WO2012132072A1 - Production method for positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries - Google Patents

Production method for positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries Download PDF

Info

Publication number
WO2012132072A1
WO2012132072A1 PCT/JP2011/072861 JP2011072861W WO2012132072A1 WO 2012132072 A1 WO2012132072 A1 WO 2012132072A1 JP 2011072861 W JP2011072861 W JP 2011072861W WO 2012132072 A1 WO2012132072 A1 WO 2012132072A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
lithium ion
firing
Prior art date
Application number
PCT/JP2011/072861
Other languages
French (fr)
Japanese (ja)
Inventor
保大 川橋
梶谷 芳男
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Publication of WO2012132072A1 publication Critical patent/WO2012132072A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a positive electrode active material for a lithium ion battery and a positive electrode active material for a lithium ion battery.
  • a lithium transition metal composite oxide is known as a positive electrode active material for a lithium ion battery.
  • a lithium transition metal composite oxide is prepared by mixing a lithium compound and a transition metal compound to produce a positive electrode active material precursor for a lithium ion battery, and then firing the composite. It is manufactured by making.
  • Lithium ion batteries are used for a long period of time and are repeatedly charged and discharged for various purposes, so various characteristics such as cycle characteristics and storage characteristics are required, and a high capacity at an extremely high level is required. It's getting on.
  • demand for consumer devices such as mobile phones and personal computers and lithium batteries for vehicles is increasing, it is required to manufacture lithium ion batteries efficiently at low cost.
  • a process of firing and compositing a positive electrode active material precursor for a lithium ion battery is required.
  • a precursor is used.
  • a method is used in which a baking container filled with is provided in a baking furnace (stationary furnace) and heated by a conveyor system or a batch system. When firing using a stationary furnace in this manner, a large number of precursors can be fired relatively efficiently by successively sending firing containers filled with a large number of precursors into the furnace.
  • the positive electrode active material precursor for a lithium ion battery before firing contains a large amount of gas and moisture such as carbon dioxide and nitrogen oxide. For this reason, when it is carried into a stationary furnace and firing is started, gas and moisture are first released. Therefore, even if the precursor is filled in the firing container, only the part that is actually fired and combined is only the portion left after the gas or moisture is released from the precursor initially filled in the firing container. This is actually only about 45 to 50% of the charged precursor, and is problematic from the viewpoint of efficient production of lithium ion batteries. Further, in firing using a stationary furnace, it is difficult to uniformly heat the precursor filled in the firing container, which may cause uneven firing, resulting in variations in the characteristics of the produced lithium transition metal composite oxide. There is also a problem.
  • an object of the present invention is to provide a method for producing a high-quality positive electrode active material for a lithium ion battery at a low cost.
  • the inventors of the present invention as a result of intensive investigations, the inventors of the present invention, as a result of calcining a positive electrode active material precursor for a lithium ion battery, a first stage in which gas and moisture are released is temporarily calcined in a rotary kiln, and a precursor from which gas and moisture are sufficiently released It was found that the production efficiency is improved by performing the main firing to the composite. Moreover, it discovered that a high quality positive electrode active material for lithium ion batteries could be obtained by firing the precursor without unevenness by carrying out the firing using a rotary kiln.
  • the present invention completed on the basis of the above knowledge, in a lithium kiln that is a positive electrode active material precursor for a lithium ion battery, by performing temporary firing in a rotary kiln,
  • This is a method for producing a positive electrode active material for a lithium ion battery, which includes a step of increasing the mass% of the metal by 1 to 105% as compared with that before the preliminary firing and then performing a main firing using a rotary kiln.
  • the percentage increase in mass% of all metals in the lithium-containing carbonate by temporary firing is 50 to 97%.
  • pre-baking is performed at 200 to 1200 ° C. for 30 to 120 minutes.
  • a first main baking step in which main baking is performed at 700 to 1200 ° C. for 0.5 to 12 hours, and 0 to 500 to 900 ° C. is performed.
  • the second main baking step performed for 5 to 24 hours and the third main baking step performed at 400 to 700 ° C. for 0.5 to 12 hours.
  • the first to third main firing steps are performed using at least two rotary kilns.
  • the positive electrode active material has a composition formula: Li x Ni 1- y My O 2 + ⁇
  • M is one or more selected from Sc, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, Ga, Ge, Al, Bi, Sn, Mg, Ca, B and Zr. Yes, 0.9 ⁇ x ⁇ 1.2, 0 ⁇ y ⁇ 0.7, and 0.05 ⁇ ⁇ .) It is represented by
  • M is one or more selected from Mn and Co.
  • the present invention provides a composition formula: Li x Ni 1- y My O 2 + ⁇
  • M is one or more selected from Sc, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, Ga, Ge, Al, Bi, Sn, Mg, Ca, B and Zr. Yes, 0.9 ⁇ x ⁇ 1.2, 0 ⁇ y ⁇ 0.7, and 0.05 ⁇ ⁇ .
  • a positive electrode active material for a lithium ion battery having a tap density of 1.8 to 2.2 g / cc.
  • M is at least one selected from Mn and Co.
  • FIG. 1 It is the schematic of a temporary baking apparatus.
  • FIG. 1 is a schematic view of a firing mode in which the main firing is performed using a single rotary kiln.
  • FIG. 1 is a schematic view of a firing mode in which the main firing is performed using two rotary kilns.
  • FIG. 1 is a schematic view of a firing mode in which the main firing is performed using three rotary kilns.
  • a compound useful as a positive electrode active material for a general positive electrode for lithium ion batteries can be widely used.
  • lithium cobalt oxide (LiCoO 2 ) lithium-containing transition metal oxides such as lithium nickelate (LiNiO 2 ) and lithium manganate (LiMn 2 O 4 ) are preferably used.
  • the positive electrode active material for a lithium ion battery produced using such a material is, for example, Composition formula: Li x Ni 1- y My O 2 + ⁇
  • M is one or more selected from Sc, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, Ga, Ge, Al, Bi, Sn, Mg, Ca, B and Zr. Yes, 0.9 ⁇ x ⁇ 1.2, 0 ⁇ y ⁇ 0.7, and 0.05 ⁇ ⁇ .
  • the ratio of lithium to all metals in the positive electrode active material for a lithium ion battery is 0.9 to 1.2. If the ratio is less than 0.9, it is difficult to maintain a stable crystal structure, and if it exceeds 1.2, the capacity is high. This is because of a low.
  • oxygen is expressed as O 2 + ⁇ (0.05 ⁇ ⁇ ) as described above in the composition formula and is excessively contained. Battery characteristics such as capacity, rate characteristics and capacity retention ratio are improved.
  • is preferably ⁇ > 0.15, more preferably ⁇ > 0.20, and typically 0.05 ⁇ ⁇ ⁇ 0.25.
  • M is preferably one or more selected from Mn and Co in the composition formula.
  • the positive electrode active material for a lithium ion battery of the present invention has a tap density of 1.8 to 2.2 g / cc, and when used in a lithium ion battery, the battery characteristics such as capacity, rate characteristics and capacity retention ratio are good. It becomes.
  • the lithium-containing carbonate that is a precursor is fired only in a stationary furnace, it is difficult to improve the tap density because the particles of the precursor are sparse.
  • the particles are granulated and become heavy, thereby improving the tap density.
  • a metal salt solution is prepared.
  • the metal is at least one selected from Ni and Sc, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, Ga, Ge, Al, Bi, Sn, Mg, Ca, B, and Zr. It is.
  • the metal salt is sulfate, chloride, nitrate, acetate, etc., and nitrate is particularly preferable.
  • each metal contained in the metal salt is adjusted so as to have a desired molar ratio. Thereby, the molar ratio of each metal in the positive electrode active material is determined.
  • lithium carbonate is suspended in pure water, and then the metal salt solution of the metal is added to prepare a lithium salt solution slurry. At this time, fine particles of lithium-containing carbonate precipitate in the slurry. If the lithium compound does not react during heat treatment such as sulfate or chloride as a metal salt, it is washed with a saturated lithium carbonate solution and then filtered off. When the lithium compound reacts as a lithium raw material during the heat treatment, such as nitrate or acetate, it can be used as a calcined precursor by washing and drying as it is without washing. Next, the lithium-containing carbonate separated by filtration is dried to obtain a lithium salt composite (precursor for lithium ion battery positive electrode material) powder.
  • the precursor for the lithium ion battery positive electrode material contains 20 to 40 mass% of lithium, nickel, manganese, cobalt and the like as metals in total.
  • the firing apparatus 20 includes a rotary kiln 10, a powder input unit 11, a gas supply unit 12, a bag filter 13, and a powder discharge unit 14.
  • the rotary kiln 10 includes a reactor core tube 17, an outer cylinder 15 formed so as to surround the reactor core tube 17, and a heater 16 that is provided outside the outer cylinder 15 and heats the reactor core tube 17.
  • the core tube 17 is formed to have a predetermined inner diameter and length depending on the amount of the precursor to be preliminarily fired, the pre-baking time, and the like. it can.
  • the core tube 17 may be formed with stirring blades (not shown) for stirring the powder to be calcined so as to stand up from the inner wall of the core tube 17.
  • the core tube 17 is preferably formed of a material that transfers heat from the heater 16 well and does not generate contaminants that may be mixed into the precursor, such as Ni, Ti, stainless steel, or ceramic. can do.
  • the outer cylinder 15 is also preferably formed of a material that conducts heat from the heater 16 well, and can be formed of, for example, Ni, Ti, stainless steel, or ceramic.
  • the position of the heater 16 is not particularly limited as long as it is outside the outer cylinder 15. Moreover, although the heater 16 is installed in one place in FIG. 1, you may install in several places.
  • the rotary kiln 10 is inclined so as to descend from the front end portion to the rear end portion so that the precursor charged from the front end portion moves backward while being baked.
  • the inclination angle is not particularly limited, and can be set according to the temporary firing time or the like.
  • the powder input part 11 is provided with a precursor to be temporarily fired.
  • the powder input part 11 is provided in the front-end part of the rotary kiln 10, and a precursor is injected
  • the powder discharger 14 is provided at the rear end of the rotary kiln 10. From the powder discharge section 14, the powder (preliminary fired body) that has been fired through the furnace core tube 17 is discharged.
  • the gas supply unit 12 supplies a gas that circulates in the baking apparatus 20.
  • An inert gas such as nitrogen or argon, oxygen, or the like is supplied from the gas supply unit 12.
  • a path indicated by an arrow in FIG. 1 is a circulation path of the gas supplied from the gas supply unit 12.
  • the bag filter 13 is provided at the front end of the rotary kiln 10. The bag filter 13 collects the precursor mixed in the exhaust gas.
  • the bag filter 13 is formed by using a woven fabric or a non-woven fabric as a filter medium and stacking them in a cylindrical shape.
  • the inclination angle and rotation speed of the core tube 17 are appropriately set according to the firing time and firing temperature of the pre-firing with respect to the mass of the precursor for the lithium ion battery positive electrode material to be charged later.
  • the mass of the precursor is 20 to 110 g
  • the temporary baking time is 30 to 120 minutes
  • the temporary baking temperature is 200 to 1200 ° C.
  • the inclination angle of the core tube 17 is 8 to 15 ° and the rotation speed is 3 .6 to 9.6 radians / second can be set.
  • a precursor for a lithium ion battery positive electrode material is charged from the powder loading unit 11 to the front end of the furnace tube 17.
  • the charged precursor for the lithium ion battery positive electrode material is transferred to the rear end of the core tube 17 while being stirred and heated in the rotating core tube 17. In this way, the precursor is calcined.
  • gas and moisture such as carbon dioxide and nitrogen oxide are released from the precursor for the lithium ion battery positive electrode material, and the mass% of the total metal in the precursor is 1 to 105%, preferably 50%, compared with that before the preliminary firing. It has increased by 97%.
  • powder such as a precursor mixed with the supply gas and discharged from the core tube 17 is collected by the bag filter 13.
  • the precursor recovered by the bag filter 13 may be used again as a raw material after purification.
  • the precursor that has been pre-baked is discharged from the powder discharge unit 14 to the outside of the apparatus, and then the following main baking is performed.
  • the main firing step is performed in a rotary kiln without using a firing furnace (stationary furnace). For this reason, there is no possibility that the firing unevenness of the precursor which occurs when the firing container is filled and heated in firing using the firing furnace is not generated. For this reason, a high quality positive electrode active material for lithium ion batteries is obtained.
  • this baking can be performed in steps by the function which raises the density of a positive electrode active material, the function which arranges crystallinity, etc. About each of these steps, it can also carry out using an integral rotary kiln, and can also carry out using several rotary kilns.
  • each arrow line indicates a rotary kiln.
  • the main kiln rotary kiln 31 is provided such that its powder input portion is positioned below the powder discharge portion of the pre-baking rotary kiln 10 and is inclined in substantially the same direction. It has been.
  • the rotary kiln 32 for main firing is provided such that the powder input portion is positioned below the powder discharge portion of the rotary kiln 10 for temporary firing and is inclined in a substantially reverse direction. It has been.
  • the main firing step first, heating by the heater is started while rotating the furnace core tubes of the rotary kilns 31 and 32. Heating may be performed in stages for each function such as a function of increasing the density of the positive electrode active material and a function of adjusting crystallinity. In this way, by performing the heating of the main firing step by step for each function, a higher quality positive electrode active material for a lithium ion battery can be produced.
  • the main baking step includes a first main baking step for forming a layered rock salt type crystal structure and increasing the tap density of the positive electrode active material, a second main baking step for baking the positive electrode active material, and cooling.
  • a first main baking step for forming a layered rock salt type crystal structure and increasing the tap density of the positive electrode active material
  • a second main baking step for baking the positive electrode active material
  • cooling When dividing into the 3rd main baking process for this, each range divided into 3 from the front-end part of the rotary kilns 31 and 32 to the rear-end part is heated by changing temperature with a separate heater.
  • the first main baking step is performed at 700 to 1200 ° C. for 0.5 to 12 hours
  • the second main baking step is performed at 500 to 900 ° C. for 0.5 to 24 hours
  • the third main baking step can be performed at 400 to 700 ° C. for 0.5 to 12 hours.
  • the inclination angle and rotation speed of the furnace core tubes of the rotary kilns 31 and 32 are appropriately set according to the mass of the pre-fired body and the firing time of the main firing. For example, when the mass of the pre-fired body is 20 to 110 g and the main firing time is 1.5 to 48 hours, the inclination angle of the core tube is 2 to 10 ° and the rotation speed is 3.6 to 9.6 radians.
  • the temporarily fired body discharged from the rotary kiln 10 is charged from the powder charging part to the front end part of the furnace core tube.
  • the introduced temporary fired body is transferred to the rear end of the core tube while being stirred and heated in the rotating core tube, and main firing is performed during this period.
  • the main fired powder is discharged from the powder discharge section, and the powder is pulverized to obtain a positive electrode active material powder. Since the obtained positive electrode active material uses a rotary kiln in the firing step, firing unevenness is suppressed.
  • the rotary kiln used for the main firing a rotary kiln having the same configuration as that shown in FIG. 1 can be used.
  • positioning form of the rotary kiln used by temporary baking and the rotary kiln used by this baking is not specifically limited, For example, it can be set as a form as shown in FIG. In FIG. 3, each arrow line indicates a rotary kiln.
  • the first rotary kiln 41 for main firing has its powder input portion positioned below the powder discharge portion of the rotary kiln 10 for preliminary firing and is inclined in substantially the same direction. It is provided as follows.
  • the second rotary kiln 42 of the main firing is provided such that its powder input portion is located below the powder discharge portion of the first rotary kiln 41 and is inclined in substantially the same direction.
  • the first rotary kiln 43 for main firing has its powder input part positioned below the powder discharge part of the rotary kiln 10 for temporary firing, and is inclined substantially in the reverse direction.
  • the second rotary kiln 44 of the main firing is provided such that the powder input portion is located below the powder discharge portion of the first rotary kiln 43 of the main firing and is inclined substantially in the reverse direction. Yes.
  • FIG. 3B the first rotary kiln 43 for main firing has its powder input part positioned below the powder discharge part of the rotary kiln 10 for temporary firing, and is inclined substantially in the reverse direction.
  • the first rotary kiln 45 of the main firing has its powder input portion positioned below the powder discharge portion of the pre-fired rotary kiln 10 and is inclined substantially in the reverse direction. It is provided as follows. Further, the second rotary kiln 46 for main firing is provided such that the powder input portion thereof is located below the powder discharge portion of the first rotary kiln 45 for main firing and is inclined substantially in the same direction. Yes. In the form shown in FIG. 3D, the first rotary kiln 47 for main firing has its powder input portion positioned below the powder discharge portion of the pre-fired rotary kiln 10 and inclined in substantially the same direction. It is provided as follows.
  • the second rotary kiln 48 of the main firing is provided such that the powder input portion thereof is located below the powder discharge portion of the first rotary kiln 47 of the main firing and is inclined substantially in the reverse direction.
  • the first rotary kiln 49 for the main firing is provided such that its powder input portion is located below the powder discharge portion of the rotary kiln 10 for preliminary firing.
  • the second rotary kiln 50 for main firing is provided such that its powder input portion is located below the powder discharge portion of the first rotary kiln 49 for main firing.
  • the pre-fired rotary kiln 10, the first fired first rotary kiln 49, and the second rotary kiln 50 are arranged so as to be inclined downward while forming a substantially triangular shape when viewed from above.
  • the main firing step first, heating by the heater is started while rotating the furnace core tubes of the first and second rotary kilns 41 to 50 in the main firing. Heating is performed in stages for each function such as a function of increasing the density of the positive electrode active material and a function of adjusting crystallinity. In this way, by performing the heating of the main firing step by step for each function, a higher quality positive electrode active material for a lithium ion battery can be produced.
  • the main baking step includes a first main baking step for forming a layered rock salt type crystal structure and increasing the tap density of the positive electrode active material, a second main baking step for baking the positive electrode active material, and cooling.
  • a third firing step is performed.
  • the first firing process is performed in the first rotary kilns 41, 43, 45, 47, and 49
  • the second and third firing processes are performed in the second rotary kilns 42, 44, 46, 48, and 50.
  • each range divided from the front end portion to the rear end portion of the first and / or second rotary kilns 41 to 50 in the main firing is heated by changing the temperature with separate heaters.
  • the first main baking step is performed at 700 to 1200 ° C. for 0.5 to 12 hours
  • the second main baking step is performed at 500 to 900 ° C. for 0.5 to 24 hours
  • the third main baking step can be performed at 400 to 700 ° C. for 0.5 to 12 hours.
  • the inclination angle and rotation speed of the furnace core tubes of the first and second rotary kilns 41 to 50 in the main firing are appropriately set according to the mass of the pre-fired body and the firing time in the main firing.
  • the mass of the pre-fired body is 20 to 110 g and the main firing time is 1.5 to 48 hours
  • the inclination angle of the core tube is 2 to 10 ° and the rotation speed is 3.6 to 9.6 radians. / Sec can be set.
  • the temporarily fired body discharged from the rotary kiln 10 is transferred from the powder charging parts of the first rotary kilns 41, 43, 45, 47 and 49 to the core tube. Insert into the front end.
  • the introduced pre-fired body is transferred to the rear end of the core tube while being stirred and heated in the rotating core tube, and is discharged from the powder discharge unit.
  • the fired bodies discharged from the powder discharge portions of the first rotary kilns 41, 43, 45, 47 and 49 are subsequently put into the powder input portions of the second rotary kilns 42, 44, 46, 48 and 50 below. Is done.
  • the fired bodies charged into the powder charging portions of the second rotary kilns 42, 44, 46, 48 and 50 are subsequently transferred to the rear end of the core tube while being stirred and heated in the rotating core tube, and then subjected to main firing. Is completed and discharged from the powder discharge section.
  • the main fired powder is discharged from the powder discharge section, and the powder is pulverized to obtain a positive electrode active material powder. Since the obtained positive electrode active material uses a rotary kiln in the firing step, firing unevenness is suppressed.
  • the rotary kiln used for the main firing a rotary kiln having the same configuration as that shown in FIG. 1 can be used.
  • positioning form of the rotary kiln used by temporary baking and the rotary kiln used by this baking is not specifically limited, For example, it can be set as the form shown in FIG. In FIG. 4, each arrow line indicates a rotary kiln.
  • the first rotary kiln 61 for main firing has its powder input portion positioned below the powder discharge portion of the rotary kiln 10 for preliminary firing and is inclined in substantially the same direction. It is provided as follows.
  • the second rotary kiln 62 of the main firing is provided such that its powder input portion is located below the powder discharge portion of the first rotary kiln 61 and is inclined in substantially the same direction.
  • the third rotary kiln 63 of the main firing is provided such that the powder input portion is positioned below the powder discharge portion of the second rotary kiln 62 and is inclined in substantially the same direction.
  • the first rotary kiln 64 for main firing has its powder input portion positioned below the powder discharge portion of the rotary kiln 10 for preliminary firing, and is inclined substantially in the reverse direction. It is provided as follows.
  • the second rotary kiln 65 of the main firing is provided such that the powder input portion is located below the powder discharge portion of the first rotary kiln 64 and is inclined substantially in the reverse direction.
  • the third rotary kiln 66 for main firing is provided such that the powder input portion thereof is positioned below the powder discharge portion of the second rotary kiln 65 and is inclined substantially in the reverse direction.
  • the first rotary kiln 67 for main firing is provided such that its powder input portion is located below the powder discharge portion of the rotary kiln 10 for preliminary firing.
  • the second rotary kiln 68 for main firing is provided such that its powder input portion is positioned below the powder discharge portion of the first rotary kiln 67 for main firing.
  • the third rotary kiln 69 for main firing is provided such that its powder input portion is positioned below the powder discharge portion of the second rotary kiln 68 for main firing.
  • the pre-fired rotary kiln 10 and the main-fired first to third rotary kilns 67, 68, 69 are disposed so as to be inclined downward while forming a substantially rectangular shape when viewed from above.
  • the main firing step first, heating by the heater is started while rotating the core tubes of the first to third rotary kilns 61 to 69 of the main firing. Heating is performed in stages for each function such as a function of increasing the density of the positive electrode active material and a function of adjusting crystallinity. In this way, by performing the heating of the main firing step by step for each function, a higher quality positive electrode active material for a lithium ion battery can be produced.
  • the main baking step includes a first main baking step for forming a layered rock salt type crystal structure and increasing the tap density of the positive electrode active material, a second main baking step for baking the positive electrode active material, and cooling.
  • the 1st baking process is performed in the 1st rotary kiln 61,64,67
  • the 2nd baking process is performed in the 2nd rotary kiln 62,65,68
  • the 3rd rotary kiln A third firing step is performed at 63, 66, and 69.
  • the first main baking step is performed at 700 to 1200 ° C. for 0.5 to 12 hours
  • the second main baking step is performed at 500 to 900 ° C. for 0.5 to 24 hours
  • the third main baking step can be performed at 400 to 700 ° C. for 0.5 to 12 hours.
  • the inclination angle and rotation speed of the furnace core tubes of the first to third rotary kilns 61 to 69 for main firing are appropriately set according to the mass of the pre-fired body and the firing time for main firing. For example, when the mass of the pre-fired body is 20 to 110 g and the main firing time is 1.5 to 48 hours, the inclination angle of the core tube is 2 to 10 ° and the rotation speed is 3.6 to 9.6 radians. / Sec can be set.
  • the temporarily fired body discharged from the rotary kiln 10 is charged from the powder charging portion of the first rotary kiln 61, 64, 67 to the front end portion of the furnace core tube. To do.
  • the introduced pre-fired body is transferred to the rear end of the core tube while being stirred and heated in the rotating core tube, and is discharged from the powder discharge unit.
  • the fired bodies discharged from the powder discharge portions of the first rotary kilns 61, 64, and 67 are subsequently put into the powder input portions of the second rotary kilns 62, 65, and 68 below.
  • the fired body charged in the powder charging section of the second rotary kiln 62, 65, 68 is transferred to the rear end of the core tube while being stirred and heated in the rotating core tube, and is then discharged from the powder discharge section. Discharged.
  • the fired bodies discharged from the powder discharge portions of the second rotary kilns 62, 65, and 68 are subsequently put into the powder input portions of the third rotary kilns 63, 66, and 69 below.
  • the fired body charged into the powder charging portion of the third rotary kiln 63, 66, 69 is subsequently transferred to the rear end of the core tube while being stirred and heated in the rotating core tube, and the main firing is completed. It is discharged from the powder discharge section.
  • the main fired powder is discharged from the powder discharge section, and the powder is pulverized to obtain a positive electrode active material powder. Since the obtained positive electrode active material uses a rotary kiln in the firing step, firing unevenness is suppressed.
  • the main baking step is performed with one rotary kiln
  • the preliminary baking and the main baking step are performed with one rotary kiln
  • the number of rotary kilns is small, which is advantageous in terms of work space.
  • the heating conditions are uniform in one rotary kiln, so firing can be performed with a simple apparatus configuration.
  • Examples 1 to 17 First, after suspending lithium carbonate of the input amount shown in Table 1 in 3.2 liters of pure water, 4.8 liter of metal salt solution was charged. Here, the nitrate hydrate of each metal was adjusted so that each metal might become the composition ratio of Table 1, and the total metal mole number might be set to 14 mol.
  • the suspended amount of lithium carbonate was such that the product (lithium ion secondary battery positive electrode material, ie, positive electrode active material) was Li x Ni 1- y My O 2 + ⁇ and x was a value shown in Table 1. Are respectively calculated by the following equations.
  • A is a numerical value to be multiplied in order to subtract the amount of lithium from the lithium compound other than lithium carbonate remaining in the raw material after filtration from the amount of suspension in addition to the amount necessary for the precipitation reaction. is there.
  • A is 0.9 when lithium salt reacts as a firing raw material such as nitrate or acetate, and “1” when lithium salt does not react as a firing raw material such as sulfate or chloride. 0.
  • fine particles of lithium-containing carbonate were precipitated in the solution, and this precipitate was filtered off using a filter press. Subsequently, the precipitate was dried to obtain a lithium-containing carbonate (a precursor for a lithium ion battery positive electrode material). At this time, the concentration of all metals in the precursor was 29 to 33% by mass.
  • a pre-baking apparatus as shown in FIG. 1 is prepared, and heating is performed while oxygen is circulated in the system from the gas supply unit.
  • the rotary kiln was rotated at a rotation speed of 9.6 radians / second.
  • the inclination angle of the rotary kiln was 10 °.
  • the precursor was charged into the furnace core tube from the powder charging portion while maintaining the temperature.
  • the input amount of the precursor was 110 g / min.
  • the precursor charged in the core tube is temporarily fired by stirring and transporting in the rotating core tube, and gas and moisture are released.
  • the precursor subjected to the preliminary firing is discharged out of the apparatus from the powder discharge unit.
  • the total metal concentration in the discharged precursor was 54-58% by weight.
  • each rotary kiln a rotary kiln manufactured by Takasago Industry Co., Ltd. (core tube: total length 2000 mm ⁇ inner diameter 250 mm) was used.
  • heating of the heater was started while circulating oxygen from the gas supply unit, and each rotary kiln was rotated at a rotation speed of 9.6 radians / second.
  • the inclination angle of each rotary kiln was 10 °.
  • the precursor was charged into the core tube from the powder charging part while maintaining the temperature.
  • the input amount of the precursor was 110 g / min.
  • the precursor charged in the core tube is temporarily fired by stirring and transporting in the rotating core tube, and gas and moisture are released.
  • the precursor subjected to the preliminary firing is discharged from the powder discharge portion to the powder input portion of the first rotary kiln for the main firing below.
  • the concentration of all metals in the discharged precursor was 31 to 63% by mass.
  • the first main baking process is performed at 700 to 1200 ° C. for 0.5 to 12 hours using the first rotary kiln, and then the second main baking process is performed at 500 to 900 ° C. for 0.5 to 12 hours. This was performed for 24 hours, and further, the third main baking step was performed at 400 to 700 ° C. for 0.5 to 12 hours using a third rotary kiln, whereby main baking was performed to obtain an oxide.
  • the obtained oxide was crushed to obtain a powder of a lithium ion secondary battery positive electrode material.
  • Example 18 Example 18 was carried out except that each metal of the raw material had the composition shown in Table 1, the metal salt was chloride, the lithium-containing carbonate was precipitated, washed with a saturated lithium carbonate solution, and filtered. The same treatment as in Examples 1 to 17 was performed.
  • Example 19 Example 19 was carried out except that each material of the raw material had the composition shown in Table 1, the metal salt was sulfate, the lithium-containing carbonate was precipitated, washed with a saturated lithium carbonate solution, and filtered. The same treatment as in Examples 1 to 17 was performed.
  • the metal content in each positive electrode material was measured with an inductively coupled plasma optical emission spectrometer (ICP-OES), and the composition ratio (molar ratio) of each metal was calculated.
  • the oxygen content was measured by the LECO method and ⁇ was calculated. As a result, it was confirmed that the results were as shown in Table 1.
  • the tap density was the density after 200 taps.
  • Each positive electrode material, conductive material, and binder are weighed in a ratio of 85: 8: 7, and the positive electrode material and the conductive material are mixed into a slurry in which the binder is dissolved in an organic solvent (N-methylpyrrolidone). And coated on an Al foil, dried and pressed to obtain a positive electrode.
  • a 2032 type coin cell for evaluation with Li as the counter electrode was prepared, and 1M-LiPF 6 dissolved in EC-DMC (1: 1) was used as the electrolyte, and the current density was 0.2C.
  • the discharge capacity was measured. Further, a rate characteristic was obtained by calculating a ratio of the discharge capacity when the current density was 2C to the battery capacity when the current density was 0.2C.
  • the capacity retention was measured by comparing the initial discharge capacity obtained with a 1 C discharge current at room temperature with the discharge capacity after 100 cycles. Test conditions and results are shown in Tables 1-3.
  • Examples 1 to 19 all showed excellent tap density and battery characteristics. In particular, Examples 1 to 17 exhibited better battery characteristics than Examples 18 and 19 because the metal salt used as a raw material was nitrate. In each of Comparative Examples 1 to 3, firing was performed only once in a stationary furnace, and it was difficult to fire the precursor without unevenness, so that the tap density and battery characteristics were inferior to those of Examples. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Provided is a method for producing, at low cost, a high-quality positive electrode material for lithium ion batteries. The production method for the positive electrode active material for lithium ion batteries includes a step in which: a lithium-containing carbonate, being a precursor for the positive electrode active material for lithium ion batteries, is pre-calcinated in a rotary kiln, thereby increasing the percentage by mass of total metals in the lithium-containing carbonate by 1%-105% compared to before pre-calcination; and said lithium-containing carbonate is then calcinated in the rotary kiln.

