WO2018066152A1 - データ統合装置およびデータ統合方法 - Google Patents
データ統合装置およびデータ統合方法 Download PDFInfo
- Publication number
- WO2018066152A1 WO2018066152A1 PCT/JP2017/011163 JP2017011163W WO2018066152A1 WO 2018066152 A1 WO2018066152 A1 WO 2018066152A1 JP 2017011163 W JP2017011163 W JP 2017011163W WO 2018066152 A1 WO2018066152 A1 WO 2018066152A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data
- predetermined
- data format
- information
- similarity
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0631—Resource planning, allocation, distributing or scheduling for enterprises or organisations
- G06Q10/06311—Scheduling, planning or task assignment for a person or group
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F5/00—Methods or arrangements for data conversion without changing the order or content of the data handled
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2205/00—Indexing scheme relating to group G06F5/00; Methods or arrangements for data conversion without changing the order or content of the data handled
- G06F2205/003—Reformatting, i.e. changing the format of data representation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0628—Interfaces specially adapted for storage systems making use of a particular technique
- G06F3/0655—Vertical data movement, i.e. input-output transfer; data movement between one or more hosts and one or more storage devices
- G06F3/0661—Format or protocol conversion arrangements
Definitions
- the present invention relates to a data integration device and a data integration method, and more specifically, to a technology that supports the realization of an efficient data conversion process even between conversion-defined data and the like.
- Data integration devices have been developed for the purpose of promoting the cross-use of data across a wide variety of systems. These data integration devices collect and store a wide variety of data from various business systems that serve as data sources, while converting the format and structure of the stored data according to user requirements. Process.
- an information integration program for converting data extracted from an information source and registering it in a storage destination, wherein the first schema information acquired from the information source and the first schema information before the change Comparing the second schema information acquired from the information source to detect a change in the schema of the information source; and attribute values and data included in the schema information in the attribute values of the items related to the schema change
- the data format required for a predetermined system or application that requires the above-described conversion processing may be different from the integrated data format.
- the integrated data format is, for example, a data format composed of data items that are most commonly used among the predetermined data in various systems, and between the data in each system, The correspondence between the data items described above is already defined. Accordingly, the fact that the data format required by the above-mentioned predetermined system is different from the integrated data format means that the definition necessary for the above-described conversion processing is in an unknown state.
- an object of the present invention is to provide a technique for supporting the realization of an efficient data conversion process even between data whose conversion definitions are undefined.
- the data integration device of the present invention that solves the above-described problems is a data format of each table used in a predetermined system for data of a predetermined event, and master data predetermined for each predetermined table as a universal data format between the data
- a storage device storing each information of the format, information on a conversion process definition of data between the predetermined table of the master data format and the predetermined table of the predetermined data format of the predetermined system, and the storage device
- a first similarity that is a similarity between a data format of a table relating to predetermined data in which data format information is not stored and a master data format for each predetermined table is calculated, and the first similarity satisfies a predetermined criterion.
- a process for specifying a predetermined table in a data format, a master data format for the specified predetermined table, and storage in the storage device Calculating a second similarity that is a similarity to the data format of each table of the system, specifying a predetermined table of the predetermined system in which the second similarity satisfies a predetermined criterion, and the specified master data
- the information of the conversion processing definition related to the table is read from the storage device, and the information is output to the predetermined device as information of a conversion processing component candidate that can be reused.
- an arithmetic unit that executes the processing.
- the data integration method of the present invention includes a data format of each table used in a predetermined system for data of a predetermined event, and a master data format predetermined for each predetermined table as a universal data format between the data.
- An information processing apparatus comprising a storage device storing each information and information on a conversion process definition of data between a predetermined table in the master data format and a predetermined table in a predetermined data format of the predetermined system, A first similarity that is a similarity between a data format of a table related to predetermined data in which data format information is not stored in the apparatus and a master data format for each predetermined table is calculated, and the first similarity is based on a predetermined reference A process of specifying a predetermined table of a master data format to be satisfied, a master data format of the specified predetermined table, and the storage device Calculating a second similarity that is a similarity to the data format of each table of the system stored in the system, and specifying the predetermined table of the predetermined system that satis
- FIG. 1 It is a figure which shows the example of a network structure containing the data integration apparatus in this embodiment. It is a figure which shows the data format example of the data structure definition table of this embodiment. It is a figure which shows the example of a data format of the reusable component extraction result storage table of this embodiment. It is a figure which shows the data format example of the similarity calculation parameter table of this embodiment. It is a figure which shows the example of the data format which stores the result of having calculated the similarity between the table of the master data format in this embodiment, and the table of the data format which a delivery destination system requests
- FIG. (1) explaining the process which extracts the reusable data conversion process component candidate which performs data conversion to the data format which the delivery destination system of this embodiment requests
- FIG. (2) explaining the process which extracts the reusable data conversion process component candidate which performs data conversion to the data format which the delivery destination system of this embodiment requests
- FIG. 1 is a network configuration diagram including the data integration device 100 of the present embodiment. As shown in FIG. 1, the data integration device 100 of this embodiment is connected to an input terminal 120, a distribution source system 130, and a distribution destination system 140 via a dedicated line 150 so that they can communicate with each other.
- the distribution source system 130 is a system that holds train diagram data managed and operated by, for example, a railway operator. Data distributed from the distribution source system 130 to the data integration apparatus 100 is converted into a data format in the distribution destination system 140 by a predetermined data conversion program (conversion processing definition) in the data integration apparatus 100, and the distribution destination system 140 Will be delivered to.
- conversion processing definition conversion processing definition
- the distribution destination system 140 is a system that is managed and operated by a railway operator that executes appropriate operations and services based on the predetermined data derived from the distribution source system 130 described above. Specifically, it is possible to assume a system that manages train operation using observation data of train operation status and the above-described train schedule data.
- the input terminal 120 is a terminal operated by a design developer of a data conversion program for converting data obtained from the distribution source system 130 into a data format desired by the distribution destination system 140.
- the data integration apparatus 100 of this embodiment included in such a network configuration includes a user interface unit 111, a data structure similarity calculation unit 112, and a reusable data conversion component extraction as functional components implemented by appropriate hardware and software. Unit 113 and communication unit 114.
- the data integration device 100 also includes a data storage unit 101 as a storage destination of data handled by such functional units.
- the data structure similarity calculation unit 112 calculates the data structure in the data format table requested by the distribution destination system 140 and the data structure in the master data format table held in advance by the data integration device 100. The similarity is calculated.
- the above-described master data format integrated data format
- the correspondence between the data items is already defined, that is, between the data items of the corresponding table. It is assumed that a data conversion program for performing data conversion processing is already held in the data integration device 100. Details of the processing procedure performed by the data structure similarity calculation unit 112 will be described later with reference to the flowchart shown in FIG.
- the reusable data conversion component extraction unit 113 converts data distributed from the distribution source system 130 into a data format requested by the distribution destination system 140 via the master data format, That is, “reusable data conversion processing component candidates” are extracted. Details of the processing procedure performed by the reusable data conversion component extraction unit 113 will be described later with reference to the flowchart shown in FIG.
- the communication unit 114 communicates with the distribution source system 130 via the dedicated line 150, and transmits / receives predetermined distribution data and data structure definition information 131 related to the distribution data.
- the distribution data (eg, train schedule data) described above is assumed to be tabular data having a data structure defined by the data structure definition table 107 (FIG. 2).
- the data integration device 100 obtains such tabular data from the distribution source system 130 and stores it in the distribution source data storage unit 110 (FIG. 8).
- the data structure definition information 131 described above is information composed of information on the data format, table name, column in the table, and data type of the distribution data.
- the data integration device 100 stores this data structure definition information 131 in the data structure definition table 107.
- the above-described data structure definition table 107 has the data format shown in FIG. 2 and includes a data format 1101, a table 1072, a column 1103, and a data type 1104 as its data items.
- structure definition information relating to a total of three types of data formats “master data”, “data format X”, and “data format Y” is stored.
- the user interface unit 111 selects candidates for data conversion programs (data conversion parts) that can be reused to perform data conversion processing on the data format of the delivery destination system 140 for the data conversion program design developer.
- a reuse candidate conversion component presentation screen 1110 (FIG. 16) is generated.
- the reuse candidate conversion component presentation screen 1110 includes a distribution destination system data format input area 11101 for inputting the data format of the distribution destination system 140, a reusable component extraction button 11102, and a reuse candidate conversion component list display area. 11103.
- the design developer of the data conversion program views the above-mentioned reuse candidate conversion component presentation screen 1110 on the input terminal 120 and inputs the data format required by the distribution destination system 140 in the distribution destination system data format input area 11101. Assume that the reusable component extraction button 11102 is pressed. In this case, the data integration device 100 executes a data structure similarity calculation process and a reusable data conversion component extraction process in accordance with the data format input in the delivery destination system data format input area 11101.
- the data integration apparatus 100 uses the reuse candidate conversion component (known data conversion program) read from the reusable component extraction result storage table 106 (FIG. 3). List.
- This reusable part extraction result storage table 106 has the data format shown in FIG. 3, and as its data items, a data format 1081, a table 1062, a column 1083 in the distribution destination system 140, and a data conversion base point
- the conversion source column 1084 indicating the corresponding table and column in the master data format, and the value of the predetermined column of the predetermined table of the master data format corresponds to the value of the predetermined column of the predetermined table of the data format in the predetermined distribution destination system
- a conversion destination column 1085 (a data conversion program for performing data conversion processing is known).
- train number column of the station time table in master data format is set to “data format”.
- Corresponding information is stored on the assumption that the data conversion program to be converted into “train number column of X train information table” is a reusable candidate.
- the similarity calculation parameter table 102 in the data storage unit 101 has the data format shown in FIG. 4, and defines weight value information used in the data structure similarity calculation processing.
- the data items include an item name 1031 and a similarity calculation weight 1032.
- the item name 1031 indicates a column name in the table, and in the example of FIG. 4, values such as “train” and “departure time” are stored.
- the similarity calculation weight 1032 indicates a weight value to be applied to the result of matching determination of the corresponding column in similarity calculation between data structures. In the example of FIG. The value “3” is stored.
- Each data of the similarity calculation parameter table 102 is registered in advance by an expert.
- the similarity calculation result temporary storage unit 103 in the data storage unit 101 calculates the similarity between the master data format table and the data format table requested by the distribution destination system 140, as shown in FIG.
- the storage destination is stored in the table format.
- the data items include a table 1041, a column 1042, a table 1043, a column 1044, a data type 1045, and an inter-table similarity 1046.
- the table 1041 indicates the table name in the master data format
- the column 1042 indicates the column name of the table stored in the table 1041
- the table 1043 indicates the table name of the data format requested by the distribution destination system 140
- the column 1044 indicates the column name of the table stored in the table 1043.
- the data type 1045 indicates the data type of the column 1042 and the column 1044 described above.
- the inter-table similarity 1046 indicates a calculation result of the similarity between the tables stored in the table 1041 and the table 1043 described above. Note that the calculation result related to the degree of coincidence between columns is stored in the degree of coincidence storage area 1047.
- the result of calculating the degree of coincidence of the column names is N and the result of calculating the degree of coincidence of the data type is M
- the result is stored as a set of respective coincidence degree calculation results as (N, M). I decided to.
- the vertical length in the table illustrated in FIG. 5 is the number of columns of the table stored in the table 1041
- the horizontal length in the table is the number of columns of the table stored in the table 1043. Minutes.
- the similarity calculation result storage unit 105 in the data storage unit 101 calculates the similarity between the master data format table and the data format table defined in the data structure definition table, as shown in FIG. It is stored in tabular form.
- the data items include a table 1071, a column 1072, a data format 1073, a table 1074, a column 1075, a data type 1076, and an inter-table similarity 1077.
- the table 1071, the column 1072, the table 1074, the column 1075, the data type 1076, and the inter-table similarity 1077 are the data format examples of the similarity calculation result temporary storage unit 103 illustrated in FIG. It is the same composition.
- the data format 1073 has the same configuration as the data item of the data format in the data structure definition table 107.
- the value stored in the coincidence degree storage area 1078 has the same configuration as the data format example of the similarity calculation result temporary storage unit 103 exemplified in FIG. In the example illustrated in FIG. 6, the result when the similarity between the “train” table in the master data format and all the tables in “data format X” and “data format Y” is calculated is shown.
