WO2018064993A1 - Système multichambre conçu pour générer un biogaz - Google Patents

Système multichambre conçu pour générer un biogaz Download PDF

Info

Publication number
WO2018064993A1
WO2018064993A1 PCT/DE2016/000367 DE2016000367W WO2018064993A1 WO 2018064993 A1 WO2018064993 A1 WO 2018064993A1 DE 2016000367 W DE2016000367 W DE 2016000367W WO 2018064993 A1 WO2018064993 A1 WO 2018064993A1
Authority
WO
WIPO (PCT)
Prior art keywords
fermentation
chamber system
substrate
biomass
container
Prior art date
Application number
PCT/DE2016/000367
Other languages
German (de)
English (en)
Inventor
Oliver Nacke
Carsten Mantey
Original Assignee
Archea New Energy Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Archea New Energy Gmbh filed Critical Archea New Energy Gmbh
Priority to PCT/DE2016/000367 priority Critical patent/WO2018064993A1/fr
Publication of WO2018064993A1 publication Critical patent/WO2018064993A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/04Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/34Internal compartments or partitions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/58Reaction vessels connected in series or in parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the ratio of container volume to the gas production amount is relatively unfavorable.
  • this type of biogas plants must always be filled with a specific biomass structure, for example shrubbery, which requires special attention in the selection of the biomass.
  • the distribution of bacteria is not necessarily evenly distributed, which has at least a negative impact on the time to usable gas production.
  • the safety aspect is not entirely unproblematic with regard to a possible gas explosion, since in gas production a so-called explosion zone of the gas is traversed, in which the gas-oxygen mixture reacts explosively with accidental sparking.
  • the process for the anaerobic production of biogas from a fermentable substrate with at least two separate fermentation containers, preferably three fermentation containers, with lines interconnected characterized by the following method steps:
  • thermophil digested biomass in at least one other fermentation to the residual outgassing of the substrate at adjustable temperatures between 35 ° C and 60 ° C, which are dependent on the respective substrate.
  • Main fermenter of the supplied biomass is used.
  • At least one desulfurization device is arranged between the at least two fermentation containers and the gas storage.
  • the fill level of the individual fermentation containers, in particular of the buffer fermentation container can be varied.
  • Feeders is performed, of which at least one Feeding device in the first fermentation and at least one feeding device is guided in the buffer tank.
  • Fermentier and the gas storage a water-filled siphon is arranged.
  • Fermentier practiceern and the gas storage space are dimensioned so that it is supplied at overflow of at least one Fermentier organizations, the amount of substrate of the overflow to the space enclosed by the container ring of the spacer.
  • each fermentation tank is connected at least to a feed line and at least one suction line, it being advantageous that the feed line is arranged at the beginning and the suction line at the end of the fermentation tank.
  • the at least three fermentation containers are arranged in a frame construction whose plan view is preferably approximately square and is preferably made of concrete or equivalent material (eg masonry).
  • a frame construction whose plan view is preferably approximately square and is preferably made of concrete or equivalent material (eg masonry).
  • Another advantage is that above the masonry at least one gas container is arranged.
  • Construction is constructed.
  • the multi-chamber system is preferably created in the modular system in such a way that the individual parts and pre-assembled modules fit into a transport system, such as in one or more shipping containers. At the construction site this is then set up and mounted with little tools and little technical effort. The proportion of auxiliary materials and materials such as concrete anchors and foundations or ground anchors is also minimized. Optionally, all necessary tools and assembly tools can complete the delivery.
  • FIG. 6 shows a schematic side view of one of the three fermentation containers (2, 3, 4) with a sand discharge device (16);
  • Fig. 1 shows a simplified schematic representation of a