Description

リチウムイオン電池用正極活物質の製造方法及びリチウムイオン電池用正極活物質Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
 本発明は、リチウムイオン電池用正極活物質の製造方法及びリチウムイオン電池用正極活物質に関する。 The present invention relates to a method for producing a positive electrode active material for a lithium ion battery and a positive electrode active material for a lithium ion battery.
 リチウムイオン電池用正極活物質として、リチウム遷移金属複合酸化物が知られている。リチウム遷移金属複合酸化物は、例えば、特許文献1に記載されているように、リチウム化合物と遷移金属化合物とを混合してリチウムイオン電池用正極活物質前駆体を作製した後、焼成して複合化することにより製造されている。
 リチウムイオン電池は、その用途から、長期に亘って使用され、かつ充放電が繰り返されるため、サイクル特性、保存特性など種々の特性が求められ、また、極めて高いレベルでの高容量化が求められつつある。また、携帯電話、パーソナルコンピュータ等の民生機器や車載用のリチウム電池の需要拡大につれて、リチウムイオン電池を低コストで効率良く製造することが要求されている。
 このようなリチウムイオン電池の製造工程では、上述のように、リチウムイオン電池用正極活物質前駆体を焼成して複合化する工程が必要であるが、そのような焼成工程では、一般に、前駆体を充填した焼成容器を焼成炉(静置炉)内へ設け、コンベア方式やバッチ方式により加熱する方法が用いられている。このように静置炉を用いて焼成を行うと、多数の前駆体を充填した焼成容器を炉内へ次々と送り出すことで、大量の前駆体を比較的効率良く焼成することができる。
A lithium transition metal composite oxide is known as a positive electrode active material for a lithium ion battery. For example, as described in Patent Document 1, a lithium transition metal composite oxide is prepared by mixing a lithium compound and a transition metal compound to produce a positive electrode active material precursor for a lithium ion battery, and then firing the composite. It is manufactured by making.
Lithium ion batteries are used for a long period of time and are repeatedly charged and discharged for various purposes, so various characteristics such as cycle characteristics and storage characteristics are required, and a high capacity at an extremely high level is required. It's getting on. In addition, as demand for consumer devices such as mobile phones and personal computers and lithium batteries for vehicles is increasing, it is required to manufacture lithium ion batteries efficiently at low cost.
In the manufacturing process of such a lithium ion battery, as described above, a process of firing and compositing a positive electrode active material precursor for a lithium ion battery is required. In such a firing process, generally, a precursor is used. A method is used in which a baking container filled with is provided in a baking furnace (stationary furnace) and heated by a conveyor system or a batch system. When firing using a stationary furnace in this manner, a large number of precursors can be fired relatively efficiently by successively sending firing containers filled with a large number of precursors into the furnace.
特許第3334179号公報Japanese Patent No. 3334179
 しかしながら、焼成前のリチウムイオン電池用正極活物質前駆体は、二酸化炭素、窒素酸化物等のガスや水分を多く含んでいる。このため、静置炉内へ運ばれて焼成が開始されたとき、初めにガスや水分が放出される。従って、前駆体を焼成容器一杯に充填したとしても、実際に焼成されて複合化されるものは初めに焼成容器に充填した前駆体からガスや水分が放出されて残った部分のみである。これは、実際、充填した前駆体の45~50%程度に過ぎず、リチウムイオン電池の効率的な製造を行うという観点からは問題がある。
 また、静置炉を用いた焼成では、焼成容器内に充填した前駆体を均一に加熱することが難しく、焼成ムラが生じるおそれがあり、生成されるリチウム遷移金属複合酸化物の特性にばらつきが生じるという問題もある。
However, the positive electrode active material precursor for a lithium ion battery before firing contains a large amount of gas and moisture such as carbon dioxide and nitrogen oxide. For this reason, when it is carried into a stationary furnace and firing is started, gas and moisture are first released. Therefore, even if the precursor is filled in the firing container, only the part that is actually fired and combined is only the portion left after the gas or moisture is released from the precursor initially filled in the firing container. This is actually only about 45 to 50% of the charged precursor, and is problematic from the viewpoint of efficient production of lithium ion batteries.
Further, in firing using a stationary furnace, it is difficult to uniformly heat the precursor filled in the firing container, which may cause uneven firing, resulting in variations in the characteristics of the produced lithium transition metal composite oxide. There is also a problem.
 そこで、本発明は、高品質のリチウムイオン電池用正極活物質を低コストで製造する方法を提供することを課題とする。 Therefore, an object of the present invention is to provide a method for producing a high-quality positive electrode active material for a lithium ion battery at a low cost.
 本発明者らは、鋭意検討した結果、リチウムイオン電池用正極活物質前駆体の焼成工程において、ガスや水分が放出する初めの段階をロータリーキルンで仮焼成し、ガスや水分が十分放出した前駆体に対して本焼成を行って複合化させることで、製造効率が良好となることを見出した。また、本焼成についてもロータリーキルンを用いて行うことにより、前駆体をムラ無く焼成することで高品質のリチウムイオン電池用正極活物質が得られることを見出した。 As a result of intensive investigations, the inventors of the present invention, as a result of calcining a positive electrode active material precursor for a lithium ion battery, a first stage in which gas and moisture are released is temporarily calcined in a rotary kiln, and a precursor from which gas and moisture are sufficiently released It was found that the production efficiency is improved by performing the main firing to the composite. Moreover, it discovered that a high quality positive electrode active material for lithium ion batteries could be obtained by firing the precursor without unevenness by carrying out the firing using a rotary kiln.
 上記知見を基礎にして完成した本発明は一側面において、リチウムイオン電池用正極活物質前駆体であるリチウム含有炭酸塩に対して、仮焼成をロータリーキルンで行うことにより、リチウム含有炭酸塩中の全金属の質量%を仮焼成前に比べて1~105%増加させた後、ロータリーキルンを用いて本焼成を行う工程を含むリチウムイオン電池用正極活物質の製造方法である。 In one aspect, the present invention completed on the basis of the above knowledge, in a lithium kiln that is a positive electrode active material precursor for a lithium ion battery, by performing temporary firing in a rotary kiln, This is a method for producing a positive electrode active material for a lithium ion battery, which includes a step of increasing the mass% of the metal by 1 to 105% as compared with that before the preliminary firing and then performing a main firing using a rotary kiln.
 本発明に係るリチウムイオン電池用正極活物質の製造方法は一実施形態において、仮焼成による前記リチウム含有炭酸塩中の全金属の質量%の増加の割合が50~97%である。 In one embodiment of the method for producing a positive electrode active material for a lithium ion battery according to the present invention, the percentage increase in mass% of all metals in the lithium-containing carbonate by temporary firing is 50 to 97%.
 本発明に係るリチウムイオン電池用正極活物質の製造方法は別の実施形態において、仮焼成を、200~1200℃で30~120分間行う。 In another embodiment of the method for producing a positive electrode active material for a lithium ion battery according to the present invention, pre-baking is performed at 200 to 1200 ° C. for 30 to 120 minutes.
 本発明に係るリチウムイオン電池用正極活物質の製造方法は更に別の実施形態において、本焼成が、700~1200℃で0.5~12時間行う第1本焼成工程、500~900℃で0.5~24時間行う第2本焼成工程、及び、400~700℃で0.5~12時間行う第3本焼成工程によって行われる。 In still another embodiment of the method for producing a positive electrode active material for a lithium ion battery according to the present invention, a first main baking step in which main baking is performed at 700 to 1200 ° C. for 0.5 to 12 hours, and 0 to 500 to 900 ° C. is performed. The second main baking step performed for 5 to 24 hours and the third main baking step performed at 400 to 700 ° C. for 0.5 to 12 hours.
 本発明に係るリチウムイオン電池用正極活物質の製造方法は更に別の実施形態において、第1~第3本焼成工程を少なくとも2体以上のロータリーキルンを用いて行う。 In another embodiment of the method for producing a positive electrode active material for a lithium ion battery according to the present invention, the first to third main firing steps are performed using at least two rotary kilns.
 本発明に係るリチウムイオン電池用正極活物質の製造方法は更に別の実施形態において、正極活物質が、組成式:LixNi1-yy2+α
(前記式において、MはSc、Ti、V、Cr、Mn、Fe、Co、Cu、Zn、Ga、Ge、Al、Bi、Sn、Mg、Ca、B及びZrから選択される1種以上であり、0.9≦x≦1.2であり、0<y≦0.7であり、0.05≦αである。)
で表される。
In still another embodiment of the method for producing a positive electrode active material for a lithium ion battery according to the present invention, the positive electrode active material has a composition formula: Li x Ni 1- y My O 2 + α
(In the above formula, M is one or more selected from Sc, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, Ga, Ge, Al, Bi, Sn, Mg, Ca, B and Zr. Yes, 0.9 ≦ x ≦ 1.2, 0 <y ≦ 0.7, and 0.05 ≦ α.)
It is represented by
 本発明に係るリチウムイオン電池用正極活物質の製造方法は更に別の実施形態において、Mが、Mn及びCoから選択される1種以上である。 In another embodiment of the method for producing a positive electrode active material for a lithium ion battery according to the present invention, M is one or more selected from Mn and Co.
 本発明は、別の一側面において、組成式:LixNi1-yy2+α
(前記式において、MはSc、Ti、V、Cr、Mn、Fe、Co、Cu、Zn、Ga、Ge、Al、Bi、Sn、Mg、Ca、B及びZrから選択される1種以上であり、0.9≦x≦1.2であり、0<y≦0.7であり、0.05≦αである。)
で表され、タップ密度が1.8~2.2g/ccであるリチウムイオン電池用正極活物質である。
In another aspect, the present invention provides a composition formula: Li x Ni 1- y My O 2 + α
(In the above formula, M is one or more selected from Sc, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, Ga, Ge, Al, Bi, Sn, Mg, Ca, B and Zr. Yes, 0.9 ≦ x ≦ 1.2, 0 <y ≦ 0.7, and 0.05 ≦ α.)
And a positive electrode active material for a lithium ion battery having a tap density of 1.8 to 2.2 g / cc.
 本発明に係るリチウムイオン電池用正極活物質は一実施形態において、Mが、Mn及びCoから選択される1種以上である。 In one embodiment of the positive electrode active material for a lithium ion battery according to the present invention, M is at least one selected from Mn and Co.
 本発明によれば、高品質のリチウムイオン電池用正極活物質を低コストで製造する方法を提供することができる。 According to the present invention, it is possible to provide a method for producing a high-quality positive electrode active material for a lithium ion battery at a low cost.
仮焼成装置の概略図である。It is the schematic of a temporary baking apparatus. (a)~(b)本焼成を1体のロータリーキルンを用いて行う焼成形態の概略図である。(A)-(b) is a schematic view of a firing mode in which the main firing is performed using a single rotary kiln. (a)~(e)本焼成を2体のロータリーキルンを用いて行う焼成形態の概略図である。(A) to (e) are schematic views of firing forms in which the main firing is performed using two rotary kilns. (a)~(c)本焼成を3体のロータリーキルンを用いて行う焼成形態の概略図である。(A)-(c) is a schematic view of a firing mode in which the main firing is performed using three rotary kilns.
(リチウムイオン電池用正極活物質の構成)
 本発明において製造されるリチウムイオン電池用正極活物質の材料としては、一般的なリチウムイオン電池用正極用の正極活物質として有用な化合物を広く用いることができるが、特に、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn24)等のリチウム含有遷移金属酸化物を用いるのが好ましい。このような材料を用いて作製されるリチウムイオン電池用正極活物質は、例えば、
 組成式:LixNi1-yy2+α
(前記式において、MはSc、Ti、V、Cr、Mn、Fe、Co、Cu、Zn、Ga、Ge、Al、Bi、Sn、Mg、Ca、B及びZrから選択される1種以上であり、0.9≦x≦1.2であり、0<y≦0.7であり、0.05≦αである。)
で表される。
 リチウムイオン電池用正極活物質における全金属に対するリチウムの比率が0.9~1.2であるが、これは、0.9未満では、安定した結晶構造を保持し難く、1.2超では容量が低くなるためである。
(Configuration of positive electrode active material for lithium ion battery)
As a material for the positive electrode active material for lithium ion batteries produced in the present invention, a compound useful as a positive electrode active material for a general positive electrode for lithium ion batteries can be widely used. In particular, lithium cobalt oxide (LiCoO 2 ), lithium-containing transition metal oxides such as lithium nickelate (LiNiO 2 ) and lithium manganate (LiMn 2 O 4 ) are preferably used. The positive electrode active material for a lithium ion battery produced using such a material is, for example,
Composition formula: Li x Ni 1- y My O 2 + α
(In the above formula, M is one or more selected from Sc, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, Ga, Ge, Al, Bi, Sn, Mg, Ca, B and Zr. Yes, 0.9 ≦ x ≦ 1.2, 0 <y ≦ 0.7, and 0.05 ≦ α.)
It is represented by
The ratio of lithium to all metals in the positive electrode active material for a lithium ion battery is 0.9 to 1.2. If the ratio is less than 0.9, it is difficult to maintain a stable crystal structure, and if it exceeds 1.2, the capacity is high. This is because of a low.
 本発明のリチウムイオン電池用正極活物質は、酸素が組成式において上記のようにO2+α(0.05≦α)と示され、過剰に含まれており、リチウムイオン電池に用いた場合、容量、レート特性及び容量保持率等の電池特性が良好となる。ここで、αについて、好ましくはα>0.15であり、より好ましくはα>0.20であり、典型的には、0.05≦α≦0.25である。
 また、本発明のリチウムイオン電池用正極活物質は、組成式において、Mが、Mn及びCoから選択される1種以上であるのが好ましい。
When the positive electrode active material for a lithium ion battery of the present invention is used in a lithium ion battery, oxygen is expressed as O 2 + α (0.05 ≦ α) as described above in the composition formula and is excessively contained. Battery characteristics such as capacity, rate characteristics and capacity retention ratio are improved. Here, α is preferably α> 0.15, more preferably α> 0.20, and typically 0.05 ≦ α ≦ 0.25.
In the positive electrode active material for a lithium ion battery of the present invention, M is preferably one or more selected from Mn and Co in the composition formula.
 また、本発明のリチウムイオン電池用正極活物質は、タップ密度が1.8~2.2g/ccとなり、リチウムイオン電池に用いた場合、容量、レート特性及び容量保持率等の電池特性が良好となる。従来では、前駆体であるリチウム含有炭酸塩を静置炉のみで焼成する場合、前駆体の粒子間同士が疎になるためにタップ密度を向上させることは難しかった。本発明では、ロータリーキルンで前駆体であるリチウム含有炭酸塩を流動させながら仮焼することで、粒子同士が造粒し、重質化することでタップ密度が向上する。 Further, the positive electrode active material for a lithium ion battery of the present invention has a tap density of 1.8 to 2.2 g / cc, and when used in a lithium ion battery, the battery characteristics such as capacity, rate characteristics and capacity retention ratio are good. It becomes. Conventionally, when the lithium-containing carbonate that is a precursor is fired only in a stationary furnace, it is difficult to improve the tap density because the particles of the precursor are sparse. In the present invention, by calcining the lithium-containing carbonate that is a precursor in a rotary kiln while flowing, the particles are granulated and become heavy, thereby improving the tap density.
(リチウムイオン電池用正極活物質の製造方法)
 次に、本発明の実施形態に係るリチウムイオン電池用正極活物質の製造方法について詳細に説明する。
 まず、金属塩溶液を作製する。当該金属は、Ni、及び、Sc、Ti、V、Cr、Mn、Fe、Co、Cu、Zn、Ga、Ge、Al、Bi、Sn、Mg、Ca、B及びZrから選択される1種以上である。また、金属塩は硫酸塩、塩化物、硝酸塩、酢酸塩等であり、特に硝酸塩が好ましい。これは、焼成原料中に不純物として混入してもそのまま焼成できるため洗浄工程が省けることと、硝酸塩が酸化剤として機能し、焼成原料中の金属の酸化を促進する働きがあるためである。金属塩に含まれる各金属を所望のモル比率となるように調整しておく。これにより、正極活物質中の各金属のモル比率が決定する。
(Method for producing positive electrode active material for lithium ion battery)
Next, the manufacturing method of the positive electrode active material for lithium ion batteries which concerns on embodiment of this invention is demonstrated in detail.
