WO2018070852A1 - Method for producing reduced-sodium salt containing active ingredient of dunaliella from salt pond water, and reduced-sodium salt produced thereby - Google Patents

Method for producing reduced-sodium salt containing active ingredient of dunaliella from salt pond water, and reduced-sodium salt produced thereby Download PDF

Info

Publication number
WO2018070852A1
WO2018070852A1 PCT/KR2017/011406 KR2017011406W WO2018070852A1 WO 2018070852 A1 WO2018070852 A1 WO 2018070852A1 KR 2017011406 W KR2017011406 W KR 2017011406W WO 2018070852 A1 WO2018070852 A1 WO 2018070852A1
Authority
WO
WIPO (PCT)
Prior art keywords
dunaliella
salt
carotene
salt water
low
Prior art date
Application number
PCT/KR2017/011406
Other languages
French (fr)
Korean (ko)
Inventor
한명규
Original Assignee
주식회사 오션허브
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 오션허브 filed Critical 주식회사 오션허브
Publication of WO2018070852A1 publication Critical patent/WO2018070852A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/40Table salts; Dietetic salt substitutes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/20Reducing nutritive value; Dietetic products with reduced nutritive value
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/20Natural extracts
    • A23V2250/202Algae extracts
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/20Natural extracts
    • A23V2250/21Plant extracts
    • A23V2250/211Carotene, carotenoids

Definitions

  • the present invention relates to a method for preparing low salt containing a useful component of Dunaliella from salt water and to a low salt prepared according to the present invention, and more particularly to transplanting Dunaliella in high salt salt water. And it relates to a method for producing a low salt containing a useful component of Dunaliella, such as Dunaliella and beta-carotene by culturing and drying, and a low salt prepared accordingly.
  • Salt is indispensable to humans and consists of many minerals such as calcium, magnesium and potassium, as well as NaCl, the main ingredient.
  • salt is collected from rock salt, a method of making it from abundant seawater has been used in Korea and other marine countries. Since sea salt is made from seawater in which all elements of the earth are dissolved, it depends on the decontamination method and contains various minerals. It is very important for human life to eat good salt with various minerals contained in salt.
  • green tea salt, garlic salt, pepper salt, chitosan salt, potassium additive salt, iodine added salt, bamboo salt, etc. are provided in the process of making salt from seawater or by adding specific ingredients after decontamination.
  • Salt made with addition salt or re-decontamination salt is used to improve the added value of salt through high-quality and to help humanity.
  • Salt that contains carotene ( ⁇ -Carotene), lutein (Lutein) efficiently is difficult to find.
  • the present inventors have continued to develop a method for producing low salt while containing a large amount of useful ingredients of Dunaliella such as beta-carotene from high-salt salt water (Dunaliella)
  • the present invention was completed by discovering that it is possible to produce low sodium salt containing useful ingredients of Dunaliella such as beta-carotene by transplanting and culturing) into salt water.
  • the technical problem to be solved in the present invention is to provide a method for producing a low salt containing a useful component of Dunaliella using high salt salt water.
  • Another technical problem to be solved by the present invention is to provide a low chlorine containing Dunaliella and the useful components thereof prepared according to the above method.
  • the present invention provides a method for producing a low salt salt containing Dunaliella and its useful components from salt water using Dunaliella (Dunaliella).
  • the present invention provides a low chlorine containing Dunaliella and the useful components thereof prepared according to the above method, in order to solve the above other technical problem.
  • the present invention provides a method for producing low salt salt containing Dunaliella and its useful components, comprising the following steps:
  • step (S2) When the salinity (Salinity) of the pretreated salt water in step (S1) is 10 to 30 degrees (%), after adjusting the temperature of the salt water to 25 to 35 °C and then the Dunaliella salt water Implanting in the culture; And
  • step (S3) drying the culture obtained in step (S2) to obtain a low salt containing Dunaliella and its useful components.
  • the useful ingredient of the Dunaliella is beta-carotene ( ⁇ -Carotene), alpha-carotene ( ⁇ -carotene), lutein (lutein), zeaxanthin (zeaxanthin), cryptoxanthin (cryptoxanthin), chlorophyll, Omega-3 fatty acid, and the like, preferably beta-carotene ( ⁇ -Carotene).
  • low chlorine containing Dunaliella and the useful components thereof prepared according to the present invention is low chlorine having a Na content of 30% or less.
  • the salt water used in the present invention may have a salinity of 10 to 30 degrees (%), preferably 15 to 25 degrees (%), more preferably 17 to 25 degrees (%).
  • salts having low sodium content and containing valuable substances such as beta-carotene ( ⁇ -Carotene) at low cost by implanting and culturing Dunaliellae in high-salt salt water It is possible to produce, and by controlling the production process it is possible to efficiently produce a variety of high-quality products, such as minerals and beta carotene ( ⁇ -Carotene).
  • 1 and 2 are photographs showing the Dunaliella shape lyophilized by incubation at high salinity.
  • the present invention provides a method for producing low salt containing Dunaliella and its useful components from brine using Dunaliella.
  • the present invention provides a low chlorine containing Dunaliella and the useful components thereof prepared according to the above method.
  • the present invention provides a method for producing low salt salt containing Dunaliella and its useful components, comprising the following steps:
  • step (S2) When the salinity (Salinity) of the pretreated salt water in step (S1) is 10 to 30 degrees (%), after adjusting the temperature of the salt water to 25 to 35 °C and then the Dunaliella salt water Implanting in the culture; And
  • step (S3) drying the culture obtained in step (S2) to obtain a low salt containing Dunaliella and its useful components.
  • the useful ingredient of the Dunaliella is beta-carotene ( ⁇ -Carotene), alpha-carotene ( ⁇ -carotene), lutein (lutein), zeaxanthin (zeaxanthin), cryptoxanthin (cryptoxanthin), chlorophyll, Omega-3 fatty acid, and the like, preferably beta-carotene ( ⁇ -Carotene).
  • low chlorine containing Dunaliella and the useful components thereof prepared according to the present invention is low chlorine having a Na content of 30% or less.
  • the salt water used in the present invention may have a salinity of 10 to 30 degrees (%), preferably 15 to 25 degrees (%), more preferably 17 to 25 degrees (%).
  • a low salt salt containing Dunaliella and useful components having a Na content of 30% or less can be obtained.
  • Dunaliella a microalgae used in the present invention, is a microalgae that survives in a high salt environment. Dunaliella can now actively survive in African salt lakes, Israel's Dead Sea, and natural salt farms where the enrichment process is somewhat advanced. Therefore, high salt and high alkali environments are the optimum conditions for Dunaliella growth.
  • Useful ingredients of Dunaliella include various nutrients in microalgae, for example, beta-carotene, alpha-carotene, lutein, zeak, as shown in Table 1 below. It may be zeaxanthin, cryptoxanthin, chlorophyll, omega-3 fatty acid, and the like, and preferably beta-carotene, but is not limited thereto.
  • step by step of the manufacturing method of low chlorine containing Dunaliella and its useful components of the present invention Referring to step by step of the manufacturing method of low chlorine containing Dunaliella and its useful components of the present invention.
  • step (S1) is a step of sterilizing or filtering preliminary salt water, and sterilization may be performed by UV treatment, ozone treatment, or heat treatment.
  • the present invention is not limited thereto, and the filtration may be performed using sand filtration, rapid filtration membrane, micro filter (MF), nano filter (NF), or ultra filter (UF), but is not limited thereto.
  • the sterilization or filtration process is to remove unnecessary microalgae that cannot survive harmful or high salinity in salt water, and to exclude the possibility of unnecessary consumption of nutrients contained in the salt water, such as sterilization or filtration.
  • the pretreatment process only the denaliella to be cultured by removing microalgae other than the vinailianella that can survive at high salinity can be cultured in a clean state.
  • the concentration process uses a membrane separation method or a phase change method
  • the membrane separation method may include reverse osmosis (RO), nanofiltration membrane (NF), electrodialysis (ED), and the like
  • the phase change method may include a multi-stage flash type evaporation method ( MSF), multi-effect evaporation (MED), vapor compression evaporation (VCD), mechanical vapor recompression evaporation (MVR), vacuum cascade evaporation (VMEC), gas hydrate (GHF),
  • MSF multi-stage flash type evaporation method
  • MED multi-effect evaporation
  • VCD vapor compression evaporation
  • MVR mechanical vapor recompression evaporation
  • VEC vacuum cascade evaporation
  • GHF gas hydrate
  • An indirect (heat pump) type refrigeration method is mentioned, for example.
  • This concentration process can be carried out once to three times.
  • the pre-treated brine water in step (S1) is passed through a reverse osmosis membrane to prepare the first concentrated water and permeated water, and the first concentrated water is subjected to the secondary through the vacuum multi-evaporation concentration system.
  • concentration high salinity and high nutrition secondary concentrated water can be prepared for Dunaliella to grow.
  • the permeated water generated at this time can be commercialized separately for the purpose.
  • the secondary concentration using the vacuum multi-stage evaporator is preferably concentrated for 8 to 12 hours at 500 ⁇ 700 mmHg vacuum and 50 ⁇ 70 °C temperature.
  • step (S2) is the temperature of the salt water when the salinity (Salinity) of the salt water pretreated in step (S1) is 10 to 30 degrees (%). It is adjusted to 25 to 35 °C and then dunaliella (Dunaliella) is implanted in saline water to incubate.
  • the salinity of the salt water may be 10 to 30 degrees (%), preferably 15 to 25 degrees (%), more preferably 17 to 25 degrees (%), the Dunaliella used in the present invention It is a bird that can survive in high salinity.
  • Nutritional medium may be additionally added to promote the culture of Dunaliella, and the nutritional medium that may be added at this time may be f / 2 medium, SOT medium, J / l medium, PES medium, Zarrouk medium. , Conwy medium, Schreiber medium and the like, but is not limited thereto.
  • the nutrient media are media commonly used in the art.
  • the culture process of Dunaliella (1) salt salt by forming an algae culture apparatus that can control the light (natural light or artificial light), air (CO 2 ), temperature or salt concentration Adding water to the incubator and inoculating (grafting) Dunaliella; (2) absorbing nutrients in the process of culturing Dunaliella, and applying stress by changing the salt and temperature to increase the content of useful substances such as beta-carotene in Dunaliella cells.
  • the culture of Dunaliella (Dunaliella) in the salt water to an initial concentration of 20 x 10 4 to 60 x 10 4 cells / mL, preferably 50 x 10 4 cells / mL
  • the implantation of Dunaliella can be cultured by implanting the temperature-controlled salt water into the algae culture and transplantation apparatus while diluting Dunaliella while diluting it.
  • the temperature is adjusted to 1 ton of brine water cultured in the algae cultivation and implantation device is added to 1 ton. Therefore, two tons of salt water is present in the algae culturing and transplanting apparatus, and algae already cultured in the salt water are diluted. Since the diluted salt water is sent only one ton to the algae culture apparatus, which is the next process, the algae cultivation and transplantation device is left with the original one ton of salt water diluted with algae, and the other ton is transferred to the algae culture apparatus. do. In this process, new salt water was also added to the algae in the brine of the algae culture and transplantation apparatus, and then cultured on the basis of the nutrients contained in the algae, and the transferred cultured salt water algae were simultaneously cultured. After the incubation is completed, the culture and transplantation apparatus is supplied with freshly prepared secondary salt water, and the cultured Dunaliella is repeatedly transplanted by dilution.
  • Salt water containing Dunaliellae cultured in the culture apparatus is introduced into the algae stress applying process.
  • Algal culture device refers to a device that can control the light, air (CO 2 ) and temperature, etc. to incubate Dunaliella.
  • CO 2 air
  • the content can be increased.
  • newly prepared salt water is added to the salt water of the algae culture and transplantation apparatus, and the salt water in the algae culture apparatus can be dried immediately or transferred to the algae stress applying apparatus and dried. Will continue to repeat.
  • the use of the temperature control medium in the thermostat in the whole process takes advantage of the low temperature of salt water.
  • the temperature control medium used in the stressing device utilizes the high temperature energy of the salt water separated from the vacuum multi-stage evaporator.
  • step (S3) is a step of obtaining low salt containing the useful component of Dunaliella by drying the salt water obtained in step (S2).
  • the drying may be performed by spray drying, freeze drying, reduced pressure evaporation drying, flat bed method or sun salt method, but is not limited thereto.
  • the drying may be performed by spray drying.
  • the quality of the salt containing Dunaliella and its useful ingredient prepared by the method of the present invention is determined by the content of nutrients such as beta-carotene ( ⁇ -Carotene) and the mineral content and balance of potassium, calcium, magnesium, etc. Depends on whether
  • the present invention by implanting and culturing Dunaliera in salt water rich in minerals and nutrients to produce salts, it is possible to produce salts containing low sodium while containing useful substances such as beta-carotene ( ⁇ -Carotene) at low cost.
  • ⁇ -Carotene beta-carotene
  • by controlling the production process it is possible to efficiently produce a variety of high-quality products, such as minerals and beta carotene ( ⁇ -Carotene).
  • the low chlorine prepared according to the present invention may increase the content of beta carotene in the low chlorine over time storage.
  • beta-carotene content in low-salt salt was measured 6 to 14 weeks after transplantation, and it was confirmed that the content of beta-carotene increased with time.
  • Salt containing the useful component of Dunaliella prepared according to the method of the present invention may be used as it is, or may be prepared by using a functional low chlorine by adding a useful component.
  • the low salt salt containing the Dunaliella and the useful components of the present invention it can be produced a functional entertaining food containing a large amount of nutrients and maintains a salty taste but low sodium content.
  • this process is a process of disinfection and sterilization by high temperature to remove microalgae other than Dunaliella in advance, so that the concentrated water sent to the culture and transplantation apparatus needs to be kept clean.
  • Some of the algae are beneficial but harmful, and there is a possibility of unnecessary consumption of the nutrients contained in the concentrated water. Therefore, some parts of the algae are removed in the pretreatment process and sterilized and sterilized by the high temperature of the concentration process. Removed.
  • the removal method was sterilization by high temperature in the pretreatment process using micro filter and UF filter and the concentration process using vacuum multi-stage evaporation method.
  • Vacuum multistage evaporation was performed for more than 10 hours at a temperature of 60 °C or more proceeded to the concentration process.
  • the evaporation concentration time can vary depending on the amount to be concentrated. After the pretreatment and incubation with concentrated water produced by sterilization at high temperature in vacuum multi-stage evaporation, no other algae growth was found.
  • the purified salt water can make mineral salts containing useful substances such as beta-carotene made from a single microalgae according to the salt manufacturer's choice without mixing other microalgae in Dunaliella culture.
  • the first concentrated water and the permeated water come out, and the permeated water can be commercialized according to its purpose separately.
  • Primary concentrated water is used for the preparation, which has a specific gravity of 1.04 and a pH of about 8.5.
  • the primary concentrated water is prepared by using a vacuum multi-stage evaporation concentrator (VMEC).
  • the vacuum multi-evaporation concentrator (VMEC) was used.
  • Water usually boils at 100 °C, but salt water contains various minerals, so its boiling point is higher than 100 °C. The boiling point becomes higher because the density increases as the concentration progresses. Therefore, the amount of energy required for evaporation is further increased and various side effects may occur such as the possibility of the denaturation of minerals and nutrients contained in the salt water is increased.
  • the vacuum cascade evaporator (VMEC) is used to vacuum the inside of the evaporator, thereby reducing the boiling point, thereby preventing these problems.
  • the vacuum multi-stage evaporation concentrator (VMEC) is energy efficient and easy to control because the energy input amount can be determined according to the characteristics of the seawater at each stage.
  • the concentration in the vacuum has the advantage of reducing mineral destruction and scale formation due to high temperature evaporation.
  • the vacuum inside the vacuum multi-evaporation condenser evaporator is about 600 mmHg
  • the boiling point is lowered below 60 ° C.
  • the energy input could be reduced by the difference, and the physicochemical change and scale of the mineral due to the high temperature could be reduced due to evaporation due to the low temperature.
  • VMEC vacuum multi-evaporation concentrator
  • the concentration method of the primary concentrated water using the vacuum multi-steam evaporator (VMEC) is described in more detail as follows.
  • VMEC vacuum multi-steam evaporator
  • calcium carbonate begins to crystallize as the concentration proceeds. Calcium carbonate does not melt well once it is crystallized, so it is not easy to dissolve and use again.
  • the purified concentrated brine can produce salts containing useful substances such as beta-carotene ( ⁇ -Carotene) made by a single microalgae according to the salt manufacturer's choice without mixing other microalgae in the culture of Dunaliella. Can be.
  • ⁇ -Carotene beta-carotene
  • the present invention it is possible to use water collected in concentrated water or salt evaporation basin in a region producing sun salt in addition to salt water.
  • Salt water which has become a high salinity and high alkali through pretreatment and concentration, has a high temperature close to 60 °C, and microalgae cannot grow in such a high temperature environment. Therefore, the concentrated salt water should be made at a temperature of about 30 ° C. to cultivate Dunaliella.
  • Dunaliella The implantation of Dunaliella is performed even when the salinity of saline water is 10-30 degrees (%), preferably 15-25 degrees (%), more preferably 17-25 degrees (%).
  • Dunaliella) can be cultured by implanting in brine. At this time, the transplantation may be inoculated to an initial concentration of Dunaliella 20 x 10 4 to 60 x 10 4 cells / mL, and then cultured at 20 to 30 °C for 10 to 20 days under natural light or fluorescent lighting.
  • Salt water was sterilized using UV, ozone treatment or heat, or filtered through a microfilter (MF) or ultrafilter (UF).
  • MF microfilter
  • UF ultrafilter
  • 1 and 2 are photographs showing the Dunaliella shape lyophilized by incubation at high salinity.
  • Beta carotene ( ⁇ -Carotene) content was measured while storing the low salt prepared in Example 1, and is shown in Table 2 below.
  • Beta-carotene content in Dunaliella salt (Carotenoid level (ug / g FW) 6 Weeks 3 Week 7 5 8 Weeks 9 9 Weeks 18 Week 11 23 14 Weeks 59
  • the Na content in the low salt prepared in Example 1 was measured and shown in Table 3 below.
  • the salt prepared according to the present invention can be confirmed that the Na content is a low chlorine as the highest 24%.
  • the sensory test results of the salt of the present invention Dunaliella and its useful components are shown in Table 4. Thirty housewives in their 4s to 50s had low salt and microalgae containing the salt of the present invention by Dunalella and its useful ingredients by the 5-point rating method. Salty and overall palatability were tested. The results are shown in Table 4 below. Sensory evaluation results were expressed as a measurement value (1: bad, 2: a little bad, 3: normal, 4: a little good, 5: good).
  • the low salt salt prepared according to the present invention was confirmed that the difference in salty taste is similar to the existing salt, although the Na content is not significant.
  • the present invention by directly culturing Dunaliella in high-salt salt water and incubating salt to produce salt, it contains a useful substance of Dunaliella such as beta-carotene ( ⁇ -Carotene) and has a low sodium content. It is possible to produce low salt, and by controlling the production process, it is possible to efficiently produce high-quality products with various contents of minerals and beta-carotene ( ⁇ -Carotene).
  • ⁇ -Carotene beta-carotene

