JPH11139829A - Production of positive electrode material for lithium ion secondary cell - Google Patents

Production of positive electrode material for lithium ion secondary cell

Info

Publication number
JPH11139829A
JPH11139829A JP9301918A JP30191897A JPH11139829A JP H11139829 A JPH11139829 A JP H11139829A JP 9301918 A JP9301918 A JP 9301918A JP 30191897 A JP30191897 A JP 30191897A JP H11139829 A JPH11139829 A JP H11139829A
Authority
JP
Japan
Prior art keywords
lithium
rotary kiln
positive electrode
blades
kiln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9301918A
Other languages
Japanese (ja)
Inventor
Koji Mizusawa
浩二 水沢
Susumu Yokono
進 横野
Takayuki Fujita
隆幸 藤田
Masaki Watanabe
政喜 渡辺
Masami Sakaguchi
正己 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIKKI CHEMCAL CO Ltd
Original Assignee
NIKKI CHEMCAL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIKKI CHEMCAL CO Ltd filed Critical NIKKI CHEMCAL CO Ltd
Priority to JP9301918A priority Critical patent/JPH11139829A/en
Publication of JPH11139829A publication Critical patent/JPH11139829A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide this production of the positive electrode material consisting of a lithium-containing multiple metal oxide which is subjected to sufficient crystal growth and capable of exhibiting high performance. SOLUTION: In this production that comprises firing a precursor material of a lithium-containing multiple metal oxide to produce the positive electrode material consisting of the lithium-containing multiple metal oxide, the precursor material is fired while supplying an oxygen-containing gas, with a rotary kiln provided with a rotary block which has at least three blades and at least two of these three blades of which are placed so as to be in contact with the inner wall of the rotary kiln.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、コバルト酸リチウ
ム、ニッケル酸リチウムまたはマンガン酸リチウムなど
の複合酸化物よりなるリチウムイオン二次電池用正極材
の製造方法に関するものである。
The present invention relates to a method for producing a positive electrode material for a lithium ion secondary battery comprising a composite oxide such as lithium cobaltate, lithium nickelate or lithium manganate.

【0002】[0002]

【従来の技術】リチウムイオン二次電池用正極材として
用いられているコバルト酸リチウム、ニッケル酸リチウ
ムまたはマンガン酸リチウムなどの複合酸化物は、それ
ぞれの金属の酸化物、炭酸塩または水酸化物の混合物で
ある前駆体物質を空気などの酸素含有ガス雰囲気中で焼
成して製造されている。
2. Description of the Related Art Composite oxides such as lithium cobaltate, lithium nickelate or lithium manganate used as a cathode material for lithium ion secondary batteries are composed of oxides, carbonates or hydroxides of the respective metals. It is manufactured by firing a precursor material that is a mixture in an atmosphere of an oxygen-containing gas such as air.

【0003】この焼成方法としては、前駆体物質の粉末
を磁性ボードのような耐熱性容器に充填し、これをトン
ネル炉またはマッフル炉などの焼成炉により酸素含有ガ
ス雰囲気中で焼成する方法がとられている。しかし、こ
れらの従来の焼成方法ではリチウムイオン二次電池用正
極材として満足し得る性能を有する複合酸化物が得られ
ないことがある。特にニッケル酸リチウムなどのニッケ
ル系複合酸化物を得る場合は、従来の方法で焼成しても
結晶成長が不十分で、蓄電容量などの電池性能の点で満
足し得るリチウムイオン二次電池用正極材としての複合
酸化物を得ることができない。これは、原料粉末と酸素
含有ガスとの接触が不十分なためと考えられる。
[0003] As a firing method, there is a method in which a powder of a precursor substance is filled in a heat-resistant container such as a magnetic board, and this is fired in a firing furnace such as a tunnel furnace or a muffle furnace in an oxygen-containing gas atmosphere. Have been. However, these conventional firing methods may not provide a composite oxide having satisfactory performance as a positive electrode material for a lithium ion secondary battery. In particular, when obtaining a nickel-based composite oxide such as lithium nickelate, the positive electrode for a lithium ion secondary battery is insufficient in crystal growth even when calcined by a conventional method, and is satisfactory in terms of battery performance such as storage capacity. A composite oxide as a material cannot be obtained. This is considered to be due to insufficient contact between the raw material powder and the oxygen-containing gas.