  • Distance element 11 is substantially circular and the overlying gas storage space 5 may be spherical in shape, creating an optimal
  • Fermentier developmenter 2 is preferably in the mesophilic region at about 38 ° C.
  • the partially fermented biomass (substrate) is then passed through the line 8 via the pump 20 'and the line 7 in the third main fermentation vessel 4 for thermophilic digestion at about 55 ° C after a mesophilic fermentation.
  • the filling of the thermophilic Fermentier relieers 4 is then carried out continuously at short intervals, approximately every hour, with the same biomass.
  • the gas range of the fermentation tank 2 can be separated by means of a slide (not shown here), so that maintenance of the fermentation tank 2 without
  • the substrate fermented in the fermentation tank 3 is fed directly into the solid-liquid separation apparatus (separation) with the aid of one of the pumps 20, 20 'and further processed.
  • Metal ring container 11 is located in the concrete ceiling of the fermentation 2 and 4 each have a siphon 17 is arranged, which is always filled with water to exercise a gas-tight function
  • the fermentation tank 3 is filled via the supply line 6 'from the source 21 with fresh biomass.
  • the second pump 20 'pumps the biomass from the fermentation vessel 4 into the fermentation vessel 2 via the second pressure line 7', so that subsequently the fermentation vessel 4 can be easily maintained. Due to the diametrically opposite pumps 20,20 'between the suction and discharge lines 7,7' and 8,8 'it is possible by switching or sealing corresponding lines, in case of failure of one of the two
  • the agitators 12 of the individual fermentation containers 2, 3, 4 extend over the entire length of the fermentation containers 2, 3, 4, whereby the entire biomass located in the respective fermentation containers 2, 3, 4 is detected by the circulation.
  • the individual agitators 12 can be moved at different speeds and, depending on requirements, individual ones can be switched on and off.
  • FIG. 2 shows a schematic side view of the multi-chamber system 1, in which the gas storage space 5 is arranged above the three fermentation containers 2, 3, 4. Between the fermentation containers 2,3,4 and the gas storage space 5, a spacer 11 is arranged, which is the basis for the construction of the
  • Gas storage room 5 represents.
  • This spacer 11 is usually formed as a circular ring made of metal or equivalent material.
  • the spacer element 1 1 serves the operational safety of the entire system, because at overflow by foaming the biomass (substrate) or overfilling the fermentation tank 2,3,4 with biomass, the space enclosed by the spacer element 1 1 forms a catch basin for by the generously sized gas passages 22 through the covers 33 of the fermentation tank 2,3,4 flowing biomass, which then spreads to the not yet completely filled fermentation.
  • the bearings 24 of the agitators 12 are arranged approximately in the middle of the respective fermentation container 2,3,4, in order to ensure that when completely filled
  • the spacer 11 offers the possibility of flanging gas connection lines by means of Brassflanschplatten to the container ring 1 1.
  • a so-called inliner a plastic film, for the galvanic separation possible different
  • a desulfurization device 15 which as Anlagungs Stimulation for desulfurization of the generated biogas or methane is used.
  • 3a shows a schematic side view of the upper portion of the multi-chamber system 1 with a detail "A", the enlarged
  • Scale represents the connection of the spacer element 1 1 to the multilayer film 42,42 'to form the gas space 5 of the multi-chamber system 1, wherein the gas storage space is formed spherical shell and the spacer element 11 annular.
  • the spacer 11 is gas-tight and waterproof.
  • Spacer 11 is the multilayer film 42, 42 'with a special
  • Fermentier theoryers has an opening 26 through which the
  • FIG. 5 shows a section of the region of the shaft passage 26 through the end wall 25 of a fermentation container.
  • the shaft 27 is supported by a bearing 24 on this side.
  • the shaft 27 Shortly after passing through the end wall 25, the shaft 27 has a flange 34, to which a tubular shaft 27 'is flanged, wherein the tubular shaft 27' carries the blades 29 of the agitator 12.
  • a device 35 for sealing the shaft passage of the agitator shaft 27 is arranged within the opening 26 of the end wall 25. This shaft seal is extremely important for the smooth operation of the agitator
