on each transmission resource is independently decoded after receiving the data on each transmission resource.
  • the terminal device maps the data to be transmitted to multiple transmission resources, and may independently encode the mapped data on each transmission resource. Further, the terminal device may also perform each transmission. The mapped data on the resource is independently interleaved.
  • the corresponding Hybrid Automatic Retransmission Request (HARQ) process may include two modes, which are respectively described below.
  • the data on the multiple transmission resources belong to the same HARQ process.
  • all data transmitted by the terminal device on the transmission resource 1, the transmission resource 2, and the transmission resource 3 may correspond.
  • the same HARQ process such as a network device, can send feedback for the data to the terminal device through the same HARQ process.
  • This method is simpler to implement, but if a transmission resource such as the data on the transmission resource 1 fails to be decoded, all the transmission resources in the time unit, that is, the transmission resource 1, the transmission resource 2, and the transmission resource 3 pass the no scheduling. The data transmitted in the mode needs to be retransmitted.
  • the data on each transmission resource includes at least one of the following: a total number of multiple transmission resources, an index number of other transmission resources except the transmission resource, and other transmission resources. location information.
  • the data on the multiple transmission resources includes at least one common Cyclic Redundancy Check (“CRC”) code.
  • CRC Cyclic Redundancy Check
  • the terminal device maps data to be subjected to unscheduled uplink transmission to a plurality of transmission resources, wherein the data on each transmission resource includes at least one unified CRC in addition to its own CRC code. code.
  • the metadata may include data on the transmission resource 1 to the transmission resource n, and the data on the transmission resource 1 to the transmission resource n includes themselves.
  • a CRC code at the same time, includes a common CRC code on the last transmission resource, that is, the transmission resource n, and the common CRC code is simultaneously used for transmitting the verification of the data on the resource 1 to the transmission resource n.
  • the position and number of the common CRC code are not limited in the embodiment of the present invention.
  • the public CRC code can be located on any one of the transmission resources.
  • the data on each of the plurality of transmission resources belongs to an independent HARQ process.
  • the data transmitted by the terminal device on the transmission resource 1, the transmission resource 2, and the transmission resource 3 respectively correspond to An independent HARQ process.
  • the transmission resource 1 corresponds to the HARQ process 1
  • the transmission resource 2 corresponds to the HARQ process 2
  • the transmission resource 3 corresponds to the HARQ process 3.
  • the network device feeds back the data on the transmission resource 1 through the HARQ process 1.
  • the network device feeds back the data on the transmission resource 2 through the HARQ process 2
  • the network device feeds back the data on the transmission resource 3 through the HARQ process 3.
  • the data on each of the plurality of transmission resources includes: information about a HARQ process number corresponding to the data transmission on the transmission resource, and/or a plurality of transmission resources except the transmission resource.
  • Location information of other transmission resources such as frequency domain location information.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the method of transmitting data according to an embodiment of the present invention has been described in detail above, and a network device and a terminal device according to an embodiment of the present invention will be described below. It should be understood that the network device and the embodiment of the present invention
  • the terminal device can perform the foregoing various methods of the embodiments of the present invention, that is, the specific working processes of the following various devices, and can refer to the corresponding processes in the foregoing method embodiments.
  • FIG. 6 shows a schematic block diagram of a network device 600 in accordance with an embodiment of the present invention.
  • the network device 600 includes a receiving unit 601 and a processing unit 602.
  • the receiving unit 601 is configured to receive data that is sent by the terminal device on multiple transmission resources by means of unscheduled transmission;
  • the processing unit 602 is configured to independently decode data on each of the plurality of transmission resources received by the receiving unit 601.
  • the network device independently decodes data received on each of the plurality of transmission resources, so that when the terminal device performs unscheduled uplink transmission, the network device does not need to determine each transmission resource through a complex receiving mechanism.
  • the location is uniformly decoded after receiving data transmitted by the terminal device on each transmission resource.
  • each of the transmission resources includes at least one resource unit.
  • the at least one resource unit is continuous or discontinuous in the frequency domain.
  • the plurality of transmission resources are consecutive or discontinuous in the frequency domain.
  • the network device before the receiving unit receives the data that is sent by the terminal device on the multiple transmission resources by means of the unscheduled transmission, the network device further includes: a determining unit, configured to use, according to the identifier ID of the terminal device, Determining the location of the plurality of transmission resources.
  • the network device before the receiving unit receives the data that is sent by the terminal device on the multiple transmission resources by means of the unscheduled transmission, the network device further includes: a determining unit, configured to determine, according to the ID of the terminal device, a location of the at least one resource unit in each of the transmission resources.
  • the receiving unit is further configured to: at a specific time in each of the transmission resources Receiving, on a frequency resource, decoding information used to decode data on each of the transmission resources;
  • the processing unit 601 is specifically configured to: independently decode data on each of the transmission resources according to the decoding information used to decode data on each of the transmission resources.
  • the decoding information includes at least one of the following: a modulation and coding level MCS corresponding to each of the transmission resources, precoding information corresponding to each of the transmission resources, and the Information of a reference signal corresponding to each transmission resource, and a size of each of the transmission resources.
  • the data on the multiple transmission resources belongs to the same hybrid automatic repeat request HARQ process.
  • the data on each transmission resource includes at least one of the following: a total number of the multiple transmission resources, and an index of other transmission resources except the current transmission resource among the multiple transmission resources. Number and location information of the other transmission resources.
  • the data on the plurality of transmission resources includes at least one common cyclic redundancy check CRC code.
  • the data on each of the plurality of transmission resources belongs to an independent HARQ process.
  • the data on each of the transmission resources includes: information about a HARQ process number corresponding to the data transmission on each of the transmission resources, and/or other than the current transmission resource among the multiple transmission resources. Location information of other transmission resources.
  • network device 700 can include a processor 710, a transceiver 720, and a memory 730.
  • the transceiver 720 can include a receiver 721 and a transmitter 722, and the memory 730 can be used to store decoded information and code executed by the processor 710, and the like.
  • the various components in network device 700 are coupled together by a bus system 740, which in addition to the data bus includes a power bus, a control bus, a status signal bus, and the like.
  • the receiver 721 is configured to: receive data that is sent by the terminal device on multiple transmission resources by means of unscheduled transmission;
  • the processor 710 is configured to independently decode data on each of the plurality of transmission resources received by the receiver 721.
  • the network device independently decodes the data received on each transmission resource, so that when the terminal device performs the unscheduled uplink transmission, the network device does not need to acquire the location of each transmission resource to receive the terminal device to send on each transmission resource. After the data is unified and decoded, the receiving complexity of the network device is reduced.
  • each of the transmission resources includes at least one resource unit.
  • the at least one resource unit is continuous or discontinuous in the frequency domain.
  • the plurality of transmission resources are consecutive or discontinuous in the frequency domain.
  • the network device before the receiving unit receives the data that is sent by the terminal device on the multiple transmission resources by means of the unscheduled transmission, the network device further includes: a determining unit, configured to use, according to the identifier ID of the terminal device, Determining the location of the plurality of transmission resources.
  • the network device before the receiving unit receives the data that is sent by the terminal device on the multiple transmission resources by means of the unscheduled transmission, the network device further includes: a determining unit, configured to determine, according to the ID of the terminal device, a location of the at least one resource unit in each of the transmission resources.
  • the receiving unit is further configured to: at a specific time in each of the transmission resources Receiving, on a frequency resource, decoding information used to decode data on each of the transmission resources;
  • the processor 710 is specifically configured to independently decode data on each of the transmission resources according to the decoding information used to decode data on each of the transmission resources.
  • the decoding information includes at least one of the following: a modulation coding level MCS corresponding to each transmission resource, precoding information corresponding to each transmission resource, and corresponding to each transmission resource.
  • Information of the reference signal the size of each of the transmission resources.
  • the data on the multiple transmission resources belongs to the same hybrid automatic repeat request HARQ process.
  • the data on each transmission resource includes at least one of the following: a total number of the multiple transmission resources, and an index of other transmission resources except the current transmission resource among the multiple transmission resources. Number and location information of the other transmission resources.
  • the data on the plurality of transmission resources includes at least one common cyclic redundancy check CRC code.
  • the data on each of the plurality of transmission resources belongs to an independent HARQ process.
  • the data on each of the transmission resources includes: information about a HARQ process number corresponding to the data transmission on each of the transmission resources, and/or other than the current transmission resource among the multiple transmission resources. Location information of other transmission resources.
  • FIG. 8 is a schematic structural diagram of a system chip according to an embodiment of the present invention.
  • the system chip 800 of FIG. 8 includes a system chip.
  • the input interface 801, the output interface 802, the processor 803, and the memory 804 are connected by a bus 805.
  • the processor 803 is configured to execute the memory 804.
  • the code in the processor 803 implements the method performed by the network device of Figures 2 through 5 when the code is executed.
  • the network device 600 shown in FIG. 6 or the network device 700 shown in FIG. 7 or the system chip 800 shown in FIG. 8 can implement the various processes implemented by the network device in the foregoing method embodiments of FIG. 2 to FIG. 5, in order to avoid duplication. , no longer repeat them here.
  • FIG. 9 shows a schematic block diagram of a network device 900 in accordance with an embodiment of the present invention.
  • the network device 900 includes a receiving unit 901 and a processing unit 902.
  • the processing unit 901 is configured to independently encode data to be sent on each of the plurality of transmission resources;
  • the sending unit 902 is configured to send, by using the unscheduled transmission, the data that is independently encoded by the processing unit 901 to the network device on each of the transmission resources.
  • the terminal device transmits the data to be transmitted to the network device by means of mapping the data to be transmitted to the plurality of transmission resources, and independently encoding the data mapped on each transmission resource, so that the network device is After receiving the data on each transmission resource, the data on each transmission resource can be independently decoded, which reduces the receiving complexity of the network device.
  • each of the transmission resources includes at least one resource unit.
  • the at least one resource unit is continuous or discontinuous in the frequency domain.
  • the plurality of transmission resources are consecutive or discontinuous in the frequency domain.
  • the terminal device before the processing unit 901 independently encodes data to be sent on each of the plurality of transmission resources, the terminal device further includes a determining module 903, configured to: according to the terminal device Identifying an ID, determining a location of the plurality of transmission resources.
  • the terminal device before the processing unit 901 independently encodes data to be sent on each of the plurality of transmission resources, the terminal device further includes a determining module 903, configured to: according to the terminal device ID, determining a location of the at least one resource unit in each of the transmission resources.
  • the sending unit 902 is further configured to: send, to the network device, decoding information used to decode data on each of the transmission resources on a specific time-frequency resource in each of the transmission resources.
  • the decoding information includes at least one of the following: a modulation coding level MCS corresponding to each transmission resource, precoding information corresponding to each transmission resource, and corresponding to each transmission resource.
  • a modulation coding level MCS corresponding to each transmission resource
  • precoding information corresponding to each transmission resource
  • corresponding to each transmission resource The information of the reference signal and the size of each of the transmission resources.
  • the data on the multiple transmission resources belongs to the same hybrid automatic repeat request HARQ process.
  • the data on each transmission resource includes at least one of the following: a total number of the multiple transmission resources, and an index of other transmission resources except the current transmission resource among the multiple transmission resources. Number and location information of the other transmission resources.
  • the data on the plurality of transmission resources includes at least one common cyclic redundancy check CRC code.
  • the data on each of the plurality of transmission resources belongs to an independent HARQ process.
  • the data on each of the transmission resources includes: information about a HARQ process number corresponding to the data transmission on each of the transmission resources, and/or other than the current transmission resource among the multiple transmission resources. Location information of other transmission resources.
  • the processing unit 901 and the determining unit 903 may be implemented by a processor, and the sending unit 902 may be implemented by a transmitter.
  • the terminal device 1000 may include a processor 1010, a transceiver 1020, and a memory 1030.
  • the transceiver 1020 can include a receiver 1021 and a transmitter 1022 that can be used to store decoded information and code executed by the processor 1010.
  • the various components in the terminal device 1000 are coupled together by a bus system 1040, which includes, in addition to the data bus, a power bus, a control bus, a status signal bus, and the like.
  • the processor 1010 is configured to: independently code, to be sent, data to be sent on each of the multiple transmission resources;
  • the transmitter 1022 is configured to send, by using the unscheduled transmission, the data that is independently encoded by the processor 1010 to the network device on each of the transmission resources.
  • the terminal device transmits the data to be transmitted to the network device by means of mapping the data to be transmitted to the plurality of transmission resources, and independently encoding the data mapped on each transmission resource, so that the network device is After receiving the data on each transmission resource, the data on each transmission resource can be independently decoded, which reduces the receiving complexity of the network device.
  • each of the transmission resources includes at least one resource unit.
  • the at least one resource unit is continuous or discontinuous in the frequency domain.
  • the plurality of transmission resources are consecutive or discontinuous in the frequency domain.
  • the processor 1010 before the processor 1010 separately encodes data to be sent on each of the plurality of transmission resources, the processor 1010 is further configured to: determine, according to the identifier ID of the terminal device, The location of the plurality of transmission resources.
  • the processor 1010 before the processor 1010 separately encodes data to be sent on each of the plurality of transmission resources, the processor 1010 is further configured to: determine, according to the ID of the terminal device, The location of the at least one resource unit in each transmission resource.
  • the transmitter 1022 is further configured to: send, to the network device, decoding information used to decode data on each of the transmission resources on a specific time-frequency resource in each of the transmission resources.
  • the decoding information includes at least one of the following: a modulation coding level MCS corresponding to each transmission resource, precoding information corresponding to each transmission resource, and corresponding to each transmission resource.
  • a modulation coding level MCS corresponding to each transmission resource
  • precoding information corresponding to each transmission resource
  • corresponding to each transmission resource The information of the reference signal and the size of each of the transmission resources.
  • the data on the multiple transmission resources belongs to the same hybrid automatic repeat request HARQ process.
  • the data on each transmission resource includes at least one of the following: a total number of the multiple transmission resources, and an index of other transmission resources except the current transmission resource among the multiple transmission resources. Number and location information of the other transmission resources.
  • the data on the plurality of transmission resources includes at least one common cyclic redundancy check CRC code.
  • the data on each of the plurality of transmission resources belongs to an independent HARQ process.
  • the data on each of the transmission resources includes: information about a HARQ process number corresponding to the data transmission on each of the transmission resources, and/or other than the current transmission resource among the multiple transmission resources. Location information of other transmission resources.
  • FIG. 11 is a schematic structural diagram of a system chip according to an embodiment of the present invention.
  • the system chip 1100 of FIG. 11 includes a system chip, the input interface 1101, the output interface 1102, and the processor 1103.
  • the memory 1104 is connected by a bus 1105, the processor 1103 is configured to execute code in the memory 1104, and when the code is executed, the processor 1103 implements the execution of the terminal device in FIG. 2 to FIG. method.
  • the terminal device 900 shown in FIG. 9 or the network device 1000 shown in FIG. 10 or the system chip 1100 shown in FIG. 11 can implement the processes implemented by the terminal device in the foregoing method embodiments of FIG. 2 to FIG. 5, in order to avoid duplication. , no longer repeat them here.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. You can choose some of them according to actual needs or All units are used to achieve the objectives of the solution of this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read only memory ROM, a random access memory RAM, a magnetic disk, or an optical disk, and the like, which can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种传输数据的方法、网络设备和终端设备。该方法包括:网络设备接收终端设备通过无调度传输的方式在多个传输资源上发送的数据;所述网络设备对所述多个传输资源中的每个传输资源上的数据进行独立解码。这样,网络设备通过对每个传输资源上接收的数据进行独立解码,使得在终端设备进行无调度上行传输时,网络设备无需获取每个传输资源的位置以接收终端设备在每个传输资源上发送的数据后进行统一解码,降低了网络设备的接收复杂度。

