WO2018070089A1 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
WO2018070089A1
WO2018070089A1 PCT/JP2017/026793 JP2017026793W WO2018070089A1 WO 2018070089 A1 WO2018070089 A1 WO 2018070089A1 JP 2017026793 W JP2017026793 W JP 2017026793W WO 2018070089 A1 WO2018070089 A1 WO 2018070089A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
refrigerator
temperature
temperature range
target temperature
Prior art date
Application number
PCT/JP2017/026793
Other languages
French (fr)
Japanese (ja)
Inventor
修平 川本
啓順 元井
萌子 中田
Original Assignee
東芝ライフスタイル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝ライフスタイル株式会社 filed Critical 東芝ライフスタイル株式会社
Priority to CN201780045323.4A priority Critical patent/CN109844431B/en
Publication of WO2018070089A1 publication Critical patent/WO2018070089A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures

Definitions

  • Embodiment of this invention is related with a refrigerator.
  • a refrigerator that performs cooling based on the temperature of a refrigerator compartment detected by a temperature sensor provided in the refrigerator compartment without providing a damper for adjusting the distribution of the cold air to the refrigerator compartment and the freezer compartment, mainly for the purpose of reducing manufacturing costs.
  • a temperature sensor must be provided in the refrigerator compartment in order to prevent the food stored in the refrigerator compartment from freezing.
  • the number of cooling operations is reduced. That is, when cooling is performed based on the temperature of the refrigerator compartment, the number of cooling operations may be reduced and the freezer compartment may become insufficiently cooled.
  • an object of the present invention is to provide a refrigerator that can be suitably cooled based on the temperature of the refrigerator compartment without increasing the manufacturing cost.
  • the refrigerator has a freezing room and a refrigerating room, and cools both the freezing room and the refrigerating room with cold air generated by one evaporator, and adjusts the distribution of the cold air to the freezing room and the refrigerating room.
  • the refrigerator is configured not to have a mechanism, and has a compressor connected to the evaporator, and a refrigerator temperature detector that detects the temperature of the refrigerator, and the refrigerator compartment detected by the refrigerator temperature detector When the temperature reaches the upper limit of the predetermined target temperature range, the compressor is operated, and when the temperature of the refrigerator compartment reaches the lower limit temperature of the target temperature range, the compressor is stopped and the compressor is operated. And a control unit that changes the target temperature range to a low temperature side.
  • a refrigerator having a configuration that cools both the freezing room and the refrigerating room with the cold air generated by one evaporator but does not have a damper mechanism for adjusting the distribution of the cold air to the freezing room and the refrigerating room, the manufacturing cost is reduced.
  • a refrigerator that can be suitably cooled based on the temperature of the refrigerator compartment can be obtained without causing an increase in the temperature.
  • the figure which shows the flow of the change process of a target temperature range. The figure which shows an example of the temperature change at the time of performing the change process of a target temperature range.
  • the refrigerator 1 has a freezer compartment 3 on the upper side of the main body 2 and a refrigerator compartment 4 on the lower side.
  • the freezer compartment 3 is open on the front side, and the opening is opened and closed by a door 3a.
  • the refrigerator compartment 4 has an opening on the front side, and the opening is opened and closed by a door 4a.
  • the freezer compartment 3 and the refrigerator compartment 4 are partitioned by a heat insulating partition 5, and the heat insulating partition 5 is provided with a cold air suction port 6 from the refrigerator compartment 4 side.
  • the cold air supplied into the refrigerator compartment 4 via the cold air duct 7 disposed on the back side of the main body 2 is sucked out from the suction port 6 and circulates in the refrigerator 1.
  • This cold air is generated by a refrigeration cycle including a compressor 8 installed in a machine room formed on the back side of the lower part of the main body 2 and an evaporator 9 installed in a cooling room on the back side of the upper part of the main body 2.
  • the refrigerator 1 generates cold air in the evaporator 9 by driving the compressor 8, and drives the fan 10 provided in the vicinity of the evaporator 9 to drive the freezer compartment 3 and the refrigerator compartment. 4 is supplied with cold air. At this time, the cold air supplied to the refrigerator compartment 4 is sucked out from the suction port 6, reaches the cooling compartment, and is cooled again by the evaporator 9. Thus, in the refrigerator 1, both the freezer compartment 3 and the refrigerator compartment 4 are cooled by circulating the cool air produced
  • the entire refrigerator 1 including the compressor 8 is controlled by a control unit 11 provided in a control room on the back side of the main body 2.
  • the control unit 11 is composed of a microcomputer having a CPU or the like (not shown), and is connected to the storage unit 12 and the timer 13 as shown in FIG.
  • the storage unit 12 is configured by, for example, a semiconductor memory, and stores various programs and data executed by the control unit 11 such as a target temperature range changing process described later.
  • the timer 13 has a time measuring function that makes it possible to acquire time and to acquire a period elapsed from a certain time.
  • the control unit 11 may be configured using a so-called one-chip microcomputer in which the storage unit 12 and the timer 13 are built.
  • control unit 11 is connected to the compressor 8, the fan 10, the refrigerating room temperature sensor 14 as the refrigerating room temperature detecting unit, the refrigerating room door switch 15, and the freezer room door switch 16.
  • the refrigerating room temperature sensor 14 is provided in the refrigerating room 4 as shown in FIG. 1, and detects the temperature of the refrigerating room 4 (hereinafter also referred to as a refrigerating room temperature (Tr)). Based on the refrigerator compartment temperature (Tr) detected by the refrigerator compartment temperature sensor 14, the controller 11 controls the operation of the compressor 8.
  • the refrigerator compartment door switch 15 detects the open / closed state of the door 4a of the refrigerator compartment 4.
  • the freezer compartment door switch 16 detects the open / closed state of the door 3 a of the freezer compartment 3.
  • the freezer compartment door switch 16 corresponds to an open / close detection unit.
  • the control part 11 is connected to the function part required for operation
  • a basic control flow of the refrigerator 1 and an example of changes in the freezer compartment 3 and the refrigerator compartment temperature (Tr) when the target temperature range changing process described later is not performed will be described with reference to FIG. To do.
  • a target temperature range ( ⁇ Tr) for the refrigerator compartment 4 and a target temperature range ( ⁇ Tf) for the freezer compartment 3 are set in the refrigerator 1.
  • the target temperature range ( ⁇ Tr) of the refrigerator compartment 4 has an upper limit temperature (Tr ⁇ H) of 6 ° C. and a lower limit temperature ( Tr ⁇ L) is set to 2 ° C., and the temperature difference is set to 4 ° C.
  • the target temperature range ( ⁇ Tf) for the freezer compartment 3 is set such that the upper limit temperature (Tf ⁇ H) is ⁇ 11 ° C., the lower limit temperature (Tf ⁇ L) is ⁇ 13 ° C., and the temperature difference is 2 ° C. Is done.
  • the control unit 11 assumes that the refrigerating room temperature (Tr) rises and reaches the upper limit temperature (Tr ⁇ H) of the target temperature range ( ⁇ Tr) at time (t2), for example. Then, the operation of the compressor 8 is started.
  • the state in which the compressor 8 is operating is also simply referred to as “operation”. Thereby, cold air is generated in the evaporator 9, and the cold air circulates in the refrigerator 1, thereby cooling the refrigerator compartment 4 and the refrigerator compartment 4.
  • the fan 10 is also operated.
  • the control unit 11 causes the refrigerator temperature (Tr) to decrease due to the operation of the compressor 8, and reaches, for example, the lower limit temperature (Tr ⁇ H) of the target temperature range ( ⁇ Tr) at time (t3). If it does, since the further cooling is unnecessary, operation
  • the state where the compressor 8 is not operating is also simply referred to as “stop”. At this time, the fan 10 also stops.
  • the upper limit temperature (Tr ⁇ H) of the target temperature range ( ⁇ Tr) of the refrigerator compartment 4 is a temperature for determining whether or not to operate the compressor 8
  • the lower limit temperature (Tr ⁇ L) is the compressor. 8 is a temperature for determining whether to stop 8 or not. More precisely, based on the refrigerator compartment temperature (Tr), the control unit 11 determines whether or not the refrigerator compartment temperature (Tr) has reached the upper limit temperature (Tr-H) or the lower limit temperature (Tr-L). Based on this, the operation of the compressor 8 is controlled.
  • the operation of the compressor 8 is controlled based on the refrigerator compartment temperature (Tr)
  • the situation where the freezer compartment temperature (Tf) exceeds the target temperature range ( ⁇ Tf), that is, the freezer compartment 3 is appropriately set.
  • Situations that cannot be cooled down can occur. For example, as shown in the graph G1f, even if the freezer temperature (Tf) reaches the upper limit temperature (Tf ⁇ H) at the time (t1) before the time (t2), the refrigerator compartment at that time Since the temperature (Tr) does not reach the upper limit temperature (Tr-H), the compressor 8 is not operated. If the compressor 8 is not operated, neither the freezer compartment 3 nor the refrigerating compartment 4 is cooled. Therefore, it is assumed that the freezer compartment temperature (Tf) exceeds the upper limit temperature (Tf ⁇ H) and further rises.
  • the temperature difference from the refrigerating room temperature (Tr) is small, so that the increase in the refrigerating room temperature (Tr) after the operation of the compressor 8 is stopped, for example, after time (t3) is moderate. become.
  • the time until the refrigerator compartment temperature (Tr) reaches the upper limit temperature (Tr ⁇ H), that is, the period during which the compressor 8 is stopped becomes longer.
  • the compressor 8 since the compressor 8 remains stopped, cooling is not performed, and even if the freezer compartment temperature (Tf) reaches the upper limit temperature (Tf ⁇ H) at the time (t4), for example, it continues to rise.
  • Tf freezer compartment temperature
  • Tf ⁇ H the upper limit temperature
  • the freezing room temperature (Tf) is set.
  • the freezer compartment temperature (Tf) is set to the target temperature range ( ⁇ Tf). There is a possibility that it cannot fit in.
  • the freezer compartment 3 is appropriately provided by providing a temperature sensor in the freezer compartment 3, a heater for heating the refrigerator compartment temperature sensor 14, or a temperature sensor for detecting the room temperature. It is thought that it can be cooled. In this case, however, the manufacturing cost increases because additional parts are required. Further, if heating means such as a heater is provided, the power consumption is also increased.
  • the refrigerator 1 of the present embodiment can appropriately control the operation of the compressor 8 based on the refrigerator compartment temperature (Tr).
  • Tr refrigerator compartment temperature
  • an example of the temperature change when the target temperature range changing process and the target temperature range changing process repeatedly executed by the control unit 11 are performed will be described with reference to FIGS. 4 and 5.
  • the control unit 11 determines whether or not the refrigerator temperature (Tr) has reached the upper limit temperature (Tr-H) (S1), and the upper limit temperature (Tr-H) is reached.
  • S1 the refrigerator temperature
  • Tr-H the upper limit temperature
  • the compressor 8 is operated as described above (S2).
  • the control unit 11 proceeds to step S3.
  • step S3 the control unit 11 determines whether or not the refrigerator temperature (Tr) has reached the lower limit temperature (Tr-L) (S3), and has reached the lower limit temperature (Tr-L). If it is determined that it is not (S3: NO), the process returns to step S1. On the other hand, when it is determined that the lower limit temperature (Tr-L) has been reached (S3: YES), the control unit 11 stops the compressor 8 (S4). Here, it is assumed that the compressor 8 is stopped at the time (ts) shown in FIG.
  • the control unit 11 When the compressor 8 is stopped, the control unit 11 initializes the change of the target temperature range ( ⁇ Tr) of the refrigerator compartment 4 (S5). Although the change of the target temperature range ( ⁇ Tr) will be described below, since the control unit 11 repeatedly executes the change process as described above, the target temperature range ( ⁇ Tr) is changed in the previous process. If so, the change is initialized in step S5.
  • the control unit 11 determines whether or not the standby period has elapsed since the compressor 8 was stopped in step S4 (S6).
  • this standby period for example, a temperature change of the refrigerator compartment 4 when the room temperature is 25 ° C. is obtained in advance by a test, and a period of, for example, 10 minutes is set as an initial value based on the temperature change.
  • the controller 11 determines whether or not the refrigerating room temperature (Tr) has reached the upper limit temperature (Tr ⁇ H) (S9). .
  • the refrigerator temperature (Tr) at time (t19) before the standby period elapses. Is assumed to reach the upper limit temperature (Tr-H). That is, even during the standby period, a situation in which the refrigerator temperature (Tr) reaches the upper limit temperature (Tr ⁇ H) may occur.
  • control unit 11 performs the determination in step S9 so that the compressor 8 can be operated without waiting for the standby period to elapse.
  • the freezer temperature (Tf) exceeds the upper limit temperature (Tf ⁇ H) as shown in the graph G13f as a result of simply waiting until the standby period elapses is suppressed. it can.
  • the control unit 11 changes the target temperature range ( ⁇ Tr) to the low temperature side for each unit period (S7). In this state, since the compressor 8 is stopped, the refrigerator temperature (Tr) gradually increases. Therefore, the control unit 11 determines whether or not the refrigerator compartment temperature (Tr) has reached the upper limit temperature (Tr-H) (S8), and determines that the upper limit temperature (Tr-H) has not been reached. (S8: NO), the process proceeds to step S7. At this time, the control unit 11 maintains a state where the compressor 8 is stopped.
  • the control part 11 will change a target temperature range ((DELTA) Tr) to the low temperature side for every unit period. That is, for example, if the standby period has elapsed at time (t10) shown in FIG. 5, the control unit 11 corresponds to the period elapsed from time (t10), that is, the difference (tn) from the current time (tn). According to -t10), the target temperature range ( ⁇ Tr) is gradually changed to the low temperature side.
  • the control unit 11 acquires an elapsed period that is a period that has elapsed since the compressor 8 was stopped as the operating state of the compressor 8, and the amount of change in the target temperature range ( ⁇ Tr) increases as the acquired elapsed period becomes longer. Has increased. Further, the control unit 11 changes the target temperature range ( ⁇ Tr) to the low temperature side by changing both the upper limit temperature (Tr ⁇ H) and the lower limit temperature (Tr ⁇ L) to the low temperature side. Thereby, compared with the case where the target temperature range ( ⁇ Tr) is not changed, the timing at which the operation of the compressor 8 is started can be advanced.
