WO2018070517A1 - Production method for lithium secondary battery positive electrode active material - Google Patents

Production method for lithium secondary battery positive electrode active material Download PDF

Info

Publication number
WO2018070517A1
WO2018070517A1 PCT/JP2017/037171 JP2017037171W WO2018070517A1 WO 2018070517 A1 WO2018070517 A1 WO 2018070517A1 JP 2017037171 W JP2017037171 W JP 2017037171W WO 2018070517 A1 WO2018070517 A1 WO 2018070517A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
lithium secondary
secondary battery
Prior art date
Application number
PCT/JP2017/037171
Other languages
French (fr)
Japanese (ja)
Inventor
雄大 秋山
真吾 山内
公保 中尾
Original Assignee
住友化学株式会社
株式会社田中化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, 株式会社田中化学研究所 filed Critical 住友化学株式会社
Priority to CN201780062390.7A priority Critical patent/CN109863630A/en
Priority to KR1020197009989A priority patent/KR102425597B1/en
Publication of WO2018070517A1 publication Critical patent/WO2018070517A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a positive electrode active material for a lithium secondary battery.
  • This application claims priority based on Japanese Patent Application No. 2016-201566 for which it applied to Japan on October 13, 2016, and uses the content here.
  • a lithium composite oxide is used as a positive electrode active material for a lithium secondary battery.
  • Lithium secondary batteries have already been put into practical use not only for small power supplies for mobile phones and laptop computers, but also for medium and large power supplies for automobiles and power storage.
  • a method for producing a positive electrode active material for a lithium secondary battery generally includes a step of firing a lithium compound and a precursor that is a metal composite oxide.
  • a lithium compound and a precursor that is a metal composite oxide In order to improve the performance of the lithium secondary battery such as cycle characteristics, attempts have been made to make the composition of the positive electrode active material for the lithium secondary battery uniform and to reduce the remaining amount of unreacted substances.
  • Patent Document 1 describes that a positive electrode material with little variation in oxidation could be manufactured with high productivity by performing the firing process using a roller hearth kiln.
  • the present invention includes the following [1] to [8].
  • [1] Production of a positive electrode active material for a lithium secondary battery comprising: a mixing step of mixing a lithium compound and a positive electrode active material precursor to obtain a mixture; and a main baking step of baking the mixture using a rotary kiln.
  • the lithium compound content in the mixture is more than 0 and 50% by mass or less with respect to the total mass of the mixture, and the furnace inner wall of the rotary kiln is formed of a non-metallic material.
  • a method for producing a positive electrode active material for a lithium secondary battery [2] The method for producing a positive electrode active material for a lithium secondary battery according to [1], wherein the main firing step is performed at 750 ° C.
  • Any one or both of the main firing step and the preliminary firing step are performed by ventilating an oxygen-containing gas at a flow rate of 15 Nm 3 / h / m 3 or more.
  • a method for producing a positive electrode active material for a lithium secondary battery having excellent crystallinity can be provided.
  • the method for producing a positive electrode active material for a lithium secondary battery of the present invention (hereinafter also referred to as “positive electrode active material”) is a lithium compound and a positive electrode active material precursor (hereinafter also referred to as “precursor”). And a main firing step in which the mixture is fired using a rotary kiln, and a method for producing a positive electrode active material for a lithium secondary battery, comprising: a lithium compound contained in the mixture The content of is more than 0 and 50% by mass or less with respect to the total mass of the mixture, and the furnace inner wall of the rotary kiln is formed of a non-metallic material.
  • Tunnel furnaces and roller hearth kilns have a problem that the firing efficiency is low and further firing takes a long time because the mixture is fired with filling the mixture.
  • the rotary kiln has a problem that when fired at a high temperature, the metal is eluted from the member, and the positive electrode active material is contaminated by the eluted metal component.
  • a firing process of a mixture of a lithium compound and a precursor is performed using a rotary kiln in which a furnace inner wall, which is a portion in contact with the mixture, is formed of a nonmetallic material. For this reason, even if it is a case where it bakes at high temperature, a metal does not elute from a furnace inner wall and a positive electrode active material is not contaminated.
  • the present invention bakes a mixture having a lithium compound content of 50% by mass or less based on the total mass of the mixture, the mixture and the baked product do not excessively adhere to the rotary kiln even when baked at a high temperature. It can be fired.
  • the manufacturing method of the positive electrode active material for lithium secondary batteries of this invention is demonstrated.
  • This step is a step of mixing the lithium compound and the precursor to obtain a mixture.
  • mixing is performed so that the content of the lithium compound in the mixture of the lithium compound and the precursor is more than 0 and 50% by mass or less with respect to the total mass of the mixture. 10 mass% or more is preferable, as for the lower limit of content of the lithium compound with respect to the total mass of the said mixture, 15 mass% or more is more preferable, and 20 mass% or more is especially preferable.
  • the upper limit of the lithium compound content relative to the total mass of the mixture is preferably 49% by mass or less, more preferably 48% by mass or less, and particularly preferably 47% by mass or less.
  • the upper limit value and the lower limit value can be arbitrarily combined.
  • the content of the lithium compound with respect to the total mass of the mixture is preferably 10% by mass to 49% by mass, more preferably 15% by mass to 48% by mass, and still more preferably 20% by mass to 47% by mass. .
  • the lithium compound content relative to the total mass of the mixture in the mixture is set to the specific content, whereby adhesion of the mixture and the fired product to the inner wall of the rotary kiln can be reduced. For this reason, in the baking process mentioned later, it can bake at high temperature and can obtain the positive electrode active material with high crystallinity.
  • the lithium compound used for this invention is demonstrated.
  • the lithium compound used in the present invention is not particularly limited, and any one of lithium carbonate, lithium nitrate, lithium acetate, lithium hydroxide, lithium hydroxide hydrate, lithium oxide, or a mixture of two or more thereof. Can be used. In these, any one or both of lithium hydroxide and lithium carbonate are preferable.
  • the precursor is preferably a transition metal compound.
  • the precursor is a group consisting of metals other than lithium, that is, essential metals Ni, Co, Mn, Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga, and V. It is preferable that it is a transition metal compound containing 1 or more types of arbitrary elements chosen from these.
  • the transition metal compound is preferably a transition metal hydroxide or a transition metal oxide, and specifically, nickel cobalt manganese composite hydroxide or nickel cobalt manganese composite oxide is preferable.
  • the precursor can be produced by a generally known batch method or coprecipitation method.
  • the main firing step is performed by a rotary kiln in which the furnace inner wall, which is a contact portion with the mixture, is formed from a non-metallic material.
  • the rotary kiln used in this embodiment will be described with reference to FIGS.
  • the rotary kiln 40 includes a cylindrical furnace core tube 42, a rotating device (not shown) that rotates the furnace core tube 42, a heat insulating material (not shown) that covers the furnace core tube 42, and the furnace core tube 42.
  • a heater (not shown) for heating, a raw material charging device (not shown) for charging the fired raw material into the furnace core tube 42, and a discharge part (not shown) for discharging the fired product are included.
  • the furnace core tube 42 is installed with an inclination so that the outlet side is lower than the inlet side into which the firing raw material is charged.
  • the oxygen-containing gas is normally ventilated from the outlet side to the inlet side, as indicated by broken line arrows in FIG.
  • the mixture is supplied to the rotary kiln 40 and the furnace core tube 42 constituting the rotary kiln 40 is rotated so that the mixture reaches a predetermined temperature while mixing the mixture.
  • the furnace inner wall 41 means an inner wall of the furnace core tube 42.
  • Non-metallic materials include silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 ; also referred to as alumina), silicon dioxide (SiO 2 ), zirconium dioxide (ZrO 2 ), magnesium oxide (MgO), silicon carbide.
  • a ceramic material such as (SiC) is preferable, and it is particularly preferable that aluminum oxide is contained in an amount of 50% by mass or more based on the total mass of the nonmetallic material.
  • the filling amount of the mixture with respect to the total internal volume of the rotary kiln is preferably 1% by volume to 50% by volume, more preferably 3% by volume to 30% by volume, and 5% by volume to 20% by volume. Is more preferable.
  • this baking process it is preferable to perform this baking process at 750 degreeC or more and 1000 degrees C or less.
  • the firing temperature By setting the firing temperature to a high temperature range of 750 ° C. or higher and 1000 ° C. or lower, a positive electrode active material with high crystallinity can be produced.
  • the temperature of a baking process means the temperature of the mixture baked.
  • Pre-baking step it is preferable to include a preliminary firing step in which firing is performed at a temperature lower than the firing temperature of the main firing after the mixing step and before the main firing step.
  • the pre-firing may be performed at a temperature lower than that of the main calcination, and is preferably 80 ° C. to 200 ° C. lower than the main calcination temperature, and preferably 100 ° C. to 150 ° C. lower.
  • the firing furnace in the preliminary firing step is not particularly limited, but it is preferable to use a rotary kiln.
  • the main firing step and the preliminary firing step may be the same rotary kiln or different rotary kilns, but are preferably performed using the same rotary kiln from the viewpoint of performing the firing step continuously.
  • the contact part with the said mixture of the baking furnace used for a preliminary baking process may be metal materials, such as Inconel, such as silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 ; also referred to as alumina), etc.
  • a non-metallic material may be used.
  • one or both of the firing step and the pre-baking step is preferably conducted by passing an oxygen-containing gas at 15Nm 3 / h / m 3 or more flow, is 16Nm 3 / h / m 3 or more More preferred.
  • the upper limit value is not particularly limited, for example, 150Nm 3 / h / m 3 or less, 130Nm 3 / h / m 3 or less include 120Nm 3 / h / m 3 or less.
  • the upper limit value and the lower limit value can be arbitrarily combined.
  • the flow rate is preferably 15Nm 3 / h / m 3 or more 150Nm 3 / h / m 3 or less, more preferably 16Nm 3 / h / m 3 or more 130Nm 3 / h / m 3 or less 16 Nm 3 / h / m 3 or more and 120 Nm 3 / h / m 3 or less.
  • the flow rate is preferably 40Nm 3 / h / m 3 or more 200Nm at 3 / h / m 3 or less, 80Nm 3 / h / m 3 or more 180Nm 3 / h / m It is more preferably 3 or less, and further preferably 130 Nm 3 / h / m 3 or more and 160 Nm 3 / h / m 3 or less. It is preferable that one or both of the main firing step and the preliminary firing step be performed at an oxygen concentration in the oxygen gas of 21% by volume or more based on the total volume of the oxygen-containing gas.
  • the oxygen-containing gas having the above oxygen concentration it can be obtained by mixing a gas other than oxygen and oxygen gas at a predetermined ratio.
  • the gas other than oxygen and the flow rate of oxygen gas can be controlled by a known flow meter. Moreover, you may use air as it is. In this invention, it is preferable to implement this baking process on said ventilation
  • the firing time is preferably 1 hour or more and 10 hours or less, more preferably 1 hour or more and 8 hours or less, and more preferably 1 hour or more and 5 hours or less. Is particularly preferred.
  • the pre-baking step is preferably 30 minutes to 3 hours, more preferably 1 hour to 2.5 hours.
  • the holding time after reaching the target temperature in the firing step is preferably 1 hour or more and 10 hours or less, more preferably 1 hour or more and 8 hours or less, and more preferably 1 hour or more and 6 hours or less. More preferred is a time or less.
  • the rate of temperature rise to the target temperature is preferably 20 ° C./hour or more and 2000 ° C./hour or less, more preferably 50 ° C./hour or more and 1000 ° C./hour or less, and 100 ° C./hour or more. More preferably, it is set to 800 ° C./hour or less.
  • the main firing step is carried out using a rotary kiln in which the furnace inner wall, which is the part in contact with the mixture, is formed from a non-metallic material.
  • Metal rotary kilns need to be fired at a temperature at which metal elution does not occur, but when using a rotary kiln in which the furnace inner wall, which is the part in contact with the mixture, is made of a non-metallic material, metal elution
  • the baking temperature can be set to a high temperature without considering the above.
  • the firing process can be performed at a higher temperature when a rotary kiln having a furnace inner wall made of a non-metallic material is used than when a rotary kiln made of metal is used for the furnace inner wall. For this reason, the positive electrode active material containing a highly crystalline lithium metal composite oxide can be obtained in a short baking process.
  • the lithium metal composite oxide obtained by firing is appropriately classified after pulverization, and used as a positive electrode active material for a lithium secondary battery applicable to a lithium secondary battery.
  • the positive electrode active material for a lithium secondary battery is generally classified into 200 to 400 mesh.
  • One aspect of the present invention is a method for producing a positive electrode active material for a lithium secondary battery, which further includes a pulverization and classification step in addition to the mixing step and the main firing step described above.
  • the positive electrode active material for the lithium secondary battery preferably includes a lithium metal composite oxide represented by the following composition formula (I).
  • M is It represents one or more elements selected from the group consisting of Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga and V.
  • x in the composition formula (I) is preferably 0 or more, more preferably 0.01 or more, and further preferably 0.02 or more. preferable.
  • x in the composition formula (I) is preferably 0.18 or less, more preferably 0.15 or less, More preferably, it is as follows.
  • the upper limit value and the lower limit value of x can be arbitrarily combined.
  • x is preferably 0 or more and 0.18 or less, more preferably 0.01 or more and 0.15 or less, and further preferably 0.02 or more and 0.1 or less.
  • “high cycle characteristics” means that the discharge capacity retention ratio is high.
  • y in the composition formula (I) is preferably 0.13 or more, and more preferably 0.14 or more.
  • y in the composition formula (I) is preferably 0.35 or less, more preferably 0.3 or less, and 0.25. More preferably, it is as follows.
  • the upper limit value and the lower limit value of y can be arbitrarily combined.
  • y is preferably from 0.13 to 0.35, more preferably from 0.14 to 0.3, and even more preferably from 0.14 to 0.25.
  • z in the composition formula (I) is preferably 0.1 or more, more preferably 0.15 or more, and 0.2 or more. More preferably.
  • z in the composition formula (I) is preferably 0.35 or less, and preferably 0.32 or less in order to obtain a lithium secondary battery having high storage characteristics at a high temperature (for example, in an environment of 60 ° C.). Is more preferable, and it is further more preferable that it is 0.30 or less.
  • the upper limit value and lower limit value of z can be arbitrarily combined.
  • z is preferably 0.1 or more and 0.35 or less, more preferably 0.15 or more and 0.32 or less, and further preferably 0.2 or more and 0.30 or less.
  • w in the composition formula (I) is preferably more than 0, more preferably 0.001 or more, and 0.005 or more. Is more preferable. In the sense of obtaining a lithium secondary battery having a high discharge capacity at a high current rate, w in the composition formula (I) is preferably 0.04 or less, more preferably 0.03 or less, More preferably, it is 0.02 or less.
  • the upper and lower limits of w can be combined arbitrarily. For example, the above is preferably more than 0 and 0.04 or less, more preferably from 0.001 to 0.03, and further preferably from 0.005 to 0.02.
  • M in the composition formula (I) is one or more elements selected from the group consisting of Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga, and V.
  • a lithium compound and a positive electrode active material precursor are prepared so that the produced positive electrode active material for a lithium secondary battery includes a lithium metal composite oxide having a desired composition represented by the composition formula (I). Can be mixed.
  • the crystal structure of the positive electrode active material is a layered structure, and more preferably a hexagonal crystal structure or a monoclinic crystal structure.
  • the hexagonal crystal structures are P3, P3 1 , P3 2 , R3, P-3, R-3, P312, P321, P3 1 12, P3 1 21, P3 2 12, P3 2 21, R32, P3m1, P31m, P3c1, P31c, R3m, R3c, P-31m, P-31c, P-3m1, P-3c1, R-3m, R-3c, P6, P6 1 , P6 5 , P6 2 , P6 4 , P6 3 , P-6, P6 / m, P6 3 / m, P622, P6 1 22, P6 5 22, P6 2 22, P6 4 22, P6 3 22, P6 mm, P6 cc, P6 3 cm, P6 3 mc, P- It belongs to any one space group selected from the group consisting of 6m2, P-6c2, P-62m, P-62c, P6 / mmm, P6 / mcc, P6 3 / mcm, P-
  • the monoclinic crystal structure is P2, P2 1 , C2, Pm, Pc, Cm, Cc, P2 / m, P2 1 / m, C2 / m, P2 / c, P2 1 / c, C2 / It belongs to any one space group selected from the group consisting of c.
  • the crystal structure is a hexagonal crystal structure belonging to the space group R-3m, or a monoclinic crystal belonging to C2 / m.
  • a crystal structure is particularly preferred.
  • the main baking step is performed at 750 ° C. to 1000 ° C. in order to increase the crystallinity of the positive electrode active material. Even when firing at a high temperature, the elution of metal from the material of the firing furnace can be reduced. For this reason, when attention is paid to chromium which is a kind of metal impurity, a positive electrode active material in which the chromium content is reduced can be manufactured.
  • the content of chromium with respect to the total mass of the positive electrode active material for lithium secondary batteries contained in the positive electrode active material for lithium secondary batteries produced according to the present invention is preferably 50 ppm or less, and is 45 ppm or less. Is more preferable, and 40 ppm or less is particularly preferable.
  • the measurement of the chromium content relative to the total mass of the positive electrode active material for lithium secondary batteries contained in the positive electrode active material for lithium secondary batteries is performed by contacting the powder of the positive electrode active material for lithium secondary batteries with hydrochloric acid. And then dissolved by an inductively coupled plasma optical emission spectrometer.
  • the method for producing a positive electrode active material for a lithium secondary battery according to the present invention can be fired at a high temperature because the inner wall of the furnace, which is a part in contact with the mixture, is carried out using a rotary kiln formed of a nonmetallic material. . For this reason, decomposition
  • 1.0 mass% or less is preferable with respect to the total mass of the positive electrode active material contained in the positive electrode active material for lithium secondary batteries manufactured by this invention, and 0.99 mass% or less is preferable. More preferred is 0.95% by mass or less.
  • the lower limit of content of lithium carbonate with respect to the total mass of a positive electrode active material is not specifically limited, For example, 0.05 mass% or more, 0.10 mass% or more, 0.2 mass% or more is mentioned.
  • the upper limit value and the lower limit value can be arbitrarily combined.
  • the lithium carbonate content with respect to the total mass of the positive electrode active material is preferably 0.05% by mass or more and 1.0% by mass or less, and is 0.10% by mass or more and 0.99% by mass or less. More preferably, the content is 0.2% by mass or more and 0.95% by mass or less.
  • the content of the lithium carbonate component contained in the positive electrode active material for a lithium secondary battery can be determined by neutralization titration with an acidic solution.
  • the positive electrode active material for a lithium secondary battery is contact-treated with pure water, and the lithium carbonate component is eluted in pure water.
  • an acidic solution such as hydrochloric acid
  • the oxygen-containing gas does not sufficiently reach the mixture filled in the bottom of the sheath, and lithium carbonate Since the decomposition of the metal does not proceed uniformly, a large amount of lithium carbonate tends to remain in the produced positive electrode active material.
  • An example of the lithium secondary battery of the present embodiment includes a positive electrode and a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and an electrolytic solution disposed between the positive electrode and the negative electrode.
  • FIG. 1A and 1B are schematic views showing an example of the lithium secondary battery of the present embodiment.
  • the cylindrical lithium secondary battery 10 of this embodiment is manufactured as follows.
  • a pair of separators 1 having a strip shape, a strip-like positive electrode 2 having a positive electrode lead 21 at one end, and a strip-like negative electrode 3 having a negative electrode lead 31 at one end, a separator 1, a positive electrode 2, and a separator 1 and negative electrode 3 are laminated in this order and wound to form electrode group 4.
  • the lithium secondary battery 10 can be manufactured by sealing the upper part of the battery can 5 with the top insulator 7 and the sealing body 8.
  • a columnar shape in which the cross-sectional shape when the electrode group 4 is cut in a direction perpendicular to the winding axis is a circle, an ellipse, a rectangle, or a rectangle with rounded corners. Can be mentioned.
  • a shape of the lithium secondary battery having such an electrode group 4 a shape defined by IEC 60086 or JIS C 8500 which is a standard for a battery defined by the International Electrotechnical Commission (IEC) can be adopted. .
  • IEC 60086 or JIS C 8500 which is a standard for a battery defined by the International Electrotechnical Commission (IEC)
  • cylindrical shape, square shape, etc. can be mentioned.
  • the lithium secondary battery is not limited to the above-described wound type configuration, and may have a stacked type configuration in which a stacked structure of a positive electrode, a separator, a negative electrode, and a separator is repeatedly stacked.
  • Examples of the stacked lithium secondary battery include so-called coin-type batteries, button-type batteries, and paper-type (or sheet-type) batteries.
  • the positive electrode of this embodiment can be manufactured by first adjusting a positive electrode mixture containing a positive electrode active material, a conductive material and a binder, and supporting the positive electrode mixture on a positive electrode current collector.
  • a carbon material As the conductive material included in the positive electrode of the present embodiment, a carbon material can be used.
  • the carbon material include graphite powder, carbon black (for example, acetylene black), and a fibrous carbon material. Since carbon black is fine and has a large surface area, by adding a small amount to the positive electrode mixture, the conductivity inside the positive electrode can be improved and the charge / discharge efficiency and output characteristics can be improved. Both the binding force between the positive electrode mixture and the positive electrode current collector and the binding force inside the positive electrode mixture are reduced, which causes an increase in internal resistance.
  • the proportion of the conductive material in the positive electrode mixture is preferably 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the positive electrode active material.
  • a fibrous carbon material such as graphitized carbon fiber or carbon nanotube is used as the conductive material, this ratio can be lowered.
  • thermoplastic resin As the binder included in the positive electrode of the present embodiment, a thermoplastic resin can be used. This thermoplastic resin is sometimes referred to as polyvinylidene fluoride (hereinafter referred to as PVdF). ), Polytetrafluoroethylene (hereinafter sometimes referred to as PTFE), tetrafluoroethylene / hexafluoropropylene / vinylidene fluoride copolymer, propylene hexafluoride / vinylidene fluoride copolymer, tetrafluoroethylene Fluorine resins such as fluorinated ethylene / perfluorovinyl ether copolymers; Polyolefin resins such as polyethylene and polypropylene.
  • PVdF polyvinylidene fluoride
  • PTFE Polytetrafluoroethylene
  • PTFE Polytetrafluoroethylene / hexafluoropropylene / vinylidene fluoride cop
  • thermoplastic resins may be used as a mixture of two or more.
  • a fluororesin and a polyolefin resin as a binder, the ratio of the fluororesin to the total mass of the positive electrode mixture is 1% by mass to 10% by mass, and the ratio of the polyolefin resin is 0.1% by mass to 2% by mass
  • a positive electrode mixture having both high adhesion to the positive electrode current collector and high bonding strength inside the positive electrode mixture can be obtained.
  • a band-shaped member made of a metal material such as Al, Ni, and stainless steel can be used as the positive electrode current collector included in the positive electrode of the present embodiment.
  • a material that is made of Al and formed into a thin film is preferable because it is easy to process and inexpensive.
  • Examples of the method of supporting the positive electrode mixture on the positive electrode current collector include a method of pressure-molding the positive electrode mixture on the positive electrode current collector. Also, the positive electrode mixture is made into a paste using an organic solvent, and the resulting positive electrode mixture paste is applied to at least one surface side of the positive electrode current collector, dried, pressed and fixed, whereby the positive electrode current collector is bonded to the positive electrode current collector. A mixture may be supported.
  • usable organic solvents include amine solvents such as N, N-dimethylaminopropylamine and diethylenetriamine; ether solvents such as tetrahydrofuran; ketone solvents such as methyl ethyl ketone; methyl acetate And amide solvents such as dimethylacetamide and N-methyl-2-pyrrolidone (hereinafter sometimes referred to as NMP).
  • amine solvents such as N, N-dimethylaminopropylamine and diethylenetriamine
  • ether solvents such as tetrahydrofuran
  • ketone solvents such as methyl ethyl ketone
  • amide solvents such as dimethylacetamide and N-methyl-2-pyrrolidone (hereinafter sometimes referred to as NMP).
  • Examples of the method of applying the positive electrode mixture paste to the positive electrode current collector include a slit die coating method, a screen coating method, a curtain coating method, a knife coating method, a gravure coating method, and an electrostatic spray method.
  • a positive electrode can be manufactured by the method mentioned above.
  • the negative electrode included in the lithium secondary battery of this embodiment is only required to be able to dope and dedope lithium ions at a lower potential than the positive electrode, and the negative electrode mixture containing the negative electrode active material is supported on the negative electrode current collector. And an electrode composed of the negative electrode active material alone.
  • Negative electrode active material examples of the negative electrode active material possessed by the negative electrode include carbon materials, chalcogen compounds (oxides, sulfides, etc.), nitrides, metals, and alloys that can be doped and dedoped with lithium ions at a lower potential than the positive electrode. It is done.
  • Examples of carbon materials that can be used as the negative electrode active material include graphite such as natural graphite and artificial graphite, cokes, carbon black, pyrolytic carbons, carbon fibers, and organic polymer compound fired bodies.
  • the oxide can be used as an anode active material, (wherein, x represents a positive real number) SiO 2, SiO, etc. formula SiO x oxides of silicon represented by; TiO 2, TiO, etc. formula TiO x (wherein , X is a positive real number); oxide of titanium represented by formula VO x (where x is a positive real number) such as V 2 O 5 and VO 2 ; Fe 3 O 4 , Fe 2 O 3 , FeO, etc. Iron oxide represented by the formula FeO x (where x is a positive real number); SnO 2 , SnO, etc.
  • Examples of sulfides that can be used as the negative electrode active material include titanium sulfides represented by the formula TiS x (where x is a positive real number) such as Ti 2 S 3 , TiS 2 , and TiS; V 3 S 4 , VS 2, VS and other vanadium sulfides represented by the formula VS x (where x is a positive real number); Fe 3 S 4 , FeS 2 , FeS and other formulas FeS x (where x is a positive real number) Iron sulfide represented; Mo 2 S 3 , MoS 2 and the like MoS x (where x is a positive real number) Molybdenum sulfide; SnS 2, SnS and other formula SnS x (where, a sulfide of tin represented by x is a positive real number; a sulfide of tungsten represented by a formula WS x (where x is a positive real number) such as WS 2
  • Examples of the nitride that can be used as the negative electrode active material include Li 3 N and Li 3-x A x N (where A is one or both of Ni and Co, and 0 ⁇ x ⁇ 3). And lithium-containing nitrides.
  • These carbon materials, oxides, sulfides and nitrides may be used alone or in combination of two or more. These carbon materials, oxides, sulfides and nitrides may be crystalline or amorphous.
  • examples of the metal that can be used as the negative electrode active material include lithium metal, silicon metal, and tin metal.
  • Alloys that can be used as the negative electrode active material include lithium alloys such as Li—Al, Li—Ni, Li—Si, Li—Sn, and Li—Sn—Ni; silicon alloys such as Si—Zn; Sn—Mn, Sn -Tin alloys such as Co, Sn-Ni, Sn-Cu, Sn-La; alloys such as Cu 2 Sb, La 3 Ni 2 Sn 7 ;
  • These metals and alloys are mainly used alone as electrodes after being processed into a foil shape, for example.
  • carbon materials containing graphite as a main component such as natural graphite and artificial graphite, are preferably used.
  • the shape of the carbon material may be any of a flake shape such as natural graphite, a spherical shape such as mesocarbon microbeads, a fibrous shape such as graphitized carbon fiber, or an aggregate of fine powder.
  • the negative electrode mixture may contain a binder as necessary.
  • the binder include thermoplastic resins, and specific examples include PVdF, thermoplastic polyimide, carboxymethyl cellulose, polyethylene, and polypropylene.
  • the negative electrode current collector of the negative electrode examples include a band-shaped member made of a metal material such as Cu, Ni, and stainless steel. In particular, it is preferable to use Cu as a forming material and process it into a thin film from the viewpoint that it is difficult to make an alloy with lithium and it is easy to process.
  • Examples of the separator included in the lithium secondary battery of the present embodiment include a porous film, a nonwoven fabric, a woven fabric, and the like made of a material such as a polyolefin resin such as polyethylene and polypropylene, a fluororesin, and a nitrogen-containing aromatic polymer. A material having the following can be used. Moreover, a separator may be formed by using two or more of these materials, or a separator may be formed by laminating these materials.
  • the separator allows the electrolyte to permeate well when the battery is used (during charging / discharging). Therefore, the air resistance according to the Gurley method defined in JIS P 8117: 2009 is 50 seconds / 100 cc or more, 300 seconds. / 100 cc or less, more preferably 50 seconds / 100 cc or more and 200 seconds / 100 cc or less.
  • the porosity of the separator is preferably 30% by volume or more and 80% by volume or less, more preferably 40% by volume or more and 70% by volume or less with respect to the total volume of the separator.
  • the separator may be a laminate of separators having different porosity.
  • the electrolyte solution included in the lithium secondary battery of this embodiment contains an electrolyte and an organic solvent.
  • the electrolyte contained in the electrolyte includes LiClO 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (COCF 3 ), Li (C 4 F 9 SO 3 ), LiC (SO 2 CF 3 ) 3 , Li 2 B 10 Cl 10 , LiBOB (where BOB is bis (oxalato) borate LiFSI (here, FSI is bis (fluorosulfonyl) imide), lithium salt such as lower aliphatic carboxylic acid lithium salt, LiAlCl 4, and a mixture of two or more of these May be used.
  • BOB bis (oxalato) borate LiFSI (here, FSI is bis (fluorosulfonyl) imide)
  • lithium salt such as lower aliphatic
  • the electrolyte at least selected from the group consisting of LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 and LiC (SO 2 CF 3 ) 3 containing fluorine. It is preferable to use one containing one kind.
  • Examples of the organic solvent contained in the electrolyte include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 4-trifluoromethyl-1,3-dioxolan-2-one, and 1,2-di- Carbonates such as (methoxycarbonyloxy) ethane; 1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropyl methyl ether, 2,2,3,3-tetrafluoropropyl difluoromethyl ether, tetrahydrofuran, 2- Ethers such as methyltetrahydrofuran; Esters such as methyl formate, methyl acetate and ⁇ -butyrolactone; Nitriles such as acetonitrile and butyronitrile; N, N-dimethylformamide, N, N-dimethyla Amides such as toamide; carbamates such as 3-methyl-2-oxazolidone;
  • a mixed solvent containing carbonates is preferable, and a mixed solvent of cyclic carbonate and acyclic carbonate and a mixed solvent of cyclic carbonate and ethers are more preferable.
  • a mixed solvent of a cyclic carbonate and an acyclic carbonate a mixed solvent containing ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate is preferable.
  • the electrolyte using such a mixed solvent has a wide operating temperature range, hardly deteriorates even when charged and discharged at a high current rate, hardly deteriorates even when used for a long time, and natural graphite as an active material of the negative electrode. Even when a graphite material such as artificial graphite is used, it has many features that it is hardly decomposable.
  • an electrolytic solution containing a lithium compound containing fluorine such as LiPF 6 and an organic solvent having a fluorine substituent because the safety of the obtained lithium secondary battery is increased.
  • a mixed solvent containing ethers having fluorine substituents such as pentafluoropropyl methyl ether and 2,2,3,3-tetrafluoropropyl difluoromethyl ether and dimethyl carbonate is capable of capacity even when charging / discharging at a high current rate. Since the maintenance rate is high, it is more preferable.
  • a solid electrolyte may be used instead of the above electrolytic solution.
  • the solid electrolyte for example, an organic polymer electrolyte such as a polyethylene oxide polymer compound, a polymer compound containing at least one of a polyorganosiloxane chain or a polyoxyalkylene chain can be used.
  • maintained the non-aqueous electrolyte in the high molecular compound can also be used.
  • Li 2 S—SiS 2 , Li 2 S—GeS 2 , Li 2 S—P 2 S 5 , Li 2 S—B 2 S 3 , Li 2 S—SiS 2 —Li 3 PO 4 , Li 2 S—SiS 2 -Li 2 SO 4, Li 2 S-GeS 2 -P 2 S 5 inorganic solid electrolytes containing a sulfide, and the like, may be used a mixture of two or more thereof. By using these solid electrolytes, the safety of the lithium secondary battery may be further improved.
  • the solid electrolyte when a solid electrolyte is used, the solid electrolyte may serve as a separator, and in that case, the separator may not be required.
  • the lithium secondary battery using the positive electrode active material suppresses side reactions occurring inside the battery. be able to.
  • the lithium secondary battery can suppress side reactions occurring inside the battery.
  • the lithium secondary battery having the above-described configuration has the above-described positive electrode, it becomes a lithium secondary battery in which side reactions occurring inside the battery are suppressed as compared with the related art.
  • the firing raw material and the positive electrode active material for a lithium secondary battery were evaluated as follows.
  • composition analysis in positive electrode active material for lithium secondary battery (ICP emission analysis) The composition analysis of the positive electrode active material for a lithium secondary battery was performed using an inductively coupled plasma emission analyzer (manufactured by Perkin Elmer, Optima 7300 DV) after dissolving a metal oxide powder in hydrochloric acid. The content of chromium as an impurity was calculated from the amount of chromium obtained above. Moreover, the lithium amount derived from lithium carbonate measured by the method described later was subtracted from the lithium amount obtained above to obtain the lithium amount of the lithium metal composite oxide. The values of x, y, z, and w in the general formula (I) were determined from the nickel amount, cobalt amount, manganese amount, M amount, and lithium amount of the lithium metal composite oxide obtained above. .
  • the concentration of lithium carbonate remaining in the material was calculated.
  • Example 1 Lithium carbonate (Li 2 CO 3 ) and nickel cobalt manganese composite metal hydroxide (Ni 0.55 Co 0.21 Mn 0.24 (OH) 2 ) have a molar ratio of Li: Ni: Co: Mn of 1 .05: 0.55: 0.21: 0.24 and they were dry mixed to obtain a mixture. In addition, lithium carbonate content contained in the said mixture is 29.7 mass% from mixing ratio. [Pre-baking step] Next, the mixture was placed in a rotary kiln whose inner wall of the furnace was alumina and baked at 790 ° C. for 2 hours.
  • the fired product obtained in the preliminary firing step is placed in the rotary kiln and fired at 900 ° C. for 2 hours while a gas containing 21% by volume of oxygen is vented at 108.7 Nm 3 / h per 1 m 3 of the furnace volume. It was. Then, it cooled to room temperature and this was crushed and the positive electrode active material for lithium secondary batteries was obtained.
  • the chromium content was 2 ppm.
  • lithium carbonate content was 0.25 mass%.
  • Lithium carbonate (Li 2 CO 3 ) and nickel cobalt manganese composite metal hydroxide (Ni 0.55 Co 0.21 Mn 0.24 (OH) 2 ) have a molar ratio of Li: Ni: Co: Mn of 2 20: 0.55: 0.21: 0.24, and they were dry mixed to obtain a mixture.
  • lithium carbonate content contained in the said mixture is 46.6 mass% from mixing ratio.
  • Pre-baking step Next, the mixture was placed in a rotary kiln whose inner wall of the furnace was alumina and baked at 790 ° C. for 2 hours.
  • the fired product was placed in the rotary kiln and fired at 850 ° C. for 2 hours while a gas containing 100% by volume of oxygen was vented by 150.1 Nm 3 / h per 1 m 3 of the furnace volume. Then, it cooled to room temperature and this was crushed and the positive electrode active material for lithium secondary batteries was obtained.
  • the chromium content was 4 ppm.
  • lithium carbonate content was 0.92 mass%.
  • x was 0.37
  • y was 0.21
  • z was 0.24
  • w was 0.
  • the half widths of peak A and peak B were 0.160 and 0.208, respectively.
  • Example 3 A mixture was obtained in the same manner as in Example 1.
  • Pre-baking step The mixture described in Example 1 was placed in a rotary kiln having an inner wall of Inconel and baked at 730 ° C. for 2 hours.
  • Main firing process Subsequently, the fired product was placed in a rotary kiln whose inner wall is alumina, and baked at 850 ° C. for 2 hours while a gas containing 21% by volume of oxygen was passed through 107.2 Nm 3 / h per 1 m 3 of the furnace volume. Then, it cooled to room temperature and this was crushed and the positive electrode active material for lithium secondary batteries was obtained.
  • the chromium content was 10 ppm.
  • lithium carbonate content was 0.16 mass%.
  • x was 0.03, y was 0.21, z was 0.24, and w was 0.
  • the half widths of peak A and peak B were 0.152 and 0.185, respectively.
  • Example 4 A mixture was obtained in the same manner as in Example 1.
  • Pre-baking step The mixture described in Example 1 was placed in a rotary kiln having an inner wall of Inconel and baked at 730 ° C. for 2 hours.
  • Main firing process Subsequently, the fired product was placed in a rotary kiln having an inner wall made of alumina, and baked at 850 ° C. for 2 hours while a gas containing 60% by volume of oxygen was vented by 107.2 Nm 3 / h per 1 m 3 of the furnace volume. Then, it cooled to room temperature and this was crushed and the positive electrode active material for lithium secondary batteries was obtained.
  • the chromium content was 31 ppm.
  • lithium carbonate content was 0.19 mass%.
  • x was 0.04, y was 0.21, z was 0.24, and w was 0.
  • the half widths of peak A and peak B were 0.153 and 0.194, respectively.
  • Example 5 A mixture was obtained in the same manner as in Example 1.
  • Pre-baking step The mixture described in Example 1 was placed in a rotary kiln having an inner wall of Inconel and baked at 730 ° C. for 2 hours.
  • Main firing process Subsequently, the fired product was placed in a rotary kiln having an inner wall made of alumina, and baked at 850 ° C. for 2 hours while a gas containing 100% by volume of oxygen was passed through 46.5 Nm 3 / h per 1 m 3 of the furnace volume. Then, it cooled to room temperature and this was crushed and the positive electrode active material for lithium secondary batteries was obtained.
  • the chromium content was 49 ppm.
  • lithium carbonate content was 0.15 mass%.
  • x was 0.04, y was 0.22, z was 0.24, and w was 0.
  • the half widths of peak A and peak B were 0.152 and 0.178, respectively.
  • Example 6 A mixture was obtained in the same manner as in Example 1.
  • Pre-baking step The mixture described in Example 1 was placed in a rotary kiln having an inner wall of Inconel and baked at 730 ° C. for 2 hours.
  • Main firing process Subsequently, the fired product was placed in a rotary kiln having an inner wall made of alumina, and baked at 850 ° C. for 2 hours while a gas containing 21% by volume of oxygen was vented at 46.5 Nm 3 / h per 1 m 3 of the furnace volume. Then, it cooled to room temperature and this was crushed and the positive electrode active material for lithium secondary batteries was obtained.
  • the chromium content was 20 ppm.
  • lithium carbonate content was 0.51 mass%.
  • x was 0.04, y was 0.21, z was 0.24, and w was 0.
  • the half widths of peak A and peak B were 0.149 and 0.182, respectively.
  • Example 7 A mixture was obtained in the same manner as in Example 1.
  • Pre-baking step The mixture described in Example 1 was placed in a rotary kiln having an inner wall of Inconel and baked at 730 ° C. for 2 hours.
  • Main firing process Subsequently, the fired product was placed in a rotary kiln having an inner wall made of alumina, and baked at 850 ° C. for 2 hours while a gas containing 21% by volume of oxygen was passed through 17.9 Nm 3 / h per 1 m 3 of the furnace volume. Then, it cooled to room temperature and this was crushed and the positive electrode active material for lithium secondary batteries was obtained.
  • the chromium content was 19 ppm.
  • lithium carbonate content was 0.90 mass%.
  • x was 0.03, y was 0.21, z was 0.24, and w was 0.
  • the half widths of peak A and peak B were 0.161 and 0.200, respectively.
  • Example 8 A mixture was obtained in the same manner as in Example 1.
  • Pre-baking step The mixture described in Example 1 was placed in a rotary kiln having an inner wall of Inconel and baked at 730 ° C. for 2 hours.
  • Main firing process Subsequently, the fired product was put into a rotary kiln whose inner wall of the furnace was alumina, and baked at 850 ° C. for 2 hours while a gas containing 100% by volume of oxygen was passed through 17.9 Nm 3 / h per 1 m 3 of the furnace volume. Then, it cooled to room temperature and this was crushed and the positive electrode active material for lithium secondary batteries was obtained.
  • the chromium content was 45 ppm.
  • lithium carbonate content was 0.53 mass%.
  • x was 0.03, y was 0.21, z was 0.24, and w was 0.
  • the half width of the peak A and the peak B was 0.151 and 0.184, respectively.
  • Example 1 A mixture was obtained in the same manner as in Example 1. [Pre-baking step] The mixture described in Example 1 was placed in a rotary kiln having an inner wall of Inconel and baked at 730 ° C. for 2 hours. [Main firing process] Subsequently, the fired product was placed in a rotary kiln whose inner wall of the furnace was Inconel, and fired at 730 ° C. for 2 hours while a gas containing 21% by volume of oxygen was passed through 22.6 Nm 3 / h per 1 m 3 of the furnace volume. Then, it cooled to room temperature and this was crushed and the positive electrode active material for lithium secondary batteries was obtained.
  • the chromium content was 55 ppm.
  • lithium carbonate content was 5.31 mass%.
  • x was 0.02
  • y was 0.21
  • z was 0.24
  • w was 0.
  • the half widths of peak A and peak B were 0.458 and 0.639, respectively.
  • Example 2 A mixture was obtained in the same manner as in Example 1.
  • Pre-baking step The mixture described in Example 1 was placed in a rotary kiln having an inner wall of Inconel and baked at 730 ° C. for 2 hours.
  • Main firing process Subsequently, the fired product was placed in a rotary kiln whose inner wall of the furnace was Inconel, and fired at 730 ° C. for 4 hours while a gas containing 21% by volume of oxygen was passed through 22.6 Nm 3 / h per 1 m 3 of the furnace volume. Then, it cooled to room temperature and this was crushed and the positive electrode active material for lithium secondary batteries was obtained.
  • the chromium content was 60 ppm.
  • lithium carbonate content was 3.43 mass%.
  • x was 0.03, y was 0.22, z was 0.24, and w was 0.
  • the half width of the peak A and the peak B was 0.415 and 0.578, respectively.
  • Example 3 A mixture was obtained in the same manner as in Example 1.
  • Pre-baking step The mixture described in Example 1 was placed in a rotary kiln having an inner wall of Inconel and baked at 730 ° C. for 2 hours.
  • Main firing process Subsequently, the fired product was placed in a rotary kiln having an inner wall of SUS310, and fired at 730 ° C. for 5 hours while a gas containing 21% by volume of oxygen was passed through 22.6 Nm 3 / h per 1 m 3 of the furnace volume. Then, it cooled to room temperature and this was crushed and the positive electrode active material for lithium secondary batteries was obtained.
  • the chromium content was 320 ppm.
  • lithium carbonate content was 1.13 mass%.
  • x was 0.02
  • y was 0.21
  • z was 0.24
  • w was 0.
  • the half width of the peak A and the peak B was 0.214 and 0.261, respectively.
  • Example 4 A mixture was obtained in the same manner as in Example 1.
  • Pre-baking step The mixture described in Example 1 was placed in a rotary kiln having an inner wall of Inconel and baked at 730 ° C. for 2 hours.
  • Main firing process Subsequently, the fired product was filled into a sheath whose inner wall is alumina, and was heated at 850 ° C. at 2850 Nm 3 / h with a roller hearth kiln and a gas containing 21% by volume of oxygen per 1 m 3 of the furnace volume. Time firing was performed. Then, it cooled to room temperature and this was crushed and the positive electrode active material for lithium secondary batteries was obtained.
  • the chromium content was 10 ppm.
  • lithium carbonate content was 1.01 mass%.
  • x was 0.04, y was 0.21, z was 0.24, and w was 0.
  • the half width of the peak A and the peak B was 0.225 and 0.278, respectively.
  • Example 5 A mixture was obtained in the same manner as in Example 1.
  • Pre-baking step The mixture described in Example 1 was placed in a rotary kiln having an inner wall of Inconel and baked at 730 ° C. for 2 hours.
  • Main firing process Subsequently, the fired product was filled into a sheath whose inner wall is alumina, and was heated at 850 ° C. while a roller hearth kiln was ventilated with 29.7 Nm 3 / h of gas containing 21% by volume of oxygen per 1 m 3 of the furnace volume. Time firing was performed. Then, it cooled to room temperature and this was crushed and the positive electrode active material for lithium secondary batteries was obtained.
  • the lithium carbonate content was 0.67% by mass.
  • x was 0.02
  • y was 0.21
  • z was 0.24
  • w was 0.
  • the half widths of peak A and peak B were 0.129 and 0.150, respectively.
  • Example 1 A mixture was obtained in the same manner as in Example 1.
  • Pre-baking step The mixture described in Example 1 was placed in a rotary kiln having an inner wall of Inconel and baked at 730 ° C. for 2 hours.
  • Main firing process Subsequently, the fired product was put into a rotary kiln whose inner wall of the furnace was alumina, and baked at 850 ° C. for 4 hours while a gas containing 21% by volume of oxygen was vented at 17.9 Nm 3 / h per 1 m 3 of the furnace volume. Then, it cooled to room temperature and this was crushed and the positive electrode active material for lithium secondary batteries was obtained.
  • the chromium content was 13 ppm.
  • lithium carbonate content was 0.10 mass%.
  • x was 0.02
  • y was 0.21
  • z was 0.24
  • w was 0.
  • the half widths of peak A and peak B were 0.149 and 0.183, respectively.
  • Examples 1 to 8 to which the present invention is applied can produce a positive electrode active material having a small peak half-value width, that is, high crystallinity, in a short baking time. did it. Further, in Examples 1 to 8 to which the present invention was applied, the chromium content was low. In contrast, Comparative Examples 1 to 3 in which the main firing step was performed with a metal rotary kiln had a high chromium content and a large peak half-value width. Moreover, although the comparative example 4 which used the roller hearth kiln for the main baking process and made the baking time of 2 hours has a large peak half value width and the comparative example 5 has a small peak half value width, the main baking time required 10 hours.
  • Reference Example 1 the main calcination was performed for 4 hours using a rotary kiln in which the inner wall of the furnace, which is the part in contact with the mixture, was formed from a non-metallic material.
  • Reference Example 1 and Example 1 were compared, the peak half-value widths were comparable. That is, a positive electrode active material with high crystallinity could be produced in a short (2 hours) firing time.

