WO2018070124A1 - Power supply control device, and retrofitted electronic equipment for vehicle - Google Patents

Power supply control device, and retrofitted electronic equipment for vehicle Download PDF

Info

Publication number
WO2018070124A1
WO2018070124A1 PCT/JP2017/030935 JP2017030935W WO2018070124A1 WO 2018070124 A1 WO2018070124 A1 WO 2018070124A1 JP 2017030935 W JP2017030935 W JP 2017030935W WO 2018070124 A1 WO2018070124 A1 WO 2018070124A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
traveling
power supply
unit
noise
Prior art date
Application number
PCT/JP2017/030935
Other languages
French (fr)
Japanese (ja)
Inventor
後藤 敏之
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to SG11201901546PA priority Critical patent/SG11201901546PA/en
Publication of WO2018070124A1 publication Critical patent/WO2018070124A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present disclosure relates to a power supply control device that controls power supply from a vehicle-mounted battery to a predetermined electronic circuit, and a vehicle retrofit electronic device in which the power supply control device is incorporated.
  • Car accessories may be added to the vehicle after shipment from the factory by the user or dealer. In order to prevent the battery from being exhausted by such a car accessory, it is preferable to cut off the power supply from the in-vehicle battery to the car accessory when the vehicle is parked (in other words, the vehicle is not used). .
  • Patent Document 1 also supplies power to a car accessory and triggers communication with a vehicle-side computer, triggered by the occurrence of noise accompanying the start of an engine or the start of power supply to other in-vehicle devices.
  • a power supply control device is disclosed that does not cut off energization during implementation.
  • Patent Document 1 According to the configuration disclosed in Patent Document 1, it is possible to identify whether or not the vehicle is in use (that is, the use state) without wiring connection to the IG line or the ACC line. However, in the configuration of Patent Document 1, it is necessary to connect the power supply control device to the in-vehicle network in order to allow the power supply control device to communicate with the vehicle computer.
  • This disclosure is intended to provide a power supply control device and a vehicular retrofit electronic device that enable appropriate power supply control according to the use state of a vehicle without requiring connection to an in-vehicle network.
  • the power supply control device functions as a relay switch for switching a power supply state from the in-vehicle battery to a predetermined electronic circuit, and an index as to whether or not the vehicle is running.
  • a sensor that outputs an output signal
  • a traveling state determination unit that determines whether the vehicle has started traveling and whether the vehicle has been parked based on the behavior of the output signal of the sensor per certain time;
  • a switch control unit that controls a connection state of the relay switch based on a determination result of the traveling state determination unit.
  • the traveling state determination unit determines whether the vehicle has started traveling and whether the vehicle has been parked based on the output signal of the sensor.
  • determining whether or not the vehicle has started running and whether or not the vehicle has been parked are based on whether or not the vehicle is being used by the user (that is, whether the vehicle is in use).
  • the switch control unit controls the connection state of the relay switch based on the determination result of the traveling state determination unit.
  • the relay switch is a component that switches a power supply state from a vehicle-mounted battery to a predetermined electronic circuit. Therefore, controlling the connection state of the relay switch by the switch control unit corresponds to controlling the power supply state from a vehicle-mounted battery to a predetermined electronic circuit (for example, a car accessory). That is, according to the above configuration, power control according to the usage state of the vehicle can be realized.
  • the communication status with the vehicle-side computer is not used in determining the use state of the vehicle. That is, it is not necessary to connect the power supply control device to the in-vehicle network in order to communicate with the vehicle computer. That is, appropriate power control according to the use state of the vehicle is possible without requiring connection to the in-vehicle network.
  • the power supply control device according to the first aspect of the present disclosure is incorporated in the vehicular retrofit electronic device.
  • the vehicular retrofit electronic device according to the second aspect of the present disclosure also has the same effects as the first aspect of the present disclosure.
  • FIG. 1 It is a block diagram which shows the schematic structure of a power supply control apparatus. It is a block diagram which shows an example of a schematic structure of a calculating part.
  • (A) to (E) are diagrams showing the operation of each unit when the calculation unit detects the start of traveling of the vehicle.
  • (A) to (E) are diagrams showing the operation of each unit when the calculation unit detects parking of the vehicle. It is a flowchart for demonstrating the action
  • (A) to (D) are diagrams showing the operation of each unit when the calculation unit detects the start of traveling of the vehicle. It is a figure which shows the modification of a structure of a calculating part.
  • (A) to (D) are diagrams showing the operation of each unit when the calculation unit detects the start of traveling of the vehicle.
  • (A) to (D) are diagrams showing the operation of each unit when the calculation unit detects parking of the vehicle.
  • FIG. 1 is a diagram illustrating an example of a schematic configuration of a power supply control device 1 according to the present disclosure.
  • the power supply control device 1 is a device that controls the supply state of power from the in-vehicle battery 2 to the car accessory 3.
  • the car accessory 3 refers to an electronic device added to the inside of the vehicle after shipment from the factory.
  • This power supply control device 1 is provided between an in-vehicle battery 2 and a car accessory 3 as shown in FIG. Specifically, the power supply control device 1 includes a positive input terminal, a negative input terminal, a positive output terminal, and a negative output terminal as power input / output terminals.
  • the positive input terminal is electrically connected to the positive terminal of the in-vehicle battery 2. It is connected to the.
  • the negative input terminal is electrically connected to the negative terminal of the in-vehicle battery 2.
  • the plus output terminal is electrically connected to the plus side terminal of the car accessory 3.
  • the negative output terminal is electrically connected to the negative terminal of the car accessory 3.
  • the plus input terminal and the plus output terminal are connected via a relay switch 11. Further, the negative input terminal and the negative output terminal are electrically connected inside the power supply control device 1.
  • the relay switch 11 is a switch for switching a connection state (that is, ON / OFF) based on a control signal input from the calculation unit 14 described later.
  • a connection state that is, ON / OFF
  • the connection state of the relay switch 11 is set to ON, the output voltage of the vehicle-mounted battery 2 is applied to the plus output terminal, and the power of the vehicle-mounted battery 2 is supplied to the car accessory 3.
  • the connection state of the relay switch 11 is set to OFF, the power supply from the in-vehicle battery 2 to the car accessory 3 is cut off.
  • the car accessory 3 corresponds to the electronic circuit described in the claims.
  • the power supply control device 1 includes a power supply circuit unit 12, an acceleration sensor 13, and a calculation unit 14 in addition to the relay switch 11, as shown in FIG.
  • the power supply circuit unit 12 is a circuit module that converts the output voltage (hereinafter referred to as battery voltage) of the in-vehicle battery 2 into a predetermined operating voltage suitable for the operation of the power supply control device 1. That is, the power supply circuit unit 12 plays a role as an internal power supply that supplies power from the in-vehicle battery 2 to other elements (for example, the calculation unit 14) included in the power supply control device 1.
  • the acceleration sensor 13 is a known sensor that detects acceleration acting on the power supply control device 1.
  • the acceleration sensor 13 for example, a three-axis acceleration sensor that detects acceleration in each of three axial directions orthogonal to each other can be employed.
  • the acceleration sensor 13 is an analog three-axis acceleration sensor.
  • the acceleration sensor 13 includes three output terminals corresponding to the three detection axes, and a voltage signal indicating acceleration acting in the axial direction corresponding to the output terminal is calculated from each of the three output terminals. Input to the unit 14.
  • the power supply control device 1 since the power supply control device 1 is used in a vehicle, acceleration corresponding to the behavior of the vehicle acts on the power supply control device 1. Specifically, when the vehicle is traveling, vertical acceleration due to road surface unevenness and horizontal acceleration according to acceleration / deceleration operations act on the power supply control device 1. Further, when the vehicle is turning, centrifugal force acts on the power supply control device 1. When the vehicle is a vehicle including an engine as a drive source, acceleration derived from engine vibrations acts.
  • the acceleration sensor 13 detects components other than gravity. That is, the output signal of the acceleration sensor 13 functions as an indicator of whether or not the vehicle is traveling. Therefore, the acceleration sensor 13 corresponds to the sensor described in the claims.
  • the acceleration acting on the vehicle body due to road surface unevenness will be referred to as a ground vibration component.
  • the acceleration acting on the vehicle body by driving the engine is referred to as an engine vibration component.
  • the ground vibration component becomes relatively large when the vehicle is traveling on a road with many irregularities or on a bridge.
  • the calculation unit 14 determines whether or not the vehicle has started running based on the output signal of the acceleration sensor 13 and whether or not the vehicle is parked, and switches the relay switch 11 on and off according to the determination result. It is a component.
  • the calculation unit 14 is realized using a CPU 141, a ROM 142, a RAM 143, an input / output circuit (not shown), and the like.
  • the ROM 142 is a non-volatile storage medium, and the RAM 143 is a volatile storage medium.
  • the ROM 142 stores a program (hereinafter referred to as a power control program) for causing a normal computer to function as the calculation unit 14 in the present embodiment.
  • the computing unit 14 causes various functions to be described later to be expressed by the CPU 141 executing the power supply control program.
  • the power supply control program only needs to be stored in a non-transitory tangible storage medium. Executing the power control program by the CPU 141 corresponds to executing a method corresponding to the power control program.
  • the function of the calculating part 14 is demonstrated using FIG.
  • the calculation unit 14 determines whether or not the vehicle has started traveling and whether or not the vehicle has been parked according to the presence or absence of a ground vibration component, and the connection of the relay switch 11 is determined based on the determination result. A mode for controlling the state will be described.
  • the calculation unit 14 includes a band-pass filter (hereinafter referred to as BPF: Band-Pass Filter) 144, a detection unit 145, a comparator 146, a travel state determination unit F1, and a switch control unit F2 as functional blocks for realizing the above control.
  • BPF Band-Pass Filter
  • BPF Band-Pass Filter
  • detector 145 detector 145
  • comparator 146 comparator 146
  • the BPF 144 is a filter circuit designed to pass the ground vibration component included in the output signal of the acceleration sensor 13.
  • the specific range (hereinafter referred to as the ground vibration frequency band) of the frequency where the ground vibration component can exist may be specified by the test.
  • the BPF 144 allows signals belonging to the ground vibration frequency band to pass, while attenuating components other than the ground vibration frequency band.
  • the output signal of the BPF 144 is input to the detection unit 145.
  • the BPF 144 corresponds to the vibration component extraction unit described in the claims.
  • 3 (A) and 3 (B) are graphs conceptually showing the operation of the BPF 144 with respect to the output signal of the acceleration sensor 13.
  • 3A shows the output signal of the acceleration sensor 13
  • FIG. 3B shows the output signal of the BPF 144.
  • the horizontal axis represents time.
  • the detection unit 145 is an analog circuit (a so-called envelope detection circuit) that extracts an envelope component of the output signal of the BPF 144.
  • the output signal of the detection unit 145 is input to the comparator 146.
  • FIG. 3C shows the transition of the output signal of the detector 145 with respect to the output signal of the BPF 144 shown in FIG.
  • the comparator 146 is a component (for example, a circuit) that outputs a high-level signal when the output signal of the detection unit 145 is equal to or greater than a predetermined travel determination threshold Th ⁇ . .
  • the comparator 146 outputs a low-level signal when the output signal of the detector 145 is below the travel determination threshold Th ⁇ .
  • the fact that the comparator 146 has output a high level signal means that the amplitude of the ground vibration component is equal to or greater than the travel determination threshold Th ⁇ .
  • the travel determination threshold Th ⁇ introduced here is a threshold for determining that there is a possibility that the vehicle is traveling. A specific value of the travel determination threshold value Th ⁇ may be designed as appropriate.
  • the traveling state determination unit F1 is a functional block that determines whether or not the vehicle has started traveling and whether or not the vehicle is parked based on a signal input from the comparator 146.
  • the traveling state determination unit F1 is realized by the CPU 141 executing the above-described power supply control program.
  • the traveling state determination unit F1 may be realized as hardware using one or a plurality of ICs. Further, it may be realized by a combination of execution of software and hardware.
  • the BPF 144, the detection unit 145, and the comparator 146 described above may also be realized by an analog circuit, or may be realized digitally by software processing in a CPU, for example.
  • the traveling state determination unit F1 determines that the vehicle state when the state in which the output level of the comparator 146 is high continues for a predetermined traveling determination time Trn or longer. It is determined that traveling has started.
  • the traveling state determination unit F1 includes a traveling determination timer as a sub function for performing the above determination.
  • the travel determination timer is a timer that measures an elapsed time after the output signal of the comparator 146 transitions from a low level to a high level.
  • the travel determination timer starts counting when a high level signal is input from the comparator 146, and is expired when the count value becomes a value corresponding to the travel determination time Trn. However, the count value is reset when the output of the comparator 146 becomes low level before the timer expires. That is, the travel determination timer expires when the state in which the comparator 146 outputs a high level signal continues for the travel determination time Trn or longer.
  • the traveling state determination unit F1 determines that traveling of the vehicle has started and sets the traveling flag to ON.
  • the travel flag is a processing flag, and is set to be off in a state in which an initialization process described later is executed (hereinafter referred to as an initial state).
  • the travel flag setting state (that is, on / off) is used to determine whether or not to turn on the relay switch 11.
  • the traveling state determination unit F1 determines that the vehicle is parked when the output of the comparator 146 is at a low level for a predetermined mask time Tmsk. This is because a ground vibration component should be observed when the vehicle is running. In other words, the fact that the output of the comparator 146 is at a low level indirectly means that there is a possibility that the vehicle is stopped.
  • the mask time Tmsk introduced here is an element for separating the state where the vehicle is stopped and the state where the vehicle is parked.
  • the mask time Tmsk is designed to be larger than the maximum value of the time assumed as the vehicle stop time, for example, the assumed value of the display switching time of the traffic light or the maximum value of the maximum stop time due to traffic jam.
  • a specific value of the mask time Tmsk may be designed as appropriate.
  • a timer for measuring the elapsed time since the output of the comparator 146 has become a low level (hereinafter, a parking determination timer) ) May be used.
  • the parking determination timer starts counting when a low level signal is input from the comparator 146 in a state where the traveling flag is set to ON, and the count value becomes a value corresponding to the mask time Tmsk. Will expire. However, when the output of the comparator 146 becomes high level before the timer expires, the count value is reset, and the operation is stopped until the output of the comparator 146 becomes low level.
  • the traveling state determination unit F1 determines that the vehicle is parked and sets the traveling flag to OFF.
  • three signal processing paths from the BPF 144 to the comparator 146 are provided in accordance with the number of output terminals of the acceleration sensor 13 (in other words, the number of detection axes). That is, a signal is input from each of the three comparators 146 to the traveling state determination unit F1.
  • the traveling state determination unit F1 executes the determination process described above for each of the three inputs. If any of the three inputs satisfies the condition for setting the travel flag to ON, the travel flag is turned ON. Moreover, what is necessary is just to turn off a travel flag, when all the three inputs satisfy the conditions which turn off a travel flag.
  • the switch control unit F2 is a functional block that controls ON / OFF of the relay switch 11 based on the determination result of the traveling state determination unit F1.
  • the switch control unit F2 is realized by the CPU 141 executing the above-described power supply control program.
  • the switch control unit F2 may be realized using one or a plurality of ICs and the like, similarly to the traveling state determination unit F1.
  • the switch control unit F2 determines whether the relay ON condition is satisfied based on the determination result of the traveling state determination unit F1.
  • the relay ON condition is a condition for switching the connection state of the relay switch 11 from OFF to ON.
  • the switch control unit F2 When it is determined that the relay ON condition is satisfied, the switch control unit F2 outputs a control signal (hereinafter, an ON signal) for switching the connection state from OFF to ON to the relay switch 11.
  • the relay switch 11 is switched to an ON state when an ON signal is input.
  • the switch control unit F2 determines whether or not the relay OFF condition is satisfied based on the determination result of the traveling state determination unit F1.
  • the relay OFF condition is a condition for switching the connection state of the relay switch 11 from ON to OFF.
  • the traveling state determination unit F1 determines whether or not the relay OFF condition is satisfied.
  • the switch control unit F2 When it is determined that the relay OFF condition is satisfied, the switch control unit F2 outputs a control signal (hereinafter referred to as an OFF signal) for switching the connection state from ON to OFF to the relay switch 11.
  • the relay switch 11 is switched to an OFF state when an OFF signal is input.
  • FIG. 5 is a flowchart schematically showing an operation mode of the power supply control device 1.
  • the flowchart shown in FIG. 5 may be started when the power supply control device 1 is connected to the in-vehicle battery 2 and power is supplied to the calculation unit 14.
  • step S1 an operating system (not shown) of the power supply control device 1 (hereinafter referred to as OS: Operating System) executes an initialization process and proceeds to step S2.
  • OS Operating System
  • the RAM 143 is checked, the program stored in the ROM 142 is read, the initial setting values of various calculation parameters are read, and the like.
  • the process proceeds to step S2.
  • step S2 the switch control unit F2 determines whether or not the relay ON condition is satisfied based on the determination result of the traveling state determination unit F1. If it is determined that the relay ON condition is satisfied, an affirmative determination is made in step S2 and the process proceeds to step S3.
  • step S3 the switch controller F2 outputs an ON signal to the relay switch 11 and proceeds to step S4. By executing step S3, the relay switch 11 is turned on, and the power of the in-vehicle battery 2 is supplied to the car accessory 3.
  • step S2 if the relay ON condition is not satisfied, a negative determination is made in step S2 and the process returns to step S2. That is, it becomes a state waiting for the relay ON condition to be satisfied. Note that this flow ends when the power supply to the power supply control device 1 is interrupted during the repeated execution of step S2.
  • step S4 the switch control unit F2 determines whether or not the relay OFF condition is satisfied based on the determination result of the traveling state determination unit F1. If it is determined that the relay OFF condition is satisfied, the determination in step S4 is affirmative and the process proceeds to step S5. In step S5, an OFF signal is output to the relay switch 11, and the process proceeds to step S6. By executing step S5, the relay switch 11 is turned off, and the power supply to the car accessory 3 is cut off.
  • step S4 if the relay OFF condition is not satisfied, a negative determination is made in step S4 and the process returns to step S4. That is, it will be in the state which waited for the relay OFF conditions to be satisfied. If the power supply to the power supply control device 1 is interrupted during the repeated execution of step S4, this flow ends.
  • step S6 the OS determines whether or not the power is shut off. Whether or not the power is shut off may be determined based on the voltage level input to the power supply circuit unit 12. For example, when the voltage level input to the power supply circuit unit 12 is equal to or lower than a predetermined threshold, it is determined that the power supply is shut off. In addition, the case where a power supply is interrupted
