WO2018068158A1 - Dispositivo de confinamiento para larvas y/o organismos acuaticos, sistema, metodo de mantencion y cultivo en ambientes acuaticos - Google Patents

Dispositivo de confinamiento para larvas y/o organismos acuaticos, sistema, metodo de mantencion y cultivo en ambientes acuaticos Download PDF

Info

Publication number
WO2018068158A1
WO2018068158A1 PCT/CL2017/050041 CL2017050041W WO2018068158A1 WO 2018068158 A1 WO2018068158 A1 WO 2018068158A1 CL 2017050041 W CL2017050041 W CL 2017050041W WO 2018068158 A1 WO2018068158 A1 WO 2018068158A1
Authority
WO
WIPO (PCT)
Prior art keywords
larvae
confinement
allows
aquatic
present
Prior art date
Application number
PCT/CL2017/050041
Other languages
English (en)
French (fr)
Inventor
Fernando VALENZUELA PICON
Enzo GARCIA BARTOLOMEI
Original Assignee
Universidad De Antofagasta
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Antofagasta filed Critical Universidad De Antofagasta
Priority to US16/342,074 priority Critical patent/US20210274756A1/en
Priority to JP2019541832A priority patent/JP2019534714A/ja
Priority to MX2019004399A priority patent/MX2019004399A/es
Priority to AU2017341749A priority patent/AU2017341749B2/en
Priority to EP17860411.2A priority patent/EP3527069A4/en
Priority to CN201780077770.8A priority patent/CN110167342A/zh
Publication of WO2018068158A1 publication Critical patent/WO2018068158A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • A01K61/50Culture of aquatic animals of shellfish
    • A01K61/51Culture of aquatic animals of shellfish of gastropods, e.g. abalones or turban snails
    • A01K61/53Baskets therefor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • A01K61/10Culture of aquatic animals of fish
    • A01K61/17Hatching, e.g. incubators
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • A01K61/20Culture of aquatic animals of zooplankton, e.g. water fleas or Rotatoria
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • A01K61/50Culture of aquatic animals of shellfish
    • A01K61/54Culture of aquatic animals of shellfish of bivalves, e.g. oysters or mussels
    • A01K61/55Baskets therefor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • A01K61/50Culture of aquatic animals of shellfish
    • A01K61/59Culture of aquatic animals of shellfish of crustaceans, e.g. lobsters or shrimps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Definitions