Description

传输数据的方法、网络设备和终端设备 技术领域
本发明实施例涉及无线通信领域,并且更具体地,涉及一种传输数据的方法、网络设备和终端设备。
背景技术
目前的5G新无线(New Radio,简称“NR”)系统中支持无调度上行传输(Grant Free Up Link Transmission),即终端在有数据要传输时,不需要等待基站的调度即可自行发送数据。这种传输方式有利于降低系统内的控制信令开销、降低端到端时延、降低终端功耗,因而特别适用于低频率的小数据包业务、低时延要求的业务等。这种传输方式存在问题之一在于,在无基站调度的情况下,基站在进行数据接收时,由于不知道终端使用的具体的物理资源,因此需要复杂的接收方案。
发明内容
本发明实施例提供了一种传输数据的方法、网络设备和终端设备,解决了网络设备因不知道终端设备传输数据所使用的物理资源信息而导致的较高的接收复杂度。
第一方面,提供了一种传输数据的方法,其特征在于,包括:
网络设备接收终端设备通过无调度传输的方式在多个传输资源上发送的数据;
所述网络设备对所述多个传输资源中的每个传输资源上的数据进行独立解码。
因此,网络设备通过对每个传输资源上接收的数据进行独立解码,使得在终端设备进行无调度上行传输时,网络设备无需获取每个传输资源的位置以接收终端设备在每个传输资源上发送的数据后进行统一解码,降低了网络设备的接收复杂度。
应理解,终端设备将待发送数据映射到多个传输资源上,可以对每个传输资源上被映射的数据独立地进行编码,进一步地,终端设备还可以对每个传输资源上被映射的数据进行独立的交织处理。
作为另一个实施例,所述每个传输资源包括至少一个资源单元。
该实施例中,当每个传输资源中包括一个资源单元时,系统的灵活度较高。但结合实际应用的网络的具体情况或待传输数据的情况,每个传输资源中还可以包括多个资源单元。
作为另一个实施例,所述每个传输资源中的起始资源单元的索引号P满足P mod N=k,其中,所述N为所述每个传输资源中包括的资源单元的个数,所述k为预设的小于N的非负整数。
其中k的取值可以有终端设备和网络设备进行约定例如协议规定,也可以网络设备配置并告知终端设备。
作为另一个实施例,所述至少一个资源单元在频域上连续或者不连续。
作为另一个实施例,所述多个传输资源在频域上连续或者不连续。
作为另一个实施例,在网络设备接收终端设备通过无调度传输的方式在多个传输资源上发送的数据之前,所述方法还包括:所述网络设备根据所述终端设备的标识ID,确定所述多个传输资源的位置。
例如,网络设备可以根据第一个传输资源的位置、终端设备的ID和预先约定的算法或公式,确定其他传输资源的位置。
作为另一个实施例,在所述网络设备接收终端设备通过无调度传输的方式在多个传输资源上发送的数据之前,所述方法还包括:所述网络设备根据所述终端设备的ID,确定所述每个传输资源中的所述至少一个资源单元的位置。
例如,网络设备可以根据多个传输资源中的一个传输资源的位置、终端设备的ID和预先约定的算法或公式,确定其他传输资源的位置。
作为另一个实施例,在所述网络设备对所述多个传输资源中的每个传输资源上的数据进行独立解码之前,所述方法还包括:所述网络设备在所述每个传输资源中的特定时频资源上,接收用于解码所述每个传输资源上的数据的解码信息;
其中,所述网络设备对所述多个传输资源中的每个传输资源上的数据进行解码,包括:所述网络设备根据用于解码所述每个传输资源上的数据的所述解码信息,对所述每个传输资源上的数据进行独立解码。
作为另一个实施例,所述解码信息包括以下信息中的至少一种:所述每个传输资源对应的调制编码等级MCS、所述每个传输资源对应的预编码的 信息、所述每个传输资源对应的参考信号的信息、所述每个传输资源的大小。
作为另一个实施例,所述多个传输资源上的数据属于同一个混合自动重传请求HARQ进程。
该实施例的方案实现起来较为简单,但是这时如果一个传输资源例如传输资源1上的数据解码失败,则该时间单元内的所有传输资源即传输资源1、传输资源2和传输资源3上通过无调度方式传输的数据,都需要进行重传。
作为另一个实施例,所述每个传输资源上的数据包括以下信息中的至少一种:所述多个传输资源的总数、所述多个传输资源中除当前传输资源之外的其他传输资源的索引号和所述其他传输资源的位置信息。
作为另一个实施例,所述多个传输资源上的数据包括至少一个公用的循环冗余校验CRC码。
也就是说,网络设备在多个传输资源上接收到的无调度上行传输的数据,其中每个传输资源上的数据除了包括自己的CRC码,这多个传输资源还包括至少一个统一的CRC码。本发明实施例对该公用的CRC码的位置和数量均不作限定。该公用的CRC码可以位于任意一个传输资源上。
作为另一个实施例,所述多个传输资源中的每个传输资源上的数据属于独立的HARQ进程。
该实施例的方案增加了系统的复杂度,但是如果一个传输资源例如传输资源1上的数据解码失败,而其他传输资源例如传输资源2和传输资源3上的数据解码成功,则终端设备只需重传传输资源1上的那部分数据即可。
作为另一个实施例,所述每个传输资源上的数据包括:所述每个传输资源上的数据传输对应的HARQ进程编号的信息,和/或所述多个传输资源中除当前传输资源之外的其他传输资源的位置信息。
第二方面,提供了一种网络设备,该网络设备可以用于执行前述第一方面及各种实现方式中的传输数据的方法中由网络设备执行的各个过程。该网络设备包括接收单元和处理单元。其中,所述接收单元,用于接收终端设备通过无调度传输的方式在多个传输资源上发送的数据;处理单元,用于对所述接收单元接收的所述多个传输资源中的每个传输资源上的数据进行独立解码。
第三方面,提供了一种网络设备,该网络设备可以用于执行前述第一方面及各种实现方式中的传输数据的方法中由网络设备执行的各个过程。该网 络设备包括接收器和处理器。所述接收器,用于接收终端设备通过无调度传输的方式在多个传输资源上发送的数据;所述处理器,用于对所述接收器接收的所述多个传输资源中的每个传输资源上的数据进行独立解码。
第四方面,提供了一种系统芯片,该系统芯片包括输入接口、输出接口、处理器和存储器,该处理器用于执行该存储器中的代码,当该代码被执行时,该处理器可以实现前述第一方面及各种实现方式中的传输数据的方法中由网络设备执行的各个过程。具体地,该输入接口用于接收终端设备通过无调度传输的方式在多个传输资源上发送的数据;该处理器用于用于对所述输入接口接收的所述多个传输资源中的每个传输资源上的数据进行独立解码。
第五方面,提供了一种传输数据的方法,其特征在于,包括:
终端设备对多个传输资源中的每个传输资源上待发送的数据进行独立编码;
所述终端设备通过无调度传输的方式在所述每个传输资源上向网络设备发送独立编码后的所述数据。
因此,终端设备通过将待发送数据映射到多个传输资源上,并对每个传输资源上被映射的数据独立地进行编码后通过无调度传输的方式向网络设备发送该数据,使得网络设备在接收到每个传输资源上的数据之后,能够独立地对每个传输资源上的数据进行解码,降低了网络设备的接收复杂度。
所述每个传输资源包括至少一个资源单元。
作为另一个实施例,所述每个传输资源中的起始资源单元的索引号P满足P mod N=k,其中,所述N为所述每个传输资源中包括的资源单元的个数,所述k为预设的小于N的非负整数。
其中k的取值可以有终端设备和网络设备进行约定例如协议规定,也可以网络设备配置并告知终端设备。
作为另一个实施例,所述至少一个资源单元在频域上连续或者不连续。
作为另一个实施例,所述多个传输资源在频域上连续或者不连续。
作为另一个实施例,在所述终端设备对多个传输资源中的每个传输资源上待发送的数据进行独立编码之前,所述方法还包括:所述终端设备根据所述终端设备的标识ID,确定所述多个传输资源的位置。
例如,终端设备可以首先自主地选择第一个传输资源的位置,并根据该第一个传输资源的位置、终端设备的ID和预先约定的算法或公式,确定其 他传输资源的位置。
作为另一个实施例,在所述终端设备对多个传输资源中的每个传输资源上待发送的数据进行独立编码之前,所述方法还包括:所述终端设备根据所述终端设备的ID,确定所述每个传输资源中的所述至少一个资源单元的位置。
例如,终端设备可以根据终端设备的ID和预先约定的算法或公式,确定每个传输资源中的资源单元的位置。
作为另一个实施例,所述方法还包括:所述终端设备在所述每个传输资源中的特定时频资源上,向所述网络设备发送用于解码所述每个传输资源上的数据的解码信息。
作为另一个实施例,所述解码信息包括以下信息中的至少一种:所述每个传输资源对应的调制编码等级MCS、所述每个传输资源对应的预编码的信息、所述每个传输资源对应的参考信号的信息、和所述每个传输资源的大小。
作为另一个实施例,所述多个传输资源上的数据属于同一个混合自动重传请求HARQ进程。
作为另一个实施例,所述每个传输资源上的数据包括以下信息中的至少一种:所述多个传输资源的总数、所述多个传输资源中除当前传输资源之外的其他传输资源的索引号和所述其他传输资源的位置信息。
作为另一个实施例,所述多个传输资源上的数据包括至少一个公用的循环冗余校验CRC码。
也就是说,终端设备将待进行无调度上行传输的数据映射到多个传输资源上,其中每个传输资源上的数据除了包括自己的CRC码,这多个传输资源还包括至少一个统一的CRC码。本发明实施例对该公用的CRC码的位置和数量均不作限定。该公用的CRC码可以位于任意一个传输资源上。
作为另一个实施例,所述多个传输资源中的每个传输资源上的数据属于独立的HARQ进程。
作为另一个实施例,所述每个传输资源上的数据包括:所述每个传输资源上的数据传输对应的HARQ进程编号的信息,和/或所述多个传输资源中除当前传输资源之外的其他传输资源的位置信息。
第六方面,提供了一种终端设备,该终端设备可以用于执行前述第二方 面及各种实现方式中的传输数据的方法中由终端设备执行的各个过程。该终端设备包括处理单元和发送单元。其中,所述处理单元,用于对多个传输资源中的每个传输资源上待发送的数据进行独立编码;所述发送单元,用于通过无调度传输的方式在所述每个传输资源上向网络设备发送经过所述处理单元进行独立编码后的所述数据。
第七方面,提供了一种终端设备,该终端设备可以用于执行前述第二方面及各种实现方式中的传输数据的方法中由终端设备执行的各个过程。该终端设备包括处理器和发送器。所述处理器,用于对多个传输资源中的每个传输资源上待发送的数据进行独立编码;所述发送器,用于通过无调度传输的方式在所述每个传输资源上向网络设备发送经过所述处理器进行独立编码后的所述数据。
