WO2018062985A2 - Sistema de concentración, almacenamiento y administración de energía solar - Google Patents

Sistema de concentración, almacenamiento y administración de energía solar Download PDF

Info

Publication number
WO2018062985A2
WO2018062985A2 PCT/MX2017/000114 MX2017000114W WO2018062985A2 WO 2018062985 A2 WO2018062985 A2 WO 2018062985A2 MX 2017000114 W MX2017000114 W MX 2017000114W WO 2018062985 A2 WO2018062985 A2 WO 2018062985A2
Authority
WO
WIPO (PCT)
Prior art keywords
solar
thermal
energy
thermo
concentrator
Prior art date
Application number
PCT/MX2017/000114
Other languages
English (en)
French (fr)
Other versions
WO2018062985A4 (es
WO2018062985A3 (es
Inventor
Álvaro Fabián BRICIO ARZUBIDE
Original Assignee
Bricio Arzubide Alvaro Fabian
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bricio Arzubide Alvaro Fabian filed Critical Bricio Arzubide Alvaro Fabian
Publication of WO2018062985A2 publication Critical patent/WO2018062985A2/es
Publication of WO2018062985A3 publication Critical patent/WO2018062985A3/es
Publication of WO2018062985A4 publication Critical patent/WO2018062985A4/es

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • This invention relates to solar energy collection, storage and utilization systems, which capture, store, manage, conduct or transform it by raising thermal energy to liquids, gases or solids. This also refers to systems for converting light energy into electric current through solar cell photo concentrators.
  • Solar radiation affects the face of the earth with a power of 1000 watts per square meter
  • solar collectors or concentrators there are four types of solar radiation that solar collectors or concentrators can capture, these are: direct, indirect, horizontal and diffuse radiation, in the nowadays, man uses equipment designed to capture this solar energy to later use it, store it, transfer it or transform it.
  • the equipment that captures the solar radiation is divided into Solar Collectors and Solar Concentrators, they are differentiated because in the first they only capture the energy that directly affects the central element of the collector and they are characterized by being of low temperature, the second, they concentrate only the energy that affects the central element, but, using reflective elements, they capture and concentrate in one point or line the energy that affects all of them.
  • the solar collection equipment can be fixedly installed or installed in solar path tracking mechanisms, the latter are divided into those that only adjust their inclination during the months or seasons of the year and other more sophisticated than additional to the lifting movement follow every day! SW! in its trajectory (panning) from East to West, from this second group (systems with solar trackers) 30% more energy is obtained in elevation adjustment systems and for those who also follow the sun in their day to day trajectory it obtains 60% more solar energy collection (compared to bs fixed systems), however, mobile systems are usually expensive and require permanent technical attention since, even if they have moving parts, they show some wear or malfunction over time.
  • a serious problem with fixed equipment is that, by always maintaining the same inclination angle, it returns to the inefficient equipment (concentrator, collector or photovoltaic panel), since the sun, having very varied elevation angles during the course of a day and year, for a large part of the time they will project on these devices a small solar footprint (and a large reflection) of the solar energy waves, consequently, their performance is not very efficient.
  • thermo tanks capable of storing fluids at a high temperature for much longer reducing heat losses during low temperatures of winter or night, moreover, these are capable of increasing the energy affected on solar collectors or concentrators! reflecting the solar energy that falls on the thermo tank, there is also a thermal minister and thermal safety switches that allow dosing the amount of solar energy (heat) supplied to a system.
  • novel wave reflecting and capturing element (1) capable of capturing itself or channeling towards the front face of the reflecting element located at its back, any wave (electromagnetic or mechanical), these are placed aligned on the central axis of the solar collector consecutively (directed in the same direction), they have the geometric shape of a cuboid, with the main property of both capturing the waves that affect any of its 4 peripheral faces or the front face or directing through its 4 faces peripheral curves (4) the waves reflected towards the front face of the cuboid positioned consecutively on its back, with this, regardless of the position of the source, the aberration or diffuse reflection of the wave and without the need to have a source follower mechanism, all the waves that impact on a circular or ellipsoidal collector or concentrator,
  • this reflective element (1) performs the function of channeling any type of wave, to exemplify this new device we will concentrate on light and heat waves, particularly those emitted by the sun (12).
  • a reflective element of ellipsoidal section as a lower cover (9) of a solar concentrator, all the rays that fall on it towards the reflecting cuboid element (1) will be concentrated and it will capture them and those reflected by it will direct them to the front face of the element positioned at its rear.
  • These reflective cuboid elements (1) are used to collect or concentrate light energy (photons) and (also) are used to collect or concentrate heat energy.
  • the front face is used in the reflective cuboid element to place the solar cell (2)
  • a tubular element is placed (6) made of a material with high coefficient of thermal conduction such as aluminum, copper or stainless steel, or a glass tube evacuated with a conductive film of silver, aluminum or copper and that is placed in the central line of the collector through the center of the reflective cuboid elements.
  • thermo tank (17) is presented with a novel design built with polymer material that allows a greater capacity to conserve the high temperature generated to the fluid contained in its interior product of the action of capturing solar radiation at through collectors or solar concentrators mentioned.
  • a support ⁇ 19 ⁇ for this thermo-tank whose advantage is that in addition to being constructed with an insulating material such as polymer, it will eliminate the need to have an additional structure for solar collection equipment, this support It is made up of two lateral faces (19), a cover or enclosure (20), two stringers (22) and a cross-section ⁇ 23), the new cover of the mentioned support has a geometric shape that when a reflective element is placed ⁇ 32 ⁇ such as high-gloss aluminum, mirror glass or polished stainless steel that allows it to direct the waves of solar radiation towards the collectors or solar concentrators of the equipment, this allows to increase the radiation affected in these, the inner tank of the thermo- Tank (18) has the novelty of having a certain number of elements and the bottom of one of its sides ⁇ 25 ⁇ that serve
  • This tank (18) allows to operate with low or high pressures, moreover, this tank has the property of being able to be formulated with an inner layer of anti-bacterial polymer, perimeter ribs (27) of the same material (polymer) in its contour that allow to resist the high pressures and temperatures, belts or metal shirt (28) placed on the ribs or on the whole body of the tank increase this capacity.