  • the relay switch 11 is turned on until it is determined that the vehicle is parked after it is determined that the vehicle has started running. If it is determined that the vehicle is parked, the relay switch 11 is turned off.
  • determining whether or not the vehicle has started running and whether or not the vehicle has been parked determine whether or not the vehicle is being used by the user (that is, the usage state of the vehicle). It corresponds to doing. That is, according to the above configuration, the use state of the vehicle can be determined based on the output signal of the acceleration sensor 13 built in the power supply control device 1, and the car accessory 3 corresponding to the use state of the vehicle can be determined. Power control can be realized.
  • the power supply control device 1 need only be connected to the battery line (so-called B line), and does not need to be connected to the IG line or ACC line of the vehicle.
  • the presence or absence of noise generated in the battery voltage is not used in determining the usage state of the vehicle. Therefore, according to the above configuration, it is possible to realize power supply control in accordance with the use state of the vehicle even in a vehicle in which alternator noise is not superimposed on the battery voltage, such as an electric vehicle or a hybrid vehicle, or in an engine vehicle having a small alternator ripple. Can do.
  • the communication status with the vehicle-side computer is not used in determining the usage state of the vehicle. That is, it is not necessary to connect the power supply control device 1 to the vehicle-mounted network in order to communicate with the vehicle-side computer. That is, appropriate power control according to the use state of the vehicle is possible without requiring connection to the in-vehicle network.
  • the traveling state determination unit F1 includes a traveling determination timer and a reset timer as sub-functions for determining whether the vehicle has started traveling.
  • the traveling determination timer is a timer that measures an elapsed time after the comparator 146 starts outputting a high level signal, as in the above-described embodiment. However, the traveling determination timer is not reset immediately even when the output of the comparator 146 becomes low level. The travel determination timer is reset when the reset timer has expired.
  • the reset timer is a timer that measures a time Tlw during which the output of the comparator 146 is at a low level while the running determination timer is activated.
  • the reset timer starts counting when the output of the comparator 146 becomes a low level in a state where the running determination timer is activated. Then, when the count value indicating the time Tlw during which the low level continues is a value corresponding to a predetermined low level allowable time Tlmt, the expiration state is reached. That is, the travel determination timer in the first modification is reset when the state in which the output of the comparator 146 is at the low level continues for a predetermined low level allowable time.
  • the low level allowable time Tlmt introduced here is used to determine whether or not traveling is started from the output of the acceleration sensor 13 in the configuration in which the output of the comparator 146 fluctuates in a pulse shape, as in the above-described embodiment. It is a parameter.
  • the specific value of the low level allowable time Tlmt may be determined according to the center frequency of the ground vibration frequency band, the upper limit frequency, the lower limit frequency, or the like.
  • the low level allowable time may be a value obtained by doubling the reciprocal of the center frequency of the ground vibration frequency band.
  • the low level allowable time Tlmt may be the reciprocal of the lower limit frequency of the ground vibration frequency band.
  • whether or not the vehicle is parked may be determined using the same determination logic as that of the above-described embodiment. This is because, when the vehicle is parked, the output of the comparator 146 should be stable at a low level without vibrating. Even with such a configuration, the same effects as those of the above-described embodiment can be obtained. Further, the configuration of the power supply control device 1 can be simplified by omitting the detection unit 145.
  • the frequency range in which engine vibration components can exist (hereinafter referred to as engine vibration frequency band) may be specified by actual tests or simulations. For example, it may be determined according to the distribution range of the rotational speed of the engine. If it is assumed that the main distribution range of the engine rotational speed is from 1000 rpm to 5000 rpm, the BPF 144 may be designed to pass a component of 17 to 84 Hz.
  • the BPF 144 may be designed to pass both the engine vibration frequency band and the ground vibration frequency band. According to such a configuration, it is possible to determine whether the vehicle has started running and whether the vehicle has been parked based on both the ground vibration component and the engine vibration component. For convenience, a component that combines the engine vibration component and the ground vibration component is referred to as a vehicle body vibration component.
  • the traveling state determination unit F1 uses the component derived from the acceleration / deceleration operation of the vehicle included in the output signal of the acceleration sensor 13 to determine whether the vehicle has started traveling and whether the vehicle has been parked. You may judge. In that case, as shown in FIG. 8, the output signal of the acceleration sensor 13 may be input to the comparator 148 via a low-pass filter (hereinafter, LPF: Low-Pass Filter) 147.
  • LPF Low-Pass Filter
  • acceleration / deceleration operation of a vehicle is demonstrated supposing the aspect implemented by the user as a driver here, it is not restricted to this.
  • the acceleration / deceleration operation of the vehicle may be performed by an electronic control device that provides an automatic driving function. That is, the driver may be an electronic control device.
  • the travel determination time Trn and the mask time Tmsk described above are referred to as a first travel determination time Trn1 and a first mask time Tmsk1 in order to distinguish them from various parameters described later.
  • the LPF 147 introduced in the third modification is a filter that allows a component having a frequency lower than a predetermined cutoff frequency to pass therethrough while decreasing a component having a frequency higher than the cutoff frequency.
  • the LPF 147 is configured to pass a signal in a frequency band in which a component (hereinafter referred to as an acceleration / deceleration operation component) derived from the user's acceleration / deceleration operation can be distributed, but not an engine vibration component or a ground vibration component.
  • the LPF 147 corresponds to the acceleration / deceleration operation component extraction unit described in the claims.
  • the frequency range (hereinafter referred to as the acceleration / deceleration frequency band) in which the acceleration / deceleration operation component can be distributed in the output signal of the acceleration sensor 13 may be specified by a test or the like.
  • the LPF 147 is configured to pass a signal up to 3 Hz (in other words, the cutoff frequency is 3 Hz).
  • the output signal of the LPF 147 is input to the comparator 148 and compared with a predetermined acceleration / deceleration determination threshold Th ⁇ .
  • the comparator 148 is a component that outputs a high-level signal when the output signal of the LPF 147 is equal to or greater than a predetermined acceleration / deceleration determination threshold Th ⁇ .
  • the comparator 148 outputs a low level signal when the output signal of the LPF 147 is below the acceleration / deceleration determination threshold Th ⁇ . That the output of the comparator 146 is at a high level means that the user is performing an acceleration / deceleration operation.
  • a specific value of the acceleration / deceleration determination threshold Th ⁇ may be appropriately designed.
  • the traveling state determination unit F1 determines that the vehicle has started traveling when the state in which the comparator 148 outputs a high level signal continues for a predetermined second traveling determination time Trn2. Determine and set the running flag from off to on.
  • the second travel determination time Trn2 is set to a value that is approximately the same as the first travel determination time Trn1 or less than the first travel determination time Trn1.
  • the second travel determination time Trn2 is preferably set to 3 seconds or 5 seconds.
  • the second mask time Tmsk2 is also set to a value longer than the first mask time Tmsk1.
  • the second mask time Tmsk2 is preferably set to a value of about 5 minutes to 30 minutes.
  • the longer the various mask times are set the longer the state in which the power supply to the car accessory is maintained, so that the remaining power of the in-vehicle battery 2 tends to disappear. That is, the longer the various mask times are set, the more the amount of power consumed by the car accessory 3 can be reduced.
  • the state in which the remaining power of the in-vehicle battery 2 is eliminated corresponds to a state in which the battery is exhausted.
  • the conditions for determining that the traveling state determination unit F1 has started traveling of the vehicle may be designed as appropriate. For example, it is determined that the vehicle has started to travel when the travel determination condition set for the vehicle body vibration component is satisfied and the travel determination condition set for the acceleration / deceleration operation component is satisfied. May be.
  • the traveling determination condition set for the vehicle body vibration component is that a high level signal is continuously output from the comparator 146 for the first traveling determination time Trn1 or more.
  • the traveling determination condition set for the acceleration / deceleration operation component is that the high level signal is continuously output from the comparator 148 for the second traveling determination time Trn2.
  • the vehicle when the travel determination condition set for the vehicle body vibration component is satisfied or the travel determination condition set for the acceleration / deceleration operation component is satisfied, the vehicle It may be determined that the running has started.
  • the conditions that the traveling state determination unit F1 determines that the vehicle is parked may be appropriately designed. For example, when the parking determination condition set for the vehicle body vibration component is satisfied and the parking determination condition set for the acceleration / deceleration operation component is satisfied, it is determined that the vehicle is parked. Also good.
  • the parking determination condition set for the vehicle body vibration component is that the low level signal is continuously output from the comparator 146 for the first mask time Tmsk1 or more.
  • the parking determination condition set for the acceleration / deceleration operation component is that a low level signal is continuously output from the comparator 148 for the second mask time Tmsk2 or more.
  • the vehicle when the parking determination condition set for the vehicle body vibration component is satisfied or the parking determination condition set for the acceleration / deceleration operation component is satisfied, the vehicle May be determined to be parked.
  • Modification 6 When it is assumed that the power supply control device 1 is used in a vehicle equipped with an alternator, the power supply control device 1 has the presence or absence of noise (hereinafter referred to as alternator noise) resulting from the operation of the alternator, and the determination result of the traveling state determination unit F1 May be used together to control ON / OFF of the relay switch 11. Such an aspect is shown below as Modification 6.
  • the power supply control device 1 in Modification 6 includes a noise detection unit F3 that detects noise superimposed on the battery voltage.
  • the noise detector F3 detects voltage fluctuations accompanying the drive of the alternator as noise.
  • the noise detection unit F3 may be configured to detect a voltage drop that occurs when the engine starts or a voltage drop that accompanies the start of power supply to other in-vehicle devices as noise. .
  • a well-known configuration can be applied to the configuration for detecting alternator noise.
  • the noise detection unit F3 is realized by the configuration disclosed in Patent Document 1.
  • the noise detection unit F3 detects that the battery voltage includes noise
  • the noise detection unit F3 outputs a signal (hereinafter referred to as a noise detection signal) indicating that the noise is detected to the calculation unit 14.
  • the noise detection unit F3 determines the presence or absence of noise at a predetermined detection cycle, and outputs a noise detection signal every time noise is detected. Further, when the alternator is driven, noise is constantly superimposed on the battery voltage. Therefore, when the alternator is driven, the noise detection unit F3 is expected to output a noise detection signal to the calculation unit 14 for each detection cycle.
  • the switch control unit F2 manages whether or not alter noise is generated depending on whether or not a noise detection signal is input from the noise detection unit F3. Specifically, when a noise detection signal is input from the noise detection unit F3, the noise flag is set to ON.
  • the noise flag is a processing flag indicating whether or not the alternator noise is generated, and is set to OFF in the initial state.
  • the switch control unit F2 sets the noise flag to OFF when the state in which the noise detection signal is not input continues for a predetermined time (hereinafter referred to as determination hold time) in the state where the noise flag is ON. That is, the switch control unit F2 sets the noise flag to OFF when the determination suspension time and the noise detection signal are not input after the noise detection signal is last input.
  • the case where the noise detection signal is not input means that the alternator is in a stopped state. That is, the state where the noise detection signal is not input suggests that the vehicle using the power supply control device 1 may be parked. On the other hand, just because the alternator has stopped is not necessarily parked. If the driver is an idling stop driver or if the vehicle is equipped with a system that automatically stops the engine while the vehicle is stopped, the alternator stops when the engine stops even when the vehicle is stopped. It is to do.
  • the determination hold time introduced here is an element for separating the stop and the parking, like the first mask time Tmsk1, and is designed to be larger than the maximum value of the assumed stop time.
  • a specific value of the determination suspension time may be designed as appropriate. Further, it is assumed that the determination suspension time is set to a value (for example, a value of 10 times or more) sufficiently longer than the detection period of the noise detection unit F3.
  • the switch control unit F2 controls ON / OFF of the relay switch 11 based on the determination result of the traveling state determination unit F1 and the detection result of the noise detection unit F3. That is, ON / OFF of the relay switch 11 is controlled based on the setting states of the travel flag and the noise flag.
  • the switch control unit F2 determines that the relay ON condition is satisfied when at least one of the travel flag and the noise flag is set to ON, and the relay switch 11 Is set to ON. If both the travel flag and the noise flag are set to OFF, it is determined that the relay OFF condition is satisfied, and the relay switch 11 is set to the OFF state.
  • the relay switch 11 is easily set to ON as compared with the above-described embodiment and the like. For example, even if the acceleration sensor 13 cannot detect the movement of the vehicle, the relay switch 11 can be set to ON when alternator noise can be detected. That is, it is possible to reduce the possibility that the relay switch 11 remains OFF even though the vehicle is used by the user.
  • the relay ON condition is satisfied only when both the travel flag and the noise flag are set to ON, and the relay switch 11 is turned ON. May be set. In that case, when at least one of the running flag and the noise flag is set to OFF, it is determined that the relay OFF condition is satisfied, and the relay switch 11 is set to the OFF state.
  • the relay switch 11 can be easily set to OFF, and the risk that the in-vehicle battery 2 is in a power-out state can be reduced.
  • the relay switch 11 can be easily set to OFF, and the risk that the in-vehicle battery 2 is in a power-out state can be reduced.
  • more appropriate power control according to the use state of the vehicle is realized. can do.
  • the acceleration sensor 13 may be a digital acceleration sensor.
  • each member such as BPF 144 may be realized by using a digital circuit element.
  • the functions of the BPF 144, the detection unit 145, the comparator 146, and the like may be realized by the CPU 141 executing software. The same applies to the LPF 147 and the comparator 148.
  • the configuration in which the signal processing path such as the BPF 144 is provided for each of the three detection axes included in the acceleration sensor 13 is not limited to this.
  • the triaxial synthetic acceleration is calculated from the detected values for each axis of the acceleration sensor 13, and using the triaxial synthetic acceleration, it is determined whether the vehicle has started running and whether the vehicle has been parked. May be.
  • the three-axis combined acceleration is a sum of squares of detected values for each axial direction.
  • the configuration for executing the calculation of the three-axis combined acceleration may be arranged immediately after the output stage of the acceleration sensor 13 such as between the acceleration sensor 13 and the BPF 144 or between the acceleration sensor 13 and the LPF 147. According to such a configuration, signals input to the traveling state determination unit F1 can be combined into one.
  • the relay OFF condition uses both the determination result of the traveling state determination unit F1 and the detection result of the noise detection unit F3, while the relay ON condition employs a control mode that does not use the determination result of the traveling state determination unit F1. May be.
  • the noise detection unit F3 detects noise, that is, when the noise flag is switched from OFF to ON, it is considered that the relay ON condition is satisfied, and the relay switch 11 is set to the ON state.
  • the relay switch when the relay switch is OFF, it is sufficient to supply power only to the noise detection unit F3, so that dark current during parking can be suppressed. Specifically, it is as follows.
  • a digital acceleration sensor is adopted as the acceleration sensor 13 as mentioned in the modified example 7, it is necessary to constantly supply power to the CPU or the like. Since the CPU generally consumes a large amount of current, when a digital acceleration sensor is employed as the acceleration sensor 13, dark current increases. In response to such a concern, according to the configuration of Modification Example 9, since dark current during parking can be suppressed, the risk of battery exhaustion can be further reduced.
  • the relay switch 11 can be turned off at a more appropriate timing as compared with a configuration in which only the noise superimposed on the battery voltage is determined. Specifically, there is a risk that the relay switch 11 may be kept on even though the vehicle is not used (that is, parked), or may be turned off while being used. Can be reduced.
  • the switch control unit F2 may be configured to switch the relay switch 11 to OFF when the duration of the state in which the relay switch 11 is set to ON reaches a predetermined upper limit time.
  • the upper limit time here is a value determined according to an assumed value of the continuous use time of the vehicle, and may be, for example, 4 hours. Of course, the upper limit time may be another value (for example, 6 hours).
  • the power supply control device 1 may be built in the car accessory 3 as a power supply control module 1A.
  • the power control module 1A plays a role of controlling the power supply state to the other modules 31 included in the car accessory 3.
  • a power supply control module 1A also corresponds to the power supply control device described in the claims.
  • the car accessory 3 in which the power supply control module 1A is built corresponds to the vehicle retrofit electronic device described in the claims.
  • the module 31 corresponds to the electronic circuit described in the claims.
  • the number of devices installed in the vehicle interior can be suppressed, and the vehicle interior space can be made clear.
  • many retrofitted car navigation devices often incorporate an acceleration sensor.
  • an existing acceleration sensor can be used. Therefore, the introduction cost of the power supply control module 1A can be suppressed.
  • the acceleration sensor is employed as the sensor (hereinafter referred to as the index information sensor) whose output signal functions as an index indicating whether or not the vehicle is traveling is disclosed, but the present invention is not limited thereto.
  • a sensor that detects physical state quantities that change as the vehicle travels such as angular velocity, angular acceleration, azimuth angle, and vehicle position, can be employed as the index information sensor. That is, a gyro sensor, a geomagnetic sensor, a GNSS receiver, or the like may be used as the index information sensor.
  • the vehicle vibration component and the acceleration / deceleration operation component are extracted using the BPF 144 and the LPF 147, and the extracted components are used to Judgment can be performed.
  • the index information sensor may be a switch element configured such that the contact state of the movable contact with respect to the fixed contact changes (in other words, vibrates) by the vehicle body vibration component.
  • the output of such a switch element outputs a pulse-like signal when the vehicle is traveling because the terminal repeatedly contacts and separates due to a vehicle body vibration component or the like.
  • the contact state between the terminals is stable in either contact or non-contact, so that a pulse signal is not output. That is, the above switch element can also be used as an index information sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Provided is a power supply control device comprising: a relay switch (11) for switching the supply state of power from an in-vehicle battery to a prescribed electronic circuit; a sensor (13) for outputting an output signal that functions as an indicator of whether a vehicle is traveling; a travel state determination unit (F1) for determining whether the vehicle has started traveling and whether the vehicle is parked on the basis of the behavior of the sensor output signal per constant time interval; and a switch control unit (F2) for controlling the connection state of the relay switch on the basis of a determination result of the travel state determination unit.

