WO2018066199A1 - Optical laminate and image display device - Google Patents

Optical laminate and image display device Download PDF

Info

Publication number
WO2018066199A1
WO2018066199A1 PCT/JP2017/025528 JP2017025528W WO2018066199A1 WO 2018066199 A1 WO2018066199 A1 WO 2018066199A1 JP 2017025528 W JP2017025528 W JP 2017025528W WO 2018066199 A1 WO2018066199 A1 WO 2018066199A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
retardation layer
retardation
film
liquid crystal
Prior art date
Application number
PCT/JP2017/025528
Other languages
French (fr)
Japanese (ja)
Inventor
明憲 西村
丈治 喜多川
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020197008826A priority Critical patent/KR101978802B1/en
Priority to CN201780061146.9A priority patent/CN109791246B/en
Publication of WO2018066199A1 publication Critical patent/WO2018066199A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/04Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B23/08Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/20Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/55Liquid crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present invention relates to an optical laminate and an image display device using the same.
  • the polarizing plate (or circularly polarizing plate) for the inner touch panel type input display device the polarizing plate (or circularly polarizing plate) and the conductivity for the touch sensor are used from the viewpoints of thinning, prevention of variation in quality, and improvement of manufacturing efficiency. Integration with film is under consideration.
  • the polarizing plate in which the conductive film for the touch sensor is integrated has a problem that cracks are easily generated in the conductive layer of the conductive film under high temperature and high humidity.
  • the present invention has been made to solve the above-described conventional problems, and a main object thereof is to provide an optical laminate in which cracking of a conductive layer under high temperature and high humidity is suppressed.
  • the optical layered body of the present invention includes a polarizer, a polarizing plate including a protective layer on at least one side of the polarizer, a first retardation layer, a second retardation layer, a conductive layer, And a base material closely laminated on the conductive layer in this order.
  • the substrate has a moisture permeability of 5 mg / m 2 ⁇ 24 h to 10 mg / m 2 ⁇ 24 h, a dimensional change rate of 0.3% or less, and a linear expansion coefficient of 5 ( ⁇ 10 ⁇ 6 / ° C.) to 10 ( ⁇ 10 ⁇ 6 / ° C.).
  • the angle formed by the absorption axis of the polarizer and the slow axis of the first retardation layer is 10 ° to 20 °, and the absorption axis and the second retardation layer are The angle formed with the slow axis is 65 ° to 85 °.
  • the 1st phase contrast layer and the 2nd phase contrast layer are constituted by cyclic olefin system resin film.
  • the dimensional change rate of the second retardation layer is, for example, 1% or less.
  • the first retardation layer and the second retardation layer are alignment solidified layers of a liquid crystal compound.
  • an image display device includes the optical laminate described above.
  • the moisture permeability, dimensional change rate, and linear expansion coefficient of the substrate laminated in close contact with the conductive layer are optimized.
  • the occurrence of cracks in the conductive layer under high temperature and high humidity can be significantly suppressed.
  • Refractive index (nx, ny, nz) “Nx” is the refractive index in the direction in which the in-plane refractive index is maximum (ie, the slow axis direction), and “ny” is the direction orthogonal to the slow axis in the plane (ie, the fast axis direction). “Nz” is the refractive index in the thickness direction.
  • Refractive index (nx, ny, nz) “Nx” is the refractive index in the direction in which the in-plane refractive index is maximum (ie, the slow axis direction), and “ny” is the direction orthogonal to the slow axis in the plane (ie, the fast axis direction). “Nz” is the refractive index in the thickness direction.
  • In-plane retardation (Re) “Re ( ⁇ )” is an in-plane retardation measured with light having a wavelength of ⁇ nm at 23 ° C.
  • Re (550) is an in-plane retardation measured with light having a wavelength of 550 nm at 23 ° C.
  • Thickness direction retardation (Rth) is a retardation in the thickness direction measured with light having a wavelength of ⁇ nm at 23 ° C.
  • Rth (550) is a retardation in the thickness direction measured with light having a wavelength of 550 nm at 23 ° C.
  • FIG. 1 is a schematic cross-sectional view of an optical laminate according to one embodiment of the present invention.
  • the optical laminated body 100 of this embodiment has the polarizing plate 10, the 1st phase difference layer 20, the 2nd phase difference layer 30, the conductive layer 41, and the base material 42 in this order.
  • the polarizing plate 10 includes a polarizer 11, a first protective layer 12 disposed on one side of the polarizer 11, and a second protective layer 13 disposed on the other side of the polarizer 11. .
  • one of the first protective layer 12 and the second protective layer 13 may be omitted.
  • the first retardation layer 20 can also function as a protective layer for the polarizer 11
  • the second protective layer 13 may be omitted.
  • the base material 42 is closely adhered to the conductive layer 41.
  • adhered to the conductive layer 41 “adhesion lamination” means that two layers are directly and firmly laminated without an adhesive layer (for example, an adhesive layer or an adhesive layer).
  • Each of the conductive layer 41 and the base material 42 may be a component of the optical laminate 100 as a single layer, or may be introduced into the optical laminate 100 as a laminate of the base material 42 and the conductive layer 41.
  • the ratio of the thickness of each layer in drawing differs from actual.
  • the moisture permeability of the base material 42 is 5 mg / m 2 ⁇ 24 h to 10 mg / m 2 ⁇ 24 h, preferably 6 mg / m 2 ⁇ 24 h to 9 mg / m 2 ⁇ 24 h, More preferably, it is 7 mg / m 2 ⁇ 24 h to 8 mg / m 2 ⁇ 24 h.
  • the dimensional change rate of the base material 42 is 0.3% or less, preferably 0.1% or less, and more preferably 0.05% or less.
  • the linear expansion coefficient of the base material 42 is 5 ( ⁇ 10 ⁇ 6 / ° C.) to 10 ( ⁇ 10 ⁇ 6 / ° C.), preferably 6 ( ⁇ 10 ⁇ 6 / ° C.) to 9 ( ⁇ 10 ⁇ 6 / ° C.), more preferably 7 ( ⁇ 10 ⁇ 6 / ° C.) to 8 ( ⁇ 10 ⁇ 6 / ° C.).
  • the moisture permeability can be determined based on the moisture permeability test (cup method) of JIS Z0208.
  • the dimensional change rate refers to the dimensional change rate when placed in an environment of a temperature of 85 ° C. and a relative humidity of 85% for 240 hours.
  • the linear expansion coefficient can be determined by TMA measurement according to JIS K 7197.
  • first retardation layer 20 and the second retardation layer 30 are each made of a resin film.
  • first retardation layer 20 and the second retardation layer 30 may each be an alignment solidified layer of a liquid crystal compound.
  • the resin film will be described in detail in the sections C-2 and D-2, and the alignment solidified layer of the liquid crystal compound will be described in detail in the sections C-3 and D-3.
  • Each layer constituting the optical laminate other than the adhesion lamination of the conductive layer 41 and the substrate 42 may be laminated via any appropriate adhesive layer (adhesive layer or pressure-sensitive adhesive layer: not shown).
  • adhesive layer adhesive layer or pressure-sensitive adhesive layer: not shown.
  • they may be closely stacked.
  • the optical layered body preferably has a dimensional change rate of 1% or less, more preferably 0.95% or less.
  • the lower limit of the dimensional change rate of the optical laminated body is, for example, 0.01%. If the dimensional change rate of the optical laminate is in such a range, the occurrence of cracks in the conductive layer under high temperature and high humidity can be remarkably suppressed.
  • the total thickness of the optical laminated body is preferably 220 ⁇ m or less, more preferably 80 ⁇ m to 190 ⁇ m.
  • the total thickness of the optical laminate is preferably 175 ⁇ m or less, more preferably 80 ⁇ m to 140 ⁇ m. is there.
  • the optical layered body may have a long shape (for example, a roll shape) or a single wafer shape.
  • Polarizing plate B-1 Polarizer Any appropriate polarizer may be adopted as the polarizer 11.
  • the resin film forming the polarizer may be a single-layer resin film or a laminate of two or more layers.
  • polarizers composed of a single-layer resin film include hydrophilic polymer films such as polyvinyl alcohol (PVA) films, partially formalized PVA films, and ethylene / vinyl acetate copolymer partially saponified films.
  • PVA polyvinyl alcohol
  • polyene-based oriented films such as those subjected to dyeing treatment and stretching treatment with dichroic substances such as iodine and dichroic dyes, PVA dehydrated products and polyvinyl chloride dehydrochlorinated products.
  • a polarizer obtained by dyeing a PVA film with iodine and uniaxially stretching is used because of excellent optical properties.
  • the dyeing with iodine is performed, for example, by immersing a PVA film in an aqueous iodine solution.
  • the stretching ratio of the uniaxial stretching is preferably 3 to 7 times.
  • the stretching may be performed after the dyeing treatment or may be performed while dyeing. Moreover, you may dye
  • the PVA film is subjected to swelling treatment, crosslinking treatment, washing treatment, drying treatment and the like. For example, by immersing the PVA film in water and washing it before dyeing, not only can the surface of the PVA film be cleaned of dirt and anti-blocking agents, but the PVA film can be swollen to cause uneven staining. Can be prevented.
  • a polarizer obtained by using a laminate a laminate of a resin substrate and a PVA resin layer (PVA resin film) laminated on the resin substrate, or a resin substrate and the resin
  • a polarizer obtained by using a laminate with a PVA resin layer applied and formed on a substrate examples thereof include a polarizer obtained by using a laminate with a PVA resin layer applied and formed on a substrate.
  • a polarizer obtained by using a laminate of a resin base material and a PVA resin layer applied and formed on the resin base material may be obtained by, for example, applying a PVA resin solution to a resin base material and drying it.
  • a PVA-based resin layer is formed thereon to obtain a laminate of a resin base material and a PVA-based resin layer; the laminate is stretched and dyed to make the PVA-based resin layer a polarizer; obtain.
  • stretching typically includes immersing the laminate in an aqueous boric acid solution and stretching. Further, the stretching may further include, if necessary, stretching the laminate in the air at a high temperature (for example, 95 ° C. or higher) before stretching in the boric acid aqueous solution.
  • the obtained resin base material / polarizer laminate may be used as it is (that is, the resin base material may be used as a protective layer of the polarizer), and the resin base material is peeled from the resin base material / polarizer laminate.
  • Any appropriate protective layer according to the purpose may be laminated on the release surface. Details of a method for manufacturing such a polarizer are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580. This publication is incorporated herein by reference in its entirety.
  • the thickness of the polarizer is preferably 18 ⁇ m or less, more preferably 1 ⁇ m to 12 ⁇ m, still more preferably 3 ⁇ m to 12 ⁇ m, and particularly preferably 5 ⁇ m to 12 ⁇ m.
  • the boric acid content of the polarizer is preferably 18% by weight or more, more preferably 18% by weight to 25% by weight. If the content of boric acid in the polarizer is in such a range, the ease of curling adjustment at the time of bonding is well maintained and the curling at the time of heating is achieved by a synergistic effect with the iodine content described later. It is possible to improve the appearance durability during heating while satisfactorily suppressing.
  • the boric acid content can be calculated as the amount of boric acid contained in the polarizer per unit weight using, for example, the following formula from the neutralization method.
  • the iodine content of the polarizer is preferably 2.1% by weight or more, more preferably 2.1% by weight to 3.5% by weight. If the iodine content of the polarizer is in this range, the curl adjustment at the time of bonding is well maintained and the curl at the time of heating is maintained by a synergistic effect with the boric acid content. It is possible to improve the appearance durability during heating while satisfactorily suppressing.
  • iodine content means the amount of all iodine contained in a polarizer (PVA resin film).
  • iodine exists in the form of iodine ions (I ⁇ ), iodine molecules (I 2 ), polyiodine ions (I 3 ⁇ , I 5 ⁇ ), etc. in the polarizer.
  • Iodine content means the amount of iodine encompassing all these forms.
  • the iodine content can be calculated, for example, by a calibration curve method of fluorescent X-ray analysis.
  • the polyiodine ion exists in a state where a PVA-iodine complex is formed in the polarizer. By forming such a complex, absorption dichroism can be developed in the wavelength range of visible light.
  • the complex of PVA and triiodide ions (PVA ⁇ I 3 ⁇ ) has an absorption peak around 470 nm, and the complex of PVA and pentaiodide ions (PVA ⁇ I 5 ⁇ ) is around 600 nm. Have an absorption peak.
  • polyiodine ions can absorb light in a wide range of visible light depending on their form.
  • iodine ion (I ⁇ ) has an absorption peak near 230 nm and is not substantially involved in the absorption of visible light. Therefore, polyiodine ions present in a complex state with PVA can be mainly involved in the absorption performance of the polarizer.
  • the polarizer preferably exhibits absorption dichroism at any wavelength between 380 nm and 780 nm.
  • the single transmittance of the polarizer is 43.0% to 46.0%, preferably 44.5% to 46.0%.
  • the polarization degree of the polarizer is preferably 97.0% or more, more preferably 99.0% or more, and further preferably 99.9% or more.
  • the first protective layer 12 is formed of any suitable film that can be used as a protective layer for a polarizer.
  • the material as the main component of the film include cellulose resins such as triacetyl cellulose (TAC), polyester-based, polyvinyl alcohol-based, polycarbonate-based, polyamide-based, polyimide-based, polyethersulfone-based, and polysulfone-based materials.
  • transparent resins such as polystyrene, polynorbornene, polyolefin, (meth) acryl, and acetate.
  • thermosetting resins such as (meth) acrylic, urethane-based, (meth) acrylurethane-based, epoxy-based, and silicone-based or ultraviolet curable resins are also included.
  • a glassy polymer such as a siloxane polymer is also included.
  • a polymer film described in JP-A-2001-343529 (WO01 / 37007) can also be used.
  • a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in the side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and nitrile group in the side chain for example, a resin composition having an alternating copolymer of isobutene and N-methylmaleimide and an acrylonitrile / styrene copolymer can be mentioned.
  • the polymer film can be, for example, an extruded product of the resin composition.
  • the optical layered body of the present invention is typically disposed on the viewing side of the image display device, and the first protective layer 12 is typically disposed on the viewing side. Therefore, the first protective layer 12 may be subjected to a surface treatment such as a hard coat treatment, an antireflection treatment, an antisticking treatment, and an antiglare treatment as necessary. Further / or, if necessary, the first protective layer 12 is provided with a treatment for improving visibility when viewed through polarized sunglasses (typically, imparting an (elliptical) circular polarization function, (Giving an ultrahigh phase difference) may be applied. By performing such processing, excellent visibility can be achieved even when the display screen is viewed through a polarizing lens such as polarized sunglasses. Therefore, the optical laminate can be suitably applied to an image display device that can be used outdoors.
  • polarized sunglasses typically, imparting an (elliptical) circular polarization function, (Giving an ultrahigh phase difference
  • the thickness of the first protective layer any appropriate thickness can be adopted as long as the difference between the thickness of the desired polarizing plate and the thickness of the second protective layer can be obtained.
  • the thickness of the first protective layer is, for example, 10 ⁇ m to 50 ⁇ m, preferably 15 ⁇ m to 40 ⁇ m.
  • the thickness of the first protective layer is a thickness including the thickness of the surface treatment layer.
  • the second protective layer 13 is also formed of any suitable film that can be used as a protective layer for the polarizer.
  • the material constituting the main component of the film is as described in the section B-2 regarding the first protective layer.
  • the second protective layer 13 is preferably optically isotropic.
  • “optically isotropic” means that the in-plane retardation Re (550) is 0 nm to 10 nm and the thickness direction retardation Rth (550) is ⁇ 10 nm to +10 nm.
  • the thickness of the second protective layer is, for example, 15 ⁇ m to 35 ⁇ m, preferably 20 ⁇ m to 30 ⁇ m.
  • the difference between the thickness of the first protective layer and the thickness of the second protective layer is preferably 15 ⁇ m or less, more preferably 10 ⁇ m or less. If the difference in thickness is within such a range, curling at the time of bonding can be satisfactorily suppressed.
  • the thickness of the first protective layer and the thickness of the second protective layer may be the same, the first protective layer may be thicker, and the second protective layer may be thicker. . Typically, the first protective layer is thicker than the second protective layer.
  • the first retardation layer 20 may have any appropriate optical and / or mechanical characteristics depending on the purpose.
  • the first retardation layer 20 typically has a slow axis.
  • the angle formed by the slow axis of the first retardation layer 20 and the absorption axis of the polarizer 11 is preferably 10 ° to 20 °, more preferably 13 ° to 17 °. More preferably about 15 °. If the angle formed by the slow axis of the first retardation layer 20 and the absorption axis of the polarizer 11 is within such a range, the surfaces of the first retardation layer and the second retardation layer will be described later.
  • the circular polarization characteristics excellent in a wide band ( As a result, an optical laminate having very excellent antireflection properties can be obtained.
  • the first retardation layer preferably has a relationship in which the refractive index characteristic is nx> ny ⁇ nz.
  • the in-plane retardation Re (550) of the first retardation layer is preferably 180 nm to 320 nm, more preferably 200 nm to 290 nm, and further preferably 230 nm to 280 nm.
  • the Nz coefficient of the first retardation layer is preferably 0.9 to 3, more preferably 0.9 to 2.5, still more preferably 0.9 to 1.5, and particularly preferably 0.9 to 1. 3. By satisfying such a relationship, a very excellent reflection hue can be achieved when the obtained optical laminate is used in an image display device.
  • the first retardation layer may exhibit a reverse dispersion wavelength characteristic in which the retardation value increases according to the wavelength of the measurement light, and has a positive chromatic dispersion characteristic in which the retardation value decreases according to the wavelength of the measurement light. It may also be possible to show a flat chromatic dispersion characteristic in which the phase difference value hardly changes depending on the wavelength of the measurement light. In one embodiment, the first retardation layer exhibits a flat wavelength dispersion characteristic in which the retardation value hardly changes depending on the wavelength of the measurement light.
  • Re (450) / Re (550) of the retardation layer is preferably from 0.99 to 1.03
  • Re (650) / Re (550) is preferably from 0.98 to 1.02. is there.
  • a first retardation layer having a flat chromatic dispersion characteristic and having a predetermined in-plane retardation and a second retardation layer having a flat chromatic dispersion characteristic and having a predetermined in-plane retardation have a predetermined slow axis.
  • the absolute value of the photoelastic coefficient of the first retardation layer is preferably 2 ⁇ 10 ⁇ 11 m 2 / N or less, more preferably 2.0 ⁇ 10 ⁇ 13 m 2 / N to 1.5 ⁇ 10 ⁇ 11. m 2 / N, more preferably from 1.0 ⁇ 10 -12 m 2 /N ⁇ 1.2 ⁇ 10 -11 m 2 / N resin.
  • the thickness is preferably 60 ⁇ m or less, and preferably 30 ⁇ m to 50 ⁇ m. If the thickness of the first retardation layer is in such a range, a desired in-plane retardation can be obtained.
  • the first retardation layer 20 can be composed of any appropriate resin film that can satisfy the characteristics described in the above section C-1.
  • Typical examples of such resins include cyclic olefin resins, polycarbonate resins, cellulose resins, polyester resins, polyvinyl alcohol resins, polyamide resins, polyimide resins, polyether resins, polystyrene resins, acrylic resins. Based resins.
  • a cyclic olefin-based resin can be suitably used.
  • the cyclic olefin-based resin is a general term for resins that are polymerized using a cyclic olefin as a polymerization unit, and is described in, for example, JP-A-1-240517, JP-A-3-14882, JP-A-3-122137, and the like. Resin. Specific examples include ring-opening (co) polymers of cyclic olefins, addition polymers of cyclic olefins, copolymers of cyclic olefins and ⁇ -olefins such as ethylene and propylene (typically random copolymers).
  • graft modified products in which these are modified with an unsaturated carboxylic acid or a derivative thereof, and hydrides thereof.
  • the cyclic olefin include norbornene monomers.
  • the norbornene-based monomer include norbornene and alkyl and / or alkylidene substituted products thereof such as 5-methyl-2-norbornene, 5-dimethyl-2-norbornene, 5-ethyl-2-norbornene, 5-butyl- 2-Norbornene, 5-ethylidene-2-norbornene, etc.
  • Polar group substitution products such as halogens; dicyclopentadiene, 2,3-dihydrodicyclopentadiene, etc .; dimethanooctahydronaphthalene, alkyl and / or alkylidene substitution thereof
  • polar group substituents such as halogen, for example, 6-methyl-1,4: 5,8-dimethano-1,4,4a, 5,6,7,8,8a-octahydronaphthalene, 6-ethyl -1,4: 5,8-dimethano-1,4,4a, 5,6,7,8,8a-octahi Lonaphthalene, 6-ethylidene-1,4: 5,8-dimethano-1,4,4a, 5,6,7,8,8a-octahydronaphthalene, 6-chloro-1,4: 5,8-dimethano -1,4,4a, 5,6,7,8,8a-octahydronaphthalene, 6-cyano
  • cycloolefins capable of ring-opening polymerization can be used in combination as long as the object of the present invention is not impaired.
  • cycloolefins include compounds having one reactive double bond such as cyclopentene, cyclooctene, and 5,6-dihydrodicyclopentadiene.
  • the cyclic olefin resin preferably has a number average molecular weight (Mn) measured by a gel permeation chromatograph (GPC) method using a toluene solvent, preferably 25,000 to 200,000, more preferably 30,000 to 100,000. 000, most preferably 40,000 to 80,000.
  • Mn number average molecular weight measured by a gel permeation chromatograph (GPC) method using a toluene solvent, preferably 25,000 to 200,000, more preferably 30,000 to 100,000. 000, most preferably 40,000 to 80,000.
  • the hydrogenation rate is preferably 90% or more, more preferably 95% or more, Most preferably, it is 99% or more. Within such a range, the heat deterioration resistance and light deterioration resistance are excellent.
  • a commercially available film may be used as the cyclic olefin resin film.
  • Specific examples include trade names “ZEONEX” and “ZEONOR” manufactured by ZEON CORPORATION, “Arton” manufactured by JSR, “TOPAS” trade name manufactured by TICONA, and trade names manufactured by Mitsui Chemicals, Inc. “APEL” may be mentioned.
  • the first retardation layer 20 is obtained, for example, by stretching a film formed from the above cyclic olefin resin.
  • Any appropriate molding method can be adopted as a method of forming a film from a cyclic olefin-based resin. Specific examples include compression molding methods, transfer molding methods, injection molding methods, extrusion molding methods, blow molding methods, powder molding methods, FRP molding methods, cast coating methods (for example, casting methods), calendar molding methods, and hot presses. Law. Extrusion molding or cast coating is preferred. This is because the smoothness of the resulting film can be improved and good optical uniformity can be obtained.
  • the molding conditions can be appropriately set according to the composition and type of the resin used, the properties desired for the retardation layer, and the like. In addition, as above-mentioned, since many film products are marketed for cyclic olefin resin, you may use the said commercial film for an extending
  • the thickness of the resin film can be set to any appropriate value depending on the desired thickness of the first retardation layer, the desired optical properties, the stretching conditions described below, and the like.
  • the thickness is preferably 50 ⁇ m to 300 ⁇ m.
  • Any appropriate stretching method and stretching conditions may be employed for the stretching.
  • various stretching methods such as free end stretching, fixed end stretching, free end contraction, and fixed end contraction can be used singly or simultaneously or sequentially.
  • the stretching direction can also be performed in various directions and dimensions such as a length direction, a width direction, a thickness direction, and an oblique direction.
  • the stretching temperature is preferably Tg-30 ° C. to Tg + 60 ° C., more preferably Tg-10 ° C. to Tg + 50 ° C. with respect to the glass transition temperature (Tg) of the resin film.
  • a retardation film having the desired optical characteristics (for example, refractive index characteristics, in-plane retardation, Nz coefficient) can be obtained by appropriately selecting the stretching method and stretching conditions.
  • the retardation film is produced by uniaxially stretching a resin film or uniaxially stretching a fixed end.
  • the fixed end uniaxial stretching there is a method of stretching in the width direction (lateral direction) while running the resin film in the longitudinal direction.
  • the draw ratio is preferably 1.1 to 3.5 times.
  • the retardation film can be produced by continuously stretching a long resin film obliquely in a direction at a predetermined angle with respect to the longitudinal direction.
  • a long stretched film having an orientation angle of a predetermined angle with respect to the longitudinal direction of the film (slow axis in the direction of the angle) can be obtained.
  • lamination with a polarizer At this time, roll-to-roll is possible, and the manufacturing process can be simplified.