  • the present invention relates to a confinement device for larval or aquatic organisms in general, which would allow the diversification of aquaculture.
  • the device is assembled and stackable.
  • the present invention relates to a confinement device that allows to maintain larvae of multiple marine / aquatic organisms in a condition of confinement in their natural environment, in order to develop the process of metamorphosis, maturation and settlement, of larvae that subsequently, they will become juveniles or seeds for industrial pre-fattening stage.
  • the device also allows the confinement of aquatic organisms in general, facilitating their development, in culture.
  • the present invention also relates to a culture system and method comprising the use of said confinement device.
  • the technique of natural collection of seeds or post larvae has been developed, which is performed using various collecting elements consisting of generally fibrous substrates (such as large brushes or skeins) that offer a good alternative of refuge and settlement for larvae that are drifting in the water column.
  • This technique is widely used for invertebrates such as mitilides (choritos) and pectinides (oysters), however it is inefficient to meet market demand. Due to the natural dispersion of the larvae in the environment, large areas of collectors must be used, also providing support infrastructure at sea.
  • JP2003052274 discloses an ecological device / ecological box capable of maintaining the environment of peripheral fish and crustaceans as similar as possible to ecology, while they are cultivated.
  • the ecological box has a perforated matrix in the form of a net, at the bottom, for the adhesion of abalone or the like, and a cover that has openings that allows the entry of air from the outside.
  • the device allows the preservation of the aquatic life it contains by actively increasing the amount of dissolved oxygen in the water contained inside.
  • the present invention relates to a larval confinement device that allows the cultivation of multiple aquaculture species.
  • the device allows to keep contained, in natural bodies of water, larval and post larval stages of crops of multiple species of aquaculture. Especially, the cultivation of new high-value species and the repopulation of overexploited species.
  • the device can also be used to contain juvenile organisms, including adults, of various species.
  • the present invention relates to a confinement device that allows to maintain larvae of multiple marine / aquatic organisms in a condition of confinement in their natural environment, in order to develop the process of growth, metamorphosis and settlement of larvae that will subsequently become in juveniles or seeds for industrial pre-fattening stage.
  • the present invention then teaches a confinement device that takes larvae from the natural habitat rather than inefficiently trying to replicate their conditions in a laboratory. In doing so, it allows the larva to feed naturally without extra costs, by the natural source of food using the ocean as an ecosystem service
  • the present invention also relates to a confinement system and method comprising the use of the aforementioned device.
  • the present confinement device for pelagic larvae or aquatic organisms of commercial interest for use in the aquaculture industry or for research purposes can be directly installed in an open water body such as lakes or the sea, directly in the natural habitat of organisms of particular interest to industry and scientists.
  • the present invention then provides a confinement device that allows adequate maintenance of the physical-chemical conditions of the water body because the design of the device allows to maintain appropriate conditions of shelter against predators, luminosity and circulation of water, avoiding dead areas of water circulation, thanks to the wide arrangement of windows with meshes that allow the movement of water and transport of nutrients.
  • the present confinement device allows to maintain larvae of multiple marine / aquatic organisms (such as octopus, lobsters, crabs, etc.) and / or zooplacton in a condition of confinement in their natural environment, in order to develop the growth process, metamorphosis and settlement of larvae that will later become juveniles or seeds for industrial pre-fattening stage.
  • the device also allows the confinement of aquatic organisms in general, facilitating their development, in culture.
  • the present confinement device having the ability to dispose of both larvae and living organisms of different species, in their natural environment, can also determine the effect that toxic chemicals have on aquatic environments. This is because the present confinement device keeps the living organisms in their natural environment, and with this, it allows the on-site verification of the effect that a certain body of water or effluent (for example discharge of liquid industrial waste) has on the organism's biology . Then, the design of the present confinement device comprising interchangeable meshes, among other elements, is thus ideal for the on-site arrangement of multiple organisms within the framework of ecotoxicological monitoring programs of aquatic bodies, such as rivers, lakes and / or seas .
  • the present confinement device is assembled by means of shim and clamping - without screws, and once assembled it is easy to store and handle both inside and outside the water.
  • the present confinement device can also be stacked and placed in series, either in a horizontal and vertical format, and once installed it forms a series joined by ropes, buoys and ties, in a practical and inexpensive way.
  • the present confinement device can be constructed of a polymeric material selected from polletillene (PE), vlnllo polychloride (PVC), polypropylene (PP) or derivatives thereof.
  • the pollmeric material is selected from injected high density polyethylene (HDPE).
  • HDPE injected high density polyethylene
  • the present confinement device can be equipped opclonally, with an Inspection member that allows to easily add an exogenous power supply, and thus supplement the natural diet that it may contain.
  • FIGURES 1 A and 1 B Illustrates "Long Lines" system.
  • Figure 1 A shows different types of fattening phase crops, none of them is for larvae.
  • Figure 1 B shows the present confinement system arranged on a "Long Une” system.
  • FIGURE 2 It shows an overview of the present confinement system where an assembled structure of solid and resistant appearance is appreciated in its conformation, for high performance and durability work.
  • the front and side windows (in gray) correspond to plastic meshes that may be required in various sizes of mesh opening or light, from 350 mlcrones (0.35 mm), to 2000 mlcrones (2.0mm).
  • FIGURE 3 Shows the clamping arrangement of the present device.
  • FIGURE 4 Exploded sample of the present device.
  • FIGURE 5 Shows fit and clamping means between preformed parts of the present device.
  • FIGURE 6 Shows central (internal) support of the present device.
  • the present invention relates to a confinement device, assembled and stackable, for multispecific larval culture or the cultivation of aquatic organisms in general, and which allows the diversification of aquaculture.
  • the present invention relates to a confinement device that allows to maintain larvae of multiple marine / aquatic organisms in a condition of confinement in their natural environment, in order to develop the process of metamorphosis, maturation and settlement, of larvae that later they will become juveniles or seeds for industrial pre-fattening stage.
  • the present device also allows the confinement of aquatic organisms in general, facilitating their development, in culture.
  • the invention also relates to a culture system and method comprising said confinement device.
  • the device allows research linked to the biology of zooplantonic organisms or marine larvae, allowing observations of the life cycle of organisms, which otherwise could not be performed.
  • the present device allows the larvae to develop in a natural habitat, feeding at no additional cost.
  • the present device allows without difficulty the entry of the food from the larva, without allowing its exit, which is confined inside the device.
  • the present invention then refers to a confinement device that allows to contain and ensure, the natural feeding of larvae (first stages of life) of various species of aquatic origin that have both commercial and scientific value, and together with containing them, allows it to be located, through! use of technology of "Long Lines", which are widely used worldwide for its simplicity, low cost and reliability and consisting of rope tension systems through the use of anchorage anchorages and buoys, which allow the provision of various elements to develop crops suspended in the sea. See Figure 1 A
  • Figures 1 A and 1 B show a "Long Lines" type of use scheme.
  • Figure 1 A shows different types of fattening phase cultures, none of which is for larvae, such as the confinement system of the present invention.
  • Figure 1 B shows the present confinement system arranged on a "Long Une” system.
  • the present confinement device can be arranged horizontally, as well as vertically stacked on top of each other, which gives it great versatility and adaptability to various aquatic environmental conditions and requirements of various species.
  • the present confinement device allows the entry of surrounding natural food into the environment where it is available, allowing larvae to be kept confined in natural environmental conditions.
  • the present confinement device becomes a powerful working tool for researchers linked to the biology of zooplanktonic organisms or marine larvae, as well as for the confinement of larvae in transition to juveniles for traditional aquaculture systems and development of new crop species.
  • the present device has a screw-on lid that allows exogenous food (live food or micropellet) to enter confined larvae, as well as to enter a probe or instrument quickly without having to remove the device from the marine environment, through autonomous diving
  • the present confinement device has a hexagonal prismatic body and a series of perimeter and side windows designed so that meshes with aperture or light can be mounted on them as defined by the user.
  • This set of windows in turn allows the entry of surrounding food, which can be complemented by the incorporation of a medium mesh holder inside.
  • This mesh carrier means allows the internal physical space of the device to be separated from the bottom or settling zone of particulate material allowing the larvae of interest within this device can avoid positioning on the bottom where protozoa and decomposing organisms prevail, acting as a double bottom. See Figure 6.
  • the present confinement device can be constructed of injected high density polyethylene (HDPE) material.
  • HDPE high density polyethylene
  • the windows of the present device front, rear, upper sides and lower sides
  • Figure 2 shows a general view of the present confinement device where an assembled structure, of solid and resistant appearance, for high performance and durability work is appreciated in its conformation.
  • the front and side windows (in gray color) correspond to plastic meshes that may be required in various measures of opening or mesh light, from 350 microns (0.35 mm), to 2000 microns (2.0 mm). This allows to maintain different crop species, and at different stages of growth of each particular species.
  • the windows or meshes are interchangeable, so as to grant the maintenance capacity quickly, and to adapt the device as required.
  • Figure 3 shows a set of devices stacked. The design allows them to be accumulated or stored in a simple safe way thanks to a system of fit between the devices when they overlap or support each other.
  • Figure 4 shows an exploded view of the present confinement system.
  • the manufacture of symmetrical parts allows for the manufacture of the device only 7 templates or molds are required for the injection of plastic, preferably HDPE.
  • this exploded view allows the packaging of the device to its commercialization, save space and thus be able to put many more devices on a container.
  • Figure 5 shows fit and clamping means between preformed parts of the present confinement system.
  • the present system was designed to withstand harsh conditions of use and handling.
  • FIG. 6 shows central supports (internal) of the present confinement system.
  • This central system shown here is a particular embodiment.
  • the central supports may vary depending on the species to be cultivated so as not only to attract food, but also to provide shelter and characteristics inherent to the development habitat of the different species that can be cultivated in this device.
  • the plate based! (horizontal) will, in turn, separate the larvae from the particulate organic material that will naturally decant towards the bottom of the device, allowing them to be separated from the environment that will be generated in the double bottom, where other decomposing organisms will perform their function, thus avoiding having our larvae in direct contact with these decomposers.
  • Octopus mimus is an opportunistic species and capable of adopting various predatory behaviors that allow it to access a wide variety of prey, which increases its potential in aquaculture (Z ⁇ iga, O., Olivares Paz, A., & Torres, I.
  • the high larval mortality can be attributed to three factors: the unavailability of an adequate living diet in size and nutritional composition, the lack of standardization of the cultivation technique and, finally, the poor knowledge of the biology of the species in these phases early, with the consequent lack of knowledge of their basic nutritional needs (Moxica, C, Linares, F., Otero, JJ, Iglesias, J., & Sánchez, FJ 2002. Intensive cultivation of octopus paralarvas, Octopus vulgaris Cuvier, 1797, in tanks of 9 m3. Bol. Inst. Esp. Oceanogr, 18 (1-4), 31-36). As the study by JACUMAR, 2004. Octopus Cultivation shows.