  • thermo-tank made of polymer allows it to easily withstand the corrosion produced by water when it has a high mineral content (above 200PPM) where the current metal deposits are eroded to be drilled by this corrosion in months.
  • thermo-mechanical minister 35 ⁇ that allows to dose thermal energy to different systems, this is composed of an airtight tank with an element ⁇ 36 ⁇ that transmits the level of temperature present in the system to be controlled, this The tank has inside it a mass (weight) (38) connected to an axis (41) with vertical movement and a system of bi-metallic springs (40) that support this mass (weight) (38), both elements are completely submerged
  • a thermal liquid (39) or substance for heat transmission such as mercury, mineral oil, synthetic or giicol, this substance will raise or lower its temperature by being in communication with the system to be controlled (this through heat transmitter (36) ⁇ , when e!
  • this Sa will transmit the reference substance (39) inside the thermal switch with two results, first it will affect the spring system because, a! raising the temperature, they undergo an elongation and also a decrease er Their mechanical properties resulting in a decrease in strength, secondly, to increase force exerted by the mass on the axle because at! If the temperature rises, the density of the thermal liquid is reduced and the force that it exerts on the mass (Archimedes principle), thus, the spring (40) placed on the outside connected to the main axis (41) will be defeated causing the elevation of the contactor (42), interrupting the dosing of thermal energy to the system.
  • thermo-mechanical Minister easily solves the administration or dosing of thermal energy from a source to any application.
  • thermo-tanks there is a safety thermal switch located in the collectors or in the solar concentrators (7) capable of preventing overheating of the liquids contained in the thermo-tanks, these are composed of sensors or temperature transmitters (36) connected to bimetallic elements , two examples are shown, in the first case the bimetallic element (37) is formed on a spiral spring, when the temperature decreases the spring will reduce its diameter producing a tightening on the ends, connecting the spark plug (33) and the spark plug The collector bar, allowing thermal conduction, when at the temperature of the tank and the sensors is transmitted to the spiral spring (37), it will elongate (increasing its diameter) until the heat flow of the spark plug is disconnected.
  • thermo-deposits can raise the liquid contained in the thermo-deposits by several hundred degrees Celsius, therefore a large amount of energy will be available to be used at any time, this It makes this system more convenient, efficient, economical and durable compared to systems with energy storage in electric batteries (which have a short life and have seen their price rise in recent years).
  • This system if it is coupled to simple systems such as temperature rise by transfer or to closed systems that use the Carnot Cycle (in one way or the other way to generate heat or cold respectively), they have the ability to apply processes to clean energy with processes such as those listed below (some applications are shown in brackets):
  • Hot air generation Heating, Laundries, Industrial processes in general.
  • FIG.- Isometric views of the reflector cuboid element (front view).
  • FIG. Front, top and side views of the reflector cuboid element with the thermal cone and with solar cell
  • FIG. 4. Position matrix of the reflective cuboid elements in a concentrator (side view).
  • FIG 5. Isometric view of the reflector cuboid element, the solar cell encapsulated and immersed in thermal liquid is shown, as well as the structural element that supports it and positions it inside the concentrator.
  • FIG 6.- Isometric view of the reflector cuboid element shows the position of the central cone, the central duct, as well as the structural element that supports and positions it inside the concentrator.
  • Fig. 8. Representation of the incidence and reflection of solar rays in the concentrator.
  • thermo tank (shown without the cover).
  • FIG. 11. Cut A-A 'and detail of the thermo-tank for low pressure systems.
  • FiG 16 Operation diagrams of a second example of the Thermo-Mechanical Minister.
  • FIG 17. Top view of Sa typical solar energy installation for any application.
  • Thermal reflective cone 4.- Reflecting surfaces of the cuboid element. 5. -Support of the reflective cuboid element. 6.-Tubular element of thermal fluid conduction. 7. Solar -Concentrador 8. Q TOP ellipsoidal ered the solar concentrator 9. ellipsoidal Bottom cover the solar concentrator side profiles 10. ll.-caps or end covers 12. Solar -Rayo (path). 13.- Pneumatic valve. 14.- Recessed nut 15. -Spacer spacer of the reflective element. 16.- Support or floor support. 17.-Polymer thermo tank 18, -Inner tank 19.-Side supports 20.- Thermo tank cover 21.- Insulating material or atmospheric vacuum 22.-Stringers 23.-Crossbar 24.
  • sunlight # 12 Fig. 7.8 will affect the collectors or concentrators # 7 Fig. 7.8, of this, which directly affects the reflective cubic elements # 1, as well as the energy reflected by the lower ellipsoid cover # 9 Fig. 7 (which has a reflective finish) directed towards these same reflective cuboid elements # 1 Fig, 1-6, (located in the central part of the ellipsoidal concentrator and made of a high gloss reflective finished material ), will be directed towards the center of the reflective cuboid element placed (consecutively) on its back.
  • the supports or ribs # 5 Fig. 4-6 which support the reflective cuboid elements are connected to the lower cover with conductive elements in order to dissipate the heat, the solar cells are encapsulated in glass and immersed in a dielectric thermal liquid with the In order to easily dissipate the heat, since through the ribs # 5 there is the means by which it would be channeling e! heat to the bottom cover # 9 or to some dissipative element.
  • the ellipsoid shape of the covers # 8, # 9 Fig. 7, allows great wind stability of these solar concentrators by easily diverting the winds that hit them.
  • the main elements that make up the photovoltaic concentrator are (upper deck # 8 and lower # 9, stringers # 10, end caps or headers # 11 and ribs # 5 Fig. 7) this arrangement allows to have a concentrator equipment that resists vacuum conditions for obtain an environment free of dust and moisture inside (there is a pneumatic (vacuum) valve for this purpose # 12). Solar cells transform the high amount of solar energy in them into direct current.
  • the solar light # 12 Fig. 7,8 will affect the collectors or concentrators # 7 Fig. 7,8, of this, which directly affects the reflective cubic elements # 1, as well as the energy reflected by the lower ellipsoid cover # 9 Fig. 7 (which has a reflective finish) directed towards these same reflective cuboid elements # 1 Fig. 1-6, (located in the central part of the ellipsoidal concentrator and made of a high gloss reflective finished material ), will be directed towards the center of the reflective cuboid element placed (consecutively) on its back.