  • step S8 the control unit 11 determines again whether or not the refrigerating room temperature (Tr) has reached the upper limit temperature (Tr-H), and determines that the upper limit temperature (Tr-H) has not been reached. If so (S8: NO), the process returns to step S7 to repeat changing the target temperature range ( ⁇ Tr) to the low temperature side.
  • the control unit 11 sets the refrigerating room temperature (Tr) to the upper limit temperature (Tr) in step S8. Since it is determined that it has reached (Tr ⁇ H) (S8: YES), the compressor 8 is operated (S2). Thereby, cooling of the refrigerator compartment 4 and the freezer compartment 3 is performed.
  • the refrigerator compartment temperature (Tr) is virtually shown by a broken line graph G11r in FIG.
  • the upper limit temperature (Tr ⁇ H) is reached at time (t12).
  • Tf freezer compartment temperature
  • Tf ⁇ H upper limit temperature
  • the refrigerator compartment temperature (Tr) and the freezer compartment temperature (Tf) rise as virtually shown by the graphs G12r and G12f.
  • the freezer compartment temperature (Tf) exceeds the upper limit temperature (Tf ⁇ H) before the refrigerator compartment temperature (Tr) reaches the upper limit temperature (Tr ⁇ H).
  • control unit 11 repeats the processing of steps S1 to S9 described above, and changes the target temperature range ( ⁇ Tr) when the standby period has elapsed at time (t15), for example, and the refrigerator temperature at time (t16).
  • (Tr) reaches the upper limit temperature (Tr-H)
  • control such as operating the compressor 8 is repeated.
  • the operation of the compressor 8 is controlled based on the refrigerator temperature (tr), and the target temperature range is changed to the low temperature side based on the operation state of the compressor 8. Yes.
  • the refrigerator 1 includes a freezing room 3 and a refrigerating room 4, and cools both the freezing room 3 and the refrigerating room 4 with the cold air generated by one evaporator 9, while the freezing room 3 and the refrigerating room 4 are moved to. There is no damper mechanism to adjust the distribution of cold air.
  • the refrigerator 1 operates the compressor 8 when the refrigerator compartment temperature (Tr) detected by the refrigerator compartment temperature sensor 14 reaches the upper limit temperature (Tr ⁇ H) of the predetermined target temperature range ( ⁇ Tr), When the refrigerator temperature (Tr) reaches the lower limit temperature (Tr ⁇ L) of the target temperature range ( ⁇ Tr), the compressor 8 is stopped, and the target temperature range ( ⁇ Tr) is set to the low temperature side based on the operating state of the compressor 8. Change to
  • the timing at which the operation of the compressor 8 is started can be advanced compared to the case where the target temperature range ( ⁇ Tr) is not changed.
  • the operation interval of the compressor 8 can be shortened, that is, the period until the operation of the compressor 8 is restarted can be shortened.
  • the freezer compartment temperature (Tf) may exceed the upper limit temperature (Tf ⁇ H), that is, the freezer compartment 3 is not sufficiently cooled. Can be reduced.
  • the damper mechanism is not provided, there is no need to provide a sensor for detecting the temperature of the freezer compartment 3. Therefore, cooling can be suitably performed based on the temperature of the refrigerator compartment 4 without causing an increase in manufacturing cost.
  • the refrigerator 1 acquires an elapsed period that is a period that has elapsed since the compressor 8 was stopped as an operating state, and increases the change amount of the target temperature range ( ⁇ Tr) as the acquired elapsed period becomes longer. Thereby, the timing which restarts the driving
  • the refrigerator 1 initializes the target temperature range ( ⁇ Tr) when the operation of the compressor 8 is stopped. This prevents the target temperature range ( ⁇ Tr) from being changed to the low temperature side, thereby reducing the possibility of excessive cooling. Further, the refrigerator 1 starts changing the target temperature range ( ⁇ Tr) when a predetermined standby period has elapsed since the compressor 8 was stopped. Thus, it is possible to suppress the target temperature range ( ⁇ Tr) from being immediately changed to the low temperature side, and to reduce the possibility of excessive cooling.
  • the second embodiment is different from the first embodiment in that the compressor 8 is controlled in consideration of the operation ratio of the compressor 8.
  • the structure of the refrigerator 1 is common in 1st Embodiment, it demonstrates, also referring FIG.
  • Refrigerator 1 of the second embodiment repeatedly executes the changing process shown in FIG.
  • the same process as the change process (see FIG. 4) of the first embodiment is denoted by the same reference numeral, and detailed description thereof is omitted.
  • the change process of the second embodiment is a flow in which step S20 is added to the change process of the first embodiment.
  • the control unit 11 determines the operation and stop timing of the compressor 8 based on the refrigerator temperature (Tr) as in the first embodiment (S1 to S4).
  • the compressor 8 is stopped, it is determined whether the operation ratio exceeds the reference ratio (S20).
  • the operation ratio is a ratio of operating the compressor 8 during a preset ratio determination period. This ratio determination period is a predetermined period including a time point when the operation of the compressor 8 is stopped.
  • the compressor 8 is operated in a state where the target temperature range ( ⁇ Tr) is changed to the low temperature side before the time (t20), and the refrigerator temperature (Tr) shown by the graph G20r. Reaches the lower limit temperature (Tr-L) at time (t20), and the compressor 8 is stopped.
  • the control unit 11 acquires the ratio of operating the compressor 8 from the time (t20) before the predetermined period as the operation ratio, and the acquired operation ratio exceeds a predetermined reference ratio. It is determined whether or not (S20).
  • the predetermined period and the reference ratio can be appropriately set, for example, by obtaining in advance by a test or the like.
  • the control unit 11 When it is determined that the operation ratio exceeds the reference ratio (S20: YES), the control unit 11 initializes the change of the target temperature range ( ⁇ Tr) (S5). Then, similarly to the first embodiment, the control unit 11 determines whether or not the standby period has elapsed. For example, when the standby period has elapsed at time (t21), the control unit 11 sets the target temperature range ( ⁇ Tr). When the temperature is changed to the low temperature side and the refrigerator temperature (Tr) reaches the upper limit temperature (Tr ⁇ H) at time (t22), the operation of the compressor 8 is started.
  • step S5 when it is determined that the operation ratio does not exceed the reference ratio (S20: NO), the control unit 11 omits step S5, that is, changes the target temperature range ( ⁇ Tr). The process proceeds to step S6 without initialization. In this case, the target temperature range ( ⁇ Tr) is maintained at the low temperature side after time (t23).
  • the state that the operation ratio of the compressor 8 does not exceed the reference ratio means that the period during which the compressor 8 is stopped is relatively long. The long period during which the compressor 8 has been stopped indicates that the freezer compartment 3 may not be sufficiently cooled.
  • the refrigerating room temperature (Tr) is assumed to be, for example, thereafter as virtually indicated by a broken line graph G21r.
  • the upper limit temperature (Tr-H) is reached at time (t25).
  • the freezer compartment temperature (Tf) indicated by the graph G20f is indicated by the broken line graph G21f at the time (t25). As shown virtually, there is a high possibility that the upper limit temperature (Tf ⁇ H) will be exceeded.
  • the control unit 11 initializes the target temperature range ( ⁇ Tr) when the operation ratio of the compressor 8 does not reach the reference value and the freezer compartment 3 may not be sufficiently cooled. do not do.
  • the timing at which the refrigerating room temperature (Tr) reaches the upper limit temperature (Tr ⁇ H) is advanced, and for example, the time (t24) that is moved forward from the time (t25) when the target temperature range ( ⁇ Tr) is not initialized. ), The compressor 8 is operated.
  • the freezer compartment 3 can be cooled at an earlier timing. Therefore, as in the first embodiment, it is possible to obtain an effect that cooling can be suitably performed based on the temperature of the refrigerator compartment 4 without causing an increase in manufacturing cost.
  • the third embodiment is different from the first embodiment in that the compressor 8 is controlled in consideration of the opening / closing state of the door 3a of the freezer compartment 3.
  • the structure of the refrigerator 1 is common in 1st Embodiment, it demonstrates, also referring FIG.
  • steps S30 and S31 are added to the changing process of the first embodiment.
  • the controller 11 determines the operation and stop timing of the compressor 8 based on the refrigerator temperature (Tr) as in the first embodiment (S1 to S4), and stops the compressor 8.
  • the target temperature range ( ⁇ Tr) is initialized.
  • the controller 11 determines whether or not the number of times of opening and closing, which is the number of times the door 3a of the freezer compartment 3 is opened and closed, has reached a predetermined reference opening and closing number in a predetermined door opening determination period ( S30) and whether or not the opening period, which is the period during which the door 3a of the freezer compartment 3 is opened, has reached a predetermined reference opening period (S31). That is, the control unit 11 acquires the opening / closing status of the door 3 a of the freezer compartment 3.
  • the control unit 11 opens and closes a predetermined period in the past including the time (t31).
  • the determination period the number of opening / closing operations and the opening period are determined.
  • the open / close determination period, the reference open / close count, and the reference open period can be appropriately set, for example, by obtaining in advance by a test or the like.
  • step S6 is omitted, that is, the process proceeds to step S7 without waiting for the waiting period to elapse.
  • the freezer temperature (Tf) increases when the door 3a of the freezer room 3 is opened. And it is thought that the increase amount of freezer compartment temperature (Tf) becomes so large that the frequency
  • the refrigerator compartment 4 if the door 4a is not opened and closed, it is considered that the amount of increase in the refrigerator compartment temperature (Tr) does not change greatly. Therefore, for example, after the operation of the compressor 8 is stopped at the time (t31), if the standby period has elapsed at the time (t33), the freezer compartment temperature (Tf) is virtually shown by a broken line graph G31f. ) Is likely to exceed the upper limit temperature (Tf-H).
  • the control unit 11 acquires the opening / closing status of the door 3a of the freezer compartment 3, and controls the operation of the compressor based on the opening / closing status. Specifically, when the control unit 11 determines that the number of times of opening and closing has reached the reference number of times of opening and closing, and when it is determined that the opening period has reached the reference opening time, the elapse of the standby period The period until the compressor 8 is operated is shortened by starting the change of the target temperature range ( ⁇ Tr) immediately without waiting.
  • step S30 the opening / closing count condition
  • step S31 the opening / closing period condition
  • the amount of change in the target temperature range ( ⁇ Tr) is increased as the number of times of opening and closing is increased or the opening and closing period is longer. It is possible.
  • one of the number of times of opening and closing or the opening and closing period can be used as a condition.
  • the present invention is not limited to those exemplified in the above-described embodiment, and can be arbitrarily modified or expanded as follows, for example, without departing from the scope thereof.
  • the refrigerator 1 in which the freezer room 3 is arranged on the upper side in the main body 2 and the refrigeration room 4 is arranged on the lower side is illustrated.
  • the change process shown in each embodiment is a lower part as shown in FIG.
  • the present invention can also be applied to the refrigerator 20 in which the freezer compartment 3 is disposed on the side and the refrigerator compartment 4 is disposed on the upper side.
  • both the upper limit temperature (Tr ⁇ H) and the lower limit temperature (Tr ⁇ L) are changed to the low temperature side.
  • the target temperature range ( ⁇ Tr) can be changed by changing only H) to the low temperature side. Even when only the upper limit temperature (Tr-H) is changed, the operation timing of the compressor 8 can be advanced compared with the case where the upper limit temperature (Tr-H) is not changed, and the freezer compartment temperature (Tf) becomes the upper limit temperature (Tf-H). Can be reduced.
  • the period during which the cooling is performed can be shortened by not changing the lower limit temperature (Tr-L).
  • Tr-L lower limit temperature
  • the possibility of overcooling can be further reduced by changing only the upper limit temperature (Tr-H).
  • the first embodiment waits until the standby period elapses, and shows an example in which the target temperature range ( ⁇ Tr) is changed to the low temperature side according to the period elapsed from the time point (t10) when the standby period elapses.
  • the target temperature range ( ⁇ Tr) may be changed to the low temperature side in accordance with the elapsed period from the time point (ts) when the compressor 8 is stopped. Whether the elapsed time is calculated as (tn-t10) or (tn-ts), it is only necessary to change the coefficient for determining the change amount. This is because the amount is obtained. Even with such a configuration, cooling can be suitably performed based on the temperature of the refrigerator compartment 4.
  • the target temperature range ( ⁇ Tr) is gradually changed to the low temperature side according to the length of the elapsed period.
  • the target temperature range ( ⁇ Tr) is preset according to the length of the elapsed period It is also possible to change the target temperature range ( ⁇ Tr) up to the set temperature at a time.
  • the numerical values such as the target temperature range and the standby period shown in each embodiment, the mode of the graph showing the temperature change, and the like are examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

A refrigerator (1) comprises a freezer compartment (3) and a refrigeration compartment (4) and is not provided with a damper mechanism which, while both the freezer compartment (3) and the refrigeration compartment (4) are refrigerated by cold air generated by one evaporator (9), adjusts the distribution of cold air to the freezer compartment(3) and the refrigeration compartment (4). The refrigerator (1) comprises a compressor (8) connected to the evaporator (9) and a refrigeration compartment temperature sensor (14) (refrigeration compartment temperature detection unit) for detecting the temperature of the refrigeration compartment (4). Upon the temperature of the refrigeration compartment (4) detected by the refrigeration compartment temperature sensor (14) reaching the upper limit temperature of a predetermined target temperature range, a control unit (11) of the refrigerator (1) operates the compressor (8) and upon the temperature of the refrigeration compartment (4) reaching the lower limit of the target temperature range, halts the compressor (8) and changes the target temperature range to the low temperature side on the basis of the operating state of the compressor (8).