【0004】原料粉末の焼成方法としては、上記の方法
以外にロータリーキルンによる方法がある。この方法だ
と上記の方法よりも原料粉末と酸素含有ガスとの接触は
多少は良くなるが、それでも目的の電池性能を有するリ
チウムイオン二次電池用正極材としての複合酸化物を得
るためには、原料供給量を少なくしたり焼成時間を長く
するなどの対策が必要である。
As a method for firing the raw material powder, there is a method using a rotary kiln other than the above method. According to this method, the contact between the raw material powder and the oxygen-containing gas is somewhat better than the above method, but in order to obtain a composite oxide as a cathode material for a lithium ion secondary battery having the desired battery performance, In addition, it is necessary to take measures such as reducing the amount of raw material supplied or extending the firing time.

【0005】[0005]

【発明が解決しようとする課題】本発明は、従来のロー
タリーキルンによる焼成方法の改良に関するもので、空
気などの酸素含有ガスとの接触がさらに良好になるよう
なロータリーキルンを用いてリチウム含有複合金属酸化
物前駆体物質を焼成することにより、十分に結晶成長し
た高性能を発揮するリチウム含有複合金属酸化物からな
るリチウムイオン二次電池用正極材の製造方法を提供す
ることを目的とする。
SUMMARY OF THE INVENTION The present invention relates to an improvement in a conventional rotary kiln sintering method, in which a lithium-containing composite metal oxide is oxidized by using a rotary kiln which makes better contact with an oxygen-containing gas such as air. It is an object of the present invention to provide a method for producing a positive electrode material for a lithium ion secondary battery comprising a lithium-containing composite metal oxide exhibiting high performance in which crystals are sufficiently grown by firing a precursor substance.

【0006】[0006]

【課題を解決するための手段】本発明に係るリチウムイ
オン二次電池用正極材の製造方法は、リチウム含有複合
金属酸化物前駆体物質を焼成してリチウム含有複合金属
酸化物からなるリチウムイオン二次電池用正極材を製造
する方法において、前記前駆体物質を、少なくとも3枚
の羽根を有する回転ブロックがその少なくとも3枚の羽
根の中の2枚の羽根がロータリーキルンの内壁と接触す
るように装填されたロータリーキルンを用いて、酸素含
有ガスを供給しながら焼成することを特徴とする。
According to the present invention, there is provided a method for producing a positive electrode material for a lithium ion secondary battery, comprising the steps of: firing a lithium-containing composite metal oxide precursor material; In a method of manufacturing a positive electrode material for a secondary battery, the precursor material is loaded such that a rotating block having at least three blades is such that two of the at least three blades are in contact with an inner wall of a rotary kiln. The sintering is performed by using the obtained rotary kiln while supplying an oxygen-containing gas.

【0007】リチウム含有複合金属酸化物前駆体とは、
焼成することにより複合金属酸化物となるそれぞれの金
属の化合物の混合物である。これらの調製方法としては
特に制限はなく、従来から用いられているコバルト、ニ
ッケル又はマンガンなどの酸化物または炭酸塩と、炭酸
リチウムまたは水酸化リチウムとを混合して、均一な混
合物とする方法がある。例えば、先に出願した、特開平
9-156931号、特願平8-284380号、特願平8-336687号に開
示された方法で混合物が調製される。
[0007] The lithium-containing composite metal oxide precursor is
It is a mixture of compounds of the respective metals that becomes a composite metal oxide by firing. There is no particular limitation on these preparation methods, and a method of mixing a conventionally used oxide or carbonate such as cobalt, nickel or manganese with lithium carbonate or lithium hydroxide to form a uniform mixture is used. is there. For example, Japanese Patent Application Laid-Open
A mixture is prepared by the methods disclosed in Japanese Patent Application Nos. 9-156931, 8-284380 and 8-336687.

【0008】上記のような方法で得られた前駆体混合物
を、次いでロータリーキルンで酸素含有ガスを供給しな
がら焼成するが、本発明では、少なくとも3枚の羽根を
有する回転ブロックがその少なくとも3枚の羽根の中の
2枚の羽根がロータリーキルンの内壁と接触するように
装填されたロータリーキルンを用いる。前記回転ブロッ
クは、ロータリーキルンの回転に伴って、間欠的にロー
タリーキルンの回転方向と同じ方向に回転する。ロータ
リーキルンとしては、原料の所定量を一度に充填して所
定温度で所定時間焼成するバッチ方式、または原料をキ
ルンの一方の口から連続的に供給し他方の口から連続的
に排出する連続式があるが、いずれでも良い。
[0008] The precursor mixture obtained by the above-described method is then calcined in a rotary kiln while supplying an oxygen-containing gas. In the present invention, a rotating block having at least three blades has at least three blades. A rotary kiln is used in which two of the blades are in contact with the inner wall of the rotary kiln. The rotary block intermittently rotates in the same direction as the rotary kiln with the rotation of the rotary kiln. As a rotary kiln, a batch method in which a predetermined amount of raw material is filled at a time and fired at a predetermined temperature for a predetermined time, or a continuous method in which raw material is continuously supplied from one port of the kiln and continuously discharged from the other port, is used. There is, but any may be.