  • the ellipsoid shape of the roofs allows great wind stability of these solar concentrators by diverting with Ease winds that impact on them.
  • the main elements that make up the thermal concentrator are (upper cover # 8 and lower # 9, stringers # 10, end caps # 11 and ribs # 5 Fig. 7) allow to have a device that resists vacuum conditions or achieve an environment free of dust and moisture inside it (there is a pneumatic valve (vacuum)
  • the linear element # 6 located in the center of the reflective cuboid elements # 1 Fig. 7,8 is a tubular element, a thermal liquid flows through it and serves as a thermal energy transporter to the hot water tank, this liquid can be mineral oil , synthetic, glycol or molten salts, which will travel back and forth throughout the solar concentrators (interconnected), until reaching the thermo-tank, this is done by the result to a convection effect or also with the help of a # 34 fluid pump Fig. 17.
  • these concentrators can be connected in series (or parallel) to increase the collection of solar radiation and achieve temperatures in the liquid contained in the thermo tank.
  • Thermo-polymer tank and thermal safety switches in collectors are Thermo-polymer tank and thermal safety switches in collectors.
  • thermo-tank # 17 Fig. 9-11 has a novel design to have duct bodies # 25 Fig. 10-12 to receive radiant thermal energy collectors or concentrators, being made of a material resistant to acidic agents and alkaline allows a much wider number of applications than current equipment made of steel when fluids are required at a temperature less than Sos 90 degrees Celsius. It is constructed of polymer material with reinforcements or ribs # 27 Fig.10-12 all the length and width, belts or metallic shirts # 28 Fig.10 placed on the top of the ribs # 27 will allow you to resist high pressure situations and temperature. It has a free space between the inner and outer tanks, where there is atmospheric vacuum or a layer of insulating material # 21 is placed Fig.
  • thermo tank receive direct solar radiation # 12 Fig, 12 as well as that which will be reflected by the reflective element # 32 Fig.9 on a face of the thermo-tank cover, this allows for greater uptake of radiation
  • Fig. 13,14 used to prevent overheating of the liquid that contains the thermo tank, when the heat conduction that reaches the spark plug rises to a certain temperature # 33 Fig. 13,14 is interrupted and only when ios transmitters # 36 Fig. 13,14 reduce their temperature is it when element # 37 will make a mechanical connection of both ends (of the spark plug and the central tubular bar of the solar concentrator) in order to feed heat again to the liquid inside the thermo tank.
  • Novel thermo-mechanical mechanism which applies principles of physics of materials for metals and liquids, carries out the tasks of ministering the thermal energy collected in the thermo-tank and interrupting the thermal energy collection once the thermo-tank has reached a certain temperature (this in order to avoid overheating of the system), is composed of an airtight tank with a central axis # 41 by which a mass # 38 suspended by a system of bimetallic springs # 40 completely submerged in a liquid Thermal # 39 Fig. 15,16, a temperature transmitter # 36 connected to the source will raise or lower the temperature of the thermal liquid # 39 according to the temperature that this source currently presents, a bimetallic spring and a contactor # 42 attached ai axis # 41 Fig.
  • thermo-tank will raise (disconnect) or descend (connect) interrupting or allowing (through an element such as a solenoid valve or a pump) the p
  • an element such as a solenoid valve or a pump
  • this contactor # 42 can be made with a metal bar that connects the two terminals # 43 or also by a set of encapsulated terminals in a pivoting tank, inside it will contain a liquid metal contactor such as mercury, which connects both terminals in a horizontal position and when it turns off, the threaded bolt will adjust the force that the external spring exerts and that will define the temperature range in which the application is to be operated.
  • This thermal minister can also be used for the case in which it is desired to use the thermal energy collected only until the # 45 thermo tank Fig. 17 had reached a certain temperature. Scheme of construction of a thermal energy application.
  • Radiation # 12 Fig, 7 affects the surface of the concentrators, this energy will pass through the transparent top cover # 8 and both the energy directly affected on the reflective cuboid elements # 1 Fig. 1-6 as well as that reflected by these the lower ellipsoid cover # 9 Fig.
  • thermo duct # 39 located in the thermo tank since a thermal liquid circulates through this central duct (which can be driven by a # 34 pump Fig.17 from the bottom of the thermo tank or can be circulated by a convection phenomenon in order to raise the temperature of this liquid deposited in the thermo-tanks), this liquid will raise its temperature by several hundred degrees Celsius but due to the thermal insolation characteristics of the thermo tank it will remain thermally insulated, the way to harness this energy is through the pipelines # 36 Fig.
  • thermo-mechanical minister will dose the energy from conduit duct # 36 to a reservoir in which the desired liquid is found, the temperature is increased through a heat exchanger # 48 Fig. 17, when it is reached, the thermo-mechanical minister will suspend the heat supply until the application registers again the need to supply more heat energy to the application.
  • thermo-mechanical ministers will be placed for this purpose, the thermal witness of the first connected to the thermo-tank and the witness of the second connected to the application, when the application arrives at a certain temperature the second thermo-mechanical minister will disconcert The thermal energy supply.

Landscapes

  • Photovoltaic Devices (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

Esta invención se refiere a un novedoso concentrador de sección elipsoidal de energía de ondas, en particular de ondas de energía solar, el cual tiene un elemento cuboide reflejante que, sin importar la posición de la fuente de energía, captura eficientemente las ondas electromagnéticas y mecánicas incididas sobre este. Se refiere también a un novedoso diseño de un termo-tanque fabricado en polímero, a un interruptor térmico para colectores o concentradores solares que evita el sobre¬ calentamientos en estos sistemas y a un sistema de administración de energía solar a través de un dispositivo termo mecánico ministrador de energía termo solar.

Description

SISTEMA DE CONCENTRACION, ALMACENAMIENTO Y ADMINSTRACIÓN DE ENERGÍA SOLAR
CAMPO DE LA INVENCIÓN.
Esta invención se refiere a sistemas de colección, almacenamiento y utilización de energía solar, los cuales la captan, almacenan, administran, conducen o transforman por la elevación de energía térmica a líquidos, gases o sólidos. Esta también se refiere a sistemas de conversión de energía luminosa en corriente eléctrica a través de concentradores de foto celdas solares.