Description

冷蔵庫refrigerator
 本発明の実施形態は、冷蔵庫に関する。 Embodiment of this invention is related with a refrigerator.
 従来、主として製造コストの削減を目的として、冷蔵室および冷凍室への冷気の分配を調整するダンパーを設けずに、冷蔵室に設けた温度センサで検出した冷蔵室温度に基づいて冷却を行う冷蔵庫がある。このような冷蔵庫の場合、冷蔵室に貯蔵した食品の凍結を防止するために冷蔵室に温度センサを設けざるを得ないが、冷蔵室は相対的に冷却負荷が軽いことから、設置場所の温度(外気温)との温度差が小さい場合には冷却運転の回数が少なくなる。つまり、冷蔵室の温度に基づいて冷却を行う場合には、冷却運転の回数が少なくなって冷凍室が冷却不足になるおそれがある。 Conventionally, a refrigerator that performs cooling based on the temperature of a refrigerator compartment detected by a temperature sensor provided in the refrigerator compartment without providing a damper for adjusting the distribution of the cold air to the refrigerator compartment and the freezer compartment, mainly for the purpose of reducing manufacturing costs. There is. In the case of such a refrigerator, a temperature sensor must be provided in the refrigerator compartment in order to prevent the food stored in the refrigerator compartment from freezing. When the temperature difference from (outside temperature) is small, the number of cooling operations is reduced. That is, when cooling is performed based on the temperature of the refrigerator compartment, the number of cooling operations may be reduced and the freezer compartment may become insufficiently cooled.
 そのため、冷蔵室の温度センサを加熱するヒータや外気温を検出するセンサを別途設け、冷却運転の回数を増やすことにより冷凍室の冷却不足の解消を図ることが提案されている(例えば、特許文献1、2参照)。 For this reason, it has been proposed to separately provide a heater for heating the temperature sensor of the refrigerator compartment and a sensor for detecting the outside air temperature, and to solve the lack of cooling of the freezer compartment by increasing the number of cooling operations (for example, Patent Documents). 1 and 2).
特開平5-71846号公報JP-A-5-71846 特開2015-169376号公報Japanese Patent Laying-Open No. 2015-169376
 しかしながら、ヒータや外気温を検出するセンサ等を設ける場合には、部品が追加されることから製造コストが増加する。また、例えば外気温を検出するセンサを設ける場合には、周囲温度による検出温度のバラつきが比較的大きいことが予想され、外気温検出センサの取り付け位置が制限される等の問題も発生する。 そこで、製造コストの増加を招くことなく、冷蔵室の温度に基づいて好適に冷却を行うことができる冷蔵庫を提供することを目的とする。 However, when a heater or a sensor for detecting the outside air temperature is provided, the manufacturing cost increases because parts are added. In addition, for example, when a sensor for detecting the outside air temperature is provided, it is expected that the variation in the detected temperature due to the ambient temperature is relatively large, and there is a problem that the mounting position of the outside air temperature detecting sensor is limited. Therefore, an object of the present invention is to provide a refrigerator that can be suitably cooled based on the temperature of the refrigerator compartment without increasing the manufacturing cost.
 実施形態の冷蔵庫は、冷凍室および冷蔵室を有し、1つの蒸発器で生成した冷気により冷凍室および冷蔵室の双方を冷却する一方、冷凍室および冷蔵室への冷気の分配を調整するダンパー機構は備えていない構成の冷蔵庫であって、蒸発器に接続されている圧縮機と、冷蔵室の温度を検出する冷蔵室温度検出部とを有し、冷蔵室温度検出部で検出した冷蔵室の温度が予め定められている目標温度範囲の上限温度に達すると圧縮機を運転し、冷蔵室の温度が目標温度範囲の下限温度に達すると圧縮機を停止するとともに、圧縮機の運転状況に基づいて目標温度範囲を低温側に変更する制御部と、を備える。 The refrigerator according to the embodiment has a freezing room and a refrigerating room, and cools both the freezing room and the refrigerating room with cold air generated by one evaporator, and adjusts the distribution of the cold air to the freezing room and the refrigerating room. The refrigerator is configured not to have a mechanism, and has a compressor connected to the evaporator, and a refrigerator temperature detector that detects the temperature of the refrigerator, and the refrigerator compartment detected by the refrigerator temperature detector When the temperature reaches the upper limit of the predetermined target temperature range, the compressor is operated, and when the temperature of the refrigerator compartment reaches the lower limit temperature of the target temperature range, the compressor is stopped and the compressor is operated. And a control unit that changes the target temperature range to a low temperature side.
 これにより、1つの蒸発器で生成した冷気により冷凍室および冷蔵室の双方を冷却する一方、冷凍室および冷蔵室への冷気の分配を調整するダンパー機構は備えていない構成の冷蔵庫において、製造コストの増加を招くことなく、冷蔵室の温度に基づいて好適に冷却を行うことができる冷蔵庫を得ることができる。 Thus, in a refrigerator having a configuration that cools both the freezing room and the refrigerating room with the cold air generated by one evaporator but does not have a damper mechanism for adjusting the distribution of the cold air to the freezing room and the refrigerating room, the manufacturing cost is reduced. A refrigerator that can be suitably cooled based on the temperature of the refrigerator compartment can be obtained without causing an increase in the temperature.
第1実施形態の冷蔵庫の構成を模式的に示す図。The figure which shows typically the structure of the refrigerator of 1st Embodiment. 冷蔵庫の電気的構成を模式的に示す図。The figure which shows typically the electric constitution of a refrigerator. 比較例であり、目標温度範囲の変更処理を行わない場合の温度変化の一例を示す図。The figure which is a comparative example and shows an example of the temperature change when not changing the target temperature range. 目標温度範囲の変更処理の流れを示す図。The figure which shows the flow of the change process of a target temperature range. 目標温度範囲の変更処理を行った場合の温度変化の一例を示す図。The figure which shows an example of the temperature change at the time of performing the change process of a target temperature range. 第2実施形態による目標温度範囲の変更処理の流れを示す図。The figure which shows the flow of the change process of the target temperature range by 2nd Embodiment. 目標温度範囲の変更処理を行った場合の温度変化の一例を示す図。The figure which shows an example of the temperature change at the time of performing the change process of a target temperature range. 第3実施形態による目標温度範囲の変更処理の流れを示す図。The figure which shows the flow of the change process of the target temperature range by 3rd Embodiment. 目標温度範囲の変更処理を行った場合の温度変化の一例を示す図。The figure which shows an example of the temperature change at the time of performing the change process of a target temperature range. その他の実施形態による冷蔵庫の構成を模式的に示す図。The figure which shows typically the structure of the refrigerator by other embodiment.
 以下、複数の実施形態について図面を参照しながら説明する。なお、各実施形態において実質的に共通する部位には同一符号を付して説明する。   (第1実施形態)
 以下、第1実施形態について、図1から図5を参照しながら説明する。図1に示すように、冷蔵庫1は、本体2の上部側に冷凍室3、下部側に冷蔵室4が配置されている。冷凍室3は、前面側が開口しており、その開口が扉3aによって開閉される。一方、冷蔵室4は、前面側が開口しており、その開口が扉4aによって開閉される。
Hereinafter, a plurality of embodiments will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected and demonstrated to the site | part substantially common in each embodiment. (First embodiment)
Hereinafter, the first embodiment will be described with reference to FIGS. 1 to 5. As shown in FIG. 1, the refrigerator 1 has a freezer compartment 3 on the upper side of the main body 2 and a refrigerator compartment 4 on the lower side. The freezer compartment 3 is open on the front side, and the opening is opened and closed by a door 3a. On the other hand, the refrigerator compartment 4 has an opening on the front side, and the opening is opened and closed by a door 4a.
  冷凍室3と冷蔵室4との間は断熱仕切り5によって仕切られており、この断熱仕切り5には冷蔵室4側からの冷気の吸い出し口6が設けられている。本体2の背面側に配設されている冷気ダクト7を経由して冷蔵室4内に供給された冷気は、吸い出し口6から吸い出されて冷蔵庫1内を循環する。この冷気は、本体2下部の背面側に形成された機械室に設置された圧縮機8、および本体2上部の背面側の冷却室に設置された蒸発器9を含む冷凍サイクルによって生成される。 The freezer compartment 3 and the refrigerator compartment 4 are partitioned by a heat insulating partition 5, and the heat insulating partition 5 is provided with a cold air suction port 6 from the refrigerator compartment 4 side. The cold air supplied into the refrigerator compartment 4 via the cold air duct 7 disposed on the back side of the main body 2 is sucked out from the suction port 6 and circulates in the refrigerator 1. This cold air is generated by a refrigeration cycle including a compressor 8 installed in a machine room formed on the back side of the lower part of the main body 2 and an evaporator 9 installed in a cooling room on the back side of the upper part of the main body 2.
 より詳細には、冷蔵庫1は、圧縮機8を駆動することにより蒸発器9にて冷気を生成し、蒸発器9の近傍に設けられているファン10を駆動することにより冷凍室3および冷蔵室4に冷気を供給する。このとき、冷蔵室4に供給された冷気は、吸い出し口6から吸い出されて冷却室に到達し、再び蒸発器9によって冷却される。このように、冷蔵庫1では、1つの蒸発器9で生成した冷気を循環させることにより冷凍室3および冷蔵室4の双方を冷却している。ただし、冷蔵庫1は、生成した冷気の冷凍室3および冷蔵室4への分配を調整するためのいわゆるダンパー機構は備えていないため、冷凍室3のみが単独で冷却されることはない。圧縮機8を停止した場合には、冷凍室3および冷蔵室4の双方の冷却が停止することになる。 More specifically, the refrigerator 1 generates cold air in the evaporator 9 by driving the compressor 8, and drives the fan 10 provided in the vicinity of the evaporator 9 to drive the freezer compartment 3 and the refrigerator compartment. 4 is supplied with cold air. At this time, the cold air supplied to the refrigerator compartment 4 is sucked out from the suction port 6, reaches the cooling compartment, and is cooled again by the evaporator 9. Thus, in the refrigerator 1, both the freezer compartment 3 and the refrigerator compartment 4 are cooled by circulating the cool air produced | generated with the one evaporator 9. FIG. However, since the refrigerator 1 does not include a so-called damper mechanism for adjusting the distribution of the generated cold air to the freezer compartment 3 and the refrigerator compartment 4, only the freezer compartment 3 is not cooled alone. When the compressor 8 is stopped, the cooling of both the freezer compartment 3 and the refrigerator compartment 4 is stopped.
 これら圧縮機8を含む冷蔵庫1全体は、本体2の背面側の制御室に設けられている制御部11によって制御されている。制御部11は、図示しないCPU等を有するマイクロコンピュータで構成されており、図2に示すように、記憶部12およびタイマ13に接続されている。記憶部12は、例えば半導体メモリ等により構成されており、後述する目標温度範囲の変更処理等、制御部11で実行する各種のプログラムやデータを記憶している。タイマ13は、時刻を取得したり、ある時点から経過した期間を取得したりすることを可能とする計時機能を有している。なお、記憶部12やタイマ13が内蔵されたいわゆるワンチップマイコンを用いて制御部11を構成してもよい。 The entire refrigerator 1 including the compressor 8 is controlled by a control unit 11 provided in a control room on the back side of the main body 2. The control unit 11 is composed of a microcomputer having a CPU or the like (not shown), and is connected to the storage unit 12 and the timer 13 as shown in FIG. The storage unit 12 is configured by, for example, a semiconductor memory, and stores various programs and data executed by the control unit 11 such as a target temperature range changing process described later. The timer 13 has a time measuring function that makes it possible to acquire time and to acquire a period elapsed from a certain time. The control unit 11 may be configured using a so-called one-chip microcomputer in which the storage unit 12 and the timer 13 are built.
 また、制御部11は、圧縮機8、ファン10、冷蔵室温度検出部としての冷蔵室温度センサ14、冷蔵室扉スイッチ15、および冷凍室扉スイッチ16に接続している。冷蔵室温度センサ14は、図1に示すように冷蔵室4内に設けられており、冷蔵室4の温度(以下、冷蔵室温度(Tr)とも称する)を検出する。この冷蔵室温度センサ14によって検出された冷蔵室温度(Tr)に基づいて、制御部11は圧縮機8の動作を制御している。 Further, the control unit 11 is connected to the compressor 8, the fan 10, the refrigerating room temperature sensor 14 as the refrigerating room temperature detecting unit, the refrigerating room door switch 15, and the freezer room door switch 16. The refrigerating room temperature sensor 14 is provided in the refrigerating room 4 as shown in FIG. 1, and detects the temperature of the refrigerating room 4 (hereinafter also referred to as a refrigerating room temperature (Tr)). Based on the refrigerator compartment temperature (Tr) detected by the refrigerator compartment temperature sensor 14, the controller 11 controls the operation of the compressor 8.
 具体的には、制御部11は、冷蔵室温度(Tr)が予め定められている目標温度範囲(ΔTr。図3参照)の上限温度(Tr-H。図3参照)に達すると圧縮機8を運転し、冷蔵室温度(Tr)が目標温度範囲の下限温度(Tr-L。図3参照)に達すると圧縮機8を停止する。また、詳細は後述するが、制御部11は、圧縮機8の運転状況に基づいて、目標温度範囲を低温側に変更する変更処理(図4参照)を実行する。 Specifically, when the refrigerator compartment temperature (Tr) reaches the upper limit temperature (Tr−H, see FIG. 3) within a predetermined target temperature range (ΔTr, see FIG. 3), the control unit 11 When the refrigerator compartment temperature (Tr) reaches the lower limit temperature (Tr-L, see FIG. 3) of the target temperature range, the compressor 8 is stopped. Moreover, although mentioned later for details, the control part 11 performs the change process (refer FIG. 4) which changes a target temperature range to the low temperature side based on the operating condition of the compressor 8. FIG.
 冷蔵室扉スイッチ15は、冷蔵室4の扉4aの開閉状態を検出する。冷凍室扉スイッチ16は、冷凍室3の扉3aの開閉状態を検出する。この冷凍室扉スイッチ16は、開閉検出部に相当する。なお、制御部11は、図示は省略するが、例えば庫内灯など、図2に示した各機能部以外にも冷蔵庫1の動作に必要な機能部に接続されている。 The refrigerator compartment door switch 15 detects the open / closed state of the door 4a of the refrigerator compartment 4. The freezer compartment door switch 16 detects the open / closed state of the door 3 a of the freezer compartment 3. The freezer compartment door switch 16 corresponds to an open / close detection unit. In addition, although illustration is abbreviate | omitted, the control part 11 is connected to the function part required for operation | movement of the refrigerator 1 other than each function part shown in FIG.
 次に上記した構成の作用について説明する。まず、冷蔵庫1の基本的な制御の流れと、後述する目標温度範囲の変更処理を行わない場合の冷凍室3および冷蔵室温度(Tr)の変化の一例とについて、図3を参照しながら説明する。冷蔵庫1には、図3に示すように、冷蔵室4に対する目標温度範囲(ΔTr)と、冷凍室3に対する目標温度範囲(ΔTf)とが設定されている。 Next, the operation of the above configuration will be described. First, a basic control flow of the refrigerator 1 and an example of changes in the freezer compartment 3 and the refrigerator compartment temperature (Tr) when the target temperature range changing process described later is not performed will be described with reference to FIG. To do. As shown in FIG. 3, a target temperature range (ΔTr) for the refrigerator compartment 4 and a target temperature range (ΔTf) for the freezer compartment 3 are set in the refrigerator 1.
 なお、一例ではあるが、初期状態つまりは後述する変更処理を行っていない状態においては、冷蔵室4の目標温度範囲(ΔTr)は、その上限温度(Tr-H)が6℃、下限温度(Tr-L)が2℃に設定され、温度差4℃の範囲として設定される。また、冷凍室3に対する目標温度範囲(ΔTf)は、その上限温度(Tf-H)が-11℃、下限温度(Tf-L)が-13℃に設定され、温度差2℃の範囲が設定される。 Note that, as an example, in the initial state, that is, in the state where the change process described later is not performed, the target temperature range (ΔTr) of the refrigerator compartment 4 has an upper limit temperature (Tr−H) of 6 ° C. and a lower limit temperature ( Tr−L) is set to 2 ° C., and the temperature difference is set to 4 ° C. The target temperature range (ΔTf) for the freezer compartment 3 is set such that the upper limit temperature (Tf−H) is −11 ° C., the lower limit temperature (Tf−L) is −13 ° C., and the temperature difference is 2 ° C. Is done.