  • Agitator shaft 27 is a hardened sleeve 37 made of steel non-slip. On the surface of the sleeve 37 slide at least two sealing elements 51, which already cause a seal of the stirring shaft. Between these sealing elements 51 and further sealing elements 51 'an annular space 39 is arranged, from which a control line 52 leads away, can be removed via the possible accumulations of permeated sand and water residues.
  • the sealing device 35 is fastened with a flange plate 53 on the outer wall of the end wall 25, so that thus the opening 26 of the end wall is closed to the outside. To the sealing elements 51, 51 'around is a
  • Housing 54 arranged that in the immediate vicinity of the stirring shaft 27 a
  • Agitator shaft 27 is generated more or less firmly.
  • this lip seal 56 By means of this lip seal 56, a large part of the resulting sand and sludge is prevented from reaching the sealing elements 51.
  • two purge lines 58,58 ' In the event that anyway sand and / or mud should get into the interior of the housing 54, are at these Cavity 49 two purge lines 58,58 ', wherein a flushing liquid is introduced through the conduit 58 into the cavity and is discharged via the line 58' together with possible sand and sludge entry again.
  • the inlet and outlet 58,58 ' is provided at the output with a shut-off valve 59,59', which are actuated if necessary.
  • the shaft 27 is supported at one end by the bearing 24.
  • a transmission 31 is arranged with a perpendicular thereto motor 32.
  • the transmission 31 together with the motor 32 is relieved by a support 38, wherein the support 38 is fixed with its one end to the masonry of the wall 25 of the fermentation container and with its other end to the transmission 31. With the support 38, the torque acting on the agitator shaft 27 is intercepted.
  • FIG. 6 shows a schematic cross-sectional representation of a
  • Sandaustragvorieri 16 is particularly important for the long-term operation of the entire system, because usually a not inconsiderable proportion of sand and soil is introduced with the fresh biomass in the Fermentier employer, which leads to considerable disruption in the circulation of biomass in Fermentier employer after a long time.
  • the agitator 12 is arranged with the blades 29 on the agitator shaft 27 which rotates counterclockwise.
  • the bottom 60 of the fermentation container has a certain predetermined slope, which extends to a trough 61.
  • a suction pipe 62 leads, which can be applied via a valve 63 with vacuum if necessary, so that the possible sand input is sucked and is first stored in a buffer 64.
  • the buffer 64 is connected via a line 66 to the main memory 65, in which the sand is stored up to a predetermined amount. After the main memory 65 has reached a predetermined level, this is at the bottom by means of a flap 67th opened so that the main memory 65 can be completely emptied. The accumulated sand 68 may then be removed by a wheel loader or otherwise.
  • the vacuum pump 70 which is connected to a vacuum pump 70.
  • FIG. 7 shows a schematic plan view of the fermenting containers 2, 3, 4, above which a sprinkler system 72 having a multiplicity of nozzles 73 is arranged.
  • the sprinkler system serves to prevent or at least reduce the possibility of foaming on the surface of the outgrowing biomass.
  • the respective container is 2,3,4 the
  • FIG. 8 shows a schematic sectional view of a pipe feedthrough 74 through the masonry of an end wall 25 of one of the fermentation containers 2, 3, 4.
  • a pipe penetration through the masonry of a fermentation tank 2,3,4 is fundamentally problematic, because on the one hand the tightness to the outside and on the other hand, the ease of installation of the pipe feedthrough must be guaranteed.
  • the manhole lining 75 usually a plastic raw r, is cast in the migratory position in the masonry.
  • the steel pressure pipe 76 to be installed has a flange 77 on both sides, the diameter of which corresponds approximately to the inside diameter of the shaft lining 75.
  • On the outside of the pressure tube 76 is at least one guide tube 78 with a thereto
  • the gap 81 serves to accommodate
  • Silicone adhesive which is introduced after formation of a gap between two circularly applied elastic adhesive tapes 82, preferably made of foam.
  • the diameter of the flange plate 80 is to be chosen so that sufficient space for the necessary sealing material is formed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Clinical Laboratory Science (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