ANTECEDENTES DE LA INVENCIÓN
La radiación solar incide sobre la faz de la tierra con una potencia de 1000 watts por metro cuadrado, son cuatro tipos de radiación solar que los colectores o concentradores solares pueden capturar, estas son: la radiación directa, indirecta, horizontal y difusa, en la actualidad el hombre utiliza equipos diseñados para captar esta energía solar para posteriormente utilizarla, almacenarla, transferirla o transformarla.
Los equipos que captan la radiación solar se dividen en Colectores Solares y Concentradores Solares, se diferencian porque en los primeros se captan únicamente la energía que incide directamente en el elemento central del colector y se caracterizan por ser de baja temperatura, los segundos, concentran no solo la energía que incide sobre el elemento central, sino que, utilizando elementos reflectantes, captan y concentran en un punto o línea la energía que incide sobre la totalidad de ellos.
Un buen diseño de estos equipos y de sus componentes permite capturar casi en su totalidad esta energía solar, en ellos no solo se busca lograr obtener la mayor cantidad de energía sino que se busca reducir al máximo las perdidas internas por disipación o fuga de la energía capturada, más aun, se busca que, posterior al proceso de captación, esta energía sea almacenada, conducida o transformada eficientemente, a fin de alimentar múltiples procesos industriales o semi-industriales en donde la aplicación de energía renovable (limpia) sea requerida.
Muchos equipos han sido desarrollados y operan con cierto nivel de eficiencia, sin embargo, aún hay mucho por desarrollar a fin de lograr un aumento en la eficiencia de captación de energía solar, de su utilización y de su transformación, minimizando las pérdidas de energía durante este proceso.
Actualmente existen colectores solares construidos a base de elementos tubulares plásticos o tubos metálicos instalados en arreglo de serpentines sobre estructuras o paneles planos, desafortunadamente estos sistemas permiten una gran pérdida de calor cuando baja la temperatura durante la noche , otros utilizan tubos de vidrio evacuados (al vacío) que calientan los fluidos directamente o a través de elementos metálicos, estos son los que presentan mayor eficiencia, sin embargo, aun en ellos la forma geométrica del tubo colector interior permite una gran pérdida debido a la reflexión de la radiación solar.
Los equipos de captación solar (ya sea paneles fotovoltaieos, colectores o los concentradores solares) pueden ser instalados de forma fija o ser instalados en mecanismos rastreadores de la trayectoria solar, estos últimos se dividen en aquellos que solo ajustan su inclinación durante los meses o estaciones del año y otros más sofisticados que adicional al movimiento de elevación siguen todos los días a! so! en su trayectoria (paneo) de Este a Oeste, de este segundo grupo (sistemas con rastreadores solares) se obtiene un 30% más de energía en sistemas de ajuste de elevación y para aquellos que además siguen al sol en su trayectoria día a día se obtiene un 60% más captación de energía solar (comparado con bs sistemas fijos), sin embargo, los sistemas móviles suelen ser costosos y requieren una atención técnica permanente ya que, ai tener partes móviles, presentan con el tiempo algunos desgastes o malos funcionamientos.
Un problema grave que tienen bs equipos fijos es que, al mantener siempre el mismo ángulo de inclinación, vuelve al equipo (concentrador, colector o panel fotovoltaico) ineficiente, ya que el sol, al tener ángulos muy variados de elevación durante el transcurso de un día y del año, durante una gran parte del tiempo proyectarán sobre estos equipos una huella solar pequeña (y una reflexión grande) de las ondas de energía solar, en consecuencia, no es muy eficiente su desempeño.
Aunque los paneles foto-voltaicos han disminuido de precio de forma acelerada en los últimos años, aun son muy costosos y tienen una eficiencia baja de captación, en gran medida porque estos suelen instalarse sin mecanismos seguidores del sol, el resultado es que al día se obtienen pocos kilowatts- hora haciendo que el tiempo de amortización llegue a ser de 4 a 6 años.
Muchos equipos se han desarrollado y proponen lograr esto con cierto nivel de eficiencia, como es el caso de las siguientes patentes: US 2838043, US5462047, US966070, US0204582, US0027436,
US4474170, US5787878A, US20090064993A1, WO2011001151, US2012Q255540, WO2015139152A1, WO2013120992, US2G16/G161151A, US 2834869A, US2532182A,
US2923797, ÜS4002499.
En esta última patente (US4002499) fechada el 11 de junio de 1977 y otorgada al norteamericano Roland Winston, se presenta un sistema de captación solar que no requiere seguir al sol sin embargo, las grandes dimensiones de la figura paraboloide #21, una pequeña abertura del perfil por donde capta ta energía solar y el hecho que rso resuelve la aberración y la reflexión de las ondas reflejadas por el elemento paraboloide, dieron como resultado una baja utilización de este modelo. Se requiere desarrollar un equipo de captación solar que tenga un desempeño mejor en comparación a los equipos actuales, que su diseño permita el aprovechamiento de energía solar de manera óptima durante todo el año sin la necesidad de invertir en costosos mecanismos seguidores del sol, más aun, que sus dimensiones y su manejo sean amigables para los técnicos que los instalan. También se requieren desarrollar depósitos de líquido térmico de bajo costo que puedan operar a altas presiones (6kg/cm2) y que, a diferencia de los actuales, sean inmunes a la corrosión química o sedimentos ocasionados por agua con una alta concentración de Calcio, Magnesio u otros metales
{arriba de 200 ppm), asimismo se requiere desarrollar nuevos sistemas que permitan utilizar la energía solar en un mayor número de aplicaciones, logrando esto de una forma sencilla y segura, por último, se requiere desarrollar un sistema que pueda ser instalado en paralelo a los actuales a fin de sustituir parcialmente la fuente de alimentación convencional de energía basada en la quema de combustible fósil por energía limpia y renovable.