 この場合、冷蔵室温度(Tr)が目標温度範囲(ΔTr)内に収まるように、また、冷凍室3の温度(以下、冷凍室温度(Tf)とも称する)が目標温度範囲(ΔTf)内に収まるように冷却することが望ましい。そのため、制御部11は、グラフG1rにて示すように、冷蔵室温度(Tr)が上昇し、例えば時刻(t2)において目標温度範囲(ΔTr)の上限温度(Tr-H)に到達したとすると、圧縮機8の動作を開始する。以下、圧縮機8が動作している状態を単に「運転」とも称する。これにより、蒸発器9において冷気が生成され、その冷気が冷蔵庫1内を循環することにより、冷蔵室4および冷蔵室4が冷却される。なお、圧縮機8の運転中には、ファン10も運転される。 In this case, the temperature in the freezer compartment (Tr) falls within the target temperature range (ΔTr), and the temperature of the freezer compartment 3 (hereinafter also referred to as the freezer compartment temperature (Tf)) falls within the target temperature range (ΔTf). It is desirable to cool to fit. Therefore, as shown in the graph G1r, the control unit 11 assumes that the refrigerating room temperature (Tr) rises and reaches the upper limit temperature (Tr−H) of the target temperature range (ΔTr) at time (t2), for example. Then, the operation of the compressor 8 is started. Hereinafter, the state in which the compressor 8 is operating is also simply referred to as “operation”. Thereby, cold air is generated in the evaporator 9, and the cold air circulates in the refrigerator 1, thereby cooling the refrigerator compartment 4 and the refrigerator compartment 4. During the operation of the compressor 8, the fan 10 is also operated.
 一方、制御部11は、圧縮機8を動作させたことにより冷蔵室温度(Tr)が低下してゆき、例えば時刻(t3)において目標温度範囲(ΔTr)の下限温度(Tr-H)に到達したとすると、それ以上の冷却が不要であることから、圧縮機8の動作を終了する。以下、圧縮機8が動作していない状態を単に「停止」とも称する。このとき、ファン10も停止する。 On the other hand, the control unit 11 causes the refrigerator temperature (Tr) to decrease due to the operation of the compressor 8, and reaches, for example, the lower limit temperature (Tr−H) of the target temperature range (ΔTr) at time (t3). If it does, since the further cooling is unnecessary, operation | movement of the compressor 8 is complete | finished. Hereinafter, the state where the compressor 8 is not operating is also simply referred to as “stop”. At this time, the fan 10 also stops.
 つまり、冷蔵室4の目標温度範囲(ΔTr)の上限温度(Tr-H)は、圧縮機8を運転するか否かを判定するための温度であり、下限温度(Tr-L)は圧縮機8を停止するか否かを判定するための温度である。そして、制御部11は、冷蔵室温度(Tr)に基づいて、より厳密に言えば、冷蔵室温度(Tr)が上限温度(Tr-H)あるいは下限温度(Tr-L)に達したか否かに基づいて、圧縮機8の動作を制御する。 That is, the upper limit temperature (Tr−H) of the target temperature range (ΔTr) of the refrigerator compartment 4 is a temperature for determining whether or not to operate the compressor 8, and the lower limit temperature (Tr−L) is the compressor. 8 is a temperature for determining whether to stop 8 or not. More precisely, based on the refrigerator compartment temperature (Tr), the control unit 11 determines whether or not the refrigerator compartment temperature (Tr) has reached the upper limit temperature (Tr-H) or the lower limit temperature (Tr-L). Based on this, the operation of the compressor 8 is controlled.
 ところで、冷蔵室温度(Tr)に基づいて圧縮機8の動作を制御する場合には、冷凍室温度(Tf)が目標温度範囲(ΔTf)を超えてしまう状況、つまりは、冷凍室3を適切に冷却することができない状況が起こり得る。例えば、グラフG1fにて示すように、冷凍室温度(Tf)が時刻(t2)よりも前の時刻(t1)において上限温度(Tf-H)に到達していたとしても、その時点では冷蔵室温度(Tr)は上限温度(Tr-H)に到達していないため、圧縮機8が運転されることはない。そして、圧縮機8が運転されなければ冷凍室3も冷蔵室4も冷却されないため、冷凍室温度(Tf)が上限温度(Tf-H)を超えてさらに上昇してしまう状況が想定される。 By the way, when the operation of the compressor 8 is controlled based on the refrigerator compartment temperature (Tr), the situation where the freezer compartment temperature (Tf) exceeds the target temperature range (ΔTf), that is, the freezer compartment 3 is appropriately set. Situations that cannot be cooled down can occur. For example, as shown in the graph G1f, even if the freezer temperature (Tf) reaches the upper limit temperature (Tf−H) at the time (t1) before the time (t2), the refrigerator compartment at that time Since the temperature (Tr) does not reach the upper limit temperature (Tr-H), the compressor 8 is not operated. If the compressor 8 is not operated, neither the freezer compartment 3 nor the refrigerating compartment 4 is cooled. Therefore, it is assumed that the freezer compartment temperature (Tf) exceeds the upper limit temperature (Tf−H) and further rises.
 あるいは、室温が比較的低い場合には、冷蔵室温度(Tr)との温度差が小さいため、圧縮機8の運転を停止した例えば時刻(t3)以降における冷蔵室温度(Tr)の上昇は緩やかになる。この場合、冷蔵室温度(Tr)が上限温度(Tr-H)に到達するまでの時間、つまりは、圧縮機8が停止している期間が長くなる。そして、圧縮機8が停止したままであるため冷却が行われず、冷凍室温度(Tf)が例えば時刻(t4)において上限温度(Tf-H)に到達していたとしてもそのまま上昇し続けてしまう状況も想定される。 Alternatively, when the room temperature is relatively low, the temperature difference from the refrigerating room temperature (Tr) is small, so that the increase in the refrigerating room temperature (Tr) after the operation of the compressor 8 is stopped, for example, after time (t3) is moderate. become. In this case, the time until the refrigerator compartment temperature (Tr) reaches the upper limit temperature (Tr−H), that is, the period during which the compressor 8 is stopped becomes longer. Then, since the compressor 8 remains stopped, cooling is not performed, and even if the freezer compartment temperature (Tf) reaches the upper limit temperature (Tf−H) at the time (t4), for example, it continues to rise. The situation is also envisaged.
 このように、冷気の分配を調整するダンパー機構を備えていない冷蔵庫1において冷蔵室温度(Tr)に基づいて圧縮機8の動作を制御する場合には、換言すると、冷凍室温度(Tf)を直接的に検出するセンサを設けない構成の場合には、冷蔵室温度(Tr)を目標温度範囲(ΔTr)内に収めることができても、冷凍室温度(Tf)を目標温度範囲(ΔTf)に収めることができないおそれがある。 Thus, when controlling the operation of the compressor 8 based on the refrigerating room temperature (Tr) in the refrigerator 1 that does not include the damper mechanism for adjusting the distribution of the cold air, in other words, the freezing room temperature (Tf) is set. In the case of a configuration in which a sensor that directly detects is not provided, even if the refrigerator compartment temperature (Tr) can be within the target temperature range (ΔTr), the freezer compartment temperature (Tf) is set to the target temperature range (ΔTf). There is a possibility that it cannot fit in.
 このような場合には、冷凍室3にも温度センサを設けたり、冷蔵室温度センサ14を加熱するヒータを設けたり、或いは室温を検出する温度センサを設けたりすることにより、冷凍室3を適切に冷却することができると考えられる。ただし、その場合には、追加の部品が必要となることから製造コストが増加してしまう。また、ヒータ等の加熱手段を設けると、消費電力の増加も招いてしまう。 In such a case, the freezer compartment 3 is appropriately provided by providing a temperature sensor in the freezer compartment 3, a heater for heating the refrigerator compartment temperature sensor 14, or a temperature sensor for detecting the room temperature. It is thought that it can be cooled. In this case, however, the manufacturing cost increases because additional parts are required. Further, if heating means such as a heater is provided, the power consumption is also increased.
 そこで、本実施形態の冷蔵庫1は、冷蔵室温度(Tr)に基づいて圧縮機8の動作を適切に制御することを可能としている。以下、図4および図5を参照しながら、制御部11により繰り返し実行される目標温度範囲の変更処理、および目標温度範囲の変更処理を行った場合の温度変化の一例について説明する。 Therefore, the refrigerator 1 of the present embodiment can appropriately control the operation of the compressor 8 based on the refrigerator compartment temperature (Tr). Hereinafter, an example of the temperature change when the target temperature range changing process and the target temperature range changing process repeatedly executed by the control unit 11 are performed will be described with reference to FIGS. 4 and 5.
 制御部11は、図4に示す変更処理において、冷蔵室温度(Tr)が上限温度(Tr-H)に到達したか否かを判定しており(S1)、上限温度(Tr-H)に到達したと判定した場合には(S1:YES)、上記したように圧縮機8を運転する(S2)。一方、制御部11は、上限温度(Tr-H)に到達していないと判定した場合には(S1:NO)、ステップS3に移行する。 In the changing process shown in FIG. 4, the control unit 11 determines whether or not the refrigerator temperature (Tr) has reached the upper limit temperature (Tr-H) (S1), and the upper limit temperature (Tr-H) is reached. When it is determined that it has reached (S1: YES), the compressor 8 is operated as described above (S2). On the other hand, when it is determined that the upper limit temperature (Tr−H) has not been reached (S1: NO), the control unit 11 proceeds to step S3.
 このステップS3においては、制御部11は、冷蔵室温度(Tr)が下限温度(Tr-L)に到達したか否かを判定しており(S3)、下限温度(Tr-L)に到達していないと判定した場合には(S3:NO)、ステップS1に戻る。一方、制御部11は、下限温度(Tr-L)に到達したと判定した場合には(S3:YES)、圧縮機8を停止する(S4)。ここでは、図5に示す時刻(ts)にて圧縮機8が停止されたものとする。 In step S3, the control unit 11 determines whether or not the refrigerator temperature (Tr) has reached the lower limit temperature (Tr-L) (S3), and has reached the lower limit temperature (Tr-L). If it is determined that it is not (S3: NO), the process returns to step S1. On the other hand, when it is determined that the lower limit temperature (Tr-L) has been reached (S3: YES), the control unit 11 stops the compressor 8 (S4). Here, it is assumed that the compressor 8 is stopped at the time (ts) shown in FIG.
 制御部11は、圧縮機8を停止すると、冷蔵室4の目標温度範囲(ΔTr)の変更を初期化する(S5)。なお、目標温度範囲(ΔTr)の変更については以下に説明するが、上記したように制御部11は変更処理を繰り返し実行しているため、前回の処理において目標温度範囲(ΔTr)を変更していた場合に、ステップS5においてその変更を初期化する。 When the compressor 8 is stopped, the control unit 11 initializes the change of the target temperature range (ΔTr) of the refrigerator compartment 4 (S5). Although the change of the target temperature range (ΔTr) will be described below, since the control unit 11 repeatedly executes the change process as described above, the target temperature range (ΔTr) is changed in the previous process. If so, the change is initialized in step S5.
 続いて、制御部11は、ステップS4にて圧縮機8を停止してから待機期間が経過したか否かを判定する(S6)。この待機期間は、例えば室温が25℃である場合の冷蔵室4の温度変化を試験により予め求めておき、その温度変化に基づいて例えば10分間等の期間が初期値として設定されている。 Subsequently, the control unit 11 determines whether or not the standby period has elapsed since the compressor 8 was stopped in step S4 (S6). In this standby period, for example, a temperature change of the refrigerator compartment 4 when the room temperature is 25 ° C. is obtained in advance by a test, and a period of, for example, 10 minutes is set as an initial value based on the temperature change.
 制御部11は、待機期間が経過していないと判定した場合には(S6:NO)、冷蔵室温度(Tr)が上限温度(Tr-H)に到達したか否かを判定する(S9)。例えば図5に示す時刻(t17)において外気温(Te)が上昇した場合、時刻(t18)において圧縮機8が停止すると、待機期間が経過する前の時刻(t19)において冷蔵室温度(Tr)が上限温度(Tr-H)に到達するような状況が想定される。つまり、待機期間中であっても、冷蔵室温度(Tr)が上限温度(Tr-H)に到達する状況が発生し得る。 When it is determined that the standby period has not elapsed (S6: NO), the controller 11 determines whether or not the refrigerating room temperature (Tr) has reached the upper limit temperature (Tr−H) (S9). . For example, when the outside air temperature (Te) rises at time (t17) shown in FIG. 5 and the compressor 8 stops at time (t18), the refrigerator temperature (Tr) at time (t19) before the standby period elapses. Is assumed to reach the upper limit temperature (Tr-H). That is, even during the standby period, a situation in which the refrigerator temperature (Tr) reaches the upper limit temperature (Tr−H) may occur.
 そのため、制御部11は、待機期間の経過を待たなくても圧縮機8を運転可能とするために、ステップS9の判定を行っている。これにより、待機期間が経過するまで単純に待機し続けた結果、グラフG13fにて仮想的に示すように冷凍室温度(Tf)が上限温度(Tf-H)を超えてしまうような状況を抑制できる。 Therefore, the control unit 11 performs the determination in step S9 so that the compressor 8 can be operated without waiting for the standby period to elapse. As a result, the situation where the freezer temperature (Tf) exceeds the upper limit temperature (Tf−H) as shown in the graph G13f as a result of simply waiting until the standby period elapses is suppressed. it can.
 一方、制御部11は、待機期間が経過したと判定した場合には(S6:YES)、目標温度範囲(ΔTr)を単位期間毎に低温側に変更する(S7)。この状態では圧縮機8が停止していることから、冷蔵室温度(Tr)は徐々に上昇していく。そのため、制御部11は、冷蔵室温度(Tr)が上限温度(Tr-H)に到達したか否かを判定し(S8)、上限温度(Tr-H)に到達していないと判定した場合には(S8:NO)、ステップS7に移行する。このとき、制御部11は、圧縮機8を停止した状態を維持している。 On the other hand, when it is determined that the standby period has elapsed (S6: YES), the control unit 11 changes the target temperature range (ΔTr) to the low temperature side for each unit period (S7). In this state, since the compressor 8 is stopped, the refrigerator temperature (Tr) gradually increases. Therefore, the control unit 11 determines whether or not the refrigerator compartment temperature (Tr) has reached the upper limit temperature (Tr-H) (S8), and determines that the upper limit temperature (Tr-H) has not been reached. (S8: NO), the process proceeds to step S7. At this time, the control unit 11 maintains a state where the compressor 8 is stopped.
 そして、ステップS7に移行すると、制御部11は、目標温度範囲(ΔTr)を単位期間毎に低温側に変更する。つまり、制御部11は、例えば図5に示す時刻(t10)において待機期間が経過したとすると、時刻(t10)から経過した期間に応じて、つまりは、現在時刻(tn)との差分(tn-t10)に応じて、目標温度範囲(ΔTr)を徐々に低温側に変更していく。 And if it transfers to step S7, the control part 11 will change a target temperature range ((DELTA) Tr) to the low temperature side for every unit period. That is, for example, if the standby period has elapsed at time (t10) shown in FIG. 5, the control unit 11 corresponds to the period elapsed from time (t10), that is, the difference (tn) from the current time (tn). According to -t10), the target temperature range (ΔTr) is gradually changed to the low temperature side.
 すなわち、制御部11は、圧縮機8の運転状況として圧縮機8を停止してから経過した期間である経過期間を取得し、取得した経過期間が長くなるほど、目標温度範囲(ΔTr)の変更量を大きくしている。また、制御部11は、上限温度(Tr-H)および下限温度(Tr-L)の双方を低温側に変更することにより、目標温度範囲(ΔTr)を低温側に変更している。これにより、目標温度範囲(ΔTr)を変更しない場合に比べて、圧縮機8の運転が開始されるタイミングを前倒しすることができる。 That is, the control unit 11 acquires an elapsed period that is a period that has elapsed since the compressor 8 was stopped as the operating state of the compressor 8, and the amount of change in the target temperature range (ΔTr) increases as the acquired elapsed period becomes longer. Has increased. Further, the control unit 11 changes the target temperature range (ΔTr) to the low temperature side by changing both the upper limit temperature (Tr−H) and the lower limit temperature (Tr−L) to the low temperature side. Thereby, compared with the case where the target temperature range (ΔTr) is not changed, the timing at which the operation of the compressor 8 is started can be advanced.
 続いて、制御部11は、ステップS8において冷蔵室温度(Tr)が上限温度(Tr-H)に到達したか否かを再度判定し、上限温度(Tr-H)に到達していないと判定した場合には(S8:NO)ステップS7に戻って、目標温度範囲(ΔTr)を低温側に変更することを繰り返す。 Subsequently, in step S8, the control unit 11 determines again whether or not the refrigerating room temperature (Tr) has reached the upper limit temperature (Tr-H), and determines that the upper limit temperature (Tr-H) has not been reached. If so (S8: NO), the process returns to step S7 to repeat changing the target temperature range (ΔTr) to the low temperature side.