Description

電源制御装置、車両用後付電子機器Power supply control device, vehicle retrofit electronic equipment 関連出願の相互参照Cross-reference of related applications
 本出願は、2016年10月10日に出願された日本出願番号2016-199611号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2016-199611 filed on Oct. 10, 2016, the contents of which are incorporated herein by reference.
 本開示は、車載バッテリから所定の電子回路への電力供給を制御する電源制御装置、及び、その電源制御装置が内蔵された車両用後付電子機器に関する。 The present disclosure relates to a power supply control device that controls power supply from a vehicle-mounted battery to a predetermined electronic circuit, and a vehicle retrofit electronic device in which the power supply control device is incorporated.
 工場出荷後の車両には、ユーザやディーラ等によって、カーアクセサリが追加されることがある。このようなカーアクセサリによるバッテリ上がりを防止するためには、車両が駐車されている(換言すれば車両が使用されていない)場合には、車載バッテリからカーアクセサリへの通電を遮断することが好ましい。 Car accessories may be added to the vehicle after shipment from the factory by the user or dealer. In order to prevent the battery from being exhausted by such a car accessory, it is preferable to cut off the power supply from the in-vehicle battery to the car accessory when the vehicle is parked (in other words, the vehicle is not used). .
 そのため、車載バッテリからカーアクセサリ等の所定の電子回路への電力供給を制御する装置(以降、電源制御装置)としては、IGラインやACCラインへの配線接続を必要とする構成が多い。また、特許文献1には、バッテリ電圧にエンジン始動や他の車載機器への電力供給開始に伴うノイズを発生したことをトリガとして、カーアクセサリへの電力を供給するとともに、車両側コンピュータと通信を実施している間は通電を遮断しない電源制御装置が開示されている。 Therefore, as a device for controlling power supply from a vehicle-mounted battery to a predetermined electronic circuit such as a car accessory (hereinafter referred to as a power supply control device), there are many configurations that require wiring connection to an IG line or an ACC line. Patent Document 1 also supplies power to a car accessory and triggers communication with a vehicle-side computer, triggered by the occurrence of noise accompanying the start of an engine or the start of power supply to other in-vehicle devices. A power supply control device is disclosed that does not cut off energization during implementation.
特開2012-148717号公報JP 2012-148717 A
 特許文献1に開示の構成によれば、IGラインやACCラインへの配線接続することなく、車両が使用中であるか否か(つまり使用状態)を識別できる。しかしながら、特許文献1の構成では、電源制御装置を車両側コンピュータと通信させるために、電源制御装置を車載ネットワークに接続する必要がある。 According to the configuration disclosed in Patent Document 1, it is possible to identify whether or not the vehicle is in use (that is, the use state) without wiring connection to the IG line or the ACC line. However, in the configuration of Patent Document 1, it is necessary to connect the power supply control device to the in-vehicle network in order to allow the power supply control device to communicate with the vehicle computer.
 一方、バッテリ電圧に生じるノイズの有無だけでは、車両が使用されている状態であるのか、使用されていない状態であるのかを判別することは難しい。オルタネータをもたない電気自動車や、駆動手段をエンジンと電気式のモータに切り替えるハイブリッド車などでは、オルタネータノイズが発生しないためである。また、エンジン車でもオルタリップルが小さな車両も存在するためである。 On the other hand, it is difficult to determine whether the vehicle is in use or not using only the presence or absence of noise generated in the battery voltage. This is because no alternator noise is generated in an electric vehicle having no alternator or a hybrid vehicle in which driving means is switched between an engine and an electric motor. This is also because there are vehicles with small alter ripples, even engine vehicles.
 本開示は、車載ネットワークへの接続を必要とせずに、車両の使用状態に応じた適切な電源制御を可能とする電源制御装置及び車両用後付電子機器を提供することを目的とする。 This disclosure is intended to provide a power supply control device and a vehicular retrofit electronic device that enable appropriate power supply control according to the use state of a vehicle without requiring connection to an in-vehicle network.
 本開示の第一の態様によれば、電源制御装置は、車載バッテリから所定の電子回路への電力の供給状態を切り替えるためのリレースイッチと、車両が走行しているか否かの指標として機能する出力信号を出力するセンサと、センサの出力信号の一定時間当りの挙動に基づいて、車両が走行を開始したか否か、及び、車両が駐車されたか否かを判定する走行状態判定部と、走行状態判定部の判定結果に基づいてリレースイッチの接続状態を制御するスイッチ制御部と、を備える。 According to the first aspect of the present disclosure, the power supply control device functions as a relay switch for switching a power supply state from the in-vehicle battery to a predetermined electronic circuit, and an index as to whether or not the vehicle is running. A sensor that outputs an output signal, a traveling state determination unit that determines whether the vehicle has started traveling and whether the vehicle has been parked based on the behavior of the output signal of the sensor per certain time; A switch control unit that controls a connection state of the relay switch based on a determination result of the traveling state determination unit.
 本開示の第一の態様によれば、走行状態判定部がセンサの出力信号に基づいて車両の走行が開始されたか否か、及び、車両が駐車されたか否かを判定する。ここで、車両の走行が開始されたか否か、及び、車両が駐車されたか否かを判定することは、車両がユーザによって使用されている状態であるか否か(つまり車両の使用状態)を判定することに相当する。すなわち、以上の走行状態判定部は、電源制御装置に内蔵されているセンサの出力信号に基づいて車両の使用状態を判定する構成に相当する。 According to the first aspect of the present disclosure, the traveling state determination unit determines whether the vehicle has started traveling and whether the vehicle has been parked based on the output signal of the sensor. Here, determining whether or not the vehicle has started running and whether or not the vehicle has been parked are based on whether or not the vehicle is being used by the user (that is, whether the vehicle is in use). This corresponds to determination. That is, the above running state determination unit corresponds to a configuration for determining the use state of the vehicle based on the output signal of the sensor built in the power supply control device.
 また、スイッチ制御部は、走行状態判定部の判定結果に基づいてリレースイッチの接続状態を制御する。リレースイッチは、車載バッテリから所定の電子回路への電力の供給状態を切り替える構成要素である。そのため、スイッチ制御部がリレースイッチの接続状態を制御することは、車載バッテリから所定の電子回路(例えばカーアクセサリ)への電力の供給状態を制御することに相当する。つまり、上記構成によれば、車両の使用状態に応じた電源制御を実現することができる。 Further, the switch control unit controls the connection state of the relay switch based on the determination result of the traveling state determination unit. The relay switch is a component that switches a power supply state from a vehicle-mounted battery to a predetermined electronic circuit. Therefore, controlling the connection state of the relay switch by the switch control unit corresponds to controlling the power supply state from a vehicle-mounted battery to a predetermined electronic circuit (for example, a car accessory). That is, according to the above configuration, power control according to the usage state of the vehicle can be realized.
 さらに、本開示の第一の態様によれば、車両の使用状態を判定する上で車両側コンピュータとの通信状況を利用しない。つまり、電源制御装置を車両側コンピュータと通信させるために、車載ネットワークに接続させる必要もない。つまり、車載ネットワークへの接続を必要とせずに、車両の使用状態に応じた適切な電源制御が可能となる。 Furthermore, according to the first aspect of the present disclosure, the communication status with the vehicle-side computer is not used in determining the use state of the vehicle. That is, it is not necessary to connect the power supply control device to the in-vehicle network in order to communicate with the vehicle computer. That is, appropriate power control according to the use state of the vehicle is possible without requiring connection to the in-vehicle network.
 本開示の第二の態様によれば、車両用後付電子機器には本開示の第一の態様に係る電源制御装置が内蔵されている。本開示の第二の態様に係る車両用後付電子機器もまた、本開示の第一の態様と同様の効果を奏する。 According to the second aspect of the present disclosure, the power supply control device according to the first aspect of the present disclosure is incorporated in the vehicular retrofit electronic device. The vehicular retrofit electronic device according to the second aspect of the present disclosure also has the same effects as the first aspect of the present disclosure.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。図面において、
電源制御装置の概略的な構成を示すブロック図である。 演算部の概略的な構成の一例を示すブロック図である。 (A)~(E)は、車両の走行開始を演算部が検出する際の各部の作動を表した図である。 (A)~(E)は、車両の駐車を演算部が検出する際の各部の作動を表した図である。 演算部の作動を説明するためのフローチャートである。 演算部の構成の変形例を示す図である。 (A)~(D)は、車両の走行開始を演算部が検出する際の各部の作動を表した図である。 演算部の構成の変形例を示す図である。 (A)~(D)は、車両の走行開始を演算部が検出する際の各部の作動を表した図である。 (A)~(D)は、車両の駐車を演算部が検出する際の各部の作動を表した図である。 電源制御装置の概略的な構成を示すブロック図である。 スイッチ制御部の制御態様を説明するための図である。 スイッチ制御部の他の制御態様を説明するための図である。 電源制御装置の適用例を示す図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. In the drawing
It is a block diagram which shows the schematic structure of a power supply control apparatus. It is a block diagram which shows an example of a schematic structure of a calculating part. (A) to (E) are diagrams showing the operation of each unit when the calculation unit detects the start of traveling of the vehicle. (A) to (E) are diagrams showing the operation of each unit when the calculation unit detects parking of the vehicle. It is a flowchart for demonstrating the action | operation of a calculating part. It is a figure which shows the modification of a structure of a calculating part. (A) to (D) are diagrams showing the operation of each unit when the calculation unit detects the start of traveling of the vehicle. It is a figure which shows the modification of a structure of a calculating part. (A) to (D) are diagrams showing the operation of each unit when the calculation unit detects the start of traveling of the vehicle. (A) to (D) are diagrams showing the operation of each unit when the calculation unit detects parking of the vehicle. It is a block diagram which shows the schematic structure of a power supply control apparatus. It is a figure for demonstrating the control aspect of a switch control part. It is a figure for demonstrating the other control aspect of a switch control part. It is a figure which shows the example of application of a power supply control apparatus.
 以下、本開示の実施形態について図を用いて説明する。図1は、本開示に係る電源制御装置1の概略的な構成の一例を示す図である。電源制御装置1は、車載バッテリ2からカーアクセサリ3への電力の供給状態を制御する装置である。なお、ここでのカーアクセサリ3とは、工場出荷後の車両の車内に追加される電子機器を指す。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. FIG. 1 is a diagram illustrating an example of a schematic configuration of a power supply control device 1 according to the present disclosure. The power supply control device 1 is a device that controls the supply state of power from the in-vehicle battery 2 to the car accessory 3. Here, the car accessory 3 refers to an electronic device added to the inside of the vehicle after shipment from the factory.
 この電源制御装置1は、図1に示すように、車載バッテリ2とカーアクセサリ3の間に設けられて使用される。具体的には、電源制御装置1は電源用入出力端子として、プラス入力端子、マイナス入力端子、プラス出力端子、及びマイナス出力端子を備え、プラス入力端子は車載バッテリ2のプラス側端子と電気的に接続されている。マイナス入力端子は車載バッテリ2のマイナス側端子と電気的に接続されている。プラス出力端子は、カーアクセサリ3のプラス側端子と電気的に接続されている。マイナス出力端子はカーアクセサリ3のマイナス側端子と電気的に接続されている。 This power supply control device 1 is provided between an in-vehicle battery 2 and a car accessory 3 as shown in FIG. Specifically, the power supply control device 1 includes a positive input terminal, a negative input terminal, a positive output terminal, and a negative output terminal as power input / output terminals. The positive input terminal is electrically connected to the positive terminal of the in-vehicle battery 2. It is connected to the. The negative input terminal is electrically connected to the negative terminal of the in-vehicle battery 2. The plus output terminal is electrically connected to the plus side terminal of the car accessory 3. The negative output terminal is electrically connected to the negative terminal of the car accessory 3.
 電源制御装置1の内部においてプラス入力端子とプラス出力端子は、リレースイッチ11を介して接続されている。また、マイナス入力端子とマイナス出力端子は、電源制御装置1の内部において電気的に接続されている。 In the power supply control device 1, the plus input terminal and the plus output terminal are connected via a relay switch 11. Further, the negative input terminal and the negative output terminal are electrically connected inside the power supply control device 1.
 リレースイッチ11は、後述する演算部14から入力される制御信号に基づいて、接続状態(つまりON/OFF)が切り替わるスイッチである。リレースイッチ11の接続状態がONに設定されている場合には、プラス出力端子に車載バッテリ2の出力電圧が印加され、カーアクセサリ3に車載バッテリ2の電力が供給される。また、リレースイッチ11の接続状態がOFFに設定されている場合には、車載バッテリ2からカーアクセサリ3への電力供給が遮断される。カーアクセサリ3が請求項に記載の電子回路に相当する。 The relay switch 11 is a switch for switching a connection state (that is, ON / OFF) based on a control signal input from the calculation unit 14 described later. When the connection state of the relay switch 11 is set to ON, the output voltage of the vehicle-mounted battery 2 is applied to the plus output terminal, and the power of the vehicle-mounted battery 2 is supplied to the car accessory 3. Further, when the connection state of the relay switch 11 is set to OFF, the power supply from the in-vehicle battery 2 to the car accessory 3 is cut off. The car accessory 3 corresponds to the electronic circuit described in the claims.
 この電源制御装置1は、図1に示すようにリレースイッチ11の他に、電源回路部12、加速度センサ13、及び演算部14を備える。電源回路部12は、車載バッテリ2の出力電圧(以降、バッテリ電圧)を、電源制御装置1の作動に適した所定の作動電圧に変換する回路モジュールである。すなわち、電源回路部12は、車載バッテリ2からの電力を電源制御装置1が備える他の要素(例えば演算部14)に供給する内部電源としての役割を担う。 The power supply control device 1 includes a power supply circuit unit 12, an acceleration sensor 13, and a calculation unit 14 in addition to the relay switch 11, as shown in FIG. The power supply circuit unit 12 is a circuit module that converts the output voltage (hereinafter referred to as battery voltage) of the in-vehicle battery 2 into a predetermined operating voltage suitable for the operation of the power supply control device 1. That is, the power supply circuit unit 12 plays a role as an internal power supply that supplies power from the in-vehicle battery 2 to other elements (for example, the calculation unit 14) included in the power supply control device 1.
 加速度センサ13は、電源制御装置1に作用する加速度を検出する周知のセンサである。加速度センサ13としては、例えば互いに直交する3つの軸方向毎の加速度を検出する3軸加速度センサを採用することができる。本実施形態では一例として、加速度センサ13はアナログ式の3軸加速度センサとする。加速度センサ13は、3つの検出軸のそれぞれに対応する3つの出力端子を備えており、3つの出力端子のそれぞれから、その出力端子に対応する軸方向に作用する加速度を示す電圧信号が、演算部14に入力される。 The acceleration sensor 13 is a known sensor that detects acceleration acting on the power supply control device 1. As the acceleration sensor 13, for example, a three-axis acceleration sensor that detects acceleration in each of three axial directions orthogonal to each other can be employed. In the present embodiment, as an example, the acceleration sensor 13 is an analog three-axis acceleration sensor. The acceleration sensor 13 includes three output terminals corresponding to the three detection axes, and a voltage signal indicating acceleration acting in the axial direction corresponding to the output terminal is calculated from each of the three output terminals. Input to the unit 14.
 なお、電源制御装置1は車両で用いられるため、電源制御装置1には車両の挙動に応じた加速度が作用する。具体的には、車両が走行している場合には、路面の凹凸に起因する上下方向の加速度や、加減速操作に応じた水平方向の加速度が電源制御装置1に作用する。また、車両が旋回している場合には、遠心力が電源制御装置1に作用する。車両が駆動源としてエンジンを備える車両である場合には、エンジンの振動に由来する加速度が作用する。 In addition, since the power supply control device 1 is used in a vehicle, acceleration corresponding to the behavior of the vehicle acts on the power supply control device 1. Specifically, when the vehicle is traveling, vertical acceleration due to road surface unevenness and horizontal acceleration according to acceleration / deceleration operations act on the power supply control device 1. Further, when the vehicle is turning, centrifugal force acts on the power supply control device 1. When the vehicle is a vehicle including an engine as a drive source, acceleration derived from engine vibrations acts.
 このように車両が道路上を走行している場合には、加速度センサ13は、重力以外の成分を検出する。つまり、加速度センサ13の出力信号は車両の走行が走行しているか否かの指標として機能する。よって、加速度センサ13は請求項に記載のセンサに相当する。 When the vehicle is traveling on the road in this way, the acceleration sensor 13 detects components other than gravity. That is, the output signal of the acceleration sensor 13 functions as an indicator of whether or not the vehicle is traveling. Therefore, the acceleration sensor 13 corresponds to the sensor described in the claims.
 便宜上以降では、路面の凹凸に起因して車体に作用する加速度のことを、地面振動成分と称する。また、エンジンの駆動によって車体に作用する加速度のことを、エンジン振動成分と称する。地面振動成分は、凹凸が多い道路や、橋の上などを車両が走行している場合には、相対的に大きくなる。 For convenience, the acceleration acting on the vehicle body due to road surface unevenness will be referred to as a ground vibration component. The acceleration acting on the vehicle body by driving the engine is referred to as an engine vibration component. The ground vibration component becomes relatively large when the vehicle is traveling on a road with many irregularities or on a bridge.
 演算部14は、加速度センサ13の出力信号に基づいて車両が走行を開始したか否か、及び、駐車されたか否かを判定し、その判定結果に応じてリレースイッチ11のON/OFFを切り替える構成要素である。演算部14は、CPU141、ROM142、RAM143、及び図示しない入出力回路などを用いて実現されている。 The calculation unit 14 determines whether or not the vehicle has started running based on the output signal of the acceleration sensor 13 and whether or not the vehicle is parked, and switches the relay switch 11 on and off according to the determination result. It is a component. The calculation unit 14 is realized using a CPU 141, a ROM 142, a RAM 143, an input / output circuit (not shown), and the like.
 ROM142は不揮発性の記憶媒体であり、RAM143は揮発性の記憶媒体である。ROM142には、通常のコンピュータを本実施形態における演算部14として機能させるためのプログラム(以降、電源制御プログラム)が格納されている。演算部14は、CPU141が電源制御プログラムを実行することによって、後述する種々の機能を発現させる。 The ROM 142 is a non-volatile storage medium, and the RAM 143 is a volatile storage medium. The ROM 142 stores a program (hereinafter referred to as a power control program) for causing a normal computer to function as the calculation unit 14 in the present embodiment. The computing unit 14 causes various functions to be described later to be expressed by the CPU 141 executing the power supply control program.
 なお、電源制御プログラムは、非遷移的実体的記録媒体(non-transitory tangible storage medium)に格納されていればよい。CPU141が電源制御プログラムを実行することは、電源制御プログラムに対応する方法が実行されることに相当する。 Note that the power supply control program only needs to be stored in a non-transitory tangible storage medium. Executing the power control program by the CPU 141 corresponds to executing a method corresponding to the power control program.
 <演算部14の機能について>
 次に、演算部14の機能について図2を用いて説明する。ここでは一例として、演算部14は、地面振動成分の有無に応じて車両が走行を開始したか否か、及び、駐車されたか否かを判定し、その判定結果に基づいてリレースイッチ11の接続状態を制御する態様について説明する。
<About the function of the calculation unit 14>
Next, the function of the calculating part 14 is demonstrated using FIG. Here, as an example, the calculation unit 14 determines whether or not the vehicle has started traveling and whether or not the vehicle has been parked according to the presence or absence of a ground vibration component, and the connection of the relay switch 11 is determined based on the determination result. A mode for controlling the state will be described.
 演算部14は、上記制御を実現するための機能ブロックとして、バンドバスフィルタ(以降、BPF:Band-Pass Filter)144、検波部145、コンパレータ146、走行状態判定部F1、及びスイッチ制御部F2を備える。 The calculation unit 14 includes a band-pass filter (hereinafter referred to as BPF: Band-Pass Filter) 144, a detection unit 145, a comparator 146, a travel state determination unit F1, and a switch control unit F2 as functional blocks for realizing the above control. Prepare.
 なお、ここではバンドバスフィルタ(以降、BPF:Band-Pass Filter)144、検波部145、コンパレータ146をそれぞれ1つずつしか図示していないが、これらの部材は、加速度センサ13の出力端子毎に設けられている。以降では便宜上、加速度センサ13が備える3つの出力端子のうち、或る出力端子から出力される信号を対象として、各部材について説明する。 Here, only one band-pass filter (hereinafter referred to as BPF: Band-Pass Filter) 144, detector 145, and comparator 146 are shown, but these members are provided for each output terminal of the acceleration sensor 13. Is provided. Hereinafter, for convenience, each member will be described with respect to a signal output from a certain output terminal among the three output terminals included in the acceleration sensor 13.