Los equipos y sistemas que se presentan a continuación son mucho más eficientes a lo actualmente conocido, ya que aprovechan la radiación incidida en ellos { celda fotovoltaicas, colectores o concentradores solares) de una forma más efectiva y eficiente, no posee partes móviles y su diseño permite utilizar las propiedades intrínsecas de distintos materiales para la captación y conducción de energía, este diseño puede ser utilizado en sistemas residenciales e industriales de alta o baja presión de manera indistinta, puede ser escalado o reducido en tamaño para adaptarse con facilidad a la solución de problemas particulares muy pequeños o a grandes procesos industriales.
Se presenta un novedoso sistema de captación y almacenamiento de radiación solar capaz de obtener la mayor cantidad de radiación incidida en ef colector o concentrador soiar, se presenta un elemento reflejante que permite dirigir toda la energía incidida en el colector o concentrador para ser aprovechada óptimamente (no importando ia posición del sol), además, se presentan depósitos de almacenamiento y sistemas de dosificación y administración de energía calorífica a través de termo tanques capaces de almacenar fluidos a alta temperatura por mucho más tiempo reduciendo las pérdidas de calor durante las bajas temperaturas de invierno o nocturnas, más aun, estos son capaces de aumentar la energía incidida sobre los colectores o concentradores solares a! reflectar la energía solar que incide sobre el termo tanque, también se presenta un ministrador térmico e interruptores de seguridad térmicos que permiten dosificar la cantidad de energía solar (calor) suministrada a un sistema.
DESCRSPCIOM GENERAL DE LA INVENCION.
Se presenta un novedoso elemento captador y reflejante de ondas (1) capaz de capturar para sí o canalizar hacia ¡a cara frontal del elemento reflejante localizado en su parte posterior, cualquier onda (electromagnética o mecánica), estos se colocan alineados sobre el eje central del colector solar de forma consecutiva (dirigidas en un mismo sentido), tienen la forma geométrica de un cuboide, con la principal propiedad tanto de capturar para si las ondas que inciden sobre cualesquiera de sus 4 caras periféricas o la cara frontal o de dirigir a través de sus 4 caras curvas periféricas (4) las ondas reflejadas hacia la cara frontal del cuboide posieionado consecutivamente en su parte posterior, con esto, sin importar la posición de la fuente, la aberración o reflexión difusa de la onda y sin la necesidad de tener un mecanismo seguidor de la fuente, se capturan todas las ondas que inciden sobre un colector o concentrador circular o elipsoidal,
Aunque este elemento reflejante (1) realiza la función de canalizar cualquier tipo de onda, para ejemplificar este novedoso dispositivo nos concentraremos en ondas de luz y calor, muy en particular a las emitidas por el sol (12). Con la instalación de un elemento reflejante de sección elipsoidal como cubierta inferior (9) de un Concentrador solar, se concentrarán todos los rayos que incidan sobre él hacia elemento cuboide reflejante (1) y esta los capturará y aquellos reflejados por el mismo los dirigirá a la cara frontal del elemento posicionado en su parte trasera.
Estos elementos cuboides reflejantes (1) son utilizados para colectar o concentrar energía luminosa (fotones) y (también) se utilizan para colectar o concentrar energía calorífica.
Para el primer caso (generación de corriente eléctrica a través de foto-celdas) se utiliza ia cara frontal en el elemento cuboide reflejante para colocar la celda solar (2), en el segundo caso (generación de energía calorífica) se coloca un elemento tubular (6) hecho de un material con alto coeficiente de conducción térmica como el aluminio, cobre o acero inoxidable, o un tubo de vidrio evacuado con una película conductiva de plata, aluminio o cobre y que es colocada en la línea central del colector atravesando el centro de los elementos cuboides reflejantes.
Para posicionar estos elementos dentro del colector o concentrador solar para generación de corriente eléctrica, se sujetan en laminillas rectangulares (5) de un material que permite el paso de la luz solar (como lo es el vidrio) que además de posicionar firmemente el elemento cuboide reflejante, permite darle rigidez a las cubiertas elipsoidales, estas se fijan sobre los perfiles metálicos (15) con espacios equidistantes y que son unidos a las cubiertas elipsoidales (superior e inferior), estos perfiles metálicos coadyuvan a disipar el calor generado en las celdas solares.
Se presenta un novedoso concentrador solar compuesto de dos cubiertas elipsoidales, una superior (8) y otra inferior (9), unidas entre si a todo lo largo por un par de perfiles (10) y en sus extremos por un par de cubiertas (11) con el fin de obtener (en conjunto con sellos) un cierre hermético. Estos concentradores (7) pueden ser colocados en serie y paralelo a fin de aprovechar la energía incidida en una gran superficie. Para contribuir a este propósito se ha diseñado entre ellos un sistema de unión encastrada (14) en las cubiertas extremas de estos concentradores. Ya que este concentrador captará la energía solar de cualquier punto en donde se encuentre la fuente (sol), este concentrador podrá ser colocado en posición horizontal, vertical o con grados de inclinación.
Para sistemas térmicos, se presenta un termo tanque (17) con un novedoso diseño construido con material de polímero que permite tener una mayor capacidad para conservar la alta temperatura generada al fluido contenido en su interior producto de la acción de captación de radiación solar a través de colectores o concentradores solares mencionados. Asimismo se presenta un soporte {19} para este termo-tanque cuya ventaja es que además de ser construido con un material aislante como es el polímero, con él se eliminará la necesidad de tener una estructura adicional para los equipos de captación solar, este soporte lo componen dos caras laterales (19), un cubierta o envolvente (20), dos largueros(22) y un trave$año{23), la novedosa cubierta del referido soporte tiene una forma geométrica que al colocarle un elemento reflejante {32} como lo es el aluminio de alto brillo, el vidrio espejo o el acero inoxidable pulido que le permite dirigir las ondas de radiación solar hacia los colectores o concentradores solares del equipo, esto permite aumentar la radiación incidida en estos, el tanque interior del termo-tanque (18) tiene la novedad de poseer un número determinado de elementos ers la parte inferior de uno de sus costados {25} que sirven para canalizar y recibir herméticamente y con facilidad a los colectores o concentradores solares cilindricos elaborados de vidrio de borosilicato , en su contorno interno estas aberturas tiene un espacio destinado para la colocación de una junta o sello de un material de empaque como lo es el silicón o el nitrilo (26) a fin de sellar externamente a los referidos colectores circulares, este elemento puede estar comunicado ai interior del depósito para ser usado con ios actuales tubos evacuados cuyo diámetro suele ir de 45 a IGOmm, de lo contrario podrá ser operado a alta presión, en este supuesto un elemento de conducción del fluido (33) es colocado herméticamente en el centro de esta abertura y otros elementos de control de temperatura (36) podrían ser colocados de ia misma forma a sus costados. Este depósito (18) permite operarse con bajas o altas presiones, más aun, este depósito tiene la propiedad de poder ser formulado con una capa interior de polímero anti-bacterial, costillas perimetrales (27) del mismo material (polímero) en su contorno que permitan resistir las altas presiones y temperaturas, cinturones o camisa de metal (28) colocados sobre las costillas o sobre todo el cuerpo del tanque aumentan esta capacidad.