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Mycology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The present invention relates to: a method for producing from salt pond water, a reduced-sodium salt containing an active ingredient of Dunaliella; and a reduced-sodium salt produced thereby. According to the present invention, a reduced-sodium salt containing an active ingredient of Dunaliella, such as β-Carotene, and having a low sodium content can be produced at low cost. In addition, it is possible to efficiently produce high quality products having various contents of minerals and β-Carotene by adjusting the production process.

Description

염전수로부터 두날리엘라의 유용성분을 함유하는 저염소금을 제조하는 방법 및 이에 따라 제조된 저염소금 Method for preparing low salt containing the useful component of Dunaliellae from salt water and low salt produced accordingly
본 발명은 염전수로부터 두날리엘라(Dunaliella)의 유용성분을 함유하는 저염소금을 제조하는 방법 및 이에 따라 제조된 저염소금에 관한 것으로, 보다 구체적으로는 고염도의 염전수에 두날리엘라를 이식 및 배양하여 건조시킴으로써 두날리엘라 및 베타카로틴과 같은 두날리엘라의 유용성분을 함유하는 저염소금을 제조하는 방법 및 이에 따라 제조된 저염소금에 관한 것이다. The present invention relates to a method for preparing low salt containing a useful component of Dunaliella from salt water and to a low salt prepared according to the present invention, and more particularly to transplanting Dunaliella in high salt salt water. And it relates to a method for producing a low salt containing a useful component of Dunaliella, such as Dunaliella and beta-carotene by culturing and drying, and a low salt prepared accordingly.
소금은 사람에게 없어서는 안되는 필수 섭취물질로서, 주성분인 NaCl을 비롯하여 칼슘, 마그네슘, 칼륨 등의 많은 미네랄 성분으로 구성된다. 소금은 암염으로부터 채취를 하기도 하지만 풍부한 해수로부터 제조하는 방법이 우리나라를 비롯한 해양국에서 이용되어 왔고, 해수 소금은 지구상의 모든 원소가 용존되어 있는 바닷물로부터 만들어지므로 제염방법에 따라 다르며 다양한 미네랄이 포함된 소금으로 제공될 수 있으며, 소금에 포함되어 있는 다양한 미네랄을 포함한 좋은 소금을 섭취하는 것은 인간의 생명유지에 매우 중요하다.Salt is indispensable to humans and consists of many minerals such as calcium, magnesium and potassium, as well as NaCl, the main ingredient. Although salt is collected from rock salt, a method of making it from abundant seawater has been used in Korea and other marine countries. Since sea salt is made from seawater in which all elements of the earth are dissolved, it depends on the decontamination method and contains various minerals. It is very important for human life to eat good salt with various minerals contained in salt.
한편, 우리 몸은 소금 및 소금에 포함된 미네랄 이외에도 단백질, 지방, 탄수화물, 비타민 등 수많은 영양분을 필요로 한다. 그 중에서 인간의 건강과 관련하여 현재 많은 주목을 받고 있는 것이 항산화제이다. 우리 몸은 끊임없이 발생하는 유해 활성산소와 과산화물이 벌이는 세포와 조직의 파괴 작용으로 노화와 세포질 저하, 면역력 감퇴 등 다양한 질환에 시달리고 있다. 이러한 문제들을 예방하거나 완화할 수 있는 기능성 소재로 베타카로틴(β-Carotene), 루테인(Lutein), 엽록소(Chlorophyll), 비타민(Vitamin) 등이 유효한 것으로 알려져 왔다.On the other hand, in addition to salt and minerals contained in our salt, our bodies need many nutrients such as proteins, fats, carbohydrates and vitamins. Among them, antioxidants are currently attracting much attention regarding human health. Our body suffers from various diseases such as aging, cytoplasm degradation, and immunity deterioration due to the destructive action of cells and tissues in which persistent free radicals and peroxides occur constantly. Beta-carotene (β-Carotene), lutein (Lutein), chlorophyll (Chlorophyll), vitamins (Vitamin) and the like as a functional material that can prevent or alleviate these problems have been known to be effective.
최근 현대인들의 다양한 수요에 대응하여 해수로부터 소금을 만드는 과정에 또는 제염 후 특정 성분을 첨가하는 방식으로 녹차소금, 마늘소금, 후추소금, 키토산소금, 칼륨첨가소금, 요오드첨가소금, 죽염 등이 제공되고 있다. 첨가염 혹은 재제염으로 만들어진 소금은 그 첨가된 성분들이 다분히 소금의 맛 혹은 소금이 넣어지는 음식의 맛을 개선하기 위한 것으로 고급화를 통해 소금의 부가가치를 높이고 인류에 도움이 되는 활용방식이지만 기능성 소재인 베타카로틴(β-Carotene), 루테인(Lutein) 등을 효율적으로 함유시킨 소금은 찾아보기 힘든 실정이다. In response to various demands of modern people, green tea salt, garlic salt, pepper salt, chitosan salt, potassium additive salt, iodine added salt, bamboo salt, etc. are provided in the process of making salt from seawater or by adding specific ingredients after decontamination. have. Salt made with addition salt or re-decontamination salt is used to improve the added value of salt through high-quality and to help humanity. Salt that contains carotene (β-Carotene), lutein (Lutein) efficiently is difficult to find.
한편, 급격한 산업화와 도시화의 과정을 거치면서 소득수준의 향상, 핵가족화, 단독세대의 증가 등의 영향으로 외식과 패스트푸드, 피자 등의 서구식 음식 및 인스턴트식품 등의 식품소비가 증가하였다. 특히 한국인의 경우 탕, 찌개, 김치, 장류, 젓갈류 등 나트륨 함량이 높은 식품도 함께 섭취하고 있어 하루 나트륨 섭취량은 세계보건기구(WHO) 권장량(3,450mg)의 2배가 넘는 6,000mg 내지 8,000mg으로 고농도의 나트륨을 섭취하는 것으로 알려져 있으며, 나트륨의 과다 섭취는 고혈압, 심장병, 뇌ㅇ심혈관 질환, 신장질환, 위암 등 만성질환의 주요 원인으로 작용하고 있다. On the other hand, the rapid consumption of food, such as western foods such as eating out, fast food and pizza, and food consumption of instant food, has increased due to the improvement of income level, nuclear familyization and the increase of single households. In particular, Koreans also consume high-sodium foods such as soup, stew, kimchi, soy sauce, and salted seafood.The daily sodium intake ranges from 6,000mg to 8,000mg, more than twice the WHO recommended amount (3,450mg). It is known to consume high concentrations of sodium, and excessive intake of sodium is a major cause of chronic diseases such as high blood pressure, heart disease, brain and cardiovascular disease, kidney disease, and stomach cancer.
최근 만성질환을 예방하고 건강증진을 위해 나트륨 섭취의 감량에 대해 관심을 갖게 되었으며, 그 결과 저염소금 또는 염미 증진제의 개발의 연구가 진행되고 있다. 예를 들어, 미네랄 성분을 강화한 천연소금, 함초, 다시마, 구기자, 양파, 표고버섯, 무, 마늘 등과 같은 천연추출액을 이용한 소금대체용 천연 조미료, 나트륨 대신 염화칼륨, 염화칼슘, 염화마그네슘 등을 첨가한 저염소금 또는 아스파르트산염(aspartate), 글루탐산 나트륨(mono sodium glutamate, MSG) 등의 화학조미료가 있다. Recently, attention has been paid to the reduction of sodium intake to prevent chronic diseases and to improve health, and as a result, researches on the development of low salt or salt enhancers are underway. For example, natural salts, minerals, seaweed, kelp, wolfberry, onion, shiitake mushroom, radish, garlic, etc., salt substitute natural seasoning, low salt with potassium chloride, calcium chloride, magnesium chloride instead of sodium There are chemical seasonings such as salt or aspartate and sodium sodium glutamate (MSG).
이에 본 발명자들은 고염도의 염전수로부터 베타카로틴 등과 같은 두날리엘라의 유용성분을 다량 포함하면서 저염소금을 생산하는 방법을 개발하기 위해 계속 연구를 진행하던 중 고염도에서도 생존가능한 두날리엘라(Dunaliella)를 염전수에 이식 및 배양하여 베타카로틴과 같은 두날리엘라의 유용성분을 함유하는 저나트륨 의 소금을 생산할 수 있음을 발견함으로써 본 발명을 완성하였다. Accordingly, the present inventors have continued to develop a method for producing low salt while containing a large amount of useful ingredients of Dunaliella such as beta-carotene from high-salt salt water (Dunaliella) The present invention was completed by discovering that it is possible to produce low sodium salt containing useful ingredients of Dunaliella such as beta-carotene by transplanting and culturing) into salt water.
따라서, 본 발명에서 해결하고자 하는 기술적 과제는 고염도의 염전수를 이용하여 두날리엘라의 유용성분을 함유하는 저염소금을 제조하는 방법을 제공하기 위한 것이다. Therefore, the technical problem to be solved in the present invention is to provide a method for producing a low salt containing a useful component of Dunaliella using high salt salt water.
또한, 본 발명에서 해결하고자 하는 다른 기술적 과제는 상기 방법에 따라 제조된 두날리엘라 및 이의 유용성분을 함유하는 저염소금을 제공하기 위한 것이다.In addition, another technical problem to be solved by the present invention is to provide a low chlorine containing Dunaliella and the useful components thereof prepared according to the above method.
상기한 기술적 과제를 해결하기 위하여, 본 발명에서는 두날리엘라(Dunaliella)를 이용하여 염전수로부터 두날리엘라 및 이의 유용성분이 함유된 저염소금을 제조하는 방법을 제공한다.In order to solve the above technical problem, the present invention provides a method for producing a low salt salt containing Dunaliella and its useful components from salt water using Dunaliella (Dunaliella).
또한, 본 발명에서는 상기한 다른 기술적 과제를 해결하기 위하여, 상기 방법에 따라 제조된 두날리엘라 및 이의 유용성분을 함유하는 저염소금을 제공한다.In addition, the present invention provides a low chlorine containing Dunaliella and the useful components thereof prepared according to the above method, in order to solve the above other technical problem.
바람직하게, 본 발명에서는 하기 단계를 포함하는 것을 특징으로 하는 두날리엘라 및 이의 유용성분이 함유된 저염소금을 제조하는 방법을 제공한다:Preferably, the present invention provides a method for producing low salt salt containing Dunaliella and its useful components, comprising the following steps:
(S1) 염전수를 살균 또는 여과하여 전처리하는 단계;(S1) pretreatment by sterilizing or filtering the salt water;
(S2) 상기 단계 (S1)에서 전처리된 염전수의 염도(Salinity)가 10 내지 30도(%)일 때 염전수의 온도를 25 내지 35℃로 조절한 다음 두날리엘라(Dunaliella)를 염전수에 이식하여 배양하는 단계; 및(S2) When the salinity (Salinity) of the pretreated salt water in step (S1) is 10 to 30 degrees (%), after adjusting the temperature of the salt water to 25 to 35 ℃ and then the Dunaliella salt water Implanting in the culture; And
(S3) 상기 단계 (S2)에서 수득된 배양액을 건조하여 두날리엘라 및 이의 유용성분을 함유하는 저염소금을 수득하는 단계. (S3) drying the culture obtained in step (S2) to obtain a low salt containing Dunaliella and its useful components.
바람직하게, 상기 두날리엘라의 유용성분은 베타카로틴(β-Carotene), 알파카로틴(α-carotene), 루테인(lutein), 제아크잔틴(zeaxanthin), 크립토잔틴(cryptoxanthin), 엽록소(chlorophyll), 오메가 3 지방산(omega-3 fatty acid) 등일 수 있으며, 바람직하게는 베타카로틴(β-Carotene)일 수 있다. Preferably, the useful ingredient of the Dunaliella is beta-carotene (β-Carotene), alpha-carotene (α-carotene), lutein (lutein), zeaxanthin (zeaxanthin), cryptoxanthin (cryptoxanthin), chlorophyll, Omega-3 fatty acid, and the like, preferably beta-carotene (β-Carotene).