【0009】本発明で使用するロータリーキルンをさら
に詳細に説明すると、図1に示すように、(少なくと
も)3枚の羽根2A、2B及び2Cを有する回転ブロッ
ク2が、その(少なくとも)3枚の羽根の中の2枚の羽
根2A及び2Bがロータリーキルン1の内壁と接触する
ように装填されたものである。ロータリーキルンが矢印
Aの方向に回転すると、それに伴って回転ブロックがロ
ータリーキルンの回転方向と同じ方向に、2枚の羽根2
A及び2Bがロータリーキルンの内壁と接触したままで
移動する。この時キルン内の被焼成物はキルン上部へか
き上げられる。回転ブロックがある程度キルンの側面方
向に移動すると、回転ブロックのバランスが崩れ矢印B
の方向に1羽根分回転(自転)して、2枚の羽根2B及
び2Cでロータリーキルンの内壁と接触するようにな
る。この時かき上げられた被焼成物はキルン下部へはら
い落されると共に、回転ブロックが1羽根分回転した時
の衝撃で羽根の表面あるいはキルン内壁に付着した被焼
成物が払い落とされる。このようにして原料の混合と酸
素含有ガスとの接触が十分に行われる。羽根の数は3枚
以上であれば良いが、羽根の数が多い場合でも、キルン
の内壁と接触する羽根は2枚である。羽根の数の上限は
特にないが、あまりに多数の羽根を設けると1羽根分の
回転時の衝撃や粉体のかき上げ量が小さくなり好ましく
ない。キルンの内径にもよるが、羽根の数の実用的上限
は6枚程度であろう。本発明において、キルンの内径を
D、回転ブロックの回転径をdとすると、d/D=0.
6〜0.8の範囲にあることが好ましい。0.6未満で
は回転ブロックの回転がスムーズでなく、0.8を越え
ると羽根によるキルンの衝撃力が弱くなる。
The rotary kiln used in the present invention will be described in more detail. As shown in FIG. 1, a rotating block 2 having (at least) three blades 2A, 2B and 2C is composed of (at least) three blades. The two blades 2 </ b> A and 2 </ b> B are mounted so as to come into contact with the inner wall of the rotary kiln 1. When the rotary kiln rotates in the direction of arrow A, the rotating block moves the two blades 2 in the same direction as the rotary kiln rotates.
A and 2B move while contacting the inner wall of the rotary kiln. At this time, the material to be fired in the kiln is scraped up to the upper part of the kiln. When the rotating block moves to the side of the kiln to some extent, the balance of the rotating block is lost and arrow B
In the direction of (1), the two blades 2B and 2C come into contact with the inner wall of the rotary kiln. At this time, the object to be fired is dropped to the lower part of the kiln, and the object to be fired attached to the surface of the blade or the inner wall of the kiln is wiped off by the impact when the rotating block rotates by one blade. In this way, the mixing of the raw materials and the contact with the oxygen-containing gas are sufficiently performed. The number of blades may be three or more, but even when the number of blades is large, the number of blades that come into contact with the inner wall of the kiln is two. Although there is no particular upper limit on the number of blades, providing too many blades is not preferable because the impact during rotation of one blade and the amount of powder scraped up become small. A practical upper limit for the number of blades will be about six, depending on the kiln inner diameter. In the present invention, assuming that the inner diameter of the kiln is D and the rotation diameter of the rotating block is d, d / D = 0.
It is preferably in the range of 6 to 0.8. If it is less than 0.6, the rotation of the rotating block is not smooth, and if it exceeds 0.8, the impact force of the kiln by the blade becomes weak.

【0010】この際に、空気、酸素富化空気または酸素
ガスを適宜の手段でキルン内に連続的に供給する。同時
に焼成に伴って発生する水蒸気、炭酸ガスなどを排出す
る。連続式の場合には酸素含有ガスが焼成用原料の流れ
とは逆に流れるようにすることが好ましい。すなわち、
焼成物排出側から酸素含有ガスを供給し、焼成用原料供
給側から酸素含有ガスを、発生する水蒸気、炭酸ガスと
共に排出する方法が好ましい。この方法によれば、前駆
体混合物は焼成の最終段階で、酸素リッチなガスと接触
するので、複合酸化物の結晶化がより促進される。
At this time, air, oxygen-enriched air or oxygen gas is continuously supplied into the kiln by appropriate means. At the same time, water vapor, carbon dioxide gas and the like generated during firing are discharged. In the case of the continuous type, it is preferable that the oxygen-containing gas flow in the opposite direction to the flow of the raw material for firing. That is,
It is preferable to supply the oxygen-containing gas from the fired material discharge side and discharge the oxygen-containing gas from the fired raw material supply side together with the generated steam and carbon dioxide gas. According to this method, the crystallization of the composite oxide is further promoted because the precursor mixture comes into contact with the oxygen-rich gas at the final stage of the firing.