Otra ventaja importante radica en que el diseño de este termo-tanque fabricado en polímero le permite soportar con facilidad la corrosión que produce el agua cuando esta tiene un alto contenido de minerales (arriba de 200PPM) en donde los actuales depósitos metálicos son erosionados hasta ser perforados por esta corrosión en meses.
Se presenta un novedoso ministrador termo-mecánico (35}que permite dosificar energía térmica a diferentes sistemas, este se compone de un depósito hermético con un elemento {36} que trasmite el nive! de temperatura presente en el sistema que se quiere controlar , este depósito tiene en su interior un masa (peso)(38) conectada a un eje (41) con movimiento vertical y un sistema de resortes bi-metálicos (40)que soportan esta masa (peso) (38), ambos elementos son sumergidos completamente en un líquido térmico (39) o sustancia para transmisión de calor como lo son el mercurio, aceite mineral, sintético o el giicol, esta sustancia elevará o disminuirá su temperatura al estar ers comunicación con el sistema que se desea controlar (esto a través del transmisor de calor (36)}, cuando e! sistema recibe energía térmica del termo-depósito, este Sa trasmitirá a la sustancia en referencia (39) dentro del interruptor térmico con dos resultados, en primer lugar afectará al sistema de resortes debido que, a! elevar la temperatura, estos experimentarán una elongación y además una disminución er¡ sus propiedades mecánicas ocasionando una disminución de su fuerza, en segundo lugar, aumentará ¡a fuerza que ejerce la masa sobre el eje debido a que, a! elevarse la temperatura, se disminuye la densidad del líquido térmico y la fuerza que este ejerce sobre la masa (principio de Arquímedes), así, el resorte (40) colocado en la parte exterior conectado ai eje principal (41) será vencido produciendo la elevación del contactor (42), interrumpiendo la dosificación de energía térmica al sistema. Cuando la temperatura baja, el líquido (39) del termo-interruptor aumenta su densidad, los resortes internos (40) recobrarán sus propiedades mecánicas originales y fuerza, con io que disminuirá el vector fuerza que ejerce el peso (38) sobre el eje (41), así, el resorte externo (40) podrá vencer al sistema y descenderá el contactor (42) para reiniciar la dosificación de energía térmica, el perno roscado de ajuste regulará la fuerza de! resorte externo (40) y en consecuencia la temperatura, un elemento de medición permitirá ajustar con precisión la fuerza del resorte para diferentes temperaturas. Este Ministrador termo-mecánico resuelve de manera sencilla la administración o dosificado de energía térmica de una fuente a cualquier aplicación.
Se presenta un interruptor térmico de seguridad situado en los colectores o en los concentradores solares (7) capaz de impedir el sobrecalentamiento de los líquidos contenidos en los termo-tanques, estos se componen de sensores o trasmisores de temperatura (36) conectados a elementos bimetálicos, se muestran dos ejemplos , en el primer caso el elemento bimetálico (37) es formado de on resorte en espiral, cuando la temperatura disminuye el resorte reducirán su diámetro produciendo un apriete sobre los extremos, conectando la bujía (33) y la bujía de la barra del colector, permitiendo la conducción térmica, cuando ¡a temperatura del depósito y de los sensores es transmitida al resorte en espiral(37), este se elongarán (aumentando su diámetro) hasta desconectar el paso de calor de la bujía. Para el segundo ejemplo, al bajar la temperatura elementos bimetálicos en forma de laminillas conectarán el elemento metálico proveniente del colector a la bujía (33) del tanque, cuando la temperatura del líquido en el tanque aumenta, los sensores (36) transmiten la temperatura y los elementos bimetálicos al elongarse desconectarán el sistema.
Un aspecto de gran importancia es que la energía calorífica colectada por este sistema puede elevar en varios cientos de grados centígrados el líquido contenido en los termo-depósitos, por lo tanto se dispondrá de una gran cantidad de energía a ser utilizada en cualquier momento, esto hace a este sistema más conveniente, eficiente, económico y duradero comparado a sistemas con almacenamiento de energía en baterías eléctricas (las cuales tiene una vida de uso corta y han visto elevar su precio en los últimos años). Este sistema, si es acoplándolo a sistemas simples como elevación de temperatura por transferencia o a sistemas cerrados que utilizan el Ciclo de Carnot (en un sentido o en sentido inverso para generar calor o frió respectivamente), tienen la capacidad de aplicarse para energizar con energía limpia procesos como los que a continuación se enuncian (entre paréntesis se muestran algunas aplicaciones):
Generación de vapor. (Generación de corriente eléctrica, Hotelero, Procesos industriales).
Generación de líquidos caliente. (Residencial, Hotelero, Alimentos, Textil, Químico, industrial)
Generación de líquidos fríos. (Chiliers, Procesos industriales en general).
Generación de aire caliente. (Calefacción, Lavanderías, Procesos industriales en general).
Generación de aire frío. (Aire Acondicionado, Refrigeración, Procesos industriales).
Generación de corriente eléctrica. (A través del concentrador de luz solar con elemento cuboide reflejante).
Habiendo descrito la naturaleza de la presente invención, un ejemplo de cada elemento se describe con referencias a los dibujos adjuntos. Sin embargo, los expertos en la técnica apreciarán que muchas variaciones se pueden idear sin apartarse del alcance de ¡a invención como fue descrita anteriormente.
FIG 1.- Vistas en isométrico del elemento cuboide reflector (vista frontal).