바람직하게, 본 발명에 따라 제조된 두날리엘라 및 이의 유용성분을 함유하는 저염소금은 30% 이하의 Na 함량을 가지는 저염소금이다. Preferably, low chlorine containing Dunaliella and the useful components thereof prepared according to the present invention is low chlorine having a Na content of 30% or less.
본 발명에서 사용하는 염전수는 염도가 10 내지 30도(%), 바람직하게는 15 내지 25도(%), 더욱 바람직하게는 17 내지 25도(%)일 수 있다. The salt water used in the present invention may have a salinity of 10 to 30 degrees (%), preferably 15 to 25 degrees (%), more preferably 17 to 25 degrees (%).
본 발명에 따르면, 고염도의 염전수에 두날리엘라를 이식하고 배양하여 소금을 제조함으로써 저렴한 비용으로 베타카로틴(β-Carotene) 등의 두날리엘라의 유용물질을 함유하고 저나트륨 함량을 가지는 소금을 생산할 수 있으며, 생산 과정을 조절함에 따라 미네랄 및 베타카로틴(β-Carotene) 등의 함량이 다양한 고급 제품을 효율적으로 생산하는 것이 가능하다. According to the present invention, salts having low sodium content and containing valuable substances such as beta-carotene (β-Carotene) at low cost by implanting and culturing Dunaliellae in high-salt salt water It is possible to produce, and by controlling the production process it is possible to efficiently produce a variety of high-quality products, such as minerals and beta carotene (β-Carotene).
도 1 및 도 2는 고염도에서 배양하여 동결건조시킨 두날리엘라 모양을 나타낸 사진이다.1 and 2 are photographs showing the Dunaliella shape lyophilized by incubation at high salinity.
본 발명에서는 두날리엘라(Dunaliella)를 이용하여 염전수로부터 두날리엘라 및 이의 유용성분이 함유된 저염소금을 제조하는 방법을 제공한다.The present invention provides a method for producing low salt containing Dunaliella and its useful components from brine using Dunaliella.
또한, 본 발명에서는 상기 방법에 따라 제조된 두날리엘라 및 이의 유용성분을 함유하는 저염소금을 제공한다.In addition, the present invention provides a low chlorine containing Dunaliella and the useful components thereof prepared according to the above method.
바람직하게, 본 발명에서는 하기 단계를 포함하는 것을 특징으로 하는 두날리엘라 및 이의 유용성분이 함유된 저염소금을 제조하는 방법을 제공한다:Preferably, the present invention provides a method for producing low salt salt containing Dunaliella and its useful components, comprising the following steps:
(S1) 염전수를 살균 또는 여과하여 전처리하는 단계;(S1) pretreatment by sterilizing or filtering the salt water;
(S2) 상기 단계 (S1)에서 전처리된 염전수의 염도(Salinity)가 10 내지 30도(%)일 때 염전수의 온도를 25 내지 35℃로 조절한 다음 두날리엘라(Dunaliella)를 염전수에 이식하여 배양하는 단계; 및(S2) When the salinity (Salinity) of the pretreated salt water in step (S1) is 10 to 30 degrees (%), after adjusting the temperature of the salt water to 25 to 35 ℃ and then the Dunaliella salt water Implanting in the culture; And
(S3) 상기 단계 (S2)에서 수득된 배양액을 건조하여 두날리엘라 및 이의 유용성분을 함유하는 저염소금을 수득하는 단계. (S3) drying the culture obtained in step (S2) to obtain a low salt containing Dunaliella and its useful components.
바람직하게, 상기 두날리엘라의 유용성분은 베타카로틴(β-Carotene), 알파카로틴(α-carotene), 루테인(lutein), 제아크잔틴(zeaxanthin), 크립토잔틴(cryptoxanthin), 엽록소(chlorophyll), 오메가 3 지방산(omega-3 fatty acid) 등일 수 있으며, 바람직하게는 베타카로틴(β-Carotene)일 수 있다. Preferably, the useful ingredient of the Dunaliella is beta-carotene (β-Carotene), alpha-carotene (α-carotene), lutein (lutein), zeaxanthin (zeaxanthin), cryptoxanthin (cryptoxanthin), chlorophyll, Omega-3 fatty acid, and the like, preferably beta-carotene (β-Carotene).
바람직하게, 본 발명에 따라 제조된 두날리엘라 및 이의 유용성분을 함유하는 저염소금은 30% 이하의 Na 함량을 가지는 저염소금이다. Preferably, low chlorine containing Dunaliella and the useful components thereof prepared according to the present invention is low chlorine having a Na content of 30% or less.
본 발명에서 사용하는 염전수는 염도가 10 내지 30도(%), 바람직하게는 15 내지 25도(%), 더욱 바람직하게는 17 내지 25도(%)일 수 있다. The salt water used in the present invention may have a salinity of 10 to 30 degrees (%), preferably 15 to 25 degrees (%), more preferably 17 to 25 degrees (%).
본 발명에서는 고염도에서 생존가능한 두날리엘라(Dunaliella)를 직접 염전수에 직접 이식하여 배양함으로써 30% 이하의 Na 함량을 가지면서 두날리엘라 및 의 유용성분이 함유된 저염소금을 수득할 수 있다. In the present invention, by culturing by directly transplanting Dunaliella (Dunaliella), which is viable at high salinity, directly to saline water, a low salt salt containing Dunaliella and useful components having a Na content of 30% or less can be obtained.
본 발명에서 사용하는 미세조류인 두날리엘라(Dunaliella)는 고염 환경에서 생존이 활발한 미세조류이다. 두날리엘라는 현재 아프리카의 염호, 이스라엘의 사해 그리고 농축과정이 어느 정도 진행된 천연염전 등지에서 활발하게 생존 번식할 수 있다. 따라서, 고염 및 고알칼리 환경이 두날리엘라 생육의 최적 조건이 된다. 두날리엘라의 유용성분은 미세조류가 가진 다양한 영양소를 포함하며, 예들 들어 하기 표 1에 나타낸 바와 같이, 베타카로틴(β-Carotene), 알파카로틴(α-carotene), 루테인(lutein), 제아크잔틴(zeaxanthin), 크립토잔틴(cryptoxanthin), 엽록소(chlorophyll), 오메가 3 지방산(omega-3 fatty acid) 등일 수 있으며, 바람직하게는 베타카로틴(β-Carotene)일 수 있으나 이에 제한되지 않는다.Dunaliella, a microalgae used in the present invention, is a microalgae that survives in a high salt environment. Dunaliella can now actively survive in African salt lakes, Israel's Dead Sea, and natural salt farms where the enrichment process is somewhat advanced. Therefore, high salt and high alkali environments are the optimum conditions for Dunaliella growth. Useful ingredients of Dunaliella include various nutrients in microalgae, for example, beta-carotene, alpha-carotene, lutein, zeak, as shown in Table 1 below. It may be zeaxanthin, cryptoxanthin, chlorophyll, omega-3 fatty acid, and the like, and preferably beta-carotene, but is not limited thereto.
구분division 주요성분main ingredient 기능성Functional 서식환경(염분%)Habitat environment (salin%)
두날리엘라(Dunaliella, 녹조류)Dunaliella (Green Algae) 베타카로틴(β-carotene), 알파카로틴(α-carotene), 루테인(lutein), 제아크잔틴(zeaxanthin), 크립토잔틴(cryptoxanthin), 엽록소(chlorophyll), 오메가 3 지방산(omega-3 fatty acid) 등Β-carotene, alpha-carotene, α-carotene, lutein, zeaxanthin, cryptoxanthin, chlorophyll, omega-3 fatty acid, etc. 시력보호, 노화방지, 면역력증강, 피부의 자외선 보호, 항산화 효과Eye protection, anti-aging, immunity enhancement, UV protection of skin, antioxidant effect 3.3~31.03.3-31.0
본 발명의 두날리엘라 및 이의 유용성분이 함유된 저염소금의 제조방법을 단계별로 설명하면 다음과 같다.Referring to step by step of the manufacturing method of low chlorine containing Dunaliella and its useful components of the present invention.
본 발명의 두날리엘라의 유용성분이 함유된 저염소금의 제조방법에서 단계 (S1)은 염전수를 살균 또는 여과하여 전처리하는 단계로서, 살균처리는 UV 처리, 오존 처리 또는 열처리 방법으로 수행할 수 있으나 이에 제한되지 않으며, 여과처리는 모래여과, 급속여과막, 마이크로필터(MF), 나노필터 (NF), 울트라필터 (UF)를 이용하여 수행할 수 있으나 이에 제한되지 않는다.In the method for preparing low salt containing the useful ingredient of Dunaliella of the present invention, step (S1) is a step of sterilizing or filtering preliminary salt water, and sterilization may be performed by UV treatment, ozone treatment, or heat treatment. The present invention is not limited thereto, and the filtration may be performed using sand filtration, rapid filtration membrane, micro filter (MF), nano filter (NF), or ultra filter (UF), but is not limited thereto.
상기 살균 또는 여과 공정은 염전수 속에 있는 해롭거나 고염도에서 생존이 불가한 불필요한 미세조류를 제거하고, 염전수 내에 포함된 영양물질을 불필요하게 소모시킬 가능성을 배제하기 위한 것으로, 살균 또는 여과와 같은 전처리 공정을 수행함으로써 고염도에서 생존이 가능한 두날리엘라 이외의 미세조류를 사전에 제거하여 배양하려는 두날리엘라만을 청정한 상태에서 배양할 수 있다. The sterilization or filtration process is to remove unnecessary microalgae that cannot survive harmful or high salinity in salt water, and to exclude the possibility of unnecessary consumption of nutrients contained in the salt water, such as sterilization or filtration. By performing the pretreatment process, only the denaliella to be cultured by removing microalgae other than the vinailianella that can survive at high salinity can be cultured in a clean state.
본 발명의 구체적인 실시양태에 따르면, 상기 전처리 공정 후 농축 공정을 추가로 수행함으로써 두날리엘라의 성장에 요구되는 영양물질의 함량을 증대시켜 두날리엘라의 생육을 촉진할 수 있는 환경을 설정할 수 있다. According to a specific embodiment of the present invention, by further performing the concentration step after the pretreatment step, it is possible to increase the content of nutrients required for the growth of Dunaliella to set up an environment that can promote the growth of Dunaliella. .
상기 농축공정은 막분리법 또는 상변화법을 사용하며, 막분리법으로는 역삼투법(RO), 나노여과막(NF), 전기투석법(ED) 등을 예로 들 수 있으며, 상변화법은 다단플래쉬식 증발법(MSF), 다중효용식 증발법(MED), 증기압축식 증발법(VCD), 기계적 증기재압축식 증발법(MVR), 진공다단증발농축식 증발법(VMEC), 가스수화물법(GHF), 간접(히트펌프)식 냉동법 등을 예로 들 수 있다. 이러한 농축 공정은 1회 내지 3회 수행할 수 있다.The concentration process uses a membrane separation method or a phase change method, and the membrane separation method may include reverse osmosis (RO), nanofiltration membrane (NF), electrodialysis (ED), and the like, and the phase change method may include a multi-stage flash type evaporation method ( MSF), multi-effect evaporation (MED), vapor compression evaporation (VCD), mechanical vapor recompression evaporation (MVR), vacuum cascade evaporation (VMEC), gas hydrate (GHF), An indirect (heat pump) type refrigeration method is mentioned, for example. This concentration process can be carried out once to three times.