- the data conversion processing component definition table 104 in the data storage unit 101 is a data table that defines data conversion program information for converting the data format, and has the data format shown in FIG.
- the data items include a conversion source data format 1061, a conversion source table 1042, a conversion source column 1063, a conversion destination data format 1064, a conversion destination table 1065, a conversion destination column 1066, and a program file name 1067. Including.
- the conversion source data format 1061 indicates the data format of the conversion source data
- the conversion source table 1042 indicates the data table name of the conversion source data
- the conversion source column 1063 indicates the column name of the conversion source data table.
- the conversion destination data format 1064 indicates the data format of the conversion destination data
- the conversion destination table 1045 indicates the data table name of the conversion destination data
- the conversion destination column 1066 indicates the column name of the conversion destination data table
- the program file name 1067 indicates the file name of a program for converting data from the conversion source column 1063 to the conversion destination column 1066.
- the column “train number” in the table “station time” in the master data format is changed to the column “train number” in the table “train information” in the “data format X”.
- the name of the program “prg00001.dat” for data conversion is stored.
- FIG. 8 is an explanatory diagram showing the principle of data conversion processing in the data integration device 100.
- the data integration device 100 in the present embodiment converts the distribution source data stored in the distribution source data storage unit 110 into a master data format and stores it in the master data storage unit 109. Further, the data integration device 100 converts the above-mentioned data stored in the master data storage unit 109 into a data format requested by the distribution destination system 140. In this data format conversion processing, the data integration apparatus 100 performs association processing, column conversion, and arithmetic processing between the columns in the conversion source table and the columns in the conversion destination table, and stores the results in the data conversion component library 108. Store as a data conversion program. In the example shown in FIG.
- a data conversion component group (data conversion program group) that converts data in the master data format stored in the master data storage unit 109 into a data format required by the delivery destination system 140 in the data conversion component library 108.
- conversion to “data format X” required by “distribution destination system X” is realized by using a data conversion program for every column of all tables of “data format X”. It is assumed that a data conversion program to a data format required by the distribution destination system 140 is developed in advance and registered in the data conversion component library 108.
- FIG. 9 is a diagram illustrating a hardware configuration example of the data integration device 100.
- the data integration device 100 of this embodiment includes a CPU 201, an HDD 202, a memory 203, an input device 204, a display device 205, and a communication device 206.
- the CPU 201 is an arithmetic device that performs data input / output, reading, storage, and various processes.
- the HDD 202 is a nonvolatile storage unit that stores data.
- the memory 203 is a volatile storage unit that temporarily stores programs and data.
- the input device 204 is a device such as a keyboard, a mouse, or a microphone that receives an operation input from the user.
- the display device 205 is a device such as a display that displays data to the user.
- the communication device 206 is a device such as a network card that communicates with the distribution source system 130 or the distribution destination system 140 via the dedicated line 150 and transmits / receives data.
- the CPU 201 executes the program 207 stored in the HDD 202 or the memory 203, so that the above-described functional units are mounted.
- FIG. 10 is a diagram showing a flow example 1 of the data integration method according to the present embodiment. Specifically, the data integration apparatus 100 calculates the data structure similarity, and the data of the distribution source system 130 is distributed to the distribution destination.
- FIG. 7 is a flow chart showing a series of procedures for extracting a reusable data conversion program from an existing data conversion program (for conversion to a data format desired by the system 140).
- the design developer of the data conversion program calculates the data format, data structure, and data structure similarity requested by the delivery destination system 140 on the design developer presentation screen 1110 shown in FIG. 16 displayed on the input terminal 120. Assume that a processing request is input.
- the data integration apparatus 100 inputs the data format and data structure information requested by the delivery destination system 140 and the data structure similarity calculation processing request input by the above-mentioned data conversion program design developer. Received from the terminal 120 (301). Of course, this step is not necessary when the data integration apparatus 100 has acquired such information in advance by another means or route.
- FIG. 11 shows a data format example showing a data structure related to the “train / station” table of the data format “data format Z” requested by the delivery destination system 140.
- Data items in the exemplified data structure include a data format 1401, a table 1402, a column 1403, and a data type 1404. The configuration of this data item is the same as that of the data item in the data structure definition table 107 described above.
- the data structure similarity calculation unit 112 of the data integration device 100 calculates the similarity between the data structure in the data format table requested by the distribution destination system 140 and the data structure in each table in the master data format ( 302).
- the reusable data conversion component extraction unit 113 of the data integration device 100 extracts a reusable data conversion processing program candidate for performing data conversion into the data format requested by the distribution destination system 140 (303). ).
- the user interface unit 111 of the data integration device 100 refers to the reusable component extraction result storage table 106 shown in FIG. 3 and performs data conversion to convert the data into the data format requested by the distribution destination system 140 described above.
- a screen for displaying a list of reusable programs as a program is generated, the screen (FIG. 16) is returned to the display terminal (304), and the process is terminated.
- FIG. 12a shows the details of the procedure in which the data structure similarity calculation unit 112 calculates the similarity between the data structure in the data format table requested by the distribution destination system 140 and the data structure in each table in the master data format. It is a flowchart.
- the data structure similarity calculation unit 112 of the data integration device 100 acquires the data record of each table whose data format is “master data format” in the data structure definition table 107 (3021).
- the data structure similarity calculation unit 112 of the data integration device 100 performs a loop on all the tables in the master data format from which the data records are acquired in Step 3021 (3022).
- the data structure similarity calculation unit 112 of the data integration device 100 has registered in the data structure definition table 107 and has a data format other than the “master data format”, that is, a table of each data format of the known delivery destination system 140. A loop is performed for all (3023).
- the data structure similarity calculation unit 112 of the data integration device 100 is a table in the master data format obtained in step 3021 and includes the column of the loop target table and the distribution destination system 140 that is the loop target in step 3023. It is a data format table, and the degree of coincidence with the column of the loop target table and the degree of similarity between the tables are calculated (30231). Details of the processing procedure for calculating the similarity between the tables will be described with reference to the flowchart shown in FIG.
- the data structure similarity calculation unit 112 determines the degree of coincidence between the column of the loop target table in the master data format described above and the column of the loop target in the data format of the distribution destination system 140, and the similarity between the tables. Is a flowchart showing details of a procedure for calculating each of.
- the data structure similarity calculation unit 112 of the data integration device 100 performs a loop on all the columns of the master data format table that is the loop target table in the above-described step 3022 (3024).
- the data structure similarity calculation unit 112 of the data integration device 100 performs a loop on all the columns of the data format table of the distribution destination system 140, which is the loop target table in step 3023 described above (3025). ).
- the data structure similarity calculation unit 112 of the data integration device 100 loops the column name of the loop target column in the master data format table that is the loop target and the data format table loop of the distribution destination system 140 that is the loop target. It is determined whether the column name of the target column matches (3026).
- the data structure similarity calculation unit 112 of the data integration device 100 sets “0” as the matching degree of the similarity calculation result temporary storage unit 103. It stores in the storage area 1047 (30211).
- the data structure similarity calculation unit 112 of the data integration device 100 refers to the similarity calculation parameter table 102, and the table All values of item names and similarity calculation weights are acquired (3027).
- the data structure similarity calculation unit 112 of the data integration device 100 determines whether the target column name whose determination result is “match” in step 3026 is defined among the item names obtained in step 3027 (3028). .
- the data structure similarity calculation unit 112 of the data integration device 100 sets “1” in the similarity calculation result temporary storage unit 103. Stored in the coincidence storage area 1047 (30210).
- the data structure similarity calculation unit 112 of the data integration device 100 calculates the calculation result of “1 ⁇ similarity calculation weight” Is stored in the coincidence degree storage area 1047 of the similarity calculation result temporary storage unit 103 (3029).
- the data structure similarity calculation unit 112 of the data integration device 100 performs the loop in the data format table of the loop target column in the master data format table that is the loop target and the data format table of the distribution destination system 140 that is the loop target. It is determined whether the data type of the target column matches (30212).
- the data structure similarity calculation unit 112 of the data integration device 100 sets “1” to the similarity calculation result temporary storage unit 103. Stored in the coincidence storage area 1047 (30213).
- the data structure similarity calculation unit 112 of the data integration device 100 sets “0” in the similarity calculation result temporary storage unit 103. Stored in the coincidence degree storage area 1047 (30214).
- the data structure similarity calculation unit 112 of the data integration device 100 calculates the similarity between the master data format table and the data format table of the distribution destination system 140 (matching degree), which is the loop target described above. ) / ⁇ 2 ⁇ (number of columns of master data table ⁇ number of columns of table to be compared) ⁇ , and the calculation result is stored in the inter-table similarity 1046 of the similarity calculation result temporary storage unit 103. (30215), and the process ends.
- FIG. 13 is an explanatory diagram showing a concept of performing similarity calculation processing for the “train” table in the master data format and the “train / station” table in the “data format Z”.
- the data integration apparatus 100 determines that the column names of the “train number” column in the “train” table in the master data format and the “train / station” table in the “data format Z” match. This matching column name “train number” is defined in the item name of the similarity calculation parameter table 102. Therefore, the data integration device 100 acquires the similarity calculation weight “3” corresponding to this “train number”.
- the data integration device 100 stores “3”, which is the column name coincidence calculation result, in an area 10471 corresponding to the “train number” column in the coincidence degree storage area 1047.
- the data integration apparatus 100 matches the area 10471 corresponding to the “train number” column in the matching degree storage area 1047. “1” is stored as the result of calculating the coincidence of the data type.
- the data integration apparatus 100 performs the above-described processing for all combinations of each column of the “train” table in the master data format and each column of the “train / station” table in the “data format Z”.
- the data integration device 100 calculates the inter-table similarity for the “train” table in the master data format and the “train / station” table in the “data format Z”.
- FIG. 14 shows data conversion processing program candidates that can be reused when converting predetermined data of the distribution source system 130 into the data format required by the distribution destination system 140, and reusable data conversion of the data integration apparatus 100. It is a flowchart which shows the detail of the procedure (step 303 in a main flow) which the components extraction part 113 extracts.
- the “reusable data conversion program” refers to data conversion of data in a predetermined table of the distribution source system 130 to a data format of the predetermined distribution destination system 140 in relation to the predetermined table in the master data format. It is a known data conversion program that is defined to be performed.
- the data integration apparatus 100 of the present embodiment provides information for reusing a known data conversion program for the data format of the delivery destination system 140 for which the data conversion program is not yet defined.
- the reusable data conversion component extraction unit 113 of the data integration device 100 performs a loop on all the corresponding tables (information is obtained in step 301) in the data format requested by the distribution destination system 140. (3031).
- the reusable data conversion component extraction unit 113 of the data integration device 100 performs a loop for all the columns of the table to be looped in the loop (3032).
- the reusable data conversion component extraction unit 113 of the data integration device 100 calculates the similarity for the relationship between each table in the master data format and the data format table in the delivery destination system 140 that is the loop target. Referring to the storage unit 105 (FIG. 6), the column of the loop target table, the master data format column having the same column name or data type, and information on the table are acquired (3033).
- the reusable data conversion component extraction unit 113 of the data integration device 100 matches the column name or the data type as a result of the above-described step 3033, that is, the matching degree is (a, b) (a> 0 or b It is determined whether there is a column that is> 0) (3034).
- the reusable data conversion component extraction unit 113 of the data integration device 100 converts the conversion source column 1084 of the reusable component extraction result storage table 106 and the conversion source column 1084.
- a value of “no reusable candidate” is stored in the first column 1085 (3036).
- the reusable data conversion component extraction unit 113 of the data integration device 100 determines the degree of coincidence between the column name and the data type of the corresponding column.
- the column having the maximum sum among the corresponding columns is identified (3035).
- the reusable data conversion component extraction unit 113 of the data integration device 100 determines whether there are a plurality of columns specified in step 3035 described above (3037).
- the reusable data conversion component extraction unit 113 of the data integration device 100 determines the corresponding table in the master data format.
- the column name of the corresponding column and the table name of the master data format table having the column are acquired (3039).
- the reusable data conversion component extraction unit 113 acquires the similarity of each table having each corresponding column, and the similarity Specifies the master data format table in which the maximum is between tables (3038).