Abstract

The present invention relates to a production method for a lithium secondary battery positive electrode active material, the production method including: a mixing step for mixing a lithium compound and a positive electrode active material precursor to obtain a mixture; and a main sintering step for using a rotary kiln to sinter the mixture. The production method is characterized in that the mixture contains more than 0 but no more than 50 mass% of the lithium compound and in that a kiln inner wall of the rotary kiln is formed from a non-metal material.

Description

リチウム二次電池用正極活物質の製造方法Method for producing positive electrode active material for lithium secondary battery
 本発明は、リチウム二次電池用正極活物質の製造方法に関する。
 本願は、2016年10月13日に、日本に出願された特願2016-201566号に基づき、優先権を主張し、その内容をここに援用する。
The present invention relates to a method for producing a positive electrode active material for a lithium secondary battery.
This application claims priority based on Japanese Patent Application No. 2016-201566 for which it applied to Japan on October 13, 2016, and uses the content here.
 リチウム二次電池用正極活物質には、リチウム複合酸化物が用いられている。リチウム二次電池は、既に携帯電話用途やノートパソコン用途などの小型電源だけでなく、自動車用途や電力貯蔵用途などの中型又は大型電源においても、実用化が進んでいる。 A lithium composite oxide is used as a positive electrode active material for a lithium secondary battery. Lithium secondary batteries have already been put into practical use not only for small power supplies for mobile phones and laptop computers, but also for medium and large power supplies for automobiles and power storage.
 リチウム二次電池用正極活物質の製造方法は、一般的に、リチウム化合物と、金属複合酸化物である前駆体とを焼成する工程を含む。
 サイクル特性等のリチウム二次電池の性能を向上させるために、リチウム二次電池用正極活物質の組成を均一化する試みや、未反応物の残存量を低下させる試みがされている。
 例えば、特許文献1には、焼成工程をローラーハースキルンを用いて実施したことにより、酸化のばらつきが少ない正極材料を生産性よく製造できたことが記載されている。
A method for producing a positive electrode active material for a lithium secondary battery generally includes a step of firing a lithium compound and a precursor that is a metal composite oxide.
In order to improve the performance of the lithium secondary battery such as cycle characteristics, attempts have been made to make the composition of the positive electrode active material for the lithium secondary battery uniform and to reduce the remaining amount of unreacted substances.
For example, Patent Document 1 describes that a positive electrode material with little variation in oxidation could be manufactured with high productivity by performing the firing process using a roller hearth kiln.
特開2006-4724号公報JP 2006-4724 A
 リチウム二次電池の応用分野の拡大が進む中、リチウム二次電池用正極活物質には種々の電池特性を向上させるため、高い結晶性が求められる。
 しかしながら、前記特許文献1に記載のように、ローラーハースキルンを用いると、焼成に長時間を要し、さらに結晶性も十分なものではない。
 本発明は上記事情に鑑みてなされたものであって、結晶性に優れるリチウム二次電池用正極活物質の製造方法を提供することを課題とする。
As the application field of lithium secondary batteries is expanding, positive electrode active materials for lithium secondary batteries are required to have high crystallinity in order to improve various battery characteristics.
However, as described in Patent Document 1, when a roller hearth kiln is used, a long time is required for firing, and crystallinity is not sufficient.
This invention is made | formed in view of the said situation, Comprising: It aims at providing the manufacturing method of the positive electrode active material for lithium secondary batteries which is excellent in crystallinity.
 すなわち、本発明は、下記[1]~[8]の発明を包含する。
[1]リチウム化合物と、正極活物質前駆体とを混合し、混合物を得る混合工程と、前記混合物をロータリーキルンを用いて焼成する本焼成工程と、を含むリチウム二次電池用正極活物質の製造方法であって、前記混合物に含まれるリチウム化合物の含有量が前記混合物の総質量に対して0を超え50質量%以下であり、前記ロータリーキルンの炉内壁が、非金属材質から形成されたことを特徴とする、リチウム二次電池用正極活物質の製造方法。
[2]前記本焼成工程を750℃以上1000℃以下で行う、[1]に記載のリチウム二次電池用正極活物質の製造方法。
[3]前記リチウム二次電池用正極活物質が、以下の一般式(I)で表されるリチウム金属複合酸化物を含む、[1]又は[2]に記載のリチウム二次電池用正極活物質の製造方法。
   Li[Li(Ni(1-y-z-w)CoMn1-x]O ・・・(I)
 (一般式(I)中、-0.1≦x≦0.2、0<y≦0.5、0<z≦0.8、0≦w≦0.1、y+z+w<1、Mは、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の元素を表す。)
[4]前記混合工程の後であって、前記本焼成工程の前に、前記本焼成の焼成温度よりも低温で焼成する、予備焼成工程を含む、[1]~[3]のいずれか1項に記載のリチウム二次電池用正極活物質の製造方法。
[5]前記本焼成工程及び前記予備焼成工程のいずれか一方又は両方を、酸素含有ガスを15Nm/h/m以上の流量で通気することにより行う[1]~[4]のいずれか1項に記載のリチウム二次電池用正極活物質の製造方法。
[6]前記酸素含有ガス中の酸素濃度が、酸素含有ガスの総体積に対して21体積%以上である、[5]に記載のリチウム二次電池用正極活物質の製造方法。
[7]前記リチウム二次電池用正極活物質中に含まれるクロムの含有量が前記リチウム二次電池用正極活物質の総質量に対して50ppm以下である、[1]~[6]のいずれか1項に記載のリチウム二次電池用正極活物質の製造方法。
[8]前記リチウム二次電池用正極活物質中に含まれる炭酸リチウムの含有量が前記リチウム二次電池用正極活物質の総質量に対して1.0質量%以下である、[1]~[7]のいずれか1項に記載のリチウム二次電池用正極活物質の製造方法。
That is, the present invention includes the following [1] to [8].
[1] Production of a positive electrode active material for a lithium secondary battery, comprising: a mixing step of mixing a lithium compound and a positive electrode active material precursor to obtain a mixture; and a main baking step of baking the mixture using a rotary kiln. The lithium compound content in the mixture is more than 0 and 50% by mass or less with respect to the total mass of the mixture, and the furnace inner wall of the rotary kiln is formed of a non-metallic material. A method for producing a positive electrode active material for a lithium secondary battery.
[2] The method for producing a positive electrode active material for a lithium secondary battery according to [1], wherein the main firing step is performed at 750 ° C. or higher and 1000 ° C. or lower.
[3] The positive electrode active material for a lithium secondary battery according to [1] or [2], wherein the positive electrode active material for a lithium secondary battery includes a lithium metal composite oxide represented by the following general formula (I): A method for producing a substance.
Li [Li x (Ni (1-yzw) Co y Mn z M w ) 1-x ] O 2 (I)
(In the general formula (I), −0.1 ≦ x ≦ 0.2, 0 <y ≦ 0.5, 0 <z ≦ 0.8, 0 ≦ w ≦ 0.1, y + z + w <1, M is It represents one or more elements selected from the group consisting of Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga and V.)
[4] Any one of [1] to [3], including a pre-baking step after the mixing step and before the main baking step, including baking at a temperature lower than the baking temperature of the main baking. The manufacturing method of the positive electrode active material for lithium secondary batteries as described in an item.
[5] Any one or both of the main firing step and the preliminary firing step are performed by ventilating an oxygen-containing gas at a flow rate of 15 Nm 3 / h / m 3 or more. 2. A method for producing a positive electrode active material for a lithium secondary battery according to item 1.
[6] The method for producing a positive electrode active material for a lithium secondary battery according to [5], wherein an oxygen concentration in the oxygen-containing gas is 21% by volume or more based on a total volume of the oxygen-containing gas.
[7] Any of [1] to [6], wherein the content of chromium contained in the positive electrode active material for lithium secondary batteries is 50 ppm or less with respect to the total mass of the positive electrode active material for lithium secondary batteries. The manufacturing method of the positive electrode active material for lithium secondary batteries of Claim 1.
[8] The content of lithium carbonate contained in the positive electrode active material for lithium secondary batteries is 1.0% by mass or less based on the total mass of the positive electrode active material for lithium secondary batteries. [7] The method for producing a positive electrode active material for a lithium secondary battery according to any one of [7].
 本発明によれば、結晶性に優れるリチウム二次電池用正極活物質の製造方法を提供することができる。 According to the present invention, a method for producing a positive electrode active material for a lithium secondary battery having excellent crystallinity can be provided.
リチウムイオン二次電池の一例を示す概略構成図である。It is a schematic block diagram which shows an example of a lithium ion secondary battery. リチウムイオン二次電池の一例を示す概略構成図である。It is a schematic block diagram which shows an example of a lithium ion secondary battery. ロータリーキルンの一例を示す概略図である。It is the schematic which shows an example of a rotary kiln. ロータリーキルンの長手方向に対して垂直な方向の概略断面図である。It is a schematic sectional drawing of the direction perpendicular | vertical with respect to the longitudinal direction of a rotary kiln. ロータリーキルンの長手方向の概略断面図である。It is a schematic sectional drawing of the longitudinal direction of a rotary kiln.
<リチウム二次電池用正極活物質の製造方法>
 本発明のリチウム二次電池用正極活物質(以下、「正極活物質」とも記載する。)の製造方法は、リチウム化合物と、正極活物質前駆体(以下、「前駆体」とも記載する。)とを混合し、混合物を得る混合工程と、前記混合物をロータリーキルンを用いて焼成する本焼成工程と、を含むリチウム二次電池用正極活物質の製造方法であって、前記混合物に含まれるリチウム化合物の含有量が前記混合物の総質量に対して0を超え50質量%以下であり、前記ロータリーキルンの炉内壁が、非金属材質から形成されたことを特徴とする。
<Method for producing positive electrode active material for lithium secondary battery>
The method for producing a positive electrode active material for a lithium secondary battery of the present invention (hereinafter also referred to as “positive electrode active material”) is a lithium compound and a positive electrode active material precursor (hereinafter also referred to as “precursor”). And a main firing step in which the mixture is fired using a rotary kiln, and a method for producing a positive electrode active material for a lithium secondary battery, comprising: a lithium compound contained in the mixture The content of is more than 0 and 50% by mass or less with respect to the total mass of the mixture, and the furnace inner wall of the rotary kiln is formed of a non-metallic material.
 リチウム化合物と前駆体との焼成工程には、従来、トンネル炉、ローラーハースキルン、ロータリーキルンなどの設備が使用されている。
 トンネル炉やローラーハースキルンは、サヤに混合物を充填して焼成するため、焼成効率が低く、さらに焼成に長時間を要するという問題がある。
 またロータリーキルンは、炉内壁が金属製であると、高温で焼成すると部材から金属が溶出し、溶出した金属成分により正極活物質が汚染されてしまうという問題がある。
Conventionally, facilities such as a tunnel furnace, a roller hearth kiln, and a rotary kiln are used for the firing process of the lithium compound and the precursor.
Tunnel furnaces and roller hearth kilns have a problem that the firing efficiency is low and further firing takes a long time because the mixture is fired with filling the mixture.
In addition, if the furnace inner wall is made of metal, the rotary kiln has a problem that when fired at a high temperature, the metal is eluted from the member, and the positive electrode active material is contaminated by the eluted metal component.
 本発明は、リチウム化合物と前駆体との混合物の焼成工程を、混合物が接触する部位である炉内壁が、非金属材質から形成されたロータリーキルンを用いて実施する。このため、高温で焼成した場合であっても、炉内壁から金属が溶出せず、正極活物質が汚染されることが無い。また、本発明はリチウム化合物の含有量が前記混合物の総質量に対して50質量%以下の混合物を焼成するため、高温で焼成してもロータリーキルンに混合物及び焼成物が過度に付着することなく、焼成することができる。
 以下、本発明のリチウム二次電池用正極活物質の製造方法について説明する。
In the present invention, a firing process of a mixture of a lithium compound and a precursor is performed using a rotary kiln in which a furnace inner wall, which is a portion in contact with the mixture, is formed of a nonmetallic material. For this reason, even if it is a case where it bakes at high temperature, a metal does not elute from a furnace inner wall and a positive electrode active material is not contaminated. In addition, since the present invention bakes a mixture having a lithium compound content of 50% by mass or less based on the total mass of the mixture, the mixture and the baked product do not excessively adhere to the rotary kiln even when baked at a high temperature. It can be fired.
Hereinafter, the manufacturing method of the positive electrode active material for lithium secondary batteries of this invention is demonstrated.
[混合工程]
 本工程は、リチウム化合物と、前駆体とを混合し、混合物を得る工程である。
 本工程においては、リチウム化合物と、前駆体との混合物中の、リチウム化合物の含有量が前記混合物の総質量に対して0を超え50質量%以下となるように混合する。
 前記混合物の総質量に対するリチウム化合物の含有量の下限値は、10質量%以上が好ましく、15質量%以上がより好ましく、20質量%以上が特に好ましい。
 前記混合物の総質量に対するリチウム化合物の含有量の上限値は、49質量%以下が好ましく、48質量%以下がより好ましく、47質量%以下が特に好ましい。
 上記上限値と下限値は任意に組み合わせることができる。
 例えば、前記混合物の総質量に対する前記リチウム化合物の含有量は、10質量%以上49質量%以下が好ましく、15質量%以上48質量%以下がより好ましく、20質量%以上47質量%以下がさらに好ましい。
[Mixing process]
This step is a step of mixing the lithium compound and the precursor to obtain a mixture.
In this step, mixing is performed so that the content of the lithium compound in the mixture of the lithium compound and the precursor is more than 0 and 50% by mass or less with respect to the total mass of the mixture.
10 mass% or more is preferable, as for the lower limit of content of the lithium compound with respect to the total mass of the said mixture, 15 mass% or more is more preferable, and 20 mass% or more is especially preferable.
The upper limit of the lithium compound content relative to the total mass of the mixture is preferably 49% by mass or less, more preferably 48% by mass or less, and particularly preferably 47% by mass or less.
The upper limit value and the lower limit value can be arbitrarily combined.
For example, the content of the lithium compound with respect to the total mass of the mixture is preferably 10% by mass to 49% by mass, more preferably 15% by mass to 48% by mass, and still more preferably 20% by mass to 47% by mass. .
 本発明においては、混合物中の前記混合物の総質量に対するリチウム化合物の含有量を上記特定の含有量としたことにより、混合物及び焼成物のロータリーキルンの炉内壁への付着を低減できる。このため、後述する焼成工程において、高温で焼成することができ、結晶性の高い正極活物質を得ることができる。 In the present invention, the lithium compound content relative to the total mass of the mixture in the mixture is set to the specific content, whereby adhesion of the mixture and the fired product to the inner wall of the rotary kiln can be reduced. For this reason, in the baking process mentioned later, it can bake at high temperature and can obtain the positive electrode active material with high crystallinity.
・リチウム化合物
 本発明に用いるリチウム化合物について説明する。
 本発明に用いるリチウム化合物は、特に限定されず、炭酸リチウム、硝酸リチウム、酢酸リチウム、水酸化リチウム、水酸化リチウム水和物、酸化リチウムのうち何れか一つ、又は、二つ以上を混合して使用することができる。これらの中では、水酸化リチウム及び炭酸リチウムのいずれか一方又は両方が好ましい。
-Lithium compound The lithium compound used for this invention is demonstrated.
The lithium compound used in the present invention is not particularly limited, and any one of lithium carbonate, lithium nitrate, lithium acetate, lithium hydroxide, lithium hydroxide hydrate, lithium oxide, or a mixture of two or more thereof. Can be used. In these, any one or both of lithium hydroxide and lithium carbonate are preferable.
・前駆体
 前駆体は、遷移金属化合物であることが好ましい。前駆体は、リチウム以外の金属、すなわち、必須金属であるNiと、Co、Mn、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群から選ばれる1種以上の任意元素とを含む遷移金属化合物であることが好ましい。遷移金属化合物は、遷移金属水酸化物又は遷移金属酸化物であることが、好ましく、具体的には、ニッケルコバルトマンガン複合水酸化物又はニッケルコバルトマンガン複合酸化物が好ましい。
 前駆体は、通常公知のバッチ法又は共沈殿法により製造することが可能である。
-Precursor The precursor is preferably a transition metal compound. The precursor is a group consisting of metals other than lithium, that is, essential metals Ni, Co, Mn, Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga, and V. It is preferable that it is a transition metal compound containing 1 or more types of arbitrary elements chosen from these. The transition metal compound is preferably a transition metal hydroxide or a transition metal oxide, and specifically, nickel cobalt manganese composite hydroxide or nickel cobalt manganese composite oxide is preferable.
The precursor can be produced by a generally known batch method or coprecipitation method.
[本焼成工程]
 本発明においては、上記特定の混合条件としたことにより、焼成工程において高温で焼成することができ、結晶の発達を良好に進行させることができる。
 本焼成工程は、前記混合物との接触部位である炉内壁が、非金属材質から形成されたロータリーキルンにより行う。
 本実施形態で使用されるロータリーキルンを図2~図4により説明する。
 ロータリーキルン40は、円筒状の炉芯管42と、前記炉芯管42を回転させる回転装置(不図示)と、前記炉芯管42を覆う断熱材(不図示)と、前記炉芯管42を加熱するヒーター(不図示)と、前記炉心管42内に焼成原料を投入する原料投入装置(不図示)と、焼成物を排出する排出部(不図示)とを含む。炉芯管42は、図4に示した通り、焼成原料が投入される入口側に比べて出口側が低くなるように傾斜がつけられて設置される。前記炉芯管42が回転することにより、焼成原料が混合されながら、炉芯管42の入口側から出口側に送られると共に、焼成が行われる。また、酸素含有ガスは図4の破線矢印で示したように、通常出口側から入口側へ通気される。
 本焼成工程は、具体的には、ロータリーキルン40に前記混合物を供給し、ロータリーキルン40を構成する炉芯管42を回転させることにより、前記混合物を混合しながら、前記混合物が所定の温度となるようにロータリーキルンを加熱することによって行うことができる。本発明において、炉内壁41は、炉芯管42の内側の壁を意味する。
 非金属材質としては、窒化ケイ素(Si)、酸化アルミニウム(Al;アルミナともいう)、二酸化ケイ素(SiO)、二酸化ジルコニウム(ZrO)、酸化マグネシウム(MgO)、炭化ケイ素(SiC)等のセラミック材料が好ましく、前記非金属材質の総質量に対して酸化アルミニウムを50質量%以上含むことが特に好ましい。
 ロータリーキルンの全内容積に対する前記混合物の充填量は、1体積%~50体積%であることが好ましく、3体積%~30体積%であることがより好ましく、5体積%~20体積%であることがさらに好ましい。
[Main firing process]
In the present invention, by using the above specific mixing conditions, firing can be performed at a high temperature in the firing step, and the development of crystals can be favorably progressed.
The main firing step is performed by a rotary kiln in which the furnace inner wall, which is a contact portion with the mixture, is formed from a non-metallic material.
The rotary kiln used in this embodiment will be described with reference to FIGS.
The rotary kiln 40 includes a cylindrical furnace core tube 42, a rotating device (not shown) that rotates the furnace core tube 42, a heat insulating material (not shown) that covers the furnace core tube 42, and the furnace core tube 42. A heater (not shown) for heating, a raw material charging device (not shown) for charging the fired raw material into the furnace core tube 42, and a discharge part (not shown) for discharging the fired product are included. As shown in FIG. 4, the furnace core tube 42 is installed with an inclination so that the outlet side is lower than the inlet side into which the firing raw material is charged. By rotating the furnace core tube 42, the firing raw materials are mixed and fed from the inlet side to the outlet side of the furnace core tube 42, and firing is performed. The oxygen-containing gas is normally ventilated from the outlet side to the inlet side, as indicated by broken line arrows in FIG.
Specifically, in the firing step, the mixture is supplied to the rotary kiln 40 and the furnace core tube 42 constituting the rotary kiln 40 is rotated so that the mixture reaches a predetermined temperature while mixing the mixture. This can be done by heating the rotary kiln. In the present invention, the furnace inner wall 41 means an inner wall of the furnace core tube 42.
Non-metallic materials include silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 ; also referred to as alumina), silicon dioxide (SiO 2 ), zirconium dioxide (ZrO 2 ), magnesium oxide (MgO), silicon carbide. A ceramic material such as (SiC) is preferable, and it is particularly preferable that aluminum oxide is contained in an amount of 50% by mass or more based on the total mass of the nonmetallic material.
The filling amount of the mixture with respect to the total internal volume of the rotary kiln is preferably 1% by volume to 50% by volume, more preferably 3% by volume to 30% by volume, and 5% by volume to 20% by volume. Is more preferable.
 本焼成工程は、750℃以上1000℃以下で行うことが好ましい。
 焼成温度を750℃以上1000℃以下の高温の範囲とすることによって、結晶性の高い正極活物質を作製できる。
 本実施形態において、焼成工程の温度は、焼成される混合物の温度を意味する。
It is preferable to perform this baking process at 750 degreeC or more and 1000 degrees C or less.
By setting the firing temperature to a high temperature range of 750 ° C. or higher and 1000 ° C. or lower, a positive electrode active material with high crystallinity can be produced.
In this embodiment, the temperature of a baking process means the temperature of the mixture baked.
[予備焼成工程]
 本発明においては、前記混合工程の後であって、前記本焼成工程の前に、前記本焼成の焼成温度よりも低温で焼成する、予備焼成工程を含むことが好ましい。予備焼成は、前記本焼成よりも低温であればよく、本焼成の焼成温度よりも80℃~200℃低い温度が好ましく、100℃~150℃低い温度であることが好ましい。
 予備焼成を行うことにより、高い結晶性を有するリチウム金属複合酸化物を含む正極活物質を得ることができ、また、未反応物質を少なくすることができる。
 予備焼成工程の焼成炉は特に限定されないが、ロータリーキルンを使用することが好ましい。本焼成工程と予備焼成工程とは、同一のロータリーキルンであってもよく、異なるロータリーキルンであってもよいが、連続的に焼成工程を行える観点から、同一のロータリーキルンを用いて実施することが好ましい。
 予備焼成工程に用いる焼成炉の前記混合物との接触部位は、インコネル等の金属材質であってもよく、窒化ケイ素(Si)、酸化アルミニウム(Al;アルミナともいう)等の非金属材質であってもよい。
[Pre-baking step]