본 발명의 하나의 구체적인 실시양태에 따르면, 단계 (S1)에서 전처리된 염전수를 역삼투막을 통과시켜 1차 농축수와 투과수를 제조하고, 1차 농축수를 진공다단증발농축시스템을 통해 2차 농축함으로써 두날리엘라가 성장할 수 있는 고염분 및 고영양의 2차 농축수를 제조할 수 있다. 이 때 발생되는 투과수는 그 용도에 맞게 별도로 상품화할 수 있다. 상기 진공다단증발농축기를 이용한 2차 농축은 진공 500~700 mmHg 및 온도 50~70℃에서 8~12시간 동안 농축하는 것이 바람직하다. According to one specific embodiment of the present invention, the pre-treated brine water in step (S1) is passed through a reverse osmosis membrane to prepare the first concentrated water and permeated water, and the first concentrated water is subjected to the secondary through the vacuum multi-evaporation concentration system. By concentration, high salinity and high nutrition secondary concentrated water can be prepared for Dunaliella to grow. The permeated water generated at this time can be commercialized separately for the purpose. The secondary concentration using the vacuum multi-stage evaporator is preferably concentrated for 8 to 12 hours at 500 ~ 700 mmHg vacuum and 50 ~ 70 ℃ temperature.
본 발명의 두날리엘라의 유용성분이 함유된 저염소금의 제조방법에서 단계 (S2)는 단계 (S1)에서 전처리된 염전수의 염도(Salinity)가 10 내지 30도(%)일 때 염전수의 온도를 25 내지 35℃로 조절한 다음 두날리엘라(Dunaliella)를 염전수에 이식하여 배양하는 단계이다. In the method for preparing low salt containing the useful ingredient of Dunaliella of the present invention, step (S2) is the temperature of the salt water when the salinity (Salinity) of the salt water pretreated in step (S1) is 10 to 30 degrees (%). It is adjusted to 25 to 35 ℃ and then dunaliella (Dunaliella) is implanted in saline water to incubate.
이 때 상기 염전수의 염도는 10 내지 30도(%), 바람직하게는 15 내지 25도(%), 더욱 바람직하게는 17 내지 25도(%)일 수 있으며, 본 발명에서 사용하는 두날리엘라는 고염도에서도 생존이 가능하여 조류이다. In this case, the salinity of the salt water may be 10 to 30 degrees (%), preferably 15 to 25 degrees (%), more preferably 17 to 25 degrees (%), the Dunaliella used in the present invention It is a bird that can survive in high salinity.
상기 두날리엘라의 배양시 배양을 촉진하기 위해 영양 배지를 추가로 첨가할 수 있으며, 이 때 첨가할 수 있는 영양 배지로는 f/2 배지, SOT 배지, J/l 배지, PES 배지, Zarrouk 배지, Conwy 배지, Schreiber 배지 등이 있을 수 있으나, 이에 제한되지 않는다. 상기 영양 배지들은 당업계에서 통상적으로 이용되는 배지들이다.Nutritional medium may be additionally added to promote the culture of Dunaliella, and the nutritional medium that may be added at this time may be f / 2 medium, SOT medium, J / l medium, PES medium, Zarrouk medium. , Conwy medium, Schreiber medium and the like, but is not limited thereto. The nutrient media are media commonly used in the art.
본 발명의 구체적인 하나의 실시양태에 따르면, 상기 두날리엘라의 배양공정은 (1) 빛(자연광 또는 인공광), 공기(CO2), 온도 또는 염분농도를 조절할 수 있는 조류 배양장치를 조성하여 염전수를 배양장치에 투입하고, 두날리엘라를 접종(이식)하는 단계; (2) 두날리엘라를 배양하는 과정에 영양염 등은 흡수시키고, 두날리엘라 세포 속의 베타카로틴 등 유용물질의 함량을 높이기 위하여 염분, 온도를 변화시켜 스트레스를 가하는 단계를 포함한다. According to one specific embodiment of the present invention, the culture process of Dunaliella (1) salt salt by forming an algae culture apparatus that can control the light (natural light or artificial light), air (CO 2 ), temperature or salt concentration Adding water to the incubator and inoculating (grafting) Dunaliella; (2) absorbing nutrients in the process of culturing Dunaliella, and applying stress by changing the salt and temperature to increase the content of useful substances such as beta-carotene in Dunaliella cells.
본 발명의 하나의 구체적인 실시양태에 따르면, 배양시 두날리엘라(Dunaliella)를 염전수에 초기 농도 20 x 104 내지 60 x 104cells/mL, 바람직하게는 50 x 104cells/mL이 되도록 접종한 후 80μmol Photon/m2s 의 20 내지 26시간 동안 연속광(자연광 또는 인공광)에서 10 내지 20일간 20 내지 30℃에서 배양하는 것이 바람직하다. According to one specific embodiment of the invention, the culture of Dunaliella (Dunaliella) in the salt water to an initial concentration of 20 x 10 4 to 60 x 10 4 cells / mL, preferably 50 x 10 4 cells / mL After inoculation, it is preferable to incubate at 20 to 30 ° C. for 10 to 20 days in continuous light (natural light or artificial light) for 20 to 26 hours at 80 μmol Photon / m 2 s.
상기 두날리엘라의 이식은 온도가 조절된 염전수를 조류 배양 및 이식장치에 넣고 두날리엘라를 희석하면서 이식하여 배양할 수 있는데, 이러한 두날리엘라의 희석 공정을 설명하면 다음과 같다. The implantation of Dunaliella can be cultured by implanting the temperature-controlled salt water into the algae culture and transplantation apparatus while diluting Dunaliella while diluting it.
구체적으로, 조류 배양 및 이식 장치에 배양이 완료된 염전수 1톤에 온도가 조절된 농축수가 1톤이 더해지는 방식으로 진행이 된다. 따라서 조류 배양 및 이식 장치에는 2톤의 염전수가 존재하게 되어 염전수에 이미 배양된 조류가 희석되는 것이다. 이렇게 희석된 염전수가 다음공정인 조류 배양장치로 1톤만 보내지게 되므로 조류 배양 및 이식 장치에는 원래와 같은 1톤의 염전수가 조류가 희석이 된 채로 남게 되고, 다른 1톤은 조류 배양장치로 옮겨지게 된다. 이 과정에서 조류배양 및 이식장치의 염전수 내의 조류에도 새로운 염전수가 첨가되었기 때문에 이들에 포함된 영양분을 토대로 하여 배양되고, 옮겨진 배양장치 염전수 조류도 동시에 배양이 진행이 된다. 그 후 배양이 완료되면 배양 및 이식 장치에는 다시 새롭게 제조된 2차 염전수가 공급이 되어 배양된 두날리엘라를 희석에 의해 이식해 주는 작업을 반복한다. Specifically, the temperature is adjusted to 1 ton of brine water cultured in the algae cultivation and implantation device is added to 1 ton. Therefore, two tons of salt water is present in the algae culturing and transplanting apparatus, and algae already cultured in the salt water are diluted. Since the diluted salt water is sent only one ton to the algae culture apparatus, which is the next process, the algae cultivation and transplantation device is left with the original one ton of salt water diluted with algae, and the other ton is transferred to the algae culture apparatus. do. In this process, new salt water was also added to the algae in the brine of the algae culture and transplantation apparatus, and then cultured on the basis of the nutrients contained in the algae, and the transferred cultured salt water algae were simultaneously cultured. After the incubation is completed, the culture and transplantation apparatus is supplied with freshly prepared secondary salt water, and the cultured Dunaliella is repeatedly transplanted by dilution.
배양장치에서 배양된 두날리엘라가 포함된 염전수는 조류 스트레스 부여 공정에 투입된다. 조류 배양장치는 두날리엘라를 배양하기 위해 빛, 공기(CO2) 및 온도 등을 조절할 수 있는 장치를 말한다. 조류 배양장치에 있는 염전수의 배양이 완료되면 조류 스트레스 부여 장치에 투입될 수 있는데, 염전수에 온도 및 농도 변화를 줘서 두날리엘라에 스트레스를 부여하여 두날리엘라 세포 내 베타카로틴 등 유용물질의 함량을 높일 수 있다. 각각 배양이 완료되면 조류 배양 및 이식장치의 염전수에 또다시 새롭게 제조된 염전수를 첨가해주고, 조류 배양장치에 있는 염전수는 바로 건조하거나 조류 스트레스 부여 장치로 옮겨진 후 건조할 수 있고, 상기 공정을 계속 반복하게 된다. Salt water containing Dunaliellae cultured in the culture apparatus is introduced into the algae stress applying process. Algal culture device refers to a device that can control the light, air (CO 2 ) and temperature, etc. to incubate Dunaliella. When the cultivation of the salt water in the algae culture device is completed, it can be put into the algae stress supplying device. The content can be increased. After each incubation is completed, newly prepared salt water is added to the salt water of the algae culture and transplantation apparatus, and the salt water in the algae culture apparatus can be dried immediately or transferred to the algae stress applying apparatus and dried. Will continue to repeat.
전체 공정에서 온도조절장치에 온도조절매체로 사용되는 것은 염전수의 저온성을 활용한다. 또한 스트레스부여장치에 사용되는 온도조절 매체는 진공다단증발농축장치에서 분리되는 염전수의 고온 에너지를 활용한다. The use of the temperature control medium in the thermostat in the whole process takes advantage of the low temperature of salt water. In addition, the temperature control medium used in the stressing device utilizes the high temperature energy of the salt water separated from the vacuum multi-stage evaporator.
본 발명의 두날리엘라의 유용성분이 함유된 저염소금의 제조방법에서 단계 (S3)은 단계 (S2)에서 수득된 염전수를 건조하여 두날리엘라의 유용성분을 함유하는 저염소금을 수득하는 단계로서, 이 때 건조는 분무건조법, 동결건조법, 감압증발건조법, 평부법 또는 천일염전법에 의해 수행할 수 있으나 이에 제한되지 않으며, 바람직하게는 분무건조법을 이용하여 수행할 수 있다.In the method for preparing low salt containing the useful component of Dunaliella of the present invention, step (S3) is a step of obtaining low salt containing the useful component of Dunaliella by drying the salt water obtained in step (S2). In this case, the drying may be performed by spray drying, freeze drying, reduced pressure evaporation drying, flat bed method or sun salt method, but is not limited thereto. Preferably, the drying may be performed by spray drying.
또한, 본 발명의 방법으로 제조된 두날리엘라 및 이의 유용성분이 함유된 소금의 품질을 좌우하는 것은 베타카로틴(β-Carotene) 등의 영양물질의 함량과 칼륨, 칼슘, 마그네슘 등의 미네랄 함량 및 균형 여부에 달려있다.In addition, the quality of the salt containing Dunaliella and its useful ingredient prepared by the method of the present invention is determined by the content of nutrients such as beta-carotene (β-Carotene) and the mineral content and balance of potassium, calcium, magnesium, etc. Depends on whether
본 발명에 따르면, 미네랄과 영양염이 풍부한 염전수에 두날리에라를 이식하고 배양하여 소금을 제조함으로써 저렴한 비용으로 베타카로틴(β-Carotene) 등의 유용물질을 함유하면서도 저나트륨을 함유하는 소금을 생산할 수 있으며, 생산 과정을 조절함에 따라 미네랄 및 베타카로틴(β-Carotene) 등의 함량이 다양한 고급 제품을 효율적으로 생산하는 것이 가능하다. According to the present invention, by implanting and culturing Dunaliera in salt water rich in minerals and nutrients to produce salts, it is possible to produce salts containing low sodium while containing useful substances such as beta-carotene (β-Carotene) at low cost. In addition, by controlling the production process it is possible to efficiently produce a variety of high-quality products, such as minerals and beta carotene (β-Carotene).
본 발명의 구체적인 하나의 실시양태에 따르면, 본 발명에 따라 제조된 저염소금은 보관시간이 경과함에 따라 저염소금내 베타카로틴의 함량이 증가할 수 있다. 예를 들어, 두날리엘라의 이식시기를 기준으로 할 때 이식 후 6 주 내지 14주 경과 후 저염소금내 베타카로틴의 함량을 측정한 결과 시간경과에 따라 베타카로틴의 함량이 증가하였음을 확인하였다. According to one specific embodiment of the present invention, the low chlorine prepared according to the present invention may increase the content of beta carotene in the low chlorine over time storage. For example, based on the implantation time of Dunaliella, beta-carotene content in low-salt salt was measured 6 to 14 weeks after transplantation, and it was confirmed that the content of beta-carotene increased with time.