 BPF144は、加速度センサ13の出力信号に含まれる地面振動成分を通過させるように設計されたフィルタ回路である。地面振動成分が存在しうる周波数の具体的な範囲(以降、地面振動周波数帯)は、試験によって特定されればよい。BPF144は、地面振動周波数帯に属する信号を通過させる一方、地面振動周波数帯以外の成分は減衰させる。BPF144の出力信号は、検波部145に入力される。BPF144が請求項に記載の振動成分抽出部に相当する。 The BPF 144 is a filter circuit designed to pass the ground vibration component included in the output signal of the acceleration sensor 13. The specific range (hereinafter referred to as the ground vibration frequency band) of the frequency where the ground vibration component can exist may be specified by the test. The BPF 144 allows signals belonging to the ground vibration frequency band to pass, while attenuating components other than the ground vibration frequency band. The output signal of the BPF 144 is input to the detection unit 145. The BPF 144 corresponds to the vibration component extraction unit described in the claims.
 図3の(A)及び(B)は、加速度センサ13の出力信号に対するBPF144の作動を概念的に表したグラフである。図3の(A)は、加速度センサ13の出力信号を表しており、(B)がBPF144の出力信号を表している。加速度センサ13の出力信号がBPF144に入力されることによって、地面振動成分のみが後段の要素である検波部145に伝達される。なお、何れのグラフも横軸は時間を表している。 3 (A) and 3 (B) are graphs conceptually showing the operation of the BPF 144 with respect to the output signal of the acceleration sensor 13. 3A shows the output signal of the acceleration sensor 13, and FIG. 3B shows the output signal of the BPF 144. When the output signal of the acceleration sensor 13 is input to the BPF 144, only the ground vibration component is transmitted to the detection unit 145 which is a subsequent element. In each graph, the horizontal axis represents time.
 検波部145は、BPF144の出力信号の包絡線成分を抽出するアナログ回路(いわゆる包絡線検波回路)である。検波部145の出力信号は、コンパレータ146に入力される。図3の(C)は、同図の(B)に示すBPF144の出力信号に対する検波部145の出力信号の推移を表している。 The detection unit 145 is an analog circuit (a so-called envelope detection circuit) that extracts an envelope component of the output signal of the BPF 144. The output signal of the detection unit 145 is input to the comparator 146. FIG. 3C shows the transition of the output signal of the detector 145 with respect to the output signal of the BPF 144 shown in FIG.
 コンパレータ146は、図3の(D)に示すように、検波部145の出力信号が所定の走行判定閾値Thα以上となっている場合にハイレベルの信号を出力する構成要素(例えば回路)である。コンパレータ146は、検波部145の出力信号が走行判定閾値Thαを下回っている場合には、ローレベルの信号を出力する。コンパレータ146がハイレベル信号を出力したということは、地面振動成分の振幅が走行判定閾値Thα以上となったことを意味する。ここで導入される走行判定閾値Thαは、車両が走行していると可能性があると判定するための閾値である。走行判定閾値Thαの具体的な値は適宜設計されればよい。 As shown in FIG. 3D, the comparator 146 is a component (for example, a circuit) that outputs a high-level signal when the output signal of the detection unit 145 is equal to or greater than a predetermined travel determination threshold Thα. . The comparator 146 outputs a low-level signal when the output signal of the detector 145 is below the travel determination threshold Thα. The fact that the comparator 146 has output a high level signal means that the amplitude of the ground vibration component is equal to or greater than the travel determination threshold Thα. The travel determination threshold Thα introduced here is a threshold for determining that there is a possibility that the vehicle is traveling. A specific value of the travel determination threshold value Thα may be designed as appropriate.
 走行状態判定部F1は、コンパレータ146から入力される信号に基づいて、車両の走行が開始されたか否か、及び、車両が駐車されているか否かを判定する機能ブロックである。走行状態判定部F1は、CPU141が上述の電源制御プログラムを実行することで実現されている。 The traveling state determination unit F1 is a functional block that determines whether or not the vehicle has started traveling and whether or not the vehicle is parked based on a signal input from the comparator 146. The traveling state determination unit F1 is realized by the CPU 141 executing the above-described power supply control program.
 なお、他の態様として走行状態判定部F1は、1つ又は複数のICなどを用いてハードウェアとして実現されても良い。また、ソフトウェアの実行とハードウェアの組み合わせによって実現されていてもよい。上述したBPF144、検波部145、コンパレータ146もまた、アナログ回路で実現しても良いし、例えばCPUでのソフトウェア処理でデジタル的に実現しても良い。 In addition, as another aspect, the traveling state determination unit F1 may be realized as hardware using one or a plurality of ICs. Further, it may be realized by a combination of execution of software and hardware. The BPF 144, the detection unit 145, and the comparator 146 described above may also be realized by an analog circuit, or may be realized digitally by software processing in a CPU, for example.
 走行状態判定部F1は、図3の(D)及び(E)に示すように、コンパレータ146の出力レベルがハイレベルとなっている状態が所定の走行判定時間Trn以上継続した場合に、車両の走行が開始されたと判定する。 As illustrated in (D) and (E) of FIG. 3, the traveling state determination unit F1 determines that the vehicle state when the state in which the output level of the comparator 146 is high continues for a predetermined traveling determination time Trn or longer. It is determined that traveling has started.
 走行状態判定部F1は、上記判定を実施するためのサブ機能として、走行判定タイマを備える。走行判定タイマは、コンパレータ146の出力信号がローレベルからハイレベルへと遷移してからの経過時間を計測するタイマである。走行判定タイマは、コンパレータ146からハイレベル信号が入力されたことをトリガとしてカウントを開始し、カウント値が走行判定時間Trnに相当する値となった場合に満了状態となる。ただし、タイマ満了となるまでにコンパレータ146の出力がローレベルとなった場合には、カウント値をリセットする。つまり、走行判定タイマは、コンパレータ146がハイレベル信号を出力されている状態が走行判定時間Trn以上継続した場合に満了となる。 The traveling state determination unit F1 includes a traveling determination timer as a sub function for performing the above determination. The travel determination timer is a timer that measures an elapsed time after the output signal of the comparator 146 transitions from a low level to a high level. The travel determination timer starts counting when a high level signal is input from the comparator 146, and is expired when the count value becomes a value corresponding to the travel determination time Trn. However, the count value is reset when the output of the comparator 146 becomes low level before the timer expires. That is, the travel determination timer expires when the state in which the comparator 146 outputs a high level signal continues for the travel determination time Trn or longer.
 走行状態判定部F1は、走行判定タイマが満了となった場合、車両の走行が開始したと判定し、走行フラグをオンに設定する。走行フラグは、処理上のフラグであり、後述する初期化処理が実行された状態(以降、初期状態)ではオフに設定されている。この走行フラグの設定状態(つまりオン/オフ)は、リレースイッチ11をONにするか否かの判定に用いられる。 When the traveling determination timer expires, the traveling state determination unit F1 determines that traveling of the vehicle has started and sets the traveling flag to ON. The travel flag is a processing flag, and is set to be off in a state in which an initialization process described later is executed (hereinafter referred to as an initial state). The travel flag setting state (that is, on / off) is used to determine whether or not to turn on the relay switch 11.
 また、走行状態判定部F1は、図4に示すように、コンパレータ146の出力がローレベルとなった状態が所定のマスク時間Tmsk継続した場合には、車両が駐車されたと判定する。これは、車両が走行中である場合には地面振動成分が観測されるはずであるためである。換言すれば、コンパレータ146の出力がローレベルとなったということは、車両が停車している可能性があることを間接的に意味しているためである。 Further, as shown in FIG. 4, the traveling state determination unit F1 determines that the vehicle is parked when the output of the comparator 146 is at a low level for a predetermined mask time Tmsk. This is because a ground vibration component should be observed when the vehicle is running. In other words, the fact that the output of the comparator 146 is at a low level indirectly means that there is a possibility that the vehicle is stopped.
 ここで導入されるマスク時間Tmskは、車両が停車された状態と駐車された状態とを切り分けるための要素である。マスク時間Tmskは、車両の停車時間として想定される時間の最大値、例えば、信号機の表示切り替え時間の想定値や、渋滞に伴う最大停車時間の想定値よりも大きい値に設計されている。マスク時間Tmskの具体的な値は適宜設計されればよい。ここでは一例として10分に設定されているものとする。 The mask time Tmsk introduced here is an element for separating the state where the vehicle is stopped and the state where the vehicle is parked. The mask time Tmsk is designed to be larger than the maximum value of the time assumed as the vehicle stop time, for example, the assumed value of the display switching time of the traffic light or the maximum value of the maximum stop time due to traffic jam. A specific value of the mask time Tmsk may be designed as appropriate. Here, it is assumed that 10 minutes is set as an example.
 なお、コンパレータ146の出力がローレベルとなった状態が所定のマスク時間Tmsk継続したか否かは、コンパレータ146の出力がローレベルとなってからの経過時間を計測するタイマ(以降、駐車判定タイマ)を用いて判定すればよい。 Whether or not the state in which the output of the comparator 146 is at a low level has continued for a predetermined mask time Tmsk is determined by a timer for measuring the elapsed time since the output of the comparator 146 has become a low level (hereinafter, a parking determination timer) ) May be used.
 駐車判定タイマは、走行フラグがオンに設定されている状態において、コンパレータ146からローレベル信号が入力されたことをトリガとしてカウントを開始し、カウント値がマスク時間Tmskに相当する値となった場合に満了状態となる。ただし、タイマ満了となるまでにコンパレータ146の出力がハイレベルとなった場合にはカウント値をリセットし、コンパレータ146の出力がローレベルとなるまで動作を停止する。駐車判定タイマが満了となった場合、走行状態判定部F1は、車両が駐車されたと判定し、走行フラグをオフに設定する。 The parking determination timer starts counting when a low level signal is input from the comparator 146 in a state where the traveling flag is set to ON, and the count value becomes a value corresponding to the mask time Tmsk. Will expire. However, when the output of the comparator 146 becomes high level before the timer expires, the count value is reset, and the operation is stopped until the output of the comparator 146 becomes low level. When the parking determination timer expires, the traveling state determination unit F1 determines that the vehicle is parked and sets the traveling flag to OFF.
 ところで、本実施形態では一例として、加速度センサ13の出力端子数(換言すれば検出軸の数)に合わせて、BPF144からコンパレータ146までの信号処理経路を3系統設けている。つまり、走行状態判定部F1には、3つのコンパレータ146のそれぞれから信号が入力される。 By the way, in this embodiment, as an example, three signal processing paths from the BPF 144 to the comparator 146 are provided in accordance with the number of output terminals of the acceleration sensor 13 (in other words, the number of detection axes). That is, a signal is input from each of the three comparators 146 to the traveling state determination unit F1.
 本実施形態のように、BPF144からコンパレータ146までの信号処理経路を3系統備える場合には、走行状態判定部F1は、上述した判定処理を、3つの入力のそれぞれに対して実行する。3つの入力の何れかが、走行フラグをオンに設定すべき条件を充足した場合には、走行フラグをオンにする。また、3つの入力の全てが走行フラグをオフにする条件を充足した場合に、走行フラグをオフにすればよい。 When the three signal processing paths from the BPF 144 to the comparator 146 are provided as in the present embodiment, the traveling state determination unit F1 executes the determination process described above for each of the three inputs. If any of the three inputs satisfies the condition for setting the travel flag to ON, the travel flag is turned ON. Moreover, what is necessary is just to turn off a travel flag, when all the three inputs satisfy the conditions which turn off a travel flag.
 スイッチ制御部F2は、走行状態判定部F1の判定結果に基づいてリレースイッチ11のON/OFFを制御する機能ブロックである。スイッチ制御部F2は、CPU141が上述の電源制御プログラムを実行することで実現されている。なお、他の態様としてスイッチ制御部F2は、走行状態判定部F1と同様に、1つ又は複数のICなどを用いて実現されても良い。 The switch control unit F2 is a functional block that controls ON / OFF of the relay switch 11 based on the determination result of the traveling state determination unit F1. The switch control unit F2 is realized by the CPU 141 executing the above-described power supply control program. As another aspect, the switch control unit F2 may be realized using one or a plurality of ICs and the like, similarly to the traveling state determination unit F1.
 スイッチ制御部F2は、走行状態判定部F1の判定結果に基づき、リレーON条件が充足されたか否かを判定する。リレーON条件は、リレースイッチ11の接続状態をOFFからONに切り替える条件である。ここでは一例として、走行状態判定部F1によって車両が走行を開始したと判定された場合、すなわち走行フラグがオンに設定された場合に、リレーON条件が充足されたと判定するものとする。 The switch control unit F2 determines whether the relay ON condition is satisfied based on the determination result of the traveling state determination unit F1. The relay ON condition is a condition for switching the connection state of the relay switch 11 from OFF to ON. Here, as an example, it is determined that the relay ON condition is satisfied when the traveling state determination unit F1 determines that the vehicle has started traveling, that is, when the traveling flag is set to ON.
 スイッチ制御部F2は、リレーON条件が充足されたと判定した場合、リレースイッチ11に対して、接続状態をOFFからONに切り替える制御信号(以降、ON信号)を出力する。リレースイッチ11はON信号が入力された場合、ON状態へと切り替わる。 When it is determined that the relay ON condition is satisfied, the switch control unit F2 outputs a control signal (hereinafter, an ON signal) for switching the connection state from OFF to ON to the relay switch 11. The relay switch 11 is switched to an ON state when an ON signal is input.
 また、スイッチ制御部F2は、走行状態判定部F1の判定結果に基づき、リレーOFF条件が充足されたか否かを判定する。リレーOFF条件は、リレースイッチ11の接続状態をONからOFFに切り替える条件である。ここでは一例として、走行状態判定部F1によって車両が駐車されたと判定された場合、すなわち走行フラグがオフに設定された場合に、リレーOFF条件が充足されたと判定するものとする。 Further, the switch control unit F2 determines whether or not the relay OFF condition is satisfied based on the determination result of the traveling state determination unit F1. The relay OFF condition is a condition for switching the connection state of the relay switch 11 from ON to OFF. Here, as an example, when it is determined that the vehicle is parked by the traveling state determination unit F1, that is, when the traveling flag is set to OFF, it is determined that the relay OFF condition is satisfied.
 スイッチ制御部F2は、リレーOFF条件が充足されたと判定した場合、リレースイッチ11に対して、接続状態をONからOFFに切り替える制御信号(以降、OFF信号)を出力する。リレースイッチ11はOFF信号が入力された場合、OFF状態へと切り替わる。 When it is determined that the relay OFF condition is satisfied, the switch control unit F2 outputs a control signal (hereinafter referred to as an OFF signal) for switching the connection state from ON to OFF to the relay switch 11. The relay switch 11 is switched to an OFF state when an OFF signal is input.
 図5は、電源制御装置1の作動態様を概略的に表したフローチャートである。図5に示すフローチャートは、電源制御装置1が車載バッテリ2に接続されて、演算部14に電力が供給されたときに開始されればよい。 FIG. 5 is a flowchart schematically showing an operation mode of the power supply control device 1. The flowchart shown in FIG. 5 may be started when the power supply control device 1 is connected to the in-vehicle battery 2 and power is supplied to the calculation unit 14.
 まずステップS1では、電源制御装置1の図示しないオペレーティングシステム (以降、OS:Operating System)が初期化処理を実行してステップS2に移る。初期化処理では、RAM143のチェックや、ROM142に格納されたプログラムの読み込み、種々の演算用のパラメータの初期設定値の読み出しなどを実施する。初期化処理が完了するとステップS2に移る。 First, in step S1, an operating system (not shown) of the power supply control device 1 (hereinafter referred to as OS: Operating System) executes an initialization process and proceeds to step S2. In the initialization process, the RAM 143 is checked, the program stored in the ROM 142 is read, the initial setting values of various calculation parameters are read, and the like. When the initialization process is completed, the process proceeds to step S2.
 ステップS2ではスイッチ制御部F2が、走行状態判定部F1の判定結果に基づいて、リレーON条件が充足されたか否かを判定する。リレーON条件が充足されたと判定した場合には、ステップS2が肯定判定されてステップS3に移る。ステップS3ではスイッチ制御部F2が、リレースイッチ11にON信号を出力してステップS4に移る。ステップS3が実行されることによってリレースイッチ11がON状態になり、カーアクセサリ3に対して車載バッテリ2の電力が供給されるようになる。 In step S2, the switch control unit F2 determines whether or not the relay ON condition is satisfied based on the determination result of the traveling state determination unit F1. If it is determined that the relay ON condition is satisfied, an affirmative determination is made in step S2 and the process proceeds to step S3. In step S3, the switch controller F2 outputs an ON signal to the relay switch 11 and proceeds to step S4. By executing step S3, the relay switch 11 is turned on, and the power of the in-vehicle battery 2 is supplied to the car accessory 3.
 一方、リレーON条件が充足されていない場合には、ステップS2が否定判定されてステップS2に戻る。つまり、リレーON条件が充足されることを待機した状態となる。なお、ステップS2を繰り返し実行している途中で電源制御装置1への電力供給が遮断された場合には本フローは終了する。 On the other hand, if the relay ON condition is not satisfied, a negative determination is made in step S2 and the process returns to step S2. That is, it becomes a state waiting for the relay ON condition to be satisfied. Note that this flow ends when the power supply to the power supply control device 1 is interrupted during the repeated execution of step S2.
 ステップS4ではスイッチ制御部F2が、走行状態判定部F1の判定結果に基づいて、リレーOFF条件が充足されたか否かを判定する。リレーOFF条件が充足されたと判定した場合には、ステップS4が肯定判定されてステップS5に移る。ステップS5では、リレースイッチ11にOFF信号を出力してステップS6に移る。ステップS5が実行されることによってリレースイッチ11がOFF状態になり、カーアクセサリ3への電力供給が遮断される。 In step S4, the switch control unit F2 determines whether or not the relay OFF condition is satisfied based on the determination result of the traveling state determination unit F1. If it is determined that the relay OFF condition is satisfied, the determination in step S4 is affirmative and the process proceeds to step S5. In step S5, an OFF signal is output to the relay switch 11, and the process proceeds to step S6. By executing step S5, the relay switch 11 is turned off, and the power supply to the car accessory 3 is cut off.
 一方、リレーOFF条件が充足されていない場合には、ステップS4が否定判定されてステップS4に戻る。つまり、リレーOFF条件が充足されることを待機した状態となる。なお、ステップS4を繰り返し実行している途中で電源制御装置1への電力供給が遮断された場合には本フローは終了する。 On the other hand, if the relay OFF condition is not satisfied, a negative determination is made in step S4 and the process returns to step S4. That is, it will be in the state which waited for the relay OFF conditions to be satisfied. If the power supply to the power supply control device 1 is interrupted during the repeated execution of step S4, this flow ends.
 ステップS6ではOSが、電源が遮断されたか否かを判定する。電源が遮断されたか否かは、電源回路部12に入力される電圧レベルに基づいて判定すればよい。例えば、電源回路部12に入力される電圧レベルが所定の閾値以下となった場合に、電源が遮断されたと判定する。なお、電源が遮断される場合とは、例えば、電源制御装置1が車載バッテリ2から取り外された場合などである。電源が遮断されていない場合には、ステップS1に戻る。一方、電源が遮断された場合には、本フローを終了する。 In step S6, the OS determines whether or not the power is shut off. Whether or not the power is shut off may be determined based on the voltage level input to the power supply circuit unit 12. For example, when the voltage level input to the power supply circuit unit 12 is equal to or lower than a predetermined threshold, it is determined that the power supply is shut off. In addition, the case where a power supply is interrupted | blocked is the case where the power supply control apparatus 1 is removed from the vehicle-mounted battery 2, for example. If the power is not shut off, the process returns to step S1. On the other hand, when the power is cut off, this flow is terminated.
 以上の構成では、電源制御装置1に内蔵されている加速度センサ13の出力信号に基づいて車両の走行が開始されたか否か、及び、車両が駐車されたか否かを判定する。そして、車両の走行が開始されたと判定してから、駐車されたと判定するまでは、リレースイッチ11をONにする。また、車両が駐車されたと判定した場合にはリレースイッチ11をOFFにする。 In the above configuration, it is determined whether the vehicle has started running and whether the vehicle has been parked based on the output signal of the acceleration sensor 13 incorporated in the power supply control device 1. Then, the relay switch 11 is turned on until it is determined that the vehicle is parked after it is determined that the vehicle has started running. If it is determined that the vehicle is parked, the relay switch 11 is turned off.
 さらに、車両の走行が開始されたか否か、及び、車両が駐車されたか否かを判定することは、車両がユーザによって使用されている状態であるか否か(つまり車両の使用状態)を判定することに相当する。すなわち、以上の構成によれば、電源制御装置1に内蔵されている加速度センサ13の出力信号に基づいて車両の使用状態を判定することができ、車両の使用状態に応じたカーアクセサリ3への電源制御を実現することができる。 Further, determining whether or not the vehicle has started running and whether or not the vehicle has been parked determine whether or not the vehicle is being used by the user (that is, the usage state of the vehicle). It corresponds to doing. That is, according to the above configuration, the use state of the vehicle can be determined based on the output signal of the acceleration sensor 13 built in the power supply control device 1, and the car accessory 3 corresponding to the use state of the vehicle can be determined. Power control can be realized.
 また、上記構成では車両の使用状態の判定に、IGラインやACCラインの信号を用いない。したがって、電源制御装置1はバッテリーライン(いわゆるBライン)とのみ接続すればよく、車両のIGラインやACCラインと配線接続する必要はない。 In the above configuration, the IG line and ACC line signals are not used to determine the usage state of the vehicle. Therefore, the power supply control device 1 need only be connected to the battery line (so-called B line), and does not need to be connected to the IG line or ACC line of the vehicle.