- the reusable data conversion component extraction unit 113 of the data integration device 100 acquires the column name of the corresponding column and the table name in the specified master data format table.
- the reusable data conversion component extraction unit 113 of the data integration device 100 performs a loop for the number of combinations of the corresponding column and the corresponding table for which the column name and the table name are acquired in either step 3038 or step 3039 ( 30310).
- the reusable data conversion component extraction unit 113 of the data integration device 100 refers to the similarity calculation result storage unit 105 and refers to the master data format table targeted in the above-described loop and the similarity between the table.
- the matching degree calculation result regarding the loop target column is acquired (30311).
- the reusable data conversion component extraction unit 113 of the data integration device 100 selects the column between the master data format table and each table of all data formats in the distribution destination system 140. It is determined whether there is a column whose name or data type matches, that is, the matching degree is (a, b) (a> 0 or b> 0) (30312). If the corresponding column does not exist as a result of the above determination (30312: NO), the reusable data conversion component extraction unit 113 of the data integration device 100 and the conversion source column 1084 in the reusable component extraction result table storage 106 A value of “no reusable candidate” is stored in the conversion destination column 1085 (30314).
- the reusable data conversion component extraction unit 113 of the data integration device 100 adds the matching degree between the column name and the data type of the corresponding column.
- the information of the data format, the corresponding table, and the column name of the delivery destination system 140 that obtains the maximum value is acquired (30313).
- the reusable data conversion component extraction unit 113 of the data integration device 100 determines whether there are a plurality of columns acquired in step 30313 (30315).
- the reusable data conversion component extraction unit 113 of the data integration device 100 has the corresponding master data format of each table including the corresponding columns.
- the table having the maximum similarity between the corresponding tables is specified (30316).
- the reusable data conversion component extraction unit 113 of the data integration device 100 advances the processing to S30317.
- the reusable data conversion component extraction unit 113 of the data integration device 100 has the data format (of the delivery destination system 140) specified in the above step 3016 for the column data in the predetermined table in the master data format.
- the data conversion program which is the column data of the corresponding table, determines that it is a reusable candidate part to be converted to the column of the table to be looped in step 3031 and step 3032 and converts the reusable part extraction result storage table 106
- the “column of the master data format table acquired in step 3038 or 3039” is stored in the source column 1084, and the “column of the acquired data format table of the distribution destination system 140” is stored in the conversion destination column 1085 (30317).
- FIG. 15a and FIG. 15b are reusable as a data conversion program for converting data to the column “train number” of the “train / station” table in the data format “data format Z” requested by the distribution destination system 140.
- a specific processing concept for extracting data conversion processing component candidates will be described.
- the reusable data conversion component extraction unit 113 of the data integration device 100 uses the “train number” column of the “train” table in the master data format as a column whose column name or data type matches between both tables.
- the information of the “train number” column of the “station time” table in the master data format is acquired.
- the reusable data conversion component extraction unit 113 of the data integration device 100 identifies the “station time” table in the master data format having the maximum similarity between tables of “0.47”, and the master data format Get the name of the “station time” table and the name of the “train number” column.
- the result of coincidence calculation between all columns of all tables of “format X” and “data format Y” is acquired.
- the reusable data conversion component extraction unit 113 of the data integration device 100 sets the “train number” column of the “station time” table in the master data format to the “train number” in the “train information” table of the “data format X”.
- the processing component to be converted to the “column” is stored in the reusable component extraction result storage table 106 as a reusable component candidate that performs data conversion to the “train number” column of the “train / station” table of “data format Z”. To do.
- FIG. 16 is an example of a screen generated by the user interface unit 111, and is a diagram illustrating an example of a reuse candidate conversion component presentation screen 1110 that is presented to a data conversion program design developer via the input terminal 120. .
- the reuse candidate conversion component presentation screen 1110 includes a delivery destination system data format input area 11101, a reusable component extraction button 11102, and a reuse candidate conversion component display area 11103.
- the reuse candidate conversion area 11103 records whose data items in the distribution destination data format in the reusable component extraction result storage table 106 match using the value input in the distribution destination system data format input area 11101 as a key.
- Information and the file name of the data conversion program to be converted from the conversion source column 1084 to the conversion destination column 1085 are displayed.
- the file name of the data conversion program is the value of the program file name 1067 of the record extracted from the data conversion processing component definition table 104 using the values of the conversion source column 1084 and the conversion destination column 1085 of the record described above as keys. .
- train information table of “data format X” from “train number” column of “station time” table in master data format, respectively. From the “station name” column of the “station time” table in the master data format to the “station name” column in the “train information” table in the “data format X”, the data conversion program “prg00001.dat” to be converted into the “number” column The data conversion program “prg00005.dat” to be converted is displayed as a reusable candidate.
- the means for extracting candidates for the reusable data conversion program described above include methods based on other known machine learning techniques, such as neural networks and support vector machines.
- a classifier may be used.
- the user interface unit 111 changes the display form of the column to the underlined part.
- a clickable highlight such as a character may be used.
- FIG. 17 shows a display example in this case.
- clickable highlighting is performed when the match is specified in the match determination between columns (steps 3028 to 3029 and step 30210), and the application target of the similarity calculation weight value in the similarity calculation parameter table 102 is applied. It is a description about the column.
- the user interface unit 111 of the data integration device 100 sets the characters of the column “train number” in the “station time” table in the master data format to be underlined with bold characters,
- the characters of the column “train number” in the “train information” table of “data format X” are underlined with bold letters.
- the user interface unit 111 of the data integration device 100 displays the pull-down menu 111031 below the underlined part, for example, according to the event that the above-mentioned design developer operates the input terminal 120 and clicks on the underlined part.
- This pull-down menu 111031 is an interface that allows the design developer to change the value of the similarity calculation weight of the similarity calculation parameter table 102 used in the above-described matching determination for the corresponding column.
- the similarity calculation weight value applied to the “train number” column is a menu that can be selected from “3” to “1”.
- the user interface unit 111 of the data integration device 100 uses each of the above-described similarity calculation weight values selected according to the selection of the similarity calculation weight value received from the design developer in the pull-down menu 111031. Instructs the data structure similarity calculation unit 112 to calculate the similarity.
- the data structure similarity calculation unit 112 re-executes each process necessary for similarity calculation (step 302) in accordance with this instruction. Also, the reusable data conversion component extraction unit 113 that has received the result of the re-execution performs each process necessary for the extraction process (step 303) of the reusable data conversion program based on the result of similarity calculation or the like. Try again.
- the user interface unit 111 acquires the result of such re-execution, updates the screen 1110, and displays it on the input terminal 120. Therefore, the above-described design developer can confirm the result when the weight value for similarity calculation is changed.
- the pull-down menu 111031 is shown as an example of a user interface that accepts a change in the similarity calculation weight value.
- the present invention is not limited to this, and various existing interfaces that receive a change instruction for a predetermined event (eg, slider) A bar, multiple radio buttons, etc.) may be employed as appropriate.
- the present embodiment it is possible to save the data conversion processing component that has already been designed and developed by eliminating the work such as the correspondence between the data format of the data format required by the delivery destination system or application and the data format of the master data. It is possible to present reusable parts to the user of the data integration apparatus.
- the calculation device performs a match determination of each column name and data type between target tables when calculating the first and second similarities.
- the similarity is calculated by applying the result of the match determination to a predetermined algorithm, and when the information of the reusable conversion processing component candidate is output, the specified master data format predetermined table and the predetermined system
- the predetermined device is used as information on a conversion processing component candidate that can be reused by reading out information on the conversion processing definition related to the column for which a match is specified in the matching determination and between the tables. It is good also as what is output to.
- the above-mentioned similarity is efficiently calculated with suitable accuracy, and information on conversion processing component candidates that can be reused with respect to the corresponding columns between the tables specified based on such similarity is obtained in a predetermined manner. It can be presented to the person in charge. As a result, even if the conversion definition is between undefined data, it is possible to support the realization of a more efficient data conversion process with high accuracy.
- the calculation device applies a weight value determined for each column according to the magnitude of the influence on the similarity to the result of the coincidence determination when calculating each similarity. Then, the similarity may be calculated by the predetermined algorithm.
- the computing device outputs the specified master data format predetermined table and the predetermined system predetermined table when outputting the information of the reusable conversion processing component candidate.
- the weight value change interface applied to the column is further output to the change interface. The calculation of each similarity and each process associated with the calculation may be re-executed in response to the change instruction of the weighting value received.
- the information processing apparatus determines whether each column name and data type match between target tables when calculating the first and second similarities. And calculating the similarity by applying the result of the coincidence determination to a predetermined algorithm, and when outputting the information of the reusable conversion processing component candidate, the specified predetermined table in the master data format and the predetermined system
- the predetermined table information on the conversion processing definition related to the column for which the match is specified in the match determination and between the tables is read from the storage device, and the information is predetermined as reusable conversion processing component candidate information. It is good also as outputting to an apparatus.
- the information processing apparatus uses the weighting value determined for each column according to the magnitude of the influence on the similarity as the result of the coincidence determination when calculating each similarity.
- the similarity may be calculated by the predetermined algorithm.
- the information processing apparatus when the information processing apparatus outputs information on the reusable conversion processing component candidate, the specified master data format predetermined table and the predetermined system predetermined table For the column in which the match is specified in the match determination and the weight value is applied, and the weight value change interface applied to the column is further output, and the change interface In accordance with the weighting value change instruction received at, the calculation of each similarity and each process associated with the calculation may be re-executed.