L'invention concerne un système multichambre (1) conçu pour générer un biogaz à partir d'un substrat fermentable. Le système selon l'invention présente une structure spécifique comprenant au moins deux chambres, de préférence trois chambres (2, 3, 4) permettant la mise en œuvre d'un procédé de génération de biogaz garantissant une génération de gaz en continu en cas d'approvisionnement discontinu en biomasse digestible. Le procédé pour générer un biogaz dans le système multichambre (1) prévoit en particulier un contenant de fermentation (3) prenant en compte plusieurs aspects pour une génération de biogaz efficace, en particulier le stockage temporaire du substrat digestible en cas d'approvisionnement irrégulier en biomasse nécessaire. De plus, la structure de l'ensemble du système multichambre (1) est conçue de manière à pouvoir être construite de manière compacte selon une configuration modulaire.
PCT/DE2016/000367 2016-10-09 2016-10-09 Système multichambre conçu pour générer un biogaz WO2018064993A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/DE2016/000367 WO2018064993A1 (fr) 2016-10-09 2016-10-09 Système multichambre conçu pour générer un biogaz

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/DE2016/000367 WO2018064993A1 (fr) 2016-10-09 2016-10-09 Système multichambre conçu pour générer un biogaz

Publications (1)

Publication Number Publication Date
WO2018064993A1 true WO2018064993A1 (fr) 2018-04-12

Family

ID=58548929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2016/000367 WO2018064993A1 (fr) 2016-10-09 2016-10-09 Système multichambre conçu pour générer un biogaz

Country Status (1)

Country Link
WO (1) WO2018064993A1 (fr)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1984000038A1 (fr) * 1982-06-16 1984-01-05 Peter Korsgaard Procede et installation de production de biogaz
DE3420433A1 (de) * 1984-06-01 1985-12-05 Zörner-Buchner, Juliane, 8000 München Verfahren zur gleichzeitigen herstellung von biogas und duengemitteln
US4614588A (en) * 1985-08-22 1986-09-30 Dorr-Oliver Incorporated Method for sulfide toxicity reduction
US5810903A (en) * 1996-08-23 1998-09-22 Branconnier; Rene Joseph Process for thermophilic aerobic fermentation of organic waste
WO2009000309A1 (fr) 2007-06-27 2008-12-31 MEISSNER, Jan, A. Installation de biogaz avec digestion de solides et production de méthane dans une cuve de recirculation de percolat
DE102009021015A1 (de) 2009-05-13 2010-11-18 Bekon Energy Technologies Gmbh & Co. Kg Fermenter zur kontinuierlichen Erzeugung von Biogas aus Biomasse nach dem Prinzip der Feststoffmethanisierung sowie Verfahren zum Betreiben eines solchen Fermenters
DE102011110638A1 (de) * 2011-08-18 2013-02-21 Olaf Kujawski Anlagenweites Steuerungs- und Regelungsverfahren für Biogasanlagen
DE102012212505A1 (de) 2012-07-17 2014-01-23 Bekon Energy Technologies Gmbh & Co. Kg Verfahren zum Betreiben einer Biogasanlage und eine derart betriebene Biogasanlage