Abstract

La presente invención se refiere a un dispositivo de confinamiento para cultivo larval o de organismos acuáticos en general, que permitiría la diversificación de la acuicultura. El dispositivo es ensamblable y apilable. En particular, la presente invención se refiere a un dispositivo de confinamiento que permite mantener larvas de múltiples organismos marinos/acuáticos en condición de confinamiento en su medio ambiente natural, con el fin de desarrollar el proceso de metamorfosis, maduración y asentamiento, de larvas que posteriormente, se convertirán en juveniles o semillas para etapa de pre-engorde industrial. El dispositivo también permite el confinamiento de organismos acuáticos en general, facilitando su desarrollo, en cultivo. La presente invención también se refiere a un sistema y método de cultivo que comprende el uso de dicho dispositivo de confinamiento.

Description

DISPOSITIVO DE CONFINAMIENTO PARA LARVAS Y/O ORGANISMOS ACUATICOS, SISTEMA, METODO DE MANTENCION Y CULTIVO EN AMBIENTES ACUATICOS
CAMPO DE LA INVENCION
La presente invención se refiere a un dispositivo de confinamiento para cultivo larval o de organismos acuáticos en general, que permitiría la diversificación de la acuicultura. El dispositivo es ensamblable y apilable. En particular, la presente invención se refiere a un dispositivo de confinamiento que permite mantener larvas de múltiples organismos marinos/acuáticos en condición de confinamiento en su medio ambiente natural, con el fin de desarrollar el proceso de metamorfosis, maduración y asentamiento, de larvas que posteriormente, se convertirán en juveniles o semillas para etapa de pre-engorde industrial. El dispositivo también permite el confinamiento de organismos acuáticos en general, facilitando su desarrollo, en cultivo. La presente invención también se refiere a un sistema y método de cultivo que comprende el uso de dicho dispositivo de confinamiento.
ANTECEDENTES DE LA INVENCION
El principal problema que enfrenta la industria de la acuicultura a nivel mundial en la búsqueda de la diversificación productiva, corresponde al manejo de la etapa de crianza larval de muchas especies que aún no poseen tecnología desarrollada para su manejo (ej : pulpos, langostas, centolla, etc.), ya que principalmente, para desarrollar dicha tecnología se requiere de una alta inversión de recursos y años de dedicación, sumado a un equipo humano altamente calificado, por tanto, difícil y lento de desarrollar. Más aún, el desconocimiento producto de la falta de información y tecnología, de los aspectos nutritivos esenciales para el desarrollo de las especies de interés en sus etapas larvales, aumenta el grado de complejidad de esta brecha.
La crianza de larvas de organismos acuáticos clásicamente ha sido desarrollada utilizando desde pequeños y simples acuarios, hasta modernos y complejos laboratorios de toda clase y envergadura. Más específicamente, en la Industria de la Acuicultura, esta etapa es llevada a cabo en laboratorios denominados "Hatcherys", que se focalizan en la reproducción de parentales para la obtención de la descendencia larval, y llevar a cabo desde este punto la crianza larval. Para lograr desarrollar una técnica de manejo en laboratorio de tan solo 1 especie de cultivo, se invierten generalmente entre 10 a 20 años de investigación. En dicho periodo el gasto en recursos y energía es muy alto y el manejo de los laboratorios es extremadamente complejo, lo que requiere de personal calificado. A pesar de la alta inversión que requiere un "hatchery", estos no son capaces de entregar dietas 100% apropiadas, debido a que es muy difícil replicar la diversidad de ítems presa que obtienen las larvas naturalmente en un ambiente oceánico.
La crianza de larvas es entonces complicada y cara básicamente porque simplemente no se pueden alimentar apropiadamente. El alimento de larvas en crecimiento es cara, técnicamente complicada y nutricionalmente deficiente ya que el desarrollo de sistemas de cultivo masivos y rentables, no se ha logrado.
Para enfrentar la alta demanda por proteína alimenticia de alta calidad, la acuicultura busca diversificar los tipos de cultivos que desarrolla. Siendo el cultivo en etapa larval del organismo acuático, el principal problema a enfrentar, independientemente de la especie (peces, crustáceos, moluscos, etc.), cuyo cultivo se buscar desarrollar. En general, los organismos acuáticos en etapa larval, se mantienen en espacios confinados con sistemas de alimentación artificial en un proceso altamente ineficiente, complejo, que demanda mucho tiempo y recursos, lo que hace imposible llevar el proceso de cultivo a una escala de explotación industrial.
En general, en el arte previo se proponen laboratorios experimentales tipo "Hatchery" para la alimentación de larvas, por ejemplo, a través de dispositivos alimentadores (ver por ejemplo, USNo.9.1 13.615 B1 ) o sistemas de confinamiento diseñados especialmente para la disposición de las larvas y juveniles de una determinada especie. Como ejemplo, se pueden mencionar las canastas de cultivo de engorda de ostras que son fabricadas de plástico inyectado, ver Figura 15.
Para algunos tipos de larvas, se ha desarrollado la técnica de captación natural de semillas o post larvas, que se realiza utilizando diversos elementos colectores que consisten en substratos en general fibrosos (como grandes cepillos o madejas) que ofrecen una buena alternativa de refugio y asentamiento para larvas que se encuentran a la deriva en la columna de agua. Esta técnica es ampliamente usada para invertebrados tales como los mitílidos (choritos) y pectinidos (ostiones), sin embargo es ineficiente para satisfacer la demanda del mercado. Debido a la dispersión natural de las larvas en el ambiente, hay que utilizar grandes áreas de colectores, disponiendo para ello además, de infraestructura de soporte en mar.
Aunque no hay arte previo que aborde el confinamiento de larvas, entre los documentos de patentes más relacionados se pueden señalar la patente US8033250 que se refiere a un sistema de hábitat marino que comprende una o más unidades ensambladas, cada una formada de un elemento de flotación y una pluralidad de niveles que están fijados al elemento de flotación y espaciados por debajo de este. Los niveles de hábitat se componen de un conjunto de bastidores que tienen una sección que se rellena con una matriz de malla de fibras de plástico que es un entorno ideal para que prosperen varias criaturas marinas juveniles deseables (cangrejos, langostas, ostras, etc.). El sistema tiene raíces simuladas que proyectadas hacia arriba, proporcionan áreas de anclaje adicional donde se puede unir vida marina. JP2003052274 divulga un dispositivo ecológico/caja ecológica capaz de mantener el ambiente de peces perifiticos y crustáceos lo más similar posible a la ecología, mientras se cultivan. La caja ecológica tiene una matriz perforada en forma de red, en la parte inferior, para la adhesión de abalón o lo similar, y una cubierta que tiene aberturas que permite el ingreso de aire desde el exterior. El dispositivo permite la preservación de la vida acuática que contiene al incrementar activamente la cantidad de oxígeno disuelto en el agua contenida en su interior. La presente invención se refiere a un dispositivo de confinamiento larval que permite el cultivo de especies múltiples de acuicultura. Así, el dispositivo permite mantener contenidas, en cuerpos de agua naturales, a estadios larvales y post larvales de cultivos de múltiples especies de acuicultura. Especialmente, el cultivo de nuevas especies de alto valor y el repoblamiento de especies sobreexplotadas. Alternativa y opcionalmente, el dispositivo también puede ser utilizado para contender organismos juveniles, inclusive adultos, de diversas especies.