FíG 2 - Vistas en isométrico del elemento cuboide reflector (vista trasera)
FIG 3.- Vistas frontal, superior y lateral del elemento cuboide reflector con el cono térmico y con celda solar
FíG 4.- Matriz de posición de los elementos cuboides reflejantes en un concentrador (vista lateral). FIG 5.- Vista en isométrico del elemento cuboide reflector, se muestra la celda solar encapsulada e inmersa en líquido térmico, así como el elemento estructural que la soporta y posiciona dentro del concentrador.
FIG 6.-Vista en isométrico del elemento cuboide reflector se muestra la posición del cono central, del ducto central, así como del elemento estructural que la soporta y posiciona dentro del concentrador. FiG 7.- Vista frontal, superior del concentrador solar.
FíG 8. - Representación de la incidencia y reflejo de rayos solares en el concentrador.
FIG 9.- Vista isométrica del termo-tanque de polímero.
F!G 10.- Vista frontal del termo tanque (se muestra sin la cubierta).
FIG. 11.- Corte A-A' y detalle del termo-tanque para sistemas de baja presión.
FIG 12.- Corte A-A' y detalle del termo-tanque para sistemas de alta presión.
FIG 13.- Vista isométrico de un primer ejemplo de interruptor de seguridad térmico.
FIG 14.- Vista isométrico de un segundo ejemplo de interruptor de seguridad térmico.
FIG 15.- Diagramas de operación de un primer ejemplo del ministrador Termo-Mecánico.
FiG 16.- Diagramas de operación de un segundo ejemplo del ministrador Termo-Mecánico. FIG 17.- Vista superior de Sa instalación de energía solar típica para cualquier aplicación.
NUMERACIÓN Y DESCRIPCIÓN GENERAL DE PARTES CONTENIDOS EN LAS FIGURAS,
1.- Elemento cuboide reflejante. 2.- Celda Solar encapsulada e inmersa en líquido térmico. 3.-
Cono térmico reflejante. 4.- Superficies reflectoras del elemento cuboide. 5. -Soporte del elemento cuboide reflejante. 6.-Elemento tubular de conducción de líquido térmico. 7. -Concentrador solar 8.-Q¡bierta elipsoidal superior del concentrador solar 9.-Cubierta elipsoidal Inferior del concentrador solar 10.-Perfiles laterales ll.-Tapas o cubiertas extremas 12. -Rayo solar (trayectoria). 13.- Válvula neumática. 14.- Tuerca encastrable 15. -Espaciador de soportes del elemento reflejante. 16.- Soporte o apoyo a piso. 17.-Termo tanque de polímero 18,-Tanque interior 19.-Soportes laterales 20.- Cubierta de termo tanque 21.- Material aislante o vacío atmosférico 22.-Largueros 23.-Travesaño 24.~Tubo evacuado 25,-Cuerpo de canalización de colectores 26.- Espacio para colocación de sellos. 27.- Costillas de termo tanque. 28.- Camisas de refuerzo 29.~Salida de agua caliente 30.-Entrada de agua fría. 31.-Ducto para válvula de seguridad 32.- Pantalla reflector. 33.- Bujía térmica 34.- Bomba de líquido térmico 35.- Ministrador termo-mecánico 36. -Conductos trasmisores de líquido térmico 37. -Interruptor bimetálico de temperatura. 38. Masa (Peso) 39.-üquido térmico 40.-Resortes, 41,-Eje 42.- Contactor 43, -Terminal térmica 44,-Contactor de mercurio, 45.- Termo tanque de alta temoeratura 46.-Aplicación térmica. 47.-Dren de agua. 48.- íntercambiador de calor. 49.-
Separador térmico. Concentrador solar fotovoltaico
En cualquier día, la luz solar #12 Fig. 7,8 incidirá en los colectores o concentradores #7 Fig. 7,8, de esta, la que incide directamente en los elementos cúbicos reflejantes #1, así como la energía reflejada por la cubierta elipsoide inferior #9 Fig.7 (que tiene una acabado reflejante) dirigida hacia estos mismos elementos cuboides reflejantes #1 Fig, 1-6, (localizados en la parte central del concentrador elipsoidal y hechos de un material con acabado reflejante de alto brillo), serán dirigidos hacia el centro del elemento cuboide reflejante colocado (consecutivamente) en su parte posterior. En este novedoso diseño, no afectará la posición en la que se encuentre la fuente de radiación (el sol), ya que, durante el transcurso dei día, rayos solares #12 penetrarán la cubierta elipsoidal superior #8 del concentrador e incidirán directamente o serán reflejadas por la cubierta inferior #9 Fig.7,8 hacia los elementos cuboides reflejantes #1 Fig.1-8 en cualquier ángulo de incidencia en que estuviera la fuente de radiación (sol) (la cubierta elipsoidal superior está hecha de un material que permite el paso de la luz, y la cubierta inferior tiene una terminado reflejante), debido a esto, se colectan casi es su totalidad todos los rayos solares incididos en él concentrador, para ser dirigidos hacia ¡as celdas solares localizadas en cada tina de las caras frontales de los elementos cuboides reflejantes #2 Fig.3, ahí, la incidencia de los rayos reflejados es casi perpendicular al plano de las celdas por lo que la perdida por reflexión es pequeña. Las soportes o costillas #5 Fig. 4-6, que soportan los elementos cuboides reflejantes se conectan a la cubierta inferior con elementos conductivos a fin de disipar el calor, las celdas solares son encapsuladas en vidrio e inmersas en un líquido térmico dieléctrico con el fin de disipar con facilidad el calor, ya que a través de las costillas #5 existe el medio por el que se estaría canalizando e! calor hacia la cubierta inferior #9 o hacia algún elemento disipador. La forma elipsoide de las cubiertas #8, #9 Fig. 7, permite una gran estabilidad eólica de estos concentradores solares al desviar con facilidad los vientos que incidan sobre ellos. Los elementos prirícipales que componen el concentrador fotovoltaico son (cubierta superior #8 e inferior #9, largueros#10, tapas o cabeceras extremas #11 y costillas #5 Fig.7) este arreglo permite tener un equipo concentrador que resiste condiciones de vacío para obtener un ambiente libre de polvo y humedad en su interior (se cuenta con una válvula neumático (de vacío) para este propósito #12). Las celdas solares transforman la alta cantidad de energía solar incidida en ellas en corriente directa.