第八方面,提供了一种系统芯片,该系统芯片包括输入接口、输出接口、处理器和存储器,该处理器用于执行该存储器中的代码,当该代码被执行时,该处理器可以实现前述第二方面及各种实现方式中的传输数据的方法中由终端设备执行的各个过程。具体地,该处理器用于对多个传输资源中的每个传输资源上待发送的数据进行独立编码;该输出接口,用于通过无调度传输的方式在所述每个传输资源上向网络设备发送经过所述处理器进行独立编码后的所述数据。
第九方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得网络设备执行上述第一方面,及其各种实现方式中的任一种传输数据的方法。
第十方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得终端设备执行上述第五方面,及其各种实现方式中的任一种传输数据的方法。
基于本发明实施例的技术方案,终端设备通过将待发送数据映射到多个传输资源上,并对每个传输资源上被映射的数据独立地进行编码后通过无调度传输的方式向网络设备发送该数据,使得网络设备在接收到每个传输资源上的数据之后,能够独立地对每个传输资源上的数据进行解码。
这样,在终端设备进行无调度上行传输时,网络设备无需通过复杂的接收机制去确定每个传输资源的位置以接收终端设备发送的数据后进行统一解码,而只需在接收到每个传输资源上的数据后对该每个传输资源上的数据 进行独立解码,避免了网络设备的较高的接收复杂度。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例的一种应用场景的示意性架构图。
图2是本发明实施例的传输数据的方法的流程交互图。
图3(a)所示的本发明实施例的传输资源的示意图。
图3(b)所示的本发明实施例的传输资源的示意图。
图3(c)所示的本发明实施例的传输资源的示意图。
图4是本发明另一实施例的传输数据的方法的流程交互图。
图5是本发明实施例的CRC码的示意图。
图6是本发明实施例的网络设备的结构框图。
图7是本发明实施例的网络设备的结构框图。
图8本发明实施例的系统芯片的示意性结构图。
图9是本发明实施例的终端设备的结构框图。
图10是本发明实施例的终端设备的结构框图。
图11本发明实施例的系统芯片的示意性结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
在本说明书中使用的术语“部件”、“单元”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设 备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
应理解,本发明实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile Communication,简称“GSM”)系统、码分多址(Code Division Multiple Access,简称“CDMA”)系统、宽带码分多址(Wideband Code Division Multiple Access,简称“WCDMA”)系统、长期演进(Long Term Evolution,简称“LTE”)系统、LTE频分双工(Frequency Division Duplex,简称“FDD”)系统、LTE时分双工(Time Division Duplex,简称“TDD”)、通用移动通信系统(Universal Mobile Telecommunication System,简称“UMTS”)、以及未来的5G通信系统等。
本发明结合终端设备描述了各个实施例。终端设备也可以指用户设备(User Equipment,简称“UE”)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,简称“SIP”)电话、无线本地环路(Wireless Local Loop,简称“WLL”)站、个人数字处理(Personal Digital Assistant,简称“PDA”)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的PLMN网络中的终端设备等。
本发明结合网络设备描述了各个实施例。网络设备可以是用于与终端设备进行通信的设备,例如,可以是GSM系统或CDMA中的基站(Base Transceiver Station,简称“BTS”),也可以是WCDMA系统中的基站(NodeB,简称“NB”),还可以是LTE系统中的演进型基站(Evolutional Node B,简称“eNB”或“eNodeB”),或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络侧设备或未来演进的PLMN网络中的网络设备等。
图1示出了应用本发明实施例的一种通信系统的示意性架构图。如图1所示,该通信系统可以包括网络设备10和终端设备20至终端设备70(图中简称为UE)通过无线连接或有线连接或其它方式连接。
本发明实施例中的网络可以是指公共陆地移动网络(Public Land Mobile Network,简称“PLMN”)或者设备对设备(Device to Device,简称“D2D”)网络或者机器对机器/人(Machine to Machine/Man,简称“M2M”)网络或者其他网络,图1只是举例的简化示意图,网络中还可以包括其他网络设备,图1中未予以画出。
本申请提出的方案可以应用于无调度传输。无调度传输可以解决未来网络中的多种业务,例如机器类通信(Machine Type Communication,简称“MTC”)业务或者超可靠和低延迟通信(Ultra Reliable and Low Latency Communication,URLLC)业务,以满足低时延、高可靠的业务传输需求。
所述的无调度传输(Grant free)可以指终端设备在授权载波上的数据传输,也可以指终端设备在费授权载波上的数据传输,终端设备在有数据需要发送的时候,可以不等待网络设备的资源调度而自行发送数据。该无调度传输可以针对的是上行数据的传输。
本发明提出的方案中,终端设备在多个传输资源上自主地进行数据发送时,网络设备基于约定的资源颗粒度,对多个传输资源上的数据进行独立的解码,从而在网络设备不知道终端设备进行数据传输所使用的物理资源信息(例如使用的物理资源单元的总数、位置等)时,网络设备也能够对终端设备发送的数据进行解码,降低了接收复杂度(例如网络设备不必采用盲检测的方式检测终端设备进行数据传输所使用的物理资源)。
图2是根据本发明实施例的传输数据的方法的流程交互图。图2所示的方法中,数据的发送端可以为终端设备或网络设备,数据号的接收端可以为终端设备或网络设备。以下将以数据的发送端为终端设备,以及数据的接收端为网络设备为例进行说明,但本发明实施例并不限于此。
图2示出了网络设备和终端设备,该网络设备例如可以为图1中所示的网路设备10,该终端设备例如可以为图1中所示的UE 20至UE 70中的任意一个。图2中终端设备与网络设备之间可以进行无调度上行传输,该终端设备可以与包括该网络设备在内的多个网络设备之间利用本发明实施例的 方法进行数据传输,其他网络设备所执行的方法可以参考该网络设备所执行的方法,为了简洁,这里不再赘述。可选地,该方法可以应用于无调度上行传输,也可以应用于其他场景,这里以无调度上行传输为例进行描述,即终端设备与网络设备进行的上行传输为无调度上行传输,所使用的传输资源为无调度上行传输资源。下面根据图2具体描述本发明实施例的传输数据的方法。
在210中,终端设备对所述多个传输资源中的每个传输资源上待发送的数据进行独立编码。
具体地说,该每个传输资源可以称为一个独立解码数据区域。终端设备可以将待传输的数据映射到该多个传输资源上,并对该多个传输资源中的每个传输资源上的待传输数据进行独立编码,以使网络设备在该多个传输资源上接收到终端设备发送的数据后,可以对在该多个传输资源中的每个传输资源上接收的数据进行独立解码。或者说,终端设备在需要传输一个PUSCH时,可以在多个传输资源上传输该PUSCH,并对该多个传输资源中每个传输资源上的数据进行独立编码。进一步地,该终端设备还可以对该多个传输资源中的每个传输资源上待发送的数据进行独立的交织处理。所述的数据可以为包括业务数据或者信令数据。
可以理解,在该实施例中,终端设备也可以只在一个传输资源上传输数据,如果终端设备待传输的数据只需要占用一个传输资源而无需多个传输资源,终端设备可以只对该传输资源上的数据进行编码,并通过无调度传输方式发送给网络设备,网络设备接收该传输资源上的数据后,可以只对该传输资源上的数据进行解码。
可选地,该多个传输资源中的每个传输资源,包括至少一个资源单元。
较优选地,当每个传输资源中包括一个资源单元时,系统的灵活度较高。但结合实际应用的网络的具体情况或待传输数据的情况,每个传输资源中还可以包括多个资源单元。
例如图3(a)所示的本发明实施例的传输资源的示意图。终端设备可以为待传输的数据确定多个传输资源,即传输资源1、传输资源2和传输资源3用于传输当前数据,这三个传输资源例如可以为同一个时间单元上的传输资源,且占用的频域资源不相同,其中每个传输资源中包括N个资源单元, 这里假设N=2,即每个传输资源中包括两个资源单元。
当每个传输资源包括多个资源单元时,每个传输资源中的资源单元的起始位置可以预先约定。
例如,可以约定每个传输资源中的起始资源单元的索引号P满足P mod N=k,其中,所述N为所述每个传输资源中包括的资源单元的个数,所述k为预设的小于N的非负整数。假设每个传输资源中包括两个资源单元,即N=2,那么k为0或1,如果约定k=0,表示每个传输资源中的起始资源单元的索引号P都为偶数,如果约定k=1,表示每个传输资源中的起始资源单元的索引号P都为奇数。其中k的取值可以有终端设备和网络设备进行约定例如协议规定,也可以网络设备配置并告知终端设备。
可选地,该至少一个资源单元在频域上连续或者不连续。
上面图3(a)所示的情况中,每个传输资源在频域上是连续分布的,但实际上用于传输数据的该多个传输资源在频域上也可以是不连续的,例如图3(b)所示的本发明实施例的传输资源的示意图,该多个传输资源中的每个传输资源相互之间在频域上具有一定间隔,传输资源1、传输资源2和传输资源3在频域上是不连续的。
当每个传输资源在频域上不连续时,终端设备可以自主地确定每个传输资源的位置,或者终端设备可以根据预设的规则确定每个传输资源的位置。
例如,终端设备可以根据终端设备的标识ID,确定该多个传输资源的位置。
还以图3(b)为例,终端设备可以首先自主地选择第一个传输资源的位置,并根据该第一个传输资源的位置、终端设备的ID和预先约定的算法或公式,确定其他传输资源的位置。