- Data Integration Device 101 Data Storage Unit 102 Similarity Calculation Parameter Table 103 Similarity Calculation Result Temporary Storage Unit 104 Data Conversion Processing Component Definition Table 105 Similarity Calculation Result Storage Unit 106 Reusable Component Extraction Result Storage Table 107 Data Structure Definition Table 108 Data conversion component library 109 Master data storage unit 110 Distribution source data storage unit 111 User interface unit 112 Data structure similarity calculation unit 113 Reusable data conversion component extraction unit 114 Communication unit 120 Input terminal 130 Distribution source system 131 Data structure definition Information 140 Distribution destination system 150 Dedicated line 201 CPU (arithmetic unit) 202 HDD (storage device) 203 Memory 204 Input Device 205 Display Device 206 Communication Device 207 Program
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Theoretical Computer Science (AREA)
- Human Resources & Organizations (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Strategic Management (AREA)
- Entrepreneurship & Innovation (AREA)
- Economics (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Development Economics (AREA)
- Marketing (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Educational Administration (AREA)
- Game Theory and Decision Science (AREA)
- Computational Mathematics (AREA)
- Computing Systems (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Human Computer Interaction (AREA)
Abstract
【課題】変換定義等が未定義のデータ間であっても効率的なデータ変換処理の実現を支援する。 【解決手段】データ統合装置100において、記憶装置202にデータ形式の情報が未格納である所定データに関するテーブルのデータ形式と、所定テーブルごとのマスタデータ形式との類似度を算出し、当該類似度が所定基準を満たすマスタデータ形式の所定テーブルを特定し、特定した所定テーブルのマスタデータ形式と、各システムの各テーブルのデータ形式との類似度を算出し、当該類似度が所定基準を満たす所定システムの所定テーブルを特定し、特定したマスタデータ形式の所定テーブルと所定システムの所定テーブルとについての変換処理定義の情報を再利用可能な変換処理部品候補の情報として出力する演算装置201を含む構成とする。
Description
本発明は、データ統合装置およびデータ統合方法に関するものであり、具体的には、変換定義等が未定義のデータ間であっても効率的なデータ変換処理の実現を支援する技術に関する。
多種多様なシステムを跨いだデータの横断的利活用促進を目的に、データ統合装置が開発されてきた。こうしたデータ統合装置では、データソースとなる様々な業務システムの多種多様なデータを一元的に収集・蓄積する一方で、当該蓄積されたデータの形式や構造を、利用者の要求に応じて変換する処理を行う。
上述のような変換処理に際しては、変換元データのデータ構造と変換先データのデータ構造との間で互いのデータ項目同士の対応関係付けを行う処理が予め必要となる。処理対象となるデータがRDBデータであれば、そうした処理のロジックをテーブル毎に設計する必要がある。
この変換処理において多種多様なシステムのデータを処理対象とした場合、変換対象となるテーブル数が膨大となるケースが想定される。その場合、各テーブルのデータ項目同士の対応関係付けに要する手間や時間も増大し、上述の変換処理のロジック設計に要する設計開発者の作業工数・コストが増大することが懸念される。
こうしたデータ統合に伴う設計者の作業工数低減を課題とする従来技術として、以下のものが提案されている。すなわち、情報源から抽出したデータを変換して格納先に登録するための情報統合プログラムであって、前記情報源から取得した第1のスキーマ情報と、当該第1のスキーマ情報の変更前に前記情報源から取得した第2のスキーマ情報とを比較し、前記情報源のスキーマの変更を検出するステップと、前記スキーマの変更に関連する項目の属性値で、スキーマ情報に含まれる属性値とデータモデルにおける項目情報とを対応付けて格納する対応表格納部を探索するステップと、前記対応表格納部において前記スキーマの変更に関連する項目の属性値が検出された場合には、当該スキーマの変更に関連する項目の属性値に対応する項目情報を用いて、前記第2のスキーマ情報に対応するデータモデルである変更前データモデルを格納するメタ情報格納部に格納されている前記変更前データモデルを改修して変更後データモデルを生成し、記憶装置に格納するステップと、前記記憶装置に格納された前記変更後データモデルを、前記格納先に対応するデータモデルに変換するための変更後統合ロジックを生成し、前記メタ情報格納部に格納するロジック改修ステップとをコンピュータに実行させるための情報統合装置(特許文献1参照)などが提案されている。
しかしながら従来技術においては、上述の変換処理を要求する所定システムやアプリケーションにとって必要なデータ形式が、統合されたデータ形式とは異なる場合がある。ここで、統合されたデータ形式とは、例えば、多種多様なシステムにおける所定データの各間で最も共通的に用いられているデータ項目からなるデータ形式であり、各システムにおけるデータとの間で、上述したデータ項目同士の対応関係付けが定義済みのものである。従って、上述の所定システム等が必要とするデータ形式が、統合されたデータ形式と異なることは、上述の変換処理のために必要な定義等が未知の状態であることを意味する。
この場合、統合されたデータ形式を、所定システム等が必要なデータ形式へと変換するための、変換処理ロジックの設計開発作業が生じる。また、上述の統合されたデータ形式においては(各システムのデータ間で共通的に用いられないため)変換対象外とされたデータについて要求があった場合、例えば、情報源のシステムの所定データに関してデータ統合装置にて上述の統合をするための対応表や変換処理ロジック設計が必要となってしまう。
そこで本発明の目的は、変換定義等が未定義のデータ間であっても効率的なデータ変換処理の実現を支援する技術を提供することにある。
上記課題を解決する本発明のデータ統合装置は、所定事象のデータに関して所定システムで用いる各テーブルのデータ形式、および、前記データの間で普遍的なデータ形式として所定テーブルごとに予め定めたマスタデータ形式、の各情報と、前記マスタデータ形式の所定テーブルと前記所定システムの所定データ形式の所定テーブルとの間でのデータの変換処理定義の情報と、を格納した記憶装置と、前記記憶装置にデータ形式の情報が未格納である所定データに関するテーブルのデータ形式と、前記所定テーブルごとのマスタデータ形式との類似度たる第1類似度を算出し、当該第1類似度が所定基準を満たすマスタデータ形式の所定テーブルを特定する処理と、前記特定した所定テーブルのマスタデータ形式と、前記記憶装置に格納している前記システムの各テーブルのデータ形式との類似度たる第2類似度を算出し、当該第2類似度が所定基準を満たす所定システムの所定テーブルを特定する処理と、前記特定した、マスタデータ形式の所定テーブルと前記所定システムの所定テーブルとについて、当該テーブルの間に関する前記変換処理定義の情報を記憶装置より読み出し、当該情報を再利用可能な変換処理部品候補の情報として所定装置に出力する処理と、を実行する演算装置と、を備えることを特徴する。
また、本発明のデータ統合方法は、所定事象のデータに関して所定システムで用いる各テーブルのデータ形式、および、前記データの間で普遍的なデータ形式として所定テーブルごとに予め定めたマスタデータ形式、の各情報と、前記マスタデータ形式の所定テーブルと前記所定システムの所定データ形式の所定テーブルとの間でのデータの変換処理定義の情報と、を格納した記憶装置を備える情報処理装置が、前記記憶装置にデータ形式の情報が未格納である所定データに関するテーブルのデータ形式と、前記所定テーブルごとのマスタデータ形式との類似度たる第1類似度を算出し、当該第1類似度が所定基準を満たすマスタデータ形式の所定テーブルを特定する処理と、前記特定した所定テーブルのマスタデータ形式と、前記記憶装置に格納している前記システムの各テーブルのデータ形式との類似度たる第2類似度を算出し、当該第2類似度が所定基準を満たす所定システムの所定テーブルを特定する処理と、前記特定した、マスタデータ形式の所定テーブルと前記所定システムの所定テーブルとについて、当該テーブルの間に関する前記変換処理定義の情報を記憶装置より読み出し、当該情報を再利用可能な変換処理部品候補の情報として所定装置に出力する処理と、を実行することを特徴する。
本発明によれば、変換定義等が未定義のデータ間であっても効率的なデータ変換処理の実現を支援可能となる。
---ネットワーク構成---
以下に本発明の実施形態について図面を用いて詳細に説明する。図1は、本実施形態のデータ統合装置100を含むネットワーク構成図である。図1にて示すように、本実施形態のデータ統合装置100は、入力端末120、配信元システム130、および配信先システム140と、専用回線150を介して通信可能に接続されている。
以下に本発明の実施形態について図面を用いて詳細に説明する。図1は、本実施形態のデータ統合装置100を含むネットワーク構成図である。図1にて示すように、本実施形態のデータ統合装置100は、入力端末120、配信元システム130、および配信先システム140と、専用回線150を介して通信可能に接続されている。
このうち、配信元システム130は、例えば鉄道事業者が管理・運用する列車ダイヤデータを保持するシステムである。この配信元システム130からデータ統合装置100に配信されるデータが、データ統合装置100における所定のデータ変換プログラム(変換処理定義)によって、配信先システム140におけるデータ形式に変換され、当該配信先システム140に配信されることとなる。
また、配信先システム140は、上述の配信元システム130由来の所定データに基づき、適宜な業務やサービスを実行する鉄道事業者が管理・運用するシステムである。具体的には、列車運行状況の観測データと上述の列車ダイヤデータとを利用して、列車運行管理を行うシステム等を想定出来る。
また、入力端末120は、上述の配信元システム130から得られるデータを、配信先システム140の望むデータ形式に変換するためのデータ変換プログラム、の設計開発者が操作する端末となる。
こうしたネットワーク構成に含まれる本実施形態のデータ統合装置100は、適宜なハードウェアおよびソフトウェアにより実装される機能部品として、ユーザインターフェース部111、データ構造類似度算出部112、再利用可能データ変換部品抽出部113、および通信部114、を備える。またデータ統合装置100は、こうした機能部が取り扱うデータの格納先として、データ格納部101を備える。
上述の機能部のうち、データ構造類似度算出部112は、配信先システム140が要求するデータ形式のテーブルにおけるデータ構造と、データ統合装置100が予め保持するマスタデータ形式のテーブルにおけるデータ構造との、類似度を算出するものである。上述のマスタデータ形式(統合されたデータ形式)とは、例えば、所定業務のデータに関して複数の配信先システム140を跨がって共通的に用いられているデータ項目、からなる所定テーブルのデータ形式を想定する。
なお、こうしたマスタデータ形式と配信先システム140におけるデータ形式(データ統合装置100が既知のもの)との関係において、各データ項目同士の対応関係付けが定義済み、すなわち、該当テーブルのデータ項目間でデータ変換処理を行うためのデータ変換プログラムがデータ統合装置100に既に保持されているとする。上述のデータ構造類似度算出部112で行う処理手順の詳細は、図12aに示すフローチャートにて後述する。
また、再利用可能データ変換部品抽出部113は、配信元システム130から配信されたデータを、マスタデータ形式を介することで配信先システム140が要求するデータ形式に変換する、データ変換プログラムの候補、すなわち「再利用可能なデータ変換処理部品候補」を抽出するものである。再利用可能データ変換部品抽出部113で行う処理手順の詳細は図14に示すフローチャートにて後述する。
また、通信部114は、専用回線150を介して配信元システム130と通信し、所定の配信データ及びこの配信データに関するデータ構造定義情報131の送受信を行うものである。上述の配信データ(例:列車ダイヤデータ)は、データ構造定義テーブル107(図2)で定義されるデータ構造を有した表形式データを想定する。データ統合装置100は、こうした表形式データを配信元システム130から得て配信元データ格納部110(図8)に格納することとなる。
一方、上述のデータ構造定義情報131は、配信データのデータ形式、テーブル名、当該テーブルにおけるカラム、そのデータ型、の各情報から構成された情報である。データ統合装置100は、このデータ構造定義情報131を、データ構造定義テーブル107に格納する。