Concentrador solar térmico:
En cualquier día, la iuz solar #12 Fig. 7,8 incidirá en los colectores o concentradores #7 Fig. 7,8, de esta, la que incide directamente en los elementos cúbicos reflejantes #1, así como la energía reflejada por la cubierta elipsoide inferior #9 Fig.7 (que tiene una acabado reflejante) dirigida hacia estos mismos elementos cuboides reflejantes #1 Fig. 1-6, (localizados en ia parte central del concentrador elipsoidal y hechos de un material con acabado reflejante de alto brillo), serán dirigidos hacia el centro del elemento cuboide reflejante colocado (consecutivamente) en su parte posterior. En este novedoso diseño, no afectará la posición en la que se encuentre la fuente de radiación (el sol), ya que, durante el transcurso del día, rayos solares #12 penetrarán la cubierta elipsoidal superior #8 del concentrador e incidirán directamente o serán reflejadas por la cubierta inferior #9 Fig.7,8 hacia los elementos cuboides reflejantes #1 Fig.1-8 en cualquier ángulo de incidencia en que estuviera la fuente de radiación térmica (ía cubierta elipsoidal superior está hecha de un material que permite el paso de la iuz, y la cubierta inferior tiene una terminado reflejante), debido a esto, se colectan completamente todos las ondas de radiación solar, no solo las directas sino también otras formas de radiación solar (indirecta, horizontal y difusa) para posteriormente ser incididos y captados por el elemento lineal tubular ubicado en e! centro de los elementos cuboides reflejantes #6 Fig. 7,8, ia incidencia de las ondas reflejadas por el interior conicoide de este elemento será en dirección radial al eje del elemento central por !o que la perdida por reflexión será pequeña. La forma elipsoide de las cubiertas permite una gran estabilidad eólica de estos concentradores solares al desviar con facilidad ¡os vientos que incidan sobre ellos. Los elementos principales que componen el concentrador térmico son (cubierta superior #8 e inferior #9, largueros#10, tapas extremas #11 y costillas #5 Fig.7) permiten tener un equipo que resiste condiciones de vacío o lograr un ambiente libre de polvo y humedad en el interior del mismo (se cuenta con una válvula neumática (de vacío)
#12). El elemento lineal #6 localizado en el centro de los elementos cuboides reflejantes #1 Fig.7,8 es un elemento tubular, un líquido térmico fluye a través de él y sirve como transportador de energía térmica al termotanque, este líquido puede ser aceite mineral, sintético, glicol o sales fundidas, que viajarán de ida y regreso por todo lo largo de los concentradores solares (interconectados), hasta llegar al termo-tanque, esto lo realiza por el resultado a un efecto de convección o también con la ayuda de una bomba de fluidos #34 Fig. 17. Como se ha dicho, estos concentradores pueden ser conectados en serie (o paralelo) para aumentar la captación de radiación solar y lograr aitas temperaturas en eí líquido contenido en el termo tanque.
Termo-tanque de polímero e interruptores térmicos de seguridad en colectores.
El presente termo-tanque #17 Fig.9 -11 tiene un diseño novedoso ai poseer cuerpos de canalización #25 Fig.10-12 para recibir de forma colectores o concentradores de energía térmica radiante, al estar fabricado de un material resistente a agentes ácidos y alcalinos permite un número de aplicaciones mucho más amplio que los actuales equipos fabricados en acero cuando se requiere fluidos a una temperatura menos a Sos 90 grados centígrados. Está construido de material polímero con refuerzos o costillas #27 Fig.10-12 a todo lo largo y ancho, cinturones o camisas metálicas #28 Fig.10 colocados en la parte superior de las costillas #27 le permitirán resistir situaciones de alta presión y temperatura. Presenta un espacio libre entre los tanques interior y exterior, en donde existe vacío atmosférico o se coloca una capa de material aislante #21 Fig. 11 y 12, este equipo se ensambla con la ayuda de los paneles laterales #19 Fig. 9,10 que le otorgan consistencia estructural. Los colectores o concentradores conectados al termo tanque reciben la radiación solar directa #12 Fig,12 así como aquella que será reflejada por el elemento reflejante #32 Fig.9 en una cara de ia cubierta del termo- tanque, esto permite tener una mayor captación de radiación.
Se presentan dos ejemplos de interruptores térmicos #37 Fig. 13,14 utilizados para evitar el sobre calentamiento del líquido que contiene el termo tanque, al elevarse a determinada temperatura la conducción de calor que llega a la bujía #33 Fig. 13,14 es interrumpida y solo cuando ios transmisores #36 Fig. 13,14 reducen su temperatura es cuando el elemento #37 hará una conexión mecánica de ambos extremos (de la bujía y de la barra tubular central del concentrador solar) a fin de alimentar nuevamente de calor al líquido en el interior del termo tanque.
Cuando la temperatura del líquido en el interior del termotanque se eleva y llega a una temperatura determinada, el elemento #37 se elonga y la conexión entre ambos se pierde, para restablecerse nuevamente en el momento en que la temperatura deí transmisor #36 y por lo tanto del líquido dentro del termo tanque se reduzca.
Ministrador Termo-Mecánico
Novedoso mecanismo termo-mecánico el cual aplica principios de física de materiales para metales y líquidos, lleva al cabo la tareas de ministrar la energía térmica colectada en el termo-tanque e interrumpir la captación de energía térmica una vez que el termo-tanque haya alcanzado una temperatura determinada ( esto a fin de evitar sobre-calentamiento del sistema), se compone de un depósito hermético con un eje central #41 por el que pende una masa #38 suspendida por un sistema de resortes bimetálicos #40 completamente sumergidos en un líquido térmico #39 Fig. 15,16, un transmisor de temperatura #36 conectada a la fuente elevará o disminuirá la temperatura del líquido térmico #39 acorde a la temperatura que presente en ese momento esta fuente, un resorte bimetálico y un contactor #42 unido ai eje #41 Fig. 15,16 elevará (desconectará) o descenderá (conectará) interrumpiendo o permitiendo (a través de un elemento como puede ser una electroválvula o una bomba) el paso de