La presente invención se refiere a un dispositivo de confinamiento que permite mantener larvas de múltiples organismos marinos/acuáticos en condición de confinamiento en su medio ambiente natural, con el fin de desarrollar el proceso de crecimiento, metamorfosis y asentamiento de larvas que posteriormente, se convertirán en juveniles o semillas para etapa de pre-engorde industrial.
La presente invención enseña entonces un dispositivo de confinamiento que toma larvas del hábitat natural más que tratar ineficientemente de replicar sus condiciones en un laboratorio. Al hacerlo, permite a la larva alimentarse naturalmente sin costos extras, por la fuente natural de alimento usando el océano como un servicio ecosistémico
La presente invención también se refiere a un sistema y método de confinamiento que comprenden el uso del dispositivo antes mencionado.
BREVE DESCRIPCION DE LA INVENCION
El presente dispositivo de confinamiento para larvas pelágicas u organismos acuáticos de interés comercial para uso en la industria de la acuicultura o con propósitos de investigación, puede ser directamente instalado en un cuerpo de agua abierto como lagos o el mar, directamente en el hábitat natural de los organismos de interés particular para la industria y científicos.
La presente invención entonces proporciona un dispositivo de confinamiento que permite un adecuado mantenimiento de las condiciones físico-químicas del cuerpo de agua debido a que el diseño del dispositivo permite mantener condiciones apropiadas de refugio contra depredadores, luminosidad y circulación de agua, evitando zonas muertas de circulación de agua, gracias a la amplia disposición de ventanas con mallas que permiten el movimiento de agua y transporte de nutrientes.
El presente dispositivo de confinamiento permite mantener larvas de múltiples organismos marinos/acuáticos (tales como pulpos, langostas, cangrejos, etc) y/o zooplacton en condición de confinamiento en su medio ambiente natural, con el fin de desarrollar el proceso de crecimiento, metamorfosis y asentamiento de larvas que posteriormente, se convertirán en juveniles o semillas para etapa de pre-engorde industrial. El dispositivo también permite el confinamiento de organismos acuáticos en general, facilitando su desarrollo, en cultivo.
El presente dispositivo de confinamiento al tener la capacidad de disponer tanto de larvas como de organismos vivos de diferentes especies, en su ambiente natural, puede permitir también determinar el efecto que químicos tóxicos tienen sobre ambientes acuáticos. Esto porque el presente dispositivo de confinamiento mantiene los organismos vivos en su ambiente natural, y con ello, posibilita la verificación in situ del efecto que un determinado cuerpo de agua o efluente (por ejemplo descarga de residuos industriales líquidos) tiene sobre la biología del organismo. Luego, el diseño del presente dispositivo de confinamiento que comprende entre otros elementos, mallas intercambiables, sea así ideal para la disposición in situ de múltiples organismos en el marco de programas de monitoreo ecotoxicologico de cuerpos acuáticos, tales como ríos, lagos y/o mares.
El presente dispositivo de confinamiento se ensambla mediante medios de calce y sujeción - sin tornillos, y una vez ensamblado es fácil de almacenar y manipular tanto dentro como fuera del agua.
El presente dispositivo de confinamiento puede también ser apilado y colocado en serie, ya sea en un formato horizontal y vertical, y una vez instalado forma una serie unida por cuerdas, boyas y amarras, de una manera práctica y de bajo costo. El presente dispositivo de confinamiento puede ser construido de un material pollmérlco seleccionado de polletlleno (PE), pollcloruro de vlnllo (PVC), polipropileno (PP) o derivados de los mismos. En especial, el material pollmérlco se selecciona de polletlleno de alta densidad (HDPE) Inyectado. Un material resistente con densidad menor al agua que proporciona una boyantez levemente positiva de fácil manipulación tanto en agua marina como agua fresca.
El presente dispositivo de confinamiento puede estar equipado opclonalmente, con un miembro de Inspección que permite agregar fácilmente una fuente de alimentación exógena, y así suplementar la dieta natural que puede contener.
BREVE DESCRIPCION DE LAS FIGURAS
FIGURAS 1 A y 1 B: Ilustra sistema "Long Lines". La Figura 1 A muestra diferentes tipos de cultivos de fase de engorda, ninguno de ellos es para larvas. La Figura 1 B muestra el presente sistema de confinamiento dispuesto sobre un sistema "Long Une".
FIGURA 2: Muestra una vista general del presente sistema de confinamiento donde se aprecia en su conformación una estructura ensamblable de aspecto sólido y resistente, para trabajo de alto desempeño y durabilidad. Las ventanas frontales y laterales (en color gris) corresponden a mallas plásticas que pueden ser requeridas en diversas medidas de abertura o luz de malla, desde los 350 mlcrones (0,35 mm), hasta los 2000 mlcrones (2,0mm).
FIGURA 3: Muestra la disposición apllable del presente dispositivo.
FIGURA 4: Muestra despiece del presente dispositivo.
FIGURA 5: Muestra medios de calce y sujeción entre piezas preformadas del presente dispositivo.
FIGURA 6: Muestra soporte centrales (internos) del presente dispositivo.
DESCRIPCION DETALLADA DE LA INVENCION La presente invención se refiere a un dispositivo de confinamiento, ensamblable y apilable, para cultivo larval multiespecífico o el cultivo de organismos acuáticos en general, y que permite la diversificación de la acuicultura.
En particular, la presente invención se refiere a un dispositivo de confinamiento que permite mantener larvas de múltiples organismos marinos/acuáticos en condición de confinamiento en su medio ambiente natural, con el fin de desarrollar el proceso de metamorfosis, maduración y asentamiento, de larvas que posteriormente se convertirán en juveniles o semillas para etapa de pre-engorde industrial. El presente dispositivo también permite el confinamiento de organismos acuáticos en general, facilitando su desarrollo, en cultivo.
La invención también se refiere a un sistema y método de cultivo que comprende dicho dispositivo de confinamiento.
De igual modo, el dispositivo permite la investigación ligada a la biología de organismos zooplantónicos o larvas marinas, al permitir realizar observaciones del ciclo de vida de los organismos, que de otra manera, no podrían realizarse.