First, a metal salt solution is prepared. The metal is at least one selected from Ni and Sc, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, Ga, Ge, Al, Bi, Sn, Mg, Ca, B, and Zr. It is. The metal salt is sulfate, chloride, nitrate, acetate, etc., and nitrate is particularly preferable. This is because even if it is mixed as an impurity in the firing raw material, it can be fired as it is, so that the washing step can be omitted, and nitrate functions as an oxidant, and promotes the oxidation of the metal in the firing raw material. Each metal contained in the metal salt is adjusted so as to have a desired molar ratio. Thereby, the molar ratio of each metal in the positive electrode active material is determined.
 次に、炭酸リチウムを純水に懸濁させ、その後、上記金属の金属塩溶液を投入してリチウム塩溶液スラリーを作製する。このとき、スラリー中に微小粒のリチウム含有炭酸塩が析出する。なお、金属塩として硫酸塩や塩化物等熱処理時にそのリチウム化合物が反応しない場合は飽和炭酸リチウム溶液で洗浄した後、濾別する。硝酸塩や酢酸塩のように、そのリチウム化合物が熱処理中にリチウム原料として反応する場合は洗浄せず、そのまま濾別し、乾燥することにより焼成前駆体として用いることができる。
 次に、濾別したリチウム含有炭酸塩を乾燥することにより、リチウム塩の複合体(リチウムイオン電池正極材用前駆体)の粉末を得る。リチウムイオン電池正極材用前駆体には、金属としてリチウム、ニッケル、マンガン、コバルト等が総量で20~40質量%含有されている。
Next, lithium carbonate is suspended in pure water, and then the metal salt solution of the metal is added to prepare a lithium salt solution slurry. At this time, fine particles of lithium-containing carbonate precipitate in the slurry. If the lithium compound does not react during heat treatment such as sulfate or chloride as a metal salt, it is washed with a saturated lithium carbonate solution and then filtered off. When the lithium compound reacts as a lithium raw material during the heat treatment, such as nitrate or acetate, it can be used as a calcined precursor by washing and drying as it is without washing.
Next, the lithium-containing carbonate separated by filtration is dried to obtain a lithium salt composite (precursor for lithium ion battery positive electrode material) powder. The precursor for the lithium ion battery positive electrode material contains 20 to 40 mass% of lithium, nickel, manganese, cobalt and the like as metals in total.
  (仮焼成工程)
 次に、図1に示すような焼成装置20を準備する。焼成装置20は、ロータリーキルン10、粉体投入部11、ガス供給部12、バグフィルター13、及び、粉体排出部14を備えている。
 ロータリーキルン10は、炉心管17、炉心管17を取り囲むように形成された外筒15、外筒15の外側に設けられて炉心管17を加熱するヒーター16を備えている。炉心管17は、仮焼成を行う前駆体の量、及び、仮焼成時間等によって所定の内径及び長さに形成されており、例えば、内径125~3500mmで全長1~30mのものを用いることができる。炉心管17には、仮焼成対象の粉末を撹拌するための撹拌羽根(不図示)が炉心管17の内壁から起立するように形成されていてもよい。炉心管17は、ヒーター16からの熱を良好に伝え、且つ、前駆体へ混入するおそれのある汚染物質が生じない材料で形成されることが好ましく、例えば、Ni、Ti、ステンレス又はセラミックで形成することができる。外筒15も、ヒーター16からの熱を良好に伝える材料で形成されることが好ましく、例えば、Ni、Ti、ステンレス又はセラミックで形成することができる。ヒーター16は、外筒15の外側であれば特にその位置は限定されない。また、図1ではヒーター16が一箇所に設置されているが、複数箇所に設置されていてもよい。ロータリーキルン10は、前端部から投入された前駆体が焼成されながら後方へ移動するように、前端部から後端部にかけて下るように傾斜している。傾斜角度は特に限定されず、仮焼成時間等によって設定することができる。
 粉体投入部11は、内部に仮焼成対象となる前駆体が設けられている。粉体投入部11は、ロータリーキルン10の前端部に設けられており、ここから当該前端部へ前駆体が投入される。
 粉体排出部14は、ロータリーキルン10の後端部に設けられている。粉体排出部14からは、炉心管17を通過して仮焼成された粉末(仮焼成体)が排出される。
 ガス供給部12は、焼成装置20内を循環するガスを供給する。ガス供給部12からは、窒素やアルゴン等の不活性ガス、及び、酸素等が供給される。図1の矢印で示す経路は、ガス供給部12から供給されるガスの循環経路である。
 バグフィルター13は、ロータリーキルン10の前端部に設けられている。バグフィルター13は、排ガス中に混入した前駆体を回収する。バグフィルター13は、濾材として織布又は不織布を用い、これを円筒状に重ねて形成されている。
(Preliminary firing process)
Next, a baking apparatus 20 as shown in FIG. 1 is prepared. The firing apparatus 20 includes a rotary kiln 10, a powder input unit 11, a gas supply unit 12, a bag filter 13, and a powder discharge unit 14.
The rotary kiln 10 includes a reactor core tube 17, an outer cylinder 15 formed so as to surround the reactor core tube 17, and a heater 16 that is provided outside the outer cylinder 15 and heats the reactor core tube 17. The core tube 17 is formed to have a predetermined inner diameter and length depending on the amount of the precursor to be preliminarily fired, the pre-baking time, and the like. it can. The core tube 17 may be formed with stirring blades (not shown) for stirring the powder to be calcined so as to stand up from the inner wall of the core tube 17. The core tube 17 is preferably formed of a material that transfers heat from the heater 16 well and does not generate contaminants that may be mixed into the precursor, such as Ni, Ti, stainless steel, or ceramic. can do. The outer cylinder 15 is also preferably formed of a material that conducts heat from the heater 16 well, and can be formed of, for example, Ni, Ti, stainless steel, or ceramic. The position of the heater 16 is not particularly limited as long as it is outside the outer cylinder 15. Moreover, although the heater 16 is installed in one place in FIG. 1, you may install in several places. The rotary kiln 10 is inclined so as to descend from the front end portion to the rear end portion so that the precursor charged from the front end portion moves backward while being baked. The inclination angle is not particularly limited, and can be set according to the temporary firing time or the like.
The powder input part 11 is provided with a precursor to be temporarily fired. The powder input part 11 is provided in the front-end part of the rotary kiln 10, and a precursor is injected | thrown-in to the said front end part from here.
The powder discharger 14 is provided at the rear end of the rotary kiln 10. From the powder discharge section 14, the powder (preliminary fired body) that has been fired through the furnace core tube 17 is discharged.
The gas supply unit 12 supplies a gas that circulates in the baking apparatus 20. An inert gas such as nitrogen or argon, oxygen, or the like is supplied from the gas supply unit 12. A path indicated by an arrow in FIG. 1 is a circulation path of the gas supplied from the gas supply unit 12.
The bag filter 13 is provided at the front end of the rotary kiln 10. The bag filter 13 collects the precursor mixed in the exhaust gas. The bag filter 13 is formed by using a woven fabric or a non-woven fabric as a filter medium and stacking them in a cylindrical shape.
 仮焼成工程として、まず、炉心管17を回転させながらヒーター16による加熱を始める。ここで、後に投入されるリチウムイオン電池正極材用前駆体の質量に対する仮焼成の焼成時間及び焼成温度によって、炉心管17の傾斜角及び回転速度を適宜設定する。例えば、前駆体の質量を20~110g、仮焼成時間を30~120分、仮焼成温度を200~1200℃とするとき、炉心管17の傾斜角を8~15°、且つ、回転速度を3.6~9.6ラジアン/秒に設定することができる。
 次に、炉心管17内の温度が200~1200℃まで上昇したところで、リチウムイオン電池正極材用前駆体を粉体投入部11から炉心管17の前端部に投入する。投入したリチウムイオン電池正極材用前駆体は、回転する炉心管17内で撹拌及び加熱されながら炉心管17の後端部まで移送される。このようにして、前駆体の仮焼成を行う。この間、リチウムイオン電池正極材用前駆体から二酸化炭素、窒素酸化物等のガスや水分が放出され、前駆体中の全金属の質量%が仮焼成前に比べて1~105%、好ましくは50~97%増加している。また、仮焼成の間、供給ガスに混じって炉心管17から排出される前駆体等の粉体をバグフィルター13で回収している。バグフィルター13で回収した前駆体は、精製後、再度原料として用いてもよい。
 次に、仮焼成を行った前駆体を粉体排出部14から装置外へ排出し、続いて以下の本焼成を行う。
As the pre-baking step, first, heating by the heater 16 is started while rotating the core tube 17. Here, the inclination angle and rotation speed of the core tube 17 are appropriately set according to the firing time and firing temperature of the pre-firing with respect to the mass of the precursor for the lithium ion battery positive electrode material to be charged later. For example, when the mass of the precursor is 20 to 110 g, the temporary baking time is 30 to 120 minutes, and the temporary baking temperature is 200 to 1200 ° C., the inclination angle of the core tube 17 is 8 to 15 ° and the rotation speed is 3 .6 to 9.6 radians / second can be set.
Next, when the temperature in the furnace tube 17 rises to 200 to 1200 ° C., a precursor for a lithium ion battery positive electrode material is charged from the powder loading unit 11 to the front end of the furnace tube 17. The charged precursor for the lithium ion battery positive electrode material is transferred to the rear end of the core tube 17 while being stirred and heated in the rotating core tube 17. In this way, the precursor is calcined. During this time, gas and moisture such as carbon dioxide and nitrogen oxide are released from the precursor for the lithium ion battery positive electrode material, and the mass% of the total metal in the precursor is 1 to 105%, preferably 50%, compared with that before the preliminary firing. It has increased by 97%. Further, during the pre-baking, powder such as a precursor mixed with the supply gas and discharged from the core tube 17 is collected by the bag filter 13. The precursor recovered by the bag filter 13 may be used again as a raw material after purification.
Next, the precursor that has been pre-baked is discharged from the powder discharge unit 14 to the outside of the apparatus, and then the following main baking is performed.
  (本焼成工程)
 本発明において、本焼成工程は、焼成炉(静置炉)を用いず、ロータリーキルンで行う。このため、焼成炉を用いた焼成において焼成容器に充填して加熱する際に発生していたような前駆体の焼成ムラの生じるおそれが無い。このため、高品質のリチウムイオン電池用正極活物質が得られる。
 また、本焼成は、正極活物質の密度を高める機能や結晶性を整える機能等により、段階的に行うことができる。これらの各段階について、一体のロータリーキルンを用いて行うこともでき、複数体のロータリーキルンを用いて行うこともできる。
(Main firing process)
In the present invention, the main firing step is performed in a rotary kiln without using a firing furnace (stationary furnace). For this reason, there is no possibility that the firing unevenness of the precursor which occurs when the firing container is filled and heated in firing using the firing furnace is not generated. For this reason, a high quality positive electrode active material for lithium ion batteries is obtained.
Moreover, this baking can be performed in steps by the function which raises the density of a positive electrode active material, the function which arranges crystallinity, etc. About each of these steps, it can also carry out using an integral rotary kiln, and can also carry out using several rotary kilns.
 本焼成を1体のロータリーキルンで行う場合について説明する。本焼成に用いるロータリーキルンは、図1で示したものと同様の構成のロータリーキルンを用いることができる。仮焼成で用いたロータリーキルンと本焼成で用いるロータリーキルンとの配置形態は、特に限定されないが、例えば、図2で示すような形態とすることができる。図2において、矢印線がそれぞれロータリーキルンを示している。
 図2(a)で示す形態では、本焼成のロータリーキルン31は、その粉体投入部が仮焼成のロータリーキルン10の粉体排出部の下方に位置し、且つ、略同方向に傾斜するように設けられている。
 図2(b)で示す形態では、本焼成のロータリーキルン32は、その粉体投入部が仮焼成のロータリーキルン10の粉体排出部の下方に位置し、且つ、略逆方向に傾斜するように設けられている。
 本焼成工程は、まず、ロータリーキルン31,32の炉心管を回転させながらヒーターによる加熱を始める。加熱は、正極活物質の密度を高める機能や結晶性を整える機能等の機能ごとに段階的に行ってもよい。このように本焼成の加熱をその機能ごとに段階的に行うことで、より高品質のリチウムイオン電池用正極活物質を作製することができる。段階的な加熱を一体のロータリーキルン31,32で行うためには、ロータリーキルン31,32の前端部から後端部にかけてヒーターを所定の間隔で複数配置する。例えば、本焼成工程を、層状岩塩型結晶構造を形成、及び正極活物質のタップ密度を高めるための第1本焼成工程、正極活物質を焼き締めるための第2本焼成工程、及び、クーリングのための第3本焼成工程に分ける場合は、ロータリーキルン31,32の前端部から後端部にかけて3分割した各範囲を別々のヒーターにより温度を変えて加熱する。このとき、各本焼成工程の条件としては、第1本焼成工程を700~1200℃で0.5~12時間行い、第2本焼成工程を500~900℃で0.5~24時間行い、第3本焼成工程を400~700℃で0.5~12時間時間行うことができる。
 また、ロータリーキルン31,32の炉心管の傾斜角及び回転速度は、仮焼成体の質量や本焼成の焼成時間によって適宜設定する。例えば、仮焼成体の質量を20~110g、本焼成時間を1.5~48時間とするとき、炉心管の傾斜角を2~10°、且つ、回転速度を3.6~9.6ラジアン/秒に設定することができる。
 加熱開始後、炉心管内の温度が700~1200℃まで上昇したところで、ロータリーキルン10から排出された仮焼成体を粉体投入部から炉心管の前端部に投入する。投入した仮焼成体は、回転する炉心管内で撹拌及び加熱されながら炉心管の後端部まで移送され、この間で本焼成が行われる。
 次に、本焼成された粉末を粉体排出部から排出し、この粉末に対して粉砕を行うことにより正極活物質の粉体を得る。得られた正極活物質は、焼成工程においてロータリーキルンを用いているため、焼成ムラが抑制されている。
A case where the main baking is performed with one rotary kiln will be described. As the rotary kiln used for the main firing, a rotary kiln having the same configuration as that shown in FIG. 1 can be used. Although the arrangement | positioning form of the rotary kiln used by temporary baking and the rotary kiln used by this baking is not specifically limited, For example, it can be set as the form shown in FIG. In FIG. 2, each arrow line indicates a rotary kiln.
In the form shown in FIG. 2 (a), the main kiln rotary kiln 31 is provided such that its powder input portion is positioned below the powder discharge portion of the pre-baking rotary kiln 10 and is inclined in substantially the same direction. It has been.
In the form shown in FIG. 2 (b), the rotary kiln 32 for main firing is provided such that the powder input portion is positioned below the powder discharge portion of the rotary kiln 10 for temporary firing and is inclined in a substantially reverse direction. It has been.
In the main firing step, first, heating by the heater is started while rotating the furnace core tubes of the rotary kilns 31 and 32. Heating may be performed in stages for each function such as a function of increasing the density of the positive electrode active material and a function of adjusting crystallinity. In this way, by performing the heating of the main firing step by step for each function, a higher quality positive electrode active material for a lithium ion battery can be produced. In order to perform stepwise heating with the integrated rotary kilns 31 and 32, a plurality of heaters are arranged at predetermined intervals from the front end portion to the rear end portion of the rotary kilns 31 and 32. For example, the main baking step includes a first main baking step for forming a layered rock salt type crystal structure and increasing the tap density of the positive electrode active material, a second main baking step for baking the positive electrode active material, and cooling. When dividing into the 3rd main baking process for this, each range divided into 3 from the front-end part of the rotary kilns 31 and 32 to the rear-end part is heated by changing temperature with a separate heater. At this time, as the conditions of each main baking step, the first main baking step is performed at 700 to 1200 ° C. for 0.5 to 12 hours, the second main baking step is performed at 500 to 900 ° C. for 0.5 to 24 hours, The third main baking step can be performed at 400 to 700 ° C. for 0.5 to 12 hours.
Further, the inclination angle and rotation speed of the furnace core tubes of the rotary kilns 31 and 32 are appropriately set according to the mass of the pre-fired body and the firing time of the main firing. For example, when the mass of the pre-fired body is 20 to 110 g and the main firing time is 1.5 to 48 hours, the inclination angle of the core tube is 2 to 10 ° and the rotation speed is 3.6 to 9.6 radians. / Sec can be set.
After the start of heating, when the temperature in the furnace core tube rises to 700 to 1200 ° C., the temporarily fired body discharged from the rotary kiln 10 is charged from the powder charging part to the front end part of the furnace core tube. The introduced temporary fired body is transferred to the rear end of the core tube while being stirred and heated in the rotating core tube, and main firing is performed during this period.