  • the angle may be an angle formed between the absorption axis of the polarizer and the slow axis of the first retardation layer in the optical layered body. As described above, the angle is preferably 10 ° to 20 °, more preferably 13 ° to 17 °, and further preferably about 15 °.
  • Examples of the stretching machine used for the oblique stretching include a tenter type stretching machine capable of adding feed forces, pulling forces, or pulling forces at different speeds in the lateral and / or longitudinal directions.
  • the tenter type stretching machine includes a horizontal uniaxial stretching machine, a simultaneous biaxial stretching machine, and the like, but any suitable stretching machine can be used as long as a long resin film can be continuously stretched obliquely.
  • the first retardation layer substantially having the desired in-plane retardation and having the slow axis in the desired direction.
  • a long retardation film can be obtained.
  • the stretching temperature of the film can vary depending on the in-plane retardation value and thickness desired for the first retardation layer, the type of resin used, the thickness of the film used, the stretching ratio, and the like. Specifically, the stretching temperature is preferably Tg-30 ° C to Tg + 30 ° C, more preferably Tg-15 ° C to Tg + 15 ° C, and most preferably Tg-10 ° C to Tg + 10 ° C. By extending
  • the first retardation layer 20 may be a liquid crystal compound alignment solidified layer.
  • the difference between nx and ny of the obtained retardation layer can be remarkably increased as compared with the non-liquid crystal material. Therefore, the first retardation for obtaining a desired in-plane retardation is obtained.
  • the thickness of the layer can be significantly reduced. As a result, the optical laminate can be further reduced in thickness.
  • the first retardation layer 20 is composed of an alignment solidified layer of a liquid crystal compound, the thickness is preferably 1 ⁇ m to 7 ⁇ m, more preferably 1.5 ⁇ m to 2.5 ⁇ m.
  • the “alignment solidified layer” refers to a layer in which a liquid crystal compound is aligned in a predetermined direction in the layer and the alignment state is fixed.
  • the “alignment solidified layer” is a concept including an alignment cured layer obtained by curing a liquid crystal monomer as described later.
  • rod-like liquid crystal compounds are aligned in a state where they are aligned in the slow axis direction of the first retardation layer (homogeneous alignment).
  • the liquid crystal compound include a liquid crystal compound (nematic liquid crystal) whose liquid crystal phase is a nematic phase.
  • a liquid crystal compound for example, a liquid crystal polymer or a liquid crystal monomer can be used.
  • the liquid crystal compound may exhibit liquid crystallinity either lyotropic or thermotropic.
  • the liquid crystal polymer and the liquid crystal monomer may be used alone or in combination.
  • the liquid crystal monomer is preferably a polymerizable monomer and a crosslinkable monomer. This is because the alignment state of the liquid crystal monomer can be fixed by polymerizing or crosslinking (that is, curing) the liquid crystal monomer. After aligning the liquid crystal monomers, for example, if the liquid crystal monomers are polymerized or cross-linked, the alignment state can be fixed thereby.
  • a polymer is formed by polymerization and a three-dimensional network structure is formed by crosslinking, but these are non-liquid crystalline.
  • the first retardation layer for example, transition to a liquid crystal phase, a glass phase, or a crystal phase due to a temperature change specific to the liquid crystal compound does not occur.
  • the first retardation layer is an extremely stable retardation layer that is not affected by temperature changes.
  • the temperature range in which the liquid crystal monomer exhibits liquid crystal properties varies depending on its type. Specifically, the temperature range is preferably 40 ° C. to 120 ° C., more preferably 50 ° C. to 100 ° C., and most preferably 60 ° C. to 90 ° C.
  • liquid crystal monomer any appropriate liquid crystal monomer can be adopted as the liquid crystal monomer.
  • the polymerizable mesogenic compounds described in JP-T-2002-533742 WO00 / 37585
  • EP358208 US521118)
  • EP66137 US4388453
  • WO93 / 22397 EP0266172
  • DE195504224 DE44081171
  • GB2280445 Specific examples of such a polymerizable mesogenic compound include, for example, trade name LC242 of BASF, trade name E7 of Merck, and trade name LC-Silicon-CC3767 of Wacker-Chem.
  • the liquid crystal monomer for example, a nematic liquid crystal monomer is preferable.
  • the alignment solidified layer of the liquid crystal compound is subjected to an alignment treatment on the surface of a predetermined substrate, and a coating liquid containing the liquid crystal compound is applied to the surface to align the liquid crystal compound in a direction corresponding to the alignment treatment, It can be formed by fixing the alignment state.
  • the liquid crystal compound can be aligned in a predetermined direction with respect to the long direction of the long substrate, and as a result, the liquid crystal compound is delayed in the predetermined direction of the formed retardation layer.
  • a phase axis can be developed. For example, a retardation layer having a slow axis in a direction of 15 ° with respect to the longitudinal direction can be formed on a long substrate.
  • Such a retardation layer can be laminated using roll-to-roll even when it is desired to have a slow axis in an oblique direction, so the productivity of the optical laminate is greatly improved.
  • the substrate is any suitable resin film, and the alignment solidified layer formed on the substrate can be transferred to the surface of the polarizing plate 10.
  • the substrate can be the second protective layer 13. In this case, the transfer step is omitted, and the lamination can be performed by roll-to-roll continuously from the formation of the alignment solidified layer (first retardation layer), so that the productivity is further improved.
  • any appropriate alignment treatment can be adopted as the alignment treatment.
  • a mechanical alignment process, a physical alignment process, and a chemical alignment process are mentioned.
  • Specific examples of the mechanical alignment treatment include rubbing treatment and stretching treatment.
  • Specific examples of the physical alignment process include a magnetic field alignment process and an electric field alignment process.
  • Specific examples of the chemical alignment treatment include oblique vapor deposition and photo-alignment treatment.
  • Arbitrary appropriate conditions may be employ
  • the alignment of the liquid crystal compound is performed by processing at a temperature showing a liquid crystal phase according to the type of the liquid crystal compound.
  • the liquid crystal compound takes a liquid crystal state, and the liquid crystal compound is oriented according to the orientation treatment direction of the substrate surface.
  • the alignment state is fixed by cooling the liquid crystal compound aligned as described above.
  • the alignment state is fixed by subjecting the liquid crystal compound aligned as described above to a polymerization treatment or a crosslinking treatment.
  • liquid crystal compound and details of the method of forming the alignment solidified layer are described in JP-A No. 2006-163343. The description in this publication is incorporated herein by reference.
  • the second retardation layer 30 may have any appropriate optical and / or mechanical characteristics depending on the purpose.
  • the second retardation layer 30 typically has a slow axis.
  • the angle formed by the slow axis of the second retardation layer 30 and the absorption axis of the polarizer 11 is preferably 65 ° to 85 °, more preferably 72 ° to 78 °. More preferably about 75 °.
  • the angle formed by the slow axis of the second retardation layer 30 and the slow axis of the first retardation layer 20 is preferably 52 ° to 68 °, more preferably 57 ° to 63 °. More preferably, it is about 60 °.
  • the in-plane retardation of the first retardation layer is set within a predetermined range as described above.
  • the slow axis of the first retardation layer is arranged at a predetermined angle with respect to the absorption axis of the polarizer, and the in-plane retardation of the second retardation layer is set within a predetermined range as will be described later.
  • the second retardation layer preferably has a relationship of refractive index characteristics of nx> ny ⁇ nz.
  • the in-plane retardation Re (550) of the second retardation layer is preferably 80 nm to 200 nm, more preferably 100 nm to 180 nm, and still more preferably 110 nm to 170 nm.
  • the thickness is preferably 40 ⁇ m or less, and preferably 25 ⁇ m to 35 ⁇ m. If the thickness of the second retardation layer is within such a range, a desired in-plane retardation can be obtained.
  • the second retardation layer is formed of a resin film, the material, characteristics, manufacturing method, and the like are as described in the above section C-2 for the first retardation layer.
  • the second retardation layer 30 may be a liquid crystal compound alignment / solidification layer in the same manner as the first retardation layer.
  • the thickness is preferably 0.5 ⁇ m to 2 ⁇ m, more preferably 1 ⁇ m to 1.5 ⁇ m.
  • the second retardation layer is composed of an alignment solidified layer of a liquid crystal compound, the material, characteristics, manufacturing method, and the like are as described in the above section C-3 for the first retardation layer.
  • first retardation layer and the second retardation layer may be used as any appropriate combination.
  • the first retardation layer may be composed of a resin film
  • the second retardation layer may be composed of an alignment solidified layer of a liquid crystal compound; the first retardation layer is aligned and solidified of a liquid crystal compound.
  • the second retardation layer may be composed of a resin film; both the first retardation layer and the second retardation layer may be composed of a resin film; Both the phase difference layer and the second phase difference layer may be composed of an alignment solidified layer of a liquid crystal compound.
  • the second retardation layer is also composed of a resin film; the first retardation layer is composed of an alignment solidified layer of a liquid crystal compound.
  • the second retardation layer is also composed of an alignment solidified layer of a liquid crystal compound.
  • the first retardation layer and the second retardation layer may be the same, and the detailed configuration May be different. The same applies to the case where both the first retardation layer and the second retardation layer are composed of an alignment solidified layer of a liquid crystal compound.
  • the dimensional change rate of the second retardation layer is preferably 1% or less, more preferably 0.95. % Or less.
  • the lower limit of the dimensional change rate of the second retardation layer is, for example, 0.01%.
  • the dimensions of the laminate of the polarizing plate, the first retardation layer, and the second retardation layer is preferably 1% or less, more preferably 0.95% or less.
  • the lower limit of the dimensional change rate of the laminate is, for example, 0.01%.
  • the conductive layer can be formed on a metal oxide film on any suitable substrate by any suitable film formation method (eg, vacuum deposition, sputtering, CVD, ion plating, spraying, etc.). Can be formed. After film formation, heat treatment (for example, 100 ° C. to 200 ° C.) may be performed as necessary. By performing the heat treatment, the amorphous film can be crystallized.
  • suitable film formation method eg, vacuum deposition, sputtering, CVD, ion plating, spraying, etc.
  • heat treatment for example, 100 ° C. to 200 ° C.
  • the metal oxide include indium oxide, tin oxide, zinc oxide, indium-tin composite oxide, tin-antimony composite oxide, zinc-aluminum composite oxide, and indium-zinc composite oxide.
  • the indium oxide may be doped with divalent metal ions or tetravalent metal ions.
  • Indium composite oxides are preferable, and indium-tin composite oxide (ITO) is more preferable.
  • Indium composite oxides are characterized by high transmittance (for example, 80% or more) in the visible light region (380 nm to 780 nm) and low surface resistance per unit area.
  • the thickness of the conductive layer is preferably 50 nm or less, more preferably 35 nm or less.
  • the lower limit of the thickness of the conductive layer is preferably 10 nm.
  • the surface resistance value of the conductive layer is preferably 300 ⁇ / ⁇ or less, more preferably 150 ⁇ / ⁇ or less, and further preferably 100 ⁇ / ⁇ or less.
  • the conductive layer can be patterned as needed. By conducting the patterning, a conductive portion and an insulating portion can be formed. Any appropriate method can be adopted as the patterning method. Specific examples of the patterning method include a wet etching method and a screen printing method.
  • Base material Any appropriate resin film may be used as the base material as long as the desired moisture permeability, dimensional change rate, and linear expansion coefficient described in the above section A are obtained.
  • the resin film has excellent transparency in addition to the above desired characteristics.
  • Specific examples of the constituent material include a cyclic olefin resin, a polycarbonate resin, a cellulose resin, a polyester resin, and an acrylic resin.
  • the substrate is optically isotropic.
  • the material constituting the optically isotropic substrate include, for example, a material having a main skeleton such as a norbornene-based resin or an olefin-based resin, a lactone ring, or glutar
  • examples thereof include materials having a cyclic structure such as an imide ring in the main chain of the acrylic resin.
  • the thickness of the substrate is preferably 10 ⁇ m to 200 ⁇ m, more preferably 20 ⁇ m to 60 ⁇ m.
  • a hard coat layer (not shown) may be provided between the conductive layer 41 and the base material 42.
  • a hard coat layer having any appropriate configuration can be used.
  • the thickness of the hard coat layer is, for example, 0.5 ⁇ m to 2 ⁇ m. If the haze is in an allowable range, fine particles for reducing Newton rings may be added to the hard coat layer.
  • the anchor coat layer for improving the adhesion of the conductive layer and / or the reflectance is adjusted between the conductive layer 41 and the base material 42 (a hard coat layer if present).
  • a refractive index adjustment layer may be provided. Arbitrary appropriate structures may be employ
  • the anchor coat layer and the refractive index adjusting layer can be thin layers of several nm to several tens of nm.
  • the hard coat layer typically includes a binder resin layer and spherical particles, and the spherical particles protrude from the binder resin layer to form convex portions. Details of such a hard coat layer are described in JP-A-2013-145547, and the description of the gazette is incorporated herein by reference.
  • the optical layered body according to the embodiment of the present invention may further include other retardation layers.
  • the optical characteristics for example, refractive index characteristics, in-plane retardation, Nz coefficient, photoelastic coefficient
  • thickness, arrangement position, and the like of other retardation layers can be appropriately set according to the purpose.
  • an adhesive layer (not shown) for bonding to the display cell is provided on the surface of the base material 42. It is preferable that a release film is bonded to the surface of the pressure-sensitive adhesive layer until the optical layered body is used.
  • the optical layered body described in the items A to G can be applied to an image display device. Therefore, the present invention includes an image display device using such an optical laminate. Typical examples of the image display device include a liquid crystal display device and an organic EL display device.
  • An image display device according to an embodiment of the present invention includes the optical layered body described in the items A to G on the viewing side.
  • the optical laminated body is laminated so that the conductive layer is on the display cell (for example, liquid crystal cell, organic EL cell) side (so that the polarizer is on the viewing side).
  • the image display device can be a so-called inner touch panel type input display device in which a touch sensor is incorporated between a display cell (for example, a liquid crystal cell or an organic EL cell) and a polarizing plate.
  • the touch sensor can be disposed between the conductive layer (or the conductive layer with the base material) and the display cell.
  • a configuration well known in the industry can be adopted, and a detailed description thereof will be omitted.
  • the present invention will be specifically described by way of examples, but the present invention is not limited to these examples.
  • the measuring method of each characteristic is as follows.
  • the applied retardation layer (alignment solidified layer of liquid crystal compound) was measured by an interference film thickness measurement method using MCPD2000 manufactured by Otsuka Electronics. The other films were measured using a digital micrometer (KC-351C manufactured by Anritsu).
  • Retardation value of retardation layer Refractive index nx, ny and nz of the retardation layer used in the examples and comparative examples were determined using an automatic birefringence measuring device (manufactured by Oji Scientific Instruments, automatic birefringence meter KOBRA- WPR).
  • the measurement wavelength of the in-plane retardation Re was 450 nm and 550 nm, the measurement wavelength of the thickness direction retardation Rth was 550 nm, and the measurement temperature was 23 ° C.
  • (4) Dimensional change rate The base material or retardation layer used in the examples and comparative examples, or the optical laminates obtained in the examples and comparative examples were cut into 100 mm ⁇ 100 mm and used as measurement samples.
  • the optical laminated body obtained by the Example and the comparative example was cut out to 100 mm x 50 mm, and was bonded together to the alkali free glass, and it was set as the measurement sample.
  • the measurement sample was stored in an oven at a temperature of 85 ° C. and a relative humidity of 85% for 120 hours. Thereafter, the measurement sample was taken out of the oven, the state of the conductive layer was observed with a laser microscope, and evaluated according to the following criteria. Good: No cracks were observed. Bad: Significant cracks were observed.
  • the weight ratio of iodine and potassium iodide is 1: 7, the iodine concentration of which is adjusted so that the single transmittance of the obtained polarizer is 45.0%.
  • the film was stretched 1.4 times.
  • the crosslinking treatment employed a two-stage crosslinking treatment, and the first-stage crosslinking treatment was stretched 1.2 times while being treated in an aqueous solution in which boric acid and potassium iodide were dissolved at 40 ° C.
  • the boric acid content of the aqueous solution of the first-stage crosslinking treatment was 5.0% by weight, and the potassium iodide content was 3.0% by weight.
  • the cross-linking treatment at the second stage was stretched 1.6 times while being treated in an aqueous solution in which boric acid and potassium iodide were dissolved at 65 ° C.
  • the boric acid content of the aqueous solution of the second crosslinking treatment was 4.3% by weight, and the potassium iodide content was 5.0% by weight.
  • the cleaning treatment was performed with an aqueous potassium iodide solution at 20 ° C.
  • the potassium iodide content of the aqueous solution for the washing treatment was 2.6% by weight.
  • the drying process was performed at 70 ° C. for 5 minutes to obtain a polarizer 1.
  • HC-TAC films (thickness: 32 ⁇ m, corresponding to the first protective layer) each having a hard coat (HC) layer formed by a hard coat treatment on one side of each of the first protective layer / polarizer A polarizing plate 1 having a configuration of 1 / second protective layer was obtained.
  • the conditions of the alignment treatment are as follows: the number of rubbing times (the number of rubbing rolls) is 1, the rubbing roll radius r is 76.89 mm, the rubbing roll rotational speed nr is 1500 rpm, the film transport speed v is 83 mm / sec, the rubbing strength RS and the pushing amount M was performed under five conditions (a) to (e) as shown in Table 1.
  • the direction of the orientation treatment was set to a ⁇ 75 ° direction when viewed from the viewing side with respect to the direction of the absorption axis of the polarizer when being bonded to the polarizing plate.
  • the liquid crystal coating liquid was applied to the alignment-treated surface with a bar coater, and the liquid crystal compound was aligned by heating and drying at 90 ° C. for 2 minutes. Under the conditions (a) to (c), the alignment state of the liquid crystal compound was very good. Under the conditions (d) and (e), a slight disturbance occurred in the alignment of the liquid crystal compound, but the level was not problematic for practical use.
  • the liquid crystal layer thus formed is irradiated with 1 mJ / cm 2 of light using a metal halide lamp, and the liquid crystal layer is cured to form a retardation layer (liquid crystal alignment solidified layer) 1 on the PET film. Formed.
  • the thickness of the retardation layer 1 was 2 ⁇ m, and the in-plane retardation Re (550) was 236 nm.
  • the pressure in the reaction vessel was changed from normal pressure to 13.3 kPa, and the generated phenol was extracted out of the reaction vessel while the temperature of the heat medium in the reaction vessel was increased to 190 ° C. over 1 hour.
  • the pressure in the reaction vessel is set to 6.67 kPa, and the heat medium temperature of the reaction vessel is increased to 230 ° C. in 15 minutes.
  • the generated phenol was extracted out of the reaction vessel. Since the stirring torque of the stirrer increased, the temperature was raised to 250 ° C. in 8 minutes, and the pressure in the reaction vessel was reduced to 0.200 kPa or less in order to remove the generated phenol.
  • the obtained polycarbonate resin had a glass transition temperature of 136.6 ° C. and a reduced viscosity of 0.395 dL / g.
  • the obtained polycarbonate resin was vacuum-dried at 80 ° C. for 5 hours, and then a single-screw extruder (made by Isuzu Chemical Industries, screw diameter 25 mm, cylinder set temperature: 220 ° C.), T-die (width 200 mm, set temperature: 220). ° C.), a chill roll (set temperature: 120 to 130 ° C.), and a film forming apparatus equipped with a winder, a 120 ⁇ m thick polycarbonate resin film was produced.
  • the polyolefin film on which the amorphous layer of indium tin oxide was formed was heat-treated in a heating oven at 130 ° C. for 90 minutes to produce a transparent conductive film having a surface resistance value of 100 ⁇ / ⁇ .
  • This transparent conductive film was used as a conductive layer with a substrate.
  • the moisture permeability of the substrate according to the above (3) is 7 mg / m 2 ⁇ 24 h
  • the dimensional change rate according to the above (4) is 0.03%
  • the linear expansion coefficient according to the above (5) is 7.3 ( ⁇ 10 ⁇ 6 / ° C.).
  • Reference Example 7 Production of conductive film (conductive layer with substrate)]
  • a transparent conductive film having a surface resistance value of 100 ⁇ / ⁇ was prepared in the same manner as in Reference Example 6 except that a PET film having a thickness of 50 ⁇ m (trade name “Lumirror # 50” manufactured by Toray Industries, Inc.) was used as the substrate.
  • This transparent conductive film was used as a conductive layer with a substrate.
  • the moisture permeability of the substrate according to the above (3) is 700 mg / m 2 ⁇ 24 h
  • the dimensional change rate according to the above (4) is 0.50%
  • the linear expansion coefficient according to the above (5) is 13.0 ( ⁇ 10 ⁇ 6 / ° C.).
  • Example 1 An acrylic adhesive having a thickness of 5 ⁇ m is used so that the angle between the absorption axis of the polarizer and the slow axis of the retardation layer 1 is 15 ° between the second protective layer surface of the polarizing plate 1 and the retardation layer 1. Pasted together. Next, the PET film on which the phase difference layer 1 has been formed is peeled off, and the phase difference layer 2 is formed on the peeled surface, and the angle between the absorption axis of the polarizer and the slow axis of the phase difference layer 2 is 75 °. In this way, they were bonded together through an acrylic adhesive having a thickness of 5 ⁇ m.
  • the PET film on which the retardation layer 2 was formed was peeled off to obtain a circularly polarizing plate 1 having a configuration of polarizing plate / first retardation layer / second retardation layer.
  • the second retardation layer of the circularly polarizing plate 1 and the conductive layer of the conductive layer with a base material obtained in Reference Example 6 were bonded to each other through the pressure-sensitive adhesive layer A to obtain an optical laminate 1.
  • the obtained optical laminated body 1 was used for evaluation of said (6). The results are shown in Table 2.
  • a retardation layer 3 (laminated retardation film) is used instead of the retardation layers 1 and 2, and the second protective layer surface of the polarizing plate 1 and the surface of the retardation layer film A are connected to the absorption axis of the polarizer and the retardation.
  • An acrylic adhesive having a thickness of 12 ⁇ m is used so that the angle between the slow axis of the film A is 15 ° and the angle between the absorption axis of the polarizer and the slow axis of the retardation film B is 75 °.
  • a circularly polarizing plate 2 having a configuration of polarizing plate / first retardation layer / second retardation layer was obtained by bonding.
  • the second retardation layer of the circularly polarizing plate 2 and the conductive layer of the conductive layer with a base material obtained in Reference Example 6 were bonded to each other through the pressure-sensitive adhesive layer A to obtain an optical laminate 2.
  • the obtained optical laminate 2 was subjected to the evaluation of (6) above. The results are shown in Table 2.
  • Example 1 The optical laminated body 3 was obtained like Example 1 except having used the electrically conductive layer with a base material obtained in Reference Example 7. The obtained optical laminated body 3 was used for evaluation of said (6). The results are shown in Table 2.
  • Example 2 The optical laminated body 4 was obtained like Example 2 except having used the electroconductive layer with a base material obtained in Reference Example 7. The obtained optical laminated body 4 was used for evaluation of said (6). The results are shown in Table 2.
  • the optical layered body of the present invention is suitably used for image display devices such as liquid crystal display devices and organic EL display devices, and can be particularly suitably used as an antireflection film for organic EL display devices. Furthermore, the optical layered body of the present invention can be suitably used for an inner touch panel type input display device.

