WO2018072078A1 - 地下室排水监控系统 - Google Patents

地下室排水监控系统 Download PDF

Info

Publication number
WO2018072078A1
WO2018072078A1 PCT/CN2016/102352 CN2016102352W WO2018072078A1 WO 2018072078 A1 WO2018072078 A1 WO 2018072078A1 CN 2016102352 W CN2016102352 W CN 2016102352W WO 2018072078 A1 WO2018072078 A1 WO 2018072078A1
Authority
WO
WIPO (PCT)
Prior art keywords
water pump
monitoring system
module
water
alarm
Prior art date
Application number
PCT/CN2016/102352
Other languages
English (en)
French (fr)
Inventor
陈世栋
万克林
Original Assignee
深圳市智美达科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市智美达科技股份有限公司 filed Critical 深圳市智美达科技股份有限公司
Priority to PCT/CN2016/102352 priority Critical patent/WO2018072078A1/zh
Publication of WO2018072078A1 publication Critical patent/WO2018072078A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F1/00Methods, systems, or installations for draining-off sewage or storm water
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D9/00Level control, e.g. controlling quantity of material stored in vessel
    • G05D9/12Level control, e.g. controlling quantity of material stored in vessel characterised by the use of electric means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the invention relates to the technical field of drainage, in particular to a basement drainage monitoring system.
  • the reasons for the flooding of the basement are as follows: First, the drainage system of the basement is faulty (blockage, rupture) or the pump failure cannot be drained in time; secondly, after the flood occurs, the treatment cannot be detected in time, resulting in secondary damage. The problem of water accumulation has also become an urgent problem for cities.
  • a basement drainage monitoring system comprising:
  • a water level collecting device disposed in a sump of the basement for collecting water level information in the sump in real time
  • the water pump monitoring device comprises a water pump and a water pump state detecting module, wherein the water pump is disposed in the water collecting pit, and the water pump state detecting module is installed on the water pump for controlling the running and detecting of the water pump The operating parameters of the pump;
  • a drain pipe device for collecting pressure values at different locations in the drain pipe
  • a remote monitoring system is respectively connected to the water level collecting device, the water pump monitoring device and the drain pipe device, and the remote monitoring system is configured to send warning information according to the water level information collected by the water level collecting device, and detect the state of the water pump
  • the module issues a control command for running the water pump; and is further configured to analyze the clogging state of the drain pipe according to the operating parameters of the water pump and the pressure values at different positions in the drain pipe and issue corresponding maintenance reminding information.
  • the above basement drainage monitoring system includes a water level collecting device, a water pump monitoring device, a drainage pipe device and a remote monitoring system.
  • the water level collecting device wirelessly transmits the water level information in the collected basement sump to the remote monitoring system, and the remote monitoring system monitors the water level information of the sump in real time. When the water level information exceeds the safe water level line, the remote monitoring system can issue a warning. Information to remind users that they need to be treated for drainage.
  • Figure 1 is a structural block diagram of a basement drainage monitoring system of an embodiment
  • FIG. 2 is a schematic structural view of a wireless liquid level sensor according to an embodiment
  • Figure 3 is a structural view of a water overflow alarm of an embodiment
  • FIG. 4 is a schematic structural view of a water overflow alarm according to an embodiment
  • Figure 5 is a connection diagram of a wireless liquid level sensor and a water overflow alarm according to an embodiment
  • FIG. 6 is a block diagram of a mechanism of a water pump state detecting module according to an embodiment
  • Figure 7 is a block diagram showing the structure of a remote monitoring system of an embodiment.
  • FIG. 1 is a structural block diagram of a basement drainage monitoring system.
  • the basement drainage monitoring system of an embodiment includes a water level collection device 100, a water pump monitoring device 200, a drain conduit device 300, and a remote monitoring system 400.
  • the water level collecting device 100 wirelessly transmits the water level information in the collected basement sump to the remote monitoring system 400, and the remote monitoring system 400 monitors the water level information of the sump in real time.
  • the remote monitoring system 400 A warning message can be sent to remind the user that drainage is required.
  • a control command to operate the water pump 210 is issued to the water pump monitoring device 200, and the water pump 210 in the water pump monitoring device 200 starts to work (drainage), and has the function of intelligent drainage.
  • the water pump state detecting module 220 in the water pump monitoring device 200 also detects the operating parameters of the water pump 210 in real time and transmits the operating parameters of the water pump 210 to the remote monitoring system 400.
  • the drainage pipe device 300 also sends the pressure values at different positions in the collected drainage pipes to the remote monitoring system 400.
  • the remote monitoring system 400 analyzes the clogging state of the drainage pipe according to the operating parameters of the water pump 210 and the pressure values at different positions in the drainage pipe, and issues different levels of maintenance reminders, reminding the maintenance of the water pump 210 or the drainage pipe in time, and clearing the basement in time. Keep water and avoid being flooded.
  • the water level collection device 100 includes a wireless level sensor 110.
  • the wireless level sensor 110 is configured to collect water level information of the sump in real time and wirelessly transmit the water level information to the remote monitoring system 400.
  • the water level collection device 100 includes a water overflow alarm 120, the water overflow alarm 120 is coupled to the wireless level sensor 110, and the water overflow alarm 120 is disposed at the edge of the sump for detecting the overflow sump. Overflow information and an alarm prompt based on the overflow information.
  • the water overflow alarm 120 includes a main control chip 121, a water overflow detection module 123, a first alarm module 125, and a first wireless transmission module 127, as shown in FIG.