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1984000038A1 (fr) * 1982-06-16 1984-01-05 Peter Korsgaard Procede et installation de production de biogaz
DE3420433A1 (de) * 1984-06-01 1985-12-05 Zörner-Buchner, Juliane, 8000 München Verfahren zur gleichzeitigen herstellung von biogas und duengemitteln
US4614588A (en) * 1985-08-22 1986-09-30 Dorr-Oliver Incorporated Method for sulfide toxicity reduction
US5810903A (en) * 1996-08-23 1998-09-22 Branconnier; Rene Joseph Process for thermophilic aerobic fermentation of organic waste
WO2009000309A1 (fr) 2007-06-27 2008-12-31 MEISSNER, Jan, A. Installation de biogaz avec digestion de solides et production de méthane dans une cuve de recirculation de percolat
DE102009021015A1 (de) 2009-05-13 2010-11-18 Bekon Energy Technologies Gmbh & Co. Kg Fermenter zur kontinuierlichen Erzeugung von Biogas aus Biomasse nach dem Prinzip der Feststoffmethanisierung sowie Verfahren zum Betreiben eines solchen Fermenters
DE102011110638A1 (de) * 2011-08-18 2013-02-21 Olaf Kujawski Anlagenweites Steuerungs- und Regelungsverfahren für Biogasanlagen
DE102012212505A1 (de) 2012-07-17 2014-01-23 Bekon Energy Technologies Gmbh & Co. Kg Verfahren zum Betreiben einer Biogasanlage und eine derart betriebene Biogasanlage

Similar Documents

Publication Publication Date Title
DE102008038262B4 (de) Verfahren und Vorrichtung zur Vergärung von Biomasse
DE102008015240B4 (de) Kombinierte Anlage zur Erzeugung von Biogas und Kompost sowie Verfahren zum Umschalten eines Fermenters in einer solchen Anlage zwischen Biogaserzeugung und Kompostierung
AT500326B1 (de) Beheizbares rührwerk für fermentationsbehälter
DE202006013772U1 (de) Anlage zur Erzeugung von Biogas
WO2007110064A1 (fr) Agitateur pour contenant pour fermentation
EP2878365B1 (fr) Agitateur pour un digesteur à biogaz
DE19719323A1 (de) Tunnelfermentationsverfahren zur einstufigen anaeroben und aeroben Behandlung von festen und flüssigen biogenen Abfällen
DE102017010229A1 (de) Pfropfenstrom-Fermenter einer Biogasanlage
DE102016009223A1 (de) Verfahren zur Methanfermentation im Pfropfenstrom und Vorrichtung zur Durchführung des Verfahrens
WO2008099227A1 (fr) Procédé et dispositif de production de biogaz à partir de biomasse
WO2013110821A1 (fr) Installation de biogaz et ses composants
DE102011114793A1 (de) Verfahren und Anlage zur Herstellung von Biogassubstrat in Anmaischbehältern
DE102007049479B4 (de) Verfahren und Vorrichtung zur Biogasgewinnung
DE10306988B4 (de) Verfahren und Vorrichtung zur kontinuierlichen Vergärung von Biomasse
DE102006024081A1 (de) Verfahren zur Biogaserzeugung und Gärbehälter dafür
WO2018064993A1 (fr) Système multichambre conçu pour générer un biogaz
EP3516037B1 (fr) Réservoir et installation de biogaz
EP1692256A2 (fr) Fermenteur de grandes dimensions servant a generer un biogaz a partir d'une biomasse, et installation de biogaz servant a produire de l'energie thermique, electrique et/ou mecanique a partir de biogaz, au moyen dudit fermenteur de grandes dimensions
EP2361673A2 (fr) Dispositif
EP1704221B1 (fr) Dispositif de fermentation a biogaz
DE102012222589A1 (de) Substrataufschluss für biogasanlagen in einem anmisch- und kombihydrolysebehälter
WO2010130813A2 (fr) Fermenteur pour la production continue de biogaz à partir de biomasse selon le principe de la méthanisation solide et procédé de fonctionnement d'un tel fermenteur
EP0100953A1 (fr) Réacteur à lit fixe pour le traitement, en particulier anaérobie, de boues de curage ou de liquides fortement pollués par des matières organiques
DE102021002380A1 (de) Trommelreaktor und Verfahren zum Betreiben eines Trommelreaktors
DE202018101574U1 (de) Stehend angeordneter Fermenter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16856470

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016856470

Country of ref document: EP

Effective date: 20190509

122 Ep: pct application non-entry in european phase

Ref document number: 16856470

Country of ref document: EP

Kind code of ref document: A1