In the present invention, it is preferable to include a preliminary firing step in which firing is performed at a temperature lower than the firing temperature of the main firing after the mixing step and before the main firing step. The pre-firing may be performed at a temperature lower than that of the main calcination, and is preferably 80 ° C. to 200 ° C. lower than the main calcination temperature, and preferably 100 ° C. to 150 ° C. lower.
By performing preliminary firing, a positive electrode active material containing a lithium metal composite oxide having high crystallinity can be obtained, and unreacted materials can be reduced.
The firing furnace in the preliminary firing step is not particularly limited, but it is preferable to use a rotary kiln. The main firing step and the preliminary firing step may be the same rotary kiln or different rotary kilns, but are preferably performed using the same rotary kiln from the viewpoint of performing the firing step continuously.
The contact part with the said mixture of the baking furnace used for a preliminary baking process may be metal materials, such as Inconel, such as silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 ; also referred to as alumina), etc. A non-metallic material may be used.
 前記本焼成工程及び前記予備焼成工程のいずれか一方又は両方は、酸素含有ガスを15Nm/h/m以上の流量で通気することにより行うことが好ましく、16Nm/h/m以上がより好ましい。上限値は特に限定されないが、例えば、150Nm/h/m以下、130Nm/h/m以下、120Nm/h/m以下が挙げられる。
 上記上限値と下限値は任意組み合わせることができる。
 例えば、前記流量は、15Nm/h/m以上150Nm/h/m以下であることが好ましく、16Nm/h/m以上130Nm/h/m以下であることがより好ましく、16Nm/h/m以上120Nm/h/m以下であることがさらに好ましい。
 本実施形態の別の側面としては、前記流量は、40Nm/h/m以上200Nm/h/m以下であることが好ましく、80Nm/h/m以上180Nm/h/m以下であることがより好ましく、130Nm/h/m以上160Nm/h/m以下であることがさらに好ましい。
 前記本焼成工程及び前記予備焼成工程のいずれか一方又は両方は、酸素ガス中の酸素濃度が、酸素含有ガスの総体積に対して21体積%以上で実施することが好ましい。上記の酸素濃度の酸素含有ガスの製造方法としては、酸素以外のガスと酸素ガスとを所定の割合で混合する事によって得ることができる。酸素以外のガス、及び酸素ガスの流量は、公知の流量計により制御することができる。また、空気をそのまま使用してもよい。
 本発明においては、本焼成工程を上記の通気条件で実施することが好ましい。
Wherein one or both of the firing step and the pre-baking step is preferably conducted by passing an oxygen-containing gas at 15Nm 3 / h / m 3 or more flow, is 16Nm 3 / h / m 3 or more More preferred. The upper limit value is not particularly limited, for example, 150Nm 3 / h / m 3 or less, 130Nm 3 / h / m 3 or less include 120Nm 3 / h / m 3 or less.
The upper limit value and the lower limit value can be arbitrarily combined.
For example, the flow rate is preferably 15Nm 3 / h / m 3 or more 150Nm 3 / h / m 3 or less, more preferably 16Nm 3 / h / m 3 or more 130Nm 3 / h / m 3 or less 16 Nm 3 / h / m 3 or more and 120 Nm 3 / h / m 3 or less.
As another aspect of this embodiment, the flow rate is preferably 40Nm 3 / h / m 3 or more 200Nm at 3 / h / m 3 or less, 80Nm 3 / h / m 3 or more 180Nm 3 / h / m It is more preferably 3 or less, and further preferably 130 Nm 3 / h / m 3 or more and 160 Nm 3 / h / m 3 or less.
It is preferable that one or both of the main firing step and the preliminary firing step be performed at an oxygen concentration in the oxygen gas of 21% by volume or more based on the total volume of the oxygen-containing gas. As a method for producing the oxygen-containing gas having the above oxygen concentration, it can be obtained by mixing a gas other than oxygen and oxygen gas at a predetermined ratio. The gas other than oxygen and the flow rate of oxygen gas can be controlled by a known flow meter. Moreover, you may use air as it is.
In this invention, it is preferable to implement this baking process on said ventilation | gas_flowing conditions.
 焼成時間は、昇温開始から達温して温度保持が終了するまでの合計時間を1時間以上10時間以下とすることが好ましく、1時間以上8時間以下がより好ましく、1時間以上5時間以下が特に好ましい。
 本発明において、予備焼成を実施する場合には、予備焼成工程の昇温開始から、本焼成工程が終了するまでの時間を上記の時間以内で実施する。
 より具体的には、予備焼成工程を30分間以上3時間以下とすることが好ましく、1時間以上2.5時間以下とすることがより好ましい。
 また、本焼成工程を30分間以上3時間以下とすることが好ましく、1時間以上2.5時間以下とすることがより好ましい。
 本発明の別の側面としては、焼成工程における目的の温度に達してからの保持時間は、1時間以上10時間以下とすることが好ましく、1時間以上8時間以下がより好ましく、1時間以上6時間以下がさらに好ましい。また、目的の温度までの昇温速度は、20℃/時間以上2000℃/時間以下とすることが好ましく、50℃/時間以上1000℃/時間以下とすることがより好ましく、100℃/時間以上800℃/時間以下とすることがさらに好ましい。
 本発明においては、本焼成工程を前記混合物が接触する部位である炉内壁が、非金属材質から形成されたロータリーキルンを用いて実施する。
 金属製のロータリーキルンは、金属の溶出が生じない温度で焼成する必要があるが、前記混合物が接触する部位である炉内壁が、非金属材質から形成されたロータリーキルンを用いる場合には、金属の溶出を考慮することなく、焼成温度を高温に設定できる。従って、炉内壁が金属製のロータリーキルンを用いる場合よりも、炉内壁が非金属材質から形成されたロータリーキルンを用いる場合のほうが、より高温で焼成工程を実施することができる。このため、短時間の焼成工程で結晶性の高いリチウム金属複合酸化物を含む正極活物質を得ることができる。
The firing time is preferably 1 hour or more and 10 hours or less, more preferably 1 hour or more and 8 hours or less, and more preferably 1 hour or more and 5 hours or less. Is particularly preferred.
In the present invention, when pre-baking is performed, the time from the start of temperature increase in the pre-baking step to the end of the main baking step is performed within the above time.
More specifically, the pre-baking step is preferably 30 minutes to 3 hours, more preferably 1 hour to 2.5 hours.
Moreover, it is preferable to make this baking process into 30 minutes or more and 3 hours or less, and it is more preferable to set it as 1 to 2.5 hours.
As another aspect of the present invention, the holding time after reaching the target temperature in the firing step is preferably 1 hour or more and 10 hours or less, more preferably 1 hour or more and 8 hours or less, and more preferably 1 hour or more and 6 hours or less. More preferred is a time or less. The rate of temperature rise to the target temperature is preferably 20 ° C./hour or more and 2000 ° C./hour or less, more preferably 50 ° C./hour or more and 1000 ° C./hour or less, and 100 ° C./hour or more. More preferably, it is set to 800 ° C./hour or less.
In the present invention, the main firing step is carried out using a rotary kiln in which the furnace inner wall, which is the part in contact with the mixture, is formed from a non-metallic material.
Metal rotary kilns need to be fired at a temperature at which metal elution does not occur, but when using a rotary kiln in which the furnace inner wall, which is the part in contact with the mixture, is made of a non-metallic material, metal elution The baking temperature can be set to a high temperature without considering the above. Therefore, the firing process can be performed at a higher temperature when a rotary kiln having a furnace inner wall made of a non-metallic material is used than when a rotary kiln made of metal is used for the furnace inner wall. For this reason, the positive electrode active material containing a highly crystalline lithium metal composite oxide can be obtained in a short baking process.
 焼成によって得たリチウム金属複合酸化物は、粉砕後に適宜分級され、リチウム二次電池に適用可能なリチウム二次電池用正極活物質とされる。前記分級工程により、リチウム二次電池用正極活物質は、通常、200~400メッシュに分級される。
 本発明の一つの側面は、前述した混合工程、本焼成工程に加え、さらに粉砕、分級工程を含む、リチウム二次電池用正極活物質の製造方法である。
The lithium metal composite oxide obtained by firing is appropriately classified after pulverization, and used as a positive electrode active material for a lithium secondary battery applicable to a lithium secondary battery. Through the classification step, the positive electrode active material for a lithium secondary battery is generally classified into 200 to 400 mesh.
One aspect of the present invention is a method for producing a positive electrode active material for a lithium secondary battery, which further includes a pulverization and classification step in addition to the mixing step and the main firing step described above.
<リチウム二次電池用正極活物質>
 本発明のリチウム二次電池用正極活物質の製造方法により製造される、リチウム二次電池用正極活物質について説明する。
<Positive electrode active material for lithium secondary battery>
The positive electrode active material for lithium secondary batteries produced by the method for producing a positive electrode active material for lithium secondary batteries of the present invention will be described.
 リチウム二次電池のエネルギー密度を高める意味で、リチウム二次電池用正極活物質は、以下組成式(I)で表されるリチウム金属複合酸化物を含むことが好ましい。
   Li[Li(Ni(1-y-z-w)CoMn1-x]O ・・・(I)
 (一般式(I)中、-0.1≦x≦0.2、0<y≦0.5、0<z≦0.8、0≦w≦0.1、y+z+w<1、Mは、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の元素を表す。)
In order to increase the energy density of the lithium secondary battery, the positive electrode active material for the lithium secondary battery preferably includes a lithium metal composite oxide represented by the following composition formula (I).
Li [Li x (Ni (1-yzw) Co y Mn z M w ) 1-x ] O 2 (I)
(In the general formula (I), −0.1 ≦ x ≦ 0.2, 0 <y ≦ 0.5, 0 <z ≦ 0.8, 0 ≦ w ≦ 0.1, y + z + w <1, M is It represents one or more elements selected from the group consisting of Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga and V.)
 サイクル特性が高いリチウム二次電池を得る意味で、前記組成式(I)におけるxは0以上であることが好ましく、0.01以上であることがより好ましく、0.02以上であることがさらに好ましい。また、初回クーロン効率がより高いリチウム二次電池を得る意味で、前記組成式(I)におけるxは0.18以下であることが好ましく、0.15以下であることがより好ましく、0.1以下であることがさらに好ましい。
 xの上限値と下限値は任意に組み合わせることができる。
 例えば、前記xは0以上0.18以下であることが好ましく、0.01以上0.15以下であることがより好ましく、0.02以上0.1以下であることがさらに好ましい。
 本明細書において、「サイクル特性が高い」とは、放電容量維持率が高いことを意味する。
In the sense of obtaining a lithium secondary battery having high cycle characteristics, x in the composition formula (I) is preferably 0 or more, more preferably 0.01 or more, and further preferably 0.02 or more. preferable. In the sense of obtaining a lithium secondary battery with higher initial Coulomb efficiency, x in the composition formula (I) is preferably 0.18 or less, more preferably 0.15 or less, More preferably, it is as follows.
The upper limit value and the lower limit value of x can be arbitrarily combined.
For example, x is preferably 0 or more and 0.18 or less, more preferably 0.01 or more and 0.15 or less, and further preferably 0.02 or more and 0.1 or less.
In the present specification, “high cycle characteristics” means that the discharge capacity retention ratio is high.
 また、サイクル特性が高いリチウム二次電池を得る意味で、前記組成式(I)におけるyは、0.13以上が好ましく、0.14以上がより好ましい。また、熱的安定性が高いリチウム二次電池を得る意味で、前記組成式(I)におけるyは0.35以下であることが好ましく、0.3以下であることがより好ましく、0.25以下であることがさらに好ましい。
 yの上限値と下限値は任意に組み合わせることができる。
 例えば、前記yは0.13以上0.35以下であることが好ましく、0.14以上0.3以下であることがより好ましく、0.14以上0.25以下であることがさらに好ましい。
In order to obtain a lithium secondary battery having high cycle characteristics, y in the composition formula (I) is preferably 0.13 or more, and more preferably 0.14 or more. In order to obtain a lithium secondary battery having high thermal stability, y in the composition formula (I) is preferably 0.35 or less, more preferably 0.3 or less, and 0.25. More preferably, it is as follows.
The upper limit value and the lower limit value of y can be arbitrarily combined.
For example, y is preferably from 0.13 to 0.35, more preferably from 0.14 to 0.3, and even more preferably from 0.14 to 0.25.
 また、サイクル特性が高いリチウム二次電池を得る意味で、前記組成式(I)におけるzは0.1以上であることが好ましく、0.15以上であることがより好ましく、0.2以上であることがより好ましい。また、高温(例えば60℃環境下)での保存特性が高いリチウム二次電池を得る意味で、前記組成式(I)におけるzは0.35以下であることが好ましく、0.32以下であることがより好ましく、0.30以下であることがさらに好ましい。
 zの上限値と下限値は任意に組み合わせることができる。
 例えば、前記zは0.1以上0.35以下であることが好ましく、0.15以上0.32以下であることがより好ましく、0.2以上0.30以下であることがさらに好ましい。
In the sense of obtaining a lithium secondary battery having high cycle characteristics, z in the composition formula (I) is preferably 0.1 or more, more preferably 0.15 or more, and 0.2 or more. More preferably. In addition, z in the composition formula (I) is preferably 0.35 or less, and preferably 0.32 or less in order to obtain a lithium secondary battery having high storage characteristics at a high temperature (for example, in an environment of 60 ° C.). Is more preferable, and it is further more preferable that it is 0.30 or less.
The upper limit value and lower limit value of z can be arbitrarily combined.
For example, z is preferably 0.1 or more and 0.35 or less, more preferably 0.15 or more and 0.32 or less, and further preferably 0.2 or more and 0.30 or less.
 リチウム二次電池用正極活物質のハンドリング性を高める意味で、前記組成式(I)におけるwは0を超えることが好ましく、0.001以上であることがより好ましく、0.005以上であることがさらに好ましい。また、高い電流レートでの放電容量が高いリチウム二次電池を得る意味で、前記組成式(I)におけるwは0.04以下であることが好ましく、0.03以下であることがより好ましく、0.02以下であることがさらに好ましい。
 wの上限値と下限値は任意に組み合わせることができる。
 例えば、前記は0超0.04以下であることが好ましく、0.001以上0.03以下であることがより好ましく、0.005以上0.02以下であることがさらに好ましい。
In the sense of improving the handling properties of the positive electrode active material for lithium secondary batteries, w in the composition formula (I) is preferably more than 0, more preferably 0.001 or more, and 0.005 or more. Is more preferable. In the sense of obtaining a lithium secondary battery having a high discharge capacity at a high current rate, w in the composition formula (I) is preferably 0.04 or less, more preferably 0.03 or less, More preferably, it is 0.02 or less.
The upper and lower limits of w can be combined arbitrarily.
For example, the above is preferably more than 0 and 0.04 or less, more preferably from 0.001 to 0.03, and further preferably from 0.005 to 0.02.
 前記組成式(I)におけるMは、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の元素である。 M in the composition formula (I) is one or more elements selected from the group consisting of Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga, and V.
 本発明においては、製造されるリチウム二次電池用正極活物質が上記組成式(I)で表される所望の組成のリチウム金属複合酸化物を含むように、リチウム化合物と正極活物質前駆体とを混合すればよい。 In the present invention, a lithium compound and a positive electrode active material precursor are prepared so that the produced positive electrode active material for a lithium secondary battery includes a lithium metal composite oxide having a desired composition represented by the composition formula (I). Can be mixed.
(層状構造)
 正極活物質の結晶構造は、層状構造であり、六方晶型の結晶構造又は単斜晶型の結晶構造であることがより好ましい。
(Layered structure)
The crystal structure of the positive electrode active material is a layered structure, and more preferably a hexagonal crystal structure or a monoclinic crystal structure.
 六方晶型の結晶構造は、P3、P3、P3、R3、P-3、R-3、P312、P321、P312、P321、P312、P321、R32、P3m1、P31m、P3c1、P31c、R3m、R3c、P-31m、P-31c、P-3m1、P-3c1、R-3m、R-3c、P6、P6、P6、P6、P6、P6、P-6、P6/m、P6/m、P622、P622、P622、P622、P622、P622、P6mm、P6cc、P6cm、P6mc、P-6m2、P-6c2、P-62m、P-62c、P6/mmm、P6/mcc、P6/mcm、P6/mmcからなる群から選ばれるいずれか一つの空間群に帰属される。 The hexagonal crystal structures are P3, P3 1 , P3 2 , R3, P-3, R-3, P312, P321, P3 1 12, P3 1 21, P3 2 12, P3 2 21, R32, P3m1, P31m, P3c1, P31c, R3m, R3c, P-31m, P-31c, P-3m1, P-3c1, R-3m, R-3c, P6, P6 1 , P6 5 , P6 2 , P6 4 , P6 3 , P-6, P6 / m, P6 3 / m, P622, P6 1 22, P6 5 22, P6 2 22, P6 4 22, P6 3 22, P6 mm, P6 cc, P6 3 cm, P6 3 mc, P- It belongs to any one space group selected from the group consisting of 6m2, P-6c2, P-62m, P-62c, P6 / mmm, P6 / mcc, P6 3 / mcm, and P6 3 / mmc.
 また、単斜晶型の結晶構造は、P2、P2、C2、Pm、Pc、Cm、Cc、P2/m、P2/m、C2/m、P2/c、P2/c、C2/cからなる群から選ばれるいずれか一つの空間群に帰属される。 The monoclinic crystal structure is P2, P2 1 , C2, Pm, Pc, Cm, Cc, P2 / m, P2 1 / m, C2 / m, P2 / c, P2 1 / c, C2 / It belongs to any one space group selected from the group consisting of c.
 これらのうち、放電容量が高いリチウム二次電池を得る意味で、結晶構造は、空間群R-3mに帰属される六方晶型の結晶構造、又はC2/mに帰属される単斜晶型の結晶構造であることが特に好ましい。 Among these, in order to obtain a lithium secondary battery having a high discharge capacity, the crystal structure is a hexagonal crystal structure belonging to the space group R-3m, or a monoclinic crystal belonging to C2 / m. A crystal structure is particularly preferred.
 本実施形態において、正極活物質の結晶性は、CuKα線を使用したX線回折測定によって得られるX線回折パターンの2θ=18.7±1°の範囲内の回折ピークの半値幅、及び2θ=44.4±1°の範囲内の回折ピークの半値幅により評価することができる。
 2θ=18.7±1°の範囲内の回折ピークの半値幅の範囲としては、0.01~0.20であることが好ましく、0.02~0.19であることがより好ましく、0.03~0.18であることがさらに好ましい。
 2θ=44.4±1°の範囲内の回折ピークの半値幅の範囲としては、0.01~0.25であることが好ましく、0.02~0.22であることがより好ましく、0.03~0.20であることがさらに好ましい。
In the present embodiment, the crystallinity of the positive electrode active material is such that the half width of the diffraction peak in the range of 2θ = 18.7 ± 1 ° of the X-ray diffraction pattern obtained by X-ray diffraction measurement using CuKα rays, and 2θ It can be evaluated by the half-value width of the diffraction peak within the range of 44.4 ± 1 °.
The range of the half width of the diffraction peak within the range of 2θ = 18.7 ± 1 ° is preferably 0.01 to 0.20, more preferably 0.02 to 0.19, and 0 More preferably, it is 0.03 to 0.18.
The range of the half value width of the diffraction peak within the range of 2θ = 44.4 ± 1 ° is preferably 0.01 to 0.25, more preferably 0.02 to 0.22. More preferably, it is 0.03 to 0.20.
 本発明は、本焼成工程を混合物が接触する部位である炉内壁が、非金属材質から形成されたロータリーキルンを用いて実施するため、正極活物質の結晶性を高めるために750℃~1000℃という高温で焼成しても、焼成炉の材質からの金属の溶出を低減できる。このため、金属不純物の一種であるクロムに着目した場合、クロムの含有量が低減された正極活物質を製造することができる。
 本発明により製造されるリチウム二次電池用正極活物質中に含まれる前記リチウム二次電池用正極活物質の総質量に対するクロムの含有量は、50ppm以下であることが好ましく、45ppm以下であることがより好ましく、40ppm以下であることが特に好ましい。
 リチウム二次電池用正極活物質中に含まれる前記リチウム二次電池用正極活物質の総質量に対するクロムの含有量の測定は、前記リチウム二次電池用正極活物質の粉末を塩酸と接触処理して溶解させた後、誘導結合プラズマ発光分析装置により行うことができる。
In the present invention, since the inner wall of the furnace where the mixture contacts is performed using a rotary kiln formed of a non-metallic material, the main baking step is performed at 750 ° C. to 1000 ° C. in order to increase the crystallinity of the positive electrode active material. Even when firing at a high temperature, the elution of metal from the material of the firing furnace can be reduced. For this reason, when attention is paid to chromium which is a kind of metal impurity, a positive electrode active material in which the chromium content is reduced can be manufactured.
The content of chromium with respect to the total mass of the positive electrode active material for lithium secondary batteries contained in the positive electrode active material for lithium secondary batteries produced according to the present invention is preferably 50 ppm or less, and is 45 ppm or less. Is more preferable, and 40 ppm or less is particularly preferable.
The measurement of the chromium content relative to the total mass of the positive electrode active material for lithium secondary batteries contained in the positive electrode active material for lithium secondary batteries is performed by contacting the powder of the positive electrode active material for lithium secondary batteries with hydrochloric acid. And then dissolved by an inductively coupled plasma optical emission spectrometer.
 本発明のリチウム二次電池用正極活物質の製造方法は、前記混合物が接触する部位である炉内壁が、非金属材質から形成されたロータリーキルンを用いて実施するため、高温で焼成することができる。このため、原料中の炭酸リチウムの分解が促進され、製造される正極活物質中の炭酸リチウムの残存量が低減される。
 本発明により製造されるリチウム二次電池用正極活物質中に含まれる正極活物質の総質量に対して炭酸リチウムの含有量は、1.0質量%以下が好ましく、0.99質量%以下がより好ましく、0.95質量%以下が特に好ましい。正極活物質の総質量に対する炭酸リチウムの含有量の下限値は特に限定されないが、例えば、0.05質量%以上、0.10質量%以上、0.2質量%以上が挙げられる。
 上記上限値と下限値は任意に組み合わせることができる。
 例えば、前記正極活物質の総質量に対する前記炭酸リチウムの含有量は、0.05質量%以上1.0質量%以下であることが好ましく、0.10質量%以上0.99質量%以下であることがより好ましく、0.2質量%以上0.95質量%以下であることがさらに好ましい。
 リチウム二次電池用正極活物質に含まれる炭酸リチウム成分の含有量は、酸性溶液による中和滴定により求めることができる。具体的には、リチウム二次電池用正極活物質を純水で接触処理し、炭酸リチウム成分を純水に溶出させる。前記溶出液を塩酸等の酸性溶液で中和滴定することにより、炭酸リチウム成分の含有量を求めることができる。より具体的な操作、及び炭酸リチウム成分の含有量の算出方法などは実施例で説明する。
The method for producing a positive electrode active material for a lithium secondary battery according to the present invention can be fired at a high temperature because the inner wall of the furnace, which is a part in contact with the mixture, is carried out using a rotary kiln formed of a nonmetallic material. . For this reason, decomposition | disassembly of the lithium carbonate in a raw material is accelerated | stimulated, and the residual amount of lithium carbonate in the positive electrode active material manufactured is reduced.