  • the main control chip 121 is connected to the water overflow detecting module 123, the first alarm module 125, and the first wireless transmission module 127, respectively.
  • the water overflow detection module 123 is configured to detect overflow information of the overflow sump.
  • FIG. 4 is a schematic structural diagram of the water overflow alarm 120. When the contact (water overflow detection module 123) contacts the water, an overflow information is issued, and the main control chip 121 sends an alarm signal according to the overflow information.
  • An alarm module 125 the first alarm module 125 sends an alarm sound of "drip", and the main control chip 121 sends the overflow information to the remote monitoring system 400 through the first wireless transmission module 127, and the remote monitoring system 400 A corresponding alarm sound will also be issued to warn the user to drain in time.
  • the connection manner between the wireless liquid level sensor 110 and the water overflow alarm 120 includes a wired connection and a wireless connection.
  • the wireless liquid level sensor 110 and the water overflow alarm 120 are wiredly connected through the data line.
  • the wireless liquid level sensor 110 and the water overflow alarm 120 can also be wirelessly connected, for example, including but not limited to a Bluetooth wireless connection, a wireless radio frequency connection, etc., to perform wireless data transmission.
  • the wireless liquid level sensor 110 is used in combination with the water overflow alarm 120 to more accurately monitor the water level information and the overflow condition in the sump, and play the role of “double insurance”, which can timely treat the accumulated water and avoid the basement. The situation of being flooded occurs.
  • the water level information for collecting the sump connected to the water overflow alarm 120 may also be a water level sensor, and the water level information collected by the water level sensor is transmitted to the water overflow alarm 120 by the water overflow alarm.
  • the water level signal and the overflow information are simultaneously transmitted to the remote monitoring system 400 for processing.
  • the mechanism diagram of the water pump state detection module includes a state detection module 221 , a feedback control module 223 , and a second wireless transmission module 225 .
  • the state detecting module 221 and the feedback control module 223 are respectively connected to the second wireless transmission module 225.
  • the second wireless transmission module 225 is configured to implement wireless data transmission between the water pump state detection module 220 and the remote monitoring system 400.
  • the state detecting module 221 and the feedback control module 223 can work independently of each other without affecting each other.
  • the remote monitoring system 400 processes and analyzes the received water level information. If the water level information exceeds the safe water level line or receives the overflow information, the remote monitoring system 400 issues a control command to run the water pump 210, and the control command passes through the second wireless transmission module. 225 is transmitted to the feedback control module 223, and the feedback control module 223 controls the operation of the water pump 210 to cause the water pump 210 to start working and perform drainage processing. If the water level information is lower than the lowest water level line, the remote monitoring system 400 issues a control command to stop the water pump 210, and transmits it to the feedback control module 223 through the second wireless transmission module 225, and the feedback control module 223 controls the water pump 210 to stop working. It automatically controls the operation of the water pump 210 without manual operation, improves the efficiency of drainage, and also saves energy.
  • the state detecting module 221 transmits the detected operating parameters (power, voltage, current and the like) of the water pump 210 to the remote monitoring system 400 through the second wireless transmission module 225.
  • the state detecting module 221 includes a power meter for collecting the power of the water pump 210, a voltmeter for collecting the voltage of the water pump 210, and an ammeter for collecting the current of the water pump 210.
  • the remote monitoring system 400 processes the operating parameters of the water pump 210. If the power value of the water pump 210 is abnormal, it can be analyzed that the water pump 210 may be blocked, and the remote monitoring system 400 issues an abnormal alarm prompt of the corresponding water pump 210, prompting the user. Timely repair the water pump 210, and then express the drainage to avoid water accumulation.
  • the drain conduit device 300 includes a drain conduit for draining and a plurality of pressure sensors disposed in the drain conduit for periodically collecting pressure values throughout the drain conduit. Due to the long-term use of the drainage pipe, it may cause drainage problems, and it is necessary to set a plurality of pressure sensors at different positions of the drainage pipe to collect the pressure value.
  • the first pressure sensor 310 is disposed in the water inlet pipe of the water pump 210 for collecting the pressure value of the water inlet of the water pump 210; the second pressure sensor 320 is disposed at the water pump 210.
  • the nozzle pipe is used for collecting the pressure value at the water outlet of the water pump 210; the third pressure sensor 330 is disposed at the highest turning point of the drain pipe for collecting the pressure value at the highest turning point of the drain pipe; the fourth pressure sensor 340 is disposed at the drain pipe. At any position, it is used to collect the key pressure of the drainage pipe.
  • the four pressure sensors are all wireless pressure sensors for wirelessly transmitting the collected pressure values to the remote monitoring system 400.
  • the water flow velocity is inversely proportional to the pressure value, that is, the position pressure with the fastest flow rate is the least, and the pressure at the slowest flow point is the largest.
  • the first pressure sensor 310 and the second pressure sensor 320 are mainly for collecting the pressure value of the water flowing into and out of the water pump 210, thereby enabling monitoring of the water pump 210; the third pressure sensor 330 and the fourth pressure sensor 340 may be The situation of the subsequent drainage is monitored. The speed direction of the drainage pipe turns greatly changes, the highest point of the pipe is the smallest, and the pressure on the pipe is the largest.