上述のデータ構造定義テーブル107は、図2に示すデータフォーマットを有しており、そのデータ項目として、データ形式1101、テーブル1072、カラム1103、および、データ型1104を含んでいる。図2に示す例では、「マスタデータ」、「データ形式X」、「データ形式Y」の計3種類のデータ形式に関する構造定義の情報が格納されている。
続いて、ユーザインターフェース部111は、データ変換プログラムの設計開発者に向けて、配信先システム140のデータ形式にデータ変換処理を行うために再利用可能なデータ変換プログラム(データ変換部品)の候補を示す、再利用候補変換部品提示画面1110(図16)を生成する。
この再利用候補変換部品提示画面1110は、配信先システム140のデータ形式を入力するための配信先システムデータ形式入力領域11101と、再利用可能部品抽出ボタン11102と、再利用候補変換部品一覧表示領域11103と、により構成される。
データ変換プログラムの設計開発者が、上述の再利用候補変換部品提示画面1110を入力端末120にて閲覧し、配信先システムデータ形式入力領域11101に配信先システム140で必要とされるデータ形式を入力し、再利用可能部品抽出ボタン11102を押下したとする。この場合、データ統合装置100は、配信先システムデータ形式入力領域11101で入力されたデータ形式に応じて、データ構造類似度算出処理、及び、再利用可能データ変換部品抽出処理を実行する。
なお、上述の再利用候補変換部品一覧表示領域11103には、データ統合装置100が、再利用可能部品抽出結果格納テーブル106(図3)より読み出した再利用候補変換部品(既知のデータ変換プログラム)を一覧表示する。
この再利用可能部品抽出結果格納テーブル106は、図3に示すデータフォーマットを有しており、そのデータ項目として、配信先システム140におけるデータ形式1081、テーブル1062、およびカラム1083と、データ変換の基点となるマスタデータ形式の該当テーブルおよびカラムを示す変換元カラム1084と、(マスタデータ形式の所定テーブルの所定カラムの値を、所定の配信先システムにおけるデータ形式の所定テーブルの所定カラムの値に対応付けする、すなわちデータ変換処理を行うデータ変換プログラムが既知の)変換先カラム1085と、を含んでいる。
図3に示す例では、配信先データ「データ形式Z」のデータテーブル「列車・駅」のカラム「列車番号」に関しては、「マスタデータ形式の駅時刻テーブルの列車番号カラム」を、「データ形式Xの列車情報テーブルの列車番号カラム」へと変換するデータ変換プログラムが再利用可能候補であるとして、該当情報が格納されている。
また、データ格納部101における類似度算出パラメータテーブル102は、図4に示すデータフォーマットを有しており、データ構造類似度算出処理において利用する重み値の情報を定義している。そのデータ項目としては、項目名1031と、類似度算出重み1032を含む。
このうち項目名1031は、テーブルにおけるカラム名を示しており、図4の例では、「列車」や「出発時刻」という値が格納されている。また、類似度算出重み1032は、データ構造間の類似度算出において、該当カラムの一致判定の結果に適用すべき重み値を示しており、図4の例では類似度算出重みとして「2」や「3」という値が格納されている。こうした類似度算出パラメータテーブル102の各データは、予め有識者が登録しておくものとする。
また、データ格納部101における類似度算出結果一時格納部103は、マスタデータ形式のテーブルと配信先システム140が要求するデータ形式のテーブルとの間の類似度を算出した結果を、図5に示すように表形式で格納する格納先となる。
そのデータ項目としては、テーブル1041と、カラム1042と、テーブル1043と、カラム1044と、データ型1045と、テーブル間類似度1046とを含む。
このうちテーブル1041は、マスタデータ形式のテーブル名を示しており、カラム1042は、当該テーブル1041に格納されるテーブルのカラム名を示している。また、テーブル1043は、配信先システム140が要求するデータ形式のテーブル名を示しており、カラム1044は、当該テーブル1043に格納されるテーブルのカラム名を示している。
また、データ型1045は、上述のカラム1042とカラム1044のデータ型を示している。また、テーブル間類似度1046は、上述のテーブル1041とテーブル1043に格納されるテーブル間の類似度の算出結果を示す。なお、カラム間の一致度に関する算出結果は、一致度格納領域1047に格納される。
ここで、カラムの名称の一致度を算出した結果がN、データ型の一致度を算出した結果がMのとき、(N,M)のようにそれぞれの一致度算出結果の組として結果を格納することとする。
なお、図5で例示する表における縦方向の長さは、テーブル1041に格納されるテーブルのカラム数分、また、当該表における横方向の長さは、テーブル1043に格納されるテーブルのカラム数分となる。
また、図5の例では、マスタデータ形式の「列車」テーブルと、「データ形式Z」の「」列車・駅」テーブルの類似度を算出した場合の結果が示されている。マスタデータ形式の「列車」テーブルの「列車番号」カラムと「データ形式Z」の「列車・駅」テーブルの「列車番号」カラムは、カラム名がいずれも「列車番号」であることからカラム名の一致度は1×類似度算出重み(3)=3と算出される。また、データ型はいずれのカラムも「Integer(整数型)」であることから、データ型の一致度は1である。
また、データ格納部101における類似度算出結果格納部105は、マスタデータ形式のテーブルとデータ構造定義テーブルに定義されるデータ形式のテーブルとの間の類似度を算出した結果を、図6に示す表形式で格納するものである。そのデータ項目としては、テーブル1071と、カラム1072と、データ形式1073と、テーブル1074と、カラム1075と、データ型1076と、テーブル間類似度1077とを含む。
このうちテーブル1071と、カラム1072と、テーブル1074と、カラム1075と、データ型1076と、テーブル間類似度1077は、上述の図5で例示した類似度算出結果一時格納部103のデータフォーマット例と同様の構成である。また、データ形式1073は、データ構造定義テーブル107のデータ形式のデータ項目と同様の構成である。また、一致度格納領域1078に格納される値は、上述の図5で例示した類似度算出結果一時格納部103のデータフォーマット例と同様の構成である。図6に示す例では、マスタデータ形式の「列車」テーブルと、「データ形式X」及び「データ形式Y」の全テーブルとのそれぞれの類似度を算出した場合の結果が示されている。
また、データ格納部101におけるデータ変換処理部品定義テーブル104は、データ形式を変換するためのデータ変換プログラムの情報を定義するデータテーブルであり、図7に示すデータフォーマットを有する。
そのデータ項目としては、変換元データ形式1061と、変換元テーブル1042と、変換元カラム1063と、変換先データ形式1064と、変換先テーブル1065と、変換先カラム1066と、プログラムファイル名1067とを含む。
このうち変換元データ形式1061は、変換元データのデータ形式を示し、変換元テーブル1042は、当該変換元データのデータテーブル名を示し、変換元カラム1063は、変換元データテーブルのカラム名を示す。
また、変換先データ形式1064は、変換先データのデータ形式を示し、変換先テーブル1045は、変換先データのデータテーブル名を示し、変換先カラム1066は、変換先データテーブルのカラム名を示し、プログラムファイル名1067は、変換元カラム1063を変換先カラム1066へデータを変換するためのプログラムのファイル名を示す。
図7に示すデータ変換処理部品定義テーブル104の例では、マスタデータ形式のテーブル「駅時刻」のカラム「列車番号」を、「データ形式X」のテーブル「列車情報」のカラム「列車番号」へデータ変換するためのプログラム「prg00001.dat」の名が格納されている。
---データ変換処理の概念---
ここで、本実施形態のデータ統合装置100におけるデータ変換処理の原理について、その概念を説明する。図8は、データ統合装置100におけるデータ変換処理の原理を示す説明図である。
ここで、本実施形態のデータ統合装置100におけるデータ変換処理の原理について、その概念を説明する。図8は、データ統合装置100におけるデータ変換処理の原理を示す説明図である。
本実施形態におけるデータ統合装置100は、配信元データ格納部110に格納する配信元データを、マスタデータ形式へ変換しマスタデータ格納部109に格納する。また、データ統合装置100は、マスタデータ格納部109に格納した上述のデータを、配信先システム140が要求するデータ形式へ変換する。このデータ形式の変換処理に際し、データ統合装置100は、変換元のテーブルにおけるカラムと変換先のテーブルにおけるカラムとの対応付け、型変換、演算処理を行い、その結果を、データ変換部品ライブラリ108に格納するデータ変換プログラムとして格納する。図8に示す例では、マスタデータ格納部109に格納されるマスタデータ形式のデータを、データ変換部品ライブラリ108における配信先システム140が要求するデータ形式へのデータ変換部品群(データ変換プログラム群)のうち、「データ形式X」の全テーブルの全カラム毎のデータ変換プログラムを用いることで、「配信先システムX」が要求する「データ形式X」への変換を実現する。配信先システム140が要求するデータ形式へのデータ変換プログラムは、予め開発され、データ変換部品ライブラリ108に登録されているものとする。
これら機能部による処理の詳細は、以降の図10、図12a、図12b、図14に示すフローチャートを用いて後述する。
---ハードウェア構成---
本実施形態におけるデータ統合装置100のハードウェア構成は以下の如くとなる。図9は、データ統合装置100のハードウェア構成例を示す図である。
本実施形態におけるデータ統合装置100のハードウェア構成は以下の如くとなる。図9は、データ統合装置100のハードウェア構成例を示す図である。
本実施形態のデータ統合装置100は、CPU201、HDD202、メモリ203、入力装置204、表示装置205、および通信装置206を備える。このうちCPU201は、データの入出力、読み込み、格納および各種処理を実行する演算装置である。また、HDD202は、データを記憶する不揮発性の記憶手段である。また、メモリ203は、プログラムおよびデータを一時的に記憶する揮発性の記憶手段である。
また、入力装置204は、ユーザからの操作入力を受け付ける、キーボードやマウス、マイク等の装置である。また、表示装置205は、利用者にデータを表示する、ディスプレイ等の装置である。また、通信装置206は、配信元システム130や配信先システム140と専用回線150を介して通信し、データを送受信するネットワークカード等の装置である。
こうしたデータ統合装置100は、例えば上述のHDD202またはメモリ203に保持するプログラム207をCPU201が実行することで、上述の各機能部を実装する。
---メインフロー例---
以下、本実施形態におけるデータ統合方法の実際手順について図に基づき説明する。以下で説明するデータ統合方法に対応する各種動作は、データ統合装置100がメモリ等に読み出して実行するプログラムによって実現される。そして、このプログラムは、以下に説明される各種の動作を行うためのコードから構成されている。
以下、本実施形態におけるデータ統合方法の実際手順について図に基づき説明する。以下で説明するデータ統合方法に対応する各種動作は、データ統合装置100がメモリ等に読み出して実行するプログラムによって実現される。そして、このプログラムは、以下に説明される各種の動作を行うためのコードから構成されている。
図10は、本実施形態におけるデータ統合方法のフロー例1を示す図であり、具体的には、データ統合装置100においてデータ構造類似度を算出し、(配信元システム130のデータを、配信先システム140が望むデータ形式に変換するため)再利用可能なデータ変換プログラムを既存のデータ変換プログラム中から抽出する一連の手順を示すフローチャートである。
ここで、データ変換プログラムの設計開発者が、入力端末120に表示される図16の設計開発者提示画面1110において、配信先システム140が要求するデータ形式と、データ構造と、データ構造類似度算出処理要求とを入力したとする。
この場合、データ統合装置100は、上述のデータ変換プログラムの設計開発者が入力した、配信先システム140が要求するデータ形式およびデータ構造の各情報と、データ構造類似度算出処理要求とを、入力端末120から受信する(301)。勿論、データ統合装置100が、こうした情報を別の手段、経路で予め取得済みである場合、本ステップは不要である。
図11に、配信先システム140が要求するデータ形式「データ形式Z」の「列車・駅」テーブルに関するデータ構造を示すデータフォーマット例を示す。例示するデータ構造におけるデータ項目としては、データ形式1401と、テーブル1402と、カラム1403と、データ型1404を含んでいる。このデータ項目の構成は、上述のデータ構造定義テーブル107のデータ項目と同様の構成である。
続いて、データ統合装置100のデータ構造類似度算出部112は、配信先システム140が要求するデータ形式のテーブルにおけるデータ構造と、マスタデータ形式の各テーブルにおけるデータ構造との類似度を算出する(302)。
また、データ統合装置100の再利用可能データ変換部品抽出部113は、配信先システム140が要求するデータ形式へデータ変換を行うための、再利用可能なデータ変換処理プログラムの候補を抽出する(303)。
次に、データ統合装置100のユーザインターフェース部111は、図3に示した再利用可能部品抽出結果格納テーブル106を参照し、上述の配信先システム140が要求するデータ形式へデータ変換を行うデータ変換プログラムとして再利用可能なプログラム一覧を表示する画面を生成し、当該画面(図16)を表示端末に返し(304)、処理を終了する。
なお、上述のデータ構造類似度算出部112で行う処理手順の詳細は図12aに示すフローチャートにて後述する。また、再利用可能データ変換部品抽出部113で行う処理手順の詳細は図14に示すフローチャートにて後述する。
---詳細フロー例1---
図12aは、データ構造類似度算出部112が、配信先システム140の要求するデータ形式のテーブルにおけるデータ構造と、マスタデータ形式の各テーブルにおけるデータ構造との類似度を算出する手順の詳細を示すフローチャートである。
図12aは、データ構造類似度算出部112が、配信先システム140の要求するデータ形式のテーブルにおけるデータ構造と、マスタデータ形式の各テーブルにおけるデータ構造との類似度を算出する手順の詳細を示すフローチャートである。