En lugar de ineficientemente tratar de replicar las condiciones naturales en un laboratorio, el presente dispositivo permite que las larvas se desarrollen en un hábitat natural, alimentándose sin costo adicional. El presente dispositivo permite sin dificultad, el ingreso del alimento de la larva, sin permitir la salida de la misma, la que queda confinada al interior del dispositivo.
La presente invención entonces se refiere a un dispositivo de confinamiento que permite contener y asegurar, la alimentación natural de larvas (primeros estadios de vida) de diversas especies de origen acuático que poseen valor tanto comercial como científico, y junto con contenerlas, permite que sea situado, a través de! uso de tecnología de "Long Lines", los que son ampliamente utilizados a nivel mundial por su sencillez, bajo costo y confiabilidad y que consiste en sistemas de tensión de cuerdas mediante la utilización de fondeos para su anclaje y boyas, que permiten la disposición de diversos elementos para desarrollar cultivos suspendidos en el mar. Ver Figura 1 A
Las Figuras 1 A y 1 B muestra un esquema de utilización tipo "Long Lines". La Figura 1 A muestra diferentes tipos de cultivos de fase de engorda, ninguno de ellos es para larvas, como el sistema de confinamiento de la presente invención. La Figura 1 B muestra el presente sistema de confinamiento dispuesto sobre un sistema "Long Une". El presente dispositivo de confinamiento puede ser dispuesto en sentido horizontal, como también en sentido vertical de manera apilada unos sobre otros, lo cual le otorga una gran versatilidad y adaptabilidad a diversas condiciones ambientales acuáticas y requerimientos de diversas especies.
Lo particular del presente dispositivo de confinamiento es que permite el ingreso de alimento natural circundante en el ambiente en donde se dispone, permitiendo mantener larvas confinadas en condiciones ambientales naturales. De esta manera, el presente dispositivo de confinamiento se convierte en una potente herramienta de trabajo para investigadores ligados a la biología de organismos zooplanctónicos o larvas marinas, como también para el confinamiento de larvas en transición a juveniles para sistemas de acuicultura tradicional y desarrollo de nuevas especies de cultivo. Además el presente dispositivo dispone de una tapa enroscable que permite ingresar alimento exógeno (alimento vivo o micropellet) para las larvas confinadas, como también hacer ingreso de una sonda o instrumento de manera rápida sin tener que sacar el dispositivo del ambiente marino, a través de buceo autónomo.
El presente dispositivo de confinamiento tiene un cuerpo de forma prismática hexagonal y una serie de ventanas perimetrales y laterales diseñadas para que en ellas se puedan montar mallas con abertura o luz a definición del usuario. Este conjunto de ventanas a su vez permite el ingreso de alimento circundante, el cual puede ser complementado gracias a la incorporación de un medio porta malla al interior. Este medio porta malla permite separar el espacio físico interno del dispositivo del fondo o zona de decantación de material particulado permitiendo que las larvas de interés dentro del presente dispositivo puedan evitar posicionarse sobre el fondo donde prevalecen protozoos y organismos descomponedores, actuando como un doble fondo. Ver Figura 6.
El presente dispositivo de confinamiento puede ser construido de material de polietileno de alta densidad (HDPE) inyectado. Un material resistente con densidad menor al agua que proporciona una boyantez levemente positiva de fácil manipulación tanto en agua marina como agua fresca.
Las ventanas del presente dispositivo (frontal, posterior, laterales superiores y laterales inferiores) que se encuentran fusionadas con el material HDPE, disponen de mallas seleccionadas de mallas de nylon, acero inoxidable, fibras naturales o lo similar, con aberturas de tamaño entre 350 micrones y hasta 2 milímetros, preferentemente.
La Figura 2 muestra una vista general del presente dispositivo de confinamiento donde se aprecia en su conformación una estructura ensamblable, de aspecto sólido y resistente, para trabajo de alto desempeño y durabilidad. Las ventanas frontales y laterales (en color gris) corresponden a mallas plásticas que pueden ser requeridas en diversas medidas de abertura o luz de malla, desde los 350 micrones (0,35 mm), hasta los 2000 micrones (2,0 mm). Esto permite mantener a distintas especies de cultivo, y a diferentes estadios de crecimiento de cada especie en particular. Las ventanas o mallas son intercambiables, de manera de otorgar la capacidad de mantenimiento de manera rápida, y poder adaptar el dispositivo a medida que se requiera.
La Figura 3 muestra un conjunto de dispositivos de manera apilada. El diseño permite que sean acumulados o guardados de manera sencilla segura gracias a un sistema de calce entre los dispositivos cuando se sobreponen o apoyan entre sí.
La Figura 4 muestra un despiece del presente sistema de confinamiento. La fabricación de piezas simétricas, permite que para la fabricación del dispositivo se requieran solo de 7 plantillas o moldes para la inyección de plástico, de preferencia, HDPE. Así mismo, este despiece permite que el empaquetamiento del dispositivo para su comercialización, permita ahorrar espacio y de esa manera poder meter muchos más dispositivos sobre un contenedor.
La Figura 5 muestra medios de calce y sujeción entre piezas preformadas del presente sistema de confinamiento. El presente sistema fue diseñado para soportar duras condiciones de uso y manipulación.
La Figura 6 muestra soportes centrales (internos) del presente sistema de confinamiento. Este sistema central que se muestra acá es una realización particular. Sin embargo, los soportes centrales pueden variar dependiendo de la especie a cultivar de manera de no solo atraer el alimento, sino también brindar refugio y características inherentes al hábitat de desarrollo de las diferentes especies susceptibles de ser cultivadas en este dispositivo. La placa basa! (horizontal) permitirá a su vez, separar a las larvas del material orgánico particulado que naturalmente decantará hacia el fondo del dispositivo, permitiendo separarlas del ambiente que se generará en el doble fondo, donde otros organismos descomponedores realizarán su función, evitando así, tener a nuestras larvas en contacto directo con estos descomponedores.
La aplicación en cultivo de especies acuáticas para el presente dispositivo se realizó considerando el interés comercial sobre los cefalópodos bentónicos chilenos, está centrado principalmente en el pulpo Octopus mimus, que después del gasterópodo Muricidae "Loco" Concholepas conchonlepas, es el recurso más importante en la pesquería artesanal del norte de Chile. Octopus mimus es una especie oportunista y capaz de adoptar diversas conductas depredadoras que le permiten acceder a una amplia variedad de presas, lo que incrementa su potencialidad en la acuicultura (Zúñiga, O., Olivares Paz, A., & Torres, I. (201 1 ). Evaluación del crecimiento del pulpo común Octopus mimus del norte de Chile alimentado con dietas formuladas. Latin american journal of aquatic research, 39(3), 584-592). Sin embargo, el cultivo larvario representa, en estos momentos, el factor limitante para el cultivo comercial de esta especie. La imposibilidad de disponer juveniles procedentes de cultivo, implica que cualquier iniciativa de engorde precise abastecerse de ejemplares capturados por pesca, lo que en ocasiones puede ser perjudicial de acuerdo al método de extracción que se realiza en esta especie, teniendo en cuenta que los ejemplares se deben capturar con el máximo cuidado, evitando dañar al organismo. De ahí la necesidad de diseñar y experimentar con nuevos sistemas de cultivo para las paralarvas.