  • the four pressure sensors installed in the drainage pipe can collect the pressure values of the drainage pipes, and then can be used to analyze whether the drainage conditions around the drainage pipes are normal.
  • the remote monitoring system 400 includes a main control module 410, a second alarm module 420, and a third wireless transmission module 430.
  • the main control module 410 and the second alarm module 420 and the The three wireless transmission modules 430 are connected.
  • the main control module 410 is configured to process the water level information in the sump, the overflow information, the operating parameters of the water pump 210, and analyze the clogging state of the drainage pipe according to the pressure values collected by the four pressure sensors.
  • the second alarm module 420 is configured to issue different levels of alarm signals according to the water level information and the blocked state of the drain pipe of the operating parameter of the water pump 210.
  • the third wireless transmission module 430 is configured to establish a wireless communication channel with the water level collection device 100, the water pump monitoring device 200, and the drainage pipe device 300.
  • the remote monitoring system 400 also includes a storage module 440 coupled to the main control module 410 for storing pressure values to be collected by the four pressure sensors.
  • a storage module 440 coupled to the main control module 410 for storing pressure values to be collected by the four pressure sensors.
  • the main control module 410 pairs The data collected by the four pressure sensors are processed to calculate an average pressure value P1 of the first pressure sensor 310, an average pressure value P2 of the second pressure sensor 320, an average pressure value P3 of the third pressure sensor 330, and a fourth pressure sensor 340, respectively.
  • the average pressure value is P4.
  • the respective average pressure values P1, P2, P3, and P4 are stored in the storage module 440 as an initial state of the four pressure sensors provided at the pressure value.
  • the main control module 410 averages the respective pressure values collected by the four pressure sensors in a specific time period, for example, the pressure value collected by the main control module 410 for each of the four pressure sensors is performed every 5 minutes or 10 minutes of drainage. Calculate and find the draw values of the pressure values collected by the four pressure sensors within 5 minutes or 10 minutes, which are respectively recorded as P1', P2', P3', P4'.
  • the specific time period can be set according to actual needs, and is not limited thereto.
  • the remote monitoring system 400 further includes a comparison processing module 450.
  • the comparison processing module 450 is connected to the main control module 410 and the storage module 440, respectively.
  • the comparison processing module 450 is configured to respectively compare the difference between the average value of the collected pressure values and the preset pressure values of the four pressure sensors in the same time period of the four pressure sensors.
  • the comparison processing module 450 respectively compares the preset value P1 of the first pressure sensor 310 with the difference value ⁇ 1 of the tie value P1′ of the pressure value in the specific time period; the preset value P2 of the second pressure sensor 320 and the specific The difference ⁇ 2 of the tie value P2' of the pressure value in the time period; the difference ⁇ 3 between the preset value P3 of the third pressure sensor 330 and the tie value P3' of the pressure value in the specific time period; the preset of the fourth pressure sensor 340 The difference ⁇ 4 between the value P4 and the tie value P4' of the pressure value in a certain period of time.
  • Its main control module 410 analyzes the clogging state of the drainage pipe according to each difference value and issues different levels of alarm signals emitting different levels. Wherein, if the value of at least one of ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4 reaches 30%, and there is a tendency to expand, the main control module 410 can determine that the drainage pipe is blocked, and send a message to the second alarm module 420. Level alarm prompt, in which the first level alarm prompts the orange indicator light to flash. Wherein, if the value of at least one of ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4 reaches 50%, and there is a tendency to expand, the main control module 410 can determine that the drainage pipe is blocked, and simultaneously issue two to the second alarm module 420.
  • the level alarm prompt wherein the second level alarm prompts that the red indicator light flashes and is in an urgently needed maintenance state.
  • the second alarm module 420 can also be accompanied by a beep, and different levels of alarm prompts can be set according to actual needs.
  • the main control module 410 can also compare the data of the processing module 450 as follows: if ⁇ 1 is negative and ⁇ 2 is positive; and ⁇ 3 and ⁇ 4 are unchanged, it can be explained that the water pump 210 has a blockage condition, and the water pump 210 needs to be cleaned. . If there is no change in ⁇ 1 and ⁇ 2; ⁇ 3 is positive and ⁇ 4 is negative, it can be explained that the drainage pipe between the third pressure sensor 330 and the fourth pressure sensor 340 is blocked, so that the fourth pressure sensor 340 measures the pressure value as 0. To make ⁇ 4 negative, there is drainage obstacle, and the drainage pipeline needs to be cleaned.
  • the main control module 410 can clearly distinguish the clogging condition of the drainage pipe device 300 according to the changes of ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4, and can accurately locate the clogging position, and facilitate the later cleaning.
  • the basement drainage monitoring system further includes a wireless camera 500 for monitoring the environment of the basement and wirelessly transmitting the monitored video to the remote monitoring system 400.
  • the remote monitoring system 400 further includes a display module 460 for displaying the wireless camera 500 in real time.
  • the detected video provides an intuitive and clear understanding of the basement environment.
  • the simultaneous display module 460 can also be used to display different levels of alarm information and different types of alarm information in synchronization with the second alarm module 420, and promptly inform the user to perform drainage treatment on the accumulated water in the basement or clogging of the draining pipeline.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