まず、データ統合装置100のデータ構造類似度算出部112は、データ構造定義テーブル107において、データ形式が「マスタデータ形式」である各テーブルのデータレコードを取得する(3021)。
次に、データ統合装置100のデータ構造類似度算出部112は、ステップ3021でデータレコードを取得したマスタデータ形式のテーブル全てに対して、ループを行う(3022)。
続いて、データ統合装置100のデータ構造類似度算出部112は、データ構造定義テーブル107に登録済みの、「マスタデータ形式」以外のデータ形式、すなわち既知の配信先システム140の各データ形式のテーブル全てに対してループを行う(3023)。
次に、データ統合装置100のデータ構造類似度算出部112は、ステップ3021で得たマスタデータ形式のテーブルであって、ループ対象テーブルのカラムと、ステップ3023でループ対象とした配信先システム140のデータ形式のテーブルであって、ループ対象テーブルのカラムとの一致度と、当該テーブル間の類似度とをそれぞれ算出する(30231)。このテーブル間の類似度を算出する処理手順の詳細は、図12bに示すフローチャートにて説明する。
図12bは、データ構造類似度算出部112が、上述したマスタデータ形式のループ対象テーブルのカラムと、配信先システム140のデータ形式のループ対象のカラムとの一致度と、当該テーブル間の類似度とをそれぞれ算出する手順の詳細を示すフローチャートである。
このフローにおいて、まず、データ統合装置100のデータ構造類似度算出部112は、上述のステップ3022でループ対象テーブルとした、マスタデータ形式のテーブルの全カラムに対してループを行う(3024)。
データ統合装置100のデータ構造類似度算出部112は、当該ループ内で、上述のステップ3023でループ対象テーブルとした、配信先システム140のデータ形式のテーブルの全カラムに対してループを行う(3025)。
続いて、データ統合装置100のデータ構造類似度算出部112は、ループ対象であるマスタデータ形式のテーブルにおけるループ対象カラムのカラム名と、ループ対象である配信先システム140のデータ形式のテーブルのループ対象カラムのカラム名とが一致しているか判定する(3026)。
上述の判定の結果、両カラム名が一致していなければ(3026:NO)、データ統合装置100のデータ構造類似度算出部112は、「0」を類似度算出結果一時格納部103の一致度格納領域1047に格納する(30211)。
一方、上述の判定の結果、両カラム名が一致しているならば(3026:YES)、データ統合装置100のデータ構造類似度算出部112は、類似度算出パラメータテーブル102を参照し、当該テーブルにおける全ての項目名と類似度算出重みの各値を取得する(3027)。
データ統合装置100のデータ構造類似度算出部112は、ステップ3027で得た項目名の中に、ステップ3026で判定結果が「一致」となった対象カラム名が定義されているか判定する(3028)。
上述の判定の結果、上述の対象カラム名が定義されていなければ(3028:NO)、データ統合装置100のデータ構造類似度算出部112は、「1」を類似度算出結果一時格納部103の一致度格納領域1047に格納する(30210)。
一方、上述の判定の結果、上述の対象カラム名が定義されていれば(3028:YES)、データ統合装置100のデータ構造類似度算出部112は、「1×類似度算出重み」の算出結果を、類似度算出結果一時格納部103の一致度格納領域1047に格納する(3029)。
続いて、データ統合装置100のデータ構造類似度算出部112は、ループ対象であるマスタデータ形式のテーブルにおけるループ対象カラムのデータ型と、ループ対象である配信先システム140のデータ形式のテーブルにおけるループ対象カラムのデータ型とが一致しているか判定する(30212)。
上述の判定の結果、両データ型が一致しているならば(30212:YES)、データ統合装置100のデータ構造類似度算出部112は、「1」を、類似度算出結果一時格納部103の一致度格納領域1047に格納する(30213)。
一方、上述の判定の結果、両データ型が一致していなければ(30212:NO)、データ統合装置100のデータ構造類似度算出部112は、「0」を類似度算出結果一時格納部103の一致度格納領域1047に格納する(30214)。
次に、データ統合装置100のデータ構造類似度算出部112は、上述でループ対象とした、マスタデータ形式のテーブルと配信先システム140のデータ形式のテーブルとの間の類似度を、(一致度の総和)/{2×(マスタデータテーブルのカラム数×比較するテーブルのカラム数)}、の式で算出し、当該算出結果を類似度算出結果一時格納部103のテーブル間類似度1046に格納し(30215)、処理を終了する。
ここで、上述の図12aおよび図12bの各フローで示した処理の、具体的な例について、図13を踏まえて説明する。図13は、マスタデータ形式の「列車」テーブルと、「データ形式Z」の「列車・駅」テーブルを対象に、類似度算出の処理を行う概念を示す説明図である。
この場合、データ統合装置100は、マスタデータ形式の「列車」テーブルと、「データ形式Z」の「列車・駅」テーブルの「列車番号」カラムは、カラム名が一致していると判定する。この一致するカラム名「列車番号」は、類似度算出パラメータテーブル102の項目名に定義されている。よって、データ統合装置100は、この「列車番号」に対応する類似度算出重み「3」を取得する。
そこでデータ統合装置100は、一致度格納領域1047のうち「列車番号」カラムに対応した領域10471に、カラム名の一致度算出結果である「3」を格納する。
続いて、データ統合装置100は、この「列車番号」カラムのデータ型はいずれも「Integer」で一致していることから、一致度格納領域1047のうち「列車番号」カラムに対応した領域10471に、データ型の一致度算出結果として「1」を格納する。 データ統合装置100は、上述の処理を、マスタデータ形式の「列車」テーブルの各カラムと、「データ形式Z」の「列車・駅」テーブルの各カラムとの、全組合せに対して行う。
最後に、データ統合装置100は、上述のマスタデータ形式の「列車」テーブルと、「データ形式Z」の「列車・駅」テーブルとに関して、テーブル間類似度を算出する。ここで、図7に例示する一致度格納領域1047で格納している各カラムの一致度の総和は、3+1+1+1=6、また、マスタデータ形式の「列車」テーブルにおけるカラム数は3、また、「データ形式Z」の「列車・駅」テーブルにおけるカラム数は4である。
このことから、データ統合装置100は、当該テーブル間の類似度を、(一致度の総和)/{2×(マスタデータテーブルのカラム数×比較するテーブルのカラム数)}=6/(2×3×4)=0.25と算出する。
---詳細フロー例2---
図14は、配信元システム130の所定データを配信先システム140が要求するデータ形式へデータ変換する際に再利用可能な、データ変換処理プログラムの候補を、データ統合装置100の再利用可能データ変換部品抽出部113が抽出する手順(メインフローにおけるステップ303)の詳細を示すフローチャートである。なお、この「再利用可能なデータ変換プログラム」とは、マスタデータ形式の所定テーブルとの関係において、配信元システム130の所定テーブルのデータを、所定配信先システム140のデータ形式向けにデータ変換を行うべく定義済みの、すなわち既知のデータ変換プログラムである。
図14は、配信元システム130の所定データを配信先システム140が要求するデータ形式へデータ変換する際に再利用可能な、データ変換処理プログラムの候補を、データ統合装置100の再利用可能データ変換部品抽出部113が抽出する手順(メインフローにおけるステップ303)の詳細を示すフローチャートである。なお、この「再利用可能なデータ変換プログラム」とは、マスタデータ形式の所定テーブルとの関係において、配信元システム130の所定テーブルのデータを、所定配信先システム140のデータ形式向けにデータ変換を行うべく定義済みの、すなわち既知のデータ変換プログラムである。
つまり、本実施形態のデータ統合装置100は、既知のデータ変換プログラムを、未だデータ変換プログラムが定義されていない配信先システム140のデータ形式向けに再利用すべく、その情報を提供するのである。
このフローにおいて、データ統合装置100の再利用可能データ変換部品抽出部113は、配信先システム140が要求するデータ形式の該当テーブル(ステップ301で情報を得ている)全てに対して、ループを行う(3031)。
続いてデータ統合装置100の再利用可能データ変換部品抽出部113は、当該ループ内で、ループ対象であるテーブルのカラム全てに対してループを行う(3032)。
ここでデータ統合装置100の再利用可能データ変換部品抽出部113は、マスタデータ形式の各テーブルと上述のループ対象である配信先システム140のデータ形式のテーブルと、の関係について、類似度算出結果格納部105(図6)を参照し、ループ対象テーブルのカラムと、カラム名またはデータ型が一致するマスタデータ形式のカラムとそのテーブルの情報を取得する(3033)。
続いてデータ統合装置100の再利用可能データ変換部品抽出部113は、上述のステップ3033の結果、カラム名またはデータ型が一致する、すなわち、一致度が(a,b)(a>0またはb>0)であるカラムが存在するか判定する(3034)。
この判定の結果、該当カラムが存在しなければ(3034:NO)、データ統合装置100の再利用可能データ変換部品抽出部113は、再利用可能部品抽出結果格納テーブル106の変換元カラム1084と変換先カラム1085に、「再利用可能候補無し」の値を格納する(3036)。
一方、上述の判定の結果、該当カラムが存在するならば(3034:YES)、データ統合装置100の再利用可能データ変換部品抽出部113は、該当カラムのカラム名とデータ型の各一致度を合計した値が、該当カラム間で最大となるカラムを特定する(3035)。
次に、データ統合装置100の再利用可能データ変換部品抽出部113は、上述のステップ3035で特定したカラムが複数存在するか判定する(3037)。
上述の判定の結果、該当カラムが複数存在しない場合(3037:NO)、すなわち1つのみであった場合、データ統合装置100の再利用可能データ変換部品抽出部113は、マスタデータ形式の該当テーブルにおける該当カラムのカラム名と、当該カラムを有する、マスタデータ形式のテーブルのテーブル名を取得する(3039)。
一方、上述の判定の結果、該当カラムが複数存在する場合(3037:YES)、再利用可能データ変換部品抽出部113は、該当する各カラムを有する各テーブルの類似度を取得し、その類似度がテーブル間で最大となる、マスタデータ形式のテーブルを特定する(3038)。また、このステップ3038において、データ統合装置100の再利用可能データ変換部品抽出部113は、特定したマスタデータ形式のテーブルにおける、該当カラムのカラム名と当該テーブル名を取得する。
続いて、データ統合装置100の再利用可能データ変換部品抽出部113は、ステップ3038またはステップ3039のいずれかでカラム名およびテーブル名を取得した該当カラムと該当テーブルの組数分だけループを行う(30310)。
ここでデータ統合装置100の再利用可能データ変換部品抽出部113は、類似度算出結果格納部105を参照し、上述のループにて対象とするマスタデータ形式のテーブルと、当該テーブルとの類似度を算出済みの、配信先システム140における全データ形式の各テーブルとに関して、ループ対象のカラムに関する一致度算出結果を取得する(30311)。
ここで得た情報に基づき、データ統合装置100の再利用可能データ変換部品抽出部113は、マスタデータ形式のテーブルと、配信先システム140における全データ形式の各テーブルのいずれかとの間で、カラム名あるいはデータ型が一致する、すなわち、一致度が(a,b)(a>0またはb>0)であるカラムが存在するか判定する(30312)。 上述の判定の結果、該当カラムが存在しなければ(30312:NO)、データ統合装置100の再利用可能データ変換部品抽出部113は、再利用可能部品抽出結果テーブル格納106の変換元カラム1084と変換先カラム1085に「再利用可能候補無し」の値を格納する(30314)。
一方、上述の判定の結果、該当カラムが存在するならば(30312:YES)、データ統合装置100の再利用可能データ変換部品抽出部113は、該当カラムのカラム名とデータ型の一致度を合計した値が最大となる、配信先システム140のデータ形式、該当テーブル、およびカラム名の各情報を取得する(30313)。
続いてデータ統合装置100の再利用可能データ変換部品抽出部113は、ステップ30313で取得したカラムが複数存在するか判定する(30315)。
上述の判定の結果、該当カラムが複数存在するならば(30315:YES)、データ統合装置100の再利用可能データ変換部品抽出部113は、該当カラムを含む各テーブルの、対応するマスタデータ形式のテーブルとの類似度を参照し、類似度が該当テーブル間で最大となるテーブルを特定する(30316)。
一方、該当カラムが複数存在しなければ(30315:NO)、データ統合装置100の再利用可能データ変換部品抽出部113は、処理をS30317へ進める。
次に、データ統合装置100の再利用可能データ変換部品抽出部113は、上述のマスタデータ形式の所定テーブルにおけるカラムのデータを、上述のステップ3016で特定した(配信先システム140の)データ形式の該当テーブルのカラムのデータとする、データ変換プログラムが、ステップ3031およびステップ3032でループ対象とするテーブルのカラムへ変換する再利用可能候補部品と判断し、再利用可能部品抽出結果格納テーブル106の変換元カラム1084に「ステップ3038またはステップ3039で取得したマスタデータ形式のテーブルのカラム」を、変換先カラム1085に「取得した配信先システム140のデータ形式のテーブルのカラム」を格納する(30317)。
ここで、図15aと図15bは、配信先システム140が要求するデータ形式「データ形式Z」の「列車・駅」テーブルのカラム「列車番号」にデータ変換を行うデータ変換プログラムとして、再利用可能なデータ変換処理部品候補を抽出する、具体的な処理概念を示す。
まず、図15aに示す通り、マスタデータ形式の「列車」テーブルと、「データ形式Z」の「列車・駅」テーブルとを対象に、類似度を算出する処理について説明する。この場合、データ統合装置100の再利用可能データ変換部品抽出部113は、両テーブルの間でカラム名あるいはデータ型が一致するカラムとして、マスタデータ形式の「列車」テーブルの「列車番号」カラムと、マスタデータ形式の「駅時刻」テーブルの「列車番号」カラムと、の各情報を取得する。