본 발명의 방법에 따라 제조된 두날리엘라의 유용성분이 함유된 소금은 그대로 사용할 수도 있고, 이외에 유용한 성분을 첨가하여 기능성 저염소금으로 제조하여 사용할 수도 있다. Salt containing the useful component of Dunaliella prepared according to the method of the present invention may be used as it is, or may be prepared by using a functional low chlorine by adding a useful component.
또한, 본 발명의 두날리엘라 및 이의 유용성분이 함유된 저염소금을 이용하여 영양성분이 다량 함유되고 짠맛은 유지되나 나트륨 함량이 적은 기능성 장류를 제조할 수 있다.In addition, by using the low salt salt containing the Dunaliella and the useful components of the present invention it can be produced a functional entertaining food containing a large amount of nutrients and maintains a salty taste but low sodium content.
이하, 본 발명의 이해를 돕기 위하여 실시예 등을 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예들에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다. Hereinafter, examples and the like will be described in detail to help understand the present invention. However, embodiments according to the present invention can be modified in many different forms, the scope of the invention should not be construed as limited to the following examples. Embodiments of the present invention are provided to more fully describe the present invention to those skilled in the art.
1. One. 염전수Salt water 전처리 및 청정  Pretreatment and clean 농축수의Concentrated water 제조 공정 Manufacture process
베타카로틴 등 유용물질 함유 저염소금을 제조하는 공정에 있어서 두날리엘라가 성장할 수 있는 고염분, 고영양의 농축수를 저렴한 비용으로 제조하는 것이 중요하다. 또한 이 과정이 고온에 의해 소독 및 살균 과정이 되어 두날리엘라 이외의 미세조류를 사전에 제거하는 공정이 되어 배양 및 이식 장치로 보내지는 농축수가 청정한 상태를 유지하는 것이 필요하다. In the process of producing low salt salt containing useful substances such as beta carotene, it is important to prepare a high salt, high nutrition concentrated water that can grow Dunaliella at low cost. In addition, this process is a process of disinfection and sterilization by high temperature to remove microalgae other than Dunaliella in advance, so that the concentrated water sent to the culture and transplantation apparatus needs to be kept clean.
조류 중에는 유익한 것도 있지만 해로운 것도 있고 농축수속에 포함된 영양물질을 불필요하게 소모시킬 가능성이 있기 때문에 전처리 과정에서 일정부분을 제거하고 농축과정의 높은 온도에 의해 소독 및 살균과정을 거치는 등의 방법으로 이를 제거하였다. Some of the algae are beneficial but harmful, and there is a possibility of unnecessary consumption of the nutrients contained in the concentrated water. Therefore, some parts of the algae are removed in the pretreatment process and sterilized and sterilized by the high temperature of the concentration process. Removed.
제거방법은 마이크로필터 및 UF 필터를 통한 전처리 과정을 통한 제거와 진공다단 증발법을 이용한 농축과정에서 높은 온도에 의한 살균과정을 택하였다. 진공다단 증발법은 60℃ 이상의 온도에서 10시간 이상을 유지하여 농축과정이 진행이 되었다. 농축하고자 하는 양에 따라서 증발 농축시간은 달리질 수 있다. 전처리 과정을 거치고 진공다단 증발 농축과정에서 고온으로 살균한 결과 만들어진 농축수로 배양을 한 결과 다른 조류의 성장은 발견이 되지 않았다.The removal method was sterilization by high temperature in the pretreatment process using micro filter and UF filter and the concentration process using vacuum multi-stage evaporation method. Vacuum multistage evaporation was performed for more than 10 hours at a temperature of 60 ℃ or more proceeded to the concentration process. The evaporation concentration time can vary depending on the amount to be concentrated. After the pretreatment and incubation with concentrated water produced by sterilization at high temperature in vacuum multi-stage evaporation, no other algae growth was found.
이와 같이 전처리 및 농축과정을 거치면 플랑크톤 및 조류들은 사멸되어 청정성은 높아지고 영양염은 농축해수가 만들어지게 된다. 이렇게 만들어진 염전수는 두날리엘라를 배양하기에 더 없이 좋은 환경이 된다. 결과적으로 청정해진 염전수는 두날리엘라의 배양과정에서 다른 미세조류의 섞임이 없이 소금제조자의 선택에 따라 단일 미세조류로 만들어진 베타카로틴 등 유용물질을 함유한 미네랄 소금을 만들 수도 있게 된다.As a result of this pretreatment and concentration process, plankton and algae are killed to increase cleanliness and nutrients are concentrated seawater. The salt water thus produced is a great environment for growing Dunaliella. As a result, the purified salt water can make mineral salts containing useful substances such as beta-carotene made from a single microalgae according to the salt manufacturer's choice without mixing other microalgae in Dunaliella culture.
2. 2. 진공다단증발농축장치에Vacuum multi-steam evaporator 의한  by 염전수의Salt water 제조 Produce
전처리 과정에서 살균 또는 여과한 염전수를 먼저 역삼투막(RO)을 통과시키면 1차 농축수와 투과수(탈염수)가 나오게 되는데, 투과수는 별도로 그 용도에 맞게 상품화할 수 있고, 본 발명의 소금의 제조에는 1차 농축수가 사용되는데 1차 농축수의 비중 1.04 및 pH는 8.5 정도가 된다. 상기 1차 농축수를 진공다단증발농축장치(VMEC)를 이용하여 2차 농축수를 제조한다. When the sterilized or filtered salt water is first passed through the reverse osmosis membrane (RO) in the pretreatment process, the first concentrated water and the permeated water (demineralized water) come out, and the permeated water can be commercialized according to its purpose separately. Primary concentrated water is used for the preparation, which has a specific gravity of 1.04 and a pH of about 8.5. The primary concentrated water is prepared by using a vacuum multi-stage evaporation concentrator (VMEC).
저온 농축을 통한 에너지 절감 및 농축에너지의 절감을 위하여 진공다단증발농축장치(VMEC)를 사용하였다. In order to save energy and reduce energy by low temperature concentration, the vacuum multi-evaporation concentrator (VMEC) was used.
물은 보통 100℃에서 끓지만 염전수는 다양한 미네랄들을 함유하고 있기 때문에 밀도가 높아 끓는점이 100℃보다 높다. 끓는점은 농축이 진행되어 감에 따라 밀도가 더욱 증가하기 때문에 더욱 높아지게 된다. 따라서 증발에 필요한 에너지량은 더욱 증가하게 되고 염전수 속에 포함되어 있는 미네랄 및 영양염류의 변성이 올 가능성이 커지게 되는 등 다양한 부작용이 초래될 수 있다. Water usually boils at 100 ℃, but salt water contains various minerals, so its boiling point is higher than 100 ℃. The boiling point becomes higher because the density increases as the concentration progresses. Therefore, the amount of energy required for evaporation is further increased and various side effects may occur such as the possibility of the denaturation of minerals and nutrients contained in the salt water is increased.
이를 방지하고 에너지 효율을 높이기 위해서 진공다단증발농축장치(VMEC)는 사용함으로써 증발기 내부를 진공으로 만들면 끓는점이 하강하게 되어 이러한 문제들을 방지를 할 수 있다. 진공다단증발농축장치(VMEC)는 각 단계의 해수의 특성에 맞는 에너지 투입량을 결정하여 투입을 할 수 있기 때문에 에너지 효율이 높고 컨트롤이 쉽다. 또한 진공으로 농축하면 고온 증발에 따른 미네랄 파괴 및 스케일 형성을 줄일 수 있는 장점이 있다. In order to prevent this and increase energy efficiency, the vacuum cascade evaporator (VMEC) is used to vacuum the inside of the evaporator, thereby reducing the boiling point, thereby preventing these problems. The vacuum multi-stage evaporation concentrator (VMEC) is energy efficient and easy to control because the energy input amount can be determined according to the characteristics of the seawater at each stage. In addition, the concentration in the vacuum has the advantage of reducing mineral destruction and scale formation due to high temperature evaporation.
즉, 진공다단증발농축장치 증발기 내부 진공을 600 mmHg 정도로 하면 끓는 점은 60℃ 이하로 내려오게 된다. 끓는점을 낮춤으로써 그 차이만큼 에너지 투입을 줄일 수 있었으며, 저온에 의한 증발로 인해 고온으로 인한 미네랄의 물리화학적 변화 및 스케일 등을 줄일 수 있었다. 그리고 진공다단증발농축장치(VMEC)를 이용하여 해수를 10시간 이상을 유지하여 농축한 결과 다른 미세조류의 성장은 발견되지 않았다.In other words, if the vacuum inside the vacuum multi-evaporation condenser evaporator is about 600 mmHg, the boiling point is lowered below 60 ° C. By lowering the boiling point, the energy input could be reduced by the difference, and the physicochemical change and scale of the mineral due to the high temperature could be reduced due to evaporation due to the low temperature. In addition, as a result of concentrating and maintaining the seawater for 10 hours or more using a vacuum multi-evaporation concentrator (VMEC), the growth of other microalgae was not found.
진공다단증발농축장치(VMEC)를 이용한 1차 농축수의 농축 방법을 더욱 상세하게 기술하면 다음과 같다. 1차 농축수를 진공다단증발농축장치(VMEC)의 1단 증발기에 넣어 농축을 진행하면 농축이 진행됨에 따라 탄산칼슘이 결정화되기 시작한다. 탄산칼슘은 일단 결정화되면 잘 녹지 않기 때문에 이를 다시 용해하여 사용하기가 쉽지 않다. 또한 소금에 포함될 경우 음식에 넣었을 때 잘 녹지 않는 문제점이 있다. 따라서 탄산칼슘을 분리 추출하여 소금의 용도가 아닌 다른 용도로 사용하는 것이 좋다. 또한 그대로 두면 설비 내부에 부착하는 스케일의 원인이 되기 때문에 분리 추출하는 것이 설비 운전효율 강화에 도움이 된다.  The concentration method of the primary concentrated water using the vacuum multi-steam evaporator (VMEC) is described in more detail as follows. When the first concentrated water is concentrated in a first stage evaporator of a vacuum multistage evaporator (VMEC), calcium carbonate begins to crystallize as the concentration proceeds. Calcium carbonate does not melt well once it is crystallized, so it is not easy to dissolve and use again. In addition, there is a problem that does not melt well when added to food when included in salt. Therefore, it is good to separate and extract calcium carbonate and use it for other purposes than salt. In addition, since it is the cause of the scale attached to the inside of the equipment, it is helpful to separate the extraction to enhance the equipment operating efficiency.
이와 같은 방법으로 염전수를 살균 또는 여과 및 농축과정을 거치면 플랑크톤 및 조류들은 사멸되어 청정성은 높은 염전수가 만들어지게 된다. 이렇게 만들어진 염전수는 두날리엘라(Dunaliella)를 배양하기에 더 없이 좋은 환경이 된다. 결과적으로 청정해진 농축 염전수는 두날리엘라의 배양과정에서 다른 미세조류의 섞임이 없이 소금제조자의 선택에 따라 단일 미세조류로 만들어진 베타카로틴(β-Carotene) 등 유용물질을 함유한 소금을 제조할 수 있다.When the salt water is sterilized or filtered and concentrated in this manner, plankton and algae are killed to make the salt water highly clean. The salt water thus produced is a great environment for culturing Dunaliella. As a result, the purified concentrated brine can produce salts containing useful substances such as beta-carotene (β-Carotene) made by a single microalgae according to the salt manufacturer's choice without mixing other microalgae in the culture of Dunaliella. Can be.