一种地下室排水监控系统,包括:水位采集装置(100),设置在地下室的集水坑中,用于实时采集集水坑中的水位信息;水泵监控装置(200),包括水泵(210)及水泵状态检测模组(220),水泵(210)设置在集水坑中,水泵状态检测模组(220)安装在水泵(210)上,用于控制水泵(210)的运行及检测水泵(210)的运行参数;排水管道装置(300),用于采集排水管道中不同位置处的压力值;以及,远程监控系统(400),分别与水位采集装置(100)、水泵监控装置(200)、排水管道装置(300)无线连接,远程监控系统(400)用于根据水位采集装置(100)采集的水位信息发出警示信息,并向水泵状态检测模组(220)发出运行水泵(210)的控制指令;还用于根据水泵(210)的运行参数及排水管道中不同位置处的压力值分析排水管道的堵塞状态并发出相应的维护提醒信息。

Description

地下室排水监控系统
【技术领域】
本发明涉及排水技术领域,特别涉及一种地下室排水监控系统。
【背景技术】
近几年,天气变化越来越突然,急降大雨的现象也在多个城市上演。突如其来的大雨给城市的排水系统带来了严重的考验。大雨不仅阻碍了道路交通的顺畅,也给人们的财产安全带来一定的威胁。遇到暴雨天气,地下室、桥底下被淹的车辆、道路两旁进水的商铺,这些都是因为排水系统排水不利造成的。
地下室被淹的原因如下:其一,地下室的排水系统故障(堵塞、破裂)或水泵故障不能及时的排水;其二,洪水出现后不能及时发现处理,导致二次损害。其积水问题也成为各城市亟待解决的问题。
【发明内容】
有鉴于此,有必要提供一种能够实时监控地下室积水及排水的地下室排水监控系统。
一种地下室排水监控系统,包括:
水位采集装置,设置在地下室的集水坑中,用于实时采集所述集水坑中的水位信息;
水泵监控装置,包括水泵及水泵状态检测模组,所述水泵设置在所述集水坑中,所述水泵状态检测模组安装在所述水泵上,用于控制所述水泵的运行及检测所述水泵的运行参数;
排水管道装置,用于采集排水管道中不同位置处的压力值;以及
远程监控系统,分别与所述水位采集装置、水泵监控装置、排水管道装置无线连接,所述远程监控系统用于根据所述水位采集装置采集的水位信息发出警示信息,并向所述水泵状态检测模组发出运行水泵的控制指令;还用于根据所述水泵的运行参数及排水管道中不同位置处的压力值分析所述排水管道的堵塞状态并发出相应的维护提醒信息。
上述地下室排水监控系统,包括水位采集装置、水泵监控装置、排水管道装置和远程监控系统。水位采集装置将采集的地下室集水坑中的水位信息无线传输给远程监控系统,由远程监控系统实时监测集水坑的水位信息,当水位信息超出安全水位线时,远程监控系统即可发出警示信息,提醒用户需要作排水处理。
【附图说明】
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1是一实施例的地下室排水监控系统的结构框架图;
图2是一实施例的无线液位传感器的结构示意图;
图3是一实施例的水溢报警器的结构框架图;
图4是一实施例的水溢报警器的结构示意图;
图5是一实施例的无线液位传感器与水溢报警器的连接图;
图6是一实施例的水泵状态检测模组的机构框图;
图7是一实施例的远程监控系统的结构框图。
【具体实施方式】
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
图1为地下室排水监控系统的结构框架图。一实施例的地下室排水监控系统包括水位采集装置100、水泵监控装置200、排水管道装置300和远程监控系统400。水位采集装置100将采集的地下室集水坑中的水位信息无线传输给远程监控系统400,由远程监控系统400实时监测集水坑的水位信息,当水位信息超出安全水位线时,远程监控系统400即可发出警示信息,提醒用户需要作排水处理。同时向水泵监控装置200发出运行水泵210的控制指令,水泵监控装置200中的水泵210开始工作(排水),具有智能排水的作用。
同时,水泵监控装置200中的水泵状态检测模组220还实时检测水泵210的运行参数,并将水泵210的运行参数发送至远程监控系统400。其中,排水管道装置300也会将采集的排水管道中不同位置处的压力值发送至远程监控系统400。远程监控系统400根据水泵210的运行参数及排水管道中不同位置处的压力值分析排水管道的堵塞状态,并发出不同等级的维护提醒,提醒用于及时维护水泵210或者排水管道,及时清除地下室的积水,避免被淹。
在一实施例中,水位采集装置100包括无线液位传感器110,参考图2,无线液位传感器110用于实时采集集水坑的水位信息,并将水位信息无线传输至远程监控系统400。