La gran dificultad en el cultivo del pulpo común es la alta mortalidad que se produce en la primera fase de vida post-embrionaria. Estos individuos muestran una elevada actividad metabólica y un comportamiento alimentario extremadamente voraz, pudiendo entrar rápidamente en hambruna en ausencia de alimento (Igarashi, M. A. (2010). Actual situation and potential for development of octopus culture in Brazil. Revista Académica Ciéncias Agrárias e Ambientáis, 8(4), 417-427). Se estima que el período de vida planctónico de las paralarvas es de 30 a 60 días de vida, dependiendo de la temperatura del agua y de la zona geográfica. Estos organismos son depredadores activos desde el primer día de vida, a pesar de que poseen reservas vitelinas internas que les permiten sobrevivir en ausencia de alimento durante algunos días. De los trabajos realizados en laboratorio de cultivo de paralarvas de O. vulgaris se sabe que a medida que éstas van creciendo, la proporción de los brazos frente al manto va aumentando, y una vez alcanzado un determinado tamaño, realizan el asentamiento en el fondo, convirtiéndose así en juveniles bentónicos de morfología igual que los adultos.
La alta mortalidad larvaria es posible atribuirla a tres factores: la no disponibilidad de una dieta viva adecuada en tamaño y composición nutritiva, la falta de estandarización de la técnica de cultivo y, finalmente, el escaso conocimiento de la biología de la especie en estas fases tempranas, con el consiguiente desconocimiento de sus necesidades nutritivas básicas (Moxica, C, Linares, F., Otero, J. J., Iglesias, J., & Sánchez, F. J. 2002. Cultivo intensivo de paralarvas de pulpo, Octopus vulgaris Cuvier, 1797, en tanques de 9 m3. Bol. Inst. Esp. Oceanogr, 18(1 -4), 31 -36). Como lo muestra el estudio realizado por JACUMAR, 2004. Cultivo del Pulpo. Planes Nacionales de Cultivos Marinos, España en donde el análisis histológico de la glándula digestiva de paralarvas de O. vulgaris, señala que la alta mortalidad larvaria se debe principalmente a causas nutrlclonales. Domínguez, P., Cortés, G., Vázquez, C. R., & Cruz Suárez, L. E. (2004). Alimentación y nutrición de moluscos cefalópodos: avances recientes y perspectivas futuras. Avances en nutrición acuícola VII. Memorias del VII Slmposlum Internacional de Nutrición Acuícola. Hermoslllo, Sonora, 16-19), a través de análisis de contenidos estomacales en paralarvas y recién ecloslonados Indicaron que estos animales son carnívoros desde el ¡nielo de su ciclo de vida; la elevada actividad proteolítlca en las enzimas digestivas de paralarvas también Indica una dieta rica en proteínas desde los primeros días.
CULTIVO DE LOCO ( Concholepas choncolepas) CON EL PRESENTE DISPOSITIVO.
12 dispositivos fueron dispuestos en el mar para el cultivo de larvas de loco de talla promedio de 400 mieras. Cada dispositivo mostraba una capacidad de 60 litros/dispositivo y 100 larvas/litro. El dispositivo tenía mallas de 200 mieras en las ventanas. De esta forma, un total de 6 mil larvas por dispositivo fueron dispuestas horizontal y consecutivamente sobre una línea de cultivo "long line" ubicada a 1 ,5m de la superficie del mar, permaneciendo ahí por el transcurso de 4 semanas. Luego, de lo cual se realizó un seguimiento de sobrevivencia de las larvas contenidas en los dispositivos. El seguimiento comprendió el retiro a la semana 1 de 3 dispositivos de modo de tener réplicas de cada muestreo.
Tras una semana, las larvas se retiraron 3 dispositivos para recuento de crecimiento y sobrevivencia. Aunque el 100% de las larvas de C. concholepas no sobrevivieron, una gran variedad de organismos vivos dentro de los dispositivos, por ejemplo, crustáceos, moluscos, equinodermos y anélidos, sobrevivió. Se concluye que posiblemente las larvas de loco pueden haber sido alimentos de otras especies, particularmente, de organismos protozoarios.
Los resultados muestran que las larvas de Loco, debido a su forma y manera de alimentarse en el plancton, no presentaron características ideales para las condiciones que se desarrollaron dentro de los dispositivos. Sin embargo, las observaciones permiten inferir que otro tipo de larvas que cumplan con la característica de ser altas depredadoras del plancton marino, si debieran ser capaces de sobrevivir al poder alimentarse de las otras especies que fueron posible encontrar dentro de los sistemas. Es importante mencionar que estos resultados no pueden ser considerados como definitivos ya que los mismos pueden diferir debido a la estacionalidad, ubicación y profundidad.
CULTIVO LARVARIO DE PULPOS CON EL PRESENTE DISPOSITIVO
12 dispositivos fueron dispuestos en el mar para el cultivo de larvas de pulpo. Cada dispositivo mostraba una capacidad de 60 litros/dispositivo y 5 larvas/litro. El dispositivo tenía mallas de 1 .000 mieras en las ventanas. De esta forma, un total de 30 larvas por dispositivo fueron dispuestas horizontal y consecutivamente sobre una línea de cultivo "long Une" ubicada a 1 ,5m de la superficie del mar, permaneciendo ahí por el transcurso de 4 semanas. Luego, de lo cual se realizó un seguimiento de sobrevivencia de las larvas contenidas en los dispositivos. El seguimiento comprendió el retiro semanal de 3 dispositivos de modo de tener réplicas de cada muestreo.
Tras una semana, las larvas se retiraron 3 dispositivos para recuento de crecimiento y sobrevivencia. En la semana 1 , el 46% de las larvas del dispositivo sobrevivió. En la semana 2, 15,9% de las larvas del dispositivo sobrevivió. En la semana 3, el 8,3% de las larvas del dispositivo sobrevivió. En la semana 4, no hubo evaluación ya que una marejada, provocó la pérdida de ios dispositivos que quedaban.
En la última semana de monitoreo, se obtuvo una cifra promedio de sobrevivencia de 25 larvas por dispositivo. Hubo un rango de 17 a 31 larvas por dispositivo. Los resultados anteriores muestran que los sistemas de confinamiento presentan características Ideales para las condiciones observadas dentro de los dispositivos. Se concluye - sin consentir en esto como única explicación teórica, que las larvas de pulpo son altamente depredadoras, estando Incluso en la cima de la cadena trófica observada en el dispositivo. Luego, la gran mayoría de los organismos detectados dentro de los dispositivos pasan a convertirse en presas de las larvas de pulpo.
Es importante mencionar que estos resultados no pueden ser considerados como definitivos ya que los mismos pueden diferir debido a la estacionalidad, ubicación y profundidad.