다르게는 본 발명의 구체적인 하나의 실시양태에 따르면, 본 발명에서는 염전수 이외에 천일염을 생산하는 지역의 농축수 또는 염전 증발지에서 모아놓은 물을 그대로 사용할 수 있다. Alternatively, according to one specific embodiment of the present invention, in the present invention, it is possible to use water collected in concentrated water or salt evaporation basin in a region producing sun salt in addition to salt water.
3. 3. 염전수의Salt water 온도 조절 및  Temperature control and 두날리엘라Dunaliella 배양 공정  Culture process
두날리엘라의 생육조건에는 온도는 매우 중요하다. 두날리엘라는 고온 환경에서 생육하기 때문에 고온의 환경을 조성해 주어야 한다. 이러한 조건을 일상 환경에서는 조성하기가 어렵기 때문에 이들 미세조류가 가진 높은 효용성에도 불구하고 배양이 특정한 지역의 특정한 환경하에서만 이루어져왔다. 소금을 만들기 위한 농축과정은 다량의 에너지를 필요로 한다. 그리고 그 와중에서 많은 에너지가 사실상 버려져 왔다. 본 발명에서는 이들 버려지는 저온 혹은 고온의 에너지를 활용함으로써 베타카로틴 등 유용물질 함유 소금의 경제적인 생산을 가능하게 하였다. Temperature is very important in the growing condition of Dunaliella. Dunaliella grows in a high temperature environment, so it needs to create a high temperature environment. Because these conditions are difficult to formulate in everyday environments, despite the high utility of these microalgae, cultivation has been carried out only under certain circumstances in certain regions. The concentration process to make salt requires a lot of energy. And in the meantime, a lot of energy has actually been abandoned. In the present invention, economical production of salts containing useful substances such as beta carotene is made possible by utilizing these discarded low or high temperature energy.
전처리 및 농축과정을 통해 고염도, 고알칼리가 된 염전수는 60℃에 가까운 고온을 지니고 있으며, 이러한 고온 환경에서는 미세조류가 생육을 할 수가 없다. 따라서 상기 농축된 염전수를 30℃ 내외의 온도를 만들어야 여기에 두날리엘라를 배양시킬 수 있다. Salt water, which has become a high salinity and high alkali through pretreatment and concentration, has a high temperature close to 60 ℃, and microalgae cannot grow in such a high temperature environment. Therefore, the concentrated salt water should be made at a temperature of about 30 ° C. to cultivate Dunaliella.
또한, 두날리엘라의 배양은 상당한 시간을 필요로 한다. 필요한 양의 두날리엘라를 배양시키기 위해서는 최소 하루, 고밀도의 두날리엘라를 배양하기 위해서는 몇일이 소요되기도 한다. 이 경우 미세조류가 생장하는데 필요한 30℃ 내외의 온도를 일정하게 유지하여 주는 것이 필요하다. 따라서 계속하여 온도를 유지시켜주는 노력이 요구되고 막대한 에너지가 필요로 하게 된다. 이때 필요한 에너지는 증발 농축장치에서 나오는 폐열을 이용하면 효율적이다. 증발농축장치는 염전수 증발함에 따라 막대한 양의 수증기가 나오고 이는 고온의 응축수의 형태로 회수할 수 있다. 이를 조류배양장치로 보내서 한편으로는 응축수의 고온을 낮추면서 이 에너지를 이용하여 배양장치의 온도를 일정하게 유지하면서 스트레스부여에 사용되는 온도를 조절할 수 있다.In addition, culturing Dunaliella requires considerable time. It may take at least one day to cultivate the required amount of Dunaliella, and several days to cultivate dense Denaliella. In this case, it is necessary to maintain a constant temperature around 30 ℃ required for the growth of microalgae. Therefore, efforts to continuously maintain the temperature are required and enormous energy is required. The energy required is efficient using waste heat from the evaporator. As the evaporator condenses the brine water, a huge amount of water vapor is emitted, which can be recovered in the form of hot condensate. This energy can be sent to the algae cultivation device on the one hand to control the temperature used for stressing while keeping the temperature of the culture device constant while lowering the high temperature of the condensate.
이렇게 하면 별도의 에너지 투입 없이도 배양장치의 온도를 일정하게 유지하는 것이 가능하게 된다. 따라서 열대지방에서나 가능한 조건이 시스템적으로 가능하게 되어 경제적인 비용으로 미세조류를 배양할 수 있고 결과적으로 저렴한 비용으로 베타카로틴(β-Carotene) 등 유용물질 함유 소금 제조가 가능하게 된다.This makes it possible to maintain a constant temperature of the culture apparatus without additional energy input. Therefore, it is possible to cultivate microalgae at an economical cost as possible systemically possible conditions in the tropics, and as a result it is possible to manufacture salt containing useful substances such as beta carotene (β-Carotene) at low cost.
두날리엘라의 이식은 염전수의 염도(Salinity)가 10 내지 30도(%), 바람직하게는 15 내지 25도(%), 더욱 바람직하게는 17 내지 25도(%)일 때도 두날리엘라(Dunaliella)를 염전수에 이식하여 배양할 수 있다. 이 때 이식은 두날리엘라의 초기 농도 20 x 104 내지 60 x 104cells/mL이 되도록 접종한 후 자연광 또는 형광등 조명하에서 10 내지 20일간 20 내지 30℃에서 배양할 수 있다.The implantation of Dunaliella is performed even when the salinity of saline water is 10-30 degrees (%), preferably 15-25 degrees (%), more preferably 17-25 degrees (%). Dunaliella) can be cultured by implanting in brine. At this time, the transplantation may be inoculated to an initial concentration of Dunaliella 20 x 10 4 to 60 x 10 4 cells / mL, and then cultured at 20 to 30 ℃ for 10 to 20 days under natural light or fluorescent lighting.
<< 실시예Example 1>  1> 두날리엘라를Dunaliella 이용한  Used 저염소금의Low salt 제조 Produce
(1) 염전수를 UV, 오존처리 또는 열을 이용하여 살균하거나 마이크로필터(MF) 또는 울트라필터(UF)로 여과하였다.(1) Salt water was sterilized using UV, ozone treatment or heat, or filtered through a microfilter (MF) or ultrafilter (UF).
(2) 상기 전처리된 염전수의 염도(Salinity)가 17도(%)일 때 염전수의 온도를 25 내지 35℃로 조절한 다음 두날리엘라(Dunaliella)를 염전수에 초기 농도 20 x 104 cells/mL이 되도록 접종한 후 80μmol Photon/m2s 의 24시간 연속 자연광하에서 15일간 25℃에서 배양한 후 분무 건조하여 저염소금을 제조하였다.(2) When the salinity (Salinity) of the pretreated salt water is 17 degrees (%), the temperature of the salt water is adjusted to 25 to 35 ℃ and then Dunaliella (Dunaliella) in the salt water initial concentration 20 x 10 4 After inoculating to cells / mL, low chlorine was prepared by incubating at 25 ° C. for 15 days in natural light at 80 μmol Photon / m 2 s for 15 hours under continuous light.
도 1 및 도 2는 고염도에서 배양하여 동결건조시킨 두날리엘라 모양을 나타낸 사진이다.1 and 2 are photographs showing the Dunaliella shape lyophilized by incubation at high salinity.
<< 실시예Example 2>  2> 저염소금의Low salt 보관시간에 따른 베타카로틴 함유량 측정  Measurement of Beta Carotene Content by Storage Time
상기 실시예 1에서 제조된 저염소금을 보관하는 동안 베타카로틴(β-Carotene) 함량을 측정하여 하기 표 2에 나타내었다.Beta carotene (β-Carotene) content was measured while storing the low salt prepared in Example 1, and is shown in Table 2 below.
이식 후After transplant 두날리엘라 소금내 베타카로틴(β-Carotene) 함량 (Carotenoid level (ug/g FW)Beta-carotene content in Dunaliella salt (Carotenoid level (ug / g FW)
6주6 Weeks 33
7주Week 7 55
8주8 Weeks 99
9주9 Weeks 1818
11주Week 11 2323
14주14 Weeks 5959
상기 표 2에서 보듯이, 본 발명에 따라 제조된 두날리엘라 소금내 베타카로틴의 함량이 보관시간이 경과함에 따라 증가하는 것을 확인할 수 있었다.As shown in Table 2, it was confirmed that the content of beta carotene in the Dunalella salt prepared according to the present invention increases with the storage time.
<< 실시예Example 3>  3> 저염소금Low salt 내 Na 함량 측정 Na content measurement
상기 실시예 1에세 제조된 저염소금내 Na 함량을 측정하여 하기 표 3에 나타내었다.The Na content in the low salt prepared in Example 1 was measured and shown in Table 3 below.
Na 함량 (US EPA 3052A, 6010C(ICP):2007)Na content (US EPA 3052A, 6010C (ICP): 2007)
두날리엘라 소금Dunaliella Salt 18 ~ 2418 to 24
상기 표 3에서 보듯이, 본 발명에 따라 제조된 소금은 Na 함량이 최고 24%로서 저염소금임을 확인할 수 있다.As shown in Table 3, the salt prepared according to the present invention can be confirmed that the Na content is a low chlorine as the highest 24%.
<< 실시예Example 4>  4> 저염소금의Low salt 관능평가 Sensory evaluation
본 발명의 두날리엘라 및 이의 유용성분이 함유된 소금의 관능검사 결과는 하기 표 4와 같다. 4~50대의 가정주부 30명을 대상으로 5점 평점법에 의해 본 발명의 두날리엘라 및 이의 유용성분이 함유된 저염소금과 미세조류를 이용하지 않고 제조한 소금(대조구)을 가지고 외관, 냄새, 짠맛 및 전체적인 기호도를 테스트하였다. 그 결과를 하기 표 4에 나타내었다. 관능평가 결과는 측정값(1:나쁨, 2:조금 나쁨, 3:보통, 4:조금 좋음, 5: 좋음)으로 표시하였다.The sensory test results of the salt of the present invention Dunaliella and its useful components are shown in Table 4. Thirty housewives in their 4s to 50s had low salt and microalgae containing the salt of the present invention by Dunalella and its useful ingredients by the 5-point rating method. Salty and overall palatability were tested. The results are shown in Table 4 below. Sensory evaluation results were expressed as a measurement value (1: bad, 2: a little bad, 3: normal, 4: a little good, 5: good).
종류Kinds color incense flavor 설명후 기호변화Change of sign after explanation
대조군 1Control group 1 33 33 33 22
대조군 2Control 2 44 33 55 44
두날리엘라 저염소금Dunaliella low salt 44 44 55 55
상기 표 4에서 보듯이, 본 발명에 따라 제조된 저염소금은 Na 함량이 저하됨에도 불구하고 짠맛이 기존의 소금과 유사하여 이의 차이가 유의적이지 않은 것을 확인할 수 있었다. As shown in Table 4, the low salt salt prepared according to the present invention was confirmed that the difference in salty taste is similar to the existing salt, although the Na content is not significant.
본 발명에 따르면, 고염도의 염전수에 두날리엘라를 직접 이식하여 배양하여 소금을 제조함으로써 저렴한 비용으로 베타카로틴(β-Carotene) 등의 두날리엘라의 유용물질을 함유하고 저나트륨 함량을 가지는 저염소금을 생산할 수 있으며, 생산 과정을 조절함에 따라 미네랄 및 베타카로틴(β-Carotene) 등의 함량이 다양한 고급 제품을 효율적으로 생산하는 것이 가능하다. According to the present invention, by directly culturing Dunaliella in high-salt salt water and incubating salt to produce salt, it contains a useful substance of Dunaliella such as beta-carotene (β-Carotene) and has a low sodium content. It is possible to produce low salt, and by controlling the production process, it is possible to efficiently produce high-quality products with various contents of minerals and beta-carotene (β-Carotene).