 さらに、以上の構成では、車両の使用状態を判定する上で、バッテリ電圧に生じるノイズの有無を使用しない。故に、上記構成によれば、電気自動車やハイブリッド車などといったオルタネータノイズがバッテリ電圧に重畳しない車両や、オルタリップルが小さなエンジン車においても、車両の使用状態に応じた電力の供給制御を実現することができる。 Furthermore, in the above configuration, the presence or absence of noise generated in the battery voltage is not used in determining the usage state of the vehicle. Therefore, according to the above configuration, it is possible to realize power supply control in accordance with the use state of the vehicle even in a vehicle in which alternator noise is not superimposed on the battery voltage, such as an electric vehicle or a hybrid vehicle, or in an engine vehicle having a small alternator ripple. Can do.
 さらに、上記構成では、車両の使用状態を判定する上で車両側コンピュータとの通信状況を利用しない。つまり、電源制御装置1を車両側コンピュータと通信させるために、車載ネットワークに接続させる必要もない。つまり、車載ネットワークへの接続を必要とせずに、車両の使用状態に応じた適切な電源制御が可能となる。 Furthermore, in the above configuration, the communication status with the vehicle-side computer is not used in determining the usage state of the vehicle. That is, it is not necessary to connect the power supply control device 1 to the vehicle-mounted network in order to communicate with the vehicle-side computer. That is, appropriate power control according to the use state of the vehicle is possible without requiring connection to the in-vehicle network.
 以上、本開示の実施形態を説明したが、本開示は上述の実施形態に限定されるものではなく、以降で述べる種々の変形例も本開示の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。例えば、複数の変形例を組み合わせて実施することもできる。 The embodiments of the present disclosure have been described above. However, the present disclosure is not limited to the above-described embodiments, and various modifications described below are also included in the technical scope of the present disclosure. However, various modifications can be made without departing from the scope of the invention. For example, a plurality of modified examples can be combined.
 なお、前述の実施形態で述べた部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。また、構成の一部のみに言及している場合、他の部分については先に説明した実施形態の構成を適用することができる。 In addition, about the member which has the same function as the member described in the above-mentioned embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted. In addition, when only a part of the configuration is mentioned, the configuration of the above-described embodiment can be applied to the other portions.
 [変形例1]
 前述の実施形態では、BPF144とコンパレータ146の間に、包絡線検波を行う検波部145を設けた態様を開示したが、これに限らない。例えば図6に示すように、検波部145を備えていない構成を採用しても良い。
[Modification 1]
In the above-described embodiment, the aspect in which the detection unit 145 that performs envelope detection is provided between the BPF 144 and the comparator 146 is disclosed, but the present invention is not limited thereto. For example, as illustrated in FIG. 6, a configuration that does not include the detection unit 145 may be employed.
 ただし、その場合には、図7に示すようにコンパレータ146の出力レベルが、BPF144の出力に応じてパルス状に変動しうる。そのため、走行状態判定部F1は、車両の走行が開始されたか否かを判定するためのサブ機能として、走行判定タイマと、リセットタイマを備える。 However, in that case, the output level of the comparator 146 may fluctuate in a pulse shape according to the output of the BPF 144 as shown in FIG. Therefore, the traveling state determination unit F1 includes a traveling determination timer and a reset timer as sub-functions for determining whether the vehicle has started traveling.
 走行判定タイマは、前述の実施形態と同様に、コンパレータ146がハイレベル信号を出力し始めてからの経過時間を計測するタイマである。ただし、走行判定タイマは、コンパレータ146の出力がローレベルになってもすぐにはリセットされない。走行判定タイマは、リセットタイマが満了状態になった場合に、リセットされる。 The traveling determination timer is a timer that measures an elapsed time after the comparator 146 starts outputting a high level signal, as in the above-described embodiment. However, the traveling determination timer is not reset immediately even when the output of the comparator 146 becomes low level. The travel determination timer is reset when the reset timer has expired.
 リセットタイマは、走行判定タイマが起動している状態においてコンパレータ146の出力がローレベルとなっている状態が継続している時間Tlwを計測するタイマである。リセットタイマは、走行判定タイマが起動している状態においてコンパレータ146の出力がローレベルとなった場合にカウントを開始する。そして、ローレベルが継続している時間Tlwを示すカウント値が、所定のローレベル許容時間Tlmtに相当する値となった場合に満了状態となる。つまり、本変形例1における走行判定タイマは、コンパレータ146の出力がローレベルとなっている状態が、所定のローレベル許容時間継続した場合にリセットされる。 The reset timer is a timer that measures a time Tlw during which the output of the comparator 146 is at a low level while the running determination timer is activated. The reset timer starts counting when the output of the comparator 146 becomes a low level in a state where the running determination timer is activated. Then, when the count value indicating the time Tlw during which the low level continues is a value corresponding to a predetermined low level allowable time Tlmt, the expiration state is reached. That is, the travel determination timer in the first modification is reset when the state in which the output of the comparator 146 is at the low level continues for a predetermined low level allowable time.
 ここで導入されるローレベル許容時間Tlmtは、コンパレータ146の出力がパルス状に変動する構成において、前述の実施形態と同様に加速度センサ13の出力から走行が開始されたか否かを判定するためのパラメータである。ローレベル許容時間Tlmtの具体的な値は、地面振動周波数帯の中心周波数や、上限周波数、下限周波数等に応じて決定されれば良い。例えばローレベル許容時間は、地面振動周波数帯の中心周波数の逆数を2倍した値とすればよい。また他の態様としてローレベル許容時間Tlmtは、地面振動周波数帯の下限周波数の逆数としてもよい。 The low level allowable time Tlmt introduced here is used to determine whether or not traveling is started from the output of the acceleration sensor 13 in the configuration in which the output of the comparator 146 fluctuates in a pulse shape, as in the above-described embodiment. It is a parameter. The specific value of the low level allowable time Tlmt may be determined according to the center frequency of the ground vibration frequency band, the upper limit frequency, the lower limit frequency, or the like. For example, the low level allowable time may be a value obtained by doubling the reciprocal of the center frequency of the ground vibration frequency band. As another aspect, the low level allowable time Tlmt may be the reciprocal of the lower limit frequency of the ground vibration frequency band.
 なお、車両が駐車されたか否かは、前述の実施形態と同様の判定ロジックを採用すればよい。車両が駐車されている場合には、コンパレータ146の出力は振動せずにローレベルで安定するはずであるためである。このような構成によっても前述の実施形態と同様の効果を奏する。また、検波部145を省略する分、電源制御装置1の構成を簡略化することができる。 Note that whether or not the vehicle is parked may be determined using the same determination logic as that of the above-described embodiment. This is because, when the vehicle is parked, the output of the comparator 146 should be stable at a low level without vibrating. Even with such a configuration, the same effects as those of the above-described embodiment can be obtained. Further, the configuration of the power supply control device 1 can be simplified by omitting the detection unit 145.
 [変形例2]
 上述した実施形態及び変形例1では、地面振動成分の有無によって、車両が走行を開始したか否か、及び、車両が駐車されたか否かを判定する態様を開示したが、これに限らない。例えば、エンジン振動成分の有無によって、種々の状態を判定しても良い。その場合には、BPF144を加速度センサ13の出力信号に含まれるエンジン振動成分を通過させるように設計すればよい。
[Modification 2]
In the above-described embodiment and the first modification, the aspect of determining whether the vehicle has started traveling and whether the vehicle has been parked based on the presence or absence of the ground vibration component has been disclosed, but the present invention is not limited thereto. For example, various states may be determined based on the presence or absence of engine vibration components. In that case, the BPF 144 may be designed to pass the engine vibration component included in the output signal of the acceleration sensor 13.
 エンジン振動成分が存在しうる周波数の範囲(以降、エンジン振動周波数帯)は、実試験やシミュレーションによって特定されればよい。例えば、エンジンの回転速度の分布範囲に応じて決定されれば良い。仮にエンジンの回転速度の主たる分布範囲を1000rpmから5000rpmまでと想定する場合には、17~84Hzの成分を通過するようにBPF144を設計すれば良い。 The frequency range in which engine vibration components can exist (hereinafter referred to as engine vibration frequency band) may be specified by actual tests or simulations. For example, it may be determined according to the distribution range of the rotational speed of the engine. If it is assumed that the main distribution range of the engine rotational speed is from 1000 rpm to 5000 rpm, the BPF 144 may be designed to pass a component of 17 to 84 Hz.
 BPF144は、エンジン振動周波数帯と地面振動周波数帯の両方を通過させるように設計されていても良い。そのような構成によれば、地面振動成分とエンジン振動成分の両方に基づいて、車両が走行を開始したか否か、及び、車両が駐車されたか否かを判定することができる。便宜上、エンジン振動成分と地面振動成分を合わせた成分を、車体振動成分と称する。 The BPF 144 may be designed to pass both the engine vibration frequency band and the ground vibration frequency band. According to such a configuration, it is possible to determine whether the vehicle has started running and whether the vehicle has been parked based on both the ground vibration component and the engine vibration component. For convenience, a component that combines the engine vibration component and the ground vibration component is referred to as a vehicle body vibration component.
 [変形例3]
 走行状態判定部F1は、加速度センサ13の出力信号に含まれる、車両の加減速操作に由来する成分を用いて、車両が走行を開始したか否か、及び、車両が駐車されたか否かを判定してもよい。その場合には図8に示すように、加速度センサ13の出力信号を、ローパスフィルタ(以降、LPF:Low-Pass Filter)147を介してコンパレータ148に入力すれば良い。
[Modification 3]
The traveling state determination unit F1 uses the component derived from the acceleration / deceleration operation of the vehicle included in the output signal of the acceleration sensor 13 to determine whether the vehicle has started traveling and whether the vehicle has been parked. You may judge. In that case, as shown in FIG. 8, the output signal of the acceleration sensor 13 may be input to the comparator 148 via a low-pass filter (hereinafter, LPF: Low-Pass Filter) 147.
 なお、ここでは車両の加減速操作は、ドライバとしてのユーザによって実施される態様を想定して説明するが、これに限らない。車両の加減速操作は、自動運転機能を提供する電子制御装置によって実施されてもよい。つまり、ドライバは電子制御装置であってもよい。 In addition, although the acceleration / deceleration operation of a vehicle is demonstrated supposing the aspect implemented by the user as a driver here, it is not restricted to this. The acceleration / deceleration operation of the vehicle may be performed by an electronic control device that provides an automatic driving function. That is, the driver may be an electronic control device.
 また、以降では、上述した走行判定時間Trn、マスク時間Tmskを後述する種々のパラメータと区別するため、第1走行判定時間Trn1、第1マスク時間Tmsk1と記載する。 In the following, the travel determination time Trn and the mask time Tmsk described above are referred to as a first travel determination time Trn1 and a first mask time Tmsk1 in order to distinguish them from various parameters described later.
 本変形例3で導入されるLPF147は、所定の遮断周波数より低い周波数の成分については通過させる一方、遮断周波数より高い周波数の成分を逓減させるフィルタである。LPF147は、ユーザの加減速操作に由来する成分(以降、加減速操作成分)が分布しうる周波数帯の信号を通過させる一方、エンジン振動成分や地面振動成分は通過させないように構成されている。LPF147が請求項に記載の加減速操作成分抽出部に相当する。 The LPF 147 introduced in the third modification is a filter that allows a component having a frequency lower than a predetermined cutoff frequency to pass therethrough while decreasing a component having a frequency higher than the cutoff frequency. The LPF 147 is configured to pass a signal in a frequency band in which a component (hereinafter referred to as an acceleration / deceleration operation component) derived from the user's acceleration / deceleration operation can be distributed, but not an engine vibration component or a ground vibration component. The LPF 147 corresponds to the acceleration / deceleration operation component extraction unit described in the claims.
 加速度センサ13の出力信号において加減速操作成分が分布しうる周波数の範囲(以降、加減速周波数帯)は試験等によって特定されればよい。なお、一般的なユーザは、あまり頻繁には急な加減速操作を実施しないと想定される。急な加減速操作を除けば、アクセル操作やブレーキ操作によって生じる加速度成分は、高くても数Hzまでに分布する。そのため、ここでは一例としてLPF147は、3Hzまでの信号が通過するように(換言すれば遮断周波数が3Hzとなるように)構成されているものとする。 The frequency range (hereinafter referred to as the acceleration / deceleration frequency band) in which the acceleration / deceleration operation component can be distributed in the output signal of the acceleration sensor 13 may be specified by a test or the like. In addition, it is assumed that a general user does not perform sudden acceleration / deceleration operation very frequently. Except for a sudden acceleration / deceleration operation, acceleration components generated by the accelerator operation and the brake operation are distributed up to several Hz at most. Therefore, here, as an example, the LPF 147 is configured to pass a signal up to 3 Hz (in other words, the cutoff frequency is 3 Hz).
 LPF147の出力信号は、コンパレータ148に入力されて、所定の加減速判定閾値Thβと比較される。コンパレータ148は、LPF147の出力信号が所定の加減速判定閾値Thβ以上となっている場合にハイレベルの信号を出力する構成要素である。コンパレータ148は、LPF147の出力信号が加減速判定閾値Thβを下回っている場合には、ローレベルの信号を出力する。コンパレータ146の出力がハイレベルであるということは、ユーザが加減速操作を実施していることを意味する。加減速判定閾値Thβの具体的な値は適宜設計されればよい。 The output signal of the LPF 147 is input to the comparator 148 and compared with a predetermined acceleration / deceleration determination threshold Thβ. The comparator 148 is a component that outputs a high-level signal when the output signal of the LPF 147 is equal to or greater than a predetermined acceleration / deceleration determination threshold Thβ. The comparator 148 outputs a low level signal when the output signal of the LPF 147 is below the acceleration / deceleration determination threshold Thβ. That the output of the comparator 146 is at a high level means that the user is performing an acceleration / deceleration operation. A specific value of the acceleration / deceleration determination threshold Thβ may be appropriately designed.
 そして、走行状態判定部F1は、図9に示すように、コンパレータ148がハイレベル信号を出力している状態が所定の第2走行判定時間Trn2以上継続した場合に、車両の走行が開始されたと判定し、走行フラグをオフからオンに設定する。 Then, as shown in FIG. 9, the traveling state determination unit F1 determines that the vehicle has started traveling when the state in which the comparator 148 outputs a high level signal continues for a predetermined second traveling determination time Trn2. Determine and set the running flag from off to on.
 また、図10に示すように、コンパレータ148がローレベル信号を出力している状態が所定の第2マスク時間Tmsk2以上継続した場合に、車両が駐車されたと判定し、走行フラグをオフに設定する。種々の経過時間は、実施形態で述べた方法と同様の方法で計測されれば良い。 Further, as shown in FIG. 10, when the state in which the comparator 148 outputs a low level signal continues for a predetermined second mask time Tmsk2 or more, it is determined that the vehicle is parked and the travel flag is set to OFF. . Various elapsed times may be measured by a method similar to the method described in the embodiment.
 以上の構成によっても上述した実施形態や、種々の変形例と同様の効果を奏する。なお、エンジン振動や地面振動は走行中定常的に発生しうるが、走行開始に伴う加減速操作は、所定の速度まで到達した以降においては観測されない可能性がある。そのため、第2走行判定時間Trn2は第1走行判定時間Trn1と同程度か、第1走行判定時間Trn1以下の値に設定されることが好ましい。例えば第2走行判定時間Trn2は、3秒や5秒などに設定されることが好ましい。 Even with the above configuration, the same effects as those of the above-described embodiment and various modifications can be obtained. Although engine vibration and ground vibration can occur constantly during traveling, the acceleration / deceleration operation associated with the start of traveling may not be observed after reaching a predetermined speed. Therefore, it is preferable that the second travel determination time Trn2 is set to a value that is approximately the same as the first travel determination time Trn1 or less than the first travel determination time Trn1. For example, the second travel determination time Trn2 is preferably set to 3 seconds or 5 seconds.
 同様の理由によって、第2マスク時間Tmsk2もまた、第1マスク時間Tmsk1よりも長い値に設定されていることが好ましい。例えば第2マスク時間Tmsk2は5分~30分程度の値に設定されていることが好ましい。第2マスク時間Tmsk2を相対的に長い値に設定することによって、車両が定速走行中であるにも関わらず、誤ってリレースイッチ11をOFFにする恐れを低減することができる。なお、第1マスク時間Tmsk1についても同様に、長ければ長いほど、車両が使用中であるにも関わらず誤ってリレースイッチ11をOFFにしてしまう恐れを低減することができる。 For the same reason, it is preferable that the second mask time Tmsk2 is also set to a value longer than the first mask time Tmsk1. For example, the second mask time Tmsk2 is preferably set to a value of about 5 minutes to 30 minutes. By setting the second mask time Tmsk2 to a relatively long value, it is possible to reduce a possibility that the relay switch 11 is erroneously turned off even when the vehicle is traveling at a constant speed. Similarly, the longer the first mask time Tmsk1, the lower the possibility that the relay switch 11 is erroneously turned off even though the vehicle is in use.
 ただし、種々のマスク時間を長く設定すればするほど、カーアクセサリへの電力供給を維持した状態が継続されるため、車載バッテリ2の残電力がなくなりやすくなってしまう。すなわち、種々のマスク時間を長く設定すればするほど、カーアクセサリ3が車載バッテリ2の電力を消費する量を抑制することが出来る。なお、車載バッテリ2の残電力がなくなった状態は、いわゆるバッテリ上がりとなった状態に相当する。 However, the longer the various mask times are set, the longer the state in which the power supply to the car accessory is maintained, so that the remaining power of the in-vehicle battery 2 tends to disappear. That is, the longer the various mask times are set, the more the amount of power consumed by the car accessory 3 can be reduced. In addition, the state in which the remaining power of the in-vehicle battery 2 is eliminated corresponds to a state in which the battery is exhausted.
 [変形例4]
 走行状態判定部F1が車両の走行が開始されたと判定する条件は、適宜設計されればよい。例えば、車体振動成分に対して設定されている走行判定条件が充足され、かつ、加減速操作成分に対して設定されている走行判定条件を充足された場合に、車両の走行が開始されたと判定してもよい。
[Modification 4]
The conditions for determining that the traveling state determination unit F1 has started traveling of the vehicle may be designed as appropriate. For example, it is determined that the vehicle has started to travel when the travel determination condition set for the vehicle body vibration component is satisfied and the travel determination condition set for the acceleration / deceleration operation component is satisfied. May be.
 車体振動成分に対して設定されている走行判定条件とは、コンパレータ146からハイレベル信号が第1走行判定時間Trn1以上継続して出力されていることである。加減速操作成分に対して設定されている走行判定条件とは、コンパレータ148からハイレベル信号が第2走行判定時間Trn2以上継続して出力されていることである。 The traveling determination condition set for the vehicle body vibration component is that a high level signal is continuously output from the comparator 146 for the first traveling determination time Trn1 or more. The traveling determination condition set for the acceleration / deceleration operation component is that the high level signal is continuously output from the comparator 148 for the second traveling determination time Trn2.
 また、他の態様として、車体振動成分に対して設定されている走行判定条件が充足されるか、又は、加減速操作成分に対して設定されている走行判定条件を充足された場合に、車両の走行が開始されたと判定してもよい。 Further, as another aspect, when the travel determination condition set for the vehicle body vibration component is satisfied or the travel determination condition set for the acceleration / deceleration operation component is satisfied, the vehicle It may be determined that the running has started.
 [変形例5]
 車両が駐車されたと走行状態判定部F1が判定する条件もまた、適宜設計されればよい。例えば、車体振動成分に対して設定されている駐車判定条件が充足され、かつ、加減速操作成分に対して設定されている駐車判定条件を充足された場合に、車両が駐車されたと判定してもよい。
[Modification 5]
The conditions that the traveling state determination unit F1 determines that the vehicle is parked may be appropriately designed. For example, when the parking determination condition set for the vehicle body vibration component is satisfied and the parking determination condition set for the acceleration / deceleration operation component is satisfied, it is determined that the vehicle is parked. Also good.
 車体振動成分に対して設定されている駐車判定条件とは、コンパレータ146からローレベル信号が第1マスク時間Tmsk1以上継続して出力されていることである。加減速操作成分に対して設定されている駐車判定条件とは、コンパレータ148からローレベル信号が第2マスク時間Tmsk2以上継続して出力されていることである。 The parking determination condition set for the vehicle body vibration component is that the low level signal is continuously output from the comparator 146 for the first mask time Tmsk1 or more. The parking determination condition set for the acceleration / deceleration operation component is that a low level signal is continuously output from the comparator 148 for the second mask time Tmsk2 or more.
 また、他の態様として、車体振動成分に対して設定されている駐車判定条件が充足されるか、又は、加減速操作成分に対して設定されている駐車判定条件を充足された場合に、車両が駐車されたと判定してもよい。 Further, as another aspect, when the parking determination condition set for the vehicle body vibration component is satisfied or the parking determination condition set for the acceleration / deceleration operation component is satisfied, the vehicle May be determined to be parked.