可选地,该每个传输资源中包括的至少一个资源单元在频域上连续或者不连续。
上面图3(a)和图3(b)中所述的情况下,每个传输资源中的N个资源单元在频域上是连续的,即每个传输资源中包括的N个资源单元是连续分布的。下面结合图3(c),描述一个传输资源的N个物理资源块在频率上不连续的情况。如图3(b)所述,假设N=2,每个传输资源中的资源单元都不是连续分布的,传输资源单元1的两个资源单元之间间隔三个资源单元,传 输资源单元2的两个资源单元之间间隔三个资源单元,传输资源单元3的两个资源单元之间间隔三个资源。
当每个传输资源中的资源单元在频域上不连续时,终端设备可以根据预设的规则确定每个资源单元的位置。例如,终端设备可以根据终端设备的ID和预先约定的算法或公式,确定每个传输资源中的资源单元的位置。
在220中,终端设备通过无调度传输的方式在该多个传输资源上向网络设备发送该数据。
可以理解,这里终端设备通过无调度上行传输在多个传输资源中传输的数据可以为承载于同一个物理上行共享信道(Physical Uplink Shared CHannel,简称“PUSCH”)上的数据,即终端设备在该多个传输资源上发送PUSCH。
在230中,网络设备接收终端设备通过无调度传输的方式在该多个传输资源上发送的数据。
可选地,在网络设备接收终端设备通过无调度传输的方式在多个传输资源上发送的数据之前,该方法还可以包括:所述网络设备根据所述终端设备的标识ID,确定所述多个传输资源的位置。
例如,网络设备可以根据多个传输资源中的一个传输资源的位置、终端设备的ID和预先约定的算法或公式,确定其他传输资源的位置。
可选地,在网络设备接收终端设备通过无调度传输的方式在多个传输资源上发送的数据之前,该方法还可以包括:网络设备根据所述终端设备的ID,确定每个传输资源中的至少一个资源单元的位置。
例如,网络设备可以根据终端设备的标识ID和预先约定的算法或公式,确定每个传输资源中的资源单元的位置。
在240中,网络设备对该多个传输资源中的每个传输资源上的数据进行独立解码。
具体地说,由于终端设备将原本要发送的数据通过无调度传输的方式在多个传输资源上进行传输并对每个传输资源上的数据进行独立编码,从而网络设备在该多个传输资源中的每个传输资源上接收到终端设备发送的数据后,都可以独立地对每个传输资源上的数据进行解码,而不受其他传输资源上的数据传输的影响。每个传输资源上的数据的编解码和传输过程,都可以 是相互独立的。
例如图3(a)、图3(b)或图3(c)所示,网络设备在传输资源1上接收到数据时可以对传输资源1上的数据进行独立解码,网络设备在传输资源2上接收到数据时可以对传输资源2上的数据进行独立解码,网络设备在传输资源3上接收到数据时可以对传输资源3上的数据进行独立解码。因此,网络设备无需通过复杂的接收机制去获取终端设备发送数据所使用的传输资源1、传输资源2和传输资源3的具体位置,以在接收到这三个传输资源上的数据之后统一对终端设备发送的数据进行解码。
这样,当终端设备在多个传输资源上通过无调度上行传输自主地进行数据发送时,网络设备可以基于约定的传输资源的颗粒度,对该多个传输资源中的每个传输资源上的数据进行接收并进行独立解码,而无需通过复杂的接收机制将多个传输资源上的数据接收完毕后进行统一的解码。
可选地,如图4所示的本发明实施例的传输数据的方法的流程交互图,该方法还可以包括410和420,这时240可以包括241。
410,终端设备在每个传输资源中的特定时频资源上,向网络设备发送用于解码该每个传输资源上的数据的解码信息。
420,网络设备在每个传输资源中的特定时频资源上,接收用于解码该每个传输资源上的数据的解码信息。
241,网络设备根据用于解码每个传输资源上的数据的解码信息,对该每个传输资源上的数据进行独立解码。
具体地说,220中终端设备通过无调度传输的方式在该多个传输资源上向网络设备发送该数据时,还可以在每个传输资源中的特定时频资源上,向网络设备发送用于解码每个传输资源上的数据的解码信息。
也就是说,终端设备可以在每个传输资源中确定一块特定的时频资源,在通过无调度方式进行该上行传输时,同时在该特定的时频资源的位置上传输解码该区域数据所需的相关解码信息。其中,每个输资源上的解码信息例如可以为以下信息中的至少一种:每个传输资源对应的调制编码等级MCS、每个传输资源对应的预编码的信息、每个传输资源对应的参考信号的信息、每个传输资源的大小。
网络设备接收终端设备通过无调度传输的方式在该多个传输资源上发送的数据时,就能够在每个传输资源中的特定时频资源上,接收到用于解码 每个传输资源上的数据的解码信息。并在接收到该解码信息之后,根据每个传输单元对应的解码信息,对该传输资源上的数据进行独立解码。
本发明所述的实施例中,终端设备通过将待发送数据映射到多个传输资源上,并对每个传输资源上被映射的数据独立地进行编码后通过无调度传输的方式向网络设备发送该数据,使得网络设备在接收到每个传输资源上的数据之后,能够独立地对每个传输资源上的数据进行解码。这样,在终端设备进行无调度上行传输时,网络设备无需通过复杂的接收机制去确定每个传输资源的位置以接收终端设备在每个传输资源上发送的数据后进行统一解码,而只需在接收到每个传输资源上的数据后对该每个传输资源上的数据进行独立解码。
应理解,本发明实施例中,终端设备将待发送数据映射到多个传输资源上,可以对每个传输资源上被映射的数据独立地进行编码,进一步地,终端设备还可以对每个传输资源上被映射的数据进行独立的交织处理。
而对于该多个传输资源中每个传输资源上的数据,其对应的混合自动重传请求(Hybrid Automatic Retransmission Request,简称“HARQ”)进程可以包括两种方式,下面分别说明。
方式1
该多个传输资源上的数据属于同一个HARQ进程。
以图3(a)、图3(b)、图3(c)所示为例,在一个时间单位内,终端设备在传输资源1、传输资源2和传输资源3上发送的全部数据可以对应同一个HARQ进程,比如网络设备可以通过同一个HARQ进程向终端设备发送针对该数据的反馈。
这种方式实现起来较为简单,但是这时如果一个传输资源例如传输资源1上的数据解码失败,则该时间单元内的所有传输资源即传输资源1、传输资源2和传输资源3上通过无调度方式传输的数据,都需要进行重传。
可选地,每个传输资源上的数据包括以下信息中的至少一种:多个传输资源的总数、多个传输资源中除该传输资源之外的其他传输资源的索引号和其他传输资源的位置信息。
可选地,该多个传输资源上的数据包括至少一个公用的循环冗余校验(Cyclic Redundancy Check,简称“CRC”)码。
也就是说,终端设备将待进行无调度上行传输的数据映射到多个传输资源上,其中每个传输资源上的数据除了包括自己的CRC码,这多个传输资源还包括至少一个统一的CRC码。
如图5所示的本发明实施例的CRC码的示意图。假设终端设备为待传输的数据确定了n个传输资源,在整个源数据中,该元数据可以包括传输资源1至传输资源n上的数据,传输资源1至传输资源n上的数据都包括自己的一个CRC码,同时,在最后一个传输资源即传输资源n上,还包括一个公用的CRC码,该公用的CRC码同时用于传输资源1至传输资源n上的数据的校验。其中,本发明实施例对该公用的CRC码的位置和数量均不作限定。该公用的CRC码可以位于任意一个传输资源上。
方式2
该多个传输资源中的每个传输资源上的数据属于独立的HARQ进程。
以图3(a)、图3(b)、图3(c)所示为例,在一个时间单位内,终端设备在传输资源1、传输资源2和传输资源3上发送的数据,分别对应一个独立的HARQ进程。比如传输资源1对应HARQ进程1,传输资源2对应HARQ进程2,传输资源3对应HARQ进程3。网络设备通过HARQ进程1对传输资源1上的数据进行反馈,网络设备通过HARQ进程2对传输资源2上的数据进行反馈,网络设备通过HARQ进程3对传输资源3上的数据进行反馈。
可选地,该多个传输资源中的每个传输资源上的数据包括:该传输资源上的数据传输对应的HARQ进程编号的信息,和/或多个传输资源中除该传输资源之外的其他传输资源的位置信息比如频域位置信息。
这种方式增加了系统的复杂度。但是如果一个传输资源例如传输资源1上的数据解码失败,而其他传输资源例如传输资源2和传输资源3上的数据解码成功,则终端设备只需重传传输资源1上的那部分数据即可。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
上文详细描述了根据本发明实施例的传输数据的方法,下面将描述根据本发明实施例的网络设备和终端设备。应理解,本发明实施例的网络设备和 终端设备可以执行前述本发明实施例的各种方法,即以下各种设备的具体工作过程,可以参考前述方法实施例中的对应过程。
图6示出了本发明实施例的网络设备600的示意性框图。如图6所示,该网络设备600包括接收单元601和处理单元602。
接收单元601,用于接收终端设备通过无调度传输的方式在多个传输资源上发送的数据;
处理单元602,用于对所述接收单元601接收的所述多个传输资源中的每个传输资源上的数据进行独立解码。
因此,网络设备通过对多个传输资源上的每个传输资源上接收的数据进行独立解码,使得在终端设备进行无调度上行传输时,网络设备无需通过复杂的接收机制去确定每个传输资源的位置以接收终端设备在每个传输资源上发送的数据后进行统一解码。
可选地,所述每个传输资源包括至少一个资源单元。
可选地,所述每个传输资源中的起始资源单元的索引号P满足P mod N=k,其中,所述N为所述每个传输资源中包括的资源单元的个数,所述k为预设的小于N的非负整数。
可选地,所述至少一个资源单元在频域上连续或者不连续。
可选地,所述多个传输资源在频域上连续或者不连续。
可选地,在所述接收单元接收终端设备通过无调度传输的方式在多个传输资源上发送的数据之前,所述网络设备还包括:确定单元,用于根据所述终端设备的标识ID,确定所述多个传输资源的位置。
可选地,在所述接收单元接收终端设备通过无调度传输的方式在多个传输资源上发送的数据之前,所述网络设备还包括:确定单元,用于根据所述终端设备的ID,确定所述每个传输资源中的所述至少一个资源单元的位置。
可选地,在所述处理单元601对所述多个传输资源中的每个传输资源上的数据进行独立解码之前,所述接收单元还用于:在所述每个传输资源中的特定时频资源上,接收用于解码所述每个传输资源上的数据的解码信息;
其中,所述处理单元601具体用于:根据用于解码所述每个传输资源上的数据的所述解码信息,对所述每个传输资源上的数据进行独立解码。