 図5に示す時刻(t11)において冷蔵室温度(Tr)が変更された上限温度(Tr-H)に到達したとすると、制御部11は、ステップS8において冷蔵室温度(Tr)が上限温度(Tr-H)に到達したと判定することから(S8:YES)、圧縮機8を運転する(S2)。これにより、冷蔵室4および冷凍室3の冷却が行われる。 Assuming that the refrigerating room temperature (Tr) reaches the changed upper limit temperature (Tr−H) at the time (t11) shown in FIG. 5, the control unit 11 sets the refrigerating room temperature (Tr) to the upper limit temperature (Tr) in step S8. Since it is determined that it has reached (Tr−H) (S8: YES), the compressor 8 is operated (S2). Thereby, cooling of the refrigerator compartment 4 and the freezer compartment 3 is performed.
 一方、仮に冷蔵室4の目標温度範囲(ΔTr)を低温側に変更する処理を行わない場合には、冷蔵室温度(Tr)は、図5に破線のグラフG11rにて仮想的に示すように時刻(t12)にて上限温度(Tr-H)に到達することになる。ただし、その場合には、破線のグラフG11fにて仮想的に示すように、冷凍室温度(Tf)が上限温度(Tf-H)を超えてしまう可能性がある。 On the other hand, if the process of changing the target temperature range (ΔTr) of the refrigerator compartment 4 to the low temperature side is not performed, the refrigerator compartment temperature (Tr) is virtually shown by a broken line graph G11r in FIG. The upper limit temperature (Tr−H) is reached at time (t12). However, in that case, there is a possibility that the freezer compartment temperature (Tf) may exceed the upper limit temperature (Tf−H), as virtually indicated by the broken line graph G11f.
 また、仮に冷蔵室4の目標温度範囲(ΔTr)の上限温度(Tr-H)のみを低温側に変更した場合には、図5に示す時刻(t13)において冷却が停止することから、破線のグラフG12r、G12fにて仮想的に示すように冷蔵室温度(Tr)、冷凍室温度(Tf)は上昇する。このとき、冷凍室3の冷却が不十分であると、冷蔵室温度(Tr)が上限温度(Tr-H)に到達する前に冷凍室温度(Tf)が上限温度(Tf-H)を超えてしまう可能性がある。 Further, if only the upper limit temperature (Tr−H) of the target temperature range (ΔTr) of the refrigerator compartment 4 is changed to the low temperature side, the cooling stops at the time (t13) shown in FIG. The refrigerator compartment temperature (Tr) and the freezer compartment temperature (Tf) rise as virtually shown by the graphs G12r and G12f. At this time, if the freezer compartment 3 is not sufficiently cooled, the freezer compartment temperature (Tf) exceeds the upper limit temperature (Tf−H) before the refrigerator compartment temperature (Tr) reaches the upper limit temperature (Tr−H). There is a possibility that.
 これに対して、本実施形態のように冷蔵室4の目標温度範囲(ΔTr)の上限温度(Tr-H)および下限温度(Tr-L)の双方を低温側に変更する場合には、時刻(t14)まで冷却が継続することから、冷凍室3を十分に冷却することができ、冷凍室温度(Tf)が上限温度(Tf-H)を超えてしまう可能性を低減できる。 In contrast, when both the upper limit temperature (Tr-H) and the lower limit temperature (Tr-L) of the target temperature range (ΔTr) of the refrigerator compartment 4 are changed to the low temperature side as in the present embodiment, the time Since the cooling continues until (t14), the freezer compartment 3 can be sufficiently cooled, and the possibility that the freezer compartment temperature (Tf) exceeds the upper limit temperature (Tf−H) can be reduced.
 その後、制御部11は、上記したステップS1~S9の処理を繰り返し、例えば時刻(t15)において待機期間が経過した場合には目標温度範囲(ΔTr)を変更し、時刻(t16)において冷蔵室温度(Tr)が上限温度(Tr-H)に到達した場合には圧縮機8を運転する等の制御を繰り返す。このように、本実施形態の冷蔵庫1では、冷蔵室温度(tr)に基づいて圧縮機8の運転を制御するとともに、圧縮機8の運転状況に基づいて目標温度範囲を低温側に変更している。 Thereafter, the control unit 11 repeats the processing of steps S1 to S9 described above, and changes the target temperature range (ΔTr) when the standby period has elapsed at time (t15), for example, and the refrigerator temperature at time (t16). When (Tr) reaches the upper limit temperature (Tr-H), control such as operating the compressor 8 is repeated. As described above, in the refrigerator 1 according to the present embodiment, the operation of the compressor 8 is controlled based on the refrigerator temperature (tr), and the target temperature range is changed to the low temperature side based on the operation state of the compressor 8. Yes.
 以上説明した実施形態によれば、次のような効果を得ることができる。実施形態の冷蔵庫1は、冷凍室3および冷蔵室4を有し、1つの蒸発器9で生成した冷気により冷凍室3および冷蔵室4の双方を冷却する一方、冷凍室3および冷蔵室4への冷気の分配を調整するダンパー機構は備えていない。そして、冷蔵庫1は、冷蔵室温度センサ14で検出した冷蔵室温度(Tr)が予め定められている目標温度範囲(ΔTr)の上限温度(Tr-H)に達すると圧縮機8を運転し、冷蔵室温度(Tr)が目標温度範囲(ΔTr)の下限温度(Tr-L)に達すると圧縮機8を停止するとともに、圧縮機8の運転状況に基づいて目標温度範囲(ΔTr)を低温側に変更する。 According to the embodiment described above, the following effects can be obtained. The refrigerator 1 according to the embodiment includes a freezing room 3 and a refrigerating room 4, and cools both the freezing room 3 and the refrigerating room 4 with the cold air generated by one evaporator 9, while the freezing room 3 and the refrigerating room 4 are moved to. There is no damper mechanism to adjust the distribution of cold air. The refrigerator 1 operates the compressor 8 when the refrigerator compartment temperature (Tr) detected by the refrigerator compartment temperature sensor 14 reaches the upper limit temperature (Tr−H) of the predetermined target temperature range (ΔTr), When the refrigerator temperature (Tr) reaches the lower limit temperature (Tr−L) of the target temperature range (ΔTr), the compressor 8 is stopped, and the target temperature range (ΔTr) is set to the low temperature side based on the operating state of the compressor 8. Change to
 これにより、目標温度範囲(ΔTr)を変更しない場合に比べて、圧縮機8の運転が開始されるタイミングを前倒しすることができる。換言すると、圧縮機8の運転間隔の短縮、つまりは、圧縮機8の運転を再開するまでの期間を短くすることができる。そして、圧縮機8が運転されれば冷凍室3が冷却されるため、冷凍室温度(Tf)が上限温度(Tf-H)を超えてしまう可能性、すなわち、冷凍室3の冷却が不十分になるおそれ、を低減することができる。また、ダンパー機構を備えていない場合であっても、冷凍室3の温度を検出するセンサを設ける必要も無い。したがって、製造コストの増加を招くことなく、冷蔵室4の温度に基づいて好適に冷却を行うことができる。 Thereby, the timing at which the operation of the compressor 8 is started can be advanced compared to the case where the target temperature range (ΔTr) is not changed. In other words, the operation interval of the compressor 8 can be shortened, that is, the period until the operation of the compressor 8 is restarted can be shortened. Since the freezer compartment 3 is cooled when the compressor 8 is operated, the freezer compartment temperature (Tf) may exceed the upper limit temperature (Tf−H), that is, the freezer compartment 3 is not sufficiently cooled. Can be reduced. Further, even if the damper mechanism is not provided, there is no need to provide a sensor for detecting the temperature of the freezer compartment 3. Therefore, cooling can be suitably performed based on the temperature of the refrigerator compartment 4 without causing an increase in manufacturing cost.
 また、冷蔵庫1は、運転状況として圧縮機8を停止してから経過した期間である経過期間を取得し、取得した経過期間が長くなるほど目標温度範囲(ΔTr)の変更量を大きくする。これにより、圧縮機8が停止していることから冷却されない期間が長くなるほど、圧縮機8の運転を再開するタイミングがより早くなる。したがって、冷凍室3の冷却が不十分になるおそれを低減することができる。 Further, the refrigerator 1 acquires an elapsed period that is a period that has elapsed since the compressor 8 was stopped as an operating state, and increases the change amount of the target temperature range (ΔTr) as the acquired elapsed period becomes longer. Thereby, the timing which restarts the driving | operation of the compressor 8 becomes earlier, so that the period which is not cooled from the compressor 8 being stopped becomes long. Therefore, the possibility that cooling of the freezer compartment 3 will be insufficient can be reduced.
 また、冷蔵庫1は、圧縮機8の運転を停止する際に目標温度範囲(ΔTr)を初期化する。これにより、目標温度範囲(ΔTr)が低温側に変更されたままとなることが防止され、過度に冷却が行われてしまうおそれを低減することができる。また、冷蔵庫1は、圧縮機8を停止してから予め定められている待機期間が経過した時点で、目標温度範囲(ΔTr)の変更を開始する。このように目標温度範囲(ΔTr)を直ぐに低温側に変更することが抑制され、過度に冷却が行われてしまうおそれを低減することができる。 Further, the refrigerator 1 initializes the target temperature range (ΔTr) when the operation of the compressor 8 is stopped. This prevents the target temperature range (ΔTr) from being changed to the low temperature side, thereby reducing the possibility of excessive cooling. Further, the refrigerator 1 starts changing the target temperature range (ΔTr) when a predetermined standby period has elapsed since the compressor 8 was stopped. Thus, it is possible to suppress the target temperature range (ΔTr) from being immediately changed to the low temperature side, and to reduce the possibility of excessive cooling.
   (第2実施形態)
 以下、第2実施形態について、図6および図7を参照しながら説明する。第2実施形態では、圧縮機8の運転割合を加味して圧縮機8を制御する点が、第1実施形態と異なっている。なお、冷蔵庫1の構成は第1実施形態と共通するので、図1も参照しながら説明する。
(Second Embodiment)
Hereinafter, the second embodiment will be described with reference to FIGS. 6 and 7. The second embodiment is different from the first embodiment in that the compressor 8 is controlled in consideration of the operation ratio of the compressor 8. In addition, since the structure of the refrigerator 1 is common in 1st Embodiment, it demonstrates, also referring FIG.
 第2実施形態の冷蔵庫1は、図6に示す変更処理を繰り返し実行する。なお、図6に示す変更処理では、第1実施形態の変更処理(図4参照)と同一の処理には同一の符号を付しているため、その詳細な説明は省略する。 図6に示すように、第2実施形態の変更処理は、第1実施形態の変更処理にステップS20を追加した流れとなっている。 Refrigerator 1 of the second embodiment repeatedly executes the changing process shown in FIG. In the change process shown in FIG. 6, the same process as the change process (see FIG. 4) of the first embodiment is denoted by the same reference numeral, and detailed description thereof is omitted. As shown in FIG. 6, the change process of the second embodiment is a flow in which step S20 is added to the change process of the first embodiment.
 具体的には、制御部11は、変更処理において、第1実施形態と同様に冷蔵室温度(Tr)に基づいて圧縮機8の運転および停止のタイミングを判定しており(S1~S4)、圧縮機8を停止すると、運転割合が基準割合を超えているかを判定する(S20)。ここで、運転割合とは、予め設定されている割合判定期間において圧縮機8を運転していた割合である。この割合判定期間は、圧縮機8の運転を停止する時点を含む所定の期間である。 Specifically, in the change process, the control unit 11 determines the operation and stop timing of the compressor 8 based on the refrigerator temperature (Tr) as in the first embodiment (S1 to S4). When the compressor 8 is stopped, it is determined whether the operation ratio exceeds the reference ratio (S20). Here, the operation ratio is a ratio of operating the compressor 8 during a preset ratio determination period. This ratio determination period is a predetermined period including a time point when the operation of the compressor 8 is stopped.
 例えば図7に示すように、時刻(t20)以前において目標温度範囲(ΔTr)が低温側に変更されている状態で圧縮機8が運転されており、グラフG20rにて示す冷蔵室温度(Tr)が時刻(t20)にて下限温度(Tr-L)に到達して圧縮機8を停止するとする。このとき、制御部11は、時刻(t20)から所定の期間前の間において圧縮機8を運転していた割合を運転割合として取得し、取得した運転割合が予め定められている基準割合を超えたか否かを判定する(S20)。なお、所定の期間および基準割合は、例えば予め試験等により求めておく等、適宜設定することができる。 For example, as shown in FIG. 7, the compressor 8 is operated in a state where the target temperature range (ΔTr) is changed to the low temperature side before the time (t20), and the refrigerator temperature (Tr) shown by the graph G20r. Reaches the lower limit temperature (Tr-L) at time (t20), and the compressor 8 is stopped. At this time, the control unit 11 acquires the ratio of operating the compressor 8 from the time (t20) before the predetermined period as the operation ratio, and the acquired operation ratio exceeds a predetermined reference ratio. It is determined whether or not (S20). Note that the predetermined period and the reference ratio can be appropriately set, for example, by obtaining in advance by a test or the like.
 制御部11は、運転割合が基準割合を超えていると判定した場合には(S20:YES)、目標温度範囲(ΔTr)の変更を初期化する(S5)。そして、制御部11は、第1実施形態と同様に、待機期間が経過したかの判定等を行い、例えば時刻(t21)にて待機期間が経過した場合には、目標温度範囲(ΔTr)を低温側に変更していき、冷蔵室温度(Tr)が時刻(t22)にて上限温度(Tr-H)に到達すると、圧縮機8の運転を開始する。 When it is determined that the operation ratio exceeds the reference ratio (S20: YES), the control unit 11 initializes the change of the target temperature range (ΔTr) (S5). Then, similarly to the first embodiment, the control unit 11 determines whether or not the standby period has elapsed. For example, when the standby period has elapsed at time (t21), the control unit 11 sets the target temperature range (ΔTr). When the temperature is changed to the low temperature side and the refrigerator temperature (Tr) reaches the upper limit temperature (Tr−H) at time (t22), the operation of the compressor 8 is started.
 これに対して、制御部11は、運転割合が基準割合を超えていないと判定した場合には(S20:NO)、ステップS5を省略して、つまりは、目標温度範囲(ΔTr)の変更を初期化することなく、ステップS6に移行する。この場合、目標温度範囲(ΔTr)は、時刻(t23)以降においても低温側に変更された状態が維持される。 さて、圧縮機8の運転割合が基準割合を超えていないという状態は、圧縮機8が停止していた期間が相対的に長いことを意味している。そして、圧縮機8が停止されていた期間が長いということは、冷凍室3が十分に冷却されていない可能性があることを示している。 On the other hand, when it is determined that the operation ratio does not exceed the reference ratio (S20: NO), the control unit 11 omits step S5, that is, changes the target temperature range (ΔTr). The process proceeds to step S6 without initialization. In this case, the target temperature range (ΔTr) is maintained at the low temperature side after time (t23). Now, the state that the operation ratio of the compressor 8 does not exceed the reference ratio means that the period during which the compressor 8 is stopped is relatively long. The long period during which the compressor 8 has been stopped indicates that the freezer compartment 3 may not be sufficiently cooled.
 そのような状況において、もし仮に時刻(t23)にて目標温度範囲(ΔTr)を初期化した場合、冷蔵室温度(Tr)は、破線のグラフG21rにて仮想的に示すように、その後の例えば時刻(t25)にて上限温度(Tr-H)に到達することになる。しかし、上記したように冷凍室3が十分な冷却されていない可能性がある場合には、グラフG20fにて示す冷凍室温度(Tf)が、時刻(t25)においては、破線のグラフG21fにて仮想的に示すように上限温度(Tf-H)を超えてしまう可能性が高くなる。 In such a situation, if the target temperature range (ΔTr) is initialized at time (t23), the refrigerating room temperature (Tr) is assumed to be, for example, thereafter as virtually indicated by a broken line graph G21r. The upper limit temperature (Tr-H) is reached at time (t25). However, when there is a possibility that the freezer compartment 3 is not sufficiently cooled as described above, the freezer compartment temperature (Tf) indicated by the graph G20f is indicated by the broken line graph G21f at the time (t25). As shown virtually, there is a high possibility that the upper limit temperature (Tf−H) will be exceeded.
 そのため、制御部11は、圧縮機8の運転割合が基準値に到達しておらず、冷凍室3が十分に冷却されていない可能性がある場合には、目標温度範囲(ΔTr)を初期化しない。その結果、冷蔵室温度(Tr)が上限温度(Tr-H)に到達するタイミングが早くなり、目標温度範囲(ΔTr)を初期化しない場合の時刻(t25)よりも前倒しされた例えば時刻(t24)にて圧縮機8が運転されることになる。 Therefore, the control unit 11 initializes the target temperature range (ΔTr) when the operation ratio of the compressor 8 does not reach the reference value and the freezer compartment 3 may not be sufficiently cooled. do not do. As a result, the timing at which the refrigerating room temperature (Tr) reaches the upper limit temperature (Tr−H) is advanced, and for example, the time (t24) that is moved forward from the time (t25) when the target temperature range (ΔTr) is not initialized. ), The compressor 8 is operated.
 これにより、圧縮機8の運転間隔が短くなり、冷凍室3が十分に冷却されていない可能性がある場合において、冷凍室3の冷却をより早いタイミングで行うことができる。したがって、第1実施形態と同様に、製造コストの増加を招くことなく、冷蔵室4の温度に基づいて好適に冷却を行うことができる等の効果を得ることができる。 Thereby, when the operation interval of the compressor 8 is shortened and the freezer compartment 3 may not be sufficiently cooled, the freezer compartment 3 can be cooled at an earlier timing. Therefore, as in the first embodiment, it is possible to obtain an effect that cooling can be suitably performed based on the temperature of the refrigerator compartment 4 without causing an increase in manufacturing cost.