在一实施例中,水位采集装置100包括水溢报警器120,水溢报警器120与无线液位传感器110连接,水溢报警器120设置在集水坑边缘,用于检测溢出集水坑的溢水信息,并根据溢水信息发出报警提示。
其中,如图3所示的为水溢报警器的结构框架图,水溢报警器120包括主控芯片121、水溢检测模块123、第一报警模块125和第一无线传输模块127。主控芯片121分别与水溢检测模块123、第一报警模块125和第一无线传输模块127连接。水溢检测模块123用于检测溢出集水坑的溢水信息。如图4所示的为水溢报警器120的结构示意图,其中,触点(水溢检测模块123)接触到水后,就会发出溢水信息,主控芯片121根据溢水信息发出报警信号至第一报警模块125,其第一报警模块125发出“滴滴滴”的报警提示音,同时,主控芯片121将溢水信息通过第一无线传输模块127发出至远程监控系统400,其远程监控系统400也会发出相应的报警提示声,警示用户及时排水。
其中,无线液位传感器110与水溢报警器120的连接方式包括有线连接和无线连接,在本实施例中,参考图5,无线液位传感器110与水溢报警器120有线连接,通过数据线进行溢水信息或水位信息的数据传输。在其他实施例中,无线液位传感器110与水溢报警器120还可以无线连接,例如包括但不限于蓝牙无线连接、无线射频连接等,即可进行无线数据的传输。将无线液位传感器110与水溢报警器120联合使用,能够更加精准的对集水坑中的水位信息和溢水情况进行监测,起到“双重保险”的作用,能够及时处理积水,避免地下室被淹的情况发生。
在其他实施例中,与水溢报警器120连接的用于采集集水坑中的水位信息还可以为水位传感器,其水位传感器采集的水位信息传输至水溢报警器120,由水溢报警器120将水位信号和溢水信息同时传输至远程监控系统400处理。
如图6所示的为水泵状态检测模组的机构框图,水泵状态检测模组220包括状态检测模块221、反馈控制模块223和第二无线传输模块225。状态检测模块221、反馈控制模块223分别与第二无线传输模块225连接。其中,第二无线传输模块225用于实现水泵状态检测模组220与远程监控系统400的无线数据传输。状态检测模块221、反馈控制模块223可以相互独立工作,互不影响。
远程监控系统400对接收的水位信息进行处理分析,若水位信息超出安全水位线,或接收到溢水信息后,则该远程监控系统400发出运行水泵210的控制指令,控制指令通过第二无线传输模块225传输至反馈控制模块223,由该反馈控制模块223控制水泵210的运行,使水泵210开始工作,做排水处理。若水位信息低于最低水位线时,则远程监控系统400发出停止水泵210的控制指令,并通过第二无线传输模块225传输至反馈控制模块223,由该反馈控制模块223控制水泵210停止工作。其自动化控制水泵210的运行,无需人力操作,提高的排水的效率,同时也节约了能耗。
同时,状态检测模块221将检测的水泵210的运行参数(功率、电压、电流等参数)通过第二无线传输模块225传输至远程监控系统400。其中,状态检测模块221包括用于采集水泵210功率的功率计、用于采集水泵210电压的电压计以及用于采集水泵210电流的电流计。远程监控系统400对水泵210的运行参数处理,若水泵210的功率值出现异常,则可分析得出,水泵210可能堵塞,其远程监控系统400就出发出相应水泵210异常的报警提示,提示用户及时维修水泵210,进而快递排水,避免积水。
排水管道装置300包括用于排水的排水管道以及设置在排水管道中的用于周期性的采集排水管道各处压力值的多个压力传感器。由于排水管道的长时间使用,可能会在造成排水障碍,则需要在排水管道的不同位置处设置多个压力传感器器对其进行压力值的采集。
在一实施例中,压力传感器有四个,其中,第一压力传感器310设置在水泵210进水口管道中,用于采集水泵210进水口出的压力值;第二压力传感器320设置在水泵210出水口管道中,用于采集水泵210出水口处的压力值;第三压力传感器330设置在排水管道最高转折点处,用于采集排水管道最高转折点处的压力值;第四压力传感器340设置在排水管道的任意位置处,用于采集排水管道重点压力。其中,四个压力传感器均为无线压力传感器,用于将采集的压力值无线传输至远程监控系统400。
根据伯努利原理可得,水流速度与压力值成反比例关系,即流速最快的位置压力最少,流速最慢的位置压力最大。其中,第一压力传感器310和第二压力传感器320主要是为了采集流入和流出水泵210的水流的压力值,进而能够实现对水泵210的监测;第三压力传感器330和第四压力传感器340可以对后续排水的情况进行监测,其中,排水管道转折处速度方向发生很大改变,管道的最高点速度最小,对管道的压力最大。设置在排水管道中的四个压力传感器即可对排水管道各处压力值的采集,继而可用于分析出排水管道各处的排水情况是否正常。