次に、データ統合装置100の再利用可能データ変換部品抽出部113は、上述で取得したカラムのカラム名とデータ型の一致度算出結果を合計した値を、マスタデータ形式の「列車」テーブルの「列車番号」カラムと、マスタデータ形式の「駅時刻」テーブルの「列車番号」カラム、のそれぞれについて、3+1=4と算定する。従って、一致度の合計値が同じカラムが2つ特定されることになる。
なお、この2つのカラムをもつマスタデータ形式の各テーブル(「列車」テーブルと「駅時刻」テーブル)と「データ形式Z」の「列車・駅」テーブルとの間における、テーブル間類似度は、それぞれ「0.25」と「0.47」である。
従って、データ統合装置100の再利用可能データ変換部品抽出部113は、テーブル間類似度が「0.47」で最大の、マスタデータ形式の「駅時刻」テーブルを特定し、このマスタデータ形式の「駅時刻」テーブルの名と「列車番号」カラムの名を取得する。
続いて、図15bに示すとおり、データ統合装置100の再利用可能データ変換部品抽出部113は、マスタデータ形式の「駅時刻」テーブルの「列車番号」カラムと、類似度算出済みである「データ形式X」と「データ形式Y」の全テーブルの全カラムとの一致度算出結果を取得する。
また、データ統合装置100の再利用可能データ変換部品抽出部113は、上述のように取得した一致度算出結果に対し、カラム名とデータ型の一致度を合計した値を算出し、最大値をとるカラムを抽出する。この場合、最大になるのは3+1=4で、「データ形式X」の「列車情報」テーブルの「列車番号」カラムと特定される。
よって、データ統合装置100の再利用可能データ変換部品抽出部113は、マスタデータ形式の「駅時刻」テーブルの「列車番号」カラムを、「データ形式X」の「列車情報」テーブルの「列車番号」カラムへ変換する処理部品が、「データ形式Z」の「列車・駅」テーブルの「列車番号」カラムへデータ変換を行う再利用可能部品候補として、再利用可能部品抽出結果格納テーブル106に格納する。
---画面表示例---
続いて、データ統合装置100のユーザインターフェース部111が生成し、入力端末120に表示させる画面の例について説明する。図16は、ユーザインターフェース部111が生成する画面の例であって、入力端末120を介してデータ変換プログラムの設計開発者に提示する、再利用候補変換部品提示画面1110の例を示す図である。
続いて、データ統合装置100のユーザインターフェース部111が生成し、入力端末120に表示させる画面の例について説明する。図16は、ユーザインターフェース部111が生成する画面の例であって、入力端末120を介してデータ変換プログラムの設計開発者に提示する、再利用候補変換部品提示画面1110の例を示す図である。
この再利用候補変換部品提示画面1110は、配信先システムデータ形式入力領域11101と、再利用可能部品抽出ボタン11102と、再利用候補変換部品表示領域11103から構成される。
このうち再利用候補変換領域11103には、配信先システムデータ形式入力領域11101に入力された値をキーとして、再利用可能部品抽出結果格納テーブル106の配信先データ形式のデータ項目が一致するレコードの情報と、このレコードのうち変換元カラム1084から変換先カラム1085に変換するデータ変換プログラムのファイル名が表示される。また、データ変換プログラムのファイル名は、上述のレコードの変換元カラム1084と変換先カラム1085の値をキーにして、データ変換処理部品定義テーブル104より抽出したレコードのプログラムファイル名1067の値である。
図16に示す例では、配信先データ形式「データ形式Z」の「列車・駅」テーブルのカラムである、「列車番号」、「駅名」、「到着時刻」、および「出発時刻」のそれぞれに対して、マスタデータ形式のデータを変換するデータ変換プログラムの再利用可能候補を抽出した結果が示されている。
また、上述のカラムのうち「列車番号」と「駅名」に関して、それぞれ、マスタデータ形式の「駅時刻」テーブルの「列車番号」カラムから、「データ形式X」の「列車情報」テーブルの「列車番号」カラムへ変換する、データ変換プログラム「prg00001.dat」と、マスタデータ形式の「駅時刻」テーブルの「駅名」カラムから、「データ形式X」の「列車情報」テーブルの「駅名」カラムへ変換する、データ変換プログラム「prg00005.dat」とが、再利用可能候補として表示されている。
上述した再利用可能なデータ変換プログラムの候補を抽出する手段には、既に述べた各フロー等の方法の他に、その他の公知の機械学習技術に基づく方法、例えばニューラルネットワークやサポートベクターマシン等の分類器を用いるとしてもよい。
なお、上述の再利用候補変換部品提示画面1110における、変換元カラムおよび変換先カラムにて表示する内容とその形態として、ユーザインターフェース部111は、該当カラムの記載の表示形態を下線部付きの太文字など、クリッカブルな強調表示とするとしてもよい。図17にこの場合の表示例を示す。
このように、クリッカブルな強調表示とするのは、カラム間の一致判定(ステップ3028~3029、ステップ30210)にて一致が特定され、類似度算出パラメータテーブル102の類似度算出重みの値の適用対象となったカラムに関する記載とする。
図17の例であれば、データ統合装置100のユーザインターフェース部111は、例えば、マスタデータ形式の「駅時刻」テーブルのカラム「列車番号」の文字を太文字の下線部付きとし、また、「データ形式X」の「列車情報」テーブルのカラム「列車番号」の文字を太文字の下線部付きとする。
この場合、データ統合装置100のユーザインターフェース部111は、上述の設計開発者が入力端末120を操作し、この下線部をクリックしたイベントに応じて、例えば下線部下方にプルダウンメニュー111031を表示させる。このプルダウンメニュー111031は、該当カラムに関して上述の一致判定で用いた類似度算出パラメータテーブル102の類似度算出重みの値を、設計開発者が変更可能とするインターフェースである。図17の例では、「列車番号」カラムに関して適用していた類似度算出重みの値を、「3」から「1」の間で選択しうるメニューとなっている。
データ統合装置100のユーザインタフェース部111は、このプルダウンメニュー111031にて設計開発者から受け付けた類似度算出重みの値の選択に応じて、選択された類似度算出重みの値を用いた上述の各類似度の算出を、データ構造類似度算出部112に指示する。
一方、データ構造類似度算出部112は、この指示に応じて類似度算出(ステップ302)に必要な各処理を再実行する。また、この再実行の結果を受けた再利用可能データ変換部品抽出部113は、類似度算出の結果等に基づく、再利用可能なデータ変換プログラムの抽出処理(ステップ303)に必要な各処理を再実行する。
ユーザインタフェース部111は、こうした再実行の結果を取得し、画面1110を更新し、入力端末120に表示させる。従って、上述の設計開発者は、類似度算出の重みの値を変更した場合の結果について確認可能となっている。
なお、上述では、プルダウンメニュー111031を、類似度算出重みの値の変更を受け付けるユーザインタフェースの例として示したが、これに限定せず、所定事象の変更指示を受ける既存の各種インタフェース(例:スライダーバーや複数のラジオボタンなど)を適宜に採用してよい。
以上、本発明を実施するための最良の形態などについて具体的に説明したが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
こうした本実施形態によれば、配信先のシステムやアプリケーションが要求するデータ形式とマスタデータのデータ形式との、データ項目間の対応付けといった作業を省き、既に設計・開発されたデータ変換処理部品のうちで再利用可能な部品を、データ統合装置の利用者等に提示可能となる。
すなわち、変換定義等が未定義のデータ間であっても効率的なデータ変換処理の実現を支援可能となる。
本明細書の記載により、少なくとも次のことが明らかにされる。すなわち、本実施形態のデータ統合装置において、前記演算装置は、前記第1および第2の各類似度の算出に際し、対象とするテーブル間における各カラムの名およびデータ型のそれぞれの一致判定を行い、当該一致判定の結果を所定アルゴリズムに適用することで類似度を算出し、前記再利用可能な変換処理部品候補の情報の出力に際し、前記特定した、マスタデータ形式の所定テーブルと前記所定システムの所定テーブルとについて、前記一致判定にて一致が特定されカラムに関する、当該テーブルの間に関する前記変換処理定義の情報を記憶装置より読み出し、当該情報を再利用可能な変換処理部品候補の情報として所定装置に出力するものである、としてもよい。
これによれば、上述の類似度を好適な精度で効率的に算出し、また、こうした類似度に基づき特定されたテーブル間の該当カラムに関して再利用可能な変換処理部品候補の情報を、所定の担当者等に提示することが可能となる。ひいては、変換定義等が未定義のデータ間であっても、精度よく更に効率的なデータ変換処理の実現を支援可能となる。
また、本実施形態のデータ統合装置において、前記演算装置は、前記各類似度の算出に際し、類似度に対する影響の大きさに応じてカラムごとに定めた重み付け値を、前記一致判定の結果に適用した上で、前記所定アルゴリズムによる類似度の算出を行うものである、としてもよい。
これによれば、上述の類似度を更に好適な精度で効率的に算出し、また、こうした類似度に基づき特定されたテーブル間の該当カラムに関して再利用可能な変換処理部品候補の情報を、所定の担当者等に提示することが可能となる。ひいては、変換定義等が未定義のデータ間であっても、更に精度よく効率的なデータ変換処理の実現を支援可能となる。
また、本実施形態のデータ統合装置において、前記演算装置は、前記再利用可能な変換処理部品候補の情報を出力するに際し、前記特定した、マスタデータ形式の所定テーブルと前記所定システムの所定テーブルとについて、前記一致判定にて一致が特定され、前記重み付け値の適用対象となったカラムに関する情報と、当該カラムに関して適用された前記重み付け値の変更用インターフェースとを更に出力し、前記変更用インターフェースにて受け付けた重み付け値の変更指示に応じて、前記各類似度の算出および当該算出に伴う各処理を再実行するものである、としてもよい。
これによれば、類似度の算出に影響を与えたカラムの重要度すなわち上述の重み付け値の大きさに関して、所定担当者等による変更を受け付けることで、例えば高スキルの担当者等の知見に応じた好適な精度での類似度の算出が可能となる。また、こうした重み付け値の変更に伴って変化しうる類似度に基づき、あらためて特定されるテーブル、および該当テーブル間の該当カラムに関する再利用可能な変換処理部品候補の情報を、所定の担当者等に提示することが可能となる。ひいては、変換定義等が未定義のデータ間であっても、更に精度よく更に効率的かつ柔軟なデータ変換処理の実現を支援可能となる。
また、本実施形態のデータ統合方法において、前記情報処理装置が、前記第1および第2の各類似度の算出に際し、対象とするテーブル間における各カラムの名およびデータ型のそれぞれの一致判定を行い、当該一致判定の結果を所定アルゴリズムに適用することで類似度を算出し、前記再利用可能な変換処理部品候補の情報の出力に際し、前記特定した、マスタデータ形式の所定テーブルと前記所定システムの所定テーブルとについて、前記一致判定にて一致が特定されカラムに関する、当該テーブルの間に関する前記変換処理定義の情報を記憶装置より読み出し、当該情報を再利用可能な変換処理部品候補の情報として所定装置に出力する、としてもよい。
また、本実施形態のデータ統合方法において、前記情報処理装置が、前記各類似度の算出に際し、類似度に対する影響の大きさに応じてカラムごとに定めた重み付け値を、前記一致判定の結果に適用した上で、前記所定アルゴリズムによる類似度の算出を行う、としてもよい。
また、本実施形態のデータ統合方法において、前記情報処理装置が、前記再利用可能な変換処理部品候補の情報を出力するに際し、前記特定した、マスタデータ形式の所定テーブルと前記所定システムの所定テーブルとについて、前記一致判定にて一致が特定され、前記重み付け値の適用対象となったカラムに関する情報と、当該カラムに関して適用された前記重み付け値の変更用インターフェースとを更に出力し、前記変更用インターフェースにて受け付けた重み付け値の変更指示に応じて、前記各類似度の算出および当該算出に伴う各処理を再実行する、としてもよい。
100 データ統合装置
101 データ格納部
102 類似度算出パラメータテーブル
103 類似度算出結果一時格納部
104 データ変換処理部品定義テーブル
105 類似度算出結果格納部
106 再利用可能部品抽出結果格納テーブル
107 データ構造定義テーブル
108 データ変換部品ライブラリ
109 マスタデータ格納部
110 配信元データ格納部
111 ユーザインターフェース部
112 データ構造類似度算出部
113 再利用可能データ変換部品抽出部
114 通信部
120 入力端末
130 配信元システム
131 データ構造定義情報
140 配信先システム
150 専用回線
201 CPU(演算装置)
202 HDD(記憶装置)
203 メモリ
204 入力装置
205 表示装置
206 通信装置
207 プログラム
101 データ格納部
102 類似度算出パラメータテーブル
103 類似度算出結果一時格納部
104 データ変換処理部品定義テーブル
105 類似度算出結果格納部
106 再利用可能部品抽出結果格納テーブル
107 データ構造定義テーブル
108 データ変換部品ライブラリ
109 マスタデータ格納部
110 配信元データ格納部
111 ユーザインターフェース部
112 データ構造類似度算出部
113 再利用可能データ変換部品抽出部
114 通信部
120 入力端末
130 配信元システム
131 データ構造定義情報
140 配信先システム
150 専用回線
201 CPU(演算装置)
202 HDD(記憶装置)
203 メモリ
204 入力装置
205 表示装置
206 通信装置
207 プログラム
Claims (8)
- 所定事象のデータに関して所定システムで用いる各テーブルのデータ形式、および、前記データの間で普遍的なデータ形式として所定テーブルごとに予め定めたマスタデータ形式、の各情報と、前記マスタデータ形式の所定テーブルと前記所定システムの所定データ形式の所定テーブルとの間でのデータの変換処理定義の情報と、を格納した記憶装置と、