1.0 mass% or less is preferable with respect to the total mass of the positive electrode active material contained in the positive electrode active material for lithium secondary batteries manufactured by this invention, and 0.99 mass% or less is preferable. More preferred is 0.95% by mass or less. Although the lower limit of content of lithium carbonate with respect to the total mass of a positive electrode active material is not specifically limited, For example, 0.05 mass% or more, 0.10 mass% or more, 0.2 mass% or more is mentioned.
The upper limit value and the lower limit value can be arbitrarily combined.
For example, the lithium carbonate content with respect to the total mass of the positive electrode active material is preferably 0.05% by mass or more and 1.0% by mass or less, and is 0.10% by mass or more and 0.99% by mass or less. More preferably, the content is 0.2% by mass or more and 0.95% by mass or less.
The content of the lithium carbonate component contained in the positive electrode active material for a lithium secondary battery can be determined by neutralization titration with an acidic solution. Specifically, the positive electrode active material for a lithium secondary battery is contact-treated with pure water, and the lithium carbonate component is eluted in pure water. By neutralizing and titrating the eluate with an acidic solution such as hydrochloric acid, the content of the lithium carbonate component can be determined. A more specific operation and a method for calculating the content of the lithium carbonate component will be described in Examples.
 本発明とは対照的に、本焼成をローラーハースキルン等のサヤに混合物を充填して焼成する場合には、サヤの底部に充填された混合物まで十分に酸素含有ガスが行きわたらず、炭酸リチウムの分解が均一に進行しないため、製造される正極活物質中に炭酸リチウムが多く残存する傾向にある。 In contrast to the present invention, when the main calcination is carried out by filling a mixture in a roller sheath such as a roller hearth kiln, the oxygen-containing gas does not sufficiently reach the mixture filled in the bottom of the sheath, and lithium carbonate Since the decomposition of the metal does not proceed uniformly, a large amount of lithium carbonate tends to remain in the produced positive electrode active material.
<リチウム二次電池>
 次いで、リチウム二次電池の構成を説明しながら、本発明のリチウム二次電池用正極活物質の製造方法により製造されたリチウム二次電池用正極活物質を用いた正極、及びこの正極を有するリチウム二次電池について説明する。
<Lithium secondary battery>
Next, while explaining the configuration of the lithium secondary battery, the positive electrode using the positive electrode active material for lithium secondary battery manufactured by the method for manufacturing the positive electrode active material for lithium secondary battery of the present invention, and lithium having this positive electrode The secondary battery will be described.
 本実施形態のリチウム二次電池の一例は、正極及び負極、正極と負極との間に挟持されるセパレータ、正極と負極との間に配置される電解液を有する。 An example of the lithium secondary battery of the present embodiment includes a positive electrode and a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and an electrolytic solution disposed between the positive electrode and the negative electrode.
 図1A及び図1Bは、本実施形態のリチウム二次電池の一例を示す模式図である。本実施形態の円筒型のリチウム二次電池10は、次のようにして製造する。 1A and 1B are schematic views showing an example of the lithium secondary battery of the present embodiment. The cylindrical lithium secondary battery 10 of this embodiment is manufactured as follows.
 まず、図1Aに示すように、帯状を呈する一対のセパレータ1、一端に正極リード21を有する帯状の正極2、及び一端に負極リード31を有する帯状の負極3を、セパレータ1、正極2、セパレータ1、負極3の順に積層し、巻回することにより電極群4とする。 First, as shown in FIG. 1A, a pair of separators 1 having a strip shape, a strip-like positive electrode 2 having a positive electrode lead 21 at one end, and a strip-like negative electrode 3 having a negative electrode lead 31 at one end, a separator 1, a positive electrode 2, and a separator 1 and negative electrode 3 are laminated in this order and wound to form electrode group 4.
 次いで、図1Bに示すように、電池缶5に電極群4及び不図示のインシュレーターを収容した後、缶底を封止し、電極群4に電解液6を含浸させ、正極2と負極3との間に電解質を配置する。さらに、電池缶5の上部をトップインシュレーター7及び封口体8で封止することで、リチウム二次電池10を製造することができる。 Next, as shown in FIG. 1B, after the electrode group 4 and an insulator (not shown) are accommodated in the battery can 5, the bottom of the can is sealed, the electrode group 4 is impregnated with the electrolytic solution 6, the positive electrode 2, the negative electrode 3, An electrolyte is placed between the two. Furthermore, the lithium secondary battery 10 can be manufactured by sealing the upper part of the battery can 5 with the top insulator 7 and the sealing body 8.
 電極群4の形状としては、例えば、電極群4を巻回の軸に対して垂直方向に切断したときの断面形状が、円、楕円、長方形、角を丸めた長方形となるような柱状の形状を挙げることができる。 As the shape of the electrode group 4, for example, a columnar shape in which the cross-sectional shape when the electrode group 4 is cut in a direction perpendicular to the winding axis is a circle, an ellipse, a rectangle, or a rectangle with rounded corners. Can be mentioned.
 また、このような電極群4を有するリチウム二次電池の形状としては、国際電気標準会議(IEC)が定めた電池に対する規格であるIEC60086、又はJIS C 8500で定められる形状を採用することができる。例えば、円筒型、角型などの形状を挙げることができる。 Moreover, as a shape of the lithium secondary battery having such an electrode group 4, a shape defined by IEC 60086 or JIS C 8500 which is a standard for a battery defined by the International Electrotechnical Commission (IEC) can be adopted. . For example, cylindrical shape, square shape, etc. can be mentioned.
 さらに、リチウム二次電池は、上記巻回型の構成に限らず、正極、セパレータ、負極、セパレータの積層構造を繰り返し重ねた積層型の構成であってもよい。積層型のリチウム二次電池としては、いわゆるコイン型電池、ボタン型電池、ペーパー型(又はシート型)電池を例示することができる。 Further, the lithium secondary battery is not limited to the above-described wound type configuration, and may have a stacked type configuration in which a stacked structure of a positive electrode, a separator, a negative electrode, and a separator is repeatedly stacked. Examples of the stacked lithium secondary battery include so-called coin-type batteries, button-type batteries, and paper-type (or sheet-type) batteries.
 以下、各構成について順に説明する。
(正極)
 本実施形態の正極は、まず正極活物質、導電材及びバインダーを含む正極合剤を調整し、正極合剤を正極集電体に担持させることで製造することができる。
Hereafter, each structure is demonstrated in order.
(Positive electrode)
The positive electrode of this embodiment can be manufactured by first adjusting a positive electrode mixture containing a positive electrode active material, a conductive material and a binder, and supporting the positive electrode mixture on a positive electrode current collector.
(導電材)
 本実施形態の正極が有する導電材としては、炭素材料を用いることができる。炭素材料として黒鉛粉末、カーボンブラック(例えばアセチレンブラック)、繊維状炭素材料などを挙げることができる。カーボンブラックは、微粒で表面積が大きいため、少量を正極合剤中に添加することにより正極内部の導電性を高め、充放電効率及び出力特性を向上させることができるが、多く入れすぎるとバインダーによる正極合剤と正極集電体との結着力、及び正極合剤内部の結着力がいずれも低下し、かえって内部抵抗を増加させる原因となる。
(Conductive material)
As the conductive material included in the positive electrode of the present embodiment, a carbon material can be used. Examples of the carbon material include graphite powder, carbon black (for example, acetylene black), and a fibrous carbon material. Since carbon black is fine and has a large surface area, by adding a small amount to the positive electrode mixture, the conductivity inside the positive electrode can be improved and the charge / discharge efficiency and output characteristics can be improved. Both the binding force between the positive electrode mixture and the positive electrode current collector and the binding force inside the positive electrode mixture are reduced, which causes an increase in internal resistance.
 正極合剤中の導電材の割合は、正極活物質100質量部に対して5質量部以上20質量部以下であると好ましい。導電材として黒鉛化炭素繊維、カーボンナノチューブなどの繊維状炭素材料を用いる場合には、この割合を下げることも可能である。 The proportion of the conductive material in the positive electrode mixture is preferably 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the positive electrode active material. When a fibrous carbon material such as graphitized carbon fiber or carbon nanotube is used as the conductive material, this ratio can be lowered.
(バインダー)
 本実施形態の正極が有するバインダーとしては、熱可塑性樹脂を用いることができる。
この熱可塑性樹脂としては、ポリフッ化ビニリデン(以下、PVdFということがある。
)、ポリテトラフルオロエチレン(以下、PTFEということがある。)、四フッ化エチレン・六フッ化プロピレン・フッ化ビニリデン系共重合体、六フッ化プロピレン・フッ化ビニリデン系共重合体、四フッ化エチレン・パーフルオロビニルエーテル系共重合体などのフッ素樹脂;ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂;を挙げることができる。
(binder)
As the binder included in the positive electrode of the present embodiment, a thermoplastic resin can be used.
This thermoplastic resin is sometimes referred to as polyvinylidene fluoride (hereinafter referred to as PVdF).
), Polytetrafluoroethylene (hereinafter sometimes referred to as PTFE), tetrafluoroethylene / hexafluoropropylene / vinylidene fluoride copolymer, propylene hexafluoride / vinylidene fluoride copolymer, tetrafluoroethylene Fluorine resins such as fluorinated ethylene / perfluorovinyl ether copolymers; Polyolefin resins such as polyethylene and polypropylene.
 これらの熱可塑性樹脂は、2種以上を混合して用いてもよい。バインダーとしてフッ素樹脂及びポリオレフィン樹脂を用い、正極合剤全体の質量に対するフッ素樹脂の割合を1質量%以上10質量%以下、ポリオレフィン樹脂の割合を0.1質量%以上2質量%以下とすることによって、正極集電体との密着力及び正極合剤内部の結合力がいずれも高い正極合剤を得ることができる。 These thermoplastic resins may be used as a mixture of two or more. By using a fluororesin and a polyolefin resin as a binder, the ratio of the fluororesin to the total mass of the positive electrode mixture is 1% by mass to 10% by mass, and the ratio of the polyolefin resin is 0.1% by mass to 2% by mass In addition, a positive electrode mixture having both high adhesion to the positive electrode current collector and high bonding strength inside the positive electrode mixture can be obtained.
(正極集電体)
 本実施形態の正極が有する正極集電体としては、Al、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を用いることができる。なかでも、加工しやすく、安価であるという点でAlを形成材料とし、薄膜状に加工したものが好ましい。
(Positive electrode current collector)
As the positive electrode current collector included in the positive electrode of the present embodiment, a band-shaped member made of a metal material such as Al, Ni, and stainless steel can be used. Among these, a material that is made of Al and formed into a thin film is preferable because it is easy to process and inexpensive.
 正極集電体に正極合剤を担持させる方法としては、正極合剤を正極集電体上で加圧成型する方法が挙げられる。また、有機溶媒を用いて正極合剤をペースト化し、得られる正極合剤のペーストを正極集電体の少なくとも一面側に塗布して乾燥させ、プレスし固着することで、正極集電体に正極合剤を担持させてもよい。 Examples of the method of supporting the positive electrode mixture on the positive electrode current collector include a method of pressure-molding the positive electrode mixture on the positive electrode current collector. Also, the positive electrode mixture is made into a paste using an organic solvent, and the resulting positive electrode mixture paste is applied to at least one surface side of the positive electrode current collector, dried, pressed and fixed, whereby the positive electrode current collector is bonded to the positive electrode current collector. A mixture may be supported.
 正極合剤をペースト化する場合、用いることができる有機溶媒としては、N,N―ジメチルアミノプロピルアミン、ジエチレントリアミンなどのアミン系溶媒;テトラヒドロフランなどのエーテル系溶媒;メチルエチルケトンなどのケトン系溶媒;酢酸メチルなどのエステル系溶媒;ジメチルアセトアミド、N-メチル-2-ピロリドン(以下、NMPということがある。)などのアミド系溶媒などが挙げられる。 When the positive electrode mixture is made into a paste, usable organic solvents include amine solvents such as N, N-dimethylaminopropylamine and diethylenetriamine; ether solvents such as tetrahydrofuran; ketone solvents such as methyl ethyl ketone; methyl acetate And amide solvents such as dimethylacetamide and N-methyl-2-pyrrolidone (hereinafter sometimes referred to as NMP).
 正極合剤のペーストを正極集電体へ塗布する方法としては、例えば、スリットダイ塗工法、スクリーン塗工法、カーテン塗工法、ナイフ塗工法、グラビア塗工法及び静電スプレー法が挙げられる。 Examples of the method of applying the positive electrode mixture paste to the positive electrode current collector include a slit die coating method, a screen coating method, a curtain coating method, a knife coating method, a gravure coating method, and an electrostatic spray method.
 以上に挙げられた方法により、正極を製造することができる。
(負極)
 本実施形態のリチウム二次電池が有する負極は、正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能であればよく、負極活物質を含む負極合剤が負極集電体に担持されてなる電極、及び負極活物質単独からなる電極を挙げることができる。
A positive electrode can be manufactured by the method mentioned above.
(Negative electrode)
The negative electrode included in the lithium secondary battery of this embodiment is only required to be able to dope and dedope lithium ions at a lower potential than the positive electrode, and the negative electrode mixture containing the negative electrode active material is supported on the negative electrode current collector. And an electrode composed of the negative electrode active material alone.
(負極活物質)
 負極が有する負極活物質としては、炭素材料、カルコゲン化合物(酸化物、硫化物など)、窒化物、金属又は合金で、正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能な材料が挙げられる。
(Negative electrode active material)
Examples of the negative electrode active material possessed by the negative electrode include carbon materials, chalcogen compounds (oxides, sulfides, etc.), nitrides, metals, and alloys that can be doped and dedoped with lithium ions at a lower potential than the positive electrode. It is done.
 負極活物質として使用可能な炭素材料としては、天然黒鉛、人造黒鉛などの黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維及び有機高分子化合物焼成体を挙げることができる。 Examples of carbon materials that can be used as the negative electrode active material include graphite such as natural graphite and artificial graphite, cokes, carbon black, pyrolytic carbons, carbon fibers, and organic polymer compound fired bodies.
 負極活物質として使用可能な酸化物としては、SiO、SiOなど式SiO(ここで、xは正の実数)で表されるケイ素の酸化物;TiO、TiOなど式TiO(ここで、xは正の実数)で表されるチタンの酸化物;V、VOなど式VO(ここで、xは正の実数)で表されるバナジウムの酸化物;Fe、Fe、FeOなど式FeO(ここで、xは正の実数)で表される鉄の酸化物;SnO、SnOなど式SnO(ここで、xは正の実数)で表されるスズの酸化物;WO、WOなど一般式WO(ここで、xは正の実数)で表されるタングステンの酸化物;LiTi12、LiVOなどのリチウムとチタン又はバナジウムとを含有する複合金属酸化物;を挙げることができる。 The oxide can be used as an anode active material, (wherein, x represents a positive real number) SiO 2, SiO, etc. formula SiO x oxides of silicon represented by; TiO 2, TiO, etc. formula TiO x (wherein , X is a positive real number); oxide of titanium represented by formula VO x (where x is a positive real number) such as V 2 O 5 and VO 2 ; Fe 3 O 4 , Fe 2 O 3 , FeO, etc. Iron oxide represented by the formula FeO x (where x is a positive real number); SnO 2 , SnO, etc. represented by the formula SnO x (where x is a positive real number) Oxide of tin; tungsten oxide represented by general formula WO x (where x is a positive real number) such as WO 3 and WO 2 ; lithium and titanium such as Li 4 Ti 5 O 12 and LiVO 2 Or a composite metal oxide containing vanadium; It is possible.
 負極活物質として使用可能な硫化物としては、Ti、TiS、TiSなど式TiS(ここで、xは正の実数)で表されるチタンの硫化物;V、VS2、VSなど式VS(ここで、xは正の実数)で表されるバナジウムの硫化物;Fe、FeS、FeSなど式FeS(ここで、xは正の実数)で表される鉄の硫化物;Mo、MoSなど式MoS(ここで、xは正の実数)で表されるモリブデンの硫化物;SnS2、SnSなど式SnS(ここで、xは正の実数)で表されるスズの硫化物;WSなど式WS(ここで、xは正の実数)で表されるタングステンの硫化物;Sbなど式SbS(ここで、xは正の実数)で表されるアンチモンの硫化物;Se、SeS、SeSなど式SeS(ここで、xは正の実数)で表されるセレンの硫化物;を挙げることができる。 Examples of sulfides that can be used as the negative electrode active material include titanium sulfides represented by the formula TiS x (where x is a positive real number) such as Ti 2 S 3 , TiS 2 , and TiS; V 3 S 4 , VS 2, VS and other vanadium sulfides represented by the formula VS x (where x is a positive real number); Fe 3 S 4 , FeS 2 , FeS and other formulas FeS x (where x is a positive real number) Iron sulfide represented; Mo 2 S 3 , MoS 2 and the like MoS x (where x is a positive real number) Molybdenum sulfide; SnS 2, SnS and other formula SnS x (where, a sulfide of tin represented by x is a positive real number; a sulfide of tungsten represented by a formula WS x (where x is a positive real number) such as WS 2 ; a formula SbS x such as Sb 2 S 3 (here And x is a positive real number) antimony sulfide; Se 5 S 3 , selenium sulfide represented by the formula SeS x (where x is a positive real number) such as SeS 2 and SeS.
 負極活物質として使用可能な窒化物としては、LiN、Li3-xN(ここで、AはNi及びCoのいずれか一方又は両方であり、0<x<3である。)などのリチウム含有窒化物を挙げることができる。 Examples of the nitride that can be used as the negative electrode active material include Li 3 N and Li 3-x A x N (where A is one or both of Ni and Co, and 0 <x <3). And lithium-containing nitrides.
 これらの炭素材料、酸化物、硫化物、窒化物は、1種のみ用いてもよく2種以上を併用して用いてもよい。また、これらの炭素材料、酸化物、硫化物、窒化物は、結晶質又は非晶質のいずれでもよい。 These carbon materials, oxides, sulfides and nitrides may be used alone or in combination of two or more. These carbon materials, oxides, sulfides and nitrides may be crystalline or amorphous.
 また、負極活物質として使用可能な金属としては、リチウム金属、シリコン金属及びスズ金属などを挙げることができる。 Further, examples of the metal that can be used as the negative electrode active material include lithium metal, silicon metal, and tin metal.
 負極活物質として使用可能な合金としては、Li-Al、Li-Ni、Li-Si、Li-Sn、Li-Sn-Niなどのリチウム合金;Si-Znなどのシリコン合金;Sn-Mn、Sn-Co、Sn-Ni、Sn-Cu、Sn-Laなどのスズ合金;CuSb、LaNiSnなどの合金;を挙げることもできる。 Alloys that can be used as the negative electrode active material include lithium alloys such as Li—Al, Li—Ni, Li—Si, Li—Sn, and Li—Sn—Ni; silicon alloys such as Si—Zn; Sn—Mn, Sn -Tin alloys such as Co, Sn-Ni, Sn-Cu, Sn-La; alloys such as Cu 2 Sb, La 3 Ni 2 Sn 7 ;
 これらの金属や合金は、例えば箔状に加工された後、主に単独で電極として用いられる。 These metals and alloys are mainly used alone as electrodes after being processed into a foil shape, for example.
 上記負極活物質の中では、充電時に未充電状態から満充電状態にかけて負極の電位がほとんど変化しない(電位平坦性がよい)、平均放電電位が低い、繰り返し充放電させたときの容量維持率が高い(サイクル特性がよい)などの理由から、天然黒鉛、人造黒鉛などの黒鉛を主成分とする炭素材料が好ましく用いられる。炭素材料の形状としては、例えば天然黒鉛のような薄片状、メソカーボンマイクロビーズのような球状、黒鉛化炭素繊維のような繊維状、又は微粉末の凝集体などのいずれでもよい。 Among the negative electrode active materials, the potential of the negative electrode hardly changes from the uncharged state to the fully charged state at the time of charging (potential flatness is good), the average discharge potential is low, and the capacity retention rate when repeatedly charged and discharged is For reasons such as high (good cycle characteristics), carbon materials containing graphite as a main component, such as natural graphite and artificial graphite, are preferably used. The shape of the carbon material may be any of a flake shape such as natural graphite, a spherical shape such as mesocarbon microbeads, a fibrous shape such as graphitized carbon fiber, or an aggregate of fine powder.
 前記の負極合剤は、必要に応じて、バインダーを含有してもよい。バインダーとしては、熱可塑性樹脂を挙げることができ、具体的には、PVdF、熱可塑性ポリイミド、カルボキシメチルセルロース、ポリエチレン及びポリプロピレンを挙げることができる。 The negative electrode mixture may contain a binder as necessary. Examples of the binder include thermoplastic resins, and specific examples include PVdF, thermoplastic polyimide, carboxymethyl cellulose, polyethylene, and polypropylene.
(負極集電体)
 負極が有する負極集電体としては、Cu、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を挙げることができる。なかでも、リチウムと合金を作り難く、加工しやすいという点で、Cuを形成材料とし、薄膜状に加工したものが好ましい。
(Negative electrode current collector)
Examples of the negative electrode current collector of the negative electrode include a band-shaped member made of a metal material such as Cu, Ni, and stainless steel. In particular, it is preferable to use Cu as a forming material and process it into a thin film from the viewpoint that it is difficult to make an alloy with lithium and it is easy to process.
 このような負極集電体に負極合剤を担持させる方法としては、正極の場合と同様に、加圧成型による方法、溶媒などを用いてペースト化し負極集電体上に塗布、乾燥後プレスし圧着する方法が挙げられる。 As a method of supporting the negative electrode mixture on such a negative electrode current collector, as in the case of the positive electrode, a method using pressure molding, pasting with a solvent, etc., applying to the negative electrode current collector, drying and pressing. The method of crimping is mentioned.
(セパレータ)
 本実施形態のリチウム二次電池が有するセパレータとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、フッ素樹脂、含窒素芳香族重合体などの材質からなる、多孔質膜、不織布、織布などの形態を有する材料を用いることができる。また、これらの材質を2種以上用いてセパレータを形成してもよいし、これらの材料を積層してセパレータを形成してもよい。