Abstract

Provided is an optical laminate which is suppressed in cracking of a conductive layer under high temperature high humidity conditions. An optical laminate according to the present invention sequentially comprises, in the following order: a polarizing plate which contains a polarizer and a protective layer that is disposed on at least one surface of the polarizer; a first retardation layer; a second retardation layer; a conductive layer; and a substrate which is closely adhered onto the conductive layer. The substrate has a water vapor permeability of from 5 mg/m2·24h to 10 mg/m2·24h, a dimensional change rate of 0.3% or less, and a linear expansion coefficient of from 5 (× 10-6/°C) to 10 (× 10-6/°C).

Description

光学積層体および画像表示装置Optical laminate and image display device
 本発明は、光学積層体およびそれを用いた画像表示装置に関する。 The present invention relates to an optical laminate and an image display device using the same.
 近年、薄型ディスプレイの普及と共に、有機ELパネルを搭載したディスプレイ(有機EL表示装置)が提案されている。有機ELパネルは反射性の高い金属層を有するため、外光反射や背景の映り込み等の問題を生じやすい。そこで、円偏光板を視認側に設けることにより、これらの問題を防ぐことが知られている。一方、表示セル(例えば、有機ELセル)と偏光板との間にタッチセンサーが組み込まれた、いわゆるインナータッチパネル型入力表示装置の需要が高まっている。このような構成の入力表示装置は、画像表示セルとタッチセンサーとの距離が近いので、使用者に自然な入力操作感を与えることが可能となっている。 In recent years, with the spread of thin displays, displays (organic EL display devices) equipped with organic EL panels have been proposed. Since the organic EL panel has a highly reflective metal layer, problems such as external light reflection and background reflection tend to occur. Thus, it is known to prevent these problems by providing a circularly polarizing plate on the viewing side. On the other hand, there is an increasing demand for so-called inner touch panel type input display devices in which a touch sensor is incorporated between a display cell (for example, an organic EL cell) and a polarizing plate. Since the input display device having such a configuration has a short distance between the image display cell and the touch sensor, it is possible to give the user a natural feeling of input operation.
 インナータッチパネル型入力表示装置用の偏光板(または円偏光板)においては、薄型化、品質のばらつき防止、製造効率の向上等の観点から、偏光板(または円偏光板)とタッチセンサー用導電性フィルムとの一体化が検討されている。しかし、タッチセンサー用導電性フィルムを一体化した偏光板は、高温高湿下で導電性フィルムの導電層にクラックが発生しやすいという問題がある。 In the polarizing plate (or circularly polarizing plate) for the inner touch panel type input display device, the polarizing plate (or circularly polarizing plate) and the conductivity for the touch sensor are used from the viewpoints of thinning, prevention of variation in quality, and improvement of manufacturing efficiency. Integration with film is under consideration. However, the polarizing plate in which the conductive film for the touch sensor is integrated has a problem that cracks are easily generated in the conductive layer of the conductive film under high temperature and high humidity.
特開2003-311239号公報JP 2003-311239 A 特開2002-372622号公報JP 2002-372622 A 特許第3325560号公報Japanese Patent No. 3325560 特開2003-036143号公報JP 2003-036143 A
 本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、高温高湿下における導電層のクラックが抑制された光学積層体を提供することにある。 The present invention has been made to solve the above-described conventional problems, and a main object thereof is to provide an optical laminate in which cracking of a conductive layer under high temperature and high humidity is suppressed.
 本発明の光学積層体は、偏光子と該偏光子の少なくとも一方の側に保護層とを含む偏光板と、第1の位相差層と、第2の位相差層と、導電層と、該導電層に密着積層された基材と、をこの順に有する。この光学積層体においては、該基材の透湿度は5mg/m・24h~10mg/m・24hであり、寸法変化率は0.3%以下であり、および、線膨張係数は5(×10-6/℃)~10(×10-6/℃)である。
 1つの実施形態においては、上記偏光子の吸収軸と上記第1の位相差層の遅相軸とのなす角度は10°~20°であり、該吸収軸と上記第2の位相差層の遅相軸とのなす角度は65°~85°である。
 1つの実施形態においては、上記第1の位相差層および上記第2の位相差層は、環状オレフィン系樹脂フィルムで構成されている。この場合、上記第2の位相差層の寸法変化率は、例えば1%以下である。
 別の実施形態においては、上記第1の位相差層および上記第2の位相差層は、液晶化合物の配向固化層である。この場合、上記偏光板と上記第1の位相差層と上記第2の位相差層との積層体の寸法変化率は、例えば1%以下である。
 本発明の別の局面によれば、画像表示装置が提供される。この画像表示装置は、上記の光学積層体を備える。
The optical layered body of the present invention includes a polarizer, a polarizing plate including a protective layer on at least one side of the polarizer, a first retardation layer, a second retardation layer, a conductive layer, And a base material closely laminated on the conductive layer in this order. In this optical laminate, the substrate has a moisture permeability of 5 mg / m 2 · 24 h to 10 mg / m 2 · 24 h, a dimensional change rate of 0.3% or less, and a linear expansion coefficient of 5 ( × 10 −6 / ° C.) to 10 (× 10 −6 / ° C.).
In one embodiment, the angle formed by the absorption axis of the polarizer and the slow axis of the first retardation layer is 10 ° to 20 °, and the absorption axis and the second retardation layer are The angle formed with the slow axis is 65 ° to 85 °.
In one embodiment, the 1st phase contrast layer and the 2nd phase contrast layer are constituted by cyclic olefin system resin film. In this case, the dimensional change rate of the second retardation layer is, for example, 1% or less.
In another embodiment, the first retardation layer and the second retardation layer are alignment solidified layers of a liquid crystal compound. In this case, the dimensional change rate of the laminate of the polarizing plate, the first retardation layer, and the second retardation layer is, for example, 1% or less.
According to another aspect of the present invention, an image display device is provided. This image display device includes the optical laminate described above.
 本発明によれば、偏光板と2つの位相差層とタッチセンサー用導電層とを有する光学積層体において、導電層に密着積層された基材の透湿度、寸法変化率および線膨張係数を最適化することにより、高温高湿下における導電層のクラック発生を顕著に抑制することができる。その結果、非常に優れた耐久性を有する光学積層体を実現することができる。 According to the present invention, in an optical laminate having a polarizing plate, two retardation layers, and a conductive layer for touch sensor, the moisture permeability, dimensional change rate, and linear expansion coefficient of the substrate laminated in close contact with the conductive layer are optimized. As a result, the occurrence of cracks in the conductive layer under high temperature and high humidity can be significantly suppressed. As a result, it is possible to realize an optical laminate having very excellent durability.
本発明の1つの実施形態による光学積層体の概略断面図である。It is a schematic sectional drawing of the optical laminated body by one Embodiment of this invention.
 以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to these embodiments.
(用語および記号の定義)
 本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
 「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
 「Re(λ)」は、23℃における波長λnmの光で測定した面内位相差である。例えば、「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。Re(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Re(λ)=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
 「Rth(λ)」は、23℃における波長λnmの光で測定した厚み方向の位相差である。例えば、「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差である。Rth(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Rth(λ)=(nx-nz)×dによって求められる。
(4)Nz係数
 Nz係数は、Nz=Rth/Reによって求められる。
(Definition of terms and symbols)
The definitions of terms and symbols in this specification are as follows.
(1) Refractive index (nx, ny, nz)
“Nx” is the refractive index in the direction in which the in-plane refractive index is maximum (ie, the slow axis direction), and “ny” is the direction orthogonal to the slow axis in the plane (ie, the fast axis direction). “Nz” is the refractive index in the thickness direction.
(2) In-plane retardation (Re)
“Re (λ)” is an in-plane retardation measured with light having a wavelength of λ nm at 23 ° C. For example, “Re (550)” is an in-plane retardation measured with light having a wavelength of 550 nm at 23 ° C. Re (λ) is determined by the formula: Re (λ) = (nx−ny) × d, where d (nm) is the thickness of the layer (film).
(3) Thickness direction retardation (Rth)
“Rth (λ)” is a retardation in the thickness direction measured with light having a wavelength of λ nm at 23 ° C. For example, “Rth (550)” is a retardation in the thickness direction measured with light having a wavelength of 550 nm at 23 ° C. Rth (λ) is determined by the formula: Rth (λ) = (nx−nz) × d, where d (nm) is the thickness of the layer (film).
(4) Nz coefficient The Nz coefficient is obtained by Nz = Rth / Re.
A.光学積層体の全体構成
 図1は、本発明の1つの実施形態による光学積層体の概略断面図である。本実施形態の光学積層体100は、偏光板10と、第1の位相差層20と、第2の位相差層30と、導電層41と、基材42と、をこの順に有する。偏光板10は、偏光子11と、偏光子11の一方の側に配置された第1の保護層12と、偏光子11のもう一方の側に配置された第2の保護層13とを含む。目的に応じて、第1の保護層12および第2の保護層13の一方は省略されてもよい。例えば、第1の位相差層20が偏光子11の保護層としても機能し得る場合には、第2の保護層13は省略されてもよい。基材42は、導電層41に密着積層されている。本明細書において「密着積層」とは、2つの層が接着層(例えば、接着剤層、粘着剤層)を介在することなく直接かつ固着して積層されていることをいう。導電層41および基材42は、それぞれが単一層として光学積層体100の構成要素とされてもよく、基材42と導電層41との積層体として光学積層体100に導入されてもよい。なお、見やすくするために、図面における各層の厚みの比率は、実際とは異なっている。
A. FIG. 1 is a schematic cross-sectional view of an optical laminate according to one embodiment of the present invention. The optical laminated body 100 of this embodiment has the polarizing plate 10, the 1st phase difference layer 20, the 2nd phase difference layer 30, the conductive layer 41, and the base material 42 in this order. The polarizing plate 10 includes a polarizer 11, a first protective layer 12 disposed on one side of the polarizer 11, and a second protective layer 13 disposed on the other side of the polarizer 11. . Depending on the purpose, one of the first protective layer 12 and the second protective layer 13 may be omitted. For example, when the first retardation layer 20 can also function as a protective layer for the polarizer 11, the second protective layer 13 may be omitted. The base material 42 is closely adhered to the conductive layer 41. In the present specification, “adhesion lamination” means that two layers are directly and firmly laminated without an adhesive layer (for example, an adhesive layer or an adhesive layer). Each of the conductive layer 41 and the base material 42 may be a component of the optical laminate 100 as a single layer, or may be introduced into the optical laminate 100 as a laminate of the base material 42 and the conductive layer 41. In addition, in order to make it easy to see, the ratio of the thickness of each layer in drawing differs from actual.
 本発明の実施形態においては、基材42の透湿度は、5mg/m・24h~10mg/m・24hであり、好ましくは6mg/m・24h~9mg/m・24hであり、より好ましくは7mg/m・24h~8mg/m・24hである。基材42の寸法変化率は、0.3%以下であり、好ましくは0.1%以下であり、より好ましくは0.05%以下である。さらに、基材42の線膨張係数は、5(×10-6/℃)~10(×10-6/℃)であり、好ましくは6(×10-6/℃)~9(×10-6/℃)であり、より好ましくは7(×10-6/℃)~8(×10-6/℃)である。導電層に密着積層された基材を設け、さらに、当該基材の上記特性を組み合わせて最適化することにより、高温高湿下における導電層のクラック発生を顕著に抑制することができる。なお、透湿度は、JIS Z0208の透湿度試験(カップ法)に準拠して決定され得る。寸法変化率は、温度85℃および相対湿度85%の環境下に240時間置いた際の寸法変化率をいう。線膨張係数は、JIS K 7197に準じたTMA測定により決定され得る。 In the embodiment of the present invention, the moisture permeability of the base material 42 is 5 mg / m 2 · 24 h to 10 mg / m 2 · 24 h, preferably 6 mg / m 2 · 24 h to 9 mg / m 2 · 24 h, More preferably, it is 7 mg / m 2 · 24 h to 8 mg / m 2 · 24 h. The dimensional change rate of the base material 42 is 0.3% or less, preferably 0.1% or less, and more preferably 0.05% or less. Further, the linear expansion coefficient of the base material 42 is 5 (× 10 −6 / ° C.) to 10 (× 10 −6 / ° C.), preferably 6 (× 10 −6 / ° C.) to 9 (× 10 − 6 / ° C.), more preferably 7 (× 10 −6 / ° C.) to 8 (× 10 −6 / ° C.). By providing a base material closely laminated on the conductive layer, and further optimizing by combining the above characteristics of the base material, the occurrence of cracks in the conductive layer under high temperature and high humidity can be remarkably suppressed. The moisture permeability can be determined based on the moisture permeability test (cup method) of JIS Z0208. The dimensional change rate refers to the dimensional change rate when placed in an environment of a temperature of 85 ° C. and a relative humidity of 85% for 240 hours. The linear expansion coefficient can be determined by TMA measurement according to JIS K 7197.
 1つの実施形態においては、第1の位相差層20および第2の位相差層30は、それぞれ、樹脂フィルムで構成されている。別の実施形態においては、第1の位相差層20および第2の位相差層30は、それぞれ、液晶化合物の配向固化層であり得る。なお、樹脂フィルムについてはC-2項およびD-2項で、液晶化合物の配向固化層についてはC-3項およびD-3項でそれぞれ詳細に説明する。 In one embodiment, the first retardation layer 20 and the second retardation layer 30 are each made of a resin film. In another embodiment, the first retardation layer 20 and the second retardation layer 30 may each be an alignment solidified layer of a liquid crystal compound. The resin film will be described in detail in the sections C-2 and D-2, and the alignment solidified layer of the liquid crystal compound will be described in detail in the sections C-3 and D-3.
 導電層41と基材42との密着積層以外は、光学積層体を構成する各層は、任意の適切な接着層(接着剤層または粘着剤層:図示せず)を介して積層されていてもよく、導電層41および基材42の場合と同様に密着積層されていてもよい。 Each layer constituting the optical laminate other than the adhesion lamination of the conductive layer 41 and the substrate 42 may be laminated via any appropriate adhesive layer (adhesive layer or pressure-sensitive adhesive layer: not shown). In addition, as in the case of the conductive layer 41 and the base material 42, they may be closely stacked.
 光学積層体は、寸法変化率が好ましくは1%以下であり、より好ましくは0.95%以下である。光学積層体の寸法変化率は小さければ小さいほど好ましい。光学積層体の寸法変化率の下限は、例えば0.01%である。光学積層体の寸法変化率がこのような範囲であれば、高温高湿下における導電層のクラックの発生を顕著に抑制することができる。 The optical layered body preferably has a dimensional change rate of 1% or less, more preferably 0.95% or less. The smaller the dimensional change rate of the optical laminate, the better. The lower limit of the dimensional change rate of the optical laminated body is, for example, 0.01%. If the dimensional change rate of the optical laminate is in such a range, the occurrence of cracks in the conductive layer under high temperature and high humidity can be remarkably suppressed.
 光学積層体の総厚みは、好ましくは220μm以下であり、より好ましくは80μm~190μmである。第1の位相差層20および第2の位相差層30が液晶化合物の配向固化層である場合には、光学積層体の総厚みは、好ましくは175μm以下であり、より好ましくは80μm~140μmである。 The total thickness of the optical laminated body is preferably 220 μm or less, more preferably 80 μm to 190 μm. When the first retardation layer 20 and the second retardation layer 30 are alignment solidified layers of a liquid crystal compound, the total thickness of the optical laminate is preferably 175 μm or less, more preferably 80 μm to 140 μm. is there.
 光学積層体は、長尺状(例えば、ロール状)であってもよく、枚葉状であってもよい。 The optical layered body may have a long shape (for example, a roll shape) or a single wafer shape.
 以下、光学積層体を構成する各層、光学フィルム、および粘着剤について、より詳細に説明する。 Hereinafter, each layer, optical film, and pressure-sensitive adhesive constituting the optical laminate will be described in more detail.
B.偏光板
B-1.偏光子
 偏光子11としては、任意の適切な偏光子が採用され得る。例えば、偏光子を形成する樹脂フィルムは、単層の樹脂フィルムであってもよく、二層以上の積層体であってもよい。
B. Polarizing plate B-1. Polarizer Any appropriate polarizer may be adopted as the polarizer 11. For example, the resin film forming the polarizer may be a single-layer resin film or a laminate of two or more layers.
 単層の樹脂フィルムから構成される偏光子の具体例としては、ポリビニルアルコール(PVA)系フィルム、部分ホルマール化PVA系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質による染色処理および延伸処理が施されたもの、PVAの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等が挙げられる。好ましくは、光学特性に優れることから、PVA系フィルムをヨウ素で染色し一軸延伸して得られた偏光子が用いられる。 Specific examples of polarizers composed of a single-layer resin film include hydrophilic polymer films such as polyvinyl alcohol (PVA) films, partially formalized PVA films, and ethylene / vinyl acetate copolymer partially saponified films. In addition, there may be mentioned polyene-based oriented films such as those subjected to dyeing treatment and stretching treatment with dichroic substances such as iodine and dichroic dyes, PVA dehydrated products and polyvinyl chloride dehydrochlorinated products. Preferably, a polarizer obtained by dyeing a PVA film with iodine and uniaxially stretching is used because of excellent optical properties.
 上記ヨウ素による染色は、例えば、PVA系フィルムをヨウ素水溶液に浸漬することにより行われる。上記一軸延伸の延伸倍率は、好ましくは3~7倍である。延伸は、染色処理後に行ってもよいし、染色しながら行ってもよい。また、延伸してから染色してもよい。必要に応じて、PVA系フィルムに、膨潤処理、架橋処理、洗浄処理、乾燥処理等が施される。例えば、染色の前にPVA系フィルムを水に浸漬して水洗することで、PVA系フィルム表面の汚れやブロッキング防止剤を洗浄することができるだけでなく、PVA系フィルムを膨潤させて染色ムラなどを防止することができる。 The dyeing with iodine is performed, for example, by immersing a PVA film in an aqueous iodine solution. The stretching ratio of the uniaxial stretching is preferably 3 to 7 times. The stretching may be performed after the dyeing treatment or may be performed while dyeing. Moreover, you may dye | stain after extending | stretching. If necessary, the PVA film is subjected to swelling treatment, crosslinking treatment, washing treatment, drying treatment and the like. For example, by immersing the PVA film in water and washing it before dyeing, not only can the surface of the PVA film be cleaned of dirt and anti-blocking agents, but the PVA film can be swollen to cause uneven staining. Can be prevented.
 積層体を用いて得られる偏光子の具体例としては、樹脂基材と当該樹脂基材に積層されたPVA系樹脂層(PVA系樹脂フィルム)との積層体、あるいは、樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子が挙げられる。樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子は、例えば、PVA系樹脂溶液を樹脂基材に塗布し、乾燥させて樹脂基材上にPVA系樹脂層を形成して、樹脂基材とPVA系樹脂層との積層体を得ること;当該積層体を延伸および染色してPVA系樹脂層を偏光子とすること;により作製され得る。本実施形態においては、延伸は、代表的には積層体をホウ酸水溶液中に浸漬させて延伸することを含む。さらに、延伸は、必要に応じて、ホウ酸水溶液中での延伸の前に積層体を高温(例えば、95℃以上)で空中延伸することをさらに含み得る。得られた樹脂基材/偏光子の積層体はそのまま用いてもよく(すなわち、樹脂基材を偏光子の保護層としてもよく)、樹脂基材/偏光子の積層体から樹脂基材を剥離し、当該剥離面に目的に応じた任意の適切な保護層を積層して用いてもよい。このような偏光子の製造方法の詳細は、例えば特開2012-73580号公報に記載されている。当該公報は、その全体の記載が本明細書に参考として援用される。 As a specific example of a polarizer obtained by using a laminate, a laminate of a resin substrate and a PVA resin layer (PVA resin film) laminated on the resin substrate, or a resin substrate and the resin Examples thereof include a polarizer obtained by using a laminate with a PVA resin layer applied and formed on a substrate. For example, a polarizer obtained by using a laminate of a resin base material and a PVA resin layer applied and formed on the resin base material may be obtained by, for example, applying a PVA resin solution to a resin base material and drying it. A PVA-based resin layer is formed thereon to obtain a laminate of a resin base material and a PVA-based resin layer; the laminate is stretched and dyed to make the PVA-based resin layer a polarizer; obtain. In the present embodiment, stretching typically includes immersing the laminate in an aqueous boric acid solution and stretching. Further, the stretching may further include, if necessary, stretching the laminate in the air at a high temperature (for example, 95 ° C. or higher) before stretching in the boric acid aqueous solution. The obtained resin base material / polarizer laminate may be used as it is (that is, the resin base material may be used as a protective layer of the polarizer), and the resin base material is peeled from the resin base material / polarizer laminate. Any appropriate protective layer according to the purpose may be laminated on the release surface. Details of a method for manufacturing such a polarizer are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580. This publication is incorporated herein by reference in its entirety.
 偏光子の厚みは、好ましくは18μm以下であり、より好ましくは1μm~12μmであり、さらに好ましくは3μm~12μmであり、特に好ましくは5μm~12μmである。 The thickness of the polarizer is preferably 18 μm or less, more preferably 1 μm to 12 μm, still more preferably 3 μm to 12 μm, and particularly preferably 5 μm to 12 μm.
 偏光子のホウ酸含有量は、好ましくは18重量%以上であり、より好ましくは18重量%~25重量%である。偏光子のホウ酸含有量がこのような範囲であれば、後述のヨウ素含有量との相乗的な効果により、貼り合わせ時のカール調整の容易性を良好に維持し、かつ、加熱時のカールを良好に抑制しつつ、加熱時の外観耐久性を改善することができる。ホウ酸含有量は、例えば、中和法から下記式を用いて、単位重量当たりの偏光子に含まれるホウ酸量として算出することができる。
Figure JPOXMLDOC01-appb-M000001
The boric acid content of the polarizer is preferably 18% by weight or more, more preferably 18% by weight to 25% by weight. If the content of boric acid in the polarizer is in such a range, the ease of curling adjustment at the time of bonding is well maintained and the curling at the time of heating is achieved by a synergistic effect with the iodine content described later. It is possible to improve the appearance durability during heating while satisfactorily suppressing. The boric acid content can be calculated as the amount of boric acid contained in the polarizer per unit weight using, for example, the following formula from the neutralization method.