前記記憶装置にデータ形式の情報が未格納である所定データに関するテーブルのデータ形式と、前記所定テーブルごとのマスタデータ形式との類似度たる第1類似度を算出し、当該第1類似度が所定基準を満たすマスタデータ形式の所定テーブルを特定する処理と、前記特定した所定テーブルのマスタデータ形式と、前記記憶装置に格納している前記システムの各テーブルのデータ形式との類似度たる第2類似度を算出し、当該第2類似度が所定基準を満たす所定システムの所定テーブルを特定する処理と、前記特定した、マスタデータ形式の所定テーブルと前記所定システムの所定テーブルとについて、当該テーブルの間に関する前記変換処理定義の情報を記憶装置より読み出し、当該情報を再利用可能な変換処理部品候補の情報として所定装置に出力する処理と、を実行する演算装置と、
を備えることを特徴するデータ統合装置。 - 前記演算装置は、
前記第1および第2の各類似度の算出に際し、対象とするテーブル間における各カラムの名およびデータ型のそれぞれの一致判定を行い、当該一致判定の結果を所定アルゴリズムに適用することで類似度を算出し、
前記再利用可能な変換処理部品候補の情報の出力に際し、前記特定した、マスタデータ形式の所定テーブルと前記所定システムの所定テーブルとについて、前記一致判定にて一致が特定されカラムに関する、当該テーブルの間に関する前記変換処理定義の情報を記憶装置より読み出し、当該情報を再利用可能な変換処理部品候補の情報として所定装置に出力するものである、
ことを特徴とする請求項1に記載のデータ統合装置。 - 前記演算装置は、
前記各類似度の算出に際し、類似度に対する影響の大きさに応じてカラムごとに定めた重み付け値を、前記一致判定の結果に適用した上で、前記所定アルゴリズムによる類似度の算出を行うものである、
ことを特徴とする請求項2に記載のデータ統合装置。 - 前記演算装置は、
前記再利用可能な変換処理部品候補の情報を出力するに際し、前記特定した、マスタデータ形式の所定テーブルと前記所定システムの所定テーブルとについて、前記一致判定にて一致が特定され、前記重み付け値の適用対象となったカラムに関する情報と、当該カラムに関して適用された前記重み付け値の変更用インターフェースとを更に出力し、前記変更用インターフェースにて受け付けた重み付け値の変更指示に応じて、前記各類似度の算出および当該算出に伴う各処理を再実行するものである、
ことを特徴とする請求項3に記載のデータ統合装置。 - 所定事象のデータに関して所定システムで用いる各テーブルのデータ形式、および、前記データの間で普遍的なデータ形式として所定テーブルごとに予め定めたマスタデータ形式、の各情報と、前記マスタデータ形式の所定テーブルと前記所定システムの所定データ形式の所定テーブルとの間でのデータの変換処理定義の情報と、を格納した記憶装置を備える情報処理装置が、
前記記憶装置にデータ形式の情報が未格納である所定データに関するテーブルのデータ形式と、前記所定テーブルごとのマスタデータ形式との類似度たる第1類似度を算出し、当該第1類似度が所定基準を満たすマスタデータ形式の所定テーブルを特定する処理と、
前記特定した所定テーブルのマスタデータ形式と、前記記憶装置に格納している前記システムの各テーブルのデータ形式との類似度たる第2類似度を算出し、当該第2類似度が所定基準を満たす所定システムの所定テーブルを特定する処理と、
前記特定した、マスタデータ形式の所定テーブルと前記所定システムの所定テーブルとについて、当該テーブルの間に関する前記変換処理定義の情報を記憶装置より読み出し、当該情報を再利用可能な変換処理部品候補の情報として所定装置に出力する処理と、
を実行することを特徴するデータ統合方法。 - 前記情報処理装置が、
前記第1および第2の各類似度の算出に際し、対象とするテーブル間における各カラムの名およびデータ型のそれぞれの一致判定を行い、当該一致判定の結果を所定アルゴリズムに適用することで類似度を算出し、
前記再利用可能な変換処理部品候補の情報の出力に際し、前記特定した、マスタデータ形式の所定テーブルと前記所定システムの所定テーブルとについて、前記一致判定にて一致が特定されカラムに関する、当該テーブルの間に関する前記変換処理定義の情報を記憶装置より読み出し、当該情報を再利用可能な変換処理部品候補の情報として所定装置に出力する、
ことを特徴とする請求項5に記載のデータ統合方法。 - 前記情報処理装置が、
前記各類似度の算出に際し、類似度に対する影響の大きさに応じてカラムごとに定めた重み付け値を、前記一致判定の結果に適用した上で、前記所定アルゴリズムによる類似度の算出を行う、
ことを特徴とする請求項6に記載のデータ統合方法。 - 前記情報処理装置が、
前記再利用可能な変換処理部品候補の情報を出力するに際し、前記特定した、マスタデータ形式の所定テーブルと前記所定システムの所定テーブルとについて、前記一致判定にて一致が特定され、前記重み付け値の適用対象となったカラムに関する情報と、当該カラムに関して適用された前記重み付け値の変更用インターフェースとを更に出力し、前記変更用インターフェースにて受け付けた重み付け値の変更指示に応じて、前記各類似度の算出および当該算出に伴う各処理を再実行する、
ことを特徴とする請求項7に記載のデータ統合方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020197003935A KR102243794B1 (ko) | 2016-10-07 | 2017-03-21 | 데이터 통합 장치 및 데이터 통합 방법 |
US16/330,397 US20200193343A1 (en) | 2016-10-07 | 2017-03-21 | Data integration apparatus and data integration method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-198655 | 2016-10-07 | ||
JP2016198655A JP6723893B2 (ja) | 2016-10-07 | 2016-10-07 | データ統合装置およびデータ統合方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018066152A1 true WO2018066152A1 (ja) | 2018-04-12 |
Family
ID=61831657
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/011163 WO2018066152A1 (ja) | 2016-10-07 | 2017-03-21 | データ統合装置およびデータ統合方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20200193343A1 (ja) |
JP (1) | JP6723893B2 (ja) |
KR (1) | KR102243794B1 (ja) |
WO (1) | WO2018066152A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11494688B2 (en) * | 2018-04-16 | 2022-11-08 | Oracle International Corporation | Learning ETL rules by example |
JP2022059247A (ja) * | 2020-10-01 | 2022-04-13 | 富士フイルムビジネスイノベーション株式会社 | 情報処理装置及びプログラム |
CN116724316A (zh) * | 2020-12-31 | 2023-09-08 | 华为技术有限公司 | 模型处理方法和装置 |
JP7533633B2 (ja) | 2021-01-25 | 2024-08-14 | 日本電気株式会社 | 情報処理装置、制御方法及びプログラム |
KR102685789B1 (ko) * | 2023-11-02 | 2024-07-17 | 예스넷 주식회사 | 데이터 코드의 변환을 수행하는 시스템, 장치 및 방법 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007083371A1 (ja) * | 2006-01-18 | 2007-07-26 | Fujitsu Limited | データ統合装置、方法、プログラムを記録した記録媒体 |
JP2009145972A (ja) * | 2007-12-11 | 2009-07-02 | Hitachi Information Systems Ltd | データべースシステム及びデータべースシステムの制御方法 |
JP2013225285A (ja) * | 2012-03-19 | 2013-10-31 | Ricoh Co Ltd | 情報処理装置、情報処理方法、およびプログラム |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5601066B2 (ja) | 2010-07-23 | 2014-10-08 | 富士通株式会社 | 情報統合プログラム、装置及び方法 |
-
2016
- 2016-10-07 JP JP2016198655A patent/JP6723893B2/ja active Active
-
2017
- 2017-03-21 WO PCT/JP2017/011163 patent/WO2018066152A1/ja active Application Filing
- 2017-03-21 KR KR1020197003935A patent/KR102243794B1/ko active IP Right Grant
- 2017-03-21 US US16/330,397 patent/US20200193343A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007083371A1 (ja) * | 2006-01-18 | 2007-07-26 | Fujitsu Limited | データ統合装置、方法、プログラムを記録した記録媒体 |
JP2009145972A (ja) * | 2007-12-11 | 2009-07-02 | Hitachi Information Systems Ltd | データべースシステム及びデータべースシステムの制御方法 |
JP2013225285A (ja) * | 2012-03-19 | 2013-10-31 | Ricoh Co Ltd | 情報処理装置、情報処理方法、およびプログラム |
Also Published As
Publication number | Publication date |
---|---|
KR20190028485A (ko) | 2019-03-18 |
KR102243794B1 (ko) | 2021-04-23 |
JP6723893B2 (ja) | 2020-07-15 |
JP2018060430A (ja) | 2018-04-12 |
US20200193343A1 (en) | 2020-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018066152A1 (ja) | データ統合装置およびデータ統合方法 | |
US9135351B2 (en) | Data processing method and distributed processing system | |
US20190251471A1 (en) | Machine learning device | |
US10120658B2 (en) | Method and system for realizing software development tasks | |
CN106503268B (zh) | 数据对比方法、装置和系统 | |
JP7015319B2 (ja) | データ分析支援装置、データ分析支援方法およびデータ分析支援プログラム | |
CN104636401B (zh) | 一种scada系统数据回滚的方法及装置 | |
JP2017041171A (ja) | テストシナリオ生成支援装置およびテストシナリオ生成支援方法 | |
JP7015320B2 (ja) | データ分析支援装置、データ分析支援方法およびデータ分析支援プログラム | |
JP6900265B2 (ja) | データ分析システム、及びデータ分析方法 | |
JP6634938B2 (ja) | 分析支援方法、分析支援プログラムおよび分析支援装置 | |
WO2017088547A1 (zh) | 一种数据升级方法和装置 | |
JP5449438B2 (ja) | ソフトウェア資産再利用支援装置およびソフトウェア資産再利用支援プログラム | |
CN114358309A (zh) | 分布式机器学习模型训练方法、装置、设备及存储介质 | |
JP5081889B2 (ja) | 入力支援装置、入力支援方法及び入力支援プログラム | |
JP6157166B2 (ja) | 部品生成システムおよび方法ならびにプログラム | |
CN112527765B (zh) | 一种数据迁移方法及装置 | |
JP5600826B1 (ja) | 非構造化データ処理システム、非構造化データ処理方法およびプログラム | |
JP6498588B2 (ja) | 情報配信システムおよび情報配信方法 | |
US20240168859A1 (en) | Software performance verification system and software performance verification method | |
JPWO2017098617A1 (ja) | 情報提供方法、情報提供プログラムおよび情報提供装置 | |
JP6664306B2 (ja) | 類似文書抽出装置、類似文書抽出方法及び類似文書抽出プログラム | |
CN113921043A (zh) | 基于语音记录的质检方法、装置、设备及存储介质 | |
JP2014096026A (ja) | アプリケーション基盤選定システム | |
KR20220122562A (ko) | 서브 그래프 매칭 방법 및 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17857992 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20197003935 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17857992 Country of ref document: EP Kind code of ref document: A1 |