 ところで、上記した実施形態では圧縮機8の運転割合に応じて目標温度範囲(ΔTr)の変更を初期化するか否かを判定する例を示したが、目標温度範囲(ΔTr)は初期化するものの、圧縮機8の運転割合に応じてステップS7における目標温度範囲(ΔTr)の変更量を小さくすることもできる。 In the above-described embodiment, an example in which it is determined whether or not the change of the target temperature range (ΔTr) is to be initialized according to the operation ratio of the compressor 8 has been described. However, the target temperature range (ΔTr) is initialized. However, the change amount of the target temperature range (ΔTr) in step S7 can be reduced according to the operation ratio of the compressor 8.
 これは、圧縮機8の運転割合が基準値に到達している場合には、冷凍室3がある程度冷却されていると推測できる。そのため、ある程度冷却されている状態で目標温度範囲(ΔTr)の変更量を大きくすると、つまりは、圧縮機8の運転間隔がより短くなるように目標温度範囲(ΔTr)を変更すると、冷凍室3を必要以上に冷却してしまう可能性が高くなる。したがって、圧縮機8の運転割合に応じてステップS7における目標温度範囲(ΔTr)の変更量を小さくするような構成によっても冷蔵室4の温度に基づいて好適に冷却を行うことができる。 This can be estimated that the freezer compartment 3 is cooled to some extent when the operation ratio of the compressor 8 reaches the reference value. Therefore, if the amount of change of the target temperature range (ΔTr) is increased in a state where it is cooled to some extent, that is, if the target temperature range (ΔTr) is changed so that the operation interval of the compressor 8 becomes shorter, the freezer compartment 3 Is more likely to be cooled than necessary. Therefore, cooling can be suitably performed based on the temperature of the refrigerator compartment 4 even by a configuration in which the amount of change in the target temperature range (ΔTr) in step S7 is reduced in accordance with the operation ratio of the compressor 8.
   (第3実施形態) 以下、第3実施形態について、図8および図9を参照しながら説明する。第3実施形態では、冷凍室3の扉3aの開閉状況を加味して圧縮機8を制御する点において第1実施形態と異なっている。なお、冷蔵庫1の構成は第1実施形態と共通するので、図1も参照しながら説明する。 (Third Embodiment) Hereinafter, the third embodiment will be described with reference to FIG. 8 and FIG. The third embodiment is different from the first embodiment in that the compressor 8 is controlled in consideration of the opening / closing state of the door 3a of the freezer compartment 3. In addition, since the structure of the refrigerator 1 is common in 1st Embodiment, it demonstrates, also referring FIG.
 図8に示すように、第3実施形態の変更処理では、第1実施形態の変更処理にステップS30、S31を追加した流れとなっている。この場合、制御部11は、第1実施形態と同様に冷蔵室温度(Tr)に基づいて圧縮機8の運転および停止のタイミングを判定しており(S1~S4)、圧縮機8を停止すると、目標温度範囲(ΔTr)を初期化する。 As shown in FIG. 8, in the changing process of the third embodiment, steps S30 and S31 are added to the changing process of the first embodiment. In this case, the controller 11 determines the operation and stop timing of the compressor 8 based on the refrigerator temperature (Tr) as in the first embodiment (S1 to S4), and stops the compressor 8. The target temperature range (ΔTr) is initialized.
 そして、制御部11は、予め定められている扉開放判定期間において、冷凍室3の扉3aが開閉された回数である開閉回数が予め定められている基準開閉回数に到達しているか否か(S30)、および、冷凍室3の扉3aが開放されていた期間である開放期間が予め定められている基準開放期間に到達しているか否か(S31)を判定する。つまり、制御部11は、冷凍室3の扉3aの開閉状況を取得している。 Then, the controller 11 determines whether or not the number of times of opening and closing, which is the number of times the door 3a of the freezer compartment 3 is opened and closed, has reached a predetermined reference opening and closing number in a predetermined door opening determination period ( S30) and whether or not the opening period, which is the period during which the door 3a of the freezer compartment 3 is opened, has reached a predetermined reference opening period (S31). That is, the control unit 11 acquires the opening / closing status of the door 3 a of the freezer compartment 3.
 図9に示すように、時刻(t30)において圧縮機8が運転され、時刻(t31)において圧縮機8を停止した場合、制御部11は、時刻(t31)を含む過去の所定の期間を開閉判定期間として、開閉回数および開放期間の判定を行う。なお、開閉判定期間、基準開閉回数および基準開放期間は、例えば予め試験等により求めておく等、適宜設定することができる。 As shown in FIG. 9, when the compressor 8 is operated at time (t30) and the compressor 8 is stopped at time (t31), the control unit 11 opens and closes a predetermined period in the past including the time (t31). As the determination period, the number of opening / closing operations and the opening period are determined. Note that the open / close determination period, the reference open / close count, and the reference open period can be appropriately set, for example, by obtaining in advance by a test or the like.
 そして、制御部11は、開閉回数が基準開閉回数に到達していると判定した場合(S30:YES)、および、開放期間が基準開放期間に到達していると判定した場合には(S31:YES)、ステップS6を省略して、つまりは、待機期間が経過するのを待機することなく、ステップS7に移行する。 And when the control part 11 determines with the opening / closing frequency | count having reached the reference | standard opening / closing frequency | count (S30: YES), and when determining with the open period having reached | attained the reference | standard open | release period (S31: YES), step S6 is omitted, that is, the process proceeds to step S7 without waiting for the waiting period to elapse.
 一般的に、冷凍室温度(Tf)よりも室温(Te)の方が高いことから、冷凍室3の扉3aが開放された場合には、冷凍室温度(Tf)が上昇すると考えられる。そして、冷凍室3の扉3aの開閉回数が多いほど、また、冷凍室3の扉3aの開放期間が長いほど、冷凍室温度(Tf)の上昇量が大きくなると考えられる。 Generally, since the room temperature (Te) is higher than the freezer temperature (Tf), it is considered that the freezer temperature (Tf) increases when the door 3a of the freezer room 3 is opened. And it is thought that the increase amount of freezer compartment temperature (Tf) becomes so large that the frequency | count of opening and closing of the door 3a of the freezer compartment 3 is large, and the open period of the door 3a of the freezer compartment 3 is long.
 その一方で、冷蔵室4の場合、扉4aが開閉されていなければ、冷蔵室温度(Tr)の上昇量は大きく変化することがないと考えられる。そのため、例えば時刻(t31)において圧縮機8の運転を停止した後、仮に時刻(t33)において待機期間が経過したとすると、破線のグラフG31fにて仮想的に示すように、冷凍室温度(Tf)が、上限温度(Tf-H)を超えてしまう可能性が高くなる。 On the other hand, in the case of the refrigerator compartment 4, if the door 4a is not opened and closed, it is considered that the amount of increase in the refrigerator compartment temperature (Tr) does not change greatly. Therefore, for example, after the operation of the compressor 8 is stopped at the time (t31), if the standby period has elapsed at the time (t33), the freezer compartment temperature (Tf) is virtually shown by a broken line graph G31f. ) Is likely to exceed the upper limit temperature (Tf-H).
 そこで、制御部11は、冷凍室3の扉3aの開閉状況を取得し、開閉状況に基づいて、圧縮機の運転を制御する。具体的には、制御部11は、開閉回数が基準開閉回数に到達していると判定した場合、および、開放期間が基準開放期間に到達していると判定した場合には、待機期間の経過を待たずに即座に目標温度範囲(ΔTr)の変更を開始することにより、圧縮機8が運転されるまでの期間を短くする。 Therefore, the control unit 11 acquires the opening / closing status of the door 3a of the freezer compartment 3, and controls the operation of the compressor based on the opening / closing status. Specifically, when the control unit 11 determines that the number of times of opening and closing has reached the reference number of times of opening and closing, and when it is determined that the opening period has reached the reference opening time, the elapse of the standby period The period until the compressor 8 is operated is shortened by starting the change of the target temperature range (ΔTr) immediately without waiting.
 これにより、待機期間を待機する場合に比べて早いタイミングで圧縮機8が運転されるので、冷凍室温度(Tf)が上限温度(Tf-H)を超えてしまう可能性を低減することができる。したがって、第1実施形態と同様に、製造コストの増加を招くことなく、冷蔵室4の温度に基づいて好適に冷却を行うことができる等の効果を得ることができる。 Thereby, since the compressor 8 is operated at an earlier timing than in the case of waiting for the standby period, the possibility that the freezer temperature (Tf) exceeds the upper limit temperature (Tf−H) can be reduced. . Therefore, as in the first embodiment, it is possible to obtain an effect that cooling can be suitably performed based on the temperature of the refrigerator compartment 4 without causing an increase in manufacturing cost.
 この場合、開閉回数あるいは開閉期間の一方を条件として待機時間を待機するか否かを選択することもできる。具体的には、図8に示す変更処理において、開閉回数の条件(ステップS30)または開閉期間の条件(ステップS31)のいずれか一方の処理を行う構成とすることもできる。 また、待機時間を待機するか否かを選択することに加えて、開閉回数や開閉期間に基づいてステップS7における目標温度範囲(ΔTr)の変更量を変えることもできる。この場合、開閉回数や開閉期間が多ければ冷凍室3の温度上昇が大きいと考えられることから、開閉回数が多いほど、あるいは開閉期間が長いほど、目標温度範囲(ΔTr)の変更量を多くすることが考えられる。勿論、この場合も、開閉回数あるいは開閉期間の一方を条件とすることもできる。 In this case, it is also possible to select whether or not to wait for the standby time on the condition of either the number of opening / closing operations or the opening / closing period. Specifically, in the changing process shown in FIG. 8, it is possible to adopt a configuration in which either the opening / closing count condition (step S30) or the opening / closing period condition (step S31) is performed. Further, in addition to selecting whether or not to wait for the standby time, the amount of change of the target temperature range (ΔTr) in step S7 can be changed based on the number of opening / closing and the opening / closing period. In this case, since the temperature rise of the freezer compartment 3 is considered to be large if the number of times of opening and closing and the opening and closing period are large, the amount of change in the target temperature range (ΔTr) is increased as the number of times of opening and closing is increased or the opening and closing period is longer. It is possible. Of course, also in this case, one of the number of times of opening and closing or the opening and closing period can be used as a condition.
   (その他の実施形態)
 本発明は、上記した実施形態にて例示したものに限定されることなく、その範囲を逸脱しない範囲で任意に例えば以下のように変形あるいは拡張することができる。 各実施形態では本体2内の上部側に冷凍室3、下部側に冷蔵室4が配置されている冷蔵庫1を例示したが、各実施形態に示した変更処理は、図10に示すように下部側に冷凍室3、上部側に冷蔵室4が配置されている冷蔵庫20にも適用することができる。
(Other embodiments)
The present invention is not limited to those exemplified in the above-described embodiment, and can be arbitrarily modified or expanded as follows, for example, without departing from the scope thereof. In each embodiment, the refrigerator 1 in which the freezer room 3 is arranged on the upper side in the main body 2 and the refrigeration room 4 is arranged on the lower side is illustrated. However, the change process shown in each embodiment is a lower part as shown in FIG. The present invention can also be applied to the refrigerator 20 in which the freezer compartment 3 is disposed on the side and the refrigerator compartment 4 is disposed on the upper side.
 各実施形態では、目標温度範囲(ΔTr)を変更する際、上限温度(Tr-H)と下限温度(Tr-L)の双方を低温側に変更する例を示したが、上限温度(Tr-H)のみを低温側に変更することにより目標温度範囲(ΔTr)を変更することもできる。上限温度(Tr-H)のみを変更する場合であっても、変更しない場合に比べて圧縮機8を運転するタイミングを早めることができ、冷凍室温度(Tf)が上限温度(Tf-H)を超えてしまう可能性を低減することができる。 In each embodiment, when the target temperature range (ΔTr) is changed, both the upper limit temperature (Tr−H) and the lower limit temperature (Tr−L) are changed to the low temperature side. The target temperature range (ΔTr) can be changed by changing only H) to the low temperature side. Even when only the upper limit temperature (Tr-H) is changed, the operation timing of the compressor 8 can be advanced compared with the case where the upper limit temperature (Tr-H) is not changed, and the freezer compartment temperature (Tf) becomes the upper limit temperature (Tf-H). Can be reduced.
 また、状況にもよるが、下限温度(Tr-L)を変更しないことにより冷却が行われている期間を短くすることができることから、例えば第2実施形態で説明した変更を初期化しない場合には上限温度(Tr-H)のみを変更することにより、過冷却となる可能性をさらに低減できると考えられる。 Further, although depending on the situation, the period during which the cooling is performed can be shortened by not changing the lower limit temperature (Tr-L). For example, when the change described in the second embodiment is not initialized. It is considered that the possibility of overcooling can be further reduced by changing only the upper limit temperature (Tr-H).
 第1実施形態では待機期間が経過するまで待機し、待機期間が経過した時点(t10)から経過した期間に応じて目標温度範囲(ΔTr)を低温側に変更する例を示したが、図4のステップS7では、圧縮機8を停止した時点(ts)からの経過期間に応じて目標温度範囲(ΔTr)を低温側に変更する構成とすることもできる。これは、経過期間を(tn-t10)として求めても(tn-ts)として求めても、変更量を求める際の係数を変更すればよいだけであり、実質的に共通する処理にて変更量が求まるためである。このような構成によっても冷蔵室4の温度に基づいて好適に冷却を行うことができる。 The first embodiment waits until the standby period elapses, and shows an example in which the target temperature range (ΔTr) is changed to the low temperature side according to the period elapsed from the time point (t10) when the standby period elapses. In step S7, the target temperature range (ΔTr) may be changed to the low temperature side in accordance with the elapsed period from the time point (ts) when the compressor 8 is stopped. Whether the elapsed time is calculated as (tn-t10) or (tn-ts), it is only necessary to change the coefficient for determining the change amount. This is because the amount is obtained. Even with such a configuration, cooling can be suitably performed based on the temperature of the refrigerator compartment 4.
 各実施形態では経過期間の長さに応じて徐々に目標温度範囲(ΔTr)を低温側に変更する例を示したが、例えば待機期間が経過した後に、経過期間の長さに応じて予め設定されている温度まで目標温度範囲(ΔTr)を一度に変更することもできる。 各実施形態で示した目標温度範囲や待機期間などの数値、および温度変化を示すグラフの態様等は一例である。 In each embodiment, an example in which the target temperature range (ΔTr) is gradually changed to the low temperature side according to the length of the elapsed period has been shown. However, for example, after the standby period has elapsed, the target temperature range (ΔTr) is preset according to the length of the elapsed period It is also possible to change the target temperature range (ΔTr) up to the set temperature at a time. The numerical values such as the target temperature range and the standby period shown in each embodiment, the mode of the graph showing the temperature change, and the like are examples.
 各実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。本実施形態およびその変形は、発明の範囲および要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Each embodiment is presented as an example, and is not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. This embodiment and its modifications are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
1…冷蔵庫
3…冷凍室
3a…扉
4…冷蔵室
8…圧縮機
9…蒸発器
11…制御部
12…記憶部
13…タイマ
14…冷蔵室温度センサ(冷蔵室温度検出部)
16…冷凍室扉スイッチ(開閉検出部)
20…冷蔵庫
DESCRIPTION OF SYMBOLS 1 ... Refrigerator 3 ... Freezing room 3a ... Door 4 ... Refrigeration room 8 ... Compressor 9 ... Evaporator 11 ... Control part 12 ... Memory | storage part 13 ... Timer 14 ... Refrigeration room temperature sensor (refrigeration room temperature detection part)
16 ... Freezer compartment door switch (open / close detector)
20 ... Refrigerator