【0011】[0011]

【発明の実施の形態】ロータリーキルン内での焼成温度
は、前駆体物質の混合物が十分に結晶成長した複合酸化
物になるに十分な温度範囲であれば特に制限はない。例
えば、バッチ式では、原料をキルン内に充填後、650
〜850℃、好ましくは700〜800℃の温度で所定
時間焼成する。あるいは、まず400〜650℃、好ま
しくは400〜600℃の温度で所定時間焼成したの
ち、650〜850℃、好ましくは700〜800℃の
温度で所定時間焼成する二段焼成法が採用される。また
連続式では、温度勾配が被焼成物質の排出側に向かって
順次高くなるように設定されたキルンに供給され、キル
ン内を移動しながら焼成される。この時、原料混合物は
400〜650℃、好ましくは400〜600℃の範囲
の領域に所定時間滞留したのち、最終的に650〜85
0℃、好ましくは700〜800℃の範囲の領域に所定
時間滞留して焼成され、キルンより排出されるような温
度設定が好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The firing temperature in a rotary kiln is not particularly limited as long as it is within a temperature range sufficient for a mixture of precursor materials to be a sufficiently grown composite oxide. For example, in the batch method, after filling the raw material in the kiln, 650
Baking at a temperature of 850 ° C., preferably 700-800 ° C. for a predetermined time. Alternatively, a two-stage firing method is employed in which firing is first performed at a temperature of 400 to 650 ° C., preferably 400 to 600 ° C. for a predetermined time, followed by firing at a temperature of 650 to 850 ° C., preferably 700 to 800 ° C. for a predetermined time. In the continuous method, the temperature is supplied to the kiln set so that the temperature gradient is gradually increased toward the discharge side of the material to be fired, and the material is fired while moving in the kiln. At this time, the raw material mixture stays in a range of 400 to 650 ° C., preferably 400 to 600 ° C. for a predetermined time, and finally reaches 650 to 85 ° C.
It is preferable to set the temperature so as to stay in a range of 0 ° C., preferably 700 to 800 ° C. for a predetermined time, fire and discharge the kiln.

【0012】供給される酸素含有ガスの量は、特に制限
はないが、焼成に伴って発生する水蒸気又は炭酸ガスの
キルン内の分圧をできるだけ低くし、焼成による複合酸
化物の生成を容易にするために、焼成により発生するガ
ス(水蒸気および/または炭酸ガス)量の5倍以上、好
ましくは10倍以上の酸素含有ガスを供給することが望
ましい。キルンより排出された酸素含有ガスは、少なく
ともその一部を、含まれている水蒸気などを除去した後
循環使用することもできる。
The amount of the oxygen-containing gas to be supplied is not particularly limited. However, the partial pressure of steam or carbon dioxide gas generated during the calcination in the kiln is made as low as possible to facilitate the formation of the composite oxide by the calcination. In order to do so, it is desirable to supply an oxygen-containing gas at least 5 times, preferably at least 10 times, the amount of gas (steam and / or carbon dioxide) generated by firing. The oxygen-containing gas discharged from the kiln may be recycled at least after a portion of the oxygen-containing gas has been removed from the gas, for example.

【0013】[0013]