 [変形例6]
 電源制御装置1がオルタネータを備える車両で用いられることを前提とする場合、電源制御装置1はオルタネータの作動に由来するノイズ(以降、オルタノイズ)の有無と、走行状態判定部F1の判定結果とを併用して、リレースイッチ11のON/OFFを制御しても良い。そのような態様を変形例6として以下に示す。
[Modification 6]
When it is assumed that the power supply control device 1 is used in a vehicle equipped with an alternator, the power supply control device 1 has the presence or absence of noise (hereinafter referred to as alternator noise) resulting from the operation of the alternator, and the determination result of the traveling state determination unit F1 May be used together to control ON / OFF of the relay switch 11. Such an aspect is shown below as Modification 6.
 変形例6における電源制御装置1は、図11に示すように、バッテリ電圧に重畳しているノイズを検出するノイズ検出部F3を備える。このノイズ検出部F3は、オルタネータの駆動に伴う電圧変動をノイズとして検出する。なお、ノイズ検出部F3はオルタノイズに加えて、エンジンの始動時に発生する電圧降下や、他の車載機器への電力供給開始に伴う電圧降下などもノイズとして検出するように構成されていても良い。 As shown in FIG. 11, the power supply control device 1 in Modification 6 includes a noise detection unit F3 that detects noise superimposed on the battery voltage. The noise detector F3 detects voltage fluctuations accompanying the drive of the alternator as noise. In addition to the alternator noise, the noise detection unit F3 may be configured to detect a voltage drop that occurs when the engine starts or a voltage drop that accompanies the start of power supply to other in-vehicle devices as noise. .
 オルタノイズを検出するための構成は、周知の構成を適用することができる。ここでは一例としてノイズ検出部F3は、特許文献1に開示の構成によって実現されているものとする。ノイズ検出部F3は、バッテリ電圧にノイズが含まれていることを検出した場合には、ノイズを検出したことを示す信号(以降、ノイズ検出信号)を演算部14に出力する。 A well-known configuration can be applied to the configuration for detecting alternator noise. Here, as an example, it is assumed that the noise detection unit F3 is realized by the configuration disclosed in Patent Document 1. When the noise detection unit F3 detects that the battery voltage includes noise, the noise detection unit F3 outputs a signal (hereinafter referred to as a noise detection signal) indicating that the noise is detected to the calculation unit 14.
 なお、ノイズ検出部F3は、所定の検出周期でノイズの有無を判定し、ノイズを検出する度にノイズ検出信号を出力する。また、オルタネータが駆動している場合にはバッテリ電圧には定常的にノイズが重畳する。そのため、オルタネータが駆動している場合、ノイズ検出部F3は検出周期毎にノイズ検出信号を演算部14に出力することが期待される。 The noise detection unit F3 determines the presence or absence of noise at a predetermined detection cycle, and outputs a noise detection signal every time noise is detected. Further, when the alternator is driven, noise is constantly superimposed on the battery voltage. Therefore, when the alternator is driven, the noise detection unit F3 is expected to output a noise detection signal to the calculation unit 14 for each detection cycle.
 スイッチ制御部F2は、ノイズ検出部F3からノイズ検出信号が入力されたか否かによって、オルタノイズが発生しているか否かを管理する。具体的には、ノイズ検出部F3からノイズ検出信号が入力された場合には、ノイズフラグをオンに設定する。ノイズフラグは、オルタノイズが発生しているか否かを示す処理上のフラグであり、初期状態においてはオフに設定されている。 The switch control unit F2 manages whether or not alter noise is generated depending on whether or not a noise detection signal is input from the noise detection unit F3. Specifically, when a noise detection signal is input from the noise detection unit F3, the noise flag is set to ON. The noise flag is a processing flag indicating whether or not the alternator noise is generated, and is set to OFF in the initial state.
 また、スイッチ制御部F2は、ノイズフラグがオンとなっている状態において、ノイズ検出信号が入力されない状態が所定時間(以降、判定保留時間)継続した場合には、ノイズフラグをオフに設定する。つまり、スイッチ制御部F2は、ノイズ検出信号が最後に入力されてから判定保留時間、ノイズ検出信号が入力されなかった場合には、ノイズフラグをオフに設定する。 Further, the switch control unit F2 sets the noise flag to OFF when the state in which the noise detection signal is not input continues for a predetermined time (hereinafter referred to as determination hold time) in the state where the noise flag is ON. That is, the switch control unit F2 sets the noise flag to OFF when the determination suspension time and the noise detection signal are not input after the noise detection signal is last input.
 ノイズ検出信号が入力されない場合とは、オルタネータが停止している状態となっている可能性を意味する。つまり、ノイズ検出信号が入力されない状態とは、電源制御装置1が用いられている車両が駐車された可能性を示唆する。一方で、オルタネータが停止したからといって駐車されたとは限らない。ドライバがアイドリングストップを実行するドライバであったり、車両に停車中はエンジンが自動で停止するシステムが搭載されたりしている場合には、停車中であってもエンジン停止に伴って、オルタネータが停止するためである。 The case where the noise detection signal is not input means that the alternator is in a stopped state. That is, the state where the noise detection signal is not input suggests that the vehicle using the power supply control device 1 may be parked. On the other hand, just because the alternator has stopped is not necessarily parked. If the driver is an idling stop driver or if the vehicle is equipped with a system that automatically stops the engine while the vehicle is stopped, the alternator stops when the engine stops even when the vehicle is stopped. It is to do.
 ここで導入される判定保留時間は、第1マスク時間Tmsk1と同様に、停車と駐車とを切り分けるための要素であって、想定される停車時間の最大値よりも大きい値に設計されている。判定保留時間の具体的な値は適宜設計されればよい。また、判定保留時間は、ノイズ検出部F3の検出周期よりも十分に大きい値(例えば10倍以上の値)に設定されているものとする。 The determination hold time introduced here is an element for separating the stop and the parking, like the first mask time Tmsk1, and is designed to be larger than the maximum value of the assumed stop time. A specific value of the determination suspension time may be designed as appropriate. Further, it is assumed that the determination suspension time is set to a value (for example, a value of 10 times or more) sufficiently longer than the detection period of the noise detection unit F3.
 そして、スイッチ制御部F2は、走行状態判定部F1の判定結果と、ノイズ検出部F3の検出結果に基づいてリレースイッチ11のON/OFFを制御する。すなわち、走行フラグとノイズフラグのそれぞれの設定状態に基づいてリレースイッチ11のON/OFFを制御する。 The switch control unit F2 controls ON / OFF of the relay switch 11 based on the determination result of the traveling state determination unit F1 and the detection result of the noise detection unit F3. That is, ON / OFF of the relay switch 11 is controlled based on the setting states of the travel flag and the noise flag.
 例えばスイッチ制御部F2は、図12に示すように、走行フラグとノイズフラグの少なくとも何れか一方がオンに設定されている場合には、リレーON条件が充足されていると判定し、リレースイッチ11をON状態に設定する。また、走行フラグとノイズフラグの両方がオフに設定されている場合には、リレーOFF条件が充足されていると判定し、リレースイッチ11をOFF状態に設定する。 For example, as shown in FIG. 12, the switch control unit F2 determines that the relay ON condition is satisfied when at least one of the travel flag and the noise flag is set to ON, and the relay switch 11 Is set to ON. If both the travel flag and the noise flag are set to OFF, it is determined that the relay OFF condition is satisfied, and the relay switch 11 is set to the OFF state.
 このような制御態様によれば、上述した実施形態等に比べてリレースイッチ11がONに設定されやすくなる。例えば、加速度センサ13では車両の動きを検出できなかったとしても、オルタノイズが検出できた場合にはリレースイッチ11をONに設定することができる。つまり、車両がユーザによって使用されているにも関わらず、リレースイッチ11がOFFのままとなる恐れを低減することができる。 According to such a control mode, the relay switch 11 is easily set to ON as compared with the above-described embodiment and the like. For example, even if the acceleration sensor 13 cannot detect the movement of the vehicle, the relay switch 11 can be set to ON when alternator noise can be detected. That is, it is possible to reduce the possibility that the relay switch 11 remains OFF even though the vehicle is used by the user.
 また、他の態様として、図13に示すように、走行フラグとノイズフラグの両方がオンに設定されている場合にのみ、リレーON条件が充足されていると判定し、リレースイッチ11をON状態に設定してもよい。その場合、走行フラグとノイズフラグの少なくとも何れか一方がオフに設定されている場合には、リレーOFF条件が充足されていると判定し、リレースイッチ11をOFF状態に設定する。 As another aspect, as shown in FIG. 13, it is determined that the relay ON condition is satisfied only when both the travel flag and the noise flag are set to ON, and the relay switch 11 is turned ON. May be set. In that case, when at least one of the running flag and the noise flag is set to OFF, it is determined that the relay OFF condition is satisfied, and the relay switch 11 is set to the OFF state.
 上記の制御態様によれば、リレースイッチ11がOFFに設定されやすくなり、車載バッテリ2が電力切れ状態になる恐れを低減できる。何れにしても、走行状態判定部F1の判定結果だけでなく、オルタノイズの有無もリレーON条件やリレーOFF条件に利用することによって、車両の使用状態に応じた、より適切な電源制御を実現することができる。 According to the above control mode, the relay switch 11 can be easily set to OFF, and the risk that the in-vehicle battery 2 is in a power-out state can be reduced. In any case, by using not only the determination result of the driving state determination unit F1 but also the presence or absence of alternator for the relay ON condition and the relay OFF condition, more appropriate power control according to the use state of the vehicle is realized. can do.
 [変形例7]
 上述した実施形態等では、加速度センサ13をアナログ式の加速度センサとする態様を開示したが、これに限らない。加速度センサ13は、デジタル式の加速度センサであっても良い。その場合、BPF144等の各部材もまたデジタル回路素子を用いて実現されれば良い。また、BPF144や、検波部145、コンパレータ146等の機能は、CPU141がソフトウェアを実行することで実現しても良い。LPF147及びコンパレータ148も同様である。
[Modification 7]
In the above-described embodiments and the like, the aspect in which the acceleration sensor 13 is an analog acceleration sensor is disclosed, but the present invention is not limited thereto. The acceleration sensor 13 may be a digital acceleration sensor. In that case, each member such as BPF 144 may be realized by using a digital circuit element. The functions of the BPF 144, the detection unit 145, the comparator 146, and the like may be realized by the CPU 141 executing software. The same applies to the LPF 147 and the comparator 148.
 [変形例8]
 以上では加速度センサ13が備える3つの検出軸のそれぞれに対して、BPF144等の信号処理経路を設ける構成を開示したが、これに限らない。加速度センサ13の軸ごとの検出値から、3軸合成加速度を演算し、当該3軸合成加速度を用いて、車両の走行が開始されたか否か、及び、車両が駐車されたか否かを判定しても良い。ここでの3軸合成加速度とは、軸方向毎の検出値の二乗和である。
[Modification 8]
In the above description, the configuration in which the signal processing path such as the BPF 144 is provided for each of the three detection axes included in the acceleration sensor 13 is not limited to this. The triaxial synthetic acceleration is calculated from the detected values for each axis of the acceleration sensor 13, and using the triaxial synthetic acceleration, it is determined whether the vehicle has started running and whether the vehicle has been parked. May be. Here, the three-axis combined acceleration is a sum of squares of detected values for each axial direction.
 3軸合成加速度の演算を実行する構成(以降、加速度合成部)は、加速度センサ13とBPF144や、加速度センサ13とLPF147の間といった、加速度センサ13の出力段の直後に配置されれば良い。そのような構成によれば走行状態判定部F1に入力される信号を1つにまとめることができる。 The configuration for executing the calculation of the three-axis combined acceleration (hereinafter referred to as an acceleration combining unit) may be arranged immediately after the output stage of the acceleration sensor 13 such as between the acceleration sensor 13 and the BPF 144 or between the acceleration sensor 13 and the LPF 147. According to such a configuration, signals input to the traveling state determination unit F1 can be combined into one.
 [変形例9]
 上述した変形例6では、リレーON条件とリレーOFF条件の両方において、走行状態判定部F1の判定結果とノイズ検出部F3の検出結果の両方を使用する態様を開示したが、これに限らない。
[Modification 9]
In the modified example 6 described above, the aspect in which both the determination result of the traveling state determination unit F1 and the detection result of the noise detection unit F3 are used in both the relay ON condition and the relay OFF condition is disclosed.
 例えばリレーOFF条件には走行状態判定部F1の判定結果とノイズ検出部F3の検出結果の両方を使用する一方、リレーON条件として、走行状態判定部F1の判定結果を用いない制御態様を採用してもよい。その場合、ノイズ検出部F3がノイズを検出した場合、すなわちノイズフラグがオフからオンに切り替わった場合に、リレーON条件が充足されたと見なしてリレースイッチ11をON状態に設定する。 For example, the relay OFF condition uses both the determination result of the traveling state determination unit F1 and the detection result of the noise detection unit F3, while the relay ON condition employs a control mode that does not use the determination result of the traveling state determination unit F1. May be. In that case, when the noise detection unit F3 detects noise, that is, when the noise flag is switched from OFF to ON, it is considered that the relay ON condition is satisfied, and the relay switch 11 is set to the ON state.
 そのような態様によれば、リレースイッチOFF時には、ノイズ検出部F3にのみ電力を供給しておけば良いので駐車中の暗電流を抑制することができる。具体的には次の通りである。 According to such an aspect, when the relay switch is OFF, it is sufficient to supply power only to the noise detection unit F3, so that dark current during parking can be suppressed. Specifically, it is as follows.
 仮に変形例7で言及したように加速度センサ13としてデジタル式の加速度センサを採用する場合には、CPU等にも定常的に電力を供給する必要が生じる。CPUは一般的には消費電流が大きいため、加速度センサ13としてデジタル式の加速度センサを採用する場合には、暗電流が増えてしまう。そのような懸念に対し、この変形例9の構成によれば、駐車中の暗電流を抑制することができるため、バッテリ上がりに至ってしまう恐れをより一層低減できる。 If a digital acceleration sensor is adopted as the acceleration sensor 13 as mentioned in the modified example 7, it is necessary to constantly supply power to the CPU or the like. Since the CPU generally consumes a large amount of current, when a digital acceleration sensor is employed as the acceleration sensor 13, dark current increases. In response to such a concern, according to the configuration of Modification Example 9, since dark current during parking can be suppressed, the risk of battery exhaustion can be further reduced.
 また、バッテリ電圧に重畳するノイズだけで判定する構成に比べて、リレースイッチ11を、より適切なタイミングでOFFにすることができる。具体的には、車両が使用されていない(つまり駐車されている)にも関わらずリレースイッチ11をONに設定した状態を維持したり、使用中にも関わらずOFFしてしまったりする恐れを低減できる。 Also, the relay switch 11 can be turned off at a more appropriate timing as compared with a configuration in which only the noise superimposed on the battery voltage is determined. Specifically, there is a risk that the relay switch 11 may be kept on even though the vehicle is not used (that is, parked), or may be turned off while being used. Can be reduced.
 [変形例10]
 スイッチ制御部F2は、リレースイッチ11をONに設定している状態の継続時間が、所定の上限時間に到達した場合には、リレースイッチ11をOFFに切り替える構成を備えていても良い。ここでの上限時間とは、車両の連続使用時間の想定値に応じて定まる値であって、例えば4時間などとすればよい。もちろん、上限時間はその他の値(例えば6時間)などであってもよい。
[Modification 10]
The switch control unit F2 may be configured to switch the relay switch 11 to OFF when the duration of the state in which the relay switch 11 is set to ON reaches a predetermined upper limit time. The upper limit time here is a value determined according to an assumed value of the continuous use time of the vehicle, and may be, for example, 4 hours. Of course, the upper limit time may be another value (for example, 6 hours).
 このような態様によれば、走行状態判定部F1やノイズ検出部F3が正常に動作せずに、リレースイッチ11のON状態が継続してしまった場合であっても、時間の経過に伴って強制的にOFFにすることができる。その結果、バッテリ上がりが生じる恐れを低減できる。 According to such an aspect, even when the ON state of the relay switch 11 continues without the traveling state determination unit F1 or the noise detection unit F3 operating normally, with the passage of time. It can be turned off forcibly. As a result, the risk of battery exhaustion can be reduced.
 [変形例11]
 以上では、電源制御装置1をカーアクセサリの外部に設けた態様を開示したが、これに限らない。電源制御装置1は、図14に示すように、電源制御モジュール1Aとしてカーアクセサリ3に内蔵されていても良い。
[Modification 11]
Although the aspect which provided the power supply control apparatus 1 in the exterior of the car accessory was disclosed above, it is not restricted to this. As shown in FIG. 14, the power supply control device 1 may be built in the car accessory 3 as a power supply control module 1A.
 電源制御モジュール1Aは、カーアクセサリ3が備える他のモジュール31への電力の供給状態を制御する役割を担う。電源制御モジュール1Aの具体的な構成や制御態様は、上述した実施形態や種々の変形例、及びそれらを組み合わせたものを採用することができる。このような電源制御モジュール1Aも、請求項に記載の電源制御装置に相当する。また、電源制御モジュール1Aが内蔵された(換言すれば電源制御装置1が適用された)カーアクセサリ3が請求項に記載の車両用後付電子機器に相当する。モジュール31が請求項に記載の電子回路に相当する。 The power control module 1A plays a role of controlling the power supply state to the other modules 31 included in the car accessory 3. As the specific configuration and control mode of the power supply control module 1A, the above-described embodiment, various modifications, and combinations thereof can be employed. Such a power supply control module 1A also corresponds to the power supply control device described in the claims. The car accessory 3 in which the power supply control module 1A is built (in other words, the power supply control device 1 is applied) corresponds to the vehicle retrofit electronic device described in the claims. The module 31 corresponds to the electronic circuit described in the claims.
 この変形例11の態様によれば、車室内に設置する装置の数を抑制でき、車室内空間をすっきりとすることができる。また、後付タイプのカーナビゲーション装置の多くは、加速度センサを内蔵している場合が多い。そのような加速度センサが予め設けられているカーアクセサリ3に電源制御装置1としての電源制御モジュール1Aを内蔵する場合には、既存の加速度センサを流用することができる。そのため、電源制御モジュール1Aの導入コストを抑制することができる。 According to the aspect of the modification 11, the number of devices installed in the vehicle interior can be suppressed, and the vehicle interior space can be made clear. Also, many retrofitted car navigation devices often incorporate an acceleration sensor. When the power supply control module 1A as the power supply control device 1 is built in the car accessory 3 in which such an acceleration sensor is provided in advance, an existing acceleration sensor can be used. Therefore, the introduction cost of the power supply control module 1A can be suppressed.
 [変形例12]
 以上では、出力信号が車両の走行が走行しているか否かの指標として機能するセンサ(以降、指標情報センサ)として、加速度センサを採用した構成を開示したが、これに限らない。加速度の他にも、角速度や、角加速度、方位角、車両位置などといった、車両の走行に伴って変化する物理的な状態量を検出するセンサを指標情報センサとして採用することができる。つまり、ジャイロセンサや、地磁気センサ、GNSS受信機等を指標情報センサとして用いてもよい。
[Modification 12]
In the above, the configuration in which the acceleration sensor is employed as the sensor (hereinafter referred to as the index information sensor) whose output signal functions as an index indicating whether or not the vehicle is traveling is disclosed, but the present invention is not limited thereto. In addition to acceleration, a sensor that detects physical state quantities that change as the vehicle travels, such as angular velocity, angular acceleration, azimuth angle, and vehicle position, can be employed as the index information sensor. That is, a gyro sensor, a geomagnetic sensor, a GNSS receiver, or the like may be used as the index information sensor.
 加速度センサ以外のセンサを用いる場合であっても、一定時間当りの挙動に基づいて、車両の走行が開始されたか否か、及び、駐車されたか否かを判定すれば良い。なお、ジャイロセンサなどのように、連続的な値を出力するセンサを用いる場合には、BPF144やLPF147を用いて車体振動成分や加減速操作成分を抽出し、その抽出した成分を用いて、上記判定を実施することができる。 Even when a sensor other than the acceleration sensor is used, it may be determined whether or not the vehicle has started running and whether or not the vehicle has been parked based on the behavior per certain time. When using a sensor that outputs a continuous value, such as a gyro sensor, the vehicle vibration component and the acceleration / deceleration operation component are extracted using the BPF 144 and the LPF 147, and the extracted components are used to Judgment can be performed.
 また、指標情報センサは、車体振動成分によって固定接点に対する可動接点の接触状態が変化する(換言すれば振動する)ように構成されたスイッチ素子であってもよい。そのようなスイッチ素子の出力は、車両が走行している場合、車体振動成分等によって端子が接触したり離れたりを繰り返すため、パルス状の信号を出力する。一方、車両が駐車されている場合には、端子間の接触状態は、接触/非接触の何れか一方で安定するため、パルス状の信号は出力されない。すなわち、上記のスイッチ素子も指標情報センサとして使用することができる。 Further, the index information sensor may be a switch element configured such that the contact state of the movable contact with respect to the fixed contact changes (in other words, vibrates) by the vehicle body vibration component. The output of such a switch element outputs a pulse-like signal when the vehicle is traveling because the terminal repeatedly contacts and separates due to a vehicle body vibration component or the like. On the other hand, when the vehicle is parked, the contact state between the terminals is stable in either contact or non-contact, so that a pulse signal is not output. That is, the above switch element can also be used as an index information sensor.
 本開示は、実施形態に準拠して記述されたが、本開示は当該実施形態や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiment, it is understood that the present disclosure is not limited to the embodiment or the structure. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (10)