Claims (10)

  1.  冷凍室および冷蔵室を有し、1つの蒸発器で生成した冷気により前記冷凍室および前記冷蔵室の双方を冷却する一方、前記冷凍室および前記冷蔵室への冷気の分配を調整するダンパー機構は備えていない構成の冷蔵庫であって、
     前記蒸発器に接続されている圧縮機と、前記冷蔵室の温度を検出する冷蔵室温度検出部と、を有し、
     前記冷蔵室温度検出部で検出した前記冷蔵室の温度が予め定められている目標温度範囲の上限温度に達すると前記圧縮機を運転し、前記冷蔵室の温度が前記目標温度範囲の下限温度に達すると前記圧縮機を停止するとともに、前記圧縮機の運転状況に基づいて前記目標温度範囲を低温側に変更する制御部と、 を備える冷蔵庫。
    A damper mechanism that has a freezing room and a refrigerating room, cools both the freezing room and the refrigerating room with cold air generated by one evaporator, and adjusts the distribution of the cold air to the freezing room and the refrigerating room, A refrigerator having a configuration not provided,
    A compressor connected to the evaporator, and a refrigerator temperature detector for detecting the temperature of the refrigerator,
    When the temperature of the refrigerating room detected by the refrigerating room temperature detection unit reaches the upper limit temperature of a predetermined target temperature range, the compressor is operated, and the temperature of the refrigerating room becomes the lower limit temperature of the target temperature range. And a control unit that stops the compressor when reaching and changes the target temperature range to a low temperature side based on an operating state of the compressor.
  2.  前記制御部は、前記運転状況として前記圧縮機を停止してから経過した期間である経過期間を取得し、取得した前記経過期間が長くなるほど前記目標温度範囲の変更量を大きくする請求項1記載の冷蔵庫。 The said control part acquires the elapsed period which is the period which passed since the said compressor was stopped as the said operating condition, and makes the change amount of the said target temperature range large, so that the acquired said elapsed period becomes long. Refrigerator.
  3.  前記制御部は、前記運転状況として予め設定されている割合判定期間において前記圧縮機を運転していた割合である運転割合を取得し、取得した前記運転割合が大きいほど前記目標温度範囲の変更量を小さくする請求項1記載の冷蔵庫。 The control unit acquires an operation ratio that is a ratio of operating the compressor during a ratio determination period that is set in advance as the operation status, and the amount of change in the target temperature range increases as the acquired operation ratio increases. The refrigerator of Claim 1 which makes small.
  4.  前記制御部は、前記圧縮機の運転を停止する際、前記目標温度範囲を初期化する請求項1から3のいずれか一項記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 3, wherein the control unit initializes the target temperature range when stopping the operation of the compressor.
  5.  前記制御部は、前記圧縮機の運転を停止する際、予め設定されている割合判定期間において前記圧縮機を運転していた割合である運転割合が予め定められている基準割合に到達している場合には変更した前記目標温度範囲を初期化し、前記運転割合が前記基準割合に到達していない場合には変更した前記目標温度範囲を初期化しない請求項1から3のいずれか一項記載の冷蔵庫。 When the control unit stops the operation of the compressor, an operation ratio that is a ratio of operating the compressor during a preset ratio determination period has reached a predetermined reference ratio. The changed target temperature range is initialized in case, and the changed target temperature range is not initialized when the operation ratio does not reach the reference ratio. refrigerator.
  6.  前記制御部は、前記圧縮機を停止してから予め定められている待機期間が経過した時点で、前記目標温度範囲の変更を開始する請求項1から3のいずれか一項記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 3, wherein the control unit starts changing the target temperature range when a predetermined standby period has elapsed since the compressor was stopped.
  7.  前記冷凍室の扉の開閉を検出する開閉検出部を備え、 前記制御部は、予め定められている開閉判定期間において前記冷凍室の扉が開閉された開閉回数が予め定められている基準開閉回数に到達している場合、または、前記開閉判定期間において前記冷凍室の扉が開放されていた開放期間が予め定められている基準開放期間に到達している場合、前記圧縮機の運転を停止した時点で前記目標温度範囲の変更を開始する請求項1から3のいずれか一項記載の冷蔵庫。 An open / close detection unit that detects opening / closing of the freezer compartment door, and the control unit has a predetermined open / close number of times that the freezer door is opened / closed during a predetermined open / close determination period. Or when the opening period during which the freezer compartment door is open during the opening / closing determination period has reached a predetermined reference opening period, the operation of the compressor is stopped. The refrigerator as described in any one of Claim 1 to 3 which starts the change of the said target temperature range at a time.
  8.  前記制御部は、前記圧縮機の運転状況に加えて、前記開閉判定期間における前記冷凍室の扉の開閉状況に基づいて前記目標温度範囲を変更するものであり、前記開閉状況として前記冷凍室の扉が開閉された回数である開閉回数を取得し、取得した前記開閉回数が多いほど前記目標温度範囲の変更量を大きくする請求項7記載の冷蔵庫。 The control unit changes the target temperature range based on the open / close state of the freezer compartment door during the open / close determination period in addition to the operating state of the compressor. The refrigerator according to claim 7, wherein the number of times of opening and closing, which is the number of times the door is opened and closed, is acquired, and the amount of change in the target temperature range is increased as the acquired number of times of opening and closing is increased.
  9.  前記制御部は、前記圧縮機の運転状況に加えて、前記開閉判定期間における前記冷凍室の扉の開閉状況に基づいて前記目標温度範囲を変更するものであり、前記開閉状況として前記冷凍室の扉が開放されていた期間である開放期間を取得し、取得した前記開放期間が長いほど前記目標温度範囲の変更量を大きくする請求項7または8記載の冷蔵庫。 The control unit changes the target temperature range based on the open / close state of the freezer compartment door during the open / close determination period in addition to the operating state of the compressor. The refrigerator according to claim 7 or 8, wherein an opening period that is a period during which the door is open is acquired, and the amount of change in the target temperature range is increased as the acquired opening period is longer.
  10.  前記制御部は、前記上限温度および前記下限温度の双方を低温側に変更することにより、または、前記上限温度のみを低温側に変更することにより、前記目標温度範囲を変更する請求項1から3のいずれか一項記載の冷蔵庫。 The said control part changes the said target temperature range by changing both the said upper limit temperature and the said minimum temperature to the low temperature side, or changing only the said upper limit temperature to the low temperature side. The refrigerator as described in any one of.
PCT/JP2017/026793 2016-10-13 2017-07-25 Refrigerator WO2018070089A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780045323.4A CN109844431B (en) 2016-10-13 2017-07-25 Refrigerator with a door