如图7所示的为远程监控系统的结构框图,远程监控系统400包括主控模块410、第二报警模块420、第三无线传输模块430;主控模块410分别与第二报警模块420和第三无线传输模块430连接。主控模块410用于处理集水坑中的水位信息、溢水信息、水泵210的运行参数并根据四个压力传感器将采集的压力值分析排水管道的堵塞状态。第二报警模块420用于根据水位信息、水泵210的运行参数排水管道的堵塞状态发出不同级别的报警信号。第三无线传输模块430用于与水位采集装置100、水泵监控装置200、排水管道装置300建立无线通讯通道。
远程监控系统400还包括存储模块440,存储模块440与主控模块410连接,用于存储四个压力传感器将采集的压力值。当排水管道装置300在正式启用前,需要使用清水对排水管道装置300进行试用,在试用的过程中(排水管道无障碍、无堵塞),水泵210需要连续排水四个小时,其排水管道中的第一压力传感器310、第二压力传感器320、第三压力传感器330和第四压力传感器340同时采集各地的压力值,并将采集的压力值存储在远程监控系统400,同时,主控模块410对四个压力传感器采集的数据进行处理,分别计算第一压力传感器310的平均压力值P1、第二压力传感器320的平均压力值P2、第三压力传感器330的平均压力值P3和第四压力传感器340的平均压力值P4。并将各个平均压力值P1、P2、P3、P4存储在存储模块440,作为设于压力值,四个压力传感器的初始状态。
在正式排除地下室积水的过程中,由于磨损、污染物的堵塞等,使得整个排水管道各处压力分布发生改变。主控模块410在特定时间段内对四个压力传感器采集的各个压力值做平均处理,例如,排水每进行5分钟或10分钟,主控模块410就分别对四个压力传感器所采集的压力值进行计算,得出5分钟或10分钟内,四个压力传感器所采集压力值的平局值,分别对应记为P1’、P2’、P3’、P4’。其中,特定时间段可以根据实际需求来设定,并不限于此。
远程监控系统400还包括对比处理模块450,对比处理模块450分别与主控模块410、存储模块440连接。对比处理模块450用于分别对应比较四个压力传感器同一时间段内采集压力值的平均值与四个压力传感器的预设压力值的差值。也即,对比处理模块450,分别对应比较第一压力传感器310的预设值P1与特定时间段内压力值的平局值P1’的差值δ1;第二压力传感器320的预设值P2与特定时间段内压力值的平局值P2’的差值δ2;第三压力传感器330的预设值P3与特定时间段内压力值的平局值P3’的差值δ3;第四压力传感器340的预设值P4与特定时间段内压力值的平局值P4’的差值δ4。
其主控模块410根据各个差值分析排水管道的堵塞状态并发出不同等级的发出不同级别的报警信号。其中,若δ1、δ2、δ3、δ4其中至少一个的值达到30%,且有扩大的趋势,则主控模块410即可判断该排水管道存在堵塞的情况,同时向第二报警模块420发出一级报警提示,其中,一级报警提示为橙色的指示灯闪烁。其中,若δ1、δ2、δ3、δ4其中至少一个的值达到50%,且有扩大的趋势,则主控模块410即可判断该排水管道存在堵塞的情况,同时向第二报警模块420发出二级报警提示,其中,二级报警提示为红色的指示灯闪烁,处于急需维护状态。在一实施例中,第二报警模块420还可以伴随着蜂鸣声,其不同级别的报警提示可根据实际需求来设定。
同时,主控模块410还可以对比处理模块450的数据作如下分析:若δ1为负、δ2为正;δ3、δ4无变化,则可以说明水泵210存在堵塞情况,其需要对水泵210进行清理处理。若δ1、δ2无变化;δ3为正、δ4为负,则可以说明第三压力传感器330和第四压力传感器340之间的排水管道出现了堵塞,使得第四压力传感器340测得压力值为0,使δ4为负,有排水障碍,需要对该排水管道进行清理。其主控模块410可根据δ1、δ2、δ3、δ4的变化清楚的分辨出排水管道装置300的堵塞情况,可精确的定位出堵塞的位置,方便后期的清理。
地下室排水监控系统还包括无线摄像头500,用于对地下室的环境进行监测,并将监测的视频无线传输至远程监控系统400,其远程监控系统400还包括显示模块460,用于实时显示无线摄像头500检测的视频,可以直观清楚的了解地下室的环境。同时显示模块460还可以用于与第二报警模块420同步显示其不同级别的报警信息和不同类别的报警信息,及时告知用户对地下室的积水进行排水处理或去排水管道的堵塞进行清理。
以上实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (13)