Next, the main fired powder is discharged from the powder discharge section, and the powder is pulverized to obtain a positive electrode active material powder. Since the obtained positive electrode active material uses a rotary kiln in the firing step, firing unevenness is suppressed.
 次に、本焼成を2体のロータリーキルンで行う場合について説明する。本焼成に用いるロータリーキルンは、図1で示したものと同様の構成のロータリーキルンを用いることができる。仮焼成で用いたロータリーキルンと本焼成で用いるロータリーキルンとの配置形態は、特に限定されないが、例えば、図3で示すような形態とすることができる。図3において、矢印線がそれぞれロータリーキルンを示している。
 図3(a)で示す形態では、本焼成の第1のロータリーキルン41は、その粉体投入部が仮焼成のロータリーキルン10の粉体排出部の下方に位置し、且つ、略同方向に傾斜するように設けられている。また、本焼成の第2のロータリーキルン42は、その粉体投入部が第1のロータリーキルン41の粉体排出部の下方に位置し、且つ、略同方向に傾斜するように設けられている。
 図3(b)で示す形態では、本焼成の第1のロータリーキルン43は、その粉体投入部が仮焼成のロータリーキルン10の粉体排出部の下方に位置し、且つ、略逆方向に傾斜するように設けられている。また、本焼成の第2のロータリーキルン44は、その粉体投入部が本焼成の第1のロータリーキルン43の粉体排出部の下方に位置し、且つ、略逆方向に傾斜するように設けられている。
 図3(c)で示す形態では、本焼成の第1のロータリーキルン45は、その粉体投入部が仮焼成のロータリーキルン10の粉体排出部の下方に位置し、且つ、略逆方向に傾斜するように設けられている。また、本焼成の第2のロータリーキルン46は、その粉体投入部が本焼成の第1のロータリーキルン45の粉体排出部の下方に位置し、且つ、略同方向に傾斜するように設けられている。
 図3(d)で示す形態では、本焼成の第1のロータリーキルン47は、その粉体投入部が仮焼成のロータリーキルン10の粉体排出部の下方に位置し、且つ、略同方向に傾斜するように設けられている。また、本焼成の第2のロータリーキルン48は、その粉体投入部が本焼成の第1のロータリーキルン47の粉体排出部の下方に位置し、且つ、略逆方向に傾斜するように設けられている。
 図3(e)で示す形態では、本焼成の第1のロータリーキルン49は、その粉体投入部が仮焼成のロータリーキルン10の粉体排出部の下方に位置するように設けられている。また、本焼成の第2のロータリーキルン50は、その粉体投入部が本焼成の第1のロータリーキルン49の粉体排出部の下方に位置するように設けられている。さらに、仮焼成のロータリーキルン10、本焼成の第1のロータリーキルン49及び第2のロータリーキルン50は、上方から見たとき、略三角形を形成しながらそれぞれ下方へ傾斜するように配置されている。
 本焼成工程は、まず、本焼成の第1及び第2のロータリーキルン41~50の炉心管を回転させながらヒーターによる加熱を始める。加熱は、正極活物質の密度を高める機能や結晶性を整える機能等の機能ごとに段階的に行われる。このように本焼成の加熱をその機能ごとに段階的に行うことで、より高品質のリチウムイオン電池用正極活物質を作製することができる。段階的な加熱を第1及び第2ロータリーキルン41~50で行うためには、第1及び/又は第2のロータリーキルン41~50の前端部から後端部にかけてヒーターを所定の間隔で複数配置する。例えば、本焼成工程を、層状岩塩型結晶構造を形成、及び正極活物質のタップ密度を高めるための第1本焼成工程、正極活物質を焼き締めるための第2本焼成工程、及び、クーリングのための第3本焼成工程に分ける場合は、第1のロータリーキルン41,43,45,47及び49において第1及び第2焼成工程を行い、且つ、第2のロータリーキルン42,44,46,48及び50において第3焼成工程を行う。または、第1のロータリーキルン41,43,45,47及び49において第1焼成工程を行い、且つ、第2のロータリーキルン42,44,46,48及び50において第2及び第3焼成工程を行う。このようにして本焼成の第1及び/又は第2のロータリーキルン41~50の前端部から後端部にかけて分割した各範囲を別々のヒーターにより温度を変えて加熱する。このとき、各本焼成工程の条件としては、第1本焼成工程を700~1200℃で0.5~12時間行い、第2本焼成工程を500~900℃で0.5~24時間行い、第3本焼成工程を400~700℃で0.5~12時間行うことができる。
 また、本焼成の第1及び第2のロータリーキルン41~50の炉心管の傾斜角及び回転速度は、仮焼成体の質量や本焼成の焼成時間によって適宜設定する。例えば、仮焼成体の質量を20~110g、本焼成時間を1.5~48時間とするとき、炉心管の傾斜角を2~10°、且つ、回転速度を3.6~9.6ラジアン/秒に設定することができる。
 加熱開始後、炉心管内の温度が700~1200℃まで上昇したところで、ロータリーキルン10から排出された仮焼成体を第1のロータリーキルン41,43,45,47及び49の粉体投入部から炉心管の前端部に投入する。投入した仮焼成体は、回転する炉心管内で撹拌及び加熱されながら炉心管の後端部まで移送されて、粉体排出部から排出される。第1のロータリーキルン41,43,45,47及び49の粉体排出部から排出された焼成体は、続いて下方の第2のロータリーキルン42,44,46,48及び50の粉体投入部へ投入される。第2のロータリーキルン42,44,46,48及び50の粉体投入部へ投入された焼成体は、続いて回転する炉心管内で撹拌及び加熱されながら炉心管の後端部まで移送されて本焼成が完了し、粉体排出部から排出される。
 次に、本焼成された粉末を粉体排出部から排出し、この粉末に対して粉砕を行うことにより正極活物質の粉体を得る。得られた正極活物質は、焼成工程においてロータリーキルンを用いているため、焼成ムラが抑制されている。
Next, the case where the main baking is performed with two rotary kilns will be described. As the rotary kiln used for the main firing, a rotary kiln having the same configuration as that shown in FIG. 1 can be used. Although the arrangement | positioning form of the rotary kiln used by temporary baking and the rotary kiln used by this baking is not specifically limited, For example, it can be set as a form as shown in FIG. In FIG. 3, each arrow line indicates a rotary kiln.
In the form shown in FIG. 3A, the first rotary kiln 41 for main firing has its powder input portion positioned below the powder discharge portion of the rotary kiln 10 for preliminary firing and is inclined in substantially the same direction. It is provided as follows. Further, the second rotary kiln 42 of the main firing is provided such that its powder input portion is located below the powder discharge portion of the first rotary kiln 41 and is inclined in substantially the same direction.
In the form shown in FIG. 3B, the first rotary kiln 43 for main firing has its powder input part positioned below the powder discharge part of the rotary kiln 10 for temporary firing, and is inclined substantially in the reverse direction. It is provided as follows. Further, the second rotary kiln 44 of the main firing is provided such that the powder input portion is located below the powder discharge portion of the first rotary kiln 43 of the main firing and is inclined substantially in the reverse direction. Yes.
In the form shown in FIG. 3C, the first rotary kiln 45 of the main firing has its powder input portion positioned below the powder discharge portion of the pre-fired rotary kiln 10 and is inclined substantially in the reverse direction. It is provided as follows. Further, the second rotary kiln 46 for main firing is provided such that the powder input portion thereof is located below the powder discharge portion of the first rotary kiln 45 for main firing and is inclined substantially in the same direction. Yes.
In the form shown in FIG. 3D, the first rotary kiln 47 for main firing has its powder input portion positioned below the powder discharge portion of the pre-fired rotary kiln 10 and inclined in substantially the same direction. It is provided as follows. Further, the second rotary kiln 48 of the main firing is provided such that the powder input portion thereof is located below the powder discharge portion of the first rotary kiln 47 of the main firing and is inclined substantially in the reverse direction. Yes.
In the form shown in FIG. 3 (e), the first rotary kiln 49 for the main firing is provided such that its powder input portion is located below the powder discharge portion of the rotary kiln 10 for preliminary firing. Further, the second rotary kiln 50 for main firing is provided such that its powder input portion is located below the powder discharge portion of the first rotary kiln 49 for main firing. Furthermore, the pre-fired rotary kiln 10, the first fired first rotary kiln 49, and the second rotary kiln 50 are arranged so as to be inclined downward while forming a substantially triangular shape when viewed from above.
In the main firing step, first, heating by the heater is started while rotating the furnace core tubes of the first and second rotary kilns 41 to 50 in the main firing. Heating is performed in stages for each function such as a function of increasing the density of the positive electrode active material and a function of adjusting crystallinity. In this way, by performing the heating of the main firing step by step for each function, a higher quality positive electrode active material for a lithium ion battery can be produced. In order to perform stepwise heating in the first and second rotary kilns 41 to 50, a plurality of heaters are arranged at predetermined intervals from the front end portion to the rear end portion of the first and / or second rotary kilns 41 to 50. For example, the main baking step includes a first main baking step for forming a layered rock salt type crystal structure and increasing the tap density of the positive electrode active material, a second main baking step for baking the positive electrode active material, and cooling. When the first rotary kiln 41, 43, 45, 47 and 49 performs the first and second firing steps, and the second rotary kiln 42, 44, 46, 48 and At 50, a third firing step is performed. Alternatively, the first firing process is performed in the first rotary kilns 41, 43, 45, 47, and 49, and the second and third firing processes are performed in the second rotary kilns 42, 44, 46, 48, and 50. In this way, each range divided from the front end portion to the rear end portion of the first and / or second rotary kilns 41 to 50 in the main firing is heated by changing the temperature with separate heaters. At this time, as the conditions of each main baking step, the first main baking step is performed at 700 to 1200 ° C. for 0.5 to 12 hours, the second main baking step is performed at 500 to 900 ° C. for 0.5 to 24 hours, The third main baking step can be performed at 400 to 700 ° C. for 0.5 to 12 hours.
In addition, the inclination angle and rotation speed of the furnace core tubes of the first and second rotary kilns 41 to 50 in the main firing are appropriately set according to the mass of the pre-fired body and the firing time in the main firing. For example, when the mass of the pre-fired body is 20 to 110 g and the main firing time is 1.5 to 48 hours, the inclination angle of the core tube is 2 to 10 ° and the rotation speed is 3.6 to 9.6 radians. / Sec can be set.
After the start of heating, when the temperature in the furnace core tube rises to 700 to 1200 ° C., the temporarily fired body discharged from the rotary kiln 10 is transferred from the powder charging parts of the first rotary kilns 41, 43, 45, 47 and 49 to the core tube. Insert into the front end. The introduced pre-fired body is transferred to the rear end of the core tube while being stirred and heated in the rotating core tube, and is discharged from the powder discharge unit. The fired bodies discharged from the powder discharge portions of the first rotary kilns 41, 43, 45, 47 and 49 are subsequently put into the powder input portions of the second rotary kilns 42, 44, 46, 48 and 50 below. Is done. The fired bodies charged into the powder charging portions of the second rotary kilns 42, 44, 46, 48 and 50 are subsequently transferred to the rear end of the core tube while being stirred and heated in the rotating core tube, and then subjected to main firing. Is completed and discharged from the powder discharge section.
Next, the main fired powder is discharged from the powder discharge section, and the powder is pulverized to obtain a positive electrode active material powder. Since the obtained positive electrode active material uses a rotary kiln in the firing step, firing unevenness is suppressed.
 次に、本焼成を3体のロータリーキルンで行う場合について説明する。本焼成に用いるロータリーキルンは、図1で示したものと同様の構成のロータリーキルンを用いることができる。仮焼成で用いたロータリーキルンと本焼成で用いるロータリーキルンとの配置形態は、特に限定されないが、例えば、図4で示すような形態とすることができる。図4において、矢印線がそれぞれロータリーキルンを示している。
 図4(a)で示す形態では、本焼成の第1のロータリーキルン61は、その粉体投入部が仮焼成のロータリーキルン10の粉体排出部の下方に位置し、且つ、略同方向に傾斜するように設けられている。また、本焼成の第2のロータリーキルン62は、その粉体投入部が第1のロータリーキルン61の粉体排出部の下方に位置し、且つ、略同方向に傾斜するように設けられている。さらに、本焼成の第3のロータリーキルン63は、その粉体投入部が第2のロータリーキルン62の粉体排出部の下方に位置し、且つ、略同方向に傾斜するように設けられている。
 図4(b)で示す形態では、本焼成の第1のロータリーキルン64は、その粉体投入部が仮焼成のロータリーキルン10の粉体排出部の下方に位置し、且つ、略逆方向に傾斜するように設けられている。また、本焼成の第2のロータリーキルン65は、その粉体投入部が第1のロータリーキルン64の粉体排出部の下方に位置し、且つ、略逆方向に傾斜するように設けられている。さらに、本焼成の第3のロータリーキルン66は、その粉体投入部が第2のロータリーキルン65の粉体排出部の下方に位置し、且つ、略逆方向に傾斜するように設けられている。
 図3(c)で示す形態では、本焼成の第1のロータリーキルン67は、その粉体投入部が仮焼成のロータリーキルン10の粉体排出部の下方に位置するように設けられている。また、本焼成の第2のロータリーキルン68は、その粉体投入部が本焼成の第1のロータリーキルン67の粉体排出部の下方に位置するように設けられている。また、本焼成の第3のロータリーキルン69は、その粉体投入部が本焼成の第2のロータリーキルン68の粉体排出部の下方に位置するように設けられている。さらに、仮焼成のロータリーキルン10、本焼成の第1~第3のロータリーキルン67,68,69が、上方から見たとき、略矩形を形成しながらそれぞれ下方へ傾斜するように配置されている。
 本焼成工程は、まず、本焼成の第1~第3のロータリーキルン61~69の炉心管を回転させながらヒーターによる加熱を始める。加熱は、正極活物質の密度を高める機能や結晶性を整える機能等の機能ごとに段階的に行われる。このように本焼成の加熱をその機能ごとに段階的に行うことで、より高品質のリチウムイオン電池用正極活物質を作製することができる。例えば、本焼成工程を、層状岩塩型結晶構造を形成、及び正極活物質のタップ密度を高めるための第1本焼成工程、正極活物質を焼き締めるための第2本焼成工程、及び、クーリングのための第3本焼成工程に分ける場合は、第1のロータリーキルン61,64,67において第1焼成工程を行い、第2のロータリーキルン62,65,68において第2焼成工程を行い、第3のロータリーキルン63,66,69において第3焼成工程を行う。このとき、各本焼成工程の条件としては、第1本焼成工程を700~1200℃で0.5~12時間行い、第2本焼成工程を500~900℃で0.5~24時間行い、第3本焼成工程を400~700℃で0.5~12時間行うことができる。
 また、本焼成の第1~第3のロータリーキルン61~69の炉心管の傾斜角及び回転速度は、仮焼成体の質量や本焼成の焼成時間によって適宜設定する。例えば、仮焼成体の質量を20~110g、本焼成時間を1.5~48時間とするとき、炉心管の傾斜角を2~10°、且つ、回転速度を3.6~9.6ラジアン/秒に設定することができる。
 加熱開始後、炉心管内の温度が700~1200℃まで上昇したところで、ロータリーキルン10から排出された仮焼成体を第1のロータリーキルン61,64,67の粉体投入部から炉心管の前端部に投入する。投入した仮焼成体は、回転する炉心管内で撹拌及び加熱されながら炉心管の後端部まで移送されて、粉体排出部から排出される。第1のロータリーキルン61,64,67の粉体排出部から排出された焼成体は、続いて下方の第2のロータリーキルン62,65,68の粉体投入部へ投入される。第2のロータリーキルン62,65,68の粉体投入部へ投入された焼成体は、続いて回転する炉心管内で撹拌及び加熱されながら炉心管の後端部まで移送されて、粉体排出部から排出される。第2のロータリーキルン62,65,68の粉体排出部から排出された焼成体は、続いて下方の第3のロータリーキルン63,66,69の粉体投入部へ投入される。第3のロータリーキルン63,66,69の粉体投入部へ投入された焼成体は、続いて回転する炉心管内で撹拌及び加熱されながら炉心管の後端部まで移送されて本焼成が完了し、粉体排出部から排出される。
 次に、本焼成された粉末を粉体排出部から排出し、この粉末に対して粉砕を行うことにより正極活物質の粉体を得る。得られた正極活物質は、焼成工程においてロータリーキルンを用いているため、焼成ムラが抑制されている。
Next, the case where this baking is performed with three rotary kilns is demonstrated. As the rotary kiln used for the main firing, a rotary kiln having the same configuration as that shown in FIG. 1 can be used. Although the arrangement | positioning form of the rotary kiln used by temporary baking and the rotary kiln used by this baking is not specifically limited, For example, it can be set as the form shown in FIG. In FIG. 4, each arrow line indicates a rotary kiln.
In the form shown in FIG. 4A, the first rotary kiln 61 for main firing has its powder input portion positioned below the powder discharge portion of the rotary kiln 10 for preliminary firing and is inclined in substantially the same direction. It is provided as follows. Further, the second rotary kiln 62 of the main firing is provided such that its powder input portion is located below the powder discharge portion of the first rotary kiln 61 and is inclined in substantially the same direction. Further, the third rotary kiln 63 of the main firing is provided such that the powder input portion is positioned below the powder discharge portion of the second rotary kiln 62 and is inclined in substantially the same direction.
In the form shown in FIG. 4B, the first rotary kiln 64 for main firing has its powder input portion positioned below the powder discharge portion of the rotary kiln 10 for preliminary firing, and is inclined substantially in the reverse direction. It is provided as follows. Further, the second rotary kiln 65 of the main firing is provided such that the powder input portion is located below the powder discharge portion of the first rotary kiln 64 and is inclined substantially in the reverse direction. Further, the third rotary kiln 66 for main firing is provided such that the powder input portion thereof is positioned below the powder discharge portion of the second rotary kiln 65 and is inclined substantially in the reverse direction.