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016201689A JP6767838B2 (en) 2016-10-13 2016-10-13 refrigerator
JP2016-201689 2016-10-13

Publications (1)

Publication Number Publication Date
WO2018070089A1 true WO2018070089A1 (en) 2018-04-19

Family

ID=61905369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026793 WO2018070089A1 (en) 2016-10-13 2017-07-25 Refrigerator

Country Status (3)

Country Link
JP (1) JP6767838B2 (en)
CN (1) CN109844431B (en)
WO (1) WO2018070089A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093040A (en) * 1999-09-17 2001-04-06 Fuji Electric Co Ltd Power saving operation method for compressor for cooling, and power saving type automatic vending machine
JP2007271095A (en) * 2006-03-30 2007-10-18 Mitsubishi Electric Corp Operation control method of compressor for freezing/refrigerating showcase
US20140013779A1 (en) * 2012-07-10 2014-01-16 Samsung Electronics Co., Ltd. Refrigerator and control method for the same
CN103575054A (en) * 2012-08-10 2014-02-12 泰州乐金电子冷机有限公司 Intelligent frequency conversion refrigerator
JP2015169376A (en) * 2014-03-07 2015-09-28 シャープ株式会社 refrigerator
US20150316297A1 (en) * 2012-11-30 2015-11-05 Danfoss A/S A method for matching refrigeration load to compressor capacity

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10311647A (en) * 1997-05-09 1998-11-24 Matsushita Refrig Co Ltd Refrigerator
CN102589232B (en) * 2012-03-09 2014-03-12 合肥美的电冰箱有限公司 Refrigerator and its temperature control method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093040A (en) * 1999-09-17 2001-04-06 Fuji Electric Co Ltd Power saving operation method for compressor for cooling, and power saving type automatic vending machine
JP2007271095A (en) * 2006-03-30 2007-10-18 Mitsubishi Electric Corp Operation control method of compressor for freezing/refrigerating showcase
US20140013779A1 (en) * 2012-07-10 2014-01-16 Samsung Electronics Co., Ltd. Refrigerator and control method for the same
CN103575054A (en) * 2012-08-10 2014-02-12 泰州乐金电子冷机有限公司 Intelligent frequency conversion refrigerator
US20150316297A1 (en) * 2012-11-30 2015-11-05 Danfoss A/S A method for matching refrigeration load to compressor capacity
JP2015169376A (en) * 2014-03-07 2015-09-28 シャープ株式会社 refrigerator

Also Published As

Publication number Publication date
JP2018063078A (en) 2018-04-19
JP6767838B2 (en) 2020-10-14
CN109844431B (en) 2021-04-06
CN109844431A (en) 2019-06-04

Similar Documents

Publication Publication Date Title
EP2762806B1 (en) Refrigerator
TWI683080B (en) refrigerator
JP5826317B2 (en) refrigerator
EP2889564A2 (en) Refrigerator control method
JP2018091577A (en) refrigerator
JP2018091578A (en) refrigerator
JP7207697B2 (en) refrigerator
JP2017015344A (en) refrigerator
EP3098547B1 (en) Simple inverter-control-type refrigerator
JP2007139255A (en) Refrigerator
JP2010071480A (en) Refrigerator
JP5884010B2 (en) refrigerator
WO2018070089A1 (en) Refrigerator
CN110986458B (en) Refrigeration equipment, control method and control device thereof and storage medium
JP2008057905A (en) Refrigerator
CN111238139B (en) Control method of refrigerating device
JP6502773B2 (en) Cold storage device
JP2017040406A (en) refrigerator
JP6309156B2 (en) refrigerator
JP2018009709A (en) refrigerator
JP2011153788A (en) Refrigerator
KR102629604B1 (en) Refrigerator and method for controlling the same
JP5670792B2 (en) Cooling storage
JP6830008B2 (en) Cooling storage
JP6543799B2 (en) refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17859909

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17859909

Country of ref document: EP

Kind code of ref document: A1