  1. 一种地下室排水监控系统,其特征在于,包括:
    水位采集装置,设置在地下室的集水坑中,用于实时采集所述集水坑中的水位信息;
    水泵监控装置,包括水泵及水泵状态检测模组,所述水泵设置在所述集水坑中,所述水泵状态检测模组安装在所述水泵上,用于控制所述水泵的运行及检测所述水泵的运行参数;
    排水管道装置,用于采集排水管道中不同位置处的压力值;以及
    远程监控系统,分别与所述水位采集装置、水泵监控装置、排水管道装置无线连接,所述远程监控系统用于根据所述水位采集装置采集的水位信息发出警示信息,并向所述水泵状态检测模组发出运行水泵的控制指令;还用于根据所述水泵的运行参数及排水管道中不同位置处的压力值分析所述排水管道的堵塞状态并发出相应的维护提醒信息。
  2. 根据权利要求1所述的地下室排水监控系统,其特征在于,所述水位采集装置包括无线液位传感器,用于实时采集所述集水坑的水位信息,并将所述水位信息无线传输至所述远程监控系统。
  3. 根据权利要求2所述的地下室排水监控系统,其特征在于,所述水位采集装置包括水溢报警器,所述水溢报警器与所述无线液位传感器连接,所述水溢报警器设置在所述集水坑边缘,用于检测溢出所述集水坑的溢水信息,并根据所述溢水信息发出报警提示。
  4. 根据权利要求3所述的地下室排水监控系统,其特征在于,所述水溢报警器包括主控芯片、水溢检测模块、第一报警模块和第一无线传输模块;
    所述主控芯片分别与所述水溢检测模块、第一报警模块和第一无线传输模块连接;
    所述水溢检测模块用于检测所述溢出所述集水坑的溢水信息;
    所述主控芯片根据所述溢水信息发出报警信号至所述第一报警模块,并将所述溢水信息通过所述第一无线传输模块发出至所述远程监控系统。
  5. 根据权利要求1所述的地下室排水监控系统,其特征在于,所述水泵状态检测模组包括状态检测模块、反馈控制模块和第二无线传输模块;所述状态检测模块、反馈控制模块分别与所述第二无线传输模块连接;
    所述状态检测模块用于检测水泵的运行参数,并将所述运行参数通过所述第二无线传输模块传输至所述远程监控系统;
    所述远程监控系统对所述水泵的运行参数和水位信息分析处理并发出运行水泵的控制指令,所述控制指令通过所述第二无线传输模块传输至所述反馈控制模块;
    所述反馈控制模块根据所述控制指令控制水泵的运行。
  6. 根据权利要求5所述的地下室排水监控系统,其特征在于,所述状态检测模块包括用于采集所述水泵功率的功率计、用于采集所述水泵电压的电压计以及用于采集所述水泵电流的电流计。
  7. 根据权利要求1所述的地下室排水监控系统,其特征在于,所述排水管道装置包括用于排水的排水管道以及设置在所述排水管道中的用于周期性的采集所述排水管道各处压力值的多个压力传感器。
  8. 根据权利要求7所述的地下室排水监控系统,其特征在于,所述压力传感器有四个,其中,第一压力传感器设置在所述水泵进水口管道中、第二压力传感器设置在所述水泵出水口管道中、第三压力传感器设置在所述排水管道最高转折点处,第四压力传感器设置在所述排水管道的任意位置处。
  9. 根据权利要求8所述的地下室排水监控系统,其特征在于,四个所述压力传感器均为无线压力传感器,用于将采集的压力值无线传输至所述远程监控系统。
  10. 根据权利要求8所述的地下室排水监控系统,其特征在于,所述远程监控系统包括主控模块、第二报警模块和第三无线传输模块;所述主控模块分别与所述第二报警模块和第三无线传输模块连接;
    所述主控模块用于处理所述集水坑中的水位信息、水泵的运行参数并根据四个所述压力传感器将采集的压力值分析所述排水管道的堵塞状态;
    所述第二报警模块用于根据所述水位信息、水泵的运行参数所述排水管道的堵塞状态发出不同级别的报警信号;
    所述第三无线传输模块用于与所述水位采集装置、水泵监控装置、排水管道装置建立无线通讯通道。
  11. 根据权利要求10所述的地下室排水监控系统,其特征在于,所述远程监控系统还包括存储模块,所述存储模块与所述主控模块连接,用于存储四个所述压力传感器将采集的压力值。
  12. 根据权利要求11所述的地下室排水监控系统,其特征在于,所述远程监控系统还包括对比处理模块,所述对比处理模块分别与所述主控模块、存储模块连接,用于分别对应比较四个所述压力传感器同一时间段采集压力值的平均值与四个所述压力传感器的预设压力值的差值;
    所述主控模块根据四个所述压力传感器的差值分析排水管道的堵塞状态并发出不同等级的发出不同级别的报警信号。
  13. 根据权利要求1所述的地下室排水监控系统,其特征在于,还包括无线摄像头,用于对地下室的环境进行监测,并将监测的视频无线传输至所述远程监控系统。
PCT/CN2016/102352 2016-10-18 2016-10-18 地下室排水监控系统 WO2018072078A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/102352 WO2018072078A1 (zh) 2016-10-18 2016-10-18 地下室排水监控系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/102352 WO2018072078A1 (zh) 2016-10-18 2016-10-18 地下室排水监控系统