Claims (10)

  1. 두날리엘라(Dunaliella)를 이용하여 염전수로부터 두날리엘라 및 이의 유용성분이 함유된 저염소금을 제조하는 방법.Method for producing low salt containing Dunaliella and its useful components from salt water using Dunaliella (Dunaliella).
  2. 제 1 항에 있어서,The method of claim 1,
    하기 단계를 포함하는 것을 특징으로 하는 두날리엘라 및 이의 유용성분이 함유된 저염소금을 제조하는 방법:Method for producing a low salt salt containing Dunaliella and its useful components, characterized in that it comprises the following steps:
    (S1) 염전수를 살균 또는 여과하여 전처리하는 단계;(S1) pretreatment by sterilizing or filtering the salt water;
    (S2) 상기 단계 (S1)에서 전처리된 염전수의 염도(Salinity)가 10 내지 30(%)도일 때 염전수의 온도를 25 내지 35℃로 조절한 다음 두날리엘라(Dunaliella)를 염전수에 이식하여 배양하는 단계; 및(S2) When the salinity (Salinity) of the pre-treated salt water in step (S1) is 10 to 30 (%) degrees to adjust the temperature of the salt water to 25 to 35 ℃ and then Dunaliella (Dunaliella) to the salt water Transplanting and culturing; And
    (S3) 상기 단계 (S2)에서 수득된 배양액을 건조하여 두날리엘라 및 이의 유용성분을 함유하는 저염소금을 수득하는 단계. (S3) drying the culture obtained in step (S2) to obtain a low salt containing Dunaliella and its useful components.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 단계 (S1)에서 살균은 UV 처리, 오존 처리 또는 열처리 방법으로 수행하는 것을 특징으로 하는 방법.Sterilization in the step (S1) is characterized in that carried out by UV treatment, ozone treatment or heat treatment method.
  4. 제 2 항에 있어서,The method of claim 2,
    상기 단계 (S1)에서 여과는 모래여과, 급속여과막, 마이크로필터(MF), 나노필터 (NF) 또는 울트라필터 (UF)를 이용하여 수행하는 것을 특징으로 하는 방법.Filtration in the step (S1) is characterized in that carried out using a sand filtration, rapid filtration membrane, micro filter (MF), nano filter (NF) or ultra filter (UF).
  5. 제 2 항에 있어서,The method of claim 2,
    상기 단계 (S1)의 전처리 후 농축하는 공정을 추가로 포함하는 것을 특징으로 하는 방법.Further comprising the step of concentrating after the pretreatment of step (S1).
  6. 제 2 항에 있어서,The method of claim 2,
    상기 단계 (S2)에서 두날리엘라(Dunaliella)를 염전수에 초기 농도 20 x 104 내지 60 x 104cells/mL이 되도록 접종한 후 자연광 또는 인공광하에서 10 내지 20일간 20 내지 35℃에서 배양하는 것을 특징으로 하는 방법. In the step (S2) Dunaliella (Dunaliella) inoculated in salt water to an initial concentration of 20 x 10 4 to 60 x 10 4 cells / mL and then incubated at 20 to 35 ℃ for 10 to 20 days under natural or artificial light Characterized in that the method.
  7. 제 2 항에 있어서,The method of claim 2,
    상기 단계 (S3)의 건조는 분무건조, 동결건조, 감압증발건조, 평부법 또는 천일염전법을 이용하여 수행하는 것을 특징으로 하는 방법. The drying of the step (S3) is characterized in that it is carried out using spray drying, freeze drying, reduced pressure evaporation drying, flat bed method or sun salt method.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 두날리엘라의 유용성분은 베타카로틴(β-Carotene), 알파카로틴(α-carotene), 루테인(lutein), 제아크잔틴(zeaxanthin), 크립토잔틴(cryptoxanthin), 엽록소(chlorophyll) 및 오메가 3 지방산(omega-3 fatty acid)으로 이루어진 군에서 선택된 하나 이상인 것을 특징으로 하는 방법. Useful ingredients of the Dunaliella are beta carotene (β-Carotene), alpha carotene (α-carotene), lutein (lutein), zeaxanthin, cryptoxanthin, cryptoxanthin, chlorophyll and omega 3 fatty acids (omega-3 fatty acid) at least one selected from the group consisting of.
  9. 제 1 항 내지 제 8 항 중 어느 한 항에 따른 방법에 따라 제조된 두날리엘라 및 이의 유용성분을 함유하는 저염소금.A low chlorine containing Dunaliella and a useful component thereof prepared according to the method according to any one of claims 1 to 8.
  10. 제 9 항에 있어서,The method of claim 9,
    상기 저염소금내 Na 함량이 30% 이하인 것을 특징으로 하는 저염소금.Low chlorine, characterized in that the Na content in the low chlorine is less than 30%.
PCT/KR2017/011406 2016-10-14 2017-10-16 Method for producing reduced-sodium salt containing active ingredient of dunaliella from salt pond water, and reduced-sodium salt produced thereby WO2018070852A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0133795 2016-10-14
KR1020160133795A KR20180041519A (en) 2016-10-14 2016-10-14 A process for the preparation of low-salt having the effective components of Dunaliella from water of salt pond and the low-salt prepared therefrom