Figure JPOXMLDOC01-appb-M000001
 偏光子のヨウ素含有量は、好ましくは2.1重量%以上であり、より好ましくは2.1重量%~3.5重量%である。偏光子のヨウ素含有量がこのような範囲であれば、上記のホウ酸含有量との相乗的な効果により、貼り合わせ時のカール調整の容易性を良好に維持し、かつ、加熱時のカールを良好に抑制しつつ、加熱時の外観耐久性を改善することができる。本明細書において「ヨウ素含有量」とは、偏光子(PVA系樹脂フィルム)中に含まれるすべてのヨウ素の量を意味する。より具体的には、偏光子中においてヨウ素はヨウ素イオン(I)、ヨウ素分子(I)、ポリヨウ素イオン(I 、I )等の形態で存在するところ、本明細書におけるヨウ素含有量は、これらの形態をすべて包含したヨウ素の量を意味する。ヨウ素含有量は、例えば、蛍光X線分析の検量線法により算出することができる。なお、ポリヨウ素イオンは、偏光子中でPVA-ヨウ素錯体を形成した状態で存在している。このような錯体が形成されることにより、可視光の波長範囲において吸収二色性が発現し得る。具体的には、PVAと三ヨウ化物イオンとの錯体(PVA・I )は470nm付近に吸光ピークを有し、PVAと五ヨウ化物イオンとの錯体(PVA・I )は600nm付近に吸光ピークを有する。結果として、ポリヨウ素イオンは、その形態に応じて可視光の幅広い範囲で光を吸収し得る。一方、ヨウ素イオン(I)は230nm付近に吸光ピークを有し、可視光の吸収には実質的には関与しない。したがって、PVAとの錯体の状態で存在するポリヨウ素イオンが、主として偏光子の吸収性能に関与し得る。 The iodine content of the polarizer is preferably 2.1% by weight or more, more preferably 2.1% by weight to 3.5% by weight. If the iodine content of the polarizer is in this range, the curl adjustment at the time of bonding is well maintained and the curl at the time of heating is maintained by a synergistic effect with the boric acid content. It is possible to improve the appearance durability during heating while satisfactorily suppressing. In this specification, “iodine content” means the amount of all iodine contained in a polarizer (PVA resin film). More specifically, iodine exists in the form of iodine ions (I ), iodine molecules (I 2 ), polyiodine ions (I 3 , I 5 ), etc. in the polarizer. Iodine content means the amount of iodine encompassing all these forms. The iodine content can be calculated, for example, by a calibration curve method of fluorescent X-ray analysis. The polyiodine ion exists in a state where a PVA-iodine complex is formed in the polarizer. By forming such a complex, absorption dichroism can be developed in the wavelength range of visible light. Specifically, the complex of PVA and triiodide ions (PVA · I 3 ) has an absorption peak around 470 nm, and the complex of PVA and pentaiodide ions (PVA · I 5 ) is around 600 nm. Have an absorption peak. As a result, polyiodine ions can absorb light in a wide range of visible light depending on their form. On the other hand, iodine ion (I ) has an absorption peak near 230 nm and is not substantially involved in the absorption of visible light. Therefore, polyiodine ions present in a complex state with PVA can be mainly involved in the absorption performance of the polarizer.
 偏光子は、好ましくは、波長380nm~780nmのいずれかの波長で吸収二色性を示す。偏光子の単体透過率は、上記のとおり43.0%~46.0%であり、好ましくは44.5%~46.0%である。偏光子の偏光度は、好ましくは97.0%以上であり、より好ましくは99.0%以上であり、さらに好ましくは99.9%以上である。 The polarizer preferably exhibits absorption dichroism at any wavelength between 380 nm and 780 nm. As described above, the single transmittance of the polarizer is 43.0% to 46.0%, preferably 44.5% to 46.0%. The polarization degree of the polarizer is preferably 97.0% or more, more preferably 99.0% or more, and further preferably 99.9% or more.
B-2.第1の保護層
 第1の保護層12は、偏光子の保護層として使用できる任意の適切なフィルムで形成される。当該フィルムの主成分となる材料の具体例としては、トリアセチルセルロース(TAC)等のセルロース系樹脂や、ポリエステル系、ポリビニルアルコール系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボルネン系、ポリオレフィン系、(メタ)アクリル系、アセテート系等の透明樹脂等が挙げられる。また、(メタ)アクリル系、ウレタン系、(メタ)アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型樹脂または紫外線硬化型樹脂等も挙げられる。この他にも、例えば、シロキサン系ポリマー等のガラス質系ポリマーも挙げられる。また、特開2001-343529号公報(WO01/37007)に記載のポリマーフィルムも使用できる。このフィルムの材料としては、例えば、側鎖に置換または非置換のイミド基を有する熱可塑性樹脂と、側鎖に置換または非置換のフェニル基ならびにニトリル基を有する熱可塑性樹脂を含有する樹脂組成物が使用でき、例えば、イソブテンとN-メチルマレイミドからなる交互共重合体と、アクリロニトリル・スチレン共重合体とを有する樹脂組成物が挙げられる。当該ポリマーフィルムは、例えば、上記樹脂組成物の押出成形物であり得る。
B-2. First protective layer The first protective layer 12 is formed of any suitable film that can be used as a protective layer for a polarizer. Specific examples of the material as the main component of the film include cellulose resins such as triacetyl cellulose (TAC), polyester-based, polyvinyl alcohol-based, polycarbonate-based, polyamide-based, polyimide-based, polyethersulfone-based, and polysulfone-based materials. And transparent resins such as polystyrene, polynorbornene, polyolefin, (meth) acryl, and acetate. Further, thermosetting resins such as (meth) acrylic, urethane-based, (meth) acrylurethane-based, epoxy-based, and silicone-based or ultraviolet curable resins are also included. In addition to this, for example, a glassy polymer such as a siloxane polymer is also included. Further, a polymer film described in JP-A-2001-343529 (WO01 / 37007) can also be used. As a material for this film, for example, a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in the side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and nitrile group in the side chain For example, a resin composition having an alternating copolymer of isobutene and N-methylmaleimide and an acrylonitrile / styrene copolymer can be mentioned. The polymer film can be, for example, an extruded product of the resin composition.
 本発明の光学積層体は、後述するように代表的には画像表示装置の視認側に配置され、第1の保護層12は、代表的にはその視認側に配置される。したがって、第1の保護層12には、必要に応じて、ハードコート処理、反射防止処理、スティッキング防止処理、アンチグレア処理等の表面処理が施されていてもよい。さらに/あるいは、第1の保護層12には、必要に応じて、偏光サングラスを介して視認する場合の視認性を改善する処理(代表的には、(楕)円偏光機能を付与すること、超高位相差を付与すること)が施されていてもよい。このような処理を施すことにより、偏光サングラス等の偏光レンズを介して表示画面を視認した場合でも、優れた視認性を実現することができる。したがって、光学積層体は、屋外で用いられ得る画像表示装置にも好適に適用され得る。 As will be described later, the optical layered body of the present invention is typically disposed on the viewing side of the image display device, and the first protective layer 12 is typically disposed on the viewing side. Therefore, the first protective layer 12 may be subjected to a surface treatment such as a hard coat treatment, an antireflection treatment, an antisticking treatment, and an antiglare treatment as necessary. Further / or, if necessary, the first protective layer 12 is provided with a treatment for improving visibility when viewed through polarized sunglasses (typically, imparting an (elliptical) circular polarization function, (Giving an ultrahigh phase difference) may be applied. By performing such processing, excellent visibility can be achieved even when the display screen is viewed through a polarizing lens such as polarized sunglasses. Therefore, the optical laminate can be suitably applied to an image display device that can be used outdoors.
 第1の保護層の厚みは、上記所望の偏光板の厚みおよび第2の保護層との厚みの差が得られる限りにおいて、任意の適切な厚みが採用され得る。第1の保護層の厚みは、例えば10μm~50μmであり、好ましくは15μm~40μmである。なお、表面処理が施されている場合、第1の保護層の厚みは、表面処理層の厚みを含めた厚みである。 As the thickness of the first protective layer, any appropriate thickness can be adopted as long as the difference between the thickness of the desired polarizing plate and the thickness of the second protective layer can be obtained. The thickness of the first protective layer is, for example, 10 μm to 50 μm, preferably 15 μm to 40 μm. In addition, when the surface treatment is performed, the thickness of the first protective layer is a thickness including the thickness of the surface treatment layer.
B-3.第2の保護層
 第2の保護層13もまた、偏光子の保護層として使用できる任意の適切なフィルムで形成される。当該フィルムの主成分となる材料は、第1の保護層に関して上記B-2項で説明したとおりである。第2の保護層13は、光学的に等方性であることが好ましい。本明細書において「光学的に等方性である」とは、面内位相差Re(550)が0nm~10nmであり、厚み方向の位相差Rth(550)が-10nm~+10nmであることをいう。
B-3. Second protective layer The second protective layer 13 is also formed of any suitable film that can be used as a protective layer for the polarizer. The material constituting the main component of the film is as described in the section B-2 regarding the first protective layer. The second protective layer 13 is preferably optically isotropic. In this specification, “optically isotropic” means that the in-plane retardation Re (550) is 0 nm to 10 nm and the thickness direction retardation Rth (550) is −10 nm to +10 nm. Say.
 第2の保護層の厚みは、例えば15μm~35μmであり、好ましくは20μm~30μmである。第1の保護層の厚みと第2の保護層の厚みとの差は、好ましくは15μm以下であり、より好ましくは10μm以下である。厚みの差がこのような範囲であれば、貼り合わせ時のカールを良好に抑制することができる。第1の保護層の厚みと第2の保護層の厚みとは、同一であってもよく、第1の保護層の方が分厚くてもよく、第2の保護層の方が分厚くてもよい。代表的には、第2の保護層よりも第1の保護層の方が分厚い。 The thickness of the second protective layer is, for example, 15 μm to 35 μm, preferably 20 μm to 30 μm. The difference between the thickness of the first protective layer and the thickness of the second protective layer is preferably 15 μm or less, more preferably 10 μm or less. If the difference in thickness is within such a range, curling at the time of bonding can be satisfactorily suppressed. The thickness of the first protective layer and the thickness of the second protective layer may be the same, the first protective layer may be thicker, and the second protective layer may be thicker. . Typically, the first protective layer is thicker than the second protective layer.
C.第1の位相差層
C-1.第1の位相差層の特性
 第1の位相差層20は、目的に応じて任意の適切な光学的特性および/または機械的特性を有し得る。第1の位相差層20は、代表的には遅相軸を有する。1つの実施形態においては、第1の位相差層20の遅相軸と偏光子11の吸収軸とのなす角度は、好ましくは10°~20°であり、より好ましくは13°~17°であり、さらに好ましくは約15°である。第1の位相差層20の遅相軸と偏光子11の吸収軸とのなす角度がこのような範囲であれば、後述するように第1の位相差層および第2の位相差層の面内位相差をそれぞれ所定の範囲に設定し、第2の位相差層の遅相軸を偏光子の吸収軸に対して所定の角度で配置することにより、広帯域において非常に優れた円偏光特性(結果として、非常に優れた反射防止特性)を有する光学積層体が得られ得る。
C. First retardation layer C-1. Characteristics of First Retardation Layer The first retardation layer 20 may have any appropriate optical and / or mechanical characteristics depending on the purpose. The first retardation layer 20 typically has a slow axis. In one embodiment, the angle formed by the slow axis of the first retardation layer 20 and the absorption axis of the polarizer 11 is preferably 10 ° to 20 °, more preferably 13 ° to 17 °. More preferably about 15 °. If the angle formed by the slow axis of the first retardation layer 20 and the absorption axis of the polarizer 11 is within such a range, the surfaces of the first retardation layer and the second retardation layer will be described later. By setting the inner phase difference within a predetermined range and arranging the slow axis of the second retardation layer at a predetermined angle with respect to the absorption axis of the polarizer, the circular polarization characteristics (excellent in a wide band ( As a result, an optical laminate having very excellent antireflection properties can be obtained.
 第1の位相差層は、好ましくは屈折率特性がnx>ny≧nzの関係を示す。第1の位相差層の面内位相差Re(550)は、好ましくは180nm~320nmであり、より好ましくは200nm~290nmであり、さらに好ましくは230nm~280nmである。なお、ここで「ny=nz」はnyとnzが完全に等しい場合だけではなく、実質的に等しい場合を包含する。したがって、本発明の効果を損なわない範囲で、ny<nzとなる場合があり得る。 The first retardation layer preferably has a relationship in which the refractive index characteristic is nx> ny ≧ nz. The in-plane retardation Re (550) of the first retardation layer is preferably 180 nm to 320 nm, more preferably 200 nm to 290 nm, and further preferably 230 nm to 280 nm. Here, “ny = nz” includes not only the case where ny and nz are completely equal, but also the case where they are substantially equal. Therefore, ny <nz may be satisfied as long as the effects of the present invention are not impaired.
 第1の位相差層のNz係数は、好ましくは0.9~3、より好ましくは0.9~2.5、さらに好ましくは0.9~1.5、特に好ましくは0.9~1.3である。このような関係を満たすことにより、得られる光学積層体を画像表示装置に用いた場合に、非常に優れた反射色相を達成し得る。 The Nz coefficient of the first retardation layer is preferably 0.9 to 3, more preferably 0.9 to 2.5, still more preferably 0.9 to 1.5, and particularly preferably 0.9 to 1. 3. By satisfying such a relationship, a very excellent reflection hue can be achieved when the obtained optical laminate is used in an image display device.
 第1の位相差層は、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示してもよく、位相差値が測定光の波長に応じて小さくなる正の波長分散特性を示してもよく、位相差値が測定光の波長によってもほとんど変化しないフラットな波長分散特性を示してもよい。第1の位相差層は、1つの実施形態においては、位相差値が測定光の波長によってもほとんど変化しないフラットな波長分散特性を示す。この場合、位相差層のRe(450)/Re(550)は、好ましくは0.99~1.03であり、Re(650)/Re(550)は好ましくは0.98~1.02である。フラットな波長分散特性を示し所定の面内位相差を有する第1の位相差層とフラットな波長分散特性を示し所定の面内位相差を有する第2の位相差層とを所定の遅相軸角度で組み合わせて用いることにより、広帯域において非常に優れた反射防止特性を実現することができる。 The first retardation layer may exhibit a reverse dispersion wavelength characteristic in which the retardation value increases according to the wavelength of the measurement light, and has a positive chromatic dispersion characteristic in which the retardation value decreases according to the wavelength of the measurement light. It may also be possible to show a flat chromatic dispersion characteristic in which the phase difference value hardly changes depending on the wavelength of the measurement light. In one embodiment, the first retardation layer exhibits a flat wavelength dispersion characteristic in which the retardation value hardly changes depending on the wavelength of the measurement light. In this case, Re (450) / Re (550) of the retardation layer is preferably from 0.99 to 1.03, and Re (650) / Re (550) is preferably from 0.98 to 1.02. is there. A first retardation layer having a flat chromatic dispersion characteristic and having a predetermined in-plane retardation and a second retardation layer having a flat chromatic dispersion characteristic and having a predetermined in-plane retardation have a predetermined slow axis. By using in combination at an angle, it is possible to realize an excellent antireflection characteristic in a wide band.
 第1の位相差層は、光弾性係数の絶対値が好ましくは2×10-11/N以下、より好ましくは2.0×10-13/N~1.5×10-11/N、さらに好ましくは1.0×10-12/N~1.2×10-11/Nの樹脂を含む。光弾性係数の絶対値がこのような範囲であれば、加熱時の収縮応力が発生した場合に位相差変化が生じにくい。その結果、得られる画像表示装置の熱ムラが良好に防止され得る。 The absolute value of the photoelastic coefficient of the first retardation layer is preferably 2 × 10 −11 m 2 / N or less, more preferably 2.0 × 10 −13 m 2 / N to 1.5 × 10 −11. m 2 / N, more preferably from 1.0 × 10 -12 m 2 /N~1.2×10 -11 m 2 / N resin. When the absolute value of the photoelastic coefficient is in such a range, a phase difference change is unlikely to occur when a shrinkage stress is generated during heating. As a result, heat unevenness of the obtained image display apparatus can be prevented satisfactorily.
C-2.樹脂フィルムで構成される第1の位相差層
 第1の位相差層が樹脂フィルムで構成される場合、その厚みは、好ましくは60μm以下であり、好ましくは30μm~50μmである。第1の位相差層の厚みがこのような範囲であれば、所望の面内位相差が得られ得る。
C-2. First retardation layer composed of resin film When the first retardation layer is composed of a resin film, the thickness is preferably 60 μm or less, and preferably 30 μm to 50 μm. If the thickness of the first retardation layer is in such a range, a desired in-plane retardation can be obtained.
 第1の位相差層20は、上記C-1項に記載の特性を満足し得る任意の適切な樹脂フィルムで構成され得る。そのような樹脂の代表例としては、環状オレフィン系樹脂、ポリカーボネート系樹脂、セルロース系樹脂、ポリエステル系樹脂、ポリビニルアルコール系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリエーテル系樹脂、ポリスチレン系樹脂、アクリル系樹脂が挙げられる。第1の位相差層がフラットな波長特性を示す樹脂フィルムで構成される場合、環状オレフィン系樹脂が好適に用いられ得る。 The first retardation layer 20 can be composed of any appropriate resin film that can satisfy the characteristics described in the above section C-1. Typical examples of such resins include cyclic olefin resins, polycarbonate resins, cellulose resins, polyester resins, polyvinyl alcohol resins, polyamide resins, polyimide resins, polyether resins, polystyrene resins, acrylic resins. Based resins. When the first retardation layer is formed of a resin film that exhibits flat wavelength characteristics, a cyclic olefin-based resin can be suitably used.
 環状オレフィン系樹脂は、環状オレフィンを重合単位として重合される樹脂の総称であり、例えば、特開平1-240517号公報、特開平3-14882号公報、特開平3-122137号公報等に記載されている樹脂が挙げられる。具体例としては、環状オレフィンの開環(共)重合体、環状オレフィンの付加重合体、環状オレフィンとエチレン、プロピレン等のα-オレフィンとの共重合体(代表的には、ランダム共重合体)、および、これらを不飽和カルボン酸やその誘導体で変性したグラフト変性体、ならびに、それらの水素化物が挙げられる。環状オレフィンの具体例としては、ノルボルネン系モノマーが挙げられる。ノルボルネン系モノマーとしては、例えば、ノルボルネン、およびそのアルキルおよび/またはアルキリデン置換体、例えば、5-メチル-2-ノルボルネン、5-ジメチル-2-ノルボルネン、5-エチル-2-ノルボルネン、5-ブチル-2-ノルボルネン、5-エチリデン-2-ノルボルネン等、これらのハロゲン等の極性基置換体;ジシクロペンタジエン、2,3-ジヒドロジシクロペンタジエン等;ジメタノオクタヒドロナフタレン、そのアルキルおよび/またはアルキリデン置換体、およびハロゲン等の極性基置換体、例えば、6-メチル-1,4:5,8-ジメタノ-1,4,4a,5,6,7,8,8a-オクタヒドロナフタレン、6-エチル-1,4:5,8-ジメタノ-1,4,4a,5,6,7,8,8a-オクタヒドロナフタレン、6-エチリデン-1,4:5,8-ジメタノ-1,4,4a,5,6,7,8,8a-オクタヒドロナフタレン、6-クロロ-1,4:5,8-ジメタノ-1,4,4a,5,6,7,8,8a-オクタヒドロナフタレン、6-シアノ-1,4:5,8-ジメタノ-1,4,4a,5,6,7,8,8a-オクタヒドロナフタレン、6-ピリジル-1,4:5,8-ジメタノ-1,4,4a,5,6,7,8,8a-オクタヒドロナフタレン、6-メトキシカルボニル-1,4:5,8-ジメタノ-1,4,4a,5,6,7,8,8a-オクタヒドロナフタレン等;シクロペンタジエンの3~4量体、例えば、4,9:5,8-ジメタノ-3a,4,4a,5,8,8a,9,9a-オクタヒドロ-1H-ベンゾインデン、4,11:5,10:6,9-トリメタノ-3a,4,4a,5,5a,6,9,9a,10,10a,11,11a-ドデカヒドロ-1H-シクロペンタアントラセン等が挙げられる。 The cyclic olefin-based resin is a general term for resins that are polymerized using a cyclic olefin as a polymerization unit, and is described in, for example, JP-A-1-240517, JP-A-3-14882, JP-A-3-122137, and the like. Resin. Specific examples include ring-opening (co) polymers of cyclic olefins, addition polymers of cyclic olefins, copolymers of cyclic olefins and α-olefins such as ethylene and propylene (typically random copolymers). And graft modified products in which these are modified with an unsaturated carboxylic acid or a derivative thereof, and hydrides thereof. Specific examples of the cyclic olefin include norbornene monomers. Examples of the norbornene-based monomer include norbornene and alkyl and / or alkylidene substituted products thereof such as 5-methyl-2-norbornene, 5-dimethyl-2-norbornene, 5-ethyl-2-norbornene, 5-butyl- 2-Norbornene, 5-ethylidene-2-norbornene, etc. Polar group substitution products such as halogens; dicyclopentadiene, 2,3-dihydrodicyclopentadiene, etc .; dimethanooctahydronaphthalene, alkyl and / or alkylidene substitution thereof And polar group substituents such as halogen, for example, 6-methyl-1,4: 5,8-dimethano-1,4,4a, 5,6,7,8,8a-octahydronaphthalene, 6-ethyl -1,4: 5,8-dimethano-1,4,4a, 5,6,7,8,8a-octahi Lonaphthalene, 6-ethylidene-1,4: 5,8-dimethano-1,4,4a, 5,6,7,8,8a-octahydronaphthalene, 6-chloro-1,4: 5,8-dimethano -1,4,4a, 5,6,7,8,8a-octahydronaphthalene, 6-cyano-1,4: 5,8-dimethano-1,4,4a, 5,6,7,8,8a -Octahydronaphthalene, 6-pyridyl-1,4: 5,8-dimethano-1,4,4a, 5,6,7,8,8a-octahydronaphthalene, 6-methoxycarbonyl-1,4: 5 8-Dimethano-1,4,4a, 5,6,7,8,8a-octahydronaphthalene and the like; Tripentamers of cyclopentadiene such as 4,9: 5,8-dimethano-3a, 4 4a, 5,8,8a, 9,9a-Octahydro-1H-benzoindene 4,11: 5,10: 6,9 Torimetano -3a, 4,4a, 5,5a, 6,9,9a, 10,10a, 11,11a- dodecahydro -1H- cyclopentadiene anthracene, and the like.
 本発明においては、本発明の目的を損なわない範囲内において、開環重合可能な他のシクロオレフィン類を併用することができる。このようなシクロオレフィンの具体例としては、例えば、シクロペンテン、シクロオクテン、5,6-ジヒドロジシクロペンタジエン等の反応性の二重結合を1個有する化合物が挙げられる。 In the present invention, other cycloolefins capable of ring-opening polymerization can be used in combination as long as the object of the present invention is not impaired. Specific examples of such cycloolefins include compounds having one reactive double bond such as cyclopentene, cyclooctene, and 5,6-dihydrodicyclopentadiene.
 上記環状オレフィン系樹脂は、トルエン溶媒によるゲル・パーミエーション・クロマトグラフ(GPC)法で測定した数平均分子量(Mn)が好ましくは25,000~200,000、さらに好ましくは30,000~100,000、最も好ましくは40,000~80,000である。数平均分子量が上記の範囲であれば、機械的強度に優れ、溶解性、成形性、流延の操作性が良いものができる。 The cyclic olefin resin preferably has a number average molecular weight (Mn) measured by a gel permeation chromatograph (GPC) method using a toluene solvent, preferably 25,000 to 200,000, more preferably 30,000 to 100,000. 000, most preferably 40,000 to 80,000. When the number average molecular weight is in the above range, a material having excellent mechanical strength, good solubility, moldability, and casting operability can be obtained.
 上記環状オレフィン系樹脂がノルボルネン系モノマーの開環重合体を水素添加して得られるものである場合には、水素添加率は、好ましくは90%以上であり、さらに好ましくは95%以上であり、最も好ましくは99%以上である。このような範囲であれば、耐熱劣化性および耐光劣化性などに優れる。 When the cyclic olefin-based resin is obtained by hydrogenating a ring-opening polymer of a norbornene monomer, the hydrogenation rate is preferably 90% or more, more preferably 95% or more, Most preferably, it is 99% or more. Within such a range, the heat deterioration resistance and light deterioration resistance are excellent.
 上記環状オレフィン系樹脂フィルムとして市販のフィルムを用いてもよい。具体例としては、日本ゼオン社製の商品名「ゼオネックス」、「ゼオノア」、JSR社製の商品名「アートン(Arton)」、TICONA社製の商品名「トーパス」、三井化学社製の商品名「APEL」が挙げられる。 A commercially available film may be used as the cyclic olefin resin film. Specific examples include trade names “ZEONEX” and “ZEONOR” manufactured by ZEON CORPORATION, “Arton” manufactured by JSR, “TOPAS” trade name manufactured by TICONA, and trade names manufactured by Mitsui Chemicals, Inc. “APEL” may be mentioned.
 第1の位相差層20は、例えば、上記環状オレフィン系樹脂から形成されたフィルムを延伸することにより得られる。環状オレフィン系樹脂からフィルムを形成する方法としては、任意の適切な成形加工法が採用され得る。具体例としては、圧縮成形法、トランスファー成形法、射出成形法、押出成形法、ブロー成形法、粉末成形法、FRP成形法、キャスト塗工法(例えば、流延法)、カレンダー成形法、熱プレス法等が挙げられる。押出成形法またはキャスト塗工法が好ましい。得られるフィルムの平滑性を高め、良好な光学的均一性を得ることができるからである。成形条件は、使用される樹脂の組成や種類、位相差層に所望される特性等に応じて適宜設定され得る。なお、上記のとおり、環状オレフィン系樹脂は、多くのフィルム製品が市販されているので、当該市販フィルムをそのまま延伸処理に供してもよい。 The first retardation layer 20 is obtained, for example, by stretching a film formed from the above cyclic olefin resin. Any appropriate molding method can be adopted as a method of forming a film from a cyclic olefin-based resin. Specific examples include compression molding methods, transfer molding methods, injection molding methods, extrusion molding methods, blow molding methods, powder molding methods, FRP molding methods, cast coating methods (for example, casting methods), calendar molding methods, and hot presses. Law. Extrusion molding or cast coating is preferred. This is because the smoothness of the resulting film can be improved and good optical uniformity can be obtained. The molding conditions can be appropriately set according to the composition and type of the resin used, the properties desired for the retardation layer, and the like. In addition, as above-mentioned, since many film products are marketed for cyclic olefin resin, you may use the said commercial film for an extending | stretching process as it is.
 樹脂フィルム(未延伸フィルム)の厚みは、第1の位相差層の所望の厚み、所望の光学特性、後述の延伸条件などに応じて、任意の適切な値に設定され得る。好ましくは50μm~300μmである。 The thickness of the resin film (unstretched film) can be set to any appropriate value depending on the desired thickness of the first retardation layer, the desired optical properties, the stretching conditions described below, and the like. The thickness is preferably 50 μm to 300 μm.
 上記延伸は、任意の適切な延伸方法、延伸条件(例えば、延伸温度、延伸倍率、延伸方向)が採用され得る。具体的には、自由端延伸、固定端延伸、自由端収縮、固定端収縮などの様々な延伸方法を、単独で用いることも、同時もしくは逐次で用いることもできる。延伸方向に関しても、長さ方向、幅方向、厚さ方向、斜め方向等、様々な方向や次元に行なうことができる。延伸の温度は、樹脂フィルムのガラス転移温度(Tg)に対し、Tg-30℃~Tg+60℃であることが好ましく、より好ましくはTg-10℃~Tg+50℃である。 Any appropriate stretching method and stretching conditions (for example, stretching temperature, stretching ratio, stretching direction) may be employed for the stretching. Specifically, various stretching methods such as free end stretching, fixed end stretching, free end contraction, and fixed end contraction can be used singly or simultaneously or sequentially. The stretching direction can also be performed in various directions and dimensions such as a length direction, a width direction, a thickness direction, and an oblique direction. The stretching temperature is preferably Tg-30 ° C. to Tg + 60 ° C., more preferably Tg-10 ° C. to Tg + 50 ° C. with respect to the glass transition temperature (Tg) of the resin film.
 上記延伸方法、延伸条件を適宜選択することにより、上記所望の光学特性(例えば、屈折率特性、面内位相差、Nz係数)を有する位相差フィルムを得ることができる。 A retardation film having the desired optical characteristics (for example, refractive index characteristics, in-plane retardation, Nz coefficient) can be obtained by appropriately selecting the stretching method and stretching conditions.
 1つの実施形態においては、位相差フィルムは、樹脂フィルムを一軸延伸もしくは固定端一軸延伸することにより作製される。固定端一軸延伸の具体例としては、樹脂フィルムを長手方向に走行させながら、幅方向(横方向)に延伸する方法が挙げられる。延伸倍率は、好ましくは1.1倍~3.5倍である。 In one embodiment, the retardation film is produced by uniaxially stretching a resin film or uniaxially stretching a fixed end. As a specific example of the fixed end uniaxial stretching, there is a method of stretching in the width direction (lateral direction) while running the resin film in the longitudinal direction. The draw ratio is preferably 1.1 to 3.5 times.
 別の実施形態においては、位相差フィルムは、長尺状の樹脂フィルムを長手方向に対して所定の角度の方向に連続的に斜め延伸することにより作製され得る。斜め延伸を採用することにより、フィルムの長手方向に対して所定の角度の配向角(当該角度の方向に遅相軸)を有する長尺状の延伸フィルムが得られ、例えば、偏光子との積層に際してロールトゥロールが可能となり、製造工程を簡略化することができる。なお、当該角度は、光学積層体において偏光子の吸収軸と第1の位相差層の遅相軸とがなす角度であり得る。当該角度は、上記のとおり、好ましくは10°~20°であり、より好ましくは13°~17°であり、さらに好ましくは約15°である。 In another embodiment, the retardation film can be produced by continuously stretching a long resin film obliquely in a direction at a predetermined angle with respect to the longitudinal direction. By adopting oblique stretching, a long stretched film having an orientation angle of a predetermined angle with respect to the longitudinal direction of the film (slow axis in the direction of the angle) can be obtained. For example, lamination with a polarizer At this time, roll-to-roll is possible, and the manufacturing process can be simplified. The angle may be an angle formed between the absorption axis of the polarizer and the slow axis of the first retardation layer in the optical layered body. As described above, the angle is preferably 10 ° to 20 °, more preferably 13 ° to 17 °, and further preferably about 15 °.
 斜め延伸に用いる延伸機としては、例えば、横および/または縦方向に、左右異なる速度の送り力もしくは引張り力または引き取り力を付加し得るテンター式延伸機が挙げられる。テンター式延伸機には、横一軸延伸機、同時二軸延伸機等があるが、長尺状の樹脂フィルムを連続的に斜め延伸し得る限り、任意の適切な延伸機が用いられ得る。 Examples of the stretching machine used for the oblique stretching include a tenter type stretching machine capable of adding feed forces, pulling forces, or pulling forces at different speeds in the lateral and / or longitudinal directions. The tenter type stretching machine includes a horizontal uniaxial stretching machine, a simultaneous biaxial stretching machine, and the like, but any suitable stretching machine can be used as long as a long resin film can be continuously stretched obliquely.
 上記延伸機において左右の速度をそれぞれ適切に制御することにより、上記所望の面内位相差を有し、かつ、上記所望の方向に遅相軸を有する第1の位相差層(実質的には、長尺状の位相差フィルム)が得られ得る。 By appropriately controlling the left and right velocities in the stretching machine, the first retardation layer (substantially having the desired in-plane retardation and having the slow axis in the desired direction). , A long retardation film) can be obtained.
 上記フィルムの延伸温度は、第1の位相差層に所望される面内位相差値および厚み、使用される樹脂の種類、使用されるフィルムの厚み、延伸倍率等に応じて変化し得る。具体的には、延伸温度は、好ましくはTg-30℃~Tg+30℃、さらに好ましくはTg-15℃~Tg+15℃、最も好ましくはTg-10℃~Tg+10℃である。このような温度で延伸することにより、本発明において適切な特性を有する第1の位相差層が得られ得る。なお、Tgは、フィルムの構成材料のガラス転移温度である。 The stretching temperature of the film can vary depending on the in-plane retardation value and thickness desired for the first retardation layer, the type of resin used, the thickness of the film used, the stretching ratio, and the like. Specifically, the stretching temperature is preferably Tg-30 ° C to Tg + 30 ° C, more preferably Tg-15 ° C to Tg + 15 ° C, and most preferably Tg-10 ° C to Tg + 10 ° C. By extending | stretching at such temperature, the 1st phase difference layer which has a suitable characteristic in this invention can be obtained. Tg is the glass transition temperature of the constituent material of the film.
C-3.液晶化合物の配向固化層で構成される第1の位相差層
 第1の位相差層20は、液晶化合物の配向固化層であってもよい。液晶化合物を用いることにより、得られる位相差層のnxとnyとの差を非液晶材料に比べて格段に大きくすることができるので、所望の面内位相差を得るための第1の位相差層の厚みを格段に小さくすることができる。その結果、光学積層体のさらなる薄型化を実現することができる。第1の位相差層20が液晶化合物の配向固化層で構成される場合、その厚みは、好ましくは1μm~7μmであり、より好ましくは1.5μm~2.5μmである。液晶化合物を用いることにより、樹脂フィルムよりも格段に薄い厚みで樹脂フィルムと同等の面内位相差を実現することができる。
C-3. First Retardation Layer Consists of Liquid Crystal Compound Alignment Solidified Layer The first retardation layer 20 may be a liquid crystal compound alignment solidified layer. By using the liquid crystal compound, the difference between nx and ny of the obtained retardation layer can be remarkably increased as compared with the non-liquid crystal material. Therefore, the first retardation for obtaining a desired in-plane retardation is obtained. The thickness of the layer can be significantly reduced. As a result, the optical laminate can be further reduced in thickness. When the first retardation layer 20 is composed of an alignment solidified layer of a liquid crystal compound, the thickness is preferably 1 μm to 7 μm, more preferably 1.5 μm to 2.5 μm. By using the liquid crystal compound, an in-plane retardation equivalent to that of the resin film can be realized with a thickness much thinner than that of the resin film.
 本明細書において「配向固化層」とは、液晶化合物が層内で所定の方向に配向し、その配向状態が固定されている層をいう。なお、「配向固化層」は、後述のように液晶モノマーを硬化させて得られる配向硬化層を包含する概念である。本実施形態においては、代表的には、棒状の液晶化合物が第1の位相差層の遅相軸方向に並んだ状態で配向している(ホモジニアス配向)。液晶化合物としては、例えば、液晶相がネマチック相である液晶化合物(ネマチック液晶)が挙げられる。このような液晶化合物として、例えば、液晶ポリマーや液晶モノマーが使用可能である。液晶化合物の液晶性の発現機構は、リオトロピックでもサーモトロピックでもどちらでもよい。液晶ポリマーおよび液晶モノマーは、それぞれ単独で用いてもよく、組み合わせてもよい。 In the present specification, the “alignment solidified layer” refers to a layer in which a liquid crystal compound is aligned in a predetermined direction in the layer and the alignment state is fixed. The “alignment solidified layer” is a concept including an alignment cured layer obtained by curing a liquid crystal monomer as described later. In the present embodiment, typically, rod-like liquid crystal compounds are aligned in a state where they are aligned in the slow axis direction of the first retardation layer (homogeneous alignment). Examples of the liquid crystal compound include a liquid crystal compound (nematic liquid crystal) whose liquid crystal phase is a nematic phase. As such a liquid crystal compound, for example, a liquid crystal polymer or a liquid crystal monomer can be used. The liquid crystal compound may exhibit liquid crystallinity either lyotropic or thermotropic. The liquid crystal polymer and the liquid crystal monomer may be used alone or in combination.
 液晶化合物が液晶モノマーである場合、当該液晶モノマーは、重合性モノマーおよび架橋性モノマーであることが好ましい。液晶モノマーを重合または架橋(すなわち、硬化)させることにより、液晶モノマーの配向状態を固定できるからである。液晶モノマーを配向させた後に、例えば、液晶モノマー同士を重合または架橋させれば、それによって上記配向状態を固定することができる。ここで、重合によりポリマーが形成され、架橋により3次元網目構造が形成されることとなるが、これらは非液晶性である。したがって、形成された第1の位相差層は、例えば、液晶性化合物に特有の温度変化による液晶相、ガラス相、結晶相への転移が起きることはない。その結果、第1の位相差層は、温度変化に影響されない、極めて安定性に優れた位相差層となる。 When the liquid crystal compound is a liquid crystal monomer, the liquid crystal monomer is preferably a polymerizable monomer and a crosslinkable monomer. This is because the alignment state of the liquid crystal monomer can be fixed by polymerizing or crosslinking (that is, curing) the liquid crystal monomer. After aligning the liquid crystal monomers, for example, if the liquid crystal monomers are polymerized or cross-linked, the alignment state can be fixed thereby. Here, a polymer is formed by polymerization and a three-dimensional network structure is formed by crosslinking, but these are non-liquid crystalline. Accordingly, in the formed first retardation layer, for example, transition to a liquid crystal phase, a glass phase, or a crystal phase due to a temperature change specific to the liquid crystal compound does not occur. As a result, the first retardation layer is an extremely stable retardation layer that is not affected by temperature changes.
 液晶モノマーが液晶性を示す温度範囲は、その種類に応じて異なる。具体的には、当該温度範囲は、好ましくは40℃~120℃であり、さらに好ましくは50℃~100℃であり、最も好ましくは60℃~90℃である。 The temperature range in which the liquid crystal monomer exhibits liquid crystal properties varies depending on its type. Specifically, the temperature range is preferably 40 ° C. to 120 ° C., more preferably 50 ° C. to 100 ° C., and most preferably 60 ° C. to 90 ° C.
 上記液晶モノマーとしては、任意の適切な液晶モノマーが採用され得る。例えば、特表2002-533742(WO00/37585)、EP358208(US5211877)、EP66137(US4388453)、WO93/22397、EP0261712、DE19504224、DE4408171、およびGB2280445等に記載の重合性メソゲン化合物等が使用できる。このような重合性メソゲン化合物の具体例としては、例えば、BASF社の商品名LC242、Merck社の商品名E7、Wacker-Chem社の商品名LC-Sillicon-CC3767が挙げられる。液晶モノマーとしては、例えばネマチック性液晶モノマーが好ましい。 Any appropriate liquid crystal monomer can be adopted as the liquid crystal monomer. For example, the polymerizable mesogenic compounds described in JP-T-2002-533742 (WO00 / 37585), EP358208 (US521118), EP66137 (US4388453), WO93 / 22397, EP0266172, DE195504224, DE44081171, and GB2280445 can be used. Specific examples of such a polymerizable mesogenic compound include, for example, trade name LC242 of BASF, trade name E7 of Merck, and trade name LC-Silicon-CC3767 of Wacker-Chem. As the liquid crystal monomer, for example, a nematic liquid crystal monomer is preferable.
 液晶化合物の配向固化層は、所定の基材の表面に配向処理を施し、当該表面に液晶化合物を含む塗工液を塗工して当該液晶化合物を上記配向処理に対応する方向に配向させ、当該配向状態を固定することにより形成され得る。このような配向処理を用いることにより、長尺状の基材の長尺方向に対して所定の方向に液晶化合物を配向させることができ、結果として、形成される位相差層の所定方向に遅相軸を発現させることができる。例えば、長尺状の基材上に長尺方向に対して15°の方向に遅相軸を有する位相差層を形成することができる。このような位相差層は、斜め方向に遅相軸を有することが所望される場合であっても、ロールトゥロールを用いて積層することができるので、光学積層体の生産性が格段に向上し得る。1つの実施形態においては、基材は任意の適切な樹脂フィルムであり、当該基材上に形成された配向固化層は、偏光板10の表面に転写され得る。別の実施形態においては、基材は第2の保護層13であり得る。この場合には転写工程が省略され、配向固化層(第1の位相差層)の形成から連続してロールトゥロールにより積層が行われ得るので、生産性がさらに向上する。 The alignment solidified layer of the liquid crystal compound is subjected to an alignment treatment on the surface of a predetermined substrate, and a coating liquid containing the liquid crystal compound is applied to the surface to align the liquid crystal compound in a direction corresponding to the alignment treatment, It can be formed by fixing the alignment state. By using such an alignment treatment, the liquid crystal compound can be aligned in a predetermined direction with respect to the long direction of the long substrate, and as a result, the liquid crystal compound is delayed in the predetermined direction of the formed retardation layer. A phase axis can be developed. For example, a retardation layer having a slow axis in a direction of 15 ° with respect to the longitudinal direction can be formed on a long substrate. Such a retardation layer can be laminated using roll-to-roll even when it is desired to have a slow axis in an oblique direction, so the productivity of the optical laminate is greatly improved. Can do. In one embodiment, the substrate is any suitable resin film, and the alignment solidified layer formed on the substrate can be transferred to the surface of the polarizing plate 10. In another embodiment, the substrate can be the second protective layer 13. In this case, the transfer step is omitted, and the lamination can be performed by roll-to-roll continuously from the formation of the alignment solidified layer (first retardation layer), so that the productivity is further improved.
 上記配向処理としては、任意の適切な配向処理が採用され得る。具体的には、機械的な配向処理、物理的な配向処理、化学的な配向処理が挙げられる。機械的な配向処理の具体例としては、ラビング処理、延伸処理が挙げられる。物理的な配向処理の具体例としては、磁場配向処理、電場配向処理が挙げられる。化学的な配向処理の具体例としては、斜方蒸着法、光配向処理が挙げられる。各種配向処理の処理条件は、目的に応じて任意の適切な条件が採用され得る。 Any appropriate alignment treatment can be adopted as the alignment treatment. Specifically, a mechanical alignment process, a physical alignment process, and a chemical alignment process are mentioned. Specific examples of the mechanical alignment treatment include rubbing treatment and stretching treatment. Specific examples of the physical alignment process include a magnetic field alignment process and an electric field alignment process. Specific examples of the chemical alignment treatment include oblique vapor deposition and photo-alignment treatment. Arbitrary appropriate conditions may be employ | adopted for the process conditions of various orientation processes according to the objective.
 液晶化合物の配向は、液晶化合物の種類に応じて液晶相を示す温度で処理することにより行われる。このような温度処理を行うことにより、液晶化合物が液晶状態をとり、基材表面の配向処理方向に応じて当該液晶化合物が配向する。 The alignment of the liquid crystal compound is performed by processing at a temperature showing a liquid crystal phase according to the type of the liquid crystal compound. By performing such a temperature treatment, the liquid crystal compound takes a liquid crystal state, and the liquid crystal compound is oriented according to the orientation treatment direction of the substrate surface.
 配向状態の固定は、1つの実施形態においては、上記のように配向した液晶化合物を冷却することにより行われる。液晶化合物が重合性モノマーまたは架橋性モノマーである場合には、配向状態の固定は、上記のように配向した液晶化合物に重合処理または架橋処理を施すことにより行われる。 In one embodiment, the alignment state is fixed by cooling the liquid crystal compound aligned as described above. When the liquid crystal compound is a polymerizable monomer or a crosslinkable monomer, the alignment state is fixed by subjecting the liquid crystal compound aligned as described above to a polymerization treatment or a crosslinking treatment.
 液晶化合物の具体例および配向固化層の形成方法の詳細は、特開2006-163343号公報に記載されている。当該公報の記載は本明細書に参考として援用される。 Specific examples of the liquid crystal compound and details of the method of forming the alignment solidified layer are described in JP-A No. 2006-163343. The description in this publication is incorporated herein by reference.
D.第2の位相差層
D-1.第2の位相差層の特性
 第2の位相差層30は、目的に応じて任意の適切な光学的特性および/または機械的特性を有し得る。第2の位相差層30は、代表的には遅相軸を有する。1つの実施形態においては、第2の位相差層30の遅相軸と偏光子11の吸収軸とのなす角度は、好ましくは65°~85°であり、より好ましくは72°~78°であり、さらに好ましくは約75°である。第2の位相差層30の遅相軸と第1の位相差層20の遅相軸とのなす角度は、好ましくは52°~68°であり、より好ましくは57°~63°であり、さらに好ましくは約60°である。第2の位相差層30の遅相軸と偏光子11の吸収軸とのなす角度がこのような範囲であれば、上記のように第1の位相差層の面内位相差を所定の範囲に設定し、第1の位相差層の遅相軸を偏光子の吸収軸に対して所定の角度で配置し、後述のように第2の位相差層の面内位相差を所定の範囲に設定することにより、広帯域において非常に優れた円偏光特性(結果として、非常に優れた反射防止特性)を有する光学積層体が得られ得る。
D. Second retardation layer D-1. Characteristics of Second Retardation Layer The second retardation layer 30 may have any appropriate optical and / or mechanical characteristics depending on the purpose. The second retardation layer 30 typically has a slow axis. In one embodiment, the angle formed by the slow axis of the second retardation layer 30 and the absorption axis of the polarizer 11 is preferably 65 ° to 85 °, more preferably 72 ° to 78 °. More preferably about 75 °. The angle formed by the slow axis of the second retardation layer 30 and the slow axis of the first retardation layer 20 is preferably 52 ° to 68 °, more preferably 57 ° to 63 °. More preferably, it is about 60 °. If the angle formed by the slow axis of the second retardation layer 30 and the absorption axis of the polarizer 11 is within such a range, the in-plane retardation of the first retardation layer is set within a predetermined range as described above. The slow axis of the first retardation layer is arranged at a predetermined angle with respect to the absorption axis of the polarizer, and the in-plane retardation of the second retardation layer is set within a predetermined range as will be described later. By setting, it is possible to obtain an optical layered body having a very excellent circular polarization characteristic (as a result, a very excellent antireflection characteristic) in a wide band.
 第2の位相差層は、好ましくは屈折率特性がnx>ny≧nzの関係を示す。第2の位相差層の面内位相差Re(550)は、好ましくは80nm~200nm、より好ましくは100nm~180nm、さらに好ましくは110nm~170nmである。 The second retardation layer preferably has a relationship of refractive index characteristics of nx> ny ≧ nz. The in-plane retardation Re (550) of the second retardation layer is preferably 80 nm to 200 nm, more preferably 100 nm to 180 nm, and still more preferably 110 nm to 170 nm.
 第2の位相差層のその他の特性については、第1の位相差層に関して上記C-1項で説明したとおりである。 Other characteristics of the second retardation layer are as described in the above section C-1 regarding the first retardation layer.
D-2.樹脂フィルムで構成される第2の位相差層
 第2の位相差層が樹脂フィルムで構成される場合、その厚みは、好ましくは40μm以下であり、好ましくは25μm~35μmである。第2の位相差層の厚みがこのような範囲であれば、所望の面内位相差が得られ得る。第2の位相差層が樹脂フィルムで構成される場合、その材料、特性、製造方法等は、第1の位相差層に関して上記C-2項で説明したとおりである。
D-2. Second Retardation Layer Constructed of Resin Film When the second retardation layer is composed of a resin film, the thickness is preferably 40 μm or less, and preferably 25 μm to 35 μm. If the thickness of the second retardation layer is within such a range, a desired in-plane retardation can be obtained. When the second retardation layer is formed of a resin film, the material, characteristics, manufacturing method, and the like are as described in the above section C-2 for the first retardation layer.
D-3.液晶化合物の配向固化層で構成される第2の位相差層
 第2の位相差層30は、第1の位相差層と同様に液晶化合物の配向固化層であってもよい。第2の位相差層30が液晶化合物の配向固化層で構成される場合、その厚みは、好ましくは0.5μm~2μmであり、より好ましくは1μm~1.5μmである。第2の位相差層が液晶化合物の配向固化層で構成される場合、その材料、特性、製造方法等は、第1の位相差層に関して上記C-3項で説明したとおりである。
D-3. Second Retardation Layer Consists of Liquid Crystal Compound Alignment / Solidification Layer The second retardation layer 30 may be a liquid crystal compound alignment / solidification layer in the same manner as the first retardation layer. When the second retardation layer 30 is composed of an alignment solidified layer of a liquid crystal compound, the thickness is preferably 0.5 μm to 2 μm, more preferably 1 μm to 1.5 μm. When the second retardation layer is composed of an alignment solidified layer of a liquid crystal compound, the material, characteristics, manufacturing method, and the like are as described in the above section C-3 for the first retardation layer.
D-4.第1の位相差層と第2の位相差層との組み合わせ
 第1の位相差層および第2の位相差層は、任意の適切な組み合わせとして用いられ得る。具体的には、第1の位相差層が樹脂フィルムで構成され、第2の位相差層が液晶化合物の配向固化層で構成されてもよく;第1の位相差層が液晶化合物の配向固化層で構成され、第2の位相差層が樹脂フィルムで構成されてもよく;第1の位相差層および第2の位相差層がいずれも樹脂フィルムで構成されてもよく;第1の位相差層および第2の位相差層がいずれも液晶化合物の配向固化層で構成されてもよい。好ましくは、第1の位相差層が樹脂フィルムで構成される場合には、第2の位相差層も樹脂フィルムで構成され;第1の位相差層が液晶化合物の配向固化層で構成される場合には、第2の位相差層も液晶化合物の配向固化層で構成される。なお、第1の位相差層および第2の位相差層がいずれも樹脂フィルムで構成される場合、第1の位相差層および第2の位相差層は同一であってもよく、詳細な構成が異なっていてもよい。第1の位相差層および第2の位相差層がいずれも液晶化合物の配向固化層で構成される場合も同様である。
D-4. Combination of first retardation layer and second retardation layer The first retardation layer and the second retardation layer may be used as any appropriate combination. Specifically, the first retardation layer may be composed of a resin film, and the second retardation layer may be composed of an alignment solidified layer of a liquid crystal compound; the first retardation layer is aligned and solidified of a liquid crystal compound. And the second retardation layer may be composed of a resin film; both the first retardation layer and the second retardation layer may be composed of a resin film; Both the phase difference layer and the second phase difference layer may be composed of an alignment solidified layer of a liquid crystal compound. Preferably, when the first retardation layer is composed of a resin film, the second retardation layer is also composed of a resin film; the first retardation layer is composed of an alignment solidified layer of a liquid crystal compound. In some cases, the second retardation layer is also composed of an alignment solidified layer of a liquid crystal compound. When both the first retardation layer and the second retardation layer are made of a resin film, the first retardation layer and the second retardation layer may be the same, and the detailed configuration May be different. The same applies to the case where both the first retardation layer and the second retardation layer are composed of an alignment solidified layer of a liquid crystal compound.
 第1の位相差層および第2の位相差層がいずれも樹脂フィルムで構成される場合、第2の位相差層の寸法変化率は、好ましくは1%以下であり、より好ましくは0.95%以下である。第2の位相差層の寸法変化率は小さければ小さいほど好ましい。第2の位相差層の寸法変化率の下限は、例えば0.01%である。第2の位相差層の寸法変化率がこのような範囲であれば、高温高湿下における導電層のクラックの発生を顕著に抑制することができる。 When both the first retardation layer and the second retardation layer are formed of a resin film, the dimensional change rate of the second retardation layer is preferably 1% or less, more preferably 0.95. % Or less. The smaller the dimensional change rate of the second retardation layer, the better. The lower limit of the dimensional change rate of the second retardation layer is, for example, 0.01%. When the dimensional change rate of the second retardation layer is within such a range, the occurrence of cracks in the conductive layer under high temperature and high humidity can be significantly suppressed.
 第1の位相差層および第2の位相差層がいずれも液晶化合物の配向固化層で構成される場合、偏光板と第1の位相差層と第2の位相差層との積層体の寸法変化率は、好ましくは1%以下であり、より好ましくは0.95%以下である。当該積層体の寸法変化率は小さければ小さいほど好ましい。当該積層体の寸法変化率の下限は、例えば0.01%である。当該積層体の寸法変化率がこのような範囲であれば、高温高湿下における導電層のクラックの発生を顕著に抑制することができる。 When each of the first retardation layer and the second retardation layer is composed of an alignment solidified layer of a liquid crystal compound, the dimensions of the laminate of the polarizing plate, the first retardation layer, and the second retardation layer The rate of change is preferably 1% or less, more preferably 0.95% or less. The smaller the dimensional change rate of the laminate, the better. The lower limit of the dimensional change rate of the laminate is, for example, 0.01%. When the dimensional change rate of the laminate is within such a range, the occurrence of cracks in the conductive layer under high temperature and high humidity can be remarkably suppressed.
E.導電層
 導電層は、任意の適切な成膜方法(例えば、真空蒸着法、スパッタリング法、CVD法、イオンプレーティング法、スプレー法等)により、任意の適切な基材上に、金属酸化物膜を成膜して形成され得る。成膜後、必要に応じて加熱処理(例えば、100℃~200℃)を行ってもよい。加熱処理を行うことにより、非晶質膜が結晶化し得る。金属酸化物としては、例えば、酸化インジウム、酸化スズ、酸化亜鉛、インジウム-スズ複合酸化物、スズ-アンチモン複合酸化物、亜鉛-アルミニウム複合酸化物、インジウム-亜鉛複合酸化物が挙げられる。インジウム酸化物には2価金属イオンまたは4価金属イオンがドープされていてもよい。好ましくはインジウム系複合酸化物であり、より好ましくはインジウム-スズ複合酸化物(ITO)である。インジウム系複合酸化物は、可視光領域(380nm~780nm)で高い透過率(例えば、80%以上)を有し、かつ、単位面積当たりの表面抵抗値が低いという特徴を有している。
E. Conductive layer The conductive layer can be formed on a metal oxide film on any suitable substrate by any suitable film formation method (eg, vacuum deposition, sputtering, CVD, ion plating, spraying, etc.). Can be formed. After film formation, heat treatment (for example, 100 ° C. to 200 ° C.) may be performed as necessary. By performing the heat treatment, the amorphous film can be crystallized. Examples of the metal oxide include indium oxide, tin oxide, zinc oxide, indium-tin composite oxide, tin-antimony composite oxide, zinc-aluminum composite oxide, and indium-zinc composite oxide. The indium oxide may be doped with divalent metal ions or tetravalent metal ions. Indium composite oxides are preferable, and indium-tin composite oxide (ITO) is more preferable. Indium composite oxides are characterized by high transmittance (for example, 80% or more) in the visible light region (380 nm to 780 nm) and low surface resistance per unit area.
 導電層が金属酸化物を含む場合、該導電層の厚みは、好ましくは50nm以下であり、より好ましくは35nm以下である。導電層の厚みの下限は、好ましくは10nmである。 When the conductive layer contains a metal oxide, the thickness of the conductive layer is preferably 50 nm or less, more preferably 35 nm or less. The lower limit of the thickness of the conductive layer is preferably 10 nm.
 導電層の表面抵抗値は、好ましくは300Ω/□以下であり、より好ましくは150Ω/□以下であり、さらに好ましくは100Ω/□以下である。 The surface resistance value of the conductive layer is preferably 300Ω / □ or less, more preferably 150Ω / □ or less, and further preferably 100Ω / □ or less.
 導電層は、必要に応じてパターン化され得る。パターン化によって、導通部と絶縁部とが形成され得る。パターニング方法としては、任意の適切な方法を採用し得る。パターニング方法の具体例としては、ウエットエッチング法、スクリーン印刷法が挙げられる。 The conductive layer can be patterned as needed. By conducting the patterning, a conductive portion and an insulating portion can be formed. Any appropriate method can be adopted as the patterning method. Specific examples of the patterning method include a wet etching method and a screen printing method.
F.基材
 基材としては、上記A項に記載の所望の透湿度、寸法変化率および線膨張係数が得られる限りにおいて、任意の適切な樹脂フィルムが用いられ得る。好ましくは、上記所望の特性に加えて優れた透明性を有する樹脂フィルムである。構成材料の具体例としては、環状オレフィン系樹脂、ポリカーボネート系樹脂、セルロース系樹脂、ポリエステル系樹脂、アクリル系樹脂が挙げられる。
F. Base material Any appropriate resin film may be used as the base material as long as the desired moisture permeability, dimensional change rate, and linear expansion coefficient described in the above section A are obtained. Preferably, the resin film has excellent transparency in addition to the above desired characteristics. Specific examples of the constituent material include a cyclic olefin resin, a polycarbonate resin, a cellulose resin, a polyester resin, and an acrylic resin.
 好ましくは、上記基材は光学的に等方性である。光学的に等方性の基材(等方性基材)を構成する材料としては、例えば、ノルボルネン系樹脂やオレフィン系樹脂などの共役系を有さない樹脂を主骨格としている材料、ラクトン環やグルタルイミド環などの環状構造をアクリル系樹脂の主鎖中に有する材料などが挙げられる。このような材料を用いると、等方性基材を形成した際に、分子鎖の配向に伴う位相差の発現を小さく抑えることができる。 Preferably, the substrate is optically isotropic. Examples of the material constituting the optically isotropic substrate (isotropic substrate) include, for example, a material having a main skeleton such as a norbornene-based resin or an olefin-based resin, a lactone ring, or glutar Examples thereof include materials having a cyclic structure such as an imide ring in the main chain of the acrylic resin. When such a material is used, when an isotropic substrate is formed, it is possible to suppress the expression of the phase difference accompanying the orientation of the molecular chain.
 基材の厚みは、好ましくは10μm~200μmであり、より好ましくは20μm~60μmである。 The thickness of the substrate is preferably 10 μm to 200 μm, more preferably 20 μm to 60 μm.
 必要に応じて、導電層41と基材42との間に、ハードコート層(図示せず)が設けられてもよい。ハードコート層としては、任意の適切な構成を有するハードコート層が用いられ得る。ハードコート層の厚みは、例えば0.5μm~2μmである。ヘイズが許容範囲であれば、ハードコート層にニュートンリング低減のための微粒子を添加してもよい。さらに、必要に応じて、導電層41と基材42(存在する場合にはハードコート層)との間に、導電層の密着性を高めるためのアンカーコート層、および/または、反射率を調整するための屈折率調整層が設けられてもよい。アンカーコート層および屈折率調整層としては、任意の適切な構成が採用され得る。アンカーコート層および屈折率調整層は数nm~数十nmの薄層であり得る。 If necessary, a hard coat layer (not shown) may be provided between the conductive layer 41 and the base material 42. As the hard coat layer, a hard coat layer having any appropriate configuration can be used. The thickness of the hard coat layer is, for example, 0.5 μm to 2 μm. If the haze is in an allowable range, fine particles for reducing Newton rings may be added to the hard coat layer. Furthermore, if necessary, the anchor coat layer for improving the adhesion of the conductive layer and / or the reflectance is adjusted between the conductive layer 41 and the base material 42 (a hard coat layer if present). A refractive index adjustment layer may be provided. Arbitrary appropriate structures may be employ | adopted as an anchor coat layer and a refractive index adjustment layer. The anchor coat layer and the refractive index adjusting layer can be thin layers of several nm to several tens of nm.
 必要に応じて、基材42の導電層と反対側(光学積層体の最外側)に、別のハードコート層が設けられてもよい。当該ハードコート層は、代表的には、バインダー樹脂層と球状粒子とを含み、球状粒子がバインダー樹脂層から突出して凸部を形成している。このようなハードコート層の詳細は、特開2013-145547号公報に記載されており、当該公報の記載は本明細書に参考として援用される。 If necessary, another hard coat layer may be provided on the side opposite to the conductive layer of the base material 42 (outermost side of the optical laminate). The hard coat layer typically includes a binder resin layer and spherical particles, and the spherical particles protrude from the binder resin layer to form convex portions. Details of such a hard coat layer are described in JP-A-2013-145547, and the description of the gazette is incorporated herein by reference.
G.その他
 本発明の実施形態による光学積層体は、その他の位相差層をさらに含んでいてもよい。その他の位相差層の光学的特性(例えば、屈折率特性、面内位相差、Nz係数、光弾性係数)、厚み、配置位置等は、目的に応じて適切に設定され得る。
G. Others The optical layered body according to the embodiment of the present invention may further include other retardation layers. The optical characteristics (for example, refractive index characteristics, in-plane retardation, Nz coefficient, photoelastic coefficient), thickness, arrangement position, and the like of other retardation layers can be appropriately set according to the purpose.
 実用的には、基材42の表面には、表示セルに貼り合わせるための粘着剤層(図示せず)が設けられている。当該粘着剤層の表面には、光学積層体が使用に供されるまで、剥離フィルムが貼り合わされていることが好ましい。 Practically, an adhesive layer (not shown) for bonding to the display cell is provided on the surface of the base material 42. It is preferable that a release film is bonded to the surface of the pressure-sensitive adhesive layer until the optical layered body is used.
H.画像表示装置
 上記A項からG項に記載の光学積層体は、画像表示装置に適用され得る。したがって、本発明は、そのような光学積層体を用いた画像表示装置を包含する。画像表示装置の代表例としては、液晶表示装置、有機EL表示装置が挙げられる。本発明の実施形態による画像表示装置は、その視認側に上記A項からG項に記載の光学積層体を備える。光学積層体は、導電層が表示セル(例えば、液晶セル、有機ELセル)側となるように(偏光子が視認側となるように)積層されている。すなわち、本発明の実施形態による画像表示装置は、表示セル(例えば、液晶セル、有機ELセル)と偏光板との間にタッチセンサーが組み込まれた、いわゆるインナータッチパネル型入力表示装置であり得る。この場合、タッチセンサーは、導電層(または基材付導電層)と表示セルとの間に配置され得る。タッチセンサーの構成については業界で周知の構成が採用され得るので、詳細な説明は省略する。
H. Image Display Device The optical layered body described in the items A to G can be applied to an image display device. Therefore, the present invention includes an image display device using such an optical laminate. Typical examples of the image display device include a liquid crystal display device and an organic EL display device. An image display device according to an embodiment of the present invention includes the optical layered body described in the items A to G on the viewing side. The optical laminated body is laminated so that the conductive layer is on the display cell (for example, liquid crystal cell, organic EL cell) side (so that the polarizer is on the viewing side). That is, the image display device according to the embodiment of the present invention can be a so-called inner touch panel type input display device in which a touch sensor is incorporated between a display cell (for example, a liquid crystal cell or an organic EL cell) and a polarizing plate. In this case, the touch sensor can be disposed between the conductive layer (or the conductive layer with the base material) and the display cell. As the configuration of the touch sensor, a configuration well known in the industry can be adopted, and a detailed description thereof will be omitted.
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。なお、各特性の測定方法は以下の通りである。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples. In addition, the measuring method of each characteristic is as follows.
(1)厚み
 塗布形成された位相差層(液晶化合物の配向固化層)については、大塚電子製MCPD2000を用いて干渉膜厚測定法によって測定した。その他のフィルムについては、デジタルマイクロメーター(アンリツ社製KC-351C)を用いて測定した。
(2)位相差層の位相差値
 実施例および比較例で用いた位相差層の屈折率nx、nyおよびnzを、自動複屈折測定装置(王子計測機器株式会社製,自動複屈折計KOBRA-WPR)により計測した。面内位相差Reの測定波長は450nmおよび550nmであり、厚み方向位相差Rthの測定波長は550nmであり、測定温度は23℃であった。
(3)透湿度
 JIS K 7129B(モコン法)に準じて測定した。温度40℃、湿度92%RHの雰囲気中、面積1mの試料を24時間に通過する水蒸気量(mg)を測定した。
(4)寸法変化率
 実施例および比較例で用いた基材または位相差層、あるいは実施例および比較例で得られた光学積層体を100mm×100mmに切り出して、測定試料とした。当該測定試料を温度85℃および相対湿度85%のオーブン中に240時間保管した後の寸法を測定し、オーブン投入前の寸法からの変化率を寸法変化率とした。
(5)線膨張係数
 エスアイアイ・ナノテクノロジー製のTMA(SS7100)を用いて、実施例および比較例で用いた基材を約6mm角に切削して試料台に設置し、JIS K 7197に準じてTMA(圧縮膨張法)測定を行った。測定荷重は19.6mN、プローブ径は3.5mmφ、昇温速度は5℃/分で-150℃から20℃の範囲で測定を行い、得られた寸法変化のデータからこの範囲の平均線膨張係数を算出した。
(6)光学積層体の耐久性
 実施例および比較例で得られた光学積層体を100mm×50mmに切り出し、無アルカリガラスに貼り合わせて測定試料とした。当該測定試料を温度85℃および相対湿度85%のオーブン中に120時間保管した。その後、測定試料をオーブンから取り出し、導電層の状態をレーザー顕微鏡により観察し、以下の基準で評価した。
   良好:クラックが認められなかった
   不良:クラックが顕著に認められた
(1) Thickness The applied retardation layer (alignment solidified layer of liquid crystal compound) was measured by an interference film thickness measurement method using MCPD2000 manufactured by Otsuka Electronics. The other films were measured using a digital micrometer (KC-351C manufactured by Anritsu).
(2) Retardation value of retardation layer Refractive index nx, ny and nz of the retardation layer used in the examples and comparative examples were determined using an automatic birefringence measuring device (manufactured by Oji Scientific Instruments, automatic birefringence meter KOBRA- WPR). The measurement wavelength of the in-plane retardation Re was 450 nm and 550 nm, the measurement wavelength of the thickness direction retardation Rth was 550 nm, and the measurement temperature was 23 ° C.
(3) Moisture permeability Measured according to JIS K 7129B (Mocon method). In an atmosphere of a temperature of 40 ° C. and a humidity of 92% RH, the amount of water vapor (mg) passing through a sample having an area of 1 m 2 in 24 hours was measured.
(4) Dimensional change rate The base material or retardation layer used in the examples and comparative examples, or the optical laminates obtained in the examples and comparative examples were cut into 100 mm × 100 mm and used as measurement samples. The dimensions after the measurement sample was stored in an oven at a temperature of 85 ° C. and a relative humidity of 85% for 240 hours were measured, and the rate of change from the size before the oven was charged was taken as the dimensional change rate.
(5) Coefficient of linear expansion Using TMA (SS7100) manufactured by SII Nanotechnology, the base materials used in Examples and Comparative Examples were cut into approximately 6 mm squares and placed on a sample table, in accordance with JIS K 7197. TMA (compression expansion method) measurement was performed. The measurement load is 19.6 mN, the probe diameter is 3.5 mmφ, and the rate of temperature rise is 5 ° C / min. The measurement is performed in the range of -150 ° C to 20 ° C. The coefficient was calculated.
(6) Durability of optical laminated body The optical laminated body obtained by the Example and the comparative example was cut out to 100 mm x 50 mm, and was bonded together to the alkali free glass, and it was set as the measurement sample. The measurement sample was stored in an oven at a temperature of 85 ° C. and a relative humidity of 85% for 120 hours. Thereafter, the measurement sample was taken out of the oven, the state of the conductive layer was observed with a laser microscope, and evaluated according to the following criteria.
Good: No cracks were observed. Bad: Significant cracks were observed.
[参考例1:偏光板の作製]
 厚み30μmのポリビニルアルコール(PVA)系樹脂フィルム(クラレ製、製品名「PE3000」)の長尺ロールを、ロール延伸機により長尺方向に5.9倍になるように長尺方向に一軸延伸しながら同時に膨潤、染色、架橋、洗浄処理を施し、最後に乾燥処理を施すことにより厚み12μmの偏光子1を作製した。
 具体的には、膨潤処理は20℃の純水で処理しながら2.2倍に延伸した。次いで、染色処理は得られる偏光子の単体透過率が45.0%になるようにヨウ素濃度が調整されたヨウ素とヨウ化カリウムの重量比が1:7である30℃の水溶液中において処理しながら1.4倍に延伸した。更に、架橋処理は、2段階の架橋処理を採用し、1段階目の架橋処理は40℃のホウ酸とヨウ化カリウムを溶解した水溶液において処理しながら1.2倍に延伸した。1段階目の架橋処理の水溶液のホウ酸含有量は5.0重量%で、ヨウ化カリウム含有量は3.0重量%とした。2段階目の架橋処理は65℃のホウ酸とヨウ化カリウムを溶解した水溶液において処理しながら1.6倍に延伸した。2段階目の架橋処理の水溶液のホウ酸含有量は4.3重量%で、ヨウ化カリウム含有量は5.0重量%とした。また、洗浄処理は、20℃のヨウ化カリウム水溶液で処理した。洗浄処理の水溶液のヨウ化カリウム含有量は2.6重量%とした。最後に、乾燥処理は70℃で5分間乾燥させて偏光子1を得た。
 得られた偏光子1の両面に、ポリビニルアルコール系接着剤を介して、コニカミノルタ株式会社製のTACフィルム(製品名:KC2UA、厚み:25μm、第2の保護層に対応する)及び当該TACフィルムの片面にハードコート処理により形成されたハードコート(HC)層を有するHC-TACフィルム(厚み:32μm、第1の保護層に対応する)をそれぞれ貼り合わせて、第1の保護層/偏光子1/第2の保護層の構成を有する偏光板1を得た。
[Reference Example 1: Production of polarizing plate]
A long roll of polyvinyl alcohol (PVA) resin film (product name “PE3000”, manufactured by Kuraray Co., Ltd.) having a thickness of 30 μm is uniaxially stretched in the longitudinal direction so that it becomes 5.9 times in the longitudinal direction by a roll stretching machine. At the same time, swelling, dyeing, crosslinking, and washing treatment were performed, and finally a drying treatment was performed to produce a polarizer 1 having a thickness of 12 μm.
Specifically, the swelling treatment was stretched 2.2 times while being treated with pure water at 20 ° C. Next, the dyeing treatment is performed in an aqueous solution at 30 ° C. in which the weight ratio of iodine and potassium iodide is 1: 7, the iodine concentration of which is adjusted so that the single transmittance of the obtained polarizer is 45.0%. The film was stretched 1.4 times. Furthermore, the crosslinking treatment employed a two-stage crosslinking treatment, and the first-stage crosslinking treatment was stretched 1.2 times while being treated in an aqueous solution in which boric acid and potassium iodide were dissolved at 40 ° C. The boric acid content of the aqueous solution of the first-stage crosslinking treatment was 5.0% by weight, and the potassium iodide content was 3.0% by weight. The cross-linking treatment at the second stage was stretched 1.6 times while being treated in an aqueous solution in which boric acid and potassium iodide were dissolved at 65 ° C. The boric acid content of the aqueous solution of the second crosslinking treatment was 4.3% by weight, and the potassium iodide content was 5.0% by weight. In addition, the cleaning treatment was performed with an aqueous potassium iodide solution at 20 ° C. The potassium iodide content of the aqueous solution for the washing treatment was 2.6% by weight. Finally, the drying process was performed at 70 ° C. for 5 minutes to obtain a polarizer 1.
A TAC film manufactured by Konica Minolta Co., Ltd. (product name: KC2UA, thickness: 25 μm, corresponding to the second protective layer) and the TAC film on both surfaces of the obtained polarizer 1 through a polyvinyl alcohol adhesive. HC-TAC films (thickness: 32 μm, corresponding to the first protective layer) each having a hard coat (HC) layer formed by a hard coat treatment on one side of each of the first protective layer / polarizer A polarizing plate 1 having a configuration of 1 / second protective layer was obtained.
[参考例2:第1の位相差層を構成する液晶配向固化層の作製]
 ネマチック液晶相を示す重合性液晶(BASF社製:商品名「Paliocolor LC242」、下記式で表される)10gと、当該重合性液晶化合物に対する光重合開始剤(BASF社製:商品名「イルガキュア907」)3gとを、トルエン40gに溶解して、液晶組成物(塗工液)を調製した。
Figure JPOXMLDOC01-appb-C000002
ポリエチレンテレフタレート(PET)フィルム(厚み38μm)表面を、ラビング布を用いてラビングし、配向処理を施した。配向処理の条件は、ラビング回数(ラビングロール個数)が1、ラビングロール半径rが76.89mm、ラビングロール回転数nrが1500rpm、フィルム搬送速度vが83mm/secであり、ラビング強度RSおよび押し込み量Mは表1に示すような5種類の条件(a)~(e)で行った。
[Reference Example 2: Production of liquid crystal alignment solidified layer constituting first retardation layer]
10 g of a polymerizable liquid crystal exhibiting a nematic liquid crystal phase (manufactured by BASF: trade name “Pariocolor LC242”, represented by the following formula) and a photopolymerization initiator for the polymerizable liquid crystal compound (manufactured by BASF: trade name “IRGACURE 907”). 3) was dissolved in 40 g of toluene to prepare a liquid crystal composition (coating solution).
Figure JPOXMLDOC01-appb-C000002
The surface of a polyethylene terephthalate (PET) film (thickness 38 μm) was rubbed with a rubbing cloth and subjected to orientation treatment. The conditions of the alignment treatment are as follows: the number of rubbing times (the number of rubbing rolls) is 1, the rubbing roll radius r is 76.89 mm, the rubbing roll rotational speed nr is 1500 rpm, the film transport speed v is 83 mm / sec, the rubbing strength RS and the pushing amount M was performed under five conditions (a) to (e) as shown in Table 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 配向処理の方向は、偏光板に貼り合わせる際に偏光子の吸収軸の方向に対して視認側から見て-75°方向となるようにした。この配向処理表面に、上記液晶塗工液をバーコーターにより塗工し、90℃で2分間加熱乾燥することによって液晶化合物を配向させた。条件(a)~(c)では液晶化合物の配向状態が非常に良好であった。条件(d)および(e)では液晶化合物の配向に若干の乱れが生じたが、実用上は問題のないレベルであった。このようにして形成された液晶層に、メタルハライドランプを用いて1mJ/cmの光を照射し、当該液晶層を硬化させることによって、PETフィルム上に位相差層(液晶配向固化層)1を形成した。位相差層1の厚みは2μm、面内位相差Re(550)は236nmであった。さらに、位相差層1は、nx>ny=nzの屈折率分布を有していた。 The direction of the orientation treatment was set to a −75 ° direction when viewed from the viewing side with respect to the direction of the absorption axis of the polarizer when being bonded to the polarizing plate. The liquid crystal coating liquid was applied to the alignment-treated surface with a bar coater, and the liquid crystal compound was aligned by heating and drying at 90 ° C. for 2 minutes. Under the conditions (a) to (c), the alignment state of the liquid crystal compound was very good. Under the conditions (d) and (e), a slight disturbance occurred in the alignment of the liquid crystal compound, but the level was not problematic for practical use. The liquid crystal layer thus formed is irradiated with 1 mJ / cm 2 of light using a metal halide lamp, and the liquid crystal layer is cured to form a retardation layer (liquid crystal alignment solidified layer) 1 on the PET film. Formed. The thickness of the retardation layer 1 was 2 μm, and the in-plane retardation Re (550) was 236 nm. Furthermore, the retardation layer 1 had a refractive index distribution of nx> ny = nz.
[参考例3:第2の位相差層を構成する液晶配向固化層の作製]
 ポリエチレンテレフタレート(PET)フィルム(厚み38μm)表面を、ラビング布を用いてラビングし、配向処理を施した。配向処理の方向は、偏光板に貼り合わせる際に偏光子の吸収軸の方向に対して視認側から見て-15°方向となるようにした。この配向処理表面に、参考例2と同様の液晶塗工液を塗工し、参考例2と同様にして液晶化合物を配向および硬化させて、PETフィルム上に位相差層2を形成した。位相差層2の厚みは1.2μm、面内位相差Re(550)は115nmであった。さらに、位相差層2は、nx>ny=nzの屈折率分布を有していた。
[Reference Example 3: Production of liquid crystal alignment solidified layer constituting second retardation layer]
The surface of a polyethylene terephthalate (PET) film (thickness 38 μm) was rubbed with a rubbing cloth and subjected to orientation treatment. The direction of the alignment treatment was set to −15 ° when viewed from the viewing side with respect to the direction of the absorption axis of the polarizer when being bonded to the polarizing plate. A liquid crystal coating liquid similar to that of Reference Example 2 was applied to the alignment-treated surface, and the liquid crystal compound was aligned and cured in the same manner as in Reference Example 2 to form the retardation layer 2 on the PET film. The thickness of the retardation layer 2 was 1.2 μm, and the in-plane retardation Re (550) was 115 nm. Further, the retardation layer 2 had a refractive index distribution of nx> ny = nz.
[参考例4:第1の位相差層および第2の位相差層を構成する積層位相差フィルムの作製]
 株式会社カネカ製のシクロオレフィン系の位相差フィルムA(製品名:KUZ-フィルム#270、厚み:33μm、Re(550)=270nm)と株式会社カネカ製のシクロオレフィン系の位相差フィルムB(製品名:KUZ-フィルム#140、厚み:28μm、Re(550)=140nm)とを、それぞれの遅相軸のなす角度が60°となるように厚みが5μmのアクリル系接着層を介して貼り合わせて、積層位相差フィルムを得た。この積層位相差フィルムを位相差層3とした。
[Reference Example 4: Production of laminated retardation film constituting first retardation layer and second retardation layer]
Kaneka's cycloolefin phase difference film A (product name: KUZ-film # 270, thickness: 33 μm, Re (550) = 270 nm) and Kaneka's cycloolefin phase difference film B (product) Name: KUZ-film # 140, thickness: 28 μm, Re (550) = 140 nm) are bonded together via an acrylic adhesive layer having a thickness of 5 μm so that the angle formed by each slow axis is 60 °. Thus, a laminated retardation film was obtained. This laminated retardation film was designated as retardation layer 3.
[参考例5:位相差層を構成する位相差フィルムの作製]
7-1.ポリカーボネート樹脂フィルムの作製
 イソソルビド(ISB)26.2質量部、9,9-[4-(2-ヒドロキシエトキシ)フェニル]フルオレン(BHEPF)100.5質量部、1,4-シクロヘキサンジメタノール(1,4-CHDM)10.7質量部、ジフェニルカーボネート(DPC)105.1質量部、および、触媒として炭酸セシウム(0.2質量%水溶液)0.591質量部をそれぞれ反応容器に投入し、窒素雰囲気下にて、反応の第1段目の工程として、反応容器の熱媒温度を150℃にし、必要に応じて攪拌しながら、原料を溶解させた(約15分)。
 次いで、反応容器内の圧力を常圧から13.3kPaにし、反応容器の熱媒温度を190℃まで1時間で上昇させながら、発生するフェノールを反応容器外へ抜き出した。
 反応容器内温度を190℃で15分保持した後、第2段目の工程として、反応容器内の圧力を6.67kPaとし、反応容器の熱媒温度を230℃まで、15分で上昇させ、発生するフェノールを反応容器外へ抜き出した。攪拌機の攪拌トルクが上昇してくるので、8分で250℃まで昇温し、さらに発生するフェノールを取り除くため、反応容器内の圧力を0.200kPa以下に減圧した。所定の攪拌トルクに到達後、反応を終了し、生成した反応物を水中に押し出した後に、ペレット化を行い、BHEPF/ISB/1,4-CHDM=47.4モル%/37.1モル%/15.5モル%のポリカーボネート樹脂を得た。
 得られたポリカーボネート樹脂のガラス転移温度は136.6℃であり、還元粘度は0.395dL/gであった。
 得られたポリカーボネート樹脂を80℃で5時間真空乾燥をした後、単軸押出機(いすず化工機社製、スクリュー径25mm、シリンダー設定温度:220℃)、Tダイ(幅200mm、設定温度:220℃)、チルロール(設定温度:120~130℃)および巻取機を備えたフィルム製膜装置を用いて、厚み120μmのポリカーボネート樹脂フィルムを作製した。
[Reference Example 5: Production of retardation film constituting retardation layer]
7-1. Preparation of Polycarbonate Resin Film Isosorbide (ISB) 26.2 parts by mass, 9,9- [4- (2-hydroxyethoxy) phenyl] fluorene (BHEPF) 100.5 parts by mass, 1,4-cyclohexanedimethanol (1, 4-CHDM) 10.7 parts by mass, diphenyl carbonate (DPC) 105.1 parts by mass, and cesium carbonate (0.2% by mass aqueous solution) 0.591 parts by mass as a catalyst were put in a reaction vessel, respectively, and a nitrogen atmosphere Below, as a first step of the reaction, the temperature of the heating medium in the reaction vessel was set to 150 ° C., and the raw materials were dissolved while stirring as necessary (about 15 minutes).
Next, the pressure in the reaction vessel was changed from normal pressure to 13.3 kPa, and the generated phenol was extracted out of the reaction vessel while the temperature of the heat medium in the reaction vessel was increased to 190 ° C. over 1 hour.
After holding the reaction vessel temperature at 190 ° C. for 15 minutes, as a second step, the pressure in the reaction vessel is set to 6.67 kPa, and the heat medium temperature of the reaction vessel is increased to 230 ° C. in 15 minutes. The generated phenol was extracted out of the reaction vessel. Since the stirring torque of the stirrer increased, the temperature was raised to 250 ° C. in 8 minutes, and the pressure in the reaction vessel was reduced to 0.200 kPa or less in order to remove the generated phenol. After reaching a predetermined stirring torque, the reaction was terminated, and the reaction product formed was extruded into water, and then pelletized to obtain BHEPF / ISB / 1,4-CHDM = 47.4 mol% / 37.1 mol%. /15.5 mol% polycarbonate resin was obtained.
The obtained polycarbonate resin had a glass transition temperature of 136.6 ° C. and a reduced viscosity of 0.395 dL / g.
The obtained polycarbonate resin was vacuum-dried at 80 ° C. for 5 hours, and then a single-screw extruder (made by Isuzu Chemical Industries, screw diameter 25 mm, cylinder set temperature: 220 ° C.), T-die (width 200 mm, set temperature: 220). ° C.), a chill roll (set temperature: 120 to 130 ° C.), and a film forming apparatus equipped with a winder, a 120 μm thick polycarbonate resin film was produced.
7-2.位相差フィルムの作製
 テンター延伸機を用いて、得られたポリカーボネート樹脂フィルムを横延伸し、厚み50μmの位相差フィルムを得た。その際、延伸倍率は250%であり、延伸温度を137~139℃とした。
 得られた位相差フィルムのRe(550)は137~147nmであり、Re(450)/Re(550)は0.89であり、Nz係数は1.21であり、配向角(遅相軸の方向)は長尺方向に対し90°であった。この位相差フィルムを位相差層4として用いた。
7-2. Production of Retardation Film Using a tenter stretching machine, the obtained polycarbonate resin film was horizontally stretched to obtain a retardation film having a thickness of 50 μm. At that time, the draw ratio was 250%, and the draw temperature was 137 to 139 ° C.
Re (550) of the obtained retardation film is 137 to 147 nm, Re (450) / Re (550) is 0.89, Nz coefficient is 1.21, orientation angle (slow axis) Direction) was 90 ° with respect to the longitudinal direction. This retardation film was used as the retardation layer 4.
[参考例6:導電性フィルム(基材付導電層)の作製]
 基材として厚み50μmのポリシクロオレフィンフィルム(日本ゼオン製、商品名「ZEONOR(登録商標)」)を用いた。この基材の一方の面に紫外線硬化性樹脂組成物(DIC社製 商品名「UNIDIC(登録商標)RS29-120」)を塗布し、80℃で1分間乾燥させた後、紫外線硬化させ、厚み1.0μmのハードコート層を形成した。次いで、基材の他方の面に、上記と同じ紫外線硬化性樹脂組成物100重量部と、最頻粒子径が1.9μmであるアクリル系球状粒子(綜研化学社製、商品名「MX-180TA」)0.002重量部とを含む、球状粒子入り硬化性樹脂組成物を塗布し、その後紫外線硬化させ、厚み1.0μmのハードコート層を形成した。上記で得られたポリシクロオレフィンフィルムを、スパッタ装置に投入し、粒子を含んでいないハードコート層表面に、厚み27nmのインジウムスズ酸化物の非晶質層を形成した。次いで、インジウムスズ酸化物の非晶質層が形成されたポリオレフィンフィルムを130℃の加熱オーブンで90分間加熱処理して、表面抵抗値が100Ω/□の透明導電性フィルムを作製した。この透明導電性フィルムを基材付導電層とした。基材の上記(3)による透湿度は7mg/m・24hであり、上記(4)による寸法変化率は0.03%であり、上記(5)による線膨張係数は7.3(×10-6/℃)であった。
[Reference Example 6: Production of conductive film (conductive layer with substrate)]
A polycycloolefin film (manufactured by Zeon Corporation, trade name “ZEONOR (registered trademark)”) having a thickness of 50 μm was used as the substrate. An ultraviolet curable resin composition (trade name “UNIDIC (registered trademark) RS29-120” manufactured by DIC) was applied to one surface of the base material, dried at 80 ° C. for 1 minute, then cured with ultraviolet light, and then thickened. A 1.0 μm hard coat layer was formed. Next, on the other side of the substrate, 100 parts by weight of the same UV curable resin composition as described above, and acrylic spherical particles having a mode particle diameter of 1.9 μm (trade name “MX-180TA, manufactured by Soken Chemical Co., Ltd.) “) A curable resin composition containing spherical particles containing 0.002 part by weight was applied and then cured with ultraviolet rays to form a hard coat layer having a thickness of 1.0 μm. The polycycloolefin film obtained above was put into a sputtering apparatus, and an amorphous layer of indium tin oxide having a thickness of 27 nm was formed on the surface of the hard coat layer not containing particles. Next, the polyolefin film on which the amorphous layer of indium tin oxide was formed was heat-treated in a heating oven at 130 ° C. for 90 minutes to produce a transparent conductive film having a surface resistance value of 100Ω / □. This transparent conductive film was used as a conductive layer with a substrate. The moisture permeability of the substrate according to the above (3) is 7 mg / m 2 · 24 h, the dimensional change rate according to the above (4) is 0.03%, and the linear expansion coefficient according to the above (5) is 7.3 (× 10 −6 / ° C.).
[参考例7:導電性フィルム(基材付導電層)の作製]
 基材として厚み50μmのPETフィルム(東レ製、商品名「ルミラー#50」)を用いたこと以外は参考例6と同様にして、表面抵抗値が100Ω/□の透明導電性フィルムを作製した。この透明導電性フィルムを基材付導電層とした。基材の上記(3)による透湿度は700mg/m・24hであり、上記(4)による寸法変化率は0.50%であり、上記(5)による線膨張係数は13.0(×10-6/℃)であった。
[Reference Example 7: Production of conductive film (conductive layer with substrate)]
A transparent conductive film having a surface resistance value of 100Ω / □ was prepared in the same manner as in Reference Example 6 except that a PET film having a thickness of 50 μm (trade name “Lumirror # 50” manufactured by Toray Industries, Inc.) was used as the substrate. This transparent conductive film was used as a conductive layer with a substrate. The moisture permeability of the substrate according to the above (3) is 700 mg / m 2 · 24 h, the dimensional change rate according to the above (4) is 0.50%, and the linear expansion coefficient according to the above (5) is 13.0 (× 10 −6 / ° C.).
[参考例8:粘着剤層の作製]
 冷却管、窒素導入管、温度計及び撹拌装置を備えた反応容器に、アクリル酸ブチル99部、アクリル酸4-ヒドロキシブチル1.0部および2,2´-アゾビスイソブチロニトリル0.3部を酢酸エチルと共に加えた。反応容器中の混合物を、窒素ガス気流下、60℃で4時間反応させた後、当該反応液に酢酸エチルを加えて、重量平均分子量165万のアクリル系ポリマーを含有する溶液(固形分濃度30%)を得た。上記アクリル系ポリマー溶液の固形分100部あたり0.15部のジベンゾイルパーオキシド(日本油脂製(株):ナイパーBO-Y)と、0.1部のトリメチロールプロパンキシレンジイソシアネート(三井武田ケミカル(株):タケネートD110N)と、0.2部のシランカップリング剤(綜研化学株式会社製:A-100,アセトアセチル基含有シランカップリング剤)とを配合して、粘着剤層形成用溶液を得た。上記粘着剤層形成用溶液を、シリコーン系剥離剤で表面処理したポリエステルフィルムからなるセパレータに塗工し、155℃で3分間加熱処理して厚さ15μmの粘着剤層Aを得た。
[Reference Example 8: Production of pressure-sensitive adhesive layer]
In a reaction vessel equipped with a cooling tube, a nitrogen introduction tube, a thermometer and a stirrer, 99 parts of butyl acrylate, 1.0 part of 4-hydroxybutyl acrylate and 2,2′-azobisisobutyronitrile 0.3 Part was added with ethyl acetate. After the mixture in the reaction vessel was reacted at 60 ° C. for 4 hours under a nitrogen gas stream, ethyl acetate was added to the reaction solution, and a solution containing an acrylic polymer having a weight average molecular weight of 1,650,000 (solid content concentration of 30 %). 0.15 parts dibenzoyl peroxide (Nippon Yushi Co., Ltd .: Nyper BO-Y) and 0.1 parts trimethylolpropane xylene diisocyanate (Mitsui Takeda Chemical (100% solids content of the acrylic polymer solution)) Ltd.): Takenate D110N) and 0.2 part of a silane coupling agent (manufactured by Soken Chemical Co., Ltd .: A-100, acetoacetyl group-containing silane coupling agent) Obtained. The pressure-sensitive adhesive layer forming solution was applied to a separator made of a polyester film surface-treated with a silicone release agent, and heat-treated at 155 ° C. for 3 minutes to obtain a pressure-sensitive adhesive layer A having a thickness of 15 μm.
[参考例9:粘着剤層の作製]
 冷却管、窒素導入管、温度計及び撹拌装置を備えた反応容器に、アクリル酸ブチル94.9部、アクリル酸5部およびアクリル酸2-ヒドロキシエチル0.1部、ならびに、これらのモノマー(固形分)100部に対して0.3部のベンゾイルパーオキサイドを酢酸エチルと共に加えた。反応容器中の混合物を、窒素ガス気流下、60℃で7時間反応させた後、当該反応液に酢酸エチルを加えて、重量平均分子量220万のアクリル系ポリマーを含有する溶液(固形分濃度30重量%)を得た。上記アクリル系ポリマー溶液の固形分100部あたり0.6部のトリメチロールプロパントリレンジイソシアネート(日本ポリウレタン(株)製:コロネートL)と、0.075部のγ-グリシドキシプロピルメトキシシラン(信越化学工業(株)製:KBM-403)を配合して、粘着剤層形成用溶液を得た。上記粘着剤層形成用溶液を、シリコーン系剥離剤で表面処理したポリエステルフィルムからなるセパレータに塗工し、155℃で3分間加熱処理して厚さ15μmの粘着剤層Bを得た。
[Reference Example 9: Production of pressure-sensitive adhesive layer]
In a reaction vessel equipped with a cooling tube, a nitrogen introduction tube, a thermometer and a stirrer, 94.9 parts of butyl acrylate, 5 parts of acrylic acid and 0.1 part of 2-hydroxyethyl acrylate, and monomers thereof (solid Min) To 100 parts, 0.3 part of benzoyl peroxide was added together with ethyl acetate. After the mixture in the reaction vessel was reacted at 60 ° C. for 7 hours under a nitrogen gas stream, ethyl acetate was added to the reaction solution, and a solution containing an acrylic polymer having a weight average molecular weight of 2.2 million (solid content concentration of 30 % By weight). 0.6 part of trimethylolpropane tolylene diisocyanate (manufactured by Nippon Polyurethane Co., Ltd .: Coronate L) and 0.075 part of γ-glycidoxypropylmethoxysilane (Shin-Etsu) per 100 parts of the solid content of the acrylic polymer solution. Chemical Industry Co., Ltd. product: KBM-403) was blended to obtain an adhesive layer forming solution. The pressure-sensitive adhesive layer forming solution was applied to a separator made of a polyester film surface-treated with a silicone release agent, and heat-treated at 155 ° C. for 3 minutes to obtain a pressure-sensitive adhesive layer B having a thickness of 15 μm.
[実施例1]
 偏光板1の第2の保護層面と位相差層1とを、偏光子の吸収軸と位相差層1の遅相軸とのなす角度が15°となるように厚み5μmのアクリル系接着剤を介して貼り合わせた。次いで、位相差層1が形成されていたPETフィルムを剥離し、当該剥離面に位相差層2を、偏光子の吸収軸と位相差層2の遅相軸とのなす角度が75°となるように厚み5μmのアクリル系接着剤を介して貼り合わせた。さらに、位相差層2が形成されていたPETフィルムを剥離し、偏光板/第1の位相差層/第2の位相差層の構成を有する円偏光板1を得た。円偏光板1の第2の位相差層と参考例6で得られた基材付導電層の導電層とを粘着剤層Aを介して貼り合わせ、光学積層体1を得た。得られた光学積層体1を上記(6)の評価に供した。結果を表2に示す。
[Example 1]
An acrylic adhesive having a thickness of 5 μm is used so that the angle between the absorption axis of the polarizer and the slow axis of the retardation layer 1 is 15 ° between the second protective layer surface of the polarizing plate 1 and the retardation layer 1. Pasted together. Next, the PET film on which the phase difference layer 1 has been formed is peeled off, and the phase difference layer 2 is formed on the peeled surface, and the angle between the absorption axis of the polarizer and the slow axis of the phase difference layer 2 is 75 °. In this way, they were bonded together through an acrylic adhesive having a thickness of 5 μm. Furthermore, the PET film on which the retardation layer 2 was formed was peeled off to obtain a circularly polarizing plate 1 having a configuration of polarizing plate / first retardation layer / second retardation layer. The second retardation layer of the circularly polarizing plate 1 and the conductive layer of the conductive layer with a base material obtained in Reference Example 6 were bonded to each other through the pressure-sensitive adhesive layer A to obtain an optical laminate 1. The obtained optical laminated body 1 was used for evaluation of said (6). The results are shown in Table 2.
[実施例2]
 位相差層1および2の代わりに位相差層3(積層位相差フィルム)を用い、偏光板1の第2の保護層面と位相差層フィルムAの面とを、偏光子の吸収軸と位相差フィルムAの遅相軸とのなす角度が15°となり、偏光子の吸収軸と位相差フィルムBの遅相軸とのなす角度が75°となるように厚み12μmのアクリル系接着剤を介して貼り合わせ、偏光板/第1の位相差層/第2の位相差層の構成を有する円偏光板2を得た。円偏光板2の第2の位相差層と参考例6で得られた基材付導電層の導電層とを粘着剤層Aを介して貼り合わせ、光学積層体2を得た。得られた光学積層体2を上記(6)の評価に供した。結果を表2に示す。
[Example 2]
A retardation layer 3 (laminated retardation film) is used instead of the retardation layers 1 and 2, and the second protective layer surface of the polarizing plate 1 and the surface of the retardation layer film A are connected to the absorption axis of the polarizer and the retardation. An acrylic adhesive having a thickness of 12 μm is used so that the angle between the slow axis of the film A is 15 ° and the angle between the absorption axis of the polarizer and the slow axis of the retardation film B is 75 °. A circularly polarizing plate 2 having a configuration of polarizing plate / first retardation layer / second retardation layer was obtained by bonding. The second retardation layer of the circularly polarizing plate 2 and the conductive layer of the conductive layer with a base material obtained in Reference Example 6 were bonded to each other through the pressure-sensitive adhesive layer A to obtain an optical laminate 2. The obtained optical laminate 2 was subjected to the evaluation of (6) above. The results are shown in Table 2.
[比較例1]
 参考例7で得られた基材付導電層を用いたこと以外は実施例1と同様にして光学積層体3を得た。得られた光学積層体3を上記(6)の評価に供した。結果を表2に示す。
[Comparative Example 1]
The optical laminated body 3 was obtained like Example 1 except having used the electrically conductive layer with a base material obtained in Reference Example 7. The obtained optical laminated body 3 was used for evaluation of said (6). The results are shown in Table 2.
[比較例2]
 参考例7で得られた基材付導電層を用いたこと以外は実施例2と同様にして光学積層体4を得た。得られた光学積層体4を上記(6)の評価に供した。結果を表2に示す。
[Comparative Example 2]
The optical laminated body 4 was obtained like Example 2 except having used the electroconductive layer with a base material obtained in Reference Example 7. The obtained optical laminated body 4 was used for evaluation of said (6). The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明の光学積層体は、液晶表示装置および有機EL表示装置のような画像表示装置に好適に用いられ、特に有機EL表示装置の反射防止フィルムとして好適に用いられ得る。さらに、本発明の光学積層体は、インナータッチパネル型入力表示装置に好適に用いられ得る。 The optical layered body of the present invention is suitably used for image display devices such as liquid crystal display devices and organic EL display devices, and can be particularly suitably used as an antireflection film for organic EL display devices. Furthermore, the optical layered body of the present invention can be suitably used for an inner touch panel type input display device.
 10   偏光板
 11   偏光子
 12   第1の保護層
 13   第2の保護層
 20   第1の位相差層
 30   第2の位相差層
 41   導電層
 42   基材
100   光学積層体
 
DESCRIPTION OF SYMBOLS 10 Polarizing plate 11 Polarizer 12 1st protective layer 13 2nd protective layer 20 1st phase difference layer 30 2nd phase difference layer 41 Conductive layer 42 Base material 100 Optical laminated body

Claims (7)

  1.  偏光子と該偏光子の少なくとも一方の側に保護層とを含む偏光板と、第1の位相差層と、第2の位相差層と、導電層と、該導電層に密着積層された基材と、をこの順に有し、
     該基材の透湿度が5mg/m・24h~10mg/m・24hであり、寸法変化率が0.3%以下であり、および、線膨張係数が5(×10-6/℃)~10(×10-6/℃)である、
     光学積層体。
    A polarizer, a polarizing plate including a protective layer on at least one side of the polarizer, a first retardation layer, a second retardation layer, a conductive layer, and a substrate laminated in close contact with the conductive layer And in this order,
    The substrate has a moisture permeability of 5 mg / m 2 · 24 h to 10 mg / m 2 · 24 h, a dimensional change rate of 0.3% or less, and a linear expansion coefficient of 5 (× 10 −6 / ° C.). To 10 (× 10 −6 / ° C.),
    Optical laminate.
  2.  前記偏光子の吸収軸と前記第1の位相差層の遅相軸とのなす角度が10°~20°であり、該吸収軸と前記第2の位相差層の遅相軸とのなす角度が65°~85°である、請求項1に記載の光学積層体。 The angle formed between the absorption axis of the polarizer and the slow axis of the first retardation layer is 10 ° to 20 °, and the angle formed between the absorption axis and the slow axis of the second retardation layer The optical laminate according to claim 1, wherein is from 65 ° to 85 °.
  3.  前記第1の位相差層および前記第2の位相差層が、環状オレフィン系樹脂フィルムで構成されている、請求項1または2に記載の光学積層体。 The optical laminate according to claim 1 or 2, wherein the first retardation layer and the second retardation layer are composed of a cyclic olefin-based resin film.
  4.  前記第2の位相差層の寸法変化率が1%以下である、請求項3に記載の光学積層体。 The optical laminate according to claim 3, wherein a dimensional change rate of the second retardation layer is 1% or less.
  5.  前記第1の位相差層および前記第2の位相差層が、液晶化合物の配向固化層である、請求項1または2に記載の光学積層体。 The optical layered body according to claim 1 or 2, wherein the first retardation layer and the second retardation layer are alignment solidified layers of a liquid crystal compound.
  6.  前記偏光板と前記第1の位相差層と前記第2の位相差層との積層体の寸法変化率が1%以下である、請求項5に記載の光学積層体。 6. The optical laminate according to claim 5, wherein a dimensional change rate of the laminate of the polarizing plate, the first retardation layer, and the second retardation layer is 1% or less.
  7.  請求項1から6のいずれかに記載の光学積層体を備える、画像表示装置。
     
    An image display apparatus provided with the optical laminated body in any one of Claim 1 to 6.
PCT/JP2017/025528 2016-10-04 2017-07-13 Optical laminate and image display device WO2018066199A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197008826A KR101978802B1 (en) 2016-10-04 2017-07-13 Optical laminate and image display device
CN201780061146.9A CN109791246B (en) 2016-10-04 2017-07-13 Optical laminate and image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016196598A JP6321108B2 (en) 2016-10-04 2016-10-04 Optical laminate and image display device
JP2016-196598 2016-10-04

Publications (1)

Publication Number Publication Date
WO2018066199A1 true WO2018066199A1 (en) 2018-04-12

Family

ID=61832086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025528 WO2018066199A1 (en) 2016-10-04 2017-07-13 Optical laminate and image display device

Country Status (5)

Country Link
JP (1) JP6321108B2 (en)
KR (1) KR101978802B1 (en)
CN (1) CN109791246B (en)
TW (1) TWI737807B (en)
WO (1) WO2018066199A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111831150A (en) * 2019-04-22 2020-10-27 住友化学株式会社 Touch sensor panel and optical laminate

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021018524A (en) * 2019-07-18 2021-02-15 住友化学株式会社 Optical laminate and manufacturing method
CN115210681A (en) * 2020-03-05 2022-10-18 住友化学株式会社 Optical laminate and display device
CN111308603A (en) * 2020-04-09 2020-06-19 四川龙华光电薄膜股份有限公司 Oblique optical axis phase difference film
JP2022076893A (en) * 2020-11-10 2022-05-20 日東電工株式会社 Image display device and manufacturing method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115534A1 (en) * 2014-01-31 2015-08-06 富士フイルム株式会社 Transparent film, manufacturing method therefor, transparent conductive film, touch panel, anti-reflective film, polarizing plate, and display device
JP2015213056A (en) * 2014-04-17 2015-11-26 日東電工株式会社 Transparent conductive film
JP2015232647A (en) * 2014-06-10 2015-12-24 日東電工株式会社 Laminate and image display device
JP2016105166A (en) * 2014-11-20 2016-06-09 日東電工株式会社 Circular polarization plate for organic el display device and organic el display device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE39753E1 (en) 1998-10-30 2007-07-31 Teijin Limited Retardation film and optical device employing it
JP2002372622A (en) 2001-06-14 2002-12-26 Nitto Denko Corp Composite optical retardation plate, circularly polarizing plate and liquid crystal display, organic el display device
JP2003036143A (en) 2001-07-25 2003-02-07 Sumitomo Chem Co Ltd Inner touch panel
JP2003311239A (en) 2002-04-23 2003-11-05 Matsushita Electric Works Ltd Apparatus for treating garbage
EP2033998B1 (en) * 2007-09-06 2010-11-10 Nitto Denko Corporation Pressure sensitive adhesive composition, product using the same, and display using the product

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115534A1 (en) * 2014-01-31 2015-08-06 富士フイルム株式会社 Transparent film, manufacturing method therefor, transparent conductive film, touch panel, anti-reflective film, polarizing plate, and display device
JP2015213056A (en) * 2014-04-17 2015-11-26 日東電工株式会社 Transparent conductive film
JP2015232647A (en) * 2014-06-10 2015-12-24 日東電工株式会社 Laminate and image display device
JP2016105166A (en) * 2014-11-20 2016-06-09 日東電工株式会社 Circular polarization plate for organic el display device and organic el display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111831150A (en) * 2019-04-22 2020-10-27 住友化学株式会社 Touch sensor panel and optical laminate

Also Published As

Publication number Publication date
CN109791246B (en) 2020-06-30
JP2018060015A (en) 2018-04-12
TWI737807B (en) 2021-09-01
TW201814335A (en) 2018-04-16
KR101978802B1 (en) 2019-05-16
CN109791246A (en) 2019-05-21
KR20190039441A (en) 2019-04-11
JP6321108B2 (en) 2018-05-09

Similar Documents

Publication Publication Date Title
JP6453746B2 (en) Elongated optical laminate and image display device
CN110709740B (en) Polarizing plate with phase difference layer and image display device
JP6321107B2 (en) Optical laminate and image display device
JP6920047B2 (en) Circularly polarizing plate and flexible image display device using it
WO2016136509A1 (en) Polarizing plate with phase-difference layer and image display device
WO2018066199A1 (en) Optical laminate and image display device
JP5913648B1 (en) Polarizing plate with retardation layer and image display device
WO2017094624A1 (en) Optical laminate and image display device
KR20190104150A (en) Polarizer with Optical Compensation Layer and Organic EL Panel Using the Same
TWI244558B (en) Optical film and image display
WO2017098970A1 (en) Circular polarizing plate and flexible image display device using same
CN108627901B (en) Polarizing plate with antireflection layer and reflection preventing layer and method for producing same
WO2017094623A1 (en) Optical laminate and image display device
CN113640909A (en) Circularly polarizing plate with antireflection layer and image display device using the circularly polarizing plate with antireflection layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17858039

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197008826

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17858039

Country of ref document: EP

Kind code of ref document: A1