可选地,所述解码信息包括以下信息中的至少一种:所述每个传输资源对应的调制编码等级MCS、所述每个传输资源对应的预编码的信息、所述 每个传输资源对应的参考信号的信息、所述每个传输资源的大小。
可选地,所述多个传输资源上的数据属于同一个混合自动重传请求HARQ进程。
可选地,所述每个传输资源上的数据包括以下信息中的至少一种:所述多个传输资源的总数、所述多个传输资源中除当前传输资源之外的其他传输资源的索引号和所述其他传输资源的位置信息。
可选地,所述多个传输资源上的数据包括至少一个公用的循环冗余校验CRC码。
可选地,所述多个传输资源中的每个传输资源上的数据属于独立的HARQ进程。
可选地,所述每个传输资源上的数据包括:所述每个传输资源上的数据传输对应的HARQ进程编号的信息,和/或所述多个传输资源中除当前传输资源之外的其他传输资源的位置信息。
应注意,本发明实施例中,处理单元602可以由处理器来实现,接收单元601可以由接收器来实现。如图7所示,网络设备700可以包括处理器710、收发信机720和存储器730。其中,收发信机720可以包括接收器721和发送器722,存储器730可以用于存储解码信息和处理器710执行的代码等。网络设备700中的各个组件通过总线系统740耦合在一起,其中总线系统740除包括数据总线之外,还包括电源总线、控制总线和状态信号总线等。
其中,接收器721用于:接收终端设备通过无调度传输的方式在多个传输资源上发送的数据;
处理器710,用于对接收器721接收的所述多个传输资源中的每个传输资源上的数据进行独立解码。
因此,网络设备通过对每个传输资源上接收的数据进行独立解码,使得在终端设备进行无调度上行传输时,网络设备无需获取每个传输资源的位置以接收终端设备在每个传输资源上发送的数据后进行统一解码,降低了网络设备的接收复杂度。
可选地,所述每个传输资源包括至少一个资源单元。
可选地,所述每个传输资源中的起始资源单元的索引号P满足P mod N=k,其中,所述N为所述每个传输资源中包括的资源单元的个数,所述k为预设的小于N的非负整数。
可选地,所述至少一个资源单元在频域上连续或者不连续。
可选地,所述多个传输资源在频域上连续或者不连续。
可选地,在所述接收单元接收终端设备通过无调度传输的方式在多个传输资源上发送的数据之前,所述网络设备还包括:确定单元,用于根据所述终端设备的标识ID,确定所述多个传输资源的位置。
可选地,在所述接收单元接收终端设备通过无调度传输的方式在多个传输资源上发送的数据之前,所述网络设备还包括:确定单元,用于根据所述终端设备的ID,确定所述每个传输资源中的所述至少一个资源单元的位置。
可选地,在所述处理器710对所述多个传输资源中的每个传输资源上的数据进行独立解码之前,所述接收单元还用于:在所述每个传输资源中的特定时频资源上,接收用于解码所述每个传输资源上的数据的解码信息;
其中,所述处理器710具体用于:根据用于解码所述每个传输资源上的数据的所述解码信息,对所述每个传输资源上的数据进行独立解码。
可选地,所述解码信息包括以下信息中的至少一种:所述每个传输资源对应的调制编码等级MCS、所述每个传输资源对应的预编码的信息、所述每个传输资源对应的参考信号的信息、所述每个传输资源的大小。
可选地,所述多个传输资源上的数据属于同一个混合自动重传请求HARQ进程。
可选地,所述每个传输资源上的数据包括以下信息中的至少一种:所述多个传输资源的总数、所述多个传输资源中除当前传输资源之外的其他传输资源的索引号和所述其他传输资源的位置信息。
可选地,所述多个传输资源上的数据包括至少一个公用的循环冗余校验CRC码。
可选地,所述多个传输资源中的每个传输资源上的数据属于独立的HARQ进程。
可选地,所述每个传输资源上的数据包括:所述每个传输资源上的数据传输对应的HARQ进程编号的信息,和/或所述多个传输资源中除当前传输资源之外的其他传输资源的位置信息。
图8是本发明实施例的系统芯片的一个示意性结构图。图8的系统芯片800包括系统芯片,所述输入接口801、输出接口802、所述处理器803以及存储器804之间通过总线805相连,所述处理器803用于执行所述存储器804 中的代码,当所述代码被执行时,所述处理器803实现图2至图5中网络设备执行的方法。
图6所示的网络设备600或图7所示的网络设备700或图8所示的系统芯片800能够实现前述图2至图5方法实施例中由网络设备所实现的各个过程,为避免重复,这里不再赘述。
图9示出了本发明实施例的网络设备900的示意性框图。如图9所示,该网络设备900包括接收单元901和处理单元902。
处理单元901,用于对多个传输资源中的每个传输资源上待发送的数据进行独立编码;
发送单元902,用于通过无调度传输的方式在所述每个传输资源上向网络设备发送经过处理单元901进行独立编码后的所述数据。
因此,终端设备通过将待发送数据映射到多个传输资源上,并对每个传输资源上被映射的数据独立地进行编码后通过无调度传输的方式向网络设备发送该数据,使得网络设备在接收到每个传输资源上的数据之后,能够独立地对每个传输资源上的数据进行解码,降低了网络设备的接收复杂度。
可选地,所述每个传输资源包括至少一个资源单元。
可选地,所述每个传输资源中的起始资源单元的索引号P满足P mod N=k,其中,所述N为所述每个传输资源中包括的资源单元的个数,所述k为预设的小于N的非负整数。
可选地,所述至少一个资源单元在频域上连续或者不连续。
可选地,所述多个传输资源在频域上连续或者不连续。
可选地,在所述处理单元901对多个传输资源中的每个传输资源上待发送的数据进行独立编码之前,所述终端设备还包括确定模块903,用于:根据所述终端设备的标识ID,确定所述多个传输资源的位置。
可选地,在所述处理单元901对多个传输资源中的每个传输资源上待发送的数据进行独立编码之前,所述终端设备还包括确定模块903,用于:根据所述终端设备的ID,确定所述每个传输资源中的所述至少一个资源单元的位置。
可选地,所述发送单元902还用于:在所述每个传输资源中的特定时频资源上,向所述网络设备发送用于解码所述每个传输资源上的数据的解码信息。
可选地,所述解码信息包括以下信息中的至少一种:所述每个传输资源对应的调制编码等级MCS、所述每个传输资源对应的预编码的信息、所述每个传输资源对应的参考信号的信息和所述每个传输资源的大小。
可选地,所述多个传输资源上的数据属于同一个混合自动重传请求HARQ进程。
可选地,所述每个传输资源上的数据包括以下信息中的至少一种:所述多个传输资源的总数、所述多个传输资源中除当前传输资源之外的其他传输资源的索引号和所述其他传输资源的位置信息。
可选地,所述多个传输资源上的数据包括至少一个公用的循环冗余校验CRC码。
可选地,所述多个传输资源中的每个传输资源上的数据属于独立的HARQ进程。
可选地,所述每个传输资源上的数据包括:所述每个传输资源上的数据传输对应的HARQ进程编号的信息,和/或所述多个传输资源中除当前传输资源之外的其他传输资源的位置信息。
应注意,本发明实施例中,处理单元901和确定单元903可以由处理器来实现,发送单元902可以由发送器来实现。如图10所示,终端设备1000可以包括处理器1010、收发信机1020和存储器1030。其中,收发信机1020可以包括接收器1021和发送器1022,存储器1030可以用于存储解码信息和处理器1010执行的代码等。终端设备1000中的各个组件通过总线系统1040耦合在一起,其中总线系统1040除包括数据总线之外,还包括电源总线、控制总线和状态信号总线等。
其中,处理器1010用于:对多个传输资源中的每个传输资源上待发送的数据进行独立编码;
发送器1022,用于通过无调度传输的方式在所述每个传输资源上向网络设备发送经过处理器1010进行独立编码后的所述数据。
因此,终端设备通过将待发送数据映射到多个传输资源上,并对每个传输资源上被映射的数据独立地进行编码后通过无调度传输的方式向网络设备发送该数据,使得网络设备在接收到每个传输资源上的数据之后,能够独立地对每个传输资源上的数据进行解码,降低了网络设备的接收复杂度。
可选地,所述每个传输资源包括至少一个资源单元。
可选地,所述每个传输资源中的起始资源单元的索引号P满足P mod N=k,其中,所述N为所述每个传输资源中包括的资源单元的个数,所述k为预设的小于N的非负整数。
可选地,所述至少一个资源单元在频域上连续或者不连续。
可选地,所述多个传输资源在频域上连续或者不连续。
可选地,在所述处理器1010对多个传输资源中的每个传输资源上待发送的数据进行独立编码之前,所述处理器1010还用于:根据所述终端设备的标识ID,确定所述多个传输资源的位置。
可选地,在所述处理器1010对多个传输资源中的每个传输资源上待发送的数据进行独立编码之前,所述处理器1010还用于:根据所述终端设备的ID,确定所述每个传输资源中的所述至少一个资源单元的位置。
可选地,所述发送器1022还用于:在所述每个传输资源中的特定时频资源上,向所述网络设备发送用于解码所述每个传输资源上的数据的解码信息。
可选地,所述解码信息包括以下信息中的至少一种:所述每个传输资源对应的调制编码等级MCS、所述每个传输资源对应的预编码的信息、所述每个传输资源对应的参考信号的信息和所述每个传输资源的大小。
可选地,所述多个传输资源上的数据属于同一个混合自动重传请求HARQ进程。
可选地,所述每个传输资源上的数据包括以下信息中的至少一种:所述多个传输资源的总数、所述多个传输资源中除当前传输资源之外的其他传输资源的索引号和所述其他传输资源的位置信息。
可选地,所述多个传输资源上的数据包括至少一个公用的循环冗余校验CRC码。
可选地,所述多个传输资源中的每个传输资源上的数据属于独立的HARQ进程。
可选地,所述每个传输资源上的数据包括:所述每个传输资源上的数据传输对应的HARQ进程编号的信息,和/或所述多个传输资源中除当前传输资源之外的其他传输资源的位置信息。
图11是本发明实施例的系统芯片的一个示意性结构图。图11的系统芯片1100包括系统芯片,所述输入接口1101、输出接口1102、所述处理器1103 以及存储器1104之间通过总线1105相连,所述处理器1103用于执行所述存储器1104中的代码,当所述代码被执行时,所述处理器1103实现图2至图5中终端设备执行的方法。
图9所示的终端设备900或图10所示的网络设备1000或图11所示的系统芯片1100能够实现前述图2至图5方法实施例中由终端设备所实现的各个过程,为避免重复,这里不再赘述。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (56)