Publications (1)

Publication Number Publication Date
WO2018070852A1 true WO2018070852A1 (en) 2018-04-19

Family

ID=61905676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/011406 WO2018070852A1 (en) 2016-10-14 2017-10-16 Method for producing reduced-sodium salt containing active ingredient of dunaliella from salt pond water, and reduced-sodium salt produced thereby

Country Status (2)

Country Link
KR (1) KR20180041519A (en)
WO (1) WO2018070852A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109880745A (en) * 2019-03-15 2019-06-14 江苏大学 A method of using pickling waste water, shining bittern water subsection filter salt algae
CN111410355A (en) * 2020-04-29 2020-07-14 苏州他山石环保科技有限公司 MVR evaporator for treating sewage and application process thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102130160B1 (en) * 2019-02-22 2020-08-05 주식회사 오션허브 A culture composition of Dunaliella and a method culturing Dunaliella by using the culture composition, and a low-salt having Dunaliella prepared therefrom

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050015506A (en) * 2003-08-06 2005-02-21 김영수 Preparation method of seaweed salts
KR20050088717A (en) * 2004-03-02 2005-09-07 이진우 Nanufacturing method of chlorella salt
KR101152020B1 (en) * 2011-05-12 2012-06-08 한국해양연구원 Manufacturing method of salt containing useful ingredients of microalgae and manufactured salt by the method
KR20140044419A (en) * 2012-10-02 2014-04-15 한국해양과학기술원 A micro-algae culture method for increasing certain useful components using deep sea water.
KR20160061130A (en) * 2014-11-21 2016-05-31 (주) 오씨아드 Manufacturing method of mineral salt containing useful ingredients of microalgae and ingredients of trees and manufactured salt by the method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050015506A (en) * 2003-08-06 2005-02-21 김영수 Preparation method of seaweed salts
KR20050088717A (en) * 2004-03-02 2005-09-07 이진우 Nanufacturing method of chlorella salt
KR101152020B1 (en) * 2011-05-12 2012-06-08 한국해양연구원 Manufacturing method of salt containing useful ingredients of microalgae and manufactured salt by the method
KR20140044419A (en) * 2012-10-02 2014-04-15 한국해양과학기술원 A micro-algae culture method for increasing certain useful components using deep sea water.
KR20160061130A (en) * 2014-11-21 2016-05-31 (주) 오씨아드 Manufacturing method of mineral salt containing useful ingredients of microalgae and ingredients of trees and manufactured salt by the method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109880745A (en) * 2019-03-15 2019-06-14 江苏大学 A method of using pickling waste water, shining bittern water subsection filter salt algae
CN111410355A (en) * 2020-04-29 2020-07-14 苏州他山石环保科技有限公司 MVR evaporator for treating sewage and application process thereof

Also Published As

Publication number Publication date
KR20180041519A (en) 2018-04-24

Similar Documents

Publication Publication Date Title
KR101152020B1 (en) Manufacturing method of salt containing useful ingredients of microalgae and manufactured salt by the method
CN108864218B (en) Glycerol glucoside product, purification method and application of glycerol glucoside
Schrader et al. Development of phytoplankton communities and common off-flavors in a biofloc technology system used for the culture of channel catfish (Ictalurus punctatus)
WO2018070852A1 (en) Method for producing reduced-sodium salt containing active ingredient of dunaliella from salt pond water, and reduced-sodium salt produced thereby
US20080038774A1 (en) Process For Producing Astaxanthin-Containing Lipids
KR102130160B1 (en) A culture composition of Dunaliella and a method culturing Dunaliella by using the culture composition, and a low-salt having Dunaliella prepared therefrom
CN104404118B (en) A kind of method for promoting Haematococcus pluvialis production natural astaxanthin using seawater
US20040077036A1 (en) Process to produce astaxanthin from haematococcus biomass
CN106106281A (en) Long shoot Fructus Vitis viniferae is fainted algae, prawn, Carnis Haliotidis stereo ecological cultural method
CN105660357A (en) Artificial half-salt water ecological breeding method of enteromorpha
CN110903384A (en) Extraction and purification method of phycocyanin
CN105543142B (en) A kind of culture medium reducing water body COD Rhodopseudomonas palustris
Kabariya et al. Dairy wastewater treatment by cyanobacteria for removal of nutrients with extraction of high value compounds from biomass
CN107646693B (en) Production method of golden yellow nostoc
US20110104791A1 (en) Media and Process for Culturing Algae
CN106165790A (en) A kind of bait for artemia culture and artemia culture method
CN104974949B (en) A kind of screening technique for seawater fish shield infusorian cause of disease insecticidal bacteria
Ijaola et al. Algae as a potential source of protein: A review on cultivation, harvesting, extraction, and applications
KR102554307B1 (en) GABA Salt Containing Live Lactic acid Bacteria and Preparing Method Thereof
CN105039214B (en) Separation and purification method of peony vegetative organ endophytic bacteria, culture medium and preparation method thereof
KR100697610B1 (en) The culture method of spirulina using deep water and spirulina cultivated by the culture method
KR102262309B1 (en) Production method for cultured root of leguminous plants comprising high-content of coumestrol
CN100552020C (en) A kind of intensive production method of sulfur-free rhodospirillum
Şen et al. Studies on growth of marine microalgae in batch cultures: I. Chlorella vulgaris (Chlorophyta)
CN111004321B (en) Extraction and purification method of phycocyanin and glyceroglucoside

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17860046

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17860046

Country of ref document: EP

Kind code of ref document: A1