Publications (1)

Publication Number Publication Date
WO2018072078A1 true WO2018072078A1 (zh) 2018-04-26

Family

ID=62018052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/102352 WO2018072078A1 (zh) 2016-10-18 2016-10-18 地下室排水监控系统

Country Status (1)

Country Link
WO (1) WO2018072078A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109098253A (zh) * 2018-08-28 2018-12-28 山东中车华腾环保科技有限公司 具有远程监控功能的真空排水控制装置及真空排水系统
CN109737043A (zh) * 2019-01-25 2019-05-10 北京中斯水灵水处理技术有限公司 一种pcs泵控系统
CN111260896A (zh) * 2020-03-04 2020-06-09 广东屋联智能科技有限公司 一种排水管道的防返流报警器及防返流报警系统
CN112033495A (zh) * 2020-09-04 2020-12-04 科越工程(苏州)有限公司 一种冷凝水外溢自动报警系统
CN112363476A (zh) * 2020-11-16 2021-02-12 桂林理工大学 一种基于定位技术的地下排水监控系统及方法
CN113607234A (zh) * 2021-03-26 2021-11-05 上海钧工智能技术有限公司 一种新型智能窨井盖装置及其系统
CN113849005A (zh) * 2021-10-09 2021-12-28 张长宗 智慧型反馈式管网压力控制系统及方法
CN114087541A (zh) * 2021-11-18 2022-02-25 安徽东鸿水务环境工程有限公司 一种智慧管网水平衡监测系统
CN114422562A (zh) * 2022-02-08 2022-04-29 北京城建设计发展集团股份有限公司 一种交通排水液位分析系统、方法及电子设备
CN115941901A (zh) * 2022-12-06 2023-04-07 青岛华海环保工业有限公司 橡胶坝多功能监测系统
CN116084532A (zh) * 2023-01-13 2023-05-09 山东第一医科大学附属肿瘤医院(山东省肿瘤防治研究院、山东省肿瘤医院) 一种基于物联网的医院集水坑智能排水系统及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001084024A (ja) * 1999-09-16 2001-03-30 Hitachi Ltd 排水設備運転監視制御装置
CN2890211Y (zh) * 2006-04-20 2007-04-18 淄博华铭电器设备有限公司 通信机房地下室自动排水监控仪
JP2008009486A (ja) * 2006-06-27 2008-01-17 Kubota Corp 水位監視システム
CN203259870U (zh) * 2013-06-04 2013-10-30 北京北排水务设计研究院有限公司 城市雨洪防治智能控制系统
CN104612236A (zh) * 2014-12-18 2015-05-13 重庆多邦科技发展有限公司 基于物联网技术的城市道路积水预警与自动处置系统
CN105155657A (zh) * 2015-09-29 2015-12-16 国网浙江临海市供电公司 一种排水系统
CN105373026A (zh) * 2015-12-09 2016-03-02 成都翰道科技有限公司 监控型地下停车场辅助排水系统
CN105587028A (zh) * 2016-01-25 2016-05-18 福建三鑫隆信息技术开发股份有限公司 一种排涝智能预警装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001084024A (ja) * 1999-09-16 2001-03-30 Hitachi Ltd 排水設備運転監視制御装置
CN2890211Y (zh) * 2006-04-20 2007-04-18 淄博华铭电器设备有限公司 通信机房地下室自动排水监控仪
JP2008009486A (ja) * 2006-06-27 2008-01-17 Kubota Corp 水位監視システム
CN203259870U (zh) * 2013-06-04 2013-10-30 北京北排水务设计研究院有限公司 城市雨洪防治智能控制系统
CN104612236A (zh) * 2014-12-18 2015-05-13 重庆多邦科技发展有限公司 基于物联网技术的城市道路积水预警与自动处置系统
CN105155657A (zh) * 2015-09-29 2015-12-16 国网浙江临海市供电公司 一种排水系统
CN105373026A (zh) * 2015-12-09 2016-03-02 成都翰道科技有限公司 监控型地下停车场辅助排水系统
CN105587028A (zh) * 2016-01-25 2016-05-18 福建三鑫隆信息技术开发股份有限公司 一种排涝智能预警装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109098253A (zh) * 2018-08-28 2018-12-28 山东中车华腾环保科技有限公司 具有远程监控功能的真空排水控制装置及真空排水系统
CN109737043A (zh) * 2019-01-25 2019-05-10 北京中斯水灵水处理技术有限公司 一种pcs泵控系统
CN111260896A (zh) * 2020-03-04 2020-06-09 广东屋联智能科技有限公司 一种排水管道的防返流报警器及防返流报警系统
CN111260896B (zh) * 2020-03-04 2024-04-02 屋联智能(山东)集团股份有限公司 一种排水管道的防返流报警器及防返流报警系统
CN112033495A (zh) * 2020-09-04 2020-12-04 科越工程(苏州)有限公司 一种冷凝水外溢自动报警系统
CN112363476A (zh) * 2020-11-16 2021-02-12 桂林理工大学 一种基于定位技术的地下排水监控系统及方法
CN113607234A (zh) * 2021-03-26 2021-11-05 上海钧工智能技术有限公司 一种新型智能窨井盖装置及其系统
CN113849005A (zh) * 2021-10-09 2021-12-28 张长宗 智慧型反馈式管网压力控制系统及方法
CN113849005B (zh) * 2021-10-09 2024-04-19 张长宗 智慧型反馈式管网压力控制系统及方法
CN114087541B (zh) * 2021-11-18 2023-06-27 安徽东鸿水务环境工程有限公司 一种智慧管网水平衡监测系统
CN114087541A (zh) * 2021-11-18 2022-02-25 安徽东鸿水务环境工程有限公司 一种智慧管网水平衡监测系统
CN114422562B (zh) * 2022-02-08 2022-09-23 北京城建设计发展集团股份有限公司 一种交通排水液位分析系统、方法及电子设备
CN114422562A (zh) * 2022-02-08 2022-04-29 北京城建设计发展集团股份有限公司 一种交通排水液位分析系统、方法及电子设备
CN115941901A (zh) * 2022-12-06 2023-04-07 青岛华海环保工业有限公司 橡胶坝多功能监测系统
CN115941901B (zh) * 2022-12-06 2023-10-13 青岛华海环保工业有限公司 橡胶坝多功能监测系统
CN116084532A (zh) * 2023-01-13 2023-05-09 山东第一医科大学附属肿瘤医院(山东省肿瘤防治研究院、山东省肿瘤医院) 一种基于物联网的医院集水坑智能排水系统及方法

Similar Documents

Publication Publication Date Title
WO2018072078A1 (zh) 地下室排水监控系统
CN109975893B (zh) 基于物联网的城市内涝预警方法及系统
CN102188868B (zh) 一种户外机房新风系统过滤网的监测装置及方法
CN208155399U (zh) 一种排水管路堵塞预警系统
CN103984320A (zh) 一种基于物联网的企业雨水排放口监控系统及其监控方法
CN204044552U (zh) 具有远程智能监控警报装置的直饮净水设备
CN209280026U (zh) 一种基于传感监测预警管道状态的智慧水务管道管理系统
CN205860155U (zh) 一种油烟监测系统
CN104699033A (zh) 一种企业污水排放自动监测管网系统
CN102629126A (zh) 城市管网水在线监控终端系统及其监控方法
CN204241470U (zh) 一种新型城市生活污水在线监测装置
CN204582730U (zh) 一种油品的水分、污染度监测及净化装置
CN204459361U (zh) 一种感应出水装置的节水系统
CN112306123A (zh) 一种智慧排水信息化系统及解决方法
CN202028302U (zh) 一种户外机房新风系统过滤网的监测装置
CN105549656A (zh) 一种智能楼宇的安防系统
CN111399436A (zh) 一种砖瓦厂烟尘气体检测处理系统
CN204330069U (zh) 一种空冷塔液位检测装置
CN108653967B (zh) 消防栓漏水监测装置
CN202605873U (zh) 一种过滤器防堵检测装置
CN108694804A (zh) 一种集中报警监控系统
CN103617702A (zh) 一种基于ZigBee的气体检测报警系统
CN211927888U (zh) 一种水质监测分流系统
CN103854401A (zh) 一种铝锭堆场防盗方法及装置
CN215867574U (zh) 一种基于物联网的智能闸门测控装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16919083

Country of ref document: EP

Kind code of ref document: A1