Claims

REIVINDICACIONES
1 . Dispositivo de confinamiento para cultivo larval u organismo acuático, caracterizado porque tiene una estructura resistente y forma prismática hexagonal, es apilable, y ensamblable mediante medios de calce y sujeción, es de un material polimérico seleccionado de polietileno (PE), polivinil cloruro (PVC), polipropileno (PP) o derivados de los mismos, incluyendo polietileno de alta densidad (HDPE), que tiene una densidad menor al agua lo que proporciona al dispositivo de una boyantez levemente positiva de fácil manipulación tanto en agua marina como agua fresca, y comprende paredes frontal, posterior y laterales superiores e inferiores, donde cada pared lateral tiene ventanas intercambiables con mallas con abertura o luz, donde las mallas están fundidas al material polimérico y se seleccionan de una o más de una malla de nylon, malla de metal o malla de fibra natural con aberturas de tamaño entre 350 micrones y hasta 2.000 micrones, donde dichas mallas permiten el ingreso de alimento circundante, y además comprende un medio porta malla al interior que es desmontable y que permite separar el espacio físico interno del dispositivo del fondo o zona de decantación de material particulado que evita que la larva se posicione sobre el fondo del dispositivo, y donde adicionalmente el dispositivo comprende una tapa enroscable que permite ingresar alimento exógeno incluyendo alimento vivo o micropellet, como también hacer ingreso de una sonda o instrumento de manera rápida y sin tener que sacar el dispositivo del ambiente marino.
2. El dispositivo de confinamiento de la reivindicación 1 , caracterizado porque permite mantener larvas en condición de confinamiento en su medio ambiente natural.
3. El dispositivo de confinamiento de la reivindicación 1 , caracterizado porque permite a la larva una alimentación natural desde los primeros estadios de vida.
4. El dispositivo de confinamiento de la reivindicación 1 , caracterizado porque permite el confinamiento de larvas en transición a juveniles.
5. Sistema de cultivo acoplable a sistemas "long line" para larvas u organismos acuáticos, caracterizado porque comprende uno o más dispositivos de acuerdo con la reivindicación 1 , donde dicho dispositivo está dispuesto en serie, en sentido horizontal, vertical o ambos.
6. Método para el cultivo de larvas o un organismo acuático, caracterizado porque comprende disponer uno o más dispositivos de acuerdo con la reivindicación 1 en forma horizontal, vertical o ambas, y consecutivamente, sobre una línea de cultivo "long line" que puede ser ubicada a diferentes profundidades desde la superficie del mar, permaneciendo sumergido por un período de tiempo.
PCT/CL2017/050041 2016-10-14 2017-08-17 Dispositivo de confinamiento para larvas y/o organismos acuaticos, sistema, metodo de mantencion y cultivo en ambientes acuaticos WO2018068158A1 (es)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/342,074 US20210274756A1 (en) 2016-10-14 2017-08-17 Device for confining larvae and/or aquatic organisms, system, method for keeping and cultivating them in aquatic environments
JP2019541832A JP2019534714A (ja) 2016-10-14 2017-08-17 幼生及び/又は水生生物を収容するデバイス、それらを水性環境において維持かつ養殖するシステム及び方法
MX2019004399A MX2019004399A (es) 2016-10-14 2017-08-17 Dispositivo de confinamiento para larvas y/o organismos acuaticos, sistema, metodo de mantencion y cultivo en ambientes acuaticos.
AU2017341749A AU2017341749B2 (en) 2016-10-14 2017-08-17 Device for confining larvae and/or aquatic organisms, system, method for keeping and cultivating them in aquatic environments
EP17860411.2A EP3527069A4 (en) 2016-10-14 2017-08-17 CONTAINMENT DEVICE FOR LARVAE AND / OR AQUATIC ORGANISMS, SYSTEM, METHOD OF CONSERVATION AND CULTURE IN AQUATIC MEDIA
CN201780077770.8A CN110167342A (zh) 2016-10-14 2017-08-17 用于限制幼体和/或水生生物的装置、在水生环境中保持并培育它们的系统、方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL2016002627A CL2016002627A1 (es) 2016-10-14 2016-10-14 Dispositivo de confinamiento para cultivo larval de organismos acuáticos; sistema y método
CL2627-2016 2016-10-14

Publications (1)

Publication Number Publication Date
WO2018068158A1 true WO2018068158A1 (es) 2018-04-19

Family

ID=61905086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2017/050041 WO2018068158A1 (es) 2016-10-14 2017-08-17 Dispositivo de confinamiento para larvas y/o organismos acuaticos, sistema, metodo de mantencion y cultivo en ambientes acuaticos

Country Status (9)