  1. 一种传输数据的方法,其特征在于,所述方法包括:
    网络设备接收终端设备通过无调度传输的方式在多个传输资源上发送的数据;
    所述网络设备对所述多个传输资源中的每个传输资源上的数据进行独立解码。
  2. 根据权利要求1所述的方法,其特征在于,所述每个传输资源包括至少一个资源单元。
  3. 根据权利要求2所述的方法,其特征在于,所述每个传输资源中的起始资源单元的索引号P满足P mod N=k,其中,所述N为所述每个传输资源中包括的资源单元的个数,所述k为预设的小于N的非负整数。
  4. 根据权利要求2或3所述的方法,其特征在于,所述至少一个资源单元在频域上连续或者不连续。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述多个传输资源在频域上连续或者不连续。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,在网络设备接收终端设备通过无调度传输的方式在多个传输资源上发送的数据之前,所述方法还包括:
    所述网络设备根据所述终端设备的标识ID,确定所述多个传输资源的位置。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,在所述网络设备接收终端设备通过无调度传输的方式在多个传输资源上发送的数据之前,所述方法还包括:
    所述网络设备根据所述终端设备的ID,确定所述每个传输资源中的所述至少一个资源单元的位置。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,在所述网络设备对所述多个传输资源中的每个传输资源上的数据进行独立解码之前,所述方法还包括:
    所述网络设备在所述每个传输资源中的特定时频资源上,接收用于解码所述每个传输资源上的数据的解码信息;
    其中,所述网络设备对所述多个传输资源中的每个传输资源上的数据进 行解码,包括:
    所述网络设备根据用于解码所述每个传输资源上的数据的所述解码信息,对所述每个传输资源上的数据进行独立解码。
  9. 根据权利要求8所述的方法,其特征在于,所述解码信息包括以下信息中的至少一种:
    所述每个传输资源对应的调制编码等级MCS、所述每个传输资源对应的预编码的信息、所述每个传输资源对应的参考信号的信息、所述每个传输资源的大小。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述多个传输资源上的数据属于同一个混合自动重传请求HARQ进程。
  11. 根据权利要求9所述的方法,其特征在于,所述每个传输资源上的数据包括以下信息中的至少一种:
    所述多个传输资源的总数、所述多个传输资源中除当前传输资源之外的其他传输资源的索引号和所述其他传输资源的位置信息。
  12. 根据权利要求10或11所述的方法,其特征在于,所述多个传输资源上的数据包括至少一个公用的循环冗余校验CRC码。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,所述多个传输资源中的每个传输资源上的数据属于独立的HARQ进程。
  14. 根据权利要求13所述的方法,其特征在于,所述每个传输资源上的数据包括:
    所述每个传输资源上的数据传输对应的HARQ进程编号的信息,和/或所述多个传输资源中除当前传输资源之外的其他传输资源的位置信息。
  15. 一种传输数据的方法,其特征在于,所述方法包括:
    终端设备对多个传输资源中的每个传输资源上待发送的数据进行独立编码;
    所述终端设备通过无调度传输的方式在所述每个传输资源上向网络设备发送独立编码后的所述数据。
  16. 根据权利要求15所述的方法,其特征在于,所述每个传输资源包括至少一个资源单元。
  17. 根据权利要求15或16所述的方法,其特征在于,所述每个传输资源中的起始资源单元的索引号P满足P mod N=k,其中,所述N为所述每个 传输资源中包括的资源单元的个数,所述k为预设的小于N的非负整数。
  18. 根据权利要求15至17中任一项所述的方法,其特征在于,所述至少一个资源单元在频域上连续或者不连续。
  19. 根据权利要求15至18中任一项所述的方法,其特征在于,所述多个传输资源在频域上连续或者不连续。
  20. 根据权利要求15至19中任一项所述的方法,其特征在于,在所述终端设备对多个传输资源中的每个传输资源上待发送的数据进行独立编码之前,所述方法还包括:
    所述终端设备根据所述终端设备的标识ID,确定所述多个传输资源的位置。
  21. 根据权利要求15至20中任一项所述的方法,其特征在于,在所述终端设备对多个传输资源中的每个传输资源上待发送的数据进行独立编码之前,所述方法还包括:
    所述终端设备根据所述终端设备的ID,确定所述每个传输资源中的所述至少一个资源单元的位置。
  22. 根据权利要求15至21中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备在所述每个传输资源中的特定时频资源上,向所述网络设备发送用于解码所述每个传输资源上的数据的解码信息。
  23. 根据权利要求22所述的方法,其特征在于,所述解码信息包括以下信息中的至少一种:
    所述每个传输资源对应的调制编码等级MCS、所述每个传输资源对应的预编码的信息、所述每个传输资源对应的参考信号的信息、和所述每个传输资源的大小。
  24. 根据权利要求15至23中任一项所述的方法,其特征在于,所述多个传输资源上的数据属于同一个混合自动重传请求HARQ进程。
  25. 根据权利要求24所述的方法,其特征在于,所述每个传输资源上的数据包括以下信息中的至少一种:
    所述多个传输资源的总数、所述多个传输资源中除当前传输资源之外的其他传输资源的索引号和所述其他传输资源的位置信息。
  26. 根据权利要求24或25所述的方法,其特征在于,所述多个传输资 源上的数据包括至少一个公用的循环冗余校验CRC码。
  27. 根据权利要求15至26中任一项所述的方法,其特征在于,所述多个传输资源中的每个传输资源上的数据属于独立的HARQ进程。
  28. 根据权利要求27所述的方法,其特征在于,所述每个传输资源上的数据包括:
    所述每个传输资源上的数据传输对应的HARQ进程编号的信息,和/或所述多个传输资源中除当前传输资源之外的其他传输资源的位置信息。
  29. 一种网络设备,其特征在于,包括:
    接收单元,用于接收终端设备通过无调度传输的方式在多个传输资源上发送的数据;
    处理单元,用于对所述接收单元接收的所述多个传输资源中的每个传输资源上的数据进行独立解码。
  30. 根据权利要求29所述的网络设备,其特征在于,所述每个传输资源包括至少一个资源单元。
  31. 根据权利要求30所述的网络设备,其特征在于,所述每个传输资源中的起始资源单元的索引号P满足P mod N=k,其中,所述N为所述每个传输资源中包括的资源单元的个数,所述k为预设的小于N的非负整数。
  32. 根据权利要求30或31所述的网络设备,其特征在于,所述至少一个资源单元在频域上连续或者不连续。
  33. 根据权利要求29至32中任一项所述的网络设备,其特征在于,所述多个传输资源在频域上连续或者不连续。
  34. 根据权利要求29至33中任一项所述的网络设备,其特征在于,在所述接收单元接收终端设备通过无调度传输的方式在多个传输资源上发送的数据之前,所述网络设备还包括:
    确定单元,用于根据所述终端设备的标识ID,确定所述多个传输资源的位置。
  35. 根据权利要求29至34中任一项所述的网络设备,其特征在于,在所述接收单元接收终端设备通过无调度传输的方式在多个传输资源上发送的数据之前,所述网络设备还包括:
    确定单元,用于根据所述终端设备的ID,确定所述每个传输资源中的所述至少一个资源单元的位置。
  36. 根据权利要求29至35中任一项所述的网络设备,其特征在于,在所述处理单元对所述多个传输资源中的每个传输资源上的数据进行独立解码之前,所述接收单元还用于:
    在所述每个传输资源中的特定时频资源上,接收用于解码所述每个传输资源上的数据的解码信息;
    其中,所述处理单元具体用于:
    根据用于解码所述每个传输资源上的数据的所述解码信息,对所述每个传输资源上的数据进行独立解码。
  37. 根据权利要求36所述的网络设备,其特征在于,所述解码信息包括以下信息中的至少一种:
    所述每个传输资源对应的调制编码等级MCS、所述每个传输资源对应的预编码的信息、所述每个传输资源对应的参考信号的信息、所述每个传输资源的大小。
  38. 根据权利要求29至37中任一项所述的网络设备,其特征在于,所述多个传输资源上的数据属于同一个混合自动重传请求HARQ进程。
  39. 根据权利要求38所述的网络设备,其特征在于,所述每个传输资源上的数据包括以下信息中的至少一种:
    所述多个传输资源的总数、所述多个传输资源中除当前传输资源之外的其他传输资源的索引号和所述其他传输资源的位置信息。
  40. 根据权利要求38或39所述的网络设备,其特征在于,所述多个传输资源上的数据包括至少一个公用的循环冗余校验CRC码。
  41. 根据权利要求29至40中任一项所述的网络设备,其特征在于,所述多个传输资源中的每个传输资源上的数据属于独立的HARQ进程。
  42. 根据权利要求41所述的网络设备,其特征在于,所述每个传输资源上的数据包括:
    所述每个传输资源上的数据传输对应的HARQ进程编号的信息,和/或所述多个传输资源中除当前传输资源之外的其他传输资源的位置信息。
  43. 一种终端设备,其特征在于,包括:
    处理单元,用于对多个传输资源中的每个传输资源上待发送的数据进行独立编码;
    发送单元,用于通过无调度传输的方式在所述每个传输资源上向网络设 备发送经过所述处理单元进行独立编码后的所述数据。
  44. 根据权利要求43所述的终端设备,其特征在于,所述每个传输资源包括至少一个资源单元。
  45. 根据权利要求43或44所述的终端设备,其特征在于,所述每个传输资源中的起始资源单元的索引号P满足P mod N=k,其中,所述N为所述每个传输资源中包括的资源单元的个数,所述k为预设的小于N的非负整数。
  46. 根据权利要求43至45中任一项所述的终端设备,其特征在于,所述至少一个资源单元在频域上连续或者不连续。
  47. 根据权利要求43至46中任一项所述的终端设备,其特征在于,所述多个传输资源在频域上连续或者不连续。
  48. 根据权利要求43至47中任一项所述的终端设备,其特征在于,在所述处理单元对多个传输资源中的每个传输资源上待发送的数据进行独立编码之前,所述终端设备还包括确定模块,用于:
    根据所述终端设备的标识ID,确定所述多个传输资源的位置。
  49. 根据权利要求43至48中任一项所述的终端设备,其特征在于,在所述处理单元对多个传输资源中的每个传输资源上待发送的数据进行独立编码之前,所述终端设备还包括确定模块,用于:
    根据所述终端设备的ID,确定所述每个传输资源中的所述至少一个资源单元的位置。
  50. 根据权利要求43至49中任一项所述的终端设备,其特征在于,所述发送单元还用于:
    在所述每个传输资源中的特定时频资源上,向所述网络设备发送用于解码所述每个传输资源上的数据的解码信息。
  51. 根据权利要求50所述的终端设备,其特征在于,所述解码信息包括以下信息中的至少一种:
    所述每个传输资源对应的调制编码等级MCS、所述每个传输资源对应的预编码的信息、所述每个传输资源对应的参考信号的信息和所述每个传输资源的大小。
  52. 根据权利要求43至51中任一项所述的终端设备,其特征在于,所述多个传输资源上的数据属于同一个混合自动重传请求HARQ进程。
  53. 根据权利要求52所述的终端设备,其特征在于,所述每个传输资 源上的数据包括以下信息中的至少一种:
    所述多个传输资源的总数、所述多个传输资源中除当前传输资源之外的其他传输资源的索引号和所述其他传输资源的位置信息。
  54. 根据权利要求52或53所述的终端设备,其特征在于,所述多个传输资源上的数据包括至少一个公用的循环冗余校验CRC码。
  55. 根据权利要求43至54中任一项所述的终端设备,其特征在于,所述多个传输资源中的每个传输资源上的数据属于独立的HARQ进程。
  56. 根据权利要求55所述的终端设备,其特征在于,所述每个传输资源上的数据包括:
    所述每个传输资源上的数据传输对应的HARQ进程编号的信息,和/或所述多个传输资源中除当前传输资源之外的其他传输资源的位置信息。
PCT/CN2016/102635 2016-10-19 2016-10-19 传输数据的方法、网络设备和终端设备 WO2018072159A1 (zh)