In the form shown in FIG. 3C, the first rotary kiln 67 for main firing is provided such that its powder input portion is located below the powder discharge portion of the rotary kiln 10 for preliminary firing. In addition, the second rotary kiln 68 for main firing is provided such that its powder input portion is positioned below the powder discharge portion of the first rotary kiln 67 for main firing. The third rotary kiln 69 for main firing is provided such that its powder input portion is positioned below the powder discharge portion of the second rotary kiln 68 for main firing. Further, the pre-fired rotary kiln 10 and the main-fired first to third rotary kilns 67, 68, 69 are disposed so as to be inclined downward while forming a substantially rectangular shape when viewed from above.
In the main firing step, first, heating by the heater is started while rotating the core tubes of the first to third rotary kilns 61 to 69 of the main firing. Heating is performed in stages for each function such as a function of increasing the density of the positive electrode active material and a function of adjusting crystallinity. In this way, by performing the heating of the main firing step by step for each function, a higher quality positive electrode active material for a lithium ion battery can be produced. For example, the main baking step includes a first main baking step for forming a layered rock salt type crystal structure and increasing the tap density of the positive electrode active material, a second main baking step for baking the positive electrode active material, and cooling. When dividing into the 3rd main kiln process for this, the 1st baking process is performed in the 1st rotary kiln 61,64,67, the 2nd baking process is performed in the 2nd rotary kiln 62,65,68, and the 3rd rotary kiln A third firing step is performed at 63, 66, and 69. At this time, as the conditions of each main baking step, the first main baking step is performed at 700 to 1200 ° C. for 0.5 to 12 hours, the second main baking step is performed at 500 to 900 ° C. for 0.5 to 24 hours, The third main baking step can be performed at 400 to 700 ° C. for 0.5 to 12 hours.
Further, the inclination angle and rotation speed of the furnace core tubes of the first to third rotary kilns 61 to 69 for main firing are appropriately set according to the mass of the pre-fired body and the firing time for main firing. For example, when the mass of the pre-fired body is 20 to 110 g and the main firing time is 1.5 to 48 hours, the inclination angle of the core tube is 2 to 10 ° and the rotation speed is 3.6 to 9.6 radians. / Sec can be set.
After the start of heating, when the temperature in the furnace core tube rises to 700 to 1200 ° C., the temporarily fired body discharged from the rotary kiln 10 is charged from the powder charging portion of the first rotary kiln 61, 64, 67 to the front end portion of the furnace core tube. To do. The introduced pre-fired body is transferred to the rear end of the core tube while being stirred and heated in the rotating core tube, and is discharged from the powder discharge unit. The fired bodies discharged from the powder discharge portions of the first rotary kilns 61, 64, and 67 are subsequently put into the powder input portions of the second rotary kilns 62, 65, and 68 below. The fired body charged in the powder charging section of the second rotary kiln 62, 65, 68 is transferred to the rear end of the core tube while being stirred and heated in the rotating core tube, and is then discharged from the powder discharge section. Discharged. The fired bodies discharged from the powder discharge portions of the second rotary kilns 62, 65, and 68 are subsequently put into the powder input portions of the third rotary kilns 63, 66, and 69 below. The fired body charged into the powder charging portion of the third rotary kiln 63, 66, 69 is subsequently transferred to the rear end of the core tube while being stirred and heated in the rotating core tube, and the main firing is completed. It is discharged from the powder discharge section.
Next, the main fired powder is discharged from the powder discharge section, and the powder is pulverized to obtain a positive electrode active material powder. Since the obtained positive electrode active material uses a rotary kiln in the firing step, firing unevenness is suppressed.
 なお、上述の焼成工程では、仮焼成と本焼成とを別のロータリーキルンを用いて行っているが、これらを1体のロータリーキルンで行ってもよい。その場合は、1体のロータリーキルン内を機能ごとに加熱条件を区別した区域に分け、それぞれ別のヒーターにより異なった焼成温度に加熱することが必要である。また、上述の焼成工程では、本焼成を1~3体のロータリーキルンで行ったが、これに限定されず、4体以上のロータリーキルンを用いてもよい。
 本焼成工程を1体のロータリーキルンで行う場合及び仮焼成及び本焼成工程を1体のロータリーキルンで行う場合は、ロータリーキルンの数が少ないため、作業スペースの観点で利点がある。一方、本焼成工程の各機能ごとに1体ずつのロータリーキルンを用いて焼成を行う場合、1体のロータリーキルン内において加熱の条件が一律であるため、簡潔な装置構成により焼成を行うことができるという利点がある。
In addition, in the above-mentioned baking process, although temporary baking and this baking are performed using another rotary kiln, you may perform these with one rotary kiln. In that case, it is necessary to divide the inside of one rotary kiln into areas where the heating conditions are distinguished for each function, and to heat them to different firing temperatures by different heaters. In the above-described firing step, the main firing is performed with one to three rotary kilns, but the present invention is not limited to this, and four or more rotary kilns may be used.
When the main baking step is performed with one rotary kiln, and when the preliminary baking and the main baking step are performed with one rotary kiln, the number of rotary kilns is small, which is advantageous in terms of work space. On the other hand, when firing using one rotary kiln for each function of the main firing step, the heating conditions are uniform in one rotary kiln, so firing can be performed with a simple apparatus configuration. There are advantages.
 以下、本発明及びその利点をより良く理解するための実施例を提供するが、本発明はこれらの実施例に限られるものではない。 Hereinafter, examples for better understanding of the present invention and its advantages will be provided, but the present invention is not limited to these examples.
(実施例1~17)
 まず、表1に記載の投入量の炭酸リチウムを純水3.2リットルに懸濁させた後、金属塩溶液を4.8リットル投入した。ここで、金属塩溶液は、各金属の硝酸塩の水和物を、各金属が表1に記載の組成比になるように調整し、また全金属モル数が14モルになるように調整した。
 なお、炭酸リチウムの懸濁量は、製品(リチウムイオン二次電池正極材料、すなわち正極活物質)をLixNi1-yy2+αでxが表1の値となる量であって、それぞれ次式で算出されたものである。
 W(g)=73.9×14×(1+0.5X)×A
 上記式において、「A」は、析出反応として必要な量の他に、ろ過後の原料に残留する炭酸リチウム以外のリチウム化合物によるリチウムの量をあらかじめ懸濁量から引いておくために掛ける数値である。「A」は、硝酸塩や酢酸塩のように、リチウム塩が焼成原料として反応する場合は0.9であり、硫酸塩や塩化物のように、リチウム塩が焼成原料として反応しない場合は1.0である。
 この処理により溶液中に微小粒のリチウム含有炭酸塩が析出したが、この析出物を、フィルタープレスを使用して濾別した。
 続いて、析出物を乾燥してリチウム含有炭酸塩(リチウムイオン電池正極材用前駆体)を得た。また、このとき、前駆体内の全金属の濃度は、29~33質量%であった。
(Examples 1 to 17)
First, after suspending lithium carbonate of the input amount shown in Table 1 in 3.2 liters of pure water, 4.8 liter of metal salt solution was charged. Here, the nitrate hydrate of each metal was adjusted so that each metal might become the composition ratio of Table 1, and the total metal mole number might be set to 14 mol.
The suspended amount of lithium carbonate was such that the product (lithium ion secondary battery positive electrode material, ie, positive electrode active material) was Li x Ni 1- y My O 2 + α and x was a value shown in Table 1. Are respectively calculated by the following equations.
W (g) = 73.9 × 14 × (1 + 0.5X) × A
In the above formula, “A” is a numerical value to be multiplied in order to subtract the amount of lithium from the lithium compound other than lithium carbonate remaining in the raw material after filtration from the amount of suspension in addition to the amount necessary for the precipitation reaction. is there. “A” is 0.9 when lithium salt reacts as a firing raw material such as nitrate or acetate, and “1” when lithium salt does not react as a firing raw material such as sulfate or chloride. 0.
By this treatment, fine particles of lithium-containing carbonate were precipitated in the solution, and this precipitate was filtered off using a filter press.
Subsequently, the precipitate was dried to obtain a lithium-containing carbonate (a precursor for a lithium ion battery positive electrode material). At this time, the concentration of all metals in the precursor was 29 to 33% by mass.
 次に、高砂工業社製のロータリーキルン(炉心管:全長2000mm×内径250mm)を用いて図1に示すような仮焼成装置を準備し、ガス供給部から酸素を系内に循環させながら、ヒーター加熱を開始し、ロータリーキルンを回転速度9.6ラジアン/秒で回転させた。ロータリーキルンの傾斜角は、10°とした。炉心管内の温度が600℃に達したとき、当該温度を維持しながら前駆体を粉体投入部から炉心管内で投入した。前駆体の投入量は、110g/分であった。炉心管内に投入された前駆体は、回転する炉心管内を撹拌及び移送されることにより仮焼成されて、ガスや水分が放出される。仮焼成が行われた前駆体は、粉体排出部から装置外へ排出される。排出された前駆体内の全金属の濃度は、54~58質量%であった。 Next, using a rotary kiln manufactured by Takasago Industries Co., Ltd. (core tube: total length 2000 mm × inner diameter 250 mm), a pre-baking apparatus as shown in FIG. 1 is prepared, and heating is performed while oxygen is circulated in the system from the gas supply unit. The rotary kiln was rotated at a rotation speed of 9.6 radians / second. The inclination angle of the rotary kiln was 10 °. When the temperature in the furnace core tube reached 600 ° C., the precursor was charged into the furnace core tube from the powder charging portion while maintaining the temperature. The input amount of the precursor was 110 g / min. The precursor charged in the core tube is temporarily fired by stirring and transporting in the rotating core tube, and gas and moisture are released. The precursor subjected to the preliminary firing is discharged out of the apparatus from the powder discharge unit. The total metal concentration in the discharged precursor was 54-58% by weight.
 次に、図4(a)に示す形態の焼成装置を準備した。各ロータリーキルンは、高砂工業社製のロータリーキルン(炉心管:全長2000mm×内径250mm)を用いた。まず、ガス供給部から酸素を系内に循環させながら、ヒーター加熱を開始し、各ロータリーキルンを回転速度9.6ラジアン/秒で回転させた。各ロータリーキルンの傾斜角は、10°とした。炉心管内の温度が700℃に達したとき、当該温度を維持しながら前駆体を粉体投入部から炉心管内へ投入した。前駆体の投入量は、110g/分であった。炉心管内に投入された前駆体は、回転する炉心管内を撹拌及び移送されることにより仮焼成されて、ガスや水分が放出される。仮焼成が行われた前駆体は、粉体排出部から下方の本焼成の第1のロータリーキルンの粉体投入部へ排出される。排出された前駆体内の全金属の濃度は、31~63質量%であった。
 続いて、第1のロータリーキルンにより第1本焼成工程を700~1200℃で0.5~12時間行い、続けて、第2のロータリーキルンにより第2本焼成工程を500~900℃で0.5~24時間行い、さらに第3のロータリーキルンにより第3本焼成工程を400~700℃で0.5~12時間行うことで、本焼成を行い、酸化物を得た。次に、得られた酸化物を解砕し、リチウムイオン二次電池正極材の粉末を得た。
Next, a baking apparatus having the form shown in FIG. As each rotary kiln, a rotary kiln manufactured by Takasago Industry Co., Ltd. (core tube: total length 2000 mm × inner diameter 250 mm) was used. First, heating of the heater was started while circulating oxygen from the gas supply unit, and each rotary kiln was rotated at a rotation speed of 9.6 radians / second. The inclination angle of each rotary kiln was 10 °. When the temperature in the furnace core tube reached 700 ° C., the precursor was charged into the core tube from the powder charging part while maintaining the temperature. The input amount of the precursor was 110 g / min. The precursor charged in the core tube is temporarily fired by stirring and transporting in the rotating core tube, and gas and moisture are released. The precursor subjected to the preliminary firing is discharged from the powder discharge portion to the powder input portion of the first rotary kiln for the main firing below. The concentration of all metals in the discharged precursor was 31 to 63% by mass.
Subsequently, the first main baking process is performed at 700 to 1200 ° C. for 0.5 to 12 hours using the first rotary kiln, and then the second main baking process is performed at 500 to 900 ° C. for 0.5 to 12 hours. This was performed for 24 hours, and further, the third main baking step was performed at 400 to 700 ° C. for 0.5 to 12 hours using a third rotary kiln, whereby main baking was performed to obtain an oxide. Next, the obtained oxide was crushed to obtain a powder of a lithium ion secondary battery positive electrode material.
(実施例18)
 実施例18として、原料の各金属を表1に示すような組成とし、金属塩を塩化物とし、リチウム含有炭酸塩を析出させた後、飽和炭酸リチウム溶液で洗浄し、濾過する以外は、実施例1~17と同様の処理を行った。
(Example 18)
Example 18 was carried out except that each metal of the raw material had the composition shown in Table 1, the metal salt was chloride, the lithium-containing carbonate was precipitated, washed with a saturated lithium carbonate solution, and filtered. The same treatment as in Examples 1 to 17 was performed.
(実施例19)
 実施例19として、原料の各金属を表1に示すような組成とし、金属塩を硫酸塩とし、リチウム含有炭酸塩を析出させた後、飽和炭酸リチウム溶液で洗浄し、濾過する以外は、実施例1~17と同様の処理を行った。
(Example 19)
Example 19 was carried out except that each material of the raw material had the composition shown in Table 1, the metal salt was sulfate, the lithium-containing carbonate was precipitated, washed with a saturated lithium carbonate solution, and filtered. The same treatment as in Examples 1 to 17 was performed.
(比較例1~3)
 比較例1~3として、原料の各金属を表1に示すような組成とした。次に、実施例1~17と同様のリチウム含有炭酸塩(リチウムイオン電池正極材用前駆体)を得た。次に、内部が縦×横=300mm×300mm、且つ、深さ115mmの大きさに形成されたセラミック製の焼成容器を準備し、この焼成容器内にリチウム含有炭酸塩を充填した。次に、焼成容器を空気雰囲気炉(静置炉)に入れて、ヒーター加熱による焼成を開始した。焼成時間は6~12時間で、焼成温度は700~1100℃とした。このようにして焼成容器内の試料を加熱し、保持温度700~1100℃で2時間保持した後、3時間で放冷して酸化物を得た。次に、得られた酸化物を解砕し、リチウムイオン二次電池正極材の粉末を得た。
 各正極材中の金属含有量は、誘導結合プラズマ発光分光分析装置(ICP-OES)で測定し、各金属の組成比(モル比)を算出した。また、酸素含有量はLECO法で測定しαを算出した。これらの結果、表1に記載の通りであることを確認した。
 タップ密度は200回タップ後の密度とした。
 各正極材と、導電材と、バインダーとを85:8:7の割合で秤量し、バインダーを有機溶媒(N-メチルピロリドン)に溶解したものに、正極材料と導電材とを混合してスラリー化し、Al箔上に塗布して乾燥後にプレスして正極とした。続いて、対極をLiとした評価用の2032型コインセルを作製し、電解液に1M-LiPF6をEC-DMC(1:1)に溶解したものを用いて、電流密度0.2Cの際の放電容量を測定した。また電流密度0.2Cのときの電池容量に対する電流密度2Cのときの、放電容量の比を算出してレート特性を得た。さらに、容量保持率は、室温で1Cの放電電流で得られた初期放電容量と100サイクル後の放電容量を比較することによって測定した。
 試験条件及び結果を表1~3に示す。

