(Separator)
Examples of the separator included in the lithium secondary battery of the present embodiment include a porous film, a nonwoven fabric, a woven fabric, and the like made of a material such as a polyolefin resin such as polyethylene and polypropylene, a fluororesin, and a nitrogen-containing aromatic polymer. A material having the following can be used. Moreover, a separator may be formed by using two or more of these materials, or a separator may be formed by laminating these materials.
 本実施形態において、セパレータは、電池使用時(充放電時)に電解質を良好に透過させるため、JIS P 8117:2009で定められるガーレー法による透気抵抗度が、50秒/100cc以上、300秒/100cc以下であることが好ましく、50秒/100cc以上、200秒/100cc以下であることがより好ましい。 In the present embodiment, the separator allows the electrolyte to permeate well when the battery is used (during charging / discharging). Therefore, the air resistance according to the Gurley method defined in JIS P 8117: 2009 is 50 seconds / 100 cc or more, 300 seconds. / 100 cc or less, more preferably 50 seconds / 100 cc or more and 200 seconds / 100 cc or less.
 また、セパレータの空孔率は、好ましくはセパレータの総体積に対して30体積%以上80体積%以下、より好ましくは40体積%以上70体積%以下である。セパレータは空孔率の異なるセパレータを積層したものであってもよい。 The porosity of the separator is preferably 30% by volume or more and 80% by volume or less, more preferably 40% by volume or more and 70% by volume or less with respect to the total volume of the separator. The separator may be a laminate of separators having different porosity.
(電解液)
 本実施形態のリチウム二次電池が有する電解液は、電解質及び有機溶媒を含有する。
(Electrolyte)
The electrolyte solution included in the lithium secondary battery of this embodiment contains an electrolyte and an organic solvent.
 電解液に含まれる電解質としては、LiClO、LiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCF、LiN(SO、LiN(SOCF)(COCF)、Li(CSO)、LiC(SOCF、Li10Cl10、LiBOB(ここで、BOBは、bis(oxalato)borateのことである。)、LiFSI(ここで、FSIはbis(fluorosulfonyl)imideのことである)、低級脂肪族カルボン酸リチウム塩、LiAlClなどのリチウム塩が挙げられ、これらの2種以上の混合物を使用してもよい。なかでも電解質としては、フッ素を含むLiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCF及びLiC(SOCFからなる群より選ばれる少なくとも1種を含むものを用いることが好ましい。 The electrolyte contained in the electrolyte includes LiClO 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (COCF 3 ), Li (C 4 F 9 SO 3 ), LiC (SO 2 CF 3 ) 3 , Li 2 B 10 Cl 10 , LiBOB (where BOB is bis (oxalato) borate LiFSI (here, FSI is bis (fluorosulfonyl) imide), lithium salt such as lower aliphatic carboxylic acid lithium salt, LiAlCl 4, and a mixture of two or more of these May be used. Among them, as the electrolyte, at least selected from the group consisting of LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 and LiC (SO 2 CF 3 ) 3 containing fluorine. It is preferable to use one containing one kind.
 また前記電解液に含まれる有機溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、4-トリフルオロメチル-1,3-ジオキソラン-2-オン、1,2-ジ(メトキシカルボニルオキシ)エタンなどのカーボネート類;1,2-ジメトキシエタン、1,3-ジメトキシプロパン、ペンタフルオロプロピルメチルエーテル、2,2,3,3-テトラフルオロプロピルジフルオロメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフランなどのエーテル類;ギ酸メチル、酢酸メチル、γ-ブチロラクトンなどのエステル類;アセトニトリル、ブチロニトリルなどのニトリル類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどのアミド類;3-メチル-2-オキサゾリドンなどのカーバメート類;スルホラン、ジメチルスルホキシド、1,3-プロパンサルトンなどの含硫黄化合物、又はこれらの有機溶媒にさらにフルオロ基を導入したもの(有機溶媒が有する水素原子のうち1以上をフッ素原子で置換したもの)を用いることができる。 Examples of the organic solvent contained in the electrolyte include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 4-trifluoromethyl-1,3-dioxolan-2-one, and 1,2-di- Carbonates such as (methoxycarbonyloxy) ethane; 1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropyl methyl ether, 2,2,3,3-tetrafluoropropyl difluoromethyl ether, tetrahydrofuran, 2- Ethers such as methyltetrahydrofuran; Esters such as methyl formate, methyl acetate and γ-butyrolactone; Nitriles such as acetonitrile and butyronitrile; N, N-dimethylformamide, N, N-dimethyla Amides such as toamide; carbamates such as 3-methyl-2-oxazolidone; sulfur-containing compounds such as sulfolane, dimethyl sulfoxide and 1,3-propane sultone, or those obtained by further introducing a fluoro group into these organic solvents ( One obtained by substituting one or more hydrogen atoms in the organic solvent with fluorine atoms can be used.
 有機溶媒としては、これらのうちの2種以上を混合して用いることが好ましい。中でもカーボネート類を含む混合溶媒が好ましく、環状カーボネートと非環状カーボネートとの混合溶媒及び環状カーボネートとエーテル類との混合溶媒がさらに好ましい。環状カーボネートと非環状カーボネートとの混合溶媒としては、エチレンカーボネート、ジメチルカーボネート及びエチルメチルカーボネートを含む混合溶媒が好ましい。このような混合溶媒を用いた電解液は、動作温度範囲が広く、高い電流レートにおける充放電を行っても劣化し難く、長時間使用しても劣化し難く、かつ負極の活物質として天然黒鉛、人造黒鉛などの黒鉛材料を用いた場合でも難分解性であるという多くの特長を有する。 It is preferable to use a mixture of two or more of these as the organic solvent. Of these, a mixed solvent containing carbonates is preferable, and a mixed solvent of cyclic carbonate and acyclic carbonate and a mixed solvent of cyclic carbonate and ethers are more preferable. As a mixed solvent of a cyclic carbonate and an acyclic carbonate, a mixed solvent containing ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate is preferable. The electrolyte using such a mixed solvent has a wide operating temperature range, hardly deteriorates even when charged and discharged at a high current rate, hardly deteriorates even when used for a long time, and natural graphite as an active material of the negative electrode. Even when a graphite material such as artificial graphite is used, it has many features that it is hardly decomposable.
 また、電解液としては、得られるリチウム二次電池の安全性が高まるため、LiPFなどのフッ素を含むリチウム化合物及びフッ素置換基を有する有機溶媒を含む電解液を用いることが好ましい。ペンタフルオロプロピルメチルエーテル、2,2,3,3-テトラフルオロプロピルジフルオロメチルエーテルなどのフッ素置換基を有するエーテル類とジメチルカーボネートとを含む混合溶媒は、高い電流レートにおける充放電を行っても容量維持率が高いため、さらに好ましい。 Further, as the electrolytic solution, it is preferable to use an electrolytic solution containing a lithium compound containing fluorine such as LiPF 6 and an organic solvent having a fluorine substituent because the safety of the obtained lithium secondary battery is increased. A mixed solvent containing ethers having fluorine substituents such as pentafluoropropyl methyl ether and 2,2,3,3-tetrafluoropropyl difluoromethyl ether and dimethyl carbonate is capable of capacity even when charging / discharging at a high current rate. Since the maintenance rate is high, it is more preferable.
 上記の電解液の代わりに固体電解質を用いてもよい。固体電解質としては、例えばポリエチレンオキサイド系の高分子化合物、ポリオルガノシロキサン鎖又はポリオキシアルキレン鎖の少なくとも一種以上を含む高分子化合物などの有機系高分子電解質を用いることができる。また、高分子化合物に非水電解液を保持させた、いわゆるゲルタイプのものを用いることもできる。またLiS-SiS、LiS-GeS、LiS-P、LiS-B、LiS-SiS-LiPO、LiS-SiS-LiSO、LiS-GeS-Pなどの硫化物を含む無機系固体電解質が挙げられ、これらの2種以上の混合物を用いてもよい。これら固体電解質を用いることで、リチウム二次電池の安全性をより高めることができることがある。 A solid electrolyte may be used instead of the above electrolytic solution. As the solid electrolyte, for example, an organic polymer electrolyte such as a polyethylene oxide polymer compound, a polymer compound containing at least one of a polyorganosiloxane chain or a polyoxyalkylene chain can be used. Moreover, what is called a gel type which hold | maintained the non-aqueous electrolyte in the high molecular compound can also be used. Also Li 2 S—SiS 2 , Li 2 S—GeS 2 , Li 2 S—P 2 S 5 , Li 2 S—B 2 S 3 , Li 2 S—SiS 2 —Li 3 PO 4 , Li 2 S—SiS 2 -Li 2 SO 4, Li 2 S-GeS 2 -P 2 S 5 inorganic solid electrolytes containing a sulfide, and the like, may be used a mixture of two or more thereof. By using these solid electrolytes, the safety of the lithium secondary battery may be further improved.
 また、本実施形態のリチウム二次電池において、固体電解質を用いる場合には、固体電解質がセパレータの役割を果たす場合もあり、その場合には、セパレータを必要としないこともある。 In the lithium secondary battery of this embodiment, when a solid electrolyte is used, the solid electrolyte may serve as a separator, and in that case, the separator may not be required.
 以上のような構成の正極活物質は、上述した本実施形態のリチウム含有複合金属酸化物を用いているため、正極活物質を用いたリチウム二次電池を、電池内部で生じる副反応を抑制することができる。 Since the positive electrode active material having the above-described configuration uses the above-described lithium-containing composite metal oxide of the present embodiment, the lithium secondary battery using the positive electrode active material suppresses side reactions occurring inside the battery. be able to.
 また、以上のような構成の正極は、上述した本実施形態のリチウム二次電池用正極活物質を有するため、リチウム二次電池を、電池内部で生じる副反応を抑制することができる。 Moreover, since the positive electrode having the above-described configuration has the above-described positive electrode active material for a lithium secondary battery according to this embodiment, the lithium secondary battery can suppress side reactions occurring inside the battery.
 さらに、以上のような構成のリチウム二次電池は、上述した正極を有するため、従来よりも電池内部で生じる副反応を抑制したリチウム二次電池となる。 Furthermore, since the lithium secondary battery having the above-described configuration has the above-described positive electrode, it becomes a lithium secondary battery in which side reactions occurring inside the battery are suppressed as compared with the related art.
 次に、本発明の態様を実施例によりさらに詳細に説明する。
 本実施例においては焼成原料及びリチウム二次電池用正極活物質の評価を次のようにして行った。
Next, the embodiment of the present invention will be described in more detail with reference to examples.
In this example, the firing raw material and the positive electrode active material for a lithium secondary battery were evaluated as follows.
(1)リチウム二次電池用正極活物質中の組成分析(ICP発光分析)
 リチウム二次電池用正極活物質の組成分析は金属酸化物の粉末を塩酸に溶解させた後、誘導結合プラズマ発光分析装置(パーキンエルマー製、Optima 7300DV)を用いて行った。上記で得られたクロム量から不純物としてのクロムの含有量を算出した。また、上記で得られたリチウム量から、後述する方法によって測定された炭酸リチウム由来のリチウム量を引き、リチウム金属複合酸化物のリチウム量とした。上記で得られたニッケル量、コバルト量、マンガン量、Mの量、及び前記リチウム金属複合酸化物のリチウム量より、前記一般式(I)中のx、y、z、wの値を求めた。
(1) Composition analysis in positive electrode active material for lithium secondary battery (ICP emission analysis)
The composition analysis of the positive electrode active material for a lithium secondary battery was performed using an inductively coupled plasma emission analyzer (manufactured by Perkin Elmer, Optima 7300 DV) after dissolving a metal oxide powder in hydrochloric acid. The content of chromium as an impurity was calculated from the amount of chromium obtained above. Moreover, the lithium amount derived from lithium carbonate measured by the method described later was subtracted from the lithium amount obtained above to obtain the lithium amount of the lithium metal composite oxide. The values of x, y, z, and w in the general formula (I) were determined from the nickel amount, cobalt amount, manganese amount, M amount, and lithium amount of the lithium metal composite oxide obtained above. .
(2)リチウム二次電池用正極活物質中の残存炭酸リチウム定量(中和滴定)
 リチウム二次電池用正極活物質20gと純水100gを100mLビーカーに入れ、5分間撹拌した。撹拌後、リチウム二次電池用正極活物質を濾過し、残った濾液の60gに0.1mol/L塩酸を滴下し、pHメーターにて濾液のpHを測定した。pH=8.3±0.1時の塩酸の滴定量をAmL、pH=4.5±0.1時の塩酸の滴定量をBmLとして、下記の計算式より、リチウム二次電池用正極活物質中に残存する炭酸リチウム濃度を算出した。下記の式中、炭酸リチウムの分子量は、各原子量を、Li;6.941、C;12、O;16、として算出した。
炭酸リチウム濃度(%)=0.1×(B-A)/1000×73.882/(20×60/100)×100
(2) Determination of residual lithium carbonate in positive electrode active material for lithium secondary battery (neutralization titration)
20 g of a positive electrode active material for a lithium secondary battery and 100 g of pure water were placed in a 100 mL beaker and stirred for 5 minutes. After stirring, the positive electrode active material for a lithium secondary battery was filtered, 0.1 mol / L hydrochloric acid was added dropwise to 60 g of the remaining filtrate, and the pH of the filtrate was measured with a pH meter. The positive electrode activity for a lithium secondary battery is calculated from the following formula using the hydrochloric acid titration at pH = 8.3 ± 0.1 AmL and the hydrochloric acid titration at B = 4.5 ± 0.1 hr as BmL. The concentration of lithium carbonate remaining in the material was calculated. In the following formula, the molecular weight of lithium carbonate was calculated by setting each atomic weight as Li; 6.941, C; 12, O;
Lithium carbonate concentration (%) = 0.1 × (BA) /1000×73.882/ (20 × 60/100) × 100
(3)リチウム二次電池用正極活物質の粉末X線回折測定
 リチウム二次電池用正極活物質の粉末X線回折測定は、粉末X線回折装置(株式会社リガク製、Ultima IV、試料水平型)を用いて行った。得られたリチウム二次電池用正極活物質を専用の基板に充填し、Cu-Kα線源を用いて、回折角2θ=10°~90°の範囲にて測定を行うことで、粉末X線回折図形を得た。前記粉末X線回折図形から2θ=18.7±1°の範囲内のピーク(以下、ピークAと呼ぶこともある)、2θ=44.6±1°の範囲内のピーク(以下、ピークBと呼ぶこともある)の半値幅を算出した。
(3) Powder X-ray diffraction measurement of a positive electrode active material for a lithium secondary battery A powder X-ray diffraction measurement of a positive electrode active material for a lithium secondary battery was performed using a powder X-ray diffraction apparatus (manufactured by Rigaku Corporation, Ultimate IV, sample horizontal type). ). The obtained positive electrode active material for a lithium secondary battery is filled in a dedicated substrate and measured using a Cu—Kα ray source in a diffraction angle range of 2θ = 10 ° to 90 °. A diffraction pattern was obtained. From the powder X-ray diffraction pattern, a peak in the range of 2θ = 18.7 ± 1 ° (hereinafter also referred to as peak A), a peak in the range of 2θ = 44.6 ± 1 ° (hereinafter, peak B) Half-width) was calculated.
(実施例1)
[混合工程]
 炭酸リチウム(LiCO)とニッケルコバルトマンガン複合金属水酸化物(Ni0.55Co0.21Mn0.24(OH))とを、Li:Ni:Co:Mnのモル比が1.05:0.55:0.21:0.24となるよう秤量し、これらを乾式混合して混合物を得た。尚、前記混合物中に含まれる炭酸リチウム含有量は混合比から29.7質量%である。
[予備焼成工程]
 次いで、前記混合物を炉内壁がアルミナであるロータリーキルンに入れ、790℃で2時間焼成を行った。
[本焼成工程]
 続いて、予備焼成工程で得られた焼成物を前記ロータリーキルンに入れ、酸素を21体積%含むガスを炉内容積1mあたり108.7Nm/h通気しながら、900℃で2時間焼成を行った。
 その後、室温まで冷却し、これを解砕して、リチウム二次電池用正極活物質を得た。リチウム二次電池用正極活物質に対してICP発光分析を行った結果、クロム含有量が2ppmであった。また、中和滴定を行った結果、炭酸リチウム含有量が0.25質量%であった。また、前記一般式(I)のxが0.03、yが0.21、zが0.24、wが0であった。また、粉末X線回折を行った結果、ピークAとピークBの半値幅がそれぞれ0.129、0.152であった。
Example 1
[Mixing process]
Lithium carbonate (Li 2 CO 3 ) and nickel cobalt manganese composite metal hydroxide (Ni 0.55 Co 0.21 Mn 0.24 (OH) 2 ) have a molar ratio of Li: Ni: Co: Mn of 1 .05: 0.55: 0.21: 0.24 and they were dry mixed to obtain a mixture. In addition, lithium carbonate content contained in the said mixture is 29.7 mass% from mixing ratio.
[Pre-baking step]
Next, the mixture was placed in a rotary kiln whose inner wall of the furnace was alumina and baked at 790 ° C. for 2 hours.
[Main firing process]
Subsequently, the fired product obtained in the preliminary firing step is placed in the rotary kiln and fired at 900 ° C. for 2 hours while a gas containing 21% by volume of oxygen is vented at 108.7 Nm 3 / h per 1 m 3 of the furnace volume. It was.
Then, it cooled to room temperature and this was crushed and the positive electrode active material for lithium secondary batteries was obtained. As a result of performing ICP emission analysis on the positive electrode active material for a lithium secondary battery, the chromium content was 2 ppm. Moreover, as a result of performing neutralization titration, lithium carbonate content was 0.25 mass%. In the general formula (I), x was 0.03, y was 0.21, z was 0.24, and w was 0. Further, as a result of powder X-ray diffraction, the half widths of peak A and peak B were 0.129 and 0.152, respectively.
(実施例2)
[混合工程]
 炭酸リチウム(LiCO)とニッケルコバルトマンガン複合金属水酸化物(Ni0.55Co0.21Mn0.24(OH))とを、Li:Ni:Co:Mnのモル比が2.20:0.55:0.21:0.24となるよう秤量し、これらを乾式混合して混合物を得た。尚、前記混合物中に含まれる炭酸リチウム含有量は混合比から46.6質量%である。
[予備焼成工程]
 次いで、前記混合物を炉内壁がアルミナであるロータリーキルンに入れ、790℃で2時間焼成を行った。
[本焼成工程]
 続いて、焼成物を前記ロータリーキルンに入れ、酸素を100体積%含むガスを炉内容積1mあたり150.1Nm/h通気しながら、850℃で2時間焼成を行った。その後、室温まで冷却し、これを解砕して、リチウム二次電池用正極活物質を得た。リチウム二次電池用正極活物質に対してICP発光分析を行った結果、クロム含有量が4ppmであった。また、中和滴定を行った結果、炭酸リチウム含有量が0.92質量%であった。また、前記一般式(I)のxが0.37、yが0.21、zが0.24、wが0であった。また、粉末X線回折を行った結果、ピークAとピークBの半値幅がそれぞれ0.160、0.208であった。
(Example 2)
[Mixing process]
Lithium carbonate (Li 2 CO 3 ) and nickel cobalt manganese composite metal hydroxide (Ni 0.55 Co 0.21 Mn 0.24 (OH) 2 ) have a molar ratio of Li: Ni: Co: Mn of 2 20: 0.55: 0.21: 0.24, and they were dry mixed to obtain a mixture. In addition, lithium carbonate content contained in the said mixture is 46.6 mass% from mixing ratio.
[Pre-baking step]
Next, the mixture was placed in a rotary kiln whose inner wall of the furnace was alumina and baked at 790 ° C. for 2 hours.
[Main firing process]
Subsequently, the fired product was placed in the rotary kiln and fired at 850 ° C. for 2 hours while a gas containing 100% by volume of oxygen was vented by 150.1 Nm 3 / h per 1 m 3 of the furnace volume. Then, it cooled to room temperature and this was crushed and the positive electrode active material for lithium secondary batteries was obtained. As a result of performing ICP emission analysis on the positive electrode active material for a lithium secondary battery, the chromium content was 4 ppm. Moreover, as a result of performing neutralization titration, lithium carbonate content was 0.92 mass%. In the general formula (I), x was 0.37, y was 0.21, z was 0.24, and w was 0. Further, as a result of powder X-ray diffraction, the half widths of peak A and peak B were 0.160 and 0.208, respectively.
(実施例3)
[混合工程]
 前記実施例1と同様の方法により、混合物を得た。
[予備焼成工程]
 実施例1に記載の混合物を炉内壁がインコネルであるロータリーキルンに入れ730℃で2時間焼成を行った。
[本焼成工程]
 続いて、焼成物を炉内壁がアルミナであるロータリーキルンに入れ、酸素を21体積%含むガスを炉内容積1mあたり107.2Nm/h通気しながら、850℃で2時間焼成を行った。その後、室温まで冷却し、これを解砕して、リチウム二次電池用正極活物質を得た。リチウム二次電池用正極活物質に対してICP発光分析を行った結果、クロム含有量が10ppmであった。また、中和滴定を行った結果、炭酸リチウム含有量が0.16質量%であった。また、前記一般式(I)のxが0.03、yが0.21、zが0.24、wが0であった。また、粉末X線回折を行った結果、ピークAとピークBの半値幅がそれぞれ0.152、0.185であった。
(Example 3)
[Mixing process]
A mixture was obtained in the same manner as in Example 1.
[Pre-baking step]
The mixture described in Example 1 was placed in a rotary kiln having an inner wall of Inconel and baked at 730 ° C. for 2 hours.
[Main firing process]
Subsequently, the fired product was placed in a rotary kiln whose inner wall is alumina, and baked at 850 ° C. for 2 hours while a gas containing 21% by volume of oxygen was passed through 107.2 Nm 3 / h per 1 m 3 of the furnace volume. Then, it cooled to room temperature and this was crushed and the positive electrode active material for lithium secondary batteries was obtained. As a result of performing ICP emission analysis on the positive electrode active material for a lithium secondary battery, the chromium content was 10 ppm. Moreover, as a result of performing neutralization titration, lithium carbonate content was 0.16 mass%. In the general formula (I), x was 0.03, y was 0.21, z was 0.24, and w was 0. Further, as a result of powder X-ray diffraction, the half widths of peak A and peak B were 0.152 and 0.185, respectively.
(実施例4)
[混合工程]
 前記実施例1と同様の方法により、混合物を得た。
[予備焼成工程]
 実施例1に記載の混合物を炉内壁がインコネルであるロータリーキルンに入れ730℃で2時間焼成を行った。
[本焼成工程]
 続いて、焼成物を炉内壁がアルミナであるロータリーキルンに入れ、酸素を60体積%含むガスを炉内容積1mあたり107.2Nm/h通気しながら、850℃で2時間焼成を行った。その後、室温まで冷却し、これを解砕して、リチウム二次電池用正極活物質を得た。リチウム二次電池用正極活物質に対してICP発光分析を行った結果、クロム含有量が31ppmであった。また、中和滴定を行った結果、炭酸リチウム含有量が0.19質量%であった。また、前記一般式(I)のxが0.04、yが0.21、zが0.24、wが0であった。また、粉末X線回折を行った結果、ピークAとピークBの半値幅がそれぞれ0.153、0.194であった。
Example 4
[Mixing process]
A mixture was obtained in the same manner as in Example 1.
[Pre-baking step]
The mixture described in Example 1 was placed in a rotary kiln having an inner wall of Inconel and baked at 730 ° C. for 2 hours.
[Main firing process]
Subsequently, the fired product was placed in a rotary kiln having an inner wall made of alumina, and baked at 850 ° C. for 2 hours while a gas containing 60% by volume of oxygen was vented by 107.2 Nm 3 / h per 1 m 3 of the furnace volume. Then, it cooled to room temperature and this was crushed and the positive electrode active material for lithium secondary batteries was obtained. As a result of performing ICP emission analysis on the positive electrode active material for a lithium secondary battery, the chromium content was 31 ppm. Moreover, as a result of performing neutralization titration, lithium carbonate content was 0.19 mass%. In the general formula (I), x was 0.04, y was 0.21, z was 0.24, and w was 0. Further, as a result of powder X-ray diffraction, the half widths of peak A and peak B were 0.153 and 0.194, respectively.