  1.  車載バッテリから所定の電子回路への電力の供給状態を切り替えるためのリレースイッチ(11)と、
     車両が走行しているか否かの指標として機能する出力信号を出力するセンサ(13)と、
     前記センサの出力信号の一定時間当りの挙動に基づいて、前記車両が走行を開始したか否か、及び、前記車両が駐車されたか否かを判定する走行状態判定部(F1)と、
     前記走行状態判定部の判定結果に基づいて前記リレースイッチの接続状態を制御するスイッチ制御部(F2)と、を備える電源制御装置。
    A relay switch (11) for switching the power supply state from the in-vehicle battery to a predetermined electronic circuit;
    A sensor (13) that outputs an output signal that functions as an indicator of whether or not the vehicle is running;
    A traveling state determination unit (F1) that determines whether or not the vehicle has started traveling and whether or not the vehicle has been parked based on the behavior of the output signal of the sensor per unit time;
    And a switch control unit (F2) that controls a connection state of the relay switch based on a determination result of the traveling state determination unit.
  2.  請求項1において、
     前記スイッチ制御部は、
     前記走行状態判定部によって前記車両が走行を開始したと判定された場合に、前記リレースイッチをオンに設定し、
     前記走行状態判定部によって前記車両が駐車されたと判定された場合に前記リレースイッチをオフに設定する電源制御装置。
    In claim 1,
    The switch control unit
    When the traveling state determination unit determines that the vehicle has started traveling, the relay switch is set to ON,
    A power supply control device that sets the relay switch to OFF when the traveling state determination unit determines that the vehicle is parked.
  3.  請求項1において、
     前記車載バッテリの出力電圧に重畳しているノイズを検出するノイズ検出部(F3)を備え、
     前記スイッチ制御部は、
     前記走行状態判定部によって前記車両が走行を開始したと判定された場合と、前記ノイズ検出部によって前記ノイズが検出された場合の少なくとも一方の場合に前記リレースイッチをオンに設定し、
     前記走行状態判定部によって前記車両が駐車されたと判定され、かつ、前記ノイズ検出部によって前記ノイズが検出されない状態が所定の判定保留時間継続した場合に前記リレースイッチをオフに設定する電源制御装置。
    In claim 1,
    A noise detector (F3) for detecting noise superimposed on the output voltage of the in-vehicle battery;
    The switch control unit
    The relay switch is set to ON when at least one of the case where the traveling state determination unit determines that the vehicle has started traveling and the case where the noise is detected by the noise detection unit,
    A power supply control device that sets the relay switch to OFF when it is determined that the vehicle is parked by the traveling state determination unit and the state in which the noise is not detected by the noise detection unit continues for a predetermined determination hold time.
  4.  請求項1において、
     前記車載バッテリの出力電圧に重畳しているノイズを検出するノイズ検出部(F3)を備え、
     前記スイッチ制御部は、
     前記走行状態判定部によって前記車両が走行を開始したと判定され、かつ、前記ノイズ検出部によって前記ノイズが検出された場合に前記リレースイッチをオンに設定し、
     前記走行状態判定部によって前記車両が駐車されたと判定された場合と、前記ノイズ検出部によって前記ノイズが検出されない状態が所定の判定保留時間継続した場合の少なくとも一方の場合に前記リレースイッチをオフに設定する電源制御装置。
    In claim 1,
    A noise detector (F3) for detecting noise superimposed on the output voltage of the in-vehicle battery;
    The switch control unit
    When it is determined that the vehicle has started traveling by the traveling state determination unit, and the noise is detected by the noise detection unit, the relay switch is set to ON,
    The relay switch is turned off in the case where it is determined that the vehicle is parked by the traveling state determination unit and in the case where the state where the noise is not detected by the noise detection unit continues for a predetermined determination hold time. Power control device to set.
  5.  請求項1において、
     前記車載バッテリの出力電圧に重畳しているノイズを検出するノイズ検出部(F3)を備え、
     前記スイッチ制御部は、
     前記ノイズ検出部によって前記ノイズが検出された場合に前記リレースイッチをオンに設定し、
     前記走行状態判定部によって前記車両が駐車されたと判定され、かつ、前記ノイズ検出部によって前記ノイズが検出されない状態が所定の判定保留時間継続した場合に前記リレースイッチをオフに設定する電源制御装置。
    In claim 1,
    A noise detector (F3) for detecting noise superimposed on the output voltage of the in-vehicle battery;
    The switch control unit
    When the noise is detected by the noise detection unit, the relay switch is set to ON,
    A power supply control device that sets the relay switch to OFF when it is determined that the vehicle is parked by the traveling state determination unit and the state in which the noise is not detected by the noise detection unit continues for a predetermined determination hold time.
  6.  請求項1から5の何れか1項において、
     前記センサは、加速度センサであって、
     前記センサとしての前記加速度センサの出力信号から、前記車両が走行することによって生じる振動成分を抽出する振動成分抽出部(144)を備え、
     前記走行状態判定部は、前記振動成分抽出部が抽出した前記振動成分の大きさが所定の走行判定閾値以上となっている状態が所定の走行判定時間継続した場合に、前記車両が走行を開始したと判定する電源制御装置。
    In any one of Claim 1 to 5,
    The sensor is an acceleration sensor,
    A vibration component extraction unit (144) for extracting a vibration component generated by the vehicle traveling from an output signal of the acceleration sensor as the sensor;
    The traveling state determination unit starts the vehicle when the state in which the magnitude of the vibration component extracted by the vibration component extraction unit is equal to or greater than a predetermined traveling determination threshold continues for a predetermined traveling determination time. A power supply control device that determines that the operation has been performed.
  7.  請求項6において、
     前記走行状態判定部は、前記振動成分抽出部が抽出した前記振動成分の大きさが所定の走行判定閾値未満となっている状態が所定のマスク時間継続した場合に、前記車両が駐車されたと判定する電源制御装置。
    In claim 6,
    The traveling state determination unit determines that the vehicle is parked when a state in which the magnitude of the vibration component extracted by the vibration component extraction unit is less than a predetermined traveling determination threshold continues for a predetermined mask time. Power supply control device.
  8.  請求項1から5の何れか1項において、
     前記センサは、加速度センサであって、
     前記センサとしての前記加速度センサの出力信号から、ドライバが前記車両を加減速させる操作を実施することで生じる成分である加減速操作成分を抽出する加減速操作成分抽出部(147)を備え、
     前記走行状態判定部は、前記加減速操作成分抽出部が抽出した前記加減速操作成分の大きさが所定の加減速判定閾値以上となっている状態が所定の走行判定時間継続した場合に、前記車両が走行を開始したと判定する電源制御装置。
    In any one of Claim 1 to 5,
    The sensor is an acceleration sensor,
    An acceleration / deceleration operation component extraction unit (147) that extracts an acceleration / deceleration operation component, which is a component generated when the driver performs an operation of accelerating / decelerating the vehicle, from an output signal of the acceleration sensor as the sensor;
    The traveling state determination unit is configured to perform the operation when the state in which the acceleration / deceleration operation component extracted by the acceleration / deceleration operation component extraction unit is greater than or equal to a predetermined acceleration / deceleration determination threshold continues for a predetermined traveling determination time. A power supply control device that determines that the vehicle has started running.
  9.  請求項8において、
     前記走行状態判定部は、前記加減速操作成分抽出部が抽出した前記加減速操作成分の大きさが所定の加減速判定閾値未満となっている状態が所定のマスク時間継続した場合に、前記車両が駐車されたと判定する電源制御装置。
    In claim 8,
    The running state determination unit is configured to detect the vehicle when a state in which the magnitude of the acceleration / deceleration operation component extracted by the acceleration / deceleration operation component extraction unit is less than a predetermined acceleration / deceleration determination threshold continues for a predetermined mask time. A power control device that determines that the vehicle is parked.
  10.  請求項1から9の何れか1項に記載の電源制御装置が内蔵された車両用後付電子機器。 10. A vehicular retrofit electronic device in which the power supply control device according to any one of claims 1 to 9 is incorporated.
PCT/JP2017/030935 2016-10-10 2017-08-29 Power supply control device, and retrofitted electronic equipment for vehicle WO2018070124A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SG11201901546PA SG11201901546PA (en) 2016-10-10 2017-08-29 Power supply control device and retrofitting electronic device for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016199611A JP6540648B2 (en) 2016-10-10 2016-10-10 Power supply control device, retrofit electronic device for vehicles
JP2016-199611 2016-10-10