【実施例1】硝酸ニッケル(6水塩)494重量部およ
び硝酸コバルト(6水塩)89重量部を純水に溶解し2
000重量部の混合水溶液(A液)を調製した。また炭
酸ナトリウム318重量部を純水に溶解して1800重
量部の炭酸ナトリウム水溶液(B液)を調製した。80
℃の熱水1000重量部に、この温度を保持しながら、
A液とB液を同時に注加した。注加終了後さらに60分
この温度を保持したのち、得られた沈殿を濾過、洗浄、
乾燥することによりニッケルとコバルトの塩基性炭酸塩
の混合物を得た。次いでこの混合物を湿式粉砕機で水を
加えて粉砕し、得られたスラリーをスプレードライヤー
で乾燥したのち400℃で約2時間焼成することによ
り、ニッケルおよびコバルトの酸化物の微粉末を得た。
上記のような方法で調製された酸化物微粉末の500重
量部と、水酸化リチウム271重量部とを十分に粉砕混
合することにより、コバルト含有ニッケル酸リチウム前
駆体粉末771重量部を得た。このコバルト含有ニッケ
ル酸リチウム前駆体粉末を、キルン内に3枚羽根を有す
る回転ブロック(長さ4m、中心から羽根の先端までの
高さ0.8m)が10個装填された長さ40m、直径
1.5mの連続式ロータリーキルン(回転数:20回/
分)を用いて焼成した。前駆体粉末の供給速度は17K
g/hrであった。キルン内の温度は粉末供給側から排
出側に向かって温度が高く設定されており、粉末排出側
の温度は750℃であった。キルン内における400〜
600℃領域の粉末の滞留時間は0.5時間、600〜
750℃領域の滞留時間は1時間であった。酸素ガスは
0.4m3 /hrで粉末排出側から供給した。得られた
コバルト含有ニッケル酸リチウム(LiCo0.15Ni0.85O2
は平均粒径が10μmの球状の微粒子であった(試料
A)。
Example 1 494 parts by weight of nickel nitrate (hexahydrate) and 89 parts by weight of cobalt nitrate (hexahydrate) were dissolved in pure water to obtain a solution.
000 parts by weight of a mixed aqueous solution (solution A) was prepared. In addition, 318 parts by weight of sodium carbonate was dissolved in pure water to prepare an aqueous solution (solution B) of 1800 parts by weight of sodium carbonate. 80
While maintaining this temperature in 1000 parts by weight of hot water of
Liquid A and liquid B were simultaneously added. After maintaining the temperature for another 60 minutes after completion of the pouring, the resulting precipitate was filtered, washed,
By drying, a mixture of basic carbonates of nickel and cobalt was obtained. Next, the mixture was pulverized by adding water with a wet pulverizer, and the obtained slurry was dried with a spray drier and then calcined at 400 ° C. for about 2 hours to obtain fine powder of nickel and cobalt oxides.
By sufficiently pulverizing and mixing 500 parts by weight of the oxide fine powder prepared by the above method and 271 parts by weight of lithium hydroxide, 771 parts by weight of a cobalt-containing lithium nickel oxide precursor powder was obtained. This cobalt-containing lithium nickelate precursor powder was charged into a kiln with 10 rotating blocks each having 3 blades (length 4 m, height 0.8 m from the center to the tip of the blade), 40 m in length, and 40 m in diameter. 1.5m continuous rotary kiln (rotation speed: 20 times /
Min). The feed rate of the precursor powder is 17K
g / hr. The temperature in the kiln was set higher from the powder supply side to the discharge side, and the temperature on the powder discharge side was 750 ° C. 400 in the kiln
The residence time of the powder in the 600 ° C. region is 0.5 hours,
The residence time in the 750 ° C. region was 1 hour. Oxygen gas was supplied at 0.4 m 3 / hr from the powder discharge side. The obtained cobalt-containing lithium nickelate (LiCo 0.15 Ni 0.85 O 2 )
Were spherical fine particles having an average particle diameter of 10 μm (Sample A).

【0014】[0014]

【比較例1】実施例1と同様な方法で得られたコバルト
含有ニッケル酸リチウム前駆体粉末を回転ブロックが装
備されていない、実施例1で使用したのと同じ連続式ロ
ータリーキルンを用いて同じ条件で焼成した。得られた
コバルト含有ニッケル酸リチウム(LiCo0.15Ni0.85O2
は平均粒径が10μmの球状の微粒子であった(試料
B)。
COMPARATIVE EXAMPLE 1 A cobalt-containing lithium nickelate precursor powder obtained in the same manner as in Example 1 was subjected to the same conditions using a continuous rotary kiln as used in Example 1 without a rotating block. Was fired. The obtained cobalt-containing lithium nickelate (LiCo 0.15 Ni 0.85 O 2 )
Were spherical fine particles having an average particle diameter of 10 μm (Sample B).

【0015】[0015]

【実施例2】電解二酸化マンガン粉末(γ−MnO2、純度
92%)を平均粒径約0.5μmに粉砕した。この微粉
末にリチウムとマンガンの原子比がLi/Mn=0.5
4になるように水酸化リチウム水溶液を加え、よく攪拌
して固形物濃度が約25重量%のスラリーとした。この
スラリーをスプレードライヤーで乾燥した。乾燥条件
は、熱風入口温度300〜310℃、出口温度110〜
150℃とした。上記の乾燥されたマンガン酸リチウム
前駆体粉末5kgを、実施例1と同様の回転ブロックが
装填されたロータリーキルンで焼成した。得られたマン
ガン酸リチウムは平均粒径が10μmの球状の微粒子で
あった(試料C)。
Example 2 Electrolytic manganese dioxide powder (γ-MnO 2 , purity 92%) was ground to an average particle size of about 0.5 μm. The atomic ratio of lithium to manganese is Li / Mn = 0.5
An aqueous solution of lithium hydroxide was added to the mixture to obtain a slurry having a solid concentration of about 25% by weight. This slurry was dried with a spray drier. Drying conditions are hot air inlet temperature 300-310 ° C and outlet temperature 110-110.
The temperature was set to 150 ° C. 5 kg of the dried lithium manganate precursor powder was fired in a rotary kiln equipped with the same rotary block as in Example 1. The obtained lithium manganate was spherical fine particles having an average particle size of 10 μm (Sample C).