Priority Applications (12)

Application Number Priority Date Filing Date Title
PL16919577T PL3451766T3 (pl) 2016-10-19 2016-10-19 Metoda transmisji danych, urządzenie sieciowe i urządzenie końcowe
EP20213763.4A EP3809782B1 (en) 2016-10-19 2016-10-19 Data transmission method, network device and terminal device
CN202010211589.5A CN111405660B (zh) 2016-10-19 2016-10-19 传输数据的方法、网络设备和终端设备
CN202010211588.0A CN111405659B (zh) 2016-10-19 2016-10-19 传输数据的方法、网络设备和终端设备
PCT/CN2016/102635 WO2018072159A1 (zh) 2016-10-19 2016-10-19 传输数据的方法、网络设备和终端设备
CN202010211590.8A CN111405661B (zh) 2016-10-19 2016-10-19 传输数据的方法、网络设备和终端设备
US16/308,433 US10912060B2 (en) 2016-10-19 2016-10-19 Data transmission method, network device and terminal device
CN201680087390.8A CN109417785B (zh) 2016-10-19 2016-10-19 传输数据的方法、网络设备、终端设备和计算机可读介质
EP16919577.3A EP3451766B1 (en) 2016-10-19 2016-10-19 Data transmission method, network device and terminal device
ES16919577T ES2845773T3 (es) 2016-10-19 2016-10-19 Método de transmisión de datos, dispositivo de red y dispositivo terminal
TW106130402A TWI706649B (zh) 2016-10-19 2017-09-06 傳輸數據的方法、網絡設備和終端設備
US17/125,869 US20210105745A1 (en) 2016-10-19 2020-12-17 Data transmission method, network device and terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/102635 WO2018072159A1 (zh) 2016-10-19 2016-10-19 传输数据的方法、网络设备和终端设备