Publications (1)

Publication Number Publication Date
WO2018070124A1 true WO2018070124A1 (en) 2018-04-19

Family

ID=61906297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030935 WO2018070124A1 (en) 2016-10-10 2017-08-29 Power supply control device, and retrofitted electronic equipment for vehicle

Country Status (4)

Country Link
JP (1) JP6540648B2 (en)
SG (1) SG11201901546PA (en)
TW (1) TWI675764B (en)
WO (1) WO2018070124A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111439224A (en) * 2019-01-16 2020-07-24 丰田自动车株式会社 In-vehicle system, wireless communication device, and control method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7264031B2 (en) * 2019-12-09 2023-04-25 トヨタ自動車株式会社 Control device
JP2022144140A (en) * 2021-03-18 2022-10-03 株式会社オートネットワーク技術研究所 On-vehicle device, information processing method, and computer program
JP2022179154A (en) 2021-05-21 2022-12-02 スタンレー電気株式会社 Vehicle state identification device and method, optical axis control device and method for vehicle lighting fixture, and vehicle lighting fixture system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001124792A (en) * 2000-08-24 2001-05-11 Yupiteru Ind Co Ltd Running state detecting device for vehicle
JP2003154905A (en) * 2001-11-19 2003-05-27 Sony Corp Power supply control unit for automobile
JP2007238033A (en) * 2006-03-10 2007-09-20 Toyota Motor Corp Vehicle height adjusting system
JP2012148717A (en) * 2011-01-20 2012-08-09 Yupiteru Corp Power supply control device
JP2016120845A (en) * 2014-12-25 2016-07-07 株式会社東芝 On-vehicle electronic apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001124792A (en) * 2000-08-24 2001-05-11 Yupiteru Ind Co Ltd Running state detecting device for vehicle
JP2003154905A (en) * 2001-11-19 2003-05-27 Sony Corp Power supply control unit for automobile
JP2007238033A (en) * 2006-03-10 2007-09-20 Toyota Motor Corp Vehicle height adjusting system
JP2012148717A (en) * 2011-01-20 2012-08-09 Yupiteru Corp Power supply control device
JP2016120845A (en) * 2014-12-25 2016-07-07 株式会社東芝 On-vehicle electronic apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111439224A (en) * 2019-01-16 2020-07-24 丰田自动车株式会社 In-vehicle system, wireless communication device, and control method
CN111439224B (en) * 2019-01-16 2023-08-08 丰田自动车株式会社 In-vehicle system, wireless communication device, and control method

Also Published As

Publication number Publication date
TW201819219A (en) 2018-06-01
TWI675764B (en) 2019-11-01
SG11201901546PA (en) 2019-03-28
JP2018062185A (en) 2018-04-19
JP6540648B2 (en) 2019-07-10

Similar Documents

Publication Publication Date Title
WO2018070124A1 (en) Power supply control device, and retrofitted electronic equipment for vehicle
JP5982902B2 (en) Vehicle control device
US9776589B2 (en) Vehicle control system and method of using the same
US8504240B2 (en) Alternator controlling apparatus
KR20170012301A (en) Method, device, and system for generating driving behavior guidance information
JP6141759B2 (en) Vehicle control device
KR20160148186A (en) failure detection apparatus of MDPS(Motor drive power system) and method of the same
EP1698903B1 (en) Failure diagnosis device for vehicle body acceleration sensor and anti-lock brake system
CN103419636A (en) In-vehicle apparatus for detecting collision of vehicle
KR101066915B1 (en) Method for detecting on/off change for starting power in in-vehicle electronic device
JP2011162079A (en) Failure diagnosis device, electrical control unit with failure diagnosis, and system and method for failure diagnosis
JP2018062185A5 (en)
JP4691160B2 (en) Electronic equipment
JPH04306134A (en) Car speed retaining device of motorcycle
JP7274806B1 (en) Adapter for in-vehicle navigation system
JP2010233448A (en) Device for breaking high voltage in vehicle
JP5900436B2 (en) In-vehicle battery charger
CN103386874A (en) Device and method for controlling vehicle-mounted air cleaner
JP3424615B2 (en) Tire pressure warning device
WO2005080779A1 (en) Engine operating condition detecting device
US6952633B2 (en) Device and method for improved monitoring of a lateral-acceleration sensor
KR101134904B1 (en) Failure Detection Method for Acceleration Sensor in Vehicle
CN113085579A (en) Control method, system, equipment and storage medium for P gear of electric vehicle
CN114084135A (en) Vehicle launch from a standstill under adaptive cruise control
CN105822441A (en) Method, device and system for controlling engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17860130

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17860130

Country of ref document: EP

Kind code of ref document: A1