【0016】[0016]

【比較例2】実施例2と同様な方法で得られたマンガン
酸リチウム前駆体粉末を、回転ブロックが装備されてい
ない、実施例1で使用したのと同じ連続式ロータリーキ
ルンを用いて同じ条件で焼成した。得られたマンガン酸
リチウムは平均粒径が10μmの球状の微粒子であった
(試料D)。
Comparative Example 2 Lithium manganate precursor powder obtained in the same manner as in Example 2 was used under the same conditions using the same continuous rotary kiln as used in Example 1 without a rotating block. Fired. The obtained lithium manganate was spherical fine particles having an average particle size of 10 μm (Sample D).

【0017】[0017]

【実施例3】実施例1、2および比較例1、2で得られ
た試料A〜Dのそれぞれと、アセチレンブラックおよび
ポリ四フッ化エチレンパウダーを75:20:5の重量
比で混合し、十分混練したのち厚さ0.1mm、直径1
6mmに成型し、これを110℃で乾燥して試験用正極
を得た。上記の正極と、体積比1:1のプロピレンカー
ボネートとジメトキシエタンの混合溶媒に1モル/Lの
LiClO4 を溶解した電解液を含浸させたセパレター
(商品名:セルガード)および厚さ0.2μmの金属リ
チウム箔をボタン型電池用セル内に積層して評価用電池
を作成した。これらの電池について、充放電試験を行っ
た。充放電条件は、定電流で0.5mA/cm2 の電流
密度で行い、充電電位は4.3Vまで、放電電位は3.
0Vまでの電位規制を行った。結果を表1に示す。
Example 3 Samples A to D obtained in Examples 1 and 2 and Comparative Examples 1 and 2 were mixed with acetylene black and polytetrafluoroethylene powder in a weight ratio of 75: 20: 5. After sufficient kneading, thickness 0.1 mm, diameter 1
It was molded to 6 mm and dried at 110 ° C. to obtain a positive electrode for testing. A separator (trade name: Celgard) obtained by impregnating an electrolyte solution obtained by dissolving 1 mol / L LiClO 4 in a mixed solvent of propylene carbonate and dimethoxyethane at a volume ratio of 1: 1 and a thickness of 0.2 μm A battery for evaluation was prepared by laminating a metal lithium foil in a cell for a button-type battery. These batteries were subjected to a charge / discharge test. The charge and discharge conditions were a constant current and a current density of 0.5 mA / cm 2 , the charge potential was up to 4.3 V, and the discharge potential was 3.
Potential regulation up to 0 V was performed. Table 1 shows the results.

【0018】[0018]

【表1】 [Table 1]

【0019】以上の結果からわかるとおり、前駆体物質
を、少なくとも3枚の羽根を有する回転ブロックがその
少なくとも3枚の羽根の中の2枚の羽根がロータリーキ
ルンの内壁と接触するように装填されたロータリーキル
ンによる焼成品)は、回転ブロックを装填していないロ
ータリーキルンによる焼成品と比較して、充電容量、放
電容量共に大きく充放電効率も高い。
As can be seen from the above results, the precursor material was loaded with a rotating block having at least three blades such that two of the at least three blades were in contact with the inner wall of the rotary kiln. The product fired by the rotary kiln) has both a large charge capacity and a large discharge capacity and a high charge / discharge efficiency, as compared with a product fired by a rotary kiln without a rotating block.

【0020】[0020]

【発明の効果】前駆体粉末と酸素との接触が良好にな
り、焼成に伴って発生する水蒸気、炭酸ガスなどが容易
に除去される。その結果、従来のロータリーキルンによ
る焼成法と比較して充分に結晶成長した、リチウムイオ
ン二次電池用正極材としての性能が良好な複合金属酸化
物を得ることができる。
As described above, the contact between the precursor powder and oxygen is improved, and water vapor, carbon dioxide, and the like generated during firing are easily removed. As a result, it is possible to obtain a composite metal oxide which has sufficiently grown crystals as compared with the conventional firing method using a rotary kiln and has good performance as a positive electrode material for a lithium ion secondary battery.

【図面の簡単な説明】[Brief description of the drawings]

図1は、回転ブロックが装填されたロータリーキルンを
示す斜視図である。
FIG. 1 is a perspective view showing a rotary kiln loaded with a rotating block.

【符号の説明】[Explanation of symbols]

1 ロータリーキルン 2 回転ブロック 2A 回転ブロックの羽根A 2B 回転ブロックの羽根B 2C 回転ブロックの羽根C Reference Signs List 1 rotary kiln 2 rotating block 2A rotating block blade A 2B rotating block blade B 2C rotating block blade C

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 政喜 新潟県新津市滝谷本町1−26日揮化学株式 会社開発研究所内 (72)発明者 坂口 正己 新潟県新津市滝谷本町1−26日揮化学株式 会社開発研究所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masayoshi Watanabe 1-26 Takiya Honmachi Niigata Niigata Pref.JGC Chemicals Research & Development Laboratory (72) Inventor Masami Sakaguchi 1-26 Takitani Honmachi Niigata Niigata Nikko Chemical Co., Ltd. Inside the development laboratory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 リチウム含有複合金属酸化物前駆体物質
を焼成してリチウム含有複合金属酸化物からなるリチウ
ムイオン二次電池用正極材を製造する方法において、前
記前駆体物質を、少なくとも3枚の羽根を有する回転ブ
ロックがその少なくとも3枚の羽根の中の2枚の羽根が
ロータリーキルンの内壁と接触するように装填されたロ
ータリーキルンを用いて、酸素含有ガスを供給しながら
焼成することを特徴とするリチウムイオン二次電池用正
極材の製造方法。
1. A method for producing a positive electrode material for a lithium ion secondary battery comprising a lithium-containing composite metal oxide by calcining a lithium-containing composite metal oxide precursor material, wherein the precursor material comprises at least three sheets. The rotating block having the blades is fired while supplying an oxygen-containing gas by using a rotary kiln in which at least two of the at least three blades are in contact with the inner wall of the rotary kiln. A method for producing a positive electrode material for a lithium ion secondary battery.
JP9301918A 1997-11-04 1997-11-04 Production of positive electrode material for lithium ion secondary cell Pending JPH11139829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9301918A JPH11139829A (en) 1997-11-04 1997-11-04 Production of positive electrode material for lithium ion secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9301918A JPH11139829A (en) 1997-11-04 1997-11-04 Production of positive electrode material for lithium ion secondary cell

Publications (1)

Publication Number Publication Date
JPH11139829A true JPH11139829A (en) 1999-05-25

Family

ID=17902692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9301918A Pending JPH11139829A (en) 1997-11-04 1997-11-04 Production of positive electrode material for lithium ion secondary cell

Country Status (1)

Country Link
JP (1) JPH11139829A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260655A (en) * 2001-02-28 2002-09-13 Nichia Chem Ind Ltd Manufacturing method of positive electrode material for lithium ion secondary battery
JP2003516297A (en) * 1999-12-10 2003-05-13 エフエムシー・コーポレイション Lithium cobalt oxide and method for producing the same
CN102354744A (en) * 2011-10-08 2012-02-15 中国电子科技集团公司第十八研究所 Method for improving stability in batch production of lithium iron phosphate
JP2015044699A (en) * 2013-08-27 2015-03-12 住友金属鉱山株式会社 Method for producing cupric oxide powder and cupric oxide fine powder
WO2017213002A1 (en) 2016-06-09 2017-12-14 日立金属株式会社 Method for manufacturing positive-electrode active material for lithium secondary battery
WO2018070517A1 (en) * 2016-10-13 2018-04-19 住友化学株式会社 Production method for lithium secondary battery positive electrode active material
JP2019096422A (en) * 2017-11-21 2019-06-20 日立金属株式会社 Production method of positive electrode active material for lithium ion secondary battery and heat treatment device
WO2022107754A1 (en) * 2020-11-17 2022-05-27 住友化学株式会社 Method for producing lithium metal composite oxide
WO2022202066A1 (en) 2021-03-26 2022-09-29 日立金属株式会社 Method for manufacturing positive electrode active material for lithium ion secondary battery

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003516297A (en) * 1999-12-10 2003-05-13 エフエムシー・コーポレイション Lithium cobalt oxide and method for producing the same
JP4960561B2 (en) * 1999-12-10 2012-06-27 エフエムシー・コーポレイション Lithium cobalt oxide and method for producing the same
JP2002260655A (en) * 2001-02-28 2002-09-13 Nichia Chem Ind Ltd Manufacturing method of positive electrode material for lithium ion secondary battery
CN102354744A (en) * 2011-10-08 2012-02-15 中国电子科技集团公司第十八研究所 Method for improving stability in batch production of lithium iron phosphate
JP2015044699A (en) * 2013-08-27 2015-03-12 住友金属鉱山株式会社 Method for producing cupric oxide powder and cupric oxide fine powder
CN107851794B (en) * 2016-06-09 2020-09-22 日立金属株式会社 Method for producing positive electrode active material for lithium secondary battery
KR20180015629A (en) 2016-06-09 2018-02-13 히타치 긴조쿠 가부시키가이샤 Method for producing positive electrode active material for lithium secondary battery
CN107851794A (en) * 2016-06-09 2018-03-27 日立金属株式会社 The manufacture method of positive active material for lithium secondary battery
JP2018160470A (en) * 2016-06-09 2018-10-11 日立金属株式会社 Method for producing positive electrode active material for lithium secondary battery
US20180316004A1 (en) * 2016-06-09 2018-11-01 Hitachi Metals, Ltd. Method for producing cathode active material used for lithium secondary battery
WO2017213002A1 (en) 2016-06-09 2017-12-14 日立金属株式会社 Method for manufacturing positive-electrode active material for lithium secondary battery
WO2018070517A1 (en) * 2016-10-13 2018-04-19 住友化学株式会社 Production method for lithium secondary battery positive electrode active material
JP2019096422A (en) * 2017-11-21 2019-06-20 日立金属株式会社 Production method of positive electrode active material for lithium ion secondary battery and heat treatment device
WO2022107754A1 (en) * 2020-11-17 2022-05-27 住友化学株式会社 Method for producing lithium metal composite oxide
JP7146140B1 (en) * 2020-11-17 2022-10-03 住友化学株式会社 Method for producing lithium metal composite oxide
WO2022202066A1 (en) 2021-03-26 2022-09-29 日立金属株式会社 Method for manufacturing positive electrode active material for lithium ion secondary battery
KR20230159692A (en) 2021-03-26 2023-11-21 가부시키가이샤 프로테리아루 Method for manufacturing positive electrode active material for lithium ion secondary battery

Similar Documents

Publication Publication Date Title
Amine et al. A New Three‐Volt Spinel Li1+ x Mn1. 5Ni0. 5 O 4 for Secondary Lithium Batteries
EP0936687B1 (en) Powder material, electrode structure, production processes thereof, and secondary lithium battery
KR20110094023A (en) Powder of lithium complex compound particles, method for producing the same, and nonaqueous electrolyte secondary cell
KR100687672B1 (en) Nonaqueous electrolyte secondary battery
JP2000048817A (en) Manufacture of spinel type lithium manganate
JP4124522B2 (en) Lithium / manganese composite oxide, production method and use thereof
EP3881373A1 (en) Process for producing a surface-modified particulate lithium nickel metal oxide material
JPH11139829A (en) Production of positive electrode material for lithium ion secondary cell
JP2003081639A (en) Manganese-containing layer lithium-transition metal compound oxide, and production method therefor
JP3695366B2 (en) Positive electrode active material for lithium ion secondary battery and method for producing the same
JP7110647B2 (en) Lithium-nickel-containing composite oxide, method for producing the same, lithium-ion secondary battery, and evaluation method for lithium-nickel-containing composite oxide
JP2000169151A (en) Production of lithium manganate
JP2005026141A (en) Anode active material for nonaqueous electrolytic solution secondary battery, and its manufacturing method
KR100668051B1 (en) Manganese Oxides by co-precipitation method, Spinel type cathode active material for lithium secondary batteries using thereby and Preparation of the same
JP2001114521A (en) Trimanganese tetraoxide and method for its production
KR100668050B1 (en) Manganese Oxides, Spinel type cathode active material for lithium secondary batteries using thereby and Preparation of the same
JP2003257429A (en) Preparation method of iron-containing olivin manganese lithium phosphate and battery using the same
JPH04198028A (en) Lithium manganese double oxide, its production and use
JP2001328814A (en) Lithium-manganese composite oxide, method for producing the same and secondary battery
JP3620744B2 (en) Method for producing active material for lithium secondary battery
JPH11317225A (en) Positive active material for lithium secondary battery and its manufacture
JP2003146662A (en) Lithium-nickel-manganese complex oxide, method for manufacturing the same and use of the same
JP2000128540A (en) Manganese oxide, its production, lithium manganese multiple oxide produced with the same and production of the same multiple oxide
JP4320808B2 (en) Lithium manganese oxide having spinel structure, method for producing the same, and use thereof
JP2002338246A (en) Method for manufacturing lithium/manganese compound oxide and lithium cell formed using lithium/manganese compound oxide