(Comparative Examples 1 to 3)
As Comparative Examples 1 to 3, the raw materials were composed as shown in Table 1. Next, the same lithium-containing carbonate (precursor for lithium ion battery positive electrode material) as in Examples 1 to 17 was obtained. Next, a ceramic firing container having an inside dimension of length × width = 300 mm × 300 mm and a depth of 115 mm was prepared, and the firing container was filled with lithium-containing carbonate. Next, the firing container was placed in an air atmosphere furnace (stationary furnace) and firing by heater heating was started. The firing time was 6 to 12 hours, and the firing temperature was 700 to 1100 ° C. In this way, the sample in the baking container was heated, held at a holding temperature of 700 to 1100 ° C. for 2 hours, and then allowed to cool in 3 hours to obtain an oxide. Next, the obtained oxide was crushed to obtain a powder of a lithium ion secondary battery positive electrode material.
The metal content in each positive electrode material was measured with an inductively coupled plasma optical emission spectrometer (ICP-OES), and the composition ratio (molar ratio) of each metal was calculated. The oxygen content was measured by the LECO method and α was calculated. As a result, it was confirmed that the results were as shown in Table 1.
The tap density was the density after 200 taps.
Each positive electrode material, conductive material, and binder are weighed in a ratio of 85: 8: 7, and the positive electrode material and the conductive material are mixed into a slurry in which the binder is dissolved in an organic solvent (N-methylpyrrolidone). And coated on an Al foil, dried and pressed to obtain a positive electrode. Subsequently, a 2032 type coin cell for evaluation with Li as the counter electrode was prepared, and 1M-LiPF 6 dissolved in EC-DMC (1: 1) was used as the electrolyte, and the current density was 0.2C. The discharge capacity was measured. Further, a rate characteristic was obtained by calculating a ratio of the discharge capacity when the current density was 2C to the battery capacity when the current density was 0.2C. Furthermore, the capacity retention was measured by comparing the initial discharge capacity obtained with a 1 C discharge current at room temperature with the discharge capacity after 100 cycles.
Test conditions and results are shown in Tables 1-3.

























Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 (評価)
 実施例1~19は、いずれも優れたタップ密度及び電池特性を示した。
 特に、実施例1~17は原料として用いた金属塩が硝酸塩であったため、実施例18及び19に比べてより良好な電池特性を示した。
 比較例1~3は、いずれも焼成を静置炉で一度行っただけであり、前駆体をムラ無く焼成することが困難であったため、実施例と比較してタップ密度及び電池特性が劣っていた。
(Evaluation)
Examples 1 to 19 all showed excellent tap density and battery characteristics.
In particular, Examples 1 to 17 exhibited better battery characteristics than Examples 18 and 19 because the metal salt used as a raw material was nitrate.
In each of Comparative Examples 1 to 3, firing was performed only once in a stationary furnace, and it was difficult to fire the precursor without unevenness, so that the tap density and battery characteristics were inferior to those of Examples. .
10 仮焼成のロータリーキルン
11 粉体投入部
12 ガス供給部
13 バグフィルター
14 粉体排出部
15 外筒
16 ヒーター
17 炉心管
20 焼成装置
31~32,41~50,61~69 本焼成のロータリーキルン
DESCRIPTION OF SYMBOLS 10 Temporary-fired rotary kiln 11 Powder input part 12 Gas supply part 13 Bag filter 14 Powder discharge part 15 Outer cylinder 16 Heater 17 Furnace tube 20 Baking apparatus 31-32, 41-50, 61-69 Rotary kiln of main baking