Country Link
US (1) US20210274756A1 (es)
EP (1) EP3527069A4 (es)
JP (1) JP2019534714A (es)
CN (1) CN110167342A (es)
AU (1) AU2017341749B2 (es)
CL (1) CL2016002627A1 (es)
MX (1) MX2019004399A (es)
PE (1) PE20191158A1 (es)
WO (1) WO2018068158A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114128656A (zh) * 2021-11-27 2022-03-04 湖南铠晖农业科技开发有限公司 一种组合式小龙虾养殖装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4302599A3 (en) * 2018-02-14 2024-03-06 Nissui Corporation Cephalopod rearing cage, cephalopod escape prevention sheet, and use thereof
CN110999837B (zh) * 2019-12-18 2021-08-20 哈尔滨工程大学 一种抗风浪深海养殖网箱
KR102548371B1 (ko) * 2020-09-23 2023-06-27 강원대학교 산학협력단 제브라피쉬 치어 행동실험 및 라이브 이미징용 베드 툴
CN112924394B (zh) * 2021-01-24 2022-10-25 张苗苗 一种可调节食品安全检测装置
CN115067246B (zh) * 2022-07-14 2023-06-27 淮北聚源渔业有限公司 一种鲈鱼孵化卵收集设备
CN115443929A (zh) * 2022-10-17 2022-12-09 广西壮族自治区水产技术推广站 一种淡水螯虾受精卵孵化器及使用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100998438B1 (ko) * 2009-11-30 2010-12-03 박성남 다용도 부화통
JP2011135827A (ja) * 2009-12-28 2011-07-14 Litoncosmo Co Ltd 増殖礁
CN202664005U (zh) * 2012-07-10 2013-01-16 石狮市永诚水产育苗场 鲍鱼海参工厂化立体混养的养殖箱
CN103598123A (zh) * 2013-11-15 2014-02-26 浙江海洋学院 真蛸半隔离海水养殖网箱及其养殖方法
JP2014036624A (ja) * 2012-08-17 2014-02-27 Litoncosmo Co Ltd ナマコ増殖礁

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54146796A (en) * 1978-05-10 1979-11-16 Mayumi Morimoto Composite fish preserve having pollution preventing means and setting thereof
JPS576130Y2 (es) * 1979-08-25 1982-02-04
US4395970A (en) * 1981-02-25 1983-08-02 Kunkle Arthur N Open clean habitat for shell fish
US5628279A (en) * 1995-05-01 1997-05-13 Bones, Iv; John W. Fish cage
ES1036075Y (es) * 1997-01-09 1997-12-01 Lievore Motta Alberto Consola.
US6539894B1 (en) * 2001-09-28 2003-04-01 Eagle Net Sea Farms, Inc. Aquaculture farm system and method
PT1806964E (pt) * 2004-10-29 2012-03-06 Ocean Farm Technologies Inc Jaulas de confinamento para aquacultura de peixes
US8020516B2 (en) * 2007-03-29 2011-09-20 Susana Labra Reynolds Device and method for the capture of larvae and the sea-culture of sea urchins and abalone
AU2008207448B2 (en) * 2007-08-23 2014-06-05 Tooltech Pty Ltd Improved Mollusc Cultivation Enclosure
CN102318570A (zh) * 2011-04-27 2012-01-18 青岛恒生源生态农业有限公司 一种海参育苗用带孔波纹板附着器
JP2015107085A (ja) * 2013-12-05 2015-06-11 長浦 善昭 生のクロレラを飼料としてワムシを増養殖している水槽の内部にてウナギ、及びクロマグロの幼生であるプレレプトセアルスを飼育する方法。
CN104686418B (zh) * 2015-02-15 2017-09-15 中国水产科学研究院东海水产研究所 一种用于修复牡蛎礁的人工礁体构建工程的实施方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100998438B1 (ko) * 2009-11-30 2010-12-03 박성남 다용도 부화통
JP2011135827A (ja) * 2009-12-28 2011-07-14 Litoncosmo Co Ltd 増殖礁
CN202664005U (zh) * 2012-07-10 2013-01-16 石狮市永诚水产育苗场 鲍鱼海参工厂化立体混养的养殖箱
JP2014036624A (ja) * 2012-08-17 2014-02-27 Litoncosmo Co Ltd ナマコ増殖礁
CN103598123A (zh) * 2013-11-15 2014-02-26 浙江海洋学院 真蛸半隔离海水养殖网箱及其养殖方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3527069A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114128656A (zh) * 2021-11-27 2022-03-04 湖南铠晖农业科技开发有限公司 一种组合式小龙虾养殖装置

Also Published As

Publication number Publication date
EP3527069A4 (en) 2020-07-01
AU2017341749B2 (en) 2023-05-11
AU2017341749A1 (en) 2019-05-23
CN110167342A (zh) 2019-08-23
PE20191158A1 (es) 2019-09-09
CL2016002627A1 (es) 2017-03-24
US20210274756A1 (en) 2021-09-09
EP3527069A1 (en) 2019-08-21
MX2019004399A (es) 2019-10-21
JP2019534714A (ja) 2019-12-05

Similar Documents

Publication Publication Date Title
WO2018068158A1 (es) Dispositivo de confinamiento para larvas y/o organismos acuaticos, sistema, metodo de mantencion y cultivo en ambientes acuaticos
JP2009044979A (ja) 水生生物の飼育装置
KR100821313B1 (ko) 꽃게 공식 방지 및 양식 장치
Orejas et al. 38 cold-water coral in Aquaria: advances and challenges. A focus on the mediterranean
JP5150972B2 (ja) 甲殻類の飼育方法及びその方法により飼育された甲殻類
Peña et al. Effect of incubation temperature on the embryonic development and yolk‐sac larvae of the Pacific red snapper Lutjanus peru (Nichols & Murphy, 1922)
KR101415366B1 (ko) 이중 튜브식 해삼 양성용 쉘터 및 이를 이용한 해삼용 가두리
US7222585B2 (en) Aquaculture process and apparatus
Nabhitabhata et al. Sepioteuthis lessoniana
Bindu et al. Breeding behaviour and embryonic development in the Orange chromide, Etroplus maculatus (Cichlidae, Bloch 1795)
AU2001293487A1 (en) Aquaculture process and apparatus
JP3669968B2 (ja) 蟹類の養殖装置及びその使用方法
Sorgeloos et al. Production and use of Artemia in aquaculture
JP2009060892A (ja) 水生生物の幼生飼育器
KR101302202B1 (ko) 살아있는 멸치 순치 및 사육 방법
Keremah et al. Aspects of the reproductive biology of Tilapia guineensis (Bleeker, 1862) under laboratory conditions
Miyake et al. How to keep deep-sea animals
Velasco et al. State of shellfish aquaculture on the Caribbean coast of Colombia and potential site for a regional hatchery facility
Gateno et al. Aquarium maintenance of reef octocorals raised from field collected larvae
KR101142039B1 (ko) 어류의 다배성 난각 부화방법
Oliver et al. Seahorses and Pipefish
Gopakumar et al. Marine Ornamental Fish Culture–Package of Practices
Ranjan et al. Groupers
Director English-Hindi Glossary Fisheries Science and Aquaculture
Shepherd et al. Collection, Transport and Husbandry of the Coconut Octopus, Amphioctopus marginatus (Taki, 1964) from the Philippines

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17860411

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019541832

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017860411

Country of ref document: EP

Effective date: 20190514

ENP Entry into the national phase

Ref document number: 2017341749

Country of ref document: AU

Date of ref document: 20170817

Kind code of ref document: A