(実施例5)
[混合工程]
 前記実施例1と同様の方法により、混合物を得た。
[予備焼成工程]
 実施例1に記載の混合物を炉内壁がインコネルであるロータリーキルンに入れ730℃で2時間焼成を行った。
[本焼成工程]
 続いて、焼成物を炉内壁がアルミナであるロータリーキルンに入れ、酸素を100体積%含むガスを炉内容積1mあたり46.5Nm/h通気しながら、850℃で2時間焼成を行った。その後、室温まで冷却し、これを解砕して、リチウム二次電池用正極活物質を得た。リチウム二次電池用正極活物質に対してICP発光分析を行った結果、クロム含有量が49ppmであった。また、中和滴定を行った結果、炭酸リチウム含有量が0.15質量%であった。また、前記一般式(I)のxが0.04、yが0.22、zが0.24、wが0であった。また、粉末X線回折を行った結果、ピークAとピークBの半値幅がそれぞれ0.152、0.178であった。
(Example 5)
[Mixing process]
A mixture was obtained in the same manner as in Example 1.
[Pre-baking step]
The mixture described in Example 1 was placed in a rotary kiln having an inner wall of Inconel and baked at 730 ° C. for 2 hours.
[Main firing process]
Subsequently, the fired product was placed in a rotary kiln having an inner wall made of alumina, and baked at 850 ° C. for 2 hours while a gas containing 100% by volume of oxygen was passed through 46.5 Nm 3 / h per 1 m 3 of the furnace volume. Then, it cooled to room temperature and this was crushed and the positive electrode active material for lithium secondary batteries was obtained. As a result of performing ICP emission analysis on the positive electrode active material for a lithium secondary battery, the chromium content was 49 ppm. Moreover, as a result of performing neutralization titration, lithium carbonate content was 0.15 mass%. In the general formula (I), x was 0.04, y was 0.22, z was 0.24, and w was 0. Further, as a result of powder X-ray diffraction, the half widths of peak A and peak B were 0.152 and 0.178, respectively.
(実施例6)
[混合工程]
 前記実施例1と同様の方法により、混合物を得た。
[予備焼成工程]
 実施例1に記載の混合物を炉内壁がインコネルであるロータリーキルンに入れ730℃で2時間焼成を行った。
[本焼成工程]
 続いて、焼成物を炉内壁がアルミナであるロータリーキルンに入れ、酸素を21体積%含むガスを炉内容積1mあたり46.5Nm/h通気しながら、850℃で2時間焼成を行った。その後、室温まで冷却し、これを解砕して、リチウム二次電池用正極活物質を得た。リチウム二次電池用正極活物質に対してICP発光分析を行った結果、クロム含有量が20ppmであった。また、中和滴定を行った結果、炭酸リチウム含有量が0.51質量%であった。また、前記一般式(I)のxが0.04、yが0.21、zが0.24、wが0であった。また、粉末X線回折を行った結果、ピークAとピークBの半値幅がそれぞれ0.149、0.182であった。
(Example 6)
[Mixing process]
A mixture was obtained in the same manner as in Example 1.
[Pre-baking step]
The mixture described in Example 1 was placed in a rotary kiln having an inner wall of Inconel and baked at 730 ° C. for 2 hours.
[Main firing process]
Subsequently, the fired product was placed in a rotary kiln having an inner wall made of alumina, and baked at 850 ° C. for 2 hours while a gas containing 21% by volume of oxygen was vented at 46.5 Nm 3 / h per 1 m 3 of the furnace volume. Then, it cooled to room temperature and this was crushed and the positive electrode active material for lithium secondary batteries was obtained. As a result of performing ICP emission analysis on the positive electrode active material for a lithium secondary battery, the chromium content was 20 ppm. Moreover, as a result of performing neutralization titration, lithium carbonate content was 0.51 mass%. In the general formula (I), x was 0.04, y was 0.21, z was 0.24, and w was 0. Further, as a result of powder X-ray diffraction, the half widths of peak A and peak B were 0.149 and 0.182, respectively.
(実施例7)
[混合工程]
 前記実施例1と同様の方法により、混合物を得た。
[予備焼成工程]
 実施例1に記載の混合物を炉内壁がインコネルであるロータリーキルンに入れ730℃で2時間焼成を行った。
[本焼成工程]
 続いて、焼成物を炉内壁がアルミナであるロータリーキルンに入れ、酸素を21体積%含むガスを炉内容積1mあたり17.9Nm/h通気しながら、850℃で2時間焼成を行った。その後、室温まで冷却し、これを解砕して、リチウム二次電池用正極活物質を得た。リチウム二次電池用正極活物質に対してICP発光分析を行った結果、クロム含有量が19ppmであった。また、中和滴定を行った結果、炭酸リチウム含有量が0.90質量%であった。また、前記一般式(I)のxが0.03、yが0.21、zが0.24、wが0であった。また、粉末X線回折を行った結果、ピークAとピークBの半値幅がそれぞれ0.161、0.200であった。
(Example 7)
[Mixing process]
A mixture was obtained in the same manner as in Example 1.
[Pre-baking step]
The mixture described in Example 1 was placed in a rotary kiln having an inner wall of Inconel and baked at 730 ° C. for 2 hours.
[Main firing process]
Subsequently, the fired product was placed in a rotary kiln having an inner wall made of alumina, and baked at 850 ° C. for 2 hours while a gas containing 21% by volume of oxygen was passed through 17.9 Nm 3 / h per 1 m 3 of the furnace volume. Then, it cooled to room temperature and this was crushed and the positive electrode active material for lithium secondary batteries was obtained. As a result of performing ICP emission analysis on the positive electrode active material for a lithium secondary battery, the chromium content was 19 ppm. Moreover, as a result of performing neutralization titration, lithium carbonate content was 0.90 mass%. In the general formula (I), x was 0.03, y was 0.21, z was 0.24, and w was 0. Further, as a result of powder X-ray diffraction, the half widths of peak A and peak B were 0.161 and 0.200, respectively.
(実施例8)
[混合工程]
 前記実施例1と同様の方法により、混合物を得た。
[予備焼成工程]
 実施例1に記載の混合物を炉内壁がインコネルであるロータリーキルンに入れ730℃で2時間焼成を行った。
[本焼成工程]
 続いて、焼成物を炉内壁がアルミナであるロータリーキルンに入れ、酸素を100体積%含むガスを炉内容積1mあたり17.9Nm/h通気しながら、850℃で2時間焼成を行った。その後、室温まで冷却し、これを解砕して、リチウム二次電池用正極活物質を得た。リチウム二次電池用正極活物質に対してICP発光分析を行った結果、クロム含有量が45ppmであった。また、中和滴定を行った結果、炭酸リチウム含有量が0.53質量%であった。また、前記一般式(I)のxが0.03、yが0.21、zが0.24、wが0であった。また、粉末X線回折を行った結果、ピークAとピークBの半値幅がそれぞれ0.151、0.184であった。
(Example 8)
[Mixing process]
A mixture was obtained in the same manner as in Example 1.
[Pre-baking step]
The mixture described in Example 1 was placed in a rotary kiln having an inner wall of Inconel and baked at 730 ° C. for 2 hours.
[Main firing process]
Subsequently, the fired product was put into a rotary kiln whose inner wall of the furnace was alumina, and baked at 850 ° C. for 2 hours while a gas containing 100% by volume of oxygen was passed through 17.9 Nm 3 / h per 1 m 3 of the furnace volume. Then, it cooled to room temperature and this was crushed and the positive electrode active material for lithium secondary batteries was obtained. As a result of performing ICP emission analysis on the positive electrode active material for a lithium secondary battery, the chromium content was 45 ppm. Moreover, as a result of performing neutralization titration, lithium carbonate content was 0.53 mass%. In the general formula (I), x was 0.03, y was 0.21, z was 0.24, and w was 0. Moreover, as a result of performing powder X-ray diffraction, the half width of the peak A and the peak B was 0.151 and 0.184, respectively.
(比較例1)
[混合工程]
 前記実施例1と同様の方法により、混合物を得た。
[予備焼成工程]
 実施例1に記載の混合物を炉内壁がインコネルであるロータリーキルンに入れ730℃で2時間焼成を行った。
[本焼成工程]
 続いて、焼成物を炉内壁がインコネルであるロータリーキルンに入れ、酸素を21体積%含むガスを炉内容積1mあたり22.6Nm/h通気しながら、730℃で2時間焼成を行った。その後、室温まで冷却し、これを解砕して、リチウム二次電池用正極活物質を得た。リチウム二次電池用正極活物質に対してICP発光分析を行った結果、クロム含有量が55ppmであった。また、中和滴定を行った結果、炭酸リチウム含有量が5.31質量%であった。また、前記一般式(I)のxが0.02、yが0.21、zが0.24、wが0であった。また、粉末X線回折を行った結果、ピークAとピークBの半値幅がそれぞれ0.458、0.639であった。
(Comparative Example 1)
[Mixing process]
A mixture was obtained in the same manner as in Example 1.
[Pre-baking step]
The mixture described in Example 1 was placed in a rotary kiln having an inner wall of Inconel and baked at 730 ° C. for 2 hours.
[Main firing process]
Subsequently, the fired product was placed in a rotary kiln whose inner wall of the furnace was Inconel, and fired at 730 ° C. for 2 hours while a gas containing 21% by volume of oxygen was passed through 22.6 Nm 3 / h per 1 m 3 of the furnace volume. Then, it cooled to room temperature and this was crushed and the positive electrode active material for lithium secondary batteries was obtained. As a result of performing ICP emission analysis on the positive electrode active material for a lithium secondary battery, the chromium content was 55 ppm. Moreover, as a result of performing neutralization titration, lithium carbonate content was 5.31 mass%. In the general formula (I), x was 0.02, y was 0.21, z was 0.24, and w was 0. Further, as a result of powder X-ray diffraction, the half widths of peak A and peak B were 0.458 and 0.639, respectively.
(比較例2)
[混合工程]
 前記実施例1と同様の方法により、混合物を得た。
[予備焼成工程]
 実施例1に記載の混合物を炉内壁がインコネルであるロータリーキルンに入れ730℃で2時間焼成を行った。
[本焼成工程]
 続いて、焼成物を炉内壁がインコネルであるロータリーキルンに入れ、酸素を21体積%含むガスを炉内容積1mあたり22.6Nm/h通気しながら、730℃で4時間焼成を行った。その後、室温まで冷却し、これを解砕して、リチウム二次電池用正極活物質を得た。リチウム二次電池用正極活物質に対してICP発光分析を行った結果、クロム含有量が60ppmであった。また、中和滴定を行った結果、炭酸リチウム含有量が3.43質量%であった。また、前記一般式(I)のxが0.03、yが0.22、zが0.24、wが0であった。また、粉末X線回折を行った結果、ピークAとピークBの半値幅がそれぞれ0.415、0.578であった。
(Comparative Example 2)
[Mixing process]
A mixture was obtained in the same manner as in Example 1.
[Pre-baking step]
The mixture described in Example 1 was placed in a rotary kiln having an inner wall of Inconel and baked at 730 ° C. for 2 hours.
[Main firing process]
Subsequently, the fired product was placed in a rotary kiln whose inner wall of the furnace was Inconel, and fired at 730 ° C. for 4 hours while a gas containing 21% by volume of oxygen was passed through 22.6 Nm 3 / h per 1 m 3 of the furnace volume. Then, it cooled to room temperature and this was crushed and the positive electrode active material for lithium secondary batteries was obtained. As a result of performing ICP emission analysis on the positive electrode active material for a lithium secondary battery, the chromium content was 60 ppm. Moreover, as a result of performing neutralization titration, lithium carbonate content was 3.43 mass%. In the general formula (I), x was 0.03, y was 0.22, z was 0.24, and w was 0. Moreover, as a result of performing powder X-ray diffraction, the half width of the peak A and the peak B was 0.415 and 0.578, respectively.
(比較例3)
[混合工程]
 前記実施例1と同様の方法により、混合物を得た。
[予備焼成工程]
 実施例1に記載の混合物を炉内壁がインコネルであるロータリーキルンに入れ730℃で2時間焼成を行った。
[本焼成工程]
 続いて、焼成物を炉内壁がSUS310であるロータリーキルンに入れ、酸素を21体積%含むガスを炉内容積1mあたり22.6Nm/h通気しながら、730℃で5時間焼成を行った。その後、室温まで冷却し、これを解砕して、リチウム二次電池用正極活物質を得た。リチウム二次電池用正極活物質に対してICP発光分析を行った結果、クロム含有量が320ppmであった。また、中和滴定を行った結果、炭酸リチウム含有量が1.13質量%であった。また、前記一般式(I)のxが0.02、yが0.21、zが0.24、wが0であった。また、粉末X線回折を行った結果、ピークAとピークBの半値幅がそれぞれ0.214、0.261であった。
(Comparative Example 3)
[Mixing process]
A mixture was obtained in the same manner as in Example 1.
[Pre-baking step]
The mixture described in Example 1 was placed in a rotary kiln having an inner wall of Inconel and baked at 730 ° C. for 2 hours.
[Main firing process]
Subsequently, the fired product was placed in a rotary kiln having an inner wall of SUS310, and fired at 730 ° C. for 5 hours while a gas containing 21% by volume of oxygen was passed through 22.6 Nm 3 / h per 1 m 3 of the furnace volume. Then, it cooled to room temperature and this was crushed and the positive electrode active material for lithium secondary batteries was obtained. As a result of performing ICP emission analysis on the positive electrode active material for a lithium secondary battery, the chromium content was 320 ppm. Moreover, as a result of performing neutralization titration, lithium carbonate content was 1.13 mass%. In the general formula (I), x was 0.02, y was 0.21, z was 0.24, and w was 0. Moreover, as a result of performing powder X-ray diffraction, the half width of the peak A and the peak B was 0.214 and 0.261, respectively.
(比較例4)
[混合工程]
 前記実施例1と同様の方法により、混合物を得た。
[予備焼成工程]
 実施例1に記載の混合物を炉内壁がインコネルであるロータリーキルンに入れ730℃で2時間焼成を行った。
[本焼成工程]
 続いて、焼成物を炉内壁がアルミナであるサヤに充填し、ローラーハースキルンで、酸素を21体積%含むガスを炉内容積1mあたり29.7Nm/h通気しながら、850℃で2時間焼成を行った。その後、室温まで冷却し、これを解砕して、リチウム二次電池用正極活物質を得た。リチウム二次電池用正極活物質に対してICP発光分析を行った結果、クロム含有量が10ppmであった。また、中和滴定を行った結果、炭酸リチウム含有量が1.01質量%であった。また、前記一般式(I)のxが0.04、yが0.21、zが0.24、wが0であった。また、粉末X線回折を行った結果、ピークAとピークBの半値幅がそれぞれ0.225、0.278であった。
(Comparative Example 4)
[Mixing process]
A mixture was obtained in the same manner as in Example 1.
[Pre-baking step]
The mixture described in Example 1 was placed in a rotary kiln having an inner wall of Inconel and baked at 730 ° C. for 2 hours.
[Main firing process]
Subsequently, the fired product was filled into a sheath whose inner wall is alumina, and was heated at 850 ° C. at 2850 Nm 3 / h with a roller hearth kiln and a gas containing 21% by volume of oxygen per 1 m 3 of the furnace volume. Time firing was performed. Then, it cooled to room temperature and this was crushed and the positive electrode active material for lithium secondary batteries was obtained. As a result of performing ICP emission analysis on the positive electrode active material for a lithium secondary battery, the chromium content was 10 ppm. Moreover, as a result of performing neutralization titration, lithium carbonate content was 1.01 mass%. In the general formula (I), x was 0.04, y was 0.21, z was 0.24, and w was 0. Moreover, as a result of performing powder X-ray diffraction, the half width of the peak A and the peak B was 0.225 and 0.278, respectively.
(比較例5)
[混合工程]
 前記実施例1と同様の方法により、混合物を得た。
[予備焼成工程]
 実施例1に記載の混合物を炉内壁がインコネルであるロータリーキルンに入れ730℃で2時間焼成を行った。
[本焼成工程]
 続いて、焼成物を炉内壁がアルミナであるサヤに充填し、ローラーハースキルンで、酸素を21体積%含むガスを炉内容積1mあたり29.7Nm/h通気しながら、850℃で10時間焼成を行った。その後、室温まで冷却し、これを解砕して、リチウム二次電池用正極活物質を得た。リチウム二次電池用正極活物質に対して中和滴定を行った結果、炭酸リチウム含有量が0.67質量%であった。また、前記一般式(I)のxが0.02、yが0.21、zが0.24、wが0であった。また、粉末X線回折を行った結果、ピークAとピークBの半値幅がそれぞれ0.129、0.150であった。
(Comparative Example 5)
[Mixing process]
A mixture was obtained in the same manner as in Example 1.
[Pre-baking step]
The mixture described in Example 1 was placed in a rotary kiln having an inner wall of Inconel and baked at 730 ° C. for 2 hours.
[Main firing process]
Subsequently, the fired product was filled into a sheath whose inner wall is alumina, and was heated at 850 ° C. while a roller hearth kiln was ventilated with 29.7 Nm 3 / h of gas containing 21% by volume of oxygen per 1 m 3 of the furnace volume. Time firing was performed. Then, it cooled to room temperature and this was crushed and the positive electrode active material for lithium secondary batteries was obtained. As a result of performing neutralization titration on the positive electrode active material for a lithium secondary battery, the lithium carbonate content was 0.67% by mass. In the general formula (I), x was 0.02, y was 0.21, z was 0.24, and w was 0. Further, as a result of powder X-ray diffraction, the half widths of peak A and peak B were 0.129 and 0.150, respectively.
(比較例6)
[混合工程]
 炭酸リチウム(LiCO)とニッケルコバルトマンガン複合金属水酸化物(Ni0.55Co0.21Mn0.24(OH))とを、Li:Ni:Co:Mnのモル比が3.00:0.55:0.21:0.24となるよう秤量し、これらを乾式混合して混合物を得た。尚、前記混合物中に含まれる炭酸リチウム含有量は混合比から54.3質量%である。また、前記一般式(I)のxが0.50、yが0.21、zが0.24、wが0であった。前記混合物を炉内壁がアルミナであるロータリーキルンで酸素を21体積%含むガスを炉内容積1mあたり17.9Nm/h通気しながら、850℃で2時間焼成を行った。但し、炉心管の壁に混合物及び焼成物が付着し、排出不可能であった。
(Comparative Example 6)
[Mixing process]
Lithium carbonate (Li 2 CO 3 ) and nickel cobalt manganese composite metal hydroxide (Ni 0.55 Co 0.21 Mn 0.24 (OH) 2 ) are mixed with a molar ratio of Li: Ni: Co: Mn of 3 0.000: 0.55: 0.21: 0.24, and these were dry mixed to obtain a mixture. In addition, lithium carbonate content contained in the said mixture is 54.3 mass% from mixing ratio. In the general formula (I), x was 0.50, y was 0.21, z was 0.24, and w was 0. The mixture was calcined at 850 ° C. for 2 hours in a rotary kiln having an inner wall of alumina of a furnace while a gas containing 21% by volume of oxygen was vented at 17.9 Nm 3 / h per m 3 of the furnace volume. However, the mixture and the fired product adhered to the wall of the furnace core tube and could not be discharged.
(参考例)
[混合工程]
 前記実施例1と同様の方法により、混合物を得た。
[予備焼成工程]
 実施例1に記載の混合物を炉内壁がインコネルであるロータリーキルンに入れ730℃で2時間焼成を行った。
[本焼成工程]
 続いて、焼成物を炉内壁がアルミナであるロータリーキルンに入れ、酸素を21体積%含むガスを炉内容積1mあたり17.9Nm/h通気しながら、850℃で4時間焼成を行った。その後、室温まで冷却し、これを解砕して、リチウム二次電池用正極活物質を得た。リチウム二次電池用正極活物質に対してICP発光分析を行った結果、クロム含有量が13ppmであった。また、中和滴定を行った結果、炭酸リチウム含有量が0.10質量%であった。また、前記一般式(I)のxが0.02、yが0.21、zが0.24、wが0であった。また、粉末X線回折を行った結果、ピークAとピークBの半値幅がそれぞれ0.149、0.183であった。
(Reference example)
[Mixing process]
A mixture was obtained in the same manner as in Example 1.
[Pre-baking step]
The mixture described in Example 1 was placed in a rotary kiln having an inner wall of Inconel and baked at 730 ° C. for 2 hours.
[Main firing process]
Subsequently, the fired product was put into a rotary kiln whose inner wall of the furnace was alumina, and baked at 850 ° C. for 4 hours while a gas containing 21% by volume of oxygen was vented at 17.9 Nm 3 / h per 1 m 3 of the furnace volume. Then, it cooled to room temperature and this was crushed and the positive electrode active material for lithium secondary batteries was obtained. As a result of performing ICP emission analysis on the positive electrode active material for a lithium secondary battery, the chromium content was 13 ppm. Moreover, as a result of performing neutralization titration, lithium carbonate content was 0.10 mass%. In the general formula (I), x was 0.02, y was 0.21, z was 0.24, and w was 0. Further, as a result of powder X-ray diffraction, the half widths of peak A and peak B were 0.149 and 0.183, respectively.
 以下、表1~3に実施例及び比較例、参考例の条件、結果等をまとめて記載する。表中、RKはロータリーキルン、RHKはローラーハースキルンを指す。 Tables 1 to 3 below collectively describe the conditions and results of Examples, Comparative Examples, and Reference Examples. In the table, RK indicates a rotary kiln, and RHK indicates a roller hearth kiln.
 下記表1~3に記載の結果のとおり、本発明を適用した実施例1~8は、短時間の焼成時間で、ピーク半値幅が小さい、即ち結晶性の高い正極活物質を製造することができた。
さらに、本発明を適用した実施例1~8は、クロムの含有量が低かった。
 これに対し、本焼成工程を金属製のロータリーキルンで実施した比較例1~3は、クロムの含有量が多く、ピーク半値幅も大きかった。また、本焼成工程にローラーハースキルンを用い、2時間の焼成時間とした比較例4はピーク半値幅が大きく、比較例5はピーク半値幅が小さいものの、本焼成時間に10時間も要した。
 参考例1は、本焼成を混合物が接触する部位である炉内壁が、非金属材質から形成されたロータリーキルンを用いて4時間実施した。参考例1と実施例1とを比較すると、ピーク半値幅は同程度であった。つまり、短時間(2時間)の焼成時間で結晶性の高い正極活物質を製造することができた。
As shown in Tables 1 to 3 below, Examples 1 to 8 to which the present invention is applied can produce a positive electrode active material having a small peak half-value width, that is, high crystallinity, in a short baking time. did it.
Further, in Examples 1 to 8 to which the present invention was applied, the chromium content was low.
In contrast, Comparative Examples 1 to 3 in which the main firing step was performed with a metal rotary kiln had a high chromium content and a large peak half-value width. Moreover, although the comparative example 4 which used the roller hearth kiln for the main baking process and made the baking time of 2 hours has a large peak half value width and the comparative example 5 has a small peak half value width, the main baking time required 10 hours.
In Reference Example 1, the main calcination was performed for 4 hours using a rotary kiln in which the inner wall of the furnace, which is the part in contact with the mixture, was formed from a non-metallic material. When Reference Example 1 and Example 1 were compared, the peak half-value widths were comparable. That is, a positive electrode active material with high crystallinity could be produced in a short (2 hours) firing time.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 1…セパレータ、2…正極、3…負極、4…電極群、5…電池缶、6…電解液、7…トップインシュレーター、8…封口体、10…リチウム二次電池、21…正極リード、31…負極リード、40…ロータリーキルン、41…炉内壁、42…炉芯管、50…焼成原料 DESCRIPTION OF SYMBOLS 1 ... Separator, 2 ... Positive electrode, 3 ... Negative electrode, 4 ... Electrode group, 5 ... Battery can, 6 ... Electrolyte solution, 7 ... Top insulator, 8 ... Sealing body, 10 ... Lithium secondary battery, 21 ... Positive electrode lead, 31 ... negative electrode lead, 40 ... rotary kiln, 41 ... furnace inner wall, 42 ... furnace core tube, 50 ... firing raw material

Claims (8)

  1.  リチウム化合物と、正極活物質前駆体とを混合し、混合物を得る混合工程と、
     前記混合物をロータリーキルンを用いて焼成する本焼成工程と、
     を含むリチウム二次電池用正極活物質の製造方法であって、
     前記混合物に含まれるリチウム化合物の含有量が前記混合物の総質量に対して0を超え50質量%以下であり、
     前記ロータリーキルンの炉内壁が、非金属材質から形成されたことを特徴とする、リチウム二次電池用正極活物質の製造方法。
    A mixing step of mixing a lithium compound and a positive electrode active material precursor to obtain a mixture;
    A main baking step of baking the mixture using a rotary kiln;
    A method for producing a positive electrode active material for a lithium secondary battery, comprising:
    The content of the lithium compound contained in the mixture is more than 0 and 50% by mass or less with respect to the total mass of the mixture,
    A method for producing a positive electrode active material for a lithium secondary battery, wherein a furnace inner wall of the rotary kiln is formed of a non-metallic material.
  2.  前記本焼成工程を750℃以上1000℃以下で行う、請求項1に記載のリチウム二次電池用正極活物質の製造方法。 The method for producing a positive electrode active material for a lithium secondary battery according to claim 1, wherein the main firing step is performed at 750 ° C. or more and 1000 ° C. or less.
  3.  前記リチウム二次電池用正極活物質が、以下の一般式(I)で表されるリチウム金属複合酸化物を含む、請求項1又は2に記載のリチウム二次電池用正極活物質の製造方法。
       Li[Li(Ni(1-y-z-w)CoMnw1-x]O ・・・(I)
     (一般式(I)中、-0.1≦x≦0.2、0<y≦0.5、0<z≦0.8、0≦w≦0.1、y+z+w<1、Mは、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の元素を表す。)
    The manufacturing method of the positive electrode active material for lithium secondary batteries of Claim 1 or 2 with which the said positive electrode active material for lithium secondary batteries contains the lithium metal complex oxide represented by the following general formula (I).
    Li [Li x (Ni (1 -y-z-w) Co y Mn z M w) 1-x] O 2 ··· (I)
    (In the general formula (I), −0.1 ≦ x ≦ 0.2, 0 <y ≦ 0.5, 0 <z ≦ 0.8, 0 ≦ w ≦ 0.1, y + z + w <1, M is It represents one or more elements selected from the group consisting of Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga and V.)
  4.  前記混合工程の後であって、前記本焼成工程の前に、前記本焼成の焼成温度よりも低温で焼成する、予備焼成工程を含む、請求項1~3のいずれか1項に記載のリチウム二次電池用正極活物質の製造方法。 The lithium according to any one of claims 1 to 3, further comprising a pre-baking step of baking at a temperature lower than a baking temperature of the main baking after the mixing step and before the main baking step. A method for producing a positive electrode active material for a secondary battery.
  5.  前記本焼成工程及び前記予備焼成工程のいずれか一方又は両方を、酸素含有ガスを15Nm/h/m以上の流量で通気することにより行う請求項1~4のいずれか1項に記載のリチウム二次電池用正極活物質の製造方法。 The method according to any one of claims 1 to 4, wherein one or both of the main baking step and the preliminary baking step are performed by ventilating an oxygen-containing gas at a flow rate of 15 Nm 3 / h / m 3 or more. A method for producing a positive electrode active material for a lithium secondary battery.
  6.  前記酸素含有ガス中の酸素濃度が、酸素含有ガスの総体積に対して21体積%以上である、請求項5に記載のリチウム二次電池用正極活物質の製造方法。 The method for producing a positive electrode active material for a lithium secondary battery according to claim 5, wherein the oxygen concentration in the oxygen-containing gas is 21% by volume or more based on the total volume of the oxygen-containing gas.
  7.  前記リチウム二次電池用正極活物質中に含まれるクロムの含有量が前記リチウム二次電池用正極活物質の総質量に対して50ppm以下である、請求項1~6のいずれか1項に記載のリチウム二次電池用正極活物質の製造方法。 The content of chromium contained in the positive electrode active material for a lithium secondary battery is 50 ppm or less with respect to the total mass of the positive electrode active material for the lithium secondary battery. Manufacturing method of positive electrode active material for lithium secondary battery.
  8.  前記リチウム二次電池用正極活物質中に含まれる炭酸リチウムの含有量が前記リチウム二次電池用正極活物質の総質量に対して1.0質量%以下である、請求項1~7のいずれか1項に記載のリチウム二次電池用正極活物質の製造方法。 The content of lithium carbonate contained in the positive electrode active material for a lithium secondary battery is 1.0% by mass or less based on the total mass of the positive electrode active material for the lithium secondary battery. The manufacturing method of the positive electrode active material for lithium secondary batteries of Claim 1.
PCT/JP2017/037171 2016-10-13 2017-10-13 Production method for lithium secondary battery positive electrode active material WO2018070517A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780062390.7A CN109863630A (en) 2016-10-13 2017-10-13 The manufacturing method of positive active material for lithium secondary battery
KR1020197009989A KR102425597B1 (en) 2016-10-13 2017-10-13 Method for producing a positive electrode active material for a lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016201566A JP6857482B2 (en) 2016-10-13 2016-10-13 Manufacturing method of positive electrode active material for lithium secondary battery
JP2016-201566 2016-10-13

Publications (1)

Publication Number Publication Date
WO2018070517A1 true WO2018070517A1 (en) 2018-04-19

Family

ID=61905705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037171 WO2018070517A1 (en) 2016-10-13 2017-10-13 Production method for lithium secondary battery positive electrode active material

Country Status (4)

Country Link
JP (1) JP6857482B2 (en)
KR (1) KR102425597B1 (en)
CN (1) CN109863630A (en)
WO (1) WO2018070517A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019103046A1 (en) * 2017-11-21 2019-05-31 日立金属株式会社 Method for producing positive electrode active material for lithium ion secondary battery and heat treatment apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109037633B (en) * 2018-07-31 2022-02-22 湖南德景源科技有限公司 Method for producing modified high-nickel cathode material by using rotary kiln heat treatment
JP6646129B1 (en) * 2018-12-07 2020-02-14 住友化学株式会社 Method for producing positive electrode active material for lithium secondary battery
CN110459759B (en) * 2019-08-19 2020-10-20 湖南金富力新能源股份有限公司 Lithium ion battery anode material prepared by using rotary device and preparation method and application thereof
CN110444756B (en) * 2019-08-19 2020-12-01 湖南金富力新能源股份有限公司 Lithium ion battery anode material prepared by high-temperature reaction device, preparation method and application
CN110935881A (en) * 2019-12-30 2020-03-31 佛山市中研非晶科技股份有限公司 Amorphous nanocrystalline powder baking equipment and use its magnetic powder core production line
KR102168640B1 (en) * 2020-04-21 2020-10-21 (주)탑전지 Positive active material comprising spinel complex-oxide, method for preparing same, and rechargeable lithium battery comprising same
JP6936909B1 (en) * 2020-08-07 2021-09-22 Basf戸田バッテリーマテリアルズ合同会社 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using it

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11139829A (en) * 1997-11-04 1999-05-25 Nikki Chemcal Co Ltd Production of positive electrode material for lithium ion secondary cell
JP2002260655A (en) * 2001-02-28 2002-09-13 Nichia Chem Ind Ltd Manufacturing method of positive electrode material for lithium ion secondary battery
JP2006147591A (en) * 2005-12-26 2006-06-08 Seimi Chem Co Ltd Positive electrode substance for lithium secondary battery, and manufacturing method of the same
JP2011058785A (en) * 2009-09-14 2011-03-24 Takasago Ind Co Ltd Rotary kiln and battery material manufactured by the rotary kiln
WO2012132072A1 (en) * 2011-03-29 2012-10-04 Jx日鉱日石金属株式会社 Production method for positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
JP2012201525A (en) * 2011-03-24 2012-10-22 Toho Material Kk Method for producing complex metal oxide
JP2015196621A (en) * 2014-04-01 2015-11-09 日本化学工業株式会社 Method for producing lithium sulfide and method for producing inorganic solid electrolyte

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5021892B2 (en) 2004-06-17 2012-09-12 Jx日鉱日石金属株式会社 Precursor for positive electrode material of lithium ion secondary battery, method for producing the same, and method for producing positive electrode material using the same
JPWO2010113512A1 (en) * 2009-04-03 2012-10-04 パナソニック株式会社 Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
TWI513663B (en) * 2011-03-29 2015-12-21 Jx Nippon Mining & Metals Corp Production method of positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
CN104201323B (en) * 2014-07-07 2016-08-17 上海电力学院 The preparation method of alumina-coated lithium cobaltate cathode material
CN105428589B (en) * 2015-11-13 2018-05-08 常州百利锂电智慧工厂有限公司 Anode material of lithium battery intelligence production technology
JP2016106358A (en) * 2015-12-25 2016-06-16 信越化学工業株式会社 Method for manufacturing negative electrode active material for nonaqueous electrolyte secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11139829A (en) * 1997-11-04 1999-05-25 Nikki Chemcal Co Ltd Production of positive electrode material for lithium ion secondary cell
JP2002260655A (en) * 2001-02-28 2002-09-13 Nichia Chem Ind Ltd Manufacturing method of positive electrode material for lithium ion secondary battery
JP2006147591A (en) * 2005-12-26 2006-06-08 Seimi Chem Co Ltd Positive electrode substance for lithium secondary battery, and manufacturing method of the same
JP2011058785A (en) * 2009-09-14 2011-03-24 Takasago Ind Co Ltd Rotary kiln and battery material manufactured by the rotary kiln
JP2012201525A (en) * 2011-03-24 2012-10-22 Toho Material Kk Method for producing complex metal oxide
WO2012132072A1 (en) * 2011-03-29 2012-10-04 Jx日鉱日石金属株式会社 Production method for positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
JP2015196621A (en) * 2014-04-01 2015-11-09 日本化学工業株式会社 Method for producing lithium sulfide and method for producing inorganic solid electrolyte

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019103046A1 (en) * 2017-11-21 2019-05-31 日立金属株式会社 Method for producing positive electrode active material for lithium ion secondary battery and heat treatment apparatus
US11688847B2 (en) 2017-11-21 2023-06-27 Proterial, Ltd. Method and firing apparatus for manufacturing cathode active material for lithium ion secondary battery

Also Published As

Publication number Publication date
JP6857482B2 (en) 2021-04-14
CN109863630A (en) 2019-06-07
KR102425597B1 (en) 2022-07-26
JP2018063853A (en) 2018-04-19
KR20190062432A (en) 2019-06-05

Similar Documents

Publication Publication Date Title
JP6412094B2 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP6726102B2 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP6108141B2 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP6836369B2 (en) Method for manufacturing positive electrode active material precursor for lithium secondary battery and positive electrode active material for lithium secondary battery
WO2018070517A1 (en) Production method for lithium secondary battery positive electrode active material
JP6256956B1 (en) Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
KR102437198B1 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP6929682B2 (en) Method for producing lithium nickel composite oxide
JPWO2015182665A1 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP2019003955A (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP6879803B2 (en) Method for producing lithium metal composite oxide
WO2017078136A1 (en) Positive electrode active material for lithium secondary batteries, method for producing positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
WO2018021453A1 (en) Method for producing lithium nickel composite oxide
WO2019107545A1 (en) Lithium-containing transition metal complex oxide, positive electrode active material for lithium secondary cell, positive electrode for lithium secondary cell, lithium secondary cell, and method for manufacturing lithium-containing transition metal complex oxide
JP2019102439A (en) Lithium-containing transition metal complex oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and method of producing lithium-containing transition metal complex oxide
JP6843732B2 (en) Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP2022133367A (en) Method for manufacturing positive electrode active material for lithium secondary batteries
JP2018081937A (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP6360374B2 (en) Method for producing lithium-containing composite metal oxide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17860499

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197009989

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17860499

Country of ref document: EP

Kind code of ref document: A1