Claims (9)

  1.  リチウムイオン電池用正極活物質前駆体であるリチウム含有炭酸塩に対して、仮焼成をロータリーキルンで行うことにより、該リチウム含有炭酸塩中の全金属の質量%を仮焼成前に比べて1~105%増加させた後、ロータリーキルンを用いて本焼成を行う工程を含むリチウムイオン電池用正極活物質の製造方法。 Preliminary firing is performed on a lithium-containing carbonate that is a positive electrode active material precursor for a lithium ion battery in a rotary kiln, so that the mass% of all metals in the lithium-containing carbonate is 1 to 105 compared to that before temporary firing. % Manufacturing method of the positive electrode active material for lithium ion batteries including the process of performing this baking using a rotary kiln.
  2.  前記仮焼成による前記リチウム含有炭酸塩中の全金属の質量%の増加の割合が50~97%である請求項1に記載のリチウムイオン電池用正極活物質の製造方法。 2. The method for producing a positive electrode active material for a lithium ion battery according to claim 1, wherein the percentage increase in mass% of all metals in the lithium-containing carbonate by the pre-baking is 50 to 97%.
  3.  前記仮焼成を、200~1200℃で30~120分間行う請求項1又は2に記載のリチウムイオン電池用正極活物質の製造方法。 The method for producing a positive electrode active material for a lithium ion battery according to claim 1 or 2, wherein the pre-baking is performed at 200 to 1200 ° C for 30 to 120 minutes.
  4.  前記本焼成が、700~1200℃で0.5~12時間行う第1本焼成工程、500~900℃で0.5~24時間行う第2本焼成工程、及び、400~700℃で0.5~12時間行う第3本焼成工程によって行われる請求項1~3のいずれかに記載のリチウムイオン電池用正極活物質の製造方法。 The main baking is performed at 700 to 1200 ° C. for 0.5 to 12 hours, the second main baking step is performed at 500 to 900 ° C. for 0.5 to 24 hours, and the temperature of 400 to 700 ° C. is 0. The method for producing a positive electrode active material for a lithium ion battery according to any one of claims 1 to 3, wherein the method is carried out by a third main baking step for 5 to 12 hours.
  5.  前記第1~第3本焼成工程を少なくとも2体以上のロータリーキルンを用いて行う請求項4に記載のリチウムイオン電池用正極活物質の製造方法。 The method for producing a positive electrode active material for a lithium ion battery according to claim 4, wherein the first to third main firing steps are performed using at least two rotary kilns.
  6.  前記正極活物質が、組成式:LixNi1-yy2+α
    (前記式において、MはSc、Ti、V、Cr、Mn、Fe、Co、Cu、Zn、Ga、Ge、Al、Bi、Sn、Mg、Ca、B及びZrから選択される1種以上であり、0.9≦x≦1.1であり、0<y≦0.7であり、0.05≦αである。)
    で表される請求項1~5のいずれかに記載のリチウムイオン電池用正極活物質の製造方法。
    The positive electrode active material has a composition formula: Li x Ni 1- y My O 2 + α
    (In the above formula, M is one or more selected from Sc, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, Ga, Ge, Al, Bi, Sn, Mg, Ca, B and Zr. Yes, 0.9 ≦ x ≦ 1.1, 0 <y ≦ 0.7, and 0.05 ≦ α.)
    The method for producing a positive electrode active material for a lithium ion battery according to any one of claims 1 to 5, wherein
  7.  前記Mが、Mn及びCoから選択される1種以上である請求項6に記載のリチウムイオン電池用正極活物質の製造方法。 The method for producing a positive electrode active material for a lithium ion battery according to claim 6, wherein the M is at least one selected from Mn and Co.
  8.  組成式:LixNi1-yy2+α
    (前記式において、MはSc、Ti、V、Cr、Mn、Fe、Co、Cu、Zn、Ga、Ge、Al、Bi、Sn、Mg、Ca、B及びZrから選択される1種以上であり、0.9≦x≦1.1であり、0<y≦0.7であり、0.05≦αである。)
    で表され、タップ密度が1.8~2.2g/ccであるリチウムイオン電池用正極活物質。
    Composition formula: Li x Ni 1- y My O 2 + α
    (In the above formula, M is one or more selected from Sc, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, Ga, Ge, Al, Bi, Sn, Mg, Ca, B and Zr. Yes, 0.9 ≦ x ≦ 1.1, 0 <y ≦ 0.7, and 0.05 ≦ α.)
    And a positive electrode active material for a lithium ion battery having a tap density of 1.8 to 2.2 g / cc.
  9.  前記Mが、Mn及びCoから選択される1種以上である請求項8に記載のリチウムイオン電池用正極活物質。 The positive electrode active material for a lithium ion battery according to claim 8, wherein the M is at least one selected from Mn and Co.
PCT/JP2011/072861 2011-03-29 2011-10-04 Production method for positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries WO2012132072A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-073364 2011-03-29
JP2011073364 2011-03-29

Publications (1)

Publication Number Publication Date
WO2012132072A1 true WO2012132072A1 (en) 2012-10-04

Family

ID=46929877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072861 WO2012132072A1 (en) 2011-03-29 2011-10-04 Production method for positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries

Country Status (2)

Country Link
TW (1) TWI468367B (en)
WO (1) WO2012132072A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073633A1 (en) * 2011-11-16 2013-05-23 Agcセイミケミカル株式会社 Method for producing lithium-containing composite oxide
WO2013111379A1 (en) * 2012-01-26 2013-08-01 Jx日鉱日石金属株式会社 Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
WO2013111378A1 (en) * 2012-01-26 2013-08-01 Jx日鉱日石金属株式会社 Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
JP2014523070A (en) * 2011-06-24 2014-09-08 ビーエーエスエフ コーポレーション Method for the synthesis of layered oxide cathode compositions
US8993160B2 (en) 2009-12-18 2015-03-31 Jx Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
WO2017221554A1 (en) * 2016-06-23 2017-12-28 日立金属株式会社 Method for producing positive electrode active material for lithium ion secondary batteries, positive electrode active material for lithium ion secondary batteries, and lithium ion secondary battery
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
WO2018070517A1 (en) * 2016-10-13 2018-04-19 住友化学株式会社 Production method for lithium secondary battery positive electrode active material
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
JP2020144976A (en) * 2019-03-04 2020-09-10 川崎重工業株式会社 Calcination equipment for waste lithium ion battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11345615A (en) * 1998-06-02 1999-12-14 Fuji Photo Film Co Ltd Lithium ion nonaqueous electrolyte secondary battery
JP2002260655A (en) * 2001-02-28 2002-09-13 Nichia Chem Ind Ltd Manufacturing method of positive electrode material for lithium ion secondary battery
JP2006127955A (en) * 2004-10-29 2006-05-18 Sumitomo Metal Mining Co Ltd Positive electrode active substance for nonaqueous secondary cell and its manufacturing method
JP2007227368A (en) * 2006-01-27 2007-09-06 Mitsubishi Chemicals Corp Lithium ion secondary battery
JP2007257890A (en) * 2006-03-20 2007-10-04 Nissan Motor Co Ltd Positive electrode material for nonaqueous lithium ion battery and battery using this

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003221108A1 (en) * 2002-03-28 2003-10-13 Mitsubishi Chemical Corporation Positive electrode material for lithium secondary cell and secondary cell using the same, and method for producing positive electrode material for lithium secondary cell
CN100398454C (en) * 2004-06-28 2008-07-02 南通奥克赛德新材料有限公司 New process for preparing high quality Co3O4

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11345615A (en) * 1998-06-02 1999-12-14 Fuji Photo Film Co Ltd Lithium ion nonaqueous electrolyte secondary battery
JP2002260655A (en) * 2001-02-28 2002-09-13 Nichia Chem Ind Ltd Manufacturing method of positive electrode material for lithium ion secondary battery
JP2006127955A (en) * 2004-10-29 2006-05-18 Sumitomo Metal Mining Co Ltd Positive electrode active substance for nonaqueous secondary cell and its manufacturing method
JP2007227368A (en) * 2006-01-27 2007-09-06 Mitsubishi Chemicals Corp Lithium ion secondary battery
JP2007257890A (en) * 2006-03-20 2007-10-04 Nissan Motor Co Ltd Positive electrode material for nonaqueous lithium ion battery and battery using this

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8993160B2 (en) 2009-12-18 2015-03-31 Jx Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
JP2018150231A (en) * 2011-06-24 2018-09-27 ビーエーエスエフ コーポレーション Process for synthesis of layered oxide cathode composition
JP2014523070A (en) * 2011-06-24 2014-09-08 ビーエーエスエフ コーポレーション Method for the synthesis of layered oxide cathode compositions
WO2013073633A1 (en) * 2011-11-16 2013-05-23 Agcセイミケミカル株式会社 Method for producing lithium-containing composite oxide
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
WO2013111378A1 (en) * 2012-01-26 2013-08-01 Jx日鉱日石金属株式会社 Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
WO2013111379A1 (en) * 2012-01-26 2013-08-01 Jx日鉱日石金属株式会社 Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
JP2021022576A (en) * 2016-06-23 2021-02-18 日立金属株式会社 Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
JPWO2017221554A1 (en) * 2016-06-23 2019-02-21 日立金属株式会社 Method for producing positive electrode active material for lithium ion secondary battery, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
WO2017221554A1 (en) * 2016-06-23 2017-12-28 日立金属株式会社 Method for producing positive electrode active material for lithium ion secondary batteries, positive electrode active material for lithium ion secondary batteries, and lithium ion secondary battery
JP7160075B2 (en) 2016-06-23 2022-10-25 日立金属株式会社 Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
US11764356B2 (en) 2016-06-23 2023-09-19 Proterial, Ltd. Method for producing positive electrode active material for lithium ion secondary batteries
WO2018070517A1 (en) * 2016-10-13 2018-04-19 住友化学株式会社 Production method for lithium secondary battery positive electrode active material
JP2020144976A (en) * 2019-03-04 2020-09-10 川崎重工業株式会社 Calcination equipment for waste lithium ion battery
EP3936631A4 (en) * 2019-03-04 2022-12-07 Kawasaki Jukogyo Kabushiki Kaisha Apparatus for roasting lithium ion battery waste
JP7195181B2 (en) 2019-03-04 2022-12-23 川崎重工業株式会社 Roasting equipment for waste lithium-ion batteries

Also Published As

Publication number Publication date
TW201247591A (en) 2012-12-01
TWI468367B (en) 2015-01-11

Similar Documents

Publication Publication Date Title
WO2012132072A1 (en) Production method for positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
JP5808316B2 (en) Method for producing positive electrode active material for lithium ion battery
TWI513663B (en) Production method of positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
JP5819199B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
CN107851794B (en) Method for producing positive electrode active material for lithium secondary battery
JP5819200B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
TWI479726B (en) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
TWI423508B (en) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
TWI549343B (en) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
TWI423507B (en) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
JP6970885B2 (en) Manufacturing method of positive electrode active material for lithium secondary battery
JP5876739B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP2011210463A (en) Method of manufacturing positive electrode active material for lithium ion battery
JP6273115B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP2021153028A (en) Method for manufacturing positive electrode active material for lithium-ion secondary battery
KR20220139324A (en) Lithium transition metal oxide manufacturing process
TWI469934B (en) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11862105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP