WO2018066171A1 - 表面特性検査方法及び表面特性検査装置 - Google Patents

表面特性検査方法及び表面特性検査装置 Download PDF

Info

Publication number
WO2018066171A1
WO2018066171A1 PCT/JP2017/020479 JP2017020479W WO2018066171A1 WO 2018066171 A1 WO2018066171 A1 WO 2018066171A1 JP 2017020479 W JP2017020479 W JP 2017020479W WO 2018066171 A1 WO2018066171 A1 WO 2018066171A1
Authority
WO
WIPO (PCT)
Prior art keywords
subject
detector
inspection
coil
convex
Prior art date
Application number
PCT/JP2017/020479
Other languages
English (en)
French (fr)
Inventor
良保 牧野
Original Assignee
新東工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新東工業株式会社 filed Critical 新東工業株式会社
Priority to MX2019003438A priority Critical patent/MX2019003438A/es
Priority to US16/338,937 priority patent/US10962503B2/en
Priority to KR1020197012504A priority patent/KR20190062500A/ko
Priority to CN201780061843.4A priority patent/CN109791126B/zh
Priority to BR112019003974A priority patent/BR112019003974A2/pt
Priority to JP2017532192A priority patent/JP6880538B2/ja
Priority to EP17858011.4A priority patent/EP3489673A4/en
Publication of WO2018066171A1 publication Critical patent/WO2018066171A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/80Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating mechanical hardness, e.g. by investigating saturation or remanence of ferromagnetic material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9046Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents by analysing electrical signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9073Recording measured data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9073Recording measured data
    • G01N27/9086Calibrating of recording device

Definitions

  • the present invention relates to a surface property inspection apparatus and a surface property inspection method for nondestructively inspecting the quality of a surface treatment state of a treatment material subjected to heat treatment such as carburizing and quenching or nitriding treatment or surface treatment by shot peening treatment.
  • the present invention provides a surface property inspection method capable of accurately inspecting the surface treatment state of a treated material subjected to heat treatment such as carburizing and quenching or nitriding treatment or surface treatment by shot peening treatment by increasing the output voltage.
  • the purpose is to do.
  • the present invention provides: A surface property inspection method for inspecting a surface property of a subject subjected to surface treatment, A surface property inspection device preparation step for preparing a surface property inspection device, the surface property inspection device, AC bridge circuit, An AC power supply for supplying AC power to the AC bridge circuit; An evaluation device for evaluating the surface characteristics of the subject based on the output signal from the AC bridge circuit,
  • the AC bridge circuit includes a variable resistor having a variable resistance ratio between the first resistor and the second resistor, and a coil capable of exciting AC magnetism so as to excite an eddy current in a subject.
  • a test detector formed so as to be capable of being disposed, and a reference detector for detecting a reference state serving as a reference for arranging a reference sample having the same structure as the subject and comparing with an output from the test detector
  • the first resistor, the second resistor, the reference detector, and the inspection detector constitute a bridge circuit, further, A resistance ratio setting step for setting a resistance ratio between the first resistor and the second resistor; A resistance set in the inspection signal acquisition step based on the first setting output signal acquired in the first signal acquisition step and the second setting output signal acquired in the second signal acquisition step AC power is supplied to determine the ratio, the test detector detects the electromagnetic characteristics of the subject, and the output signal from the AC bridge circuit in a state where the reference detector detects a reference state is acquired.
  • the resistance ratio setting step includes: A first signal acquisition step of arranging a reference specimen not subjected to surface treatment on the reference detector and the test detector, and acquiring a first setting output signal for a plurality of resistance ratios; A reference sample that has not been subjected to surface treatment is placed on the reference detector, a setting sample that has been subjected to surface treatment is placed on the test detector, and a second setting output signal is obtained for a plurality of resistance ratios.
  • a resistance ratio determining step for determining The technical means is used.
  • surface characteristics of the subject are obtained by exciting eddy currents in the subject by the coil of the test detector and comparing the output signal output from the AC bridge circuit with a threshold value. Can be evaluated.
  • the resistance ratio set in the inspection signal acquisition step based on the first setting output signal acquired in the first signal acquisition step and the second setting output signal acquired in the second signal acquisition step Therefore, the output voltage from the AC bridge circuit can be increased, and the surface treatment state of the treated material subjected to the surface treatment can be inspected with higher accuracy.
  • “same structure” means that the material and shape are the same.
  • the surface property means “a property from the outermost surface of the subject to the influence layer on the inner peripheral surface”.
  • setting is performed in the inspection signal acquisition step based on a relationship between the first setting output signal and the second setting output signal for the same resistance ratio.
  • the technical means of determining the resistance ratio to be used is used.
  • the output voltage from the AC bridge circuit is The increasing resistance ratio can be obtained reliably.
  • the resistance ratio at which an absolute value of a difference between the first setting output signal and the second setting output signal with respect to the same resistance ratio is maximized is checked.
  • the technical means of determining the resistance ratio to be set in the signal acquisition step is used.
  • the resistance ratio at which the absolute value of the difference between the first setting output signal and the second setting output signal with respect to the same resistance ratio is maximized is set in the inspection signal acquisition step. Therefore, since the output voltage used for the inspection can be increased, the surface treatment state of the treated material subjected to the surface treatment can be inspected with higher accuracy.
  • the coil of the inspection detector is formed in a form along the inclined surface so as to excite eddy currents on the inclined surface subjected to the surface treatment of the subject.
  • the coil of the inspection detector is wound into a convex shape that enters the concave surface so as to excite eddy current on the surface of the concave surface on which the surface treatment of the subject is performed.
  • the present invention configured as described above, it is possible to prevent an increase in the phase change of the output voltage due to a change in the distribution capacity of the coil that occurs according to the shape of the subject, and the surface can be accurately obtained. Properties can be inspected.
  • the coil of the inspection detector is wound around an inclined surface of a bobbin having an inclined surface.
  • the present invention configured as described above, it is possible to perform a highly accurate examination even on a subject having an inclined surface, which has been difficult to examine conventionally.
  • the positions of the subjects can be arranged at positions suitable for measurement along the inclined surface. Therefore, a single test detector can be used for various types and shapes of subjects. The specimen can be evaluated.
  • the surface property inspection apparatus further includes a first inspection detector and a second inspection detector that are arranged to face each other, and is opposed to each inspection detector of the subject.
  • the technical means of inspecting the inspection area is used.
  • the surface property inspection apparatus further includes a transport unit that transports the subject,
  • the subject has a concave surface and a convex surface subjected to surface treatment on both sides thereof
  • the first test detector is wound into a convex shape that enters the concave surface or a concave shape that receives the convex surface so as to excite eddy currents in either the concave surface or the convex surface of the subject.
  • Coil The second test detector is a coil wound into a convex shape that enters the concave surface or a concave shape that receives the convex surface so as to excite an eddy current in the other of the concave surface or the convex surface of the subject.
  • the inspection signal acquisition step includes A first transport step for transporting a subject between the first test detector and the second test detector; A first signal acquisition step of arranging a subject in the coil of the first test detector, exciting an eddy current on the concave surface or the convex surface of the subject, and acquiring an output signal from the AC bridge circuit; A second transporting step for transporting a subject from the first test detector to the second test detector; A second signal acquisition step of arranging a subject in the coil of the second test detector, exciting an eddy current on the concave surface or the convex surface of the subject, and acquiring an output signal from the AC bridge circuit; The technical means of providing is used.
  • the subject can be transported by the transport means, and the first inspection region and the second inspection region can be inspected continuously, so that efficient inspection is possible. is there. Further, since the inspection is performed by fixing the inspection detector and transporting the subject, the installation environment of the inspection detector is stabilized, so that a more accurate inspection can be performed.
  • the present invention is a surface property inspection apparatus for inspecting the surface property of a subject subjected to surface treatment, AC bridge circuit, An AC power supply for supplying AC power to the AC bridge circuit; An evaluation device for evaluating the surface characteristics of the subject based on the output signal from the AC bridge circuit,
  • the AC bridge circuit includes a variable resistor having a variable resistance ratio between the first resistor and the second resistor, and a coil capable of exciting AC magnetism so as to excite an eddy current in a subject.
  • a test detector formed so as to be capable of being disposed, and a reference detector for detecting a reference state serving as a reference for arranging a reference sample having the same structure as the subject and comparing with an output from the test detector,
  • the first resistor, the second resistor, the reference detector, and the inspection detector constitute a bridge circuit,
  • the inspection detector uses technical means that the coil is wound along the inclined surface along the inclined surface of the subject.
  • the coil of the inspection detector has a convex shape that enters the concave surface so as to excite eddy currents on the surface of the concave surface subjected to the surface treatment of the subject.
  • the technical means of being wound around is used.
  • the coil of the inspection detector includes a bobbin having a convex wall surface and a convex cover that covers an outer peripheral surface of the convex wall surface.
  • the conductive wire of the coil is wound,
  • the convex cover covers the wound conductive wire and is inserted into the concave surface of the subject so as to excite eddy currents on the concave surface subjected to the surface treatment of the subject.
  • the coil of the inspection detector has a concave shape that receives the convex surface so as to excite eddy currents on the surface of the convex surface on which the surface treatment of the subject has been performed.
  • the technical means of being wound around is used.
  • the coil of the inspection detector includes a bobbin having a convex wall surface, and a conductive wire of the coil is wound on the outer peripheral surface of the convex wall surface,
  • a technical means for receiving the convex surface of the subject so as to excite eddy currents on the convex surface subjected to the surface treatment of the subject is used.
  • the inspection detector includes a first inspection detector and a second inspection detector arranged to face each other.
  • the subject has a concave surface and a convex surface subjected to surface treatment on both sides thereof
  • the first test detector has a coil wound in a convex shape that enters the concave surface so as to excite an eddy current in the concave surface of the subject
  • the second inspection detector uses a technical means having a coil wound in a concave shape for receiving the convex surface so as to excite an eddy current on the convex surface of the subject.
  • the surface property inspection apparatus further includes a transport unit that transports the subject, and the transport unit is either the first test detector or the second test detector. After being placed on one side and inspecting the first inspection region, the subject is transported to the other of the first inspection detector or the second inspection detector, and on the opposite side of the first inspection region The technical means that the second inspection region is inspected is used.
  • the subject can be transported by the transporting means, and different inspection regions can be inspected continuously by the first inspection detector and the second inspection detector. Inspection is possible.
  • the inspection detector is fixed and the inspection is performed by transporting the subject, the installation environment of the inspection detector is stabilized, so that a surface characteristic inspection apparatus capable of performing a more accurate inspection is provided. it can.
  • the surface property inspection apparatus 1 used in the surface property inspection method of the present invention includes an AC power supply 10, an AC bridge circuit 20, and an evaluation device 30.
  • the AC power supply 10 is configured to be able to supply AC power having a variable frequency to the AC bridge circuit 20.
  • the AC bridge circuit 20 includes a variable resistor 21, a test detector 23 formed so that a coil can be disposed so as to excite eddy currents in the subject M, and a reference sample S that has the same structure as the subject M and is not subjected to surface treatment. And a reference detector 22 for detecting a reference state as a reference for comparison with the output from the inspection detector 23.
  • the same structure as the subject M means that the material and shape are the same.
  • the variable resistor 21 is configured to distribute the resistor RA to the resistor R1 and the resistor R2 and to variably distribute the distribution ratio ⁇ .
  • This distribution ratio ⁇ represents the resistance ratio between the resistor R1 and the resistor R2.
  • the resistors R1 and R2 form a bridge circuit together with the reference detector 22 and the inspection detector 23.
  • a point A that distributes the resistor R1 and the resistor R2 and a point B between the reference detector 22 and the inspection detector 23 are connected to the AC power supply 10 of the evaluation device 30, and the resistor R1 and the reference detector are connected.
  • the point C between 22 and the point D between the resistor R 2 and the test detector 23 is connected to the amplifier 31.
  • the reference detector 22 and the inspection detector 23 are grounded to reduce noise.
  • the evaluation device 30 includes an amplifier 31 that amplifies the voltage signal output from the AC bridge circuit 20, an absolute value circuit 32 that performs full-wave rectification, a low-pass filter (LPF) 33 that performs DC conversion, and an AC supplied from the AC power supply 10.
  • a phase comparator 34 that compares the phase of the voltage with the voltage output from the amplifier 31, a frequency adjuster 35 that adjusts the frequency of the AC voltage supplied from the AC power supply 10, and an unbalance adjustment that optimizes the distribution of R1 and R2.
  • Means 38 are provided.
  • a storage unit is provided in the determination unit 36 or in an area not shown.
  • the amplifier 31 is connected to the point C and the point D, and a potential difference between the point C and the point D is input. Further, the absolute value circuit 32 and the LPF 33 are connected to the determination means 36 in this order.
  • the phase comparator 34 is connected to the AC power supply 10, the amplifier 31, and the determination unit 36.
  • the frequency adjuster 35 is connected to the AC power supply 10 and the amplifier 31.
  • the judging means 36 is configured to change the position of the point A of the AC bridge circuit 20, that is, the distribution ratio ⁇ between the resistors R1 and R2 by outputting a control signal. Thus, the resistance ratio setting step described later is executed.
  • the temperature measuring means 38 is composed of a non-contact infrared sensor, a thermocouple, etc., and outputs a temperature signal of the surface of the subject M to the judging means 36.
  • the judging means 36 judges whether the surface treatment state of the subject M is good or not, and the temperature detected by the temperature measuring means 38 is When it is outside the predetermined range, the quality of the surface treatment state of the subject M is not judged. Thereby, when the temperature of the subject M affects the accuracy of the examination, it is possible to prevent the judgment of the quality of the surface treatment state of the subject, so that a highly accurate examination can be performed. .
  • the test detector 23 and the reference detector 22 having the same configuration as the test detector 23 are formed by winding a coil around the outer periphery of the core through which the evaluation unit of the subject M can be inserted, and the coil is formed on the surface of the subject M. And a detector capable of exciting eddy currents in the subject M by using them close to each other. That is, this coil is wound so as to face the surface property inspection region of the subject.
  • surrounding the surface characteristic inspection region of the subject means that the eddy current is excited in the surface characteristic inspection region by surrounding at least a part of the surface characteristic inspection region.
  • the subject M has an inclined surface Ma (an outer peripheral surface that is an outer convex surface) and Mb (an inner peripheral surface that is an inner concave surface), and the subject M is surface-treated on each of the inclined surfaces Ma and Mb, for example,
  • the inspection detector 23 used for inspecting the surface characteristics of the diaphragm and the disc spring will be described.
  • the reference detector 22 has the same configuration as the inspection detector 23.
  • the test detector 23 opens upward, and is inclined so as to face the surface treatment layer Mc applied to the inclined surface Ma on the outer side of the subject M.
  • the bobbin 23a which has 23b (conical surface which is a convex-shaped wall surface protruded below), and the coil 23c wound by the outer peripheral surface side of the inclined surface 23b of the bobbin 23a are provided.
  • a resin cover 23d is provided to shield the coil 23c from the outside. Thereby, the damage by the contact of the iron powder and the metal piece to the coil 23c and the physical contact to the coil 23c can be prevented.
  • the bobbin 23a is made of a nonmagnetic material, for example, a resin.
  • the coil 23c is provided outside the bobbin 23a, and the subject M is configured so as to excite eddy currents on the convex surface of the subject M subjected to the surface treatment (the inclined surface Ma outside the subject M). It is wound into a concave shape that accepts a convex surface.
  • the bobbin 23a is configured to receive the subject's inclined surface Ma (convex surface) on the inner peripheral surface of the inclined surface 23b (convex wall surface) and excite eddy currents on the inclined surface Ma.
  • the inclined surface 23b (convex wall surface) of the bobbin 23a is formed in a truncated cone shape.
  • the inclined surface 23b is formed into a cone, a pyramid, a truncated pyramid according to the shape of the subject to be applied. Further, it can be formed of an arbitrary convex wall surface such as a dome shape, and a coil conductor can be wound around the outer peripheral surface thereof.
  • the inspection detector 23 detects the reaction of the eddy current with high accuracy and evaluates the surface characteristics, so that the coil 23c is close to the surface of the subject M so that the eddy current flows in a region where the surface characteristics are to be inspected.
  • the coil is wound along the inclined surface. Further, the coil is wound so as to cover at least a region facing the surface treatment portion when the subject M is brought close to the test detector 23.
  • the test detector 23 When the test detector 23 is arranged with the coil facing the test object surface of the subject M and AC power having a predetermined frequency is supplied to the coil by the AC power supply 10, an AC magnetic field is generated, and an AC magnetic field is generated on the surface of the subject M.
  • the eddy current flowing in the direction intersecting with is excited. Since the eddy current changes according to the electromagnetic characteristics of the surface treatment layer, the phase and amplitude (impedance) of the output waveform (voltage waveform) output from the amplifier 31 according to the characteristics (surface treatment state) of the surface treatment layer Mc Change.
  • the electromagnetic characteristics of the surface treatment layer Mc can be detected and inspected by the change of the output waveform.
  • the test detector 23 in the present embodiment since it has the inclined surface 23b, the coil 23c is brought close to the surface treatment layer Mc by placing the subject M on the bobbin 23a. Can be arranged. As a result, a sufficient eddy current can be excited in the subject M, and the output voltage can be increased, so that it can be suitably used for evaluating the subject M having the inclined surfaces Ma and Mb.
  • the test detector 23 having such an inclined surface 23b can be shared for the evaluation of the subject M having different dimensions.
  • the positions of the gears G1 and G2 are arranged at positions suitable for measurement along the inclined surfaces. Can do.
  • the single test detector 23 can evaluate the various types and shapes of the specimen M.
  • the inspection detector 23 may not include the bobbin 23a as long as the coil 23c can maintain the shape.
  • a coil 23c is made of, for example, a fusion-bonded enameled copper wire that has an effect of bonding an enameled copper wire wound around an air core with a curable epoxy resin or the like, or being cured by heat. It can be formed by winding with a core and then curing with hot air or heat from a drying furnace.
  • a magnetic shield arranged outside the test detector 23 and surrounding the subject M can also be provided.
  • a magnetic shield When a magnetic shield is used, external magnetism can be shielded, so that a decrease in detection sensitivity of electromagnetic characteristics can be prevented, and an erroneous inspection of the surface treatment state of the subject M can be prevented.
  • the resistor R1 is RA / (1 + ⁇ )
  • the resistor R2 is RA ⁇ / (1 + ⁇ ).
  • the impedance of the reference detector 22 is RS + j ⁇ LS
  • the impedance of the inspection detector 23 is RT + j ⁇ LT.
  • the potential of the point A is set to E, and the excitation currents flowing through the sides of the bridge when the respective specimens (reference specimen S, subject M) are not brought close to the reference detector 22 and the test detector 23 are i1, respectively.
  • the amount of magnetism is changed by bringing each specimen close to the reference detector 22 and the test detector 23, and the currents flowing according to the amount of change are i ⁇ and i ⁇ , respectively.
  • the potentials E1 and E2 and the excitation currents i1 and i2 of the reference detector 22 and the inspection detector 23 at this time are expressed by the following equations (1) to (4).
  • the voltage output to the amplifier 31 is the difference between E1 and E2, and is expressed by the following equation.
  • Equation (6) The right side of Equation (6) is divided into the following components A and B, and each component of the differential voltage is considered.
  • Component A is composed of detector components: (RS + j ⁇ LS), (RT + j ⁇ LT), and current amounts that change when each specimen comes close to each detector: i ⁇ , i ⁇ .
  • the magnitudes of i ⁇ and i ⁇ vary depending on the amount of magnetism passing through the specimen due to electromagnetic characteristics such as the magnetic permeability and conductivity of each specimen. Therefore, the magnitudes of i ⁇ and i ⁇ can be changed by changing the excitation currents i1 and i2 that influence the amount of magnetism generated from each detector. Further, from the formulas (3) and (4), the excitation currents i1 and i2 change depending on the distribution ratio ⁇ of the variable resistance. Therefore, the magnitude of the component A can be changed by adjusting the distribution ratio ⁇ of the variable resistance. it can.
  • Component B is composed of each detector component: (RS + j ⁇ LS), (RT + j ⁇ LT), and the resistance parameter divided by the variable resistance distribution ratio ⁇ . For this reason, similarly to the component A, the size of the component B can be changed by adjusting the distribution ratio ⁇ of the variable resistor.
  • the surface characteristic inspection device 1 and the reference specimen S are prepared as a surface characteristic inspection device preparation step.
  • the subsequent frequency setting step S2 is a step of setting a frequency corresponding to the penetration depth of the eddy current according to the thickness of the surface treatment layer of the subject M.
  • the AC power supply 10 supplies AC to the reference detector S in the state where the reference sample S is brought close to the reference detector 22 and the setting sample subjected to the surface treatment with the same structure as the reference sample S is brought close to the test detector 23.
  • AC power is supplied to the bridge circuit 20 and the frequency adjuster 35 changes the frequency of the AC power supplied to the AC bridge circuit 20 to monitor the voltage amplitude output from the AC bridge circuit 20 or the voltage output from the LPF 33.
  • the frequency adjuster 35 outputs a control signal to the AC power supply 10 so that the initial frequency f1 set in the frequency adjuster 35 is obtained, and the output voltage Ef1 from the amplifier 31 at the frequency f1 is input to the frequency adjuster 35.
  • a control signal is output to the AC power supply 10 so that the frequency f2 becomes a predetermined value, for example, 100 Hz higher than the frequency f1, and the output voltage Ef2 from the amplifier 31 at the frequency f2 is input to the frequency regulator 35 and stored. Is done.
  • Ef1 and Ef2 are compared, and if Ef2> Ef1, a control signal is output so that the frequency f3 is a predetermined value higher than the frequency f2, and the output voltage Ef3 from the amplifier 31 at the frequency f3 is It is input to the frequency adjuster 35 and stored. Then, Ef2 and Ef3 are compared. This is repeated, and the frequency fn and output voltage until Efn + 1 ⁇ Efn are stored.
  • the output voltage is stored in the test detector 23 in a state in which the reference sample S and the setting sample having the same structure as the reference sample S and subjected to the surface treatment are brought close to each other, and the test detector corresponding to each frequency 23, the absolute value of the difference value of the output voltage when the reference sample S and the setting sample are brought close to each other is calculated. From the calculated result, the frequency with the largest difference value is selected and set as the frequency used in the threshold setting step S4 and the AC supply step S5. As a result, the frequency at which the output from the AC bridge circuit 20 is increased corresponding to the subject M having different surface treatment state, shape, etc. and different impedance can be set by a single operation.
  • the frequency setting step S2 can be performed without using the reference sample S.
  • the optimum frequency changes depending on the material, shape, and surface treatment state of the subject. If this is known in advance, it is not necessary to set the frequency.
  • a resistance ratio setting step S3 is performed.
  • the distribution ratio ⁇ of the variable resistor 21 is adjusted so that the detection sensitivity of the specimen by the surface property inspection apparatus 1 is increased.
  • the process of the resistance ratio setting process S3 is shown in detail in FIG.
  • step S31 the reference specimen S is placed in the reference detector 22 and the test detector 23.
  • step S32 AC power is supplied from the AC power source 10 to the AC bridge circuit 20.
  • the distribution ratio ⁇ of the variable resistor 21 is set at a plurality of levels, the output voltage is measured for each level, the output voltage group table 1 is created, and stored in the evaluation device 30.
  • n distribution ratios are set, and Table 1 showing the corresponding output voltage is created as shown in Table 1.
  • This output voltage group corresponds to a “first setting output signal”
  • steps S31 to S33 correspond to a first signal acquisition step of acquiring a “first setting output signal”.
  • the reference sample S arranged in the test detector is replaced with a setting sample having the same structure as that of the reference sample S and subjected to surface treatment. That is, the reference sample S is arranged in the reference detector 22, and the setting sample is arranged in the test detector 23.
  • step S35 the output voltage is measured for each distribution ratio level set in step S33, and the output voltage group table 2 (Table 2) is created and stored.
  • This output voltage group corresponds to a “second setting output signal”
  • steps S34 to S35 correspond to a second signal acquisition step of acquiring a “second setting output signal”.
  • Table 3 Table 3 in which the absolute value of the difference value corresponding to the distribution ratio of each bridge circuit is calculated by Table 1 and Table 2 is created and stored.
  • step S37 as the resistance ratio determining step, the resistance ratio used in the examination of the subject is determined based on the “first setting output signal” and the “second setting output signal”. That is, the absolute value
  • This distribution ratio is determined as the distribution ratio set in the examination of the subject.
  • the distribution ratio can be selected and set based on the ratio X / Y of the first setting output signal X and the second setting output signal Y for the same distribution ratio.
  • the coil distribution capacity changes even when the shape and size of the test detector 23 changes in the inspection of the subject M having an inclined surface such as a disc spring or a diaphragm, thereby eliminating the influence of the phase change of the output voltage. Therefore, it can be preferably used.
  • the resistance ratio setting step S3 since the resistance ratio that increases the difference in output voltage between the presence and absence of the surface treatment is selected using the subject M, the eddy current is determined according to the thickness of the surface treatment layer of the subject M. It is necessary to set the frequency corresponding to the penetration depth first. Since the distribution ratio ⁇ is one of the causes of the phase change of the output voltage, if the resistance ratio setting step S3 is performed before the frequency setting step S2, the output voltage difference due to the presence or absence of the surface treatment of the subject M is further increased. Rather than increasing the voltage, it merely increases the voltage difference due to the resistance ratio determined by the distribution ratio ⁇ . Therefore, there is a possibility that the difference in the output voltage due to the surface treatment cannot be increased. Therefore, the resistance ratio setting step S3 is performed after the frequency setting step S2.
  • FIG. 6 shows the table 3 created in step S36.
  • the vertical axis represents the difference value
  • the horizontal axis represents the variable resistor distribution ratio.
  • the distribution ratio is changed from 0.80 to 1.20 due to the limitation of the rated voltage of the AC bridge circuit.
  • the resistance ratio of the variable resistor is 1: 1, and the circuit output is in a state where the electrical characteristics of the reference detector and the inspection detector constituting the AC bridge circuit are canceled.
  • the distribution ratio deviates from 1.00, the variable resistance distribution is biased in one direction, and the AC bridge circuit is in an unbalanced state.
  • FIG. 6 shows that the output voltage difference can be increased by biasing the distribution ratio ⁇ of the variable resistor in the direction of 1 or less.
  • the distribution ratio ⁇ is set to 0.80 at which the difference value is maximized, a large output voltage difference of 80 mV can be obtained, so that the inspection accuracy can be improved.
  • a distribution ratio ⁇ corresponding to 85 to 95% of the maximum difference value can be set.
  • Threshold value setting step S4 sets a threshold value used for determining whether the surface state of the subject M is good or bad.
  • a method of setting a threshold value (hereinafter referred to as “initial threshold value”) set in advance for use at the start of the evaluation of the subject M will be described.
  • the reference specimen S is brought close to the reference detector 22, and AC power having a frequency set in the frequency setting step S ⁇ b> 3 is supplied from the AC power supply 10 to the AC bridge circuit 20.
  • the voltage output output from the AC bridge circuit 20 is amplified by the amplifier 31, is subjected to full-wave rectification in the absolute value circuit 32, is subjected to DC conversion in the LPF 33, and is output to the determination means 36.
  • the initial threshold value Ethi is an output signal EA obtained when an unprocessed subject M is placed on the inspection detector 23 and an output signal EA obtained when a surface-treated subject M having a good surface condition is placed on the inspection detector 23. Based on the output signal EB, the variation of each output signal is taken into consideration and determined by the following equation.
  • FIG. 7 schematically shows the distribution of the output signal EA of the unprocessed subject and the output signal EB of the subject after the surface treatment.
  • Ethi (EAav ⁇ ⁇ B + EBav ⁇ ⁇ A) / ( ⁇ A + ⁇ B)
  • EAav average value of the output signal EA
  • EBav average value of the output signal EB
  • ⁇ A standard deviation of the output signal EA
  • ⁇ B standard deviation of the output signal EB
  • This initial threshold value Ethi is set as a threshold value and is stored in the determination means 36.
  • the initial threshold value Ethi has a relationship of EAmax ⁇ Ethi ⁇ EBmin between the maximum value EAmax of the output signal EA and the minimum value EBmin of the output signal EB. Even when the above relationship is not established, an appropriate initial threshold value Ethi is set in consideration of variations in the output signal EA and the output signal EB and whether there is a specific measured value greatly deviating from the distribution. be able to. For example, there is a method in which a plurality of untreated and surface treated states of the same subject are measured, and the initial threshold value Ethi is calculated again using these.
  • the output signal when the subject M is not in proximity to the test detector 23 is stored in the determination means 36 as the initial offset value Ei.
  • AC power having the frequency set in the frequency setting step S3 is supplied from the AC power source 10 to the AC bridge circuit 20.
  • the reference sample S is close to the reference detector 22.
  • the subject M to be judged as to whether the surface treatment state is good is brought close to the test detector 23 and arranged so that eddy current is excited in the subject M.
  • a voltage output signal is output from the AC bridge circuit 20, the output signal is amplified by the amplifier 31, is full-wave rectified in the absolute value circuit 32, and is converted into DC by the LPF 33.
  • the output signal that has been DC converted by the LPF 33 is acquired by the determination means 36 as an inspection signal acquisition step.
  • the temperature measuring unit 38 measures the temperature of the surface of the subject M before the subject M approaches the test detector 23 or after the subject M is arranged, and sends the temperature signal of the surface of the subject M to the judging unit 36. Output.
  • the phase comparator 34 compares the waveform of the AC power supplied from the AC power source 10 with the AC voltage waveform output from the AC bridge circuit 20, and detects the phase difference between them. By monitoring this phase difference, it can be determined whether or not the examination state is good (for example, there is no positional deviation between the examination detector 23 and the subject M). Even if the output from the AC bridge circuit 20 is the same, if the phase difference changes greatly, it can be determined that there is a change in the inspection state and there is a possibility that the inspection is not performed properly.
  • the determination unit 36 determines whether the surface treatment state of the subject M is good or not when the temperature of the subject M detected by the temperature measurement unit 38 is within a predetermined range, and is detected by the temperature measurement unit 38.
  • the predetermined temperature range is a temperature range in which the temperature change of the subject M does not substantially affect the examination, and can be set to 0 to 60 ° C., for example.
  • the subject M waits until the subject M is within the predetermined temperature range, air is blown to the subject M, and the subject M is inspected. It is possible to move to another line.
  • the judgment means 36 judges the quality of the surface state of the subject M based on the signal converted into the direct current by the LPF 33 and inputted to the judgment means 36. That is, this process is an evaluation process for evaluating the surface characteristics of the subject M based on the output signal output from the AC bridge circuit 20.
  • the determination result by the determination means 36 is displayed by the display means 37, and a warning is given if the surface condition is defective.
  • the quality of the surface treatment state of the subject M is determined by comparing the output value (measured value) from the LPF 33 with the threshold value set in the threshold value setting step S4. When the output value (measured value) from the LPF 33 exceeds the threshold value, the judging means 36 determines that the surface condition is good, and the output value (measured value) from the LPF 33 is less than or equal to the threshold value. In some cases, it is determined that the surface condition is bad.
  • Test data such as measurement values, pass / fail judgment results, measurement date and time, test status (temperature, humidity, differential voltage ⁇ E described later) and the like are associated with identification information of each subject M such as a lot, serial number, history, etc. 30 determination means 36 or storage means (not shown) can be called up as required. That is, an identification display associated with each measurement data may be directly or indirectly given to the subject. For example, the barcode or product management number associated with the measurement data may be represented directly or indirectly on the subject. As described above, the measurement data is associated with the identification display such as the barcode and the product management number, so that the surface treatment state of the subject inspected by the surface property inspection apparatus can be traced after distribution. Traceability can be ensured.
  • the quality of the surface treatment state of the subject M can be inspected easily and with high accuracy.
  • the placement step S6, the examination state judgment step S7, and the pass / fail judgment step S8 may be repeated.
  • the variable resistance setting step S2 the frequency setting step S3, and the threshold value setting step S4 are performed again.
  • the inspection detector 23 indirectly captures a change in surface resistance by capturing a change in eddy current flowing on the surface of the subject M.
  • the factors that cause the flow rate of eddy current to change include distortion due to shot peening, microstructure miniaturization, and dislocation. It is almost constant at about 0 ° C. to 40 ° C.).
  • the magnetic change detected by the inspection detector 23 is due to a change in the demagnetizing field of the eddy current, and the cause of the change in the eddy current is less affected by the temperature change in the measurement environment. The influence of can be reduced.
  • the reference detector S having the same structure as the subject M is used to detect the reference state in the reference detector 22, even if the output value fluctuates due to changes in the test environment such as temperature, humidity, magnetism, etc. The influence is equivalent to the subject M. As a result, fluctuations in the output value due to changes in the inspection environment such as temperature, humidity, and magnetism can be canceled, and measurement accuracy can be improved. In particular, when an untreated product that has not been subjected to surface treatment is used as the reference sample S, the output based on the difference in surface condition with the subject M can be increased, and the measurement accuracy can be further improved. It is preferable because the threshold value can be easily set.
  • the initial threshold value Ethi is an output signal EA obtained when an unprocessed subject M is placed on the inspection detector 23 and an output signal EA obtained when a surface-treated subject M having a good surface condition is placed on the inspection detector 23.
  • the output signal EA may approach the average value EAav side of the output signal EA, and there is a possibility that the output width determined as a non-defective product becomes large. Therefore, when it is desired to set a threshold with higher accuracy, it is possible to reset the threshold based on a large amount of inspection data accumulated by performing repeated measurement using the initial threshold Ethi. it can.
  • the threshold value newly set at this time is referred to as an update threshold value Ethn.
  • the update threshold value Ethn is set, for example, after testing 100 or more subjects M.
  • a method for setting the update threshold Ethn is exemplified below.
  • the output signal of the subject M examined using the initial threshold Ethi is EC
  • the minimum value is ECmin
  • the maximum value is ECmax
  • the average value is ECav
  • the standard deviation is ⁇ C.
  • the initial threshold value Ethi and the minimum value ECmin are compared, and the update threshold value Ethn is calculated as follows.
  • ECmin can be set as the update threshold Ethn.
  • the update threshold Ethn can be set to ECav-3 ⁇ C or ECav-4 ⁇ C using the average value ECav and the standard deviation ⁇ C. Whether ECav-3 ⁇ C or ECav-4 ⁇ C is used is determined in consideration of the distribution of the output signal EC. When ECav-3 ⁇ C or ECav-4 ⁇ C is equal to or smaller than the initial threshold Ethi, the update threshold Ethn is determined. Is used, and the initial threshold value Ethi is used.
  • the update threshold value Ethn can be set as follows based on the magnitude relationship of the minimum value ECmin, the maximum value ECmax, and the average value ECav. Specifically, the average value (ECmin + ECmax) / 2 of the minimum value ECmin and the maximum value ECmax is compared with the average value ECav, and the cases are classified.
  • the update threshold Ethn can be repeatedly updated based on the inspection data of the subject M examined after the update. For example, after the initial threshold value Ethi is set, 100 specimens M are examined, and after the update threshold value Ethn is set, another 100 specimens M are examined, and a new update is performed based on the examination data.
  • the threshold value Ethn can also be set. It is also possible to set a new update threshold Ethn using all 200 pieces of inspection data.
  • the measured value can be calibrated using the initial offset value Ei and the inspection offset value Eik described above.
  • step S101 the test offset value Eik is measured and stored in the determination means 36 before the subject M is placed in the placement step S6.
  • step S103 the subject M is inspected, the measured value (E2-E1) is stored in step S104, and the differential voltage ⁇ E is added to the measured value stored in step S105.
  • step S106 the measured value added with the differential voltage ⁇ E is compared with a threshold value to make a pass / fail judgment.
  • the inspection state is not appropriate and the inspection is properly performed due to a large disturbance or a malfunction of the apparatus. It can be judged that there is a possibility that it has not been broken. In this case, it is possible not to inspect the surface characteristics of the subject M in the inspection state determination step S7.
  • inspection of the reference detector 22 and the inspection detector 23, confirmation of the temperature of the measurement environment, inspection and replacement of the reference specimen S, and the like can be performed.
  • a member having an inclined surface such as a disc spring is often subjected to surface treatment on the outer peripheral surface side and the inner peripheral surface side of the inclined surface.
  • a configuration of a surface property inspection apparatus suitable for evaluating such an object is shown below.
  • Such a surface property inspection apparatus further includes a conveying means 40.
  • the inspection detector in this surface characteristic inspection apparatus is composed of a first inspection detector and a second inspection detector each having an inclined surface corresponding to the inclined surfaces Ma and Mb of the subject M.
  • inspection detector is arrange
  • the first inspection detector arranged below is the inspection detector 23 having the configuration shown in FIGS. 2A and 2B for evaluating the inspection region on the outer peripheral surface side (outer convex surface) of the disc spring.
  • the second inspection detector disposed above is for evaluating the inspection region on the inner peripheral surface side (inner concave surface) of the disc spring.
  • the second inspection detector 23 disposed above has a shallow convex frustoconical bobbin 23b facing downward, and an inclined surface 23b (a convex wall surface projecting downward) of the bobbin 23a.
  • a coil 23c is wound around the outer peripheral surface of a certain conical surface.
  • the coil 23c of the second test detector 23 is wound in a convex shape that enters the concave surface so as to excite eddy currents on the concave surface (inclined surface Mb) of the subject M.
  • a convex resin cover 23d is provided on the lower side of the coil 23c so as not to directly contact the subject M so as to cover the coil 23c.
  • the convex cover 23d covers the conductive wire of the wound coil 23c, and also inclines the inclined surface Mb (concave surface) so as to excite eddy currents on the inclined surface Mb (concave surface) of the subject subjected to the surface treatment. Inserted inside.
  • a resin cover 23d By covering the lower surface of the coil 23c with a resin cover 23d, it is possible to prevent damage such as contact between the subject and the coil when the subject is placed on the second test detector 23, and disconnection of the coil. it can. Further, since the cover 23d is made of resin, the eddy current excited on the subject by the coil 23c is hardly weakened and the detection sensitivity is hardly lowered.
  • the coil 23c since the coil 23c is wound in a convex shape, the coil 23c is brought into contact with the surface of the subject 23 by bringing the subject M into contact with the lower side of the cover 23d. It can arrange
  • the conveyance means 40 is composed of a known conveyance device such as a belt conveyor or a robot arm, and can carry the sample M into and out of the surface property inspection device and place the sample M on the inspection detector.
  • the subject M is transported by the transport means 40 to the first inspection detector (FIGS. 2A and 2B) and the second inspection detector (FIGS. 9A and 9B). And then placed in the lower first inspection detector (FIGS. 2A and 2B).
  • a horizontal transfer device such as a transfer loader can be used as transfer means for transferring the subject M in the horizontal direction between the first test detector and the second test detector (FIGS. 9A and 9B).
  • a vertical transport device such as a cylinder can be used as a transport unit that lowers the subject M in the vertical direction and places the subject M on the first inspection detector.
  • the conveyance means 40 stops the subject M on the first examination detector for 3 seconds, and during this time, as the first signal acquisition process, the AC power supply 10 applies a predetermined value to the coil 23c of the first examination detector.
  • An AC power having a frequency is supplied to excite an eddy current on the inclined surface Ma of the subject M, and an output signal from the AC bridge circuit 20 is acquired.
  • the subject M is moved in the vertical direction by a conveying means such as a cylinder as the second conveying step.
  • the subject M is transported to the upper second inspection detector (FIGS. 9A and 9B) and arranged.
  • the inner peripheral surface Mb of the subject M is brought into contact with the lower surface (outer peripheral surface) of the cover 23d, whereby the surface treatment layer Mc (second inspection region) on the inner peripheral surface Mb side to be evaluated is the second. It arrange
  • inspection detector 23 may be followed.
  • the conveyance means 40 is stopped for 3 seconds in a state where the subject M is placed on the second inspection detector, and during this time, as a second signal acquisition process, the AC power supply 10 causes the coil of the second inspection detector.
  • An AC power having a predetermined frequency is supplied to 23 c to excite an eddy current on the inclined surface Mb of the subject M, and an output signal from the AC bridge circuit 20 is acquired.
  • the subject M is transported in the horizontal direction by transport means such as a transport loader, and the surface characteristic inspection apparatus To discharge from.
  • the subject M can be transported by the transporting means, and the surface treatment layer Mc on the outer peripheral surface Ma and the inner peripheral surface Mb can be continuously inspected. Is possible.
  • the inspection is performed by transporting the subject M while the first and second inspection detectors 23 are fixed, the installation environment of each inspection detector 23 is stabilized, so that more accurate inspections are performed. Can do.
  • a detector having the same shape as the first inspection detector (FIGS. 2A and 2B) is used as the reference detector 22, and the second inspection detector is used.
  • the inspection is executed by the above, it is preferable to use a detector having the same shape as the second inspection detector (FIGS. 9A and 9B) as the reference detector 22.
  • first and second inspection detectors 23 shown in FIGS. 2A and 2B and FIGS. 9A and 9B it is arbitrary which one is arranged above and which one is arranged below. Moreover, it is also arbitrary which detector of the inspection detector arrange
  • step S202 it is detected that the subject M has been placed on the test detector 23, and a trigger for the reference (start of measurement waiting in FIG. 10A) for starting the count of the time to start recording the output value is detected.
  • the arrangement completion waiting trigger trigger En1 is set when the output value becomes 1.500, and the waiting time is counted in step S203.
  • the output value (1.500) serving as the arrangement completion waiting trigger En1 is set by back-calculation so that the output value becomes stable when a predetermined waiting time described in the next paragraph elapses.
  • step S204 When a predetermined waiting time until the output value stabilizes (for example, 2 to 3 seconds) elapses, measurement is performed in step S204, and a stable output value En2 (0.370) is detected and stored.
  • a predetermined waiting time until the output value stabilizes for example, 2 to 3 seconds
  • control of taking out the subject M is performed as follows.
  • the measured value starts to rise from the output value En2 when the subject M is arranged as shown in FIG. 10B.
  • an extraction completion waiting trigger En3 is detected as a reference (start of waiting for completion in FIG. 10B) for starting counting the waiting time for confirming the removal of the subject.
  • the time when the measured value becomes 2.500 is set as the extraction completion waiting trigger En3, and the waiting time is counted in step S303.
  • the output value (2.500) serving as the extraction completion waiting trigger En3 is set by back calculation so that the output value becomes stable when a predetermined waiting time described in the next paragraph elapses.
  • the output value Ei1 (3.000) is detected and stored in step S304. At this time, the stored output value Ei1 can be used as the inspection offset value Eik.
  • the apparatus can be configured simply. Also, combined with a transport means (for example, a belt conveyor) for transporting the specimen M from the surface treatment apparatus for performing the surface treatment to the surface characteristic inspection apparatus 1 or a sorting means for sorting the specimen M after the inspection into a non-defective product and a defective product.
  • a transport means for example, a belt conveyor
  • a sorting means for sorting the specimen M after the inspection into a non-defective product and a defective product.
  • the surface characteristic inspection apparatus 1 can omit the phase comparator 34.
  • the positional relationship between the test detector 23 and the subject M is detected by position detection means such as a laser displacement meter, and the deviation between the axis of the test detector 23 and the axis of the subject M is within a predetermined range. It can be configured to determine whether or not by a photoelectric sensor (laser) or the like.
  • the phase comparator 34, the frequency adjuster 35, or the display unit 37 can be provided integrally, for example, by being incorporated in the determination unit 36.
  • an eddy current is excited in the subject M by the coil 23c of the inspection detector 23, the output signal output from the AC bridge circuit 20 is compared with the threshold value, and the subject is compared.
  • the surface properties of M can be evaluated. Thereby, it is possible to inspect the surface state with high accuracy with a simple circuit configuration.
  • the resistance ratio setting step S3 the difference value between the first setting output signal and the second setting output signal is calculated, and the resistance ratio is set based on the resistance ratio that maximizes the absolute value of the difference value. Since the output voltage used for the inspection can be increased, the surface treatment state of the treated material subjected to the surface treatment can be inspected more accurately.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

本発明は、浸炭焼入れや窒化処理などの熱処理やショットピーニング処理による表面処理を施した処理材の表面処理状態を、出力電圧を大きくすることにより精度よく検査することができる表面特性検査方法を提供する。 表面特性検査装置1の交流ブリッジ回路20の抵抗R1と抵抗R2との抵抗比を設定する抵抗比設定工程は、基準検出器22及び検査検出器23に表面処理を行っていない基準検体Sを配置し、分配比γを変化させながら第1の設定用出力信号を測定する工程と、基準検出器22に基準検体Sを配置し、検査検出器23に表面処理を施した設定用検体を配置し、抵抗比を変化させながら第2の設定用出力信号を測定する工程と、対応する抵抗比毎に第1の設定用出力信号と第2の設定用出力信号との差分値を算出する工程と、差分値の絶対値が最大になる抵抗比に基づき抵抗比を設定する工程と、を備えている。

Description

表面特性検査方法及び表面特性検査装置
 本発明は、浸炭焼入れや窒化処理などの熱処理やショットピーニング処理による表面処理を施した処理材の表面処理状態の良否を非破壊で検査する表面特性検査装置及び表面特性検査方法に関する。
 自動車部品などに使用されるギヤ、シャフトなどの鋼材製品では、耐摩耗性向上、疲労強度向上などのために、浸炭焼入れや窒化処理などの熱処理による表面硬化処理、ショットピーニング処理による残留圧縮応力の付与、などの表面処理が行われている。
 従来、これら製品の表面処理後の硬度、残留応力などの表面特性の評価は、抜き取りの破壊検査により行われていた。そのため、製品を全て直接検査できないという問題、破壊検査であるため検査された製品が使えなくなるという問題などがあった。そこで、出願人は、交流ブリッジ回路を用いて表面処理の有無による電気的特性の差を検出し、その検出信号に基づいて表面特性を検査する表面特性検査方法を提案し、高感度の検査を可能とした(特許文献1)。
国際公開公報WO2015/107725号
 近年、被検体の多様化に伴い、径の大きい巻バネ、弁バネのように空間率が高い被検体や皿バネやダイヤフラムなど傾斜面を有する被検体などについては、ギヤなどに比べて検査に用いる出力電圧が低くなる傾向が認められた。また、検査検出器の形状、寸法を変更した場合にも出力電圧が低くなる傾向が認められた。そのため、上記のような被検体の検査をより有効に行うためには、更に検出感度を向上させることが望ましい。そこで、出願人は、鋭意研究の結果、上記の出力電圧の低下が、被検体を検査検出器に配置することによりコイルの分布容量が変化し、その分布容量の変化に起因する出力電圧の位相変化によるものであることを見出し、表面処理の有無を判定するための出力電圧を大きくする方法を開発した。
 本発明は、浸炭焼入れや窒化処理などの熱処理やショットピーニング処理による表面処理を施した処理材の表面処理状態を、出力電圧を大きくすることにより精度よく検査することができる表面特性検査方法を提供することを目的とする。
 上記目的を達成するために、本発明は、
 表面処理が施された被検体の表面特性を検査する表面特性検査方法であって、
 表面特性検査装置を用意する表面特性検査装置準備工程を有し、前記表面特性検査装置は、
 交流ブリッジ回路と、
 前記交流ブリッジ回路に交流電力を供給する交流電源と、
 前記交流ブリッジ回路からの出力信号に基づいて、被検体の表面特性を評価する評価装置と、を備え、
 前記交流ブリッジ回路は、第1の抵抗と第2の抵抗との抵抗比が可変に構成された可変抵抗と、交流磁気を励起可能なコイルを備え被検体に渦電流を励起するように当該コイルを配置可能に形成された検査検出器と、被検体と同一構造の基準検体を配置し、前記検査検出器からの出力と比較する基準となる基準状態を検出する基準検出器とを有し、前記第1の抵抗、前記第2の抵抗、前記基準検出器及び前記検査検出器はブリッジ回路を構成し、
 さらに、
 前記第1の抵抗と前記第2の抵抗との抵抗比を設定する抵抗比設定工程と、
 前記前記第1信号取得工程において取得された第1の設定用出力信号と、前記第2信号取得工程において取得された第2の設定用出力信号に基づいて、前記検査信号取得工程において設定する抵抗比を決定に交流電力が供給され、前記検査検出器が前記被検体の電磁気特性を検出し、前記基準検出器が基準状態を検出している状態における前記交流ブリッジ回路からの出力信号を取得する検査信号取得工程と、
 前記検査信号取得工程において取得された出力信号と所定のしきい値とを比較して、前記被検体の表面特性を評価する評価工程と、
を備え、
 前記抵抗比設定工程は、
 前記基準検出器及び前記検査検出器に表面処理を行っていない基準検体を夫々配置し、複数の抵抗比に対して第1の設定用出力信号を取得する第1信号取得工程と、
 前記基準検出器に表面処理を行っていない基準検体を配置し、前記検査検出器に表面処理を施した設定用検体を配置し、複数の抵抗比に対して第2の設定用出力信号を取得する第2信号取得工程と、
 前記第1信号取得工程において取得された第1の設定用出力信号と、前記第2信号取得工程において取得された第2の設定用出力信号に基づいて、前記検査信号取得工程において設定する抵抗比を決定する抵抗比決定工程と、
 を備えた、という技術的手段を用いる。
 このように構成された本発明によれば、検査検出器のコイルにより被検体に渦電流を励起し、交流ブリッジ回路から出力された出力信号としきい値とを比較することにより被検体の表面特性を評価することができる。ここで、第1信号取得工程において取得された第1の設定用出力信号と、第2信号取得工程において取得された第2の設定用出力信号に基づいて、検査信号取得工程において設定する抵抗比が決定されるため、交流ブリッジ回路からの出力電圧を大きくすることが可能になり、表面処理を施した処理材の表面処理状態を、より精度よく検査することができる。
 ここで、「同一構造」とは、材質、形状が同一のことを意味する。また、表面特性とは、「被検体の最表面から内周面の影響層までの特性」のことをいう。
 本発明において、好ましくは、前記抵抗比決定工程において、同一の抵抗比に対する前記第1の設定用出力信号と前記第2の設定用出力信号との関係に基づいて、前記検査信号取得工程において設定する抵抗比を決定する、という技術的手段を用いる。
 このように構成された本発明によれば、第1の設定用出力信号と第2の設定用出力信号との関係に基づいて、抵抗比が決定されるので、交流ブリッジ回路からの出力電圧が大きくなる抵抗比を確実に求めることができる。
 本発明において、好ましくは、前記抵抗比決定工程において、同一の抵抗比に対する前記第1の設定用出力信号と前記第2の設定用出力信号の差の絶対値が最大になる抵抗比を前記検査信号取得工程において設定する抵抗比として決定することを特徴とする、という技術的手段を用いる。
 このように構成された本発明によれば、同一の抵抗比に対する第1の設定用出力信号と第2の設定用出力信号の差の絶対値が最大になる抵抗比が検査信号取得工程において設定されるため、検査に用いる出力電圧を大きくすることができるので、表面処理を施した処理材の表面処理状態を、より精度よく検査することができる。
 本発明において、好ましくは、前記検査検出器の前記コイルは、前記被検体の表面処理が施された傾斜面に渦電流を励起するように、前記傾斜面に沿う形態に形成されている、という技術的手段を用いる。
 本発明において、好ましくは、前記検査検出器の前記コイルは、前記被検体の表面処理が施された凹面の表面に渦電流を励起するように、前記凹面に入り込む凸形形状に巻回されている、という技術的手段を用いる。
 このように構成された本発明によれば、被検体の形状に応じて生じるコイルの分布容量の変化に起因して、出力電圧の位相変化が大きくなるのを防止することができ、精度良く表面特性を検査することができる。
 本発明において、好ましくは、前記検査検出器の前記コイルは、傾斜面を有するボビンの傾斜面に巻回されている、という技術的手段を用いる。
 このように構成された本発明によれば、従来、検査が困難であった傾斜面を有する被検体についても精度の高い検査を行うことができる。また、寸法が異なる被検体がある場合でも、傾斜面に沿って被検体の位置をそれぞれ測定に好適な位置に配置することができるので、1つの検査検出器により、多品種、多形状の被検体の評価を行うことができる。
 本発明において、好ましくは、前記表面特性検査装置は、さらに、対向して配置される第1の検査検出器と第2の検査検出器とを備え、被検体のそれぞれの検査検出器に対向する検査領域の検査を行う、という技術的手段を用いる。
 皿バネなど部材の表裏面に表面処理が施される被検体では、対向する2ヶ所の検査領域の検査を行うことが必要である。上記のように構成された本発明によれば、このような被検体の検査に好適に用いることができる。
 本発明において、好ましくは、前記表面特性検査装置は、さらに、被検体を搬送する搬送手段を備え、
 前記被検体は、その両側に表面処理が施された凹面及び凸面を有し、
 前記第1の検査検出器は、前記被検体の前記凹面又は前記凸面の何れか一方に渦電流を励起するように、前記凹面に入り込む凸形形状又は前記凸面を受け入れる凹形形状に巻回されたコイルを有し、
 前記第2の検査検出器は、前記被検体の前記凹面又は前記凸面の他方に渦電流を励起するように、前記凹面に入り込む凸形形状又は前記凸面を受け入れる凹形形状に巻回されたコイルを有し、
 前記検査信号取得工程は、
 被検体を前記第1の検査検出器と前記第2の検査検出器の間に搬送する第1搬送工程と、
 前記第1の検査検出器のコイルに被検体を配置し、被検体の前記凹面又は前記凸面に渦電流を励起して、前記交流ブリッジ回路からの出力信号を取得する第1信号取得工程と、
 前記第1の検査検出器から前記第2の検査検出器へ被検体を搬送する第2搬送工程と、
 前記第2の検査検出器のコイルに被検体を配置し、被検体の前記凹面又は前記凸面に渦電流を励起して、前記交流ブリッジ回路からの出力信号を取得する第2信号取得工程と、
を備える、という技術的手段を用いる。
 このように構成された本発明によれば、被検体を搬送手段で搬送し、第1の検査領域と第2の検査領域を連続して検査することができるので、効率的な検査が可能である。また、検査検出器を固定して被検体を搬送することにより検査を行うため、検査検出器の設置環境が安定するので、より精度のよい検査を行うことができる。
 また、本発明は、表面処理が施された被検体の表面特性を検査する表面特性検査装置であって、
 交流ブリッジ回路と、
 前記交流ブリッジ回路に交流電力を供給する交流電源と、
 前記交流ブリッジ回路からの出力信号に基づいて、被検体の表面特性を評価する評価装置と、を備え、
 前記交流ブリッジ回路は、第1の抵抗と第2の抵抗との抵抗比が可変に構成された可変抵抗と、交流磁気を励起可能なコイルを備え被検体に渦電流を励起するように当該コイルを配置可能に形成された検査検出器と、被検体と同一構造の基準検体を配置し、前記検査検出器からの出力と比較する基準となる基準状態を検出する基準検出器とを有し、前記第1の抵抗、前記第2の抵抗、前記基準検出器及び前記検査検出器はブリッジ回路を構成し、
 前記検査検出器は、被検体が有する傾斜面に沿うように、前記コイルが傾斜面に沿って巻回されている、という技術的手段を用いる。
 本発明の表面特性検査装置において、好ましくは、前記検査検出器の前記コイルは、前記被検体の表面処理が施された凹面の表面に渦電流を励起するように、前記凹面に入り込む凸形形状に巻回されている、という技術的手段を用いる。
 本発明の表面特性検査装置において、好ましくは、前記検査検出器の前記コイルは、凸型壁面を有するボビンと、この凸型壁面の外周面を覆う凸型のカバーを備え、前記凸型壁面の外周面上には前記コイルの導線が巻回され、
 前記凸型のカバーは、巻回された前記導線を覆うと共に、前記被検体の表面処理が施された凹面に渦電流を励起するように、前記被検体の凹面に挿入される、という技術的手段を用いる。
 本発明の表面特性検査装置において、好ましくは、前記検査検出器の前記コイルは、前記被検体の表面処理が施された凸面の表面に渦電流を励起するように、前記凸面を受け入れる凹形形状に巻回されている、という技術的手段を用いる。
 本発明の表面特性検査装置において、好ましくは、前記検査検出器の前記コイルは、凸型壁面を有するボビンを備え、前記凸型壁面の外周面上には前記コイルの導線が巻回され、
 前記ボビンの内周面は、前記被検体の表面処理が施された凸面に渦電流を励起するように、前記被検体の凸面を受け入れる、という技術的手段を用いる。
 本発明の表面特性検査装置において、好ましくは、前記検査検出器は、対向して配置された第1の検査検出器と第2の検査検出器から構成され、
 前記被検体は、その両側に表面処理が施された凹面及び凸面を有し、
 前記第1の検査検出器は、前記被検体の前記凹面に渦電流を励起するように、前記凹面に入り込む凸形形状に巻回されたコイルを有し、
 前記第2の検査検出器は、前記被検体の前記凸面に渦電流を励起するように、前記凸面を受け入れる凹形形状に巻回されたコイルを有する、という技術的手段を用いる。
 本発明の表面特性検査装置において、好ましくは、さらに、被検体を搬送する搬送手段を備え、前記搬送手段は、被検体を前記第1の検査検出器又は前記第2の検査検出器の何れか一方に配置し、第1の検査領域の検査を行った後、被検体を前記第1の検査検出器又は前記第2の検査検出器の他方に搬送し、前記第1の検査領域の反対側の第2の検査領域の検査を行うように構成されている、という技術的手段を用いる。
 このように構成された本発明によれば、被検体を搬送手段で搬送し、第1の検査検出器と第2の検査検出器で連続して異なる検査領域を検査することができるので、効率的な検査が可能である。また、検査検出器を固定して被検体を搬送することにより検査を行うため、検査検出器の設置環境が安定するので、より精度のよい検査を行うことができる表面特性検査装置とすることができる。
表面特性検査装置の回路構成を示す説明図である。 検査検出器の構成の一例を示す説明図であり、傾斜面を有する被検体の検査を行うための検査検出器の平面説明図である。 検査検出器の構成の一例を示す説明図であり、図2AのA-A断面を示す説明図である。 検査検出器の構成の一例を示す説明図であり、図2A、図2Bに示す検査検出器により、異なる寸法の被検体の検査が可能であることを模式的に示す説明図である。 交流ブリッジ回路からの出力について説明する等価回路図である。 表面特性検査方法を示すフローチャートである。 抵抗比設定工程を示すフローチャートである。 抵抗比設定工程における分配比の設定方法を説明するための、分配比と出力電圧の差分値との関係を示す説明図である。 初期しきい値の設定方法を説明する説明図である。 測定値の校正方法を示すフローチャートである。 表面特性検査装置に備えられた上方に配置する第2の検査検出器の構成を示す説明図であり、下方から見た平面説明図である。 表面特性検査装置に備えられた上方に配置する第2の検査検出器の構成を示す説明図であり、図9AのA-A断面を示す説明図である。 被検体の配置から測定開始までの出力値の変化を示す説明図である。 測定終了から被検体の取出しまでの出力値の変化を示す説明図である。 被検体の配置から測定開始までのステップを示すフローチャートである。 測定終了から被検体の取出しまでのステップを示すフローチャートである。
(表面特性検査装置)
 図1に示すように、本発明の表面特性検査方法で用いる表面特性検査装置1は、交流電源10、交流ブリッジ回路20及び評価装置30を備えている。
 交流電源10は、交流ブリッジ回路20に周波数が可変の交流電力を供給可能に構成されている。
 交流ブリッジ回路20は、可変抵抗21、被検体Mに渦電流を励起するようにコイルを配置可能に形成された検査検出器23及び被検体Mと同一構造で表面処理を行っていない基準検体Sを配置可能に形成され、検査検出器23からの出力と比較する基準となる基準状態を検出する基準検出器22を備えている。ここで、「被検体Mと同一構造」とは、材質、形状が同一のことを意味する。
 可変抵抗21は、抵抗RAを抵抗R1と抵抗R2とに分配し、分配比γを可変に分配することができるように構成されている。この分配比γは、抵抗R1と抵抗R2との抵抗比を示す。抵抗R1、抵抗R2は、基準検出器22及び検査検出器23とともにブリッジ回路を構成している。本実施形態では、抵抗R1と抵抗R2とを分配する点A及び基準検出器22と検査検出器23との間の点Bが評価装置30の交流電源10に接続され、抵抗R1と基準検出器22との間の点C及び抵抗R2と検査検出器23との間の点Dが増幅器31に接続されている。また、ノイズの低減のため、基準検出器22及び検査検出器23側が接地されている。
 評価装置30は、交流ブリッジ回路20から出力される電圧信号を増幅する増幅器31、全波整流を行う絶対値回路32、直流変換を行うローパスフィルタ(LPF)33、交流電源10から供給される交流電圧と増幅器31から出力される電圧の位相を比較する位相比較器34、交流電源10から供給される交流電圧の周波数を調整する周波数調整器35、R1とR2の分配を最適化する非平衡調整を行うとともに、LPF33からの出力に基づいて被検体Mの表面状態の良否を判断する判断手段36及び判断手段36による判断結果を表示、警告する表示手段37、評価位置の温度を検出する温度測定手段38を備えている。また、判断手段36内部または図示しない領域に記憶手段を備えている。
 増幅器31は、点C及び点Dに接続され、点Cと点Dとの間の電位差が入力される。また、絶対値回路32、LPF33の順に判断手段36に接続されている。位相比較器34は、交流電源10、増幅器31及び判断手段36に接続されている。周波数調整器35は、交流電源10及び増幅器31に接続されている。また、判断手段36は、制御信号を出力することにより、交流ブリッジ回路20の点Aの位置、即ち、抵抗R1と抵抗R2の分配比γを変更することができるように構成されており、これにより、後述する抵抗比設定工程が実行される。
 温度測定手段38は、非接触式の赤外センサや熱電対などからなり、被検体Mの表面の温度信号を判断手段36に出力する。判断手段36は、温度測定手段38で検出された被検体Mの温度が所定範囲内である場合に、被検体Mの表面処理状態の良否を判断し、温度測定手段38で検出された温度が所定範囲外である場合に、被検体Mの表面処理状態の良否の判断を行わない。これにより、被検体Mの温度が検査の精度に影響を及ぼすような場合に被検体の表面処理状態の良否の判断を行わないようにすることができるので、精度の高い検査を行うことができる。ここで、熱電対などで評価位置Tsの温度を測定し、被検体Mの表面の温度を代表する温度として被検体Mの表面処理状態の良否を判断するか否かの判断を行う構成を採用することもできる。
 検査検出器23及び検査検出器23と同様の構成の基準検出器22として、被検体Mの評価部を挿通可能なコアの外周にコイルが巻回されて形成され、コイルを被検体Mの表面と対向させて近接させ被検体Mに渦電流を励起可能な検出器を用いる。すなわち、このコイルは、被検体の表面特性検査領域を囲むように対向されて巻回されている。ここで、被検体の表面特性検査領域を囲むとは、少なくとも表面特性検査領域の一部を包囲することで、表面特性検査領域に渦電流を励起することを含むことを意味している。
 被検体Mとして、傾斜面Ma(外側の凸面である外周面)、Mb(内側の凹面である内周面)を有し、当該傾斜面Ma、Mbそれぞれに表面処理された被検体M、例えば、ダイヤフラムや皿バネの表面特性を検査するために用いる検査検出器23について説明する。なお、基準検出器22は検査検出器23と同じ構成である。
 検査検出器23は、図2A、図2Bに示すように、上方に向かって開口し、被検体Mの外側の傾斜面Maに施された表面処理層Mcに対向するように形成された傾斜面23b(下方に向けて突出した凸型壁面である円錐面)を有するボビン23aと、ボビン23aの傾斜面23bの外周面側に巻回されたコイル23cと、を備えている。また、本実施形態では、コイル23cを外部から遮断するために樹脂製のカバー23dが設けられている。これにより、コイル23cへの鉄粉、金属片の接触やコイル23cへの物理的接触による損傷を防止することができる。
 ボビン23aは非磁性材料、例えば、樹脂により形成されている。また、コイル23cはボビン23aの外側に設けられ、表面処理が施された被検体Mの凸面の表面(被検体Mの外側の傾斜面Ma)に渦電流を励起するように、被検体Mの凸面を受け入れる凹形形状に巻回されている。また、ボビン23aは、その傾斜面23b(凸型壁面)の内周面に被検体の傾斜面Ma(凸面)を受け入れ、傾斜面Maに渦電流を励起するように構成されている。
 なお、本実施形態においては、ボビン23aの傾斜面23b(凸型壁面)は円錐台状に形成されているが、適用する被検体の形状に応じて、傾斜面23bを円錐、角錐、角錐台、ドーム型等、任意の凸型壁面で構成し、その外周面にコイルの導線を巻回することができる。
 検査検出器23は、渦電流の反応を高精度に捉えて表面特性を評価するために、表面特性を検査したい領域に渦電流が流れるように、コイル23cが被検体Mの表面に対して近接して配置されることが好ましい。つまり、コイルの巻方向が渦電流を流したい方向と同方向となるように配置することが好ましく、本実施形態では傾斜面に沿って巻回されている。また、コイルは、被検体Mを検査検出器23に近接させたときに、少なくとも表面処理部に対向する領域を覆うように巻回されている。
 コイルを被検体Mの検査対象面に対向させて検査検出器23を配置し、交流電源10によりコイルに所定の周波数の交流電力を供給すると交流磁界が発生し、被検体Mの表面に交流磁界に交差する方向に流れる渦電流が励起される。渦電流は表面処理層の電磁気特性に応じて変化するため、表面処理層Mcの特性(表面処理状態)に応じて増幅器31から出力される出力波形(電圧波形)の位相及び振幅(インピーダンス)が変化する。この出力波形の変化により表面処理層Mcの電磁気特性を検出し、検査を行うことができる。
 従来の検査検出器においては、傾斜面Ma、Mbを有する被検体Mを検査すると、被検体に十分な渦電流を励起することができず、交流ブリッジ回路からの出力電圧が低くなるため、評価が困難であった。これに対し、本実施形態における検査検出器23によれば、傾斜面23bを有するので、被検体Mをボビン23aに載置することにより、コイル23cを表面処理層Mcに沿って近接した状態で配置することができる。これにより、被検体Mに十分な渦電流を励起することができ、出力電圧を大きくすることができるので、傾斜面Ma、Mbを有する被検体Mの評価に好適に用いることができる。
 また、このような傾斜面23bを有する検査検出器23は、寸法が異なる被検体Mの評価に共用することができる。例えば、図2Cに示すように、外径が大きいギアG1と外径が小さいギアG2の評価を行う場合、傾斜面に沿ってギアG1、G2の位置をそれぞれ測定に好適な位置に配置することができる。これにより、1つの検査検出器23により、多品種、多形状の被検体Mの評価を行うことができる。
 検査検出器23は、コイル23cが形状を維持できればボビン23aを備えていなくてもよい。このようなコイル23cは、例えば、硬化性のエポキシ樹脂等にて、空芯にて巻回したエナメル銅線を接着、若しくは、熱にて硬化する作用のある融着エナメル銅線を用いて空芯にて巻回した後に熱風や乾燥炉等の熱にて硬化させて形成することができる。
 検査検出器23の外方であって被検体Mを囲んで配置される磁気シールドを設けることもできる。磁気シールドを用いると、外部磁気を遮蔽することができるため、電磁気特性の検出感度の低下を防ぐことができ、被検体Mの表面処理状態の誤検査を防ぐことができる。
(交流ブリッジ回路からの出力)
 次に、非平衡状態に調整された交流ブリッジ回路20からの出力について、図3の等価回路を参照して説明する。基準検出器22には基準出力を出力するための基準検体Sが近接され、検査検出器23には表面処理状態の良否を判定すべき被検体Mが近接されている。ここで、基準検体Sは被検体Mと同一構造であり、表面処理を行っていない未処理品を用いる。
 可変抵抗RAの分配比をγとした場合、抵抗R1はRA/(1+γ)、抵抗R2はRAγ/(1+γ)となる。基準検出器22のインピーダンスをRS+jωLS、検査検出器23のインピーダンスをRT+jωLTとする。また、点Aの電位をEとし、基準検出器22、検査検出器23に各検体(基準検体S、被検体M)を近接させていないときのブリッジの各辺に流れる励磁電流をそれぞれi1、i2、各検体を基準検出器22、検査検出器23に近接させることにより磁気量が変化し、その変化量に応じて流れる電流をそれぞれiα、iβとする。このときの基準検出器22及び検査検出器23の電位E1、E2及び励起電流i1、i2は以下の式(1)~(4)で表される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 増幅器31に出力される電圧はE1、E2の差分であり、次式で表される。
Figure JPOXMLDOC01-appb-M000005
 式(3)~(5)より次式が導かれる。
Figure JPOXMLDOC01-appb-M000006
 式(6)の右辺を次の成分A、Bに分けて差分電圧の各成分について考える。
成分A:
Figure JPOXMLDOC01-appb-I000007
 
成分B : 
Figure JPOXMLDOC01-appb-I000008
 
 成分Aは、各検出器成分:(RS+jωLS)、(RT+jωLT)、各検出器に各検体が近接したときに変化する電流量:iα、iβにより構成される。iα、iβは各検体の透磁率、導電率などの電磁気特性に起因する検体を通る磁気量によって大きさが変化する。このため各検出器から発生する磁気量を左右する励磁電流i1、i2を変えることでiα、iβの大きさを変化させることができる。また、式(3)、式(4)より、励磁電流i1、i2は可変抵抗の分配比γによって変わるので、可変抵抗の分配比γを調整することにより成分Aの大きさを変化させることができる。
 成分Bは、各検出器成分:(RS+jωLS)、(RT+jωLT)、可変抵抗の分配比γで分けられた抵抗のパラメーターにより構成される。このため、成分A同様に可変抵抗の分配比γの調整により成分Bの大きさを変化させることができる。
 被検体Mを所定の位置に配置し、交流電源10により検査検出器23のコイル23cに所定の周波数の交流電力を供給すると、被検体Mの表面に交流磁界に交差する方向に流れる渦電流が励起される。渦電流は残留応力層の電磁気特性に応じて変化するため、残留応力層の特性(表面処理状態)に応じて増幅器31から出力される出力波形(電圧波形)の位相及び振幅(インピーダンス)が変化する。この出力波形の変化により残留応力層の電磁気特性を検出し、表面処理層の検査を行うことができる。
(表面特性検査方法)
 次に、表面特性検査装置1による被検体の表面特性検査方法について図5を参照して説明する。
 まず、準備工程S1では、表面特性検査装置準備工程として、表面特性検査装置1と基準検体Sを用意する。
 続く周波数設定工程S2は、被検体Mの表面処理層の厚さに応じて、渦電流の浸透深さに対応した周波数を設定する工程である。周波数設定工程S2では、基準検体Sを基準検出器22に、基準検体Sと同一構造で表面処理が施された設定用検体を検査検出器23にそれぞれ近接させた状態で、交流電源10から交流ブリッジ回路20に交流電力を供給し、周波数調整器35により交流ブリッジ回路20に供給する交流電力の周波数を変化させて交流ブリッジ回路20から電圧振幅出力またはLPF33からの電圧出力をモニターする。
 周波数調整器35は、周波数調整器35において設定された初期周波数f1になるように交流電源10へ制御信号を出力し、周波数f1における増幅器31からの出力電圧Ef1が周波数調整器35に入力され、記憶される。続いて、周波数f1よりも所定の値、例えば100Hz高い周波数f2になるように交流電源10へ制御信号を出力し、周波数f2における増幅器31からの出力電圧Ef2が周波数調整器35に入力され、記憶される。
 続いて、Ef1とEf2との比較を行い、Ef2>Ef1であれば、周波数f2よりも所定の値高い周波数f3になるように制御信号を出力し、周波数f3における増幅器31からの出力電圧Ef3が周波数調整器35に入力され、記憶される。そして、Ef2とEf3との比較を行う。これを繰り返し、Efn+1<Efnとなるまでの周波数fnと出力電圧を記憶する。これを検査検出器23に基準検体Sと、基準検体Sと同一構造で表面処理が施された設定用検体をそれぞれ近接させた状態にて出力電圧を記憶し、各周波数に応じた検査検出器23に基準検体Sと設定用検体を近接した場合の出力電圧の差分値の絶対値を算出する。算出した結果より、差分値が最も大きくなる周波数を選定し、しきい値設定工程S4及び交流供給工程S5で用いる周波数として設定する。これにより、表面処理状態、形状などが異なりインピーダンスが異なる被検体Mに対応して交流ブリッジ回路20からの出力を大きくする周波数を一度の操作により設定することができる。これにより、表面処理状態の変化に出力が敏感に対応し、検査の感度を向上させることができる。
 なお、周波数設定工程S2は、基準検体Sを用いずに実施することもできる。また、最適な周波数は、被検体の材料、形状、表面処理状態により、変化することとなるが、これがあらかじめわかっている場合、周波数の設定は不要である。
 次に、抵抗比設定工程S3を行う。抵抗比設定工程S3では、表面特性検査装置1による検体の検出感度が高くなるように、可変抵抗21の分配比γを調整する。抵抗比設定工程S3の工程を図5に詳細に示す。
 まず、ステップS31では、基準検出器22及び検査検出器23に基準検体Sを配置する。
 続くステップS32では、交流電源10から交流ブリッジ回路20に交流電力を供給する。
 続くステップS33では、可変抵抗21の分配比γを複数の水準で設定し、各水準毎に出力電圧を測定し、出力電圧群のテーブル1を作成し、評価装置30に記憶する。
 例えば、n個の分配比を設定し、表1に示すように対応する出力電圧を示すテーブル1を作成する。この出力電圧群が「第1の設定用出力信号」に相当し、上記ステップS31~S33が「第1の設定用出力信号」を取得する第1信号取得工程に相当する。
Figure JPOXMLDOC01-appb-T000009
 続くステップS34では、検査検出器に配置された基準検体Sを基準検体Sと同一構造で表面処理が施された設定用検体と交換する。即ち、基準検出器22には基準検体Sが配置され、検査検出器23には設定用検体が配置される。
 続くステップS35では、ステップS33で設定した分配比の水準毎に出力電圧を測定し、出力電圧群のテーブル2(表2)を作成、記憶する。この出力電圧群が「第2の設定用出力信号」に相当し、上記ステップS34~S35が「第2の設定用出力信号」を取得する第2信号取得工程に相当する。
Figure JPOXMLDOC01-appb-T000010
 続くステップS36では、テーブル1とテーブル2とにより、各ブリッジ回路の分配比に応じた差分値の絶対値を算出したテーブル3(表3)を作成、記憶する。
Figure JPOXMLDOC01-appb-T000011
 そして、ステップS37では、抵抗比決定工程として、「第1の設定用出力信号」及び「第2の設定用出力信号」に基づいて、被検体の検査において使用する抵抗比が決定される。即ち、表3のように求められた、同一の分配比(抵抗比)に対する第1の設定用出力信号Xと第2の設定用出力信号Yの差の絶対値|X-Y|が最大になる分配比を被検体の検査において設定する分配比として決定する。このように、第1の設定用出力信号と第2の設定用出力信号との関係に基づいて、分配比を決定することにより、交流ブリッジ回路からの出力信号が大きくなる分配比を確実に選択することができる。例えば、同一の分配比に対する第1の設定用出力信号Xと第2の設定用出力信号Yの比X/Yに基づいて分配比を選定し、設定することもできる。
 基準検出器22及び検査検出器23に基準検体Sを近接させないで分配比γを設定すると、基準検出器22と検査検出器23との特性の違いを軽減することになるが、検査時には基準検体S及び被検体Mを近接させるため、コイルの分布容量に変化が生じ、その結果、出力電圧の位相変化が生じ検出感度が低下してしまう。しかし、上述の分配比γの設定方法により可変抵抗21を設定しておくことにより、出力電圧の位相変化による影響を排除して、検査に適した分配比γを設定することができる。これにより、検査検出器23に近接した被検体Mの表面処理状態が不良である場合と、表面処理状態が良好である場合の出力信号の差異が大きくすることができるので、検出精度を高くすることができる。径の大きい巻バネ、弁バネのように空間率が高い被検体Mに好適に用いることができる。また、皿バネやダイヤフラムなど傾斜面を有する被検体Mなどの検査で、検査検出器23の形状や大きさが変わる場合にもコイルの分布容量が変わるため、出力電圧の位相変化による影響を排除することができるので、好適に用いることができる。
 抵抗比設定工程S3では、被検体Mを用いて表面処理の有と無の出力電圧差が大きくなる抵抗比を選定するので、被検体Mの表面処理層の厚さに応じて、渦電流の浸透深さに対応した周波数を先に設定する必要がある。分配比γは出力電圧の位相変化の要因の一つであるので、抵抗比設定工程S3を周波数設定工程S2より先に行うと、被検体Mの表面処理の有と無による出力電圧差をより大きくするのではなく、分配比γにより決まる抵抗比よる電圧差を大きくしてしまうだけである。従って、表面処理による出力電圧の差は大きくすることができない可能性があるため、抵抗比設定工程S3は、周波数設定工程S2の後に行う。
 抵抗比設定工程S3の一例を示す。基準検体として未処理のばね(φ25×60mm)を、設定用検体としてショットピーニングを行ったばね(φ25×60mm)を用いた。図6にステップS36で作成したテーブル3を図示したものを示す。縦軸は差分値、横軸は可変抵抗の分配比を示す。ここで、交流ブリッジ回路の定格電圧の制限により、分配比は0.80-1.20で変化させている。
 分配比が1.00の場合、可変抵抗の抵抗比が1:1であり、交流ブリッジ回路を構成する基準検出器と検査検出器の電気特性がキャンセルされた状態の回路出力となる。分配比が1.00から外れた状態は、可変抵抗の分配が一方向に偏っており、交流ブリッジ回路が非平衡状態となっている。図6より、可変抵抗の分配比γを1以下となる方向へ偏らすことで、出力電圧差を大きくすることができることがわかる。
 分配比γを差分値が最大になる0.80に設定すると、80mVという大きな出力電圧差を得ることができるので、検査精度を向上させることができる。ここで、回路保護のため、差分値の最大値の85~95%に対応する分配比γを設定することもできる。
 しきい値設定工程S4では、被検体Mの表面状態の良否を判断するために用いるしきい値を設定する。ここでは、被検体Mの評価開始時に用いるためあらかじめ設定しておくしきい値(以下、「初期しきい値」という。)の設定方法について説明する。まず、基準検体Sを基準検出器22に近接させ、周波数設定工程S3において設定された周波数の交流電力を交流電源10から交流ブリッジ回路20に供給する。交流ブリッジ回路20から出力された電圧出力は、増幅器31で増幅され、絶対値回路32において全波整流を行い、LPF33において直流変換を行い、判断手段36へ出力される。未処理の被検体と表面状態が良好である表面処理後の被検体とをそれぞれ10~数10個程度用意し、検査検出器23にそれぞれの被検体を近接させたときに判断手段36へ出力された出力値から、出力値の分布データを取得する。図7に模式的に示す。
 初期しきい値Ethiは、検査検出器23に未処理の被検体Mを配置したときの出力信号EA及び検査検出器23に表面状態が良好である表面処理後の被検体Mを配置したときの出力信号EBに基づいて、それぞれの出力信号のばらつきを考慮し、次式により定める。
 図7に未処理の被検体の出力信号EA及び表面処理後の被検体の出力信号EBの分布を模式的に示す。
(数7)
Ethi=(EAav・σB+EBav・σA)/(σA+σB)
  EAav:出力信号EAの平均値、EBav:出力信号EBの平均値、σA:出力信号EAの標準偏差、σB:出力信号EBの標準偏差
 これにより、少ない測定数により精度の高い適切なしきい値を設定することができる。この初期しきい値Ethiをしきい値として設定し、判断手段36に記憶させておく。ここで、初期しきい値Ethiは、出力信号EAの最大値EAmax及び出力信号EBの最小値EBminとの間に、EAmax<Ethi<EBminの関係を持つ。なお、上記関係が成立しない場合にも、出力信号EA及び出力信号EBのばらつき、分布から大きく外れた特異的な測定値がないか、など考慮して、適切な初期しきい値Ethiを設定することができる。例えば、同じ被検体の未処理状態、表面処理状態を複数個測定し、これを用いて初期しきい値Ethiを再度算出する等の方法がある。
 更に、しきい値設定工程S4では検査検出器23に被検体Mが近接していない状態での出力信号を初期オフセット値Eiとして判断手段36に記憶させておく。
 交流供給工程S5では、周波数設定工程S3において設定された周波数の交流電力を交流電源10から交流ブリッジ回路20に供給する。ここで、基準検体Sは基準検出器22に近接している。
 次いで、配置工程S6では、表面処理状態の良否を判定すべき被検体Mを検査検出器23に近接させ、被検体Mに渦電流が励起されるように配置する。このとき、交流ブリッジ回路20から電圧出力信号が出力され、出力信号は、増幅器31で増幅され、絶対値回路32において全波整流され、LPF33において直流変換される。LPF33において直流変換された出力信号は、検査信号取得工程として、判断手段36によって取得される。
 温度測定手段38は、被検体Mが検査検出器23に近接する前、または被検体Mの配置後に被検体Mの表面の温度を測定し、被検体Mの表面の温度信号を判断手段36に出力する。
 検査状態判断工程S7では、位相比較器34により交流電源10から供給される交流電力の波形と交流ブリッジ回路20から出力される交流電圧波形を比較し、それらの位相差を検出する。この位相差をモニターすることにより、検査状態が良好である(例えば、検査検出器23と被検体Mの位置ずれがない)か否かを判断することができる。交流ブリッジ回路20からの出力が同じであっても、位相差が大きく変化した場合には、検査状態に変化があり、検査が適正に行われていない可能性があると判断することができる。また、判断手段36は、温度測定手段38で検出された被検体Mの温度が所定範囲内である場合に、被検体Mの表面処理状態の良否を判断し、温度測定手段38で検出された温度が所定範囲外である場合に、被検体Mの表面処理状態の良否の判断を行わない。ここで、所定の温度範囲は、被検体Mの温度変化が検査に実質的に影響を及ぼさない温度範囲であり、例えば、0~60℃と設定することができる。被検体Mの表面の温度が所定の温度範囲外であった場合には、被検体Mが所定の温度範囲内になるまで待機する、被検体Mにエアを吹き付ける、被検体Mの検査を行わず別のラインに移動させる、などを行うことができる。
 良否判断工程S8では、LPF33において直流変換され、判断手段36に入力された信号に基づいて、判断手段36は被検体Mの表面状態の良否を判断する。つまり、本工程は交流ブリッジ回路20から出力された出力信号に基づいて、被検体Mの表面特性を評価する評価工程である。判断手段36による判断結果は、表示手段37により表示され、表面状態が不良である場合には警告する。
 被検体Mの表面処理状態の良否の判断は、LPF33からの出力値(測定値)と、しきい値設定工程S4において設定されたしきい値と、を比較することにより行われる。判断手段36はLPF33からの出力値(測定値)がしきい値を超えている場合には、表面状態が良好であると判断し、LPF33からの出力値(測定値)がしきい値以下である場合には、表面状態が不良であると判断する。
 測定値、良否判断結果、測定日時、検査状態(温度、湿度、後述する差分電圧ΔEなど)などの検査データは、ロット、製造番号、履歴などの各被検体Mの識別情報と関連付けて評価装置30の判断手段36、または、図示しない記憶手段に記憶され、必要に応じて呼び出すことができる。すなわち、被検体には、それぞれの測定データと対応付けられる識別表示が直接若しくは間接的に付与されるようにしてもよい。例えば、測定データに対応付けられたバーコードや製品管理番号を被検体に直接的に表したり、間接的に表したりしてもよい。このように、バーコード、製品管理番号等の識別表示に測定データが対応付けられることにより、表面特性検査装置により検査した被検体の表面処理の状態を流通後に追跡可能な状態にすることができ、トレーサビリティを担保することができる。
 以上の工程により、被検体Mの表面処理状態の良否を簡単かつ高精度に検査することができる。検査を継続するには、被検体Mのみを交換して、配置工程S6、検査状態判断工程S7、良否判断工程S8を繰り返し行えばよい。被検体Mの種類、表面処理の種類などを変更する場合には、再度、可変抵抗設定工程S2、周波数設定工程S3、しきい値設定工程S4を実施する。
 検査検出器23は、被検体Mの表面を流れる渦電流の変化を捉えることにより、表面抵抗変化を間接的に捉えている。ここで、表面処理としてショットピーニング処理を行った場合には、渦電流の流量が変化する要因としてはショットピーニングによる歪みや組織の微細化、転位が挙げられるが、これらは測定環境の温度変化(0℃~40℃)程度ではほぼ一定である。検査検出器23で検出する磁気変化は、渦電流の反磁界の変化によるものであり、渦電流が変化する要因が、測定環境の温度変化の影響を受けにくいことから、温度変化による検査精度への影響を小さくすることができる。
 基準検出器22において基準状態を検出するために、被検体Mと同一構造の基準検体Sを用いているため、温度、湿度、磁気などの検査環境の変化により出力値が変動しても、その影響は被検体Mと同等になる。これにより、温度、湿度、磁気などの検査環境の変化による出力値の変動をキャンセルすることができ、測定精度を向上させることができる。特に、基準検体Sとして表面処理を行っていない未処理品を用いると、被検体Mとの表面状態の差に基づいた出力を大きくすることができるので、更に測定精度を向上させることができるとともに、しきい値を設定しやすく、好ましい。
(しきい値の更新設定)
 初期しきい値Ethiは、検査検出器23に未処理の被検体Mを配置したときの出力信号EA及び検査検出器23に表面状態が良好である表面処理後の被検体Mを配置したときの出力信号EBの差が大きい場合などには、出力信号EAの平均値EAav側に近づいて、良品と判定される出力の幅が大きくなる可能性がある。そのため、更に精度の高いしきい値を設定したい場合には、初期しきい値Ethiを用いて繰り返し測定を行うことにより蓄積された数多くの検査データに基づいて、しきい値を設定し直すことができる。このとき新たに設定されるしきい値を更新しきい値Ethnという。
 更新しきい値Ethnの設定は、例えば、100個以上の被検体Mの検査を行った後に実施する。更新しきい値Ethnの設定方法を以下に例示する。ここで、初期しきい値Ethiを用いて検査した被検体Mの出力信号をEC、その最小値をECmin、最大値をECmax、平均値をECav、標準偏差をσCとする。
 一つの方法として、初期しきい値Ethiと最小値ECminとを比較し、以下のように更新しきい値Ethnを算出する。
 ECmin≦ Ethiの場合には、更新しきい値Ethnを設定せず初期しきい値Ethiを用いる。
 ECmin>Ethiの場合には、ECminを更新しきい値Ethnとして設定することができる。
 また、平均値ECav及び標準偏差σCを用いて、更新しきい値EthnをECav-3σCまたはECav-4σCとすることができる。ECav-3σC、ECav-4σCのいずれを用いるかは出力信号ECの分布を考慮して判断し、ECav-3σCまたはECav-4σCが初期しきい値Ethi以下である場合には、更新しきい値Ethnを設定せず初期しきい値Ethiを用いる。
 また、最小値ECmin、最大値ECmax、平均値ECavの大小関係に基づいて、以下のように更新しきい値Ethnを設定することもできる。具体的には、最小値ECminと最大値ECmaxとの平均値(ECmin+ECmax)/2と平均値ECavとの比較を行い、場合分けをする。
 (ECmin+ECmax)/2≦ECavの場合:ECav-3σCを更新しきい値Ethnとして設定
(ECmin+ECmax)/2>ECavの場合:ECav-4σCを更新しきい値Ethnとして設定
 ここで、ECav-3σCまたはECav-4σCが初期しきい値Ethi以下である場合には、更新しきい値Ethnを設定せず初期しきい値Ethiを用いる。
 更新しきい値Ethnは更新後に検査した被検体Mの検査データに基づいて繰り返し更新することができる。例えば、初期しきい値Ethi設定後に100個の被検体Mの検査を行い、更新しきい値Ethnを設定した後に、更に100個の被検体Mの検査を行い、その検査データに基づいて新しい更新しきい値Ethnを設定することもできる。また、200個の検査データすべてを用いて新しい更新しきい値Ethnを設定することもできる。
(測定値の校正)
 前述した初期オフセット値Eiと検査オフセット値Eikとを用いて測定値の校正を行うことができる。
 図8に示すように、ステップS101では、配置工程S6で被検体Mを配置する前に検査オフセット値Eikを測定し判断手段36に記憶させる。
 続くステップS102では、初期オフセット値Eiと検査オフセット値Eikとを比較、差分電圧ΔE=Ei-Eikを算出する。ステップS102以降は、良否判断工程S8に対応する。
 続くステップS103で被検体Mの検査を行いステップS104において測定値(E2-E1)を記憶し、ステップS105において記憶された測定値に差分電圧ΔEを加算する。
 そして、ステップS106において、差分電圧ΔEが加算された測定値をしきい値と比較して良否判断を行う。
 これにより、温度、湿度、磁気などの測定環境の変化により、オフセット電圧が変化した場合でも、その影響を排除した精度の高い測定を行うことができる。すなわち、検量機器(検査装置)としての校正(calibration)を毎回行った状態で適切で精度の高い測定を行うことができる。
 また、差分電圧ΔEが表面特性検査装置1の使用条件に基づいて設定された許容値を超えた場合には、外乱が大きい、装置の不具合など、検査状態が適切でなく、検査が適正に行われていない可能性があると判断することができる。この場合、検査状態判断工程S7において被検体Mの表面特性の検査を行わないようにすることができる。このとき、基準検出器22、検査検出器23の点検、測定環境の温度の確認、基準検体Sの点検や交換などを行うことができる。当該許容値は、検査が適正に行われる条件として設定し、例えば、初期オフセット値Eiの5%(ΔE=0.05Ei)と設定することができる。
 皿バネのような傾斜面を有する部材は、傾斜面の外周面側、内周面側それぞれに表面処理を施すことが多い。このような被検体を評価する場合に好適な表面特性検査装置の構成を以下に示す。
 このような表面特性検査装置は、さらに搬送手段40を備えている。
 また、この表面特性検査装置における検査検出器は、被検体Mの傾斜面Ma、Mbに対応する傾斜面を夫々有する第1の検査検出器及び第2の検査検出器から構成されており、これら第1、第2の検査検出器は対向する上下方向に配置されている。下方に配置する第1の検査検出器は、図2A、図2Bに示した構成の検査検出器23であり、皿バネの外周面側(外側の凸面)の検査領域を評価するためのものであり、上方に配置する第2検査検出器は、皿バネの内周面側(内側の凹面)の検査領域を評価するためのものである。
 上方に配置する検査検出器の構成を図9A、図9Bに示す。上方に配置する第2の検査検出器23は、下方に向けて浅い凸形の截頭円錐形状のボビン23bを有し、このボビン23aの傾斜面23b(下方に向けて突出した凸型壁面である円錐面)の外周面にコイル23cが巻回されている。このように、第2の検査検出器23のコイル23cは、被検体Mの凹面の表面(傾斜面Mb)に渦電流を励起するように、凹面に入り込む凸形形状に巻回されている。また、本実施形態では、コイル23cが被検体Mに直接接触しないようにコイル23cの下側に、コイル23cを覆う下方に向けて凸型の樹脂製のカバー23dが設けられている。この凸型のカバー23dは、巻回されたコイル23cの導線を覆うと共に、表面処理が施された被検体の傾斜面Mb(凹面)に渦電流を励起するように、傾斜面Mb(凹面)の内側に挿入される。コイル23cの下面を樹脂製のカバー23dで覆うことにより、被検体を第2の検査検出器23に配置した際、被検体とコイルが接触し、コイルが断線する等の損傷を防止することができる。また、コイル23cにより被検体に励起される渦電流は、カバー23dが樹脂製であるため、殆ど弱められることはなく、検出感度も殆ど低下しない。
 即ち、本実施形態における第2検査検出器23によれば、コイル23cが凸形形状に巻回されているので、被検体Mをカバー23dの下側に当接させることにより、コイル23cを表面処理層Mcに沿って近接した状態で配置することができる。これにより、被検体Mに十分な渦電流を励起することができ、出力電圧を大きくすることができるので、傾斜面Mbを有する被検体Mの評価に好適に用いることができる。
 搬送手段40は、ベルトコンベア、ロボットアームなどの公知の搬送装置からなり、表面特性検査装置への被検体Mの搬入、搬出及び被検体Mの検査検出器への配置を行うことができる。
 検査方法は、まず、第1搬送工程として、搬送手段40により被検体Mを表面特性検査装置の第1の検査検出器(図2A、2B)と第2の検査検出器(図9A、9B)の間に搬入した後に、下側の第1の検査検出器(図2A、2B)に配置する。被検体Mを第1の検査検出器と第2の検査検出器(図9A、9B)の間に水平方向に搬送する搬送手段として、搬送ローダ等の水平方向搬送装置を使用することができる。また、被検体Mを垂直方向に下降させ、第1の検査検出器に配置する搬送手段として、シリンダ等の垂直方向搬送装置を使用することができる。このとき、被検体Mをボビンの上に載置することにより、評価を行う外周面Ma側の表面処理層Mc(第1の検査領域)がコイル23cの内側に沿うように配置される。
 搬送手段40により被検体Mを第1の検査検出器に配置した状態で3秒間停止され、この間に、第1信号取得工程として、交流電源10により、第1の検査検出器のコイル23cに所定周波数の交流電力を供給して、被検体Mの傾斜面Maに渦電流を励起し、交流ブリッジ回路20からの出力信号を取得する。下側の第1の検査検出器(図2A、2B)により外周面Ma側の表面処理層Mcの評価が終了した後に、第2搬送工程として、シリンダ等の搬送手段により被検体Mを垂直方向に上昇させ、被検体Mを上側の第2の検査検出器(図9A、9B)に搬送し、配置する。このとき、被検体Mの内周面Mbをカバー23dの下面(外周面)に当接させることにより、評価を行う内周面Mb側の表面処理層Mc(第2の検査領域)が第2の検査検出器23のコイル23cの下面(外周面)に沿うように配置される。
 次に、搬送手段40により被検体Mを第2の検査検出器に配置した状態で3秒間停止され、この間に、第2信号取得工程として、交流電源10により、第2の検査検出器のコイル23cに所定周波数の交流電力を供給して、被検体Mの傾斜面Mbに渦電流を励起し、交流ブリッジ回路20からの出力信号を取得する。そして、第2の検査検出器により被検体Mの内周面Mb側の表面処理領域の評価が終了した後に、搬送ローダ等の搬送手段により被検体Mを水平方向に搬送し、表面特性検査装置から排出する。
 本構成の表面特性評価装置によれば、被検体Mを搬送手段で搬送し、外周面Ma及び内周面Mbの表面処理層Mcを連続して検査することができるので、効率的な検査が可能である。また、第1、第2の検査検出器23を固定して被検体Mを搬送することにより検査を行うため、各検査検出器23の設置環境が安定するため、より精度のよい検査を行うことができる。なお、第1の検査検出器により検査を実行する際には、基準検出器22として第1の検査検出器(図2A、2B)と同形状の検出器を使用し、第2の検査検出器により検査を実行する際には、基準検出器22として第2の検査検出器(図9A、9B)と同形状の検出器を使用するのが良い。
 ここで、図2A、2B及び図9A、9Bで示した第1、第2の検査検出器23は、どちらを上方に配置し、どちらを下方に配置するかは任意である。また、上方に配置された検査検出器と下方に配置された検査検出器のどちらの検出器を先に使用するかも任意である。
(被検体の配置、取出しの制御)
 被検体Mの検査検出器23への配置及び検査検出器23からの取出しを測定値En(En=E2-E1)を用いて制御することができる。被検体の配置、取出しの制御方法を図10A、10B及び図11A、11Bを参照して説明する。なお、図10A、図10Bは、初期値Ei0、出力値Enなどを説明のために例示し、模式的に示したもので、実際の出力値ではない。
 まず、図11Aに示すステップS201で検査検出器23に被検体Mを配置すると、図10Aに示すように出力値が被検体Mが配置されていないときの初期値Ei0=3.000から低下し始める。
 次にステップS202において、被検体Mが検査検出器23に配置されたことを検出し、出力値の記録を開始する時間のカウントを開始する基準(図10Aの測定待ち開始)のトリガーを検出する。図10Aでは、出力値が1.500になったときを配置完了待ちトリガートリガーEn1とし、ステップS203において待ち時間をカウントする。なお、配置完了待ちトリガーEn1となる出力値(1.500)は、次段落で説明する所定の待ち時間が経過すれば出力値が安定するように、逆算して設定する。
 出力値が安定するまでの所定の待ち時間(例えば、2~3秒)が経過すると、ステップS204において測定を行い、安定した出力値En2(0.370)を検出し、記憶する。
 これにより、検査検出器23への被検体Mの配置状態、すなわち、被検体Mが適切な検査可能な状態に配置されたこと、を検出して被検体の表面特性の評価を開始することができるため、測定条件を統一し、安定した出力値En2を検出することができるので、作業者によるばらつきなどをなくすことができ、精度の高い測定を行うことができる。
 また、被検体Mの取出しの制御は以下のように行う。
 まず、図11Bに示すステップS301で検査検出器23から被検体Mを取り出すと、図10Bに示すように測定値が被検体Mが配置されているときの出力値En2から上昇し始める。
 次にステップS302において、被検体の取出し確認を行うための待ち時間のカウントを開始する基準(図10Bの完了待ち開始)の取り出し完了待ちトリガーEn3を検出する。図10Bでは、測定値が2.500になったときを取り出し完了待ちトリガーEn3とし、ステップS303において待ち時間をカウントする。なお、取り出し完了待ちトリガーEn3となる出力値(2.500)は、次段落で説明する所定の待ち時間が経過すれば出力値が安定するように、逆算して設定する。
 測定値が初期値Ei0近傍まで回復するまでの所定の待ち時間(例えば、2~3秒)が経過すると、ステップS304において出力値Ei1(3.000)を検出し、記憶する。このとき、記憶された出力値Ei1を検査オフセット値Eikとして用いることができる。
 これにより、被検体Mが取り出されたことを検出し、測定値が初期状態に戻った状態で次の測定を行うことができる。
 上述のような被検体Mの配置、取出しの制御を行う構成によれば、被検体Mが検査検出器23に対して適切に配置されたかどうかを検出するための位置センサなどを設ける必要がなく、装置を簡単な構成にすることができる。また、表面処理を行う表面処理装置から表面特性検査装置1に被検体Mを搬送する搬送手段(例えば、ベルトコンベア)や検査後の被検体Mを良品と不良品とに仕分ける選別手段などと組み合わせたシステムとすることにより、被検体Mの表面処理から検査までを一貫して行い、自動化可能なシステムとして構築することができる。
(変更例)
 検査状態判断工程S7を実施しない場合には、表面特性検査装置1は位相比較器34を省略することができる。例えば、レーザー変位計などの位置検出手段にて検査検出器23と被検体Mの位置関係の検出を行い、検査検出器23の軸と被検体Mの軸とのずれが所定の範囲内であるか否かを光電センサ(レーザ)等で判定する、などを行う構成とすることができる。また、位相比較器34、周波数調整器35または表示手段37は、判断手段36に内蔵させるなど一体的に設けることもできる。
(実施形態の効果)
 本発明の表面特性検査方法によれば、検査検出器23のコイル23cにより被検体Mに渦電流を励起し、交流ブリッジ回路20から出力された出力信号としきい値とを比較して、被検体Mの表面特性を評価することができる。これにより、簡単な回路構成で高精度の表面状態の検査が可能である。抵抗比設定工程S3において、第1の設定用出力信号と第2の設定用出力信号との差分値を算出し、差分値の絶対値が最大になる抵抗比に基づき抵抗比を設定するため、検査に用いる出力電圧を大きくすることができるので、表面処理を施した処理材の表面処理状態を、より精度よく検査することができる。
1…表面特性検査装置
10…交流電源
20…交流ブリッジ回路
21…可変抵抗
22…基準検出器
23…検査検出器
23a…ボビン
23b…傾斜面
23c…コイル
23d…カバー
30…評価装置
31…増幅器
32…絶対値回路
33…LPF
34…位相比較器
35…周波数調整器
36…判断手段
37…表示手段
38…温度測定手段
M…被検体
Ma…傾斜面(外周面)
Mb…傾斜面(内周面)
Mc…表面処理層