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/308,433 A-371-Of-International US10912060B2 (en) 2016-10-19 2016-10-19 Data transmission method, network device and terminal device
US17/125,869 Continuation US20210105745A1 (en) 2016-10-19 2020-12-17 Data transmission method, network device and terminal device

Publications (1)

Publication Number Publication Date
WO2018072159A1 true WO2018072159A1 (zh) 2018-04-26

Family

ID=62018186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/102635 WO2018072159A1 (zh) 2016-10-19 2016-10-19 传输数据的方法、网络设备和终端设备

Country Status (7)

Country Link
US (2) US10912060B2 (zh)
EP (2) EP3451766B1 (zh)
CN (4) CN109417785B (zh)
ES (1) ES2845773T3 (zh)
PL (1) PL3451766T3 (zh)
TW (1) TWI706649B (zh)
WO (1) WO2018072159A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020034609A1 (en) 2019-02-02 2020-02-20 Zte Corporation Grant free transmission techniques
WO2020165231A1 (en) * 2019-02-14 2020-08-20 Sony Corporation Communications device, infrastructure equipment and methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8874164B2 (en) * 2012-11-07 2014-10-28 Qualcomm Incorporated Power consumption improvement for certain M2M devices
CN104838713A (zh) * 2012-12-14 2015-08-12 华为技术有限公司 用于小业务传输的系统和方法
CN105284172A (zh) * 2013-03-08 2016-01-27 华为技术有限公司 用于上行链路免授权传输方案的系统和方法
US20160219627A1 (en) * 2015-01-27 2016-07-28 Kelvin Kar Kin Au System and method for transmission in a grant-free uplink transmission scheme

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101132224B (zh) * 2006-08-24 2011-08-10 中兴通讯股份有限公司 上行增强系统中调度和非调度传输系统及其信道资源配置方法
CN101340714B (zh) * 2007-07-05 2012-01-11 中兴通讯股份有限公司 时分同步码分多址上行增强系统的随机接入方法
CN103354478A (zh) * 2011-03-31 2013-10-16 北京新岸线移动多媒体技术有限公司 一种用于实现链路自适应的方法、网络设备和终端设备
US9025466B2 (en) 2011-07-07 2015-05-05 Qualcomm Incorporated Methods and apparatus for facilitating channel access in a communication system
US9763272B2 (en) 2012-02-27 2017-09-12 Futurewei Technologies, Inc. System and method for time resource allocation for device-to-device communication overlaid on a cellular network
WO2014153907A1 (zh) * 2013-03-29 2014-10-02 华为技术有限公司 控制请求上行授权资源的方法、用户设备及基站
CN105451155B (zh) * 2014-09-26 2020-10-27 中兴通讯股份有限公司 一种信道和信号传输方法及相应的终端、基站
WO2016049850A1 (zh) * 2014-09-30 2016-04-07 华为技术有限公司 一种上行数据的传输方法及相关设备
JP6343682B2 (ja) 2015-04-03 2018-06-13 株式会社Nttドコモ ユーザ装置及び基地局

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8874164B2 (en) * 2012-11-07 2014-10-28 Qualcomm Incorporated Power consumption improvement for certain M2M devices
CN104838713A (zh) * 2012-12-14 2015-08-12 华为技术有限公司 用于小业务传输的系统和方法
CN105284172A (zh) * 2013-03-08 2016-01-27 华为技术有限公司 用于上行链路免授权传输方案的系统和方法
US20160219627A1 (en) * 2015-01-27 2016-07-28 Kelvin Kar Kin Au System and method for transmission in a grant-free uplink transmission scheme

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020034609A1 (en) 2019-02-02 2020-02-20 Zte Corporation Grant free transmission techniques
CN113412664A (zh) * 2019-02-02 2021-09-17 中兴通讯股份有限公司 免授权传输技术
EP3918858A1 (en) * 2019-02-02 2021-12-08 ZTE Corporation Grant free transmission techniques
EP3918858A4 (en) * 2019-02-02 2022-03-30 ZTE Corporation RIGHTS-FREE TRANSMISSION TECHNIQUES
CN113412664B (zh) * 2019-02-02 2023-08-01 中兴通讯股份有限公司 免授权传输技术
WO2020165231A1 (en) * 2019-02-14 2020-08-20 Sony Corporation Communications device, infrastructure equipment and methods

Also Published As

Publication number Publication date
CN111405659A (zh) 2020-07-10
CN111405660B (zh) 2023-07-04
ES2845773T3 (es) 2021-07-27
US10912060B2 (en) 2021-02-02
TW201817200A (zh) 2018-05-01
CN111405660A (zh) 2020-07-10
PL3451766T3 (pl) 2021-04-19
EP3809782B1 (en) 2023-09-20
CN111405659B (zh) 2023-01-31
EP3451766B1 (en) 2020-12-30
CN111405661B (zh) 2023-06-30
CN109417785A (zh) 2019-03-01
TWI706649B (zh) 2020-10-01
CN111405661A (zh) 2020-07-10
EP3809782A1 (en) 2021-04-21
EP3451766A1 (en) 2019-03-06
US20210105745A1 (en) 2021-04-08
US20190261318A1 (en) 2019-08-22
CN109417785B (zh) 2020-04-21
EP3451766A4 (en) 2019-08-07

Similar Documents

Publication Publication Date Title
US20210091893A1 (en) Information Transmission Method and Communications Device
WO2018059173A1 (zh) 免授权的传输上行信息的方法、网络设备和终端设备
WO2019029639A1 (zh) 通信方法和通信装置
WO2017050078A1 (zh) 上行控制信息的发送、获取方法及装置
JP6603957B2 (ja) フィードバック情報の伝送方法、端末装置及び基地局
WO2016070790A1 (zh) 一种harq确认信息的反馈方法及装置
US10834635B2 (en) Information transmission method and apparatus
US11728931B2 (en) Communication method, network device, and terminal
JP6813211B2 (ja) データ伝送方法および装置
TW202127949A (zh) 在上行鏈路共享通道傳輸上多工上行鏈路控制資訊
WO2018223877A1 (zh) 数据传输方法和数据传输装置
US20210105745A1 (en) Data transmission method, network device and terminal device
WO2021159979A1 (zh) 混合自动重传请求确认码本的反馈方法及装置
WO2019080071A1 (zh) 上行控制信道传输方法、终端设备和网络设备
WO2018171676A1 (zh) 数据传输的方法和装置
WO2018228264A1 (zh) 发送和接收上行信息的方法和装置
WO2017075825A1 (zh) 一种数据存储的方法、终端设备及基站
WO2020156002A1 (zh) 通信方法及通信装置
TWI741089B (zh) 傳輸信息的方法、終端設備和網絡設備
WO2023051744A1 (zh) 通信方法和通信装置
WO2018192091A1 (zh) 数据传输的方法和装置
CN111711993A (zh) 一种传输信息的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919577

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016919577

Country of ref document: EP

Effective date: 20181128

NENP Non-entry into the national phase

Ref country code: DE