Claims (15)

  1.  表面処理が施された被検体の表面特性を検査する表面特性検査方法であって、
     表面特性検査装置を用意する表面特性検査装置準備工程を有し、前記表面特性検査装置は、
     交流ブリッジ回路と、
     前記交流ブリッジ回路に交流電力を供給する交流電源と、
     前記交流ブリッジ回路からの出力信号に基づいて、被検体の表面特性を評価する評価装置と、を備え、
     前記交流ブリッジ回路は、第1の抵抗と第2の抵抗との抵抗比が可変に構成された可変抵抗と、交流磁気を励起可能なコイルを備え、被検体に渦電流を励起するように当該コイルを配置可能に形成された検査検出器と、被検体と同一構造の基準検体を配置し、前記検査検出器からの出力と比較する基準となる基準状態を検出する基準検出器とを有し、前記第1の抵抗、前記第2の抵抗、前記基準検出器及び前記検査検出器はブリッジ回路を構成し、
     さらに、
     前記第1の抵抗と前記第2の抵抗との抵抗比を設定する抵抗比設定工程と、
     前記交流ブリッジ回路に交流電力が供給され、前記検査検出器が前記被検体の電磁気特性を検出し、前記基準検出器が基準状態を検出している状態における前記交流ブリッジ回路からの出力信号を取得する検査信号取得工程と、
     前記検査信号取得工程において取得された出力信号と所定のしきい値とを比較して、前記被検体の表面特性を評価する評価工程と、
    を備え、
     前記抵抗比設定工程は、
     前記基準検出器及び前記検査検出器に表面処理を行っていない基準検体を夫々配置し、複数の抵抗比に対して第1の設定用出力信号を取得する第1信号取得工程と、
     前記基準検出器に表面処理を行っていない基準検体を配置し、前記検査検出器に表面処理を施した設定用検体を配置し、複数の抵抗比に対して第2の設定用出力信号を取得する第2信号取得工程と、
     前記第1信号取得工程において取得された第1の設定用出力信号と、前記第2信号取得工程において取得された第2の設定用出力信号に基づいて、前記検査信号取得工程において設定する抵抗比を決定する抵抗比決定工程と、
     を備えたことを特徴とする表面特性検査方法。
  2.  前記抵抗比決定工程において、同一の抵抗比に対する前記第1の設定用出力信号と前記第2の設定用出力信号との関係に基づいて、前記検査信号取得工程において設定する抵抗比を決定することを特徴とする請求項1記載の表面特性検査方法。
  3.  前記抵抗比決定工程において、同一の抵抗比に対する前記第1の設定用出力信号と前記第2の設定用出力信号の差の絶対値が最大になる抵抗比を前記検査信号取得工程において設定する抵抗比として決定することを特徴とする請求項2記載の表面特性検査方法。
  4.  前記検査検出器の前記コイルは、前記被検体の表面処理が施された傾斜面に渦電流を励起するように、前記傾斜面に沿う形態に形成されていることを特徴とする請求項1ないし請求項3のいずれか1つに記載の表面特性検査方法。
  5.  前記検査検出器の前記コイルは、前記被検体の表面処理が施された凹面の表面に渦電流を励起するように、前記凹面に入り込む凸形形状に巻回されていることを特徴とする請求項1ないし請求項3のいずれか1つに記載の表面特性検査方法。
  6.  前記検査検出器の前記コイルは、傾斜面を有するボビンの傾斜面に巻回されていることを特徴とする請求項1ないし請求項5のいずれか1つに記載の表面特性検査方法。
  7.  前記表面特性検査装置は、さらに、対向して配置された第1の検査検出器と第2の検査検出器とを備え、
     被検体のそれぞれの検査検出器に対向する検査領域の検査を行うことを特徴とする請求項1ないし請求項6のいずれか1つに記載の表面特性検査方法。
  8.  前記表面特性検査装置は、さらに、被検体を搬送する搬送手段を備え、
     前記被検体は、その両側に表面処理が施された凹面及び凸面を有し、
     前記第1の検査検出器は、前記被検体の前記凹面又は前記凸面の何れか一方に渦電流を励起するように、前記凹面に入り込む凸形形状又は前記凸面を受け入れる凹形形状に巻回されたコイルを有し、
     前記第2の検査検出器は、前記被検体の前記凹面又は前記凸面の他方に渦電流を励起するように、前記凹面に入り込む凸形形状又は前記凸面を受け入れる凹形形状に巻回されたコイルを有し、
     前記検査信号取得工程は、
     被検体を前記第1の検査検出器と前記第2の検査検出器の間に搬送する第1搬送工程と、
     前記第1の検査検出器のコイルに被検体を配置し、被検体の前記凹面又は前記凸面に渦電流を励起して、前記交流ブリッジ回路からの出力信号を取得する第1信号取得工程と、
     前記第1の検査検出器から前記第2の検査検出器へ被検体を搬送する第2搬送工程と、
     前記第2の検査検出器のコイルに被検体を配置し、被検体の前記凹面又は前記凸面に渦電流を励起して、前記交流ブリッジ回路からの出力信号を取得する第2信号取得工程と、
    を備えることを特徴とする請求項7に記載の表面特性検査方法。
  9.  表面処理が施された被検体の表面特性を検査する表面特性検査装置であって、
     交流ブリッジ回路と、
     前記交流ブリッジ回路に交流電力を供給する交流電源と、
     前記交流ブリッジ回路からの出力信号に基づいて、被検体の表面特性を評価する評価装置と、を備え、
     前記交流ブリッジ回路は、第1の抵抗と第2の抵抗との抵抗比が可変に構成された可変抵抗と、交流磁気を励起可能なコイルを備え、被検体に渦電流を励起するように当該コイルを配置可能に形成された検査検出器と、被検体と同一構造の基準検体を配置し、前記検査検出器からの出力と比較する基準となる基準状態を検出する基準検出器とを有し、前記第1の抵抗、前記第2の抵抗、前記基準検出器及び前記検査検出器はブリッジ回路を構成し、
     前記検査検出器は、被検体が有する傾斜面に沿うように、前記コイルが傾斜面に沿って巻回されていることを特徴とする表面特性検査装置。
  10.  前記検査検出器の前記コイルは、前記被検体の表面処理が施された凹面の表面に渦電流を励起するように、前記凹面に入り込む凸形形状に巻回されていることを特徴とする請求項9記載の表面特性検査装置。
  11.  前記検査検出器の前記コイルは、凸型壁面を有するボビンと、この凸型壁面の外周面を覆う凸型のカバーを備え、前記凸型壁面の外周面上には前記コイルの導線が巻回され、
     前記凸型のカバーは、巻回された前記導線を覆うと共に、前記被検体の表面処理が施された凹面に渦電流を励起するように、前記被検体の凹面に挿入されることを特徴とする請求項10記載の表面特性検査装置。
  12.  前記検査検出器の前記コイルは、前記被検体の表面処理が施された凸面の表面に渦電流を励起するように、前記凸面を受け入れる凹形形状に巻回されていることを特徴とする請求項9記載の表面特性検査装置。
  13.  前記検査検出器の前記コイルは、凸型壁面を有するボビンを備え、前記凸型壁面の外周面上には前記コイルの導線が巻回され、
     前記ボビンの内周面は、前記被検体の表面処理が施された凸面に渦電流を励起するように、前記被検体の凸面を受け入れることを特徴とする請求項12記載の表面特性検査装置。
  14.  前記検査検出器は、対向して配置された第1の検査検出器と第2の検査検出器から構成され、
     前記被検体は、その両側に表面処理が施された凹面及び凸面を有し、
     前記第1の検査検出器は、前記被検体の前記凹面に渦電流を励起するように、前記凹面に入り込む凸形形状に巻回されたコイルを有し、
     前記第2の検査検出器は、前記被検体の前記凸面に渦電流を励起するように、前記凸面を受け入れる凹形形状に巻回されたコイルを有することを特徴とする請求項9記載の表面特性検査装置。
  15.  さらに、被検体を搬送する搬送手段を備え、前記搬送手段は、被検体を前記第1の検査検出器又は前記第2の検査検出器の何れか一方に配置し、第1の検査領域の検査を行った後、被検体を前記第1の検査検出器又は前記第2の検査検出器の他方に搬送し、前記第1の検査領域の反対側の第2の検査領域の検査を行うように構成されていることを特徴とする請求項14記載の表面特性検査装置。
PCT/JP2017/020479 2016-10-06 2017-06-01 表面特性検査方法及び表面特性検査装置 WO2018066171A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
MX2019003438A MX2019003438A (es) 2016-10-06 2017-06-01 Metodo de inspeccion de caracteristicas de superficie y dispositivo de inspeccion de caracteristicas de superficie.
US16/338,937 US10962503B2 (en) 2016-10-06 2017-06-01 Surface characteristic inspection method and surface characteristic inspection device
KR1020197012504A KR20190062500A (ko) 2016-10-06 2017-06-01 표면 특성 검사 방법 및 표면 특성 검사 장치
CN201780061843.4A CN109791126B (zh) 2016-10-06 2017-06-01 表面特性检查方法和表面特性检查装置
BR112019003974A BR112019003974A2 (pt) 2016-10-06 2017-06-01 método e aparelho de inspeção de propriedade de superfície.
JP2017532192A JP6880538B2 (ja) 2016-10-06 2017-06-01 表面特性検査方法及び表面特性検査装置
EP17858011.4A EP3489673A4 (en) 2016-10-06 2017-06-01 SURFACE PROPERTY INSPECTION METHOD AND SURFACE PROPERTY INSPECTION DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016198461 2016-10-06
JP2016-198461 2016-10-06

Publications (1)

Publication Number Publication Date
WO2018066171A1 true WO2018066171A1 (ja) 2018-04-12

Family

ID=61831661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020479 WO2018066171A1 (ja) 2016-10-06 2017-06-01 表面特性検査方法及び表面特性検査装置

Country Status (9)

Country Link
US (1) US10962503B2 (ja)
EP (1) EP3489673A4 (ja)
JP (1) JP6880538B2 (ja)
KR (1) KR20190062500A (ja)
CN (1) CN109791126B (ja)
BR (1) BR112019003974A2 (ja)
MX (1) MX2019003438A (ja)
TW (1) TW201814305A (ja)
WO (1) WO2018066171A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS557630A (en) * 1978-06-30 1980-01-19 Sumitomo Metal Ind Ltd Inspection method of depth for peening machined layer at internal surface of tube
JPS60202355A (ja) * 1984-03-28 1985-10-12 Daido Steel Co Ltd 渦流探傷プロ−ブ装置
JP2013529286A (ja) * 2011-05-10 2013-07-18 新東工業株式会社 表面特性検査装置及び表面特性検査方法
US20140028302A1 (en) * 2012-07-25 2014-01-30 General Electric Company Broadband eddy current probe

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2028510B (en) * 1978-08-21 1983-02-16 Defence Sercretary Of State Fo Apparatus for the detection of defects in engineering materials
JPH0372063A (ja) * 1989-08-11 1991-03-27 Mitsubishi Heavy Ind Ltd 溶融金属めっきの膜厚制御装置
US5777469A (en) * 1995-07-31 1998-07-07 Battelle Memorial Institute Method and apparatus for detecting flaws in conductive material
KR101720831B1 (ko) * 2012-02-23 2017-03-28 인스티튜트 닥터 포에르스테르 게엠베하 운트 코. 카게 쓰루-코일 장치, 쓰루-코일 장치를 갖춘 검사 장비 및 검사 방법
US20140093658A1 (en) * 2012-09-28 2014-04-03 General Electric Company Methods and systems for joining materials
JP5877505B2 (ja) * 2013-05-30 2016-03-08 新東工業株式会社 表面特性検査装置、表面特性検査システム及び表面特性検査方法
US9964520B2 (en) 2014-01-20 2018-05-08 Sintokogio, Ltd. Surface property inspection device and method
CN106164666B (zh) * 2014-03-24 2019-07-23 新东工业株式会社 表面特性检查方法和表面特性检查装置
CN105891323A (zh) * 2014-11-21 2016-08-24 中机生产力促进中心 一种检测管道变形的涡流探头阵列
CA2981420C (en) * 2015-04-02 2023-07-11 The University Of Tokyo Coil apparatus for use in transcranial magnetic stimulation apparatus
CN105044202A (zh) * 2015-07-17 2015-11-11 国家电网公司 一种基于马鞍形开放式双通道涡流探头的检测系统及方法
MX2018000961A (es) * 2015-08-06 2018-06-07 Sintokogio Ltd Metodo de inspeccion de caracteristicas de superficie y aparato de inspeccion de caracteristicas de superficie para producto de acero.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS557630A (en) * 1978-06-30 1980-01-19 Sumitomo Metal Ind Ltd Inspection method of depth for peening machined layer at internal surface of tube
JPS60202355A (ja) * 1984-03-28 1985-10-12 Daido Steel Co Ltd 渦流探傷プロ−ブ装置
JP2013529286A (ja) * 2011-05-10 2013-07-18 新東工業株式会社 表面特性検査装置及び表面特性検査方法
US20140028302A1 (en) * 2012-07-25 2014-01-30 General Electric Company Broadband eddy current probe

Also Published As

Publication number Publication date
US10962503B2 (en) 2021-03-30
EP3489673A4 (en) 2020-03-04
TW201814305A (zh) 2018-04-16
JP6880538B2 (ja) 2021-06-02
BR112019003974A2 (pt) 2019-05-28
JPWO2018066171A1 (ja) 2019-07-18
CN109791126A (zh) 2019-05-21
CN109791126B (zh) 2023-10-24
KR20190062500A (ko) 2019-06-05
EP3489673A1 (en) 2019-05-29
MX2019003438A (es) 2019-06-06
US20200011833A1 (en) 2020-01-09

Similar Documents

Publication Publication Date Title
JP6421808B2 (ja) 表面特性検査装置及び表面特性検査方法
JP5850414B2 (ja) 表面特性検査装置及び表面特性検査方法
JP5877505B2 (ja) 表面特性検査装置、表面特性検査システム及び表面特性検査方法
JP6181851B2 (ja) 表面特性検査方法及び表面特性検査装置
JP6176596B2 (ja) 表面特性検査選別装置、表面特性検査選別システム及び表面特性検査選別方法
TWI692637B (zh) 鋼材製品的表面特性檢查方法
WO2018066171A1 (ja) 表面特性検査方法及び表面特性検査装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017532192

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17858011

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017858011

Country of ref document: EP

Effective date: 20190221

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019003974

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197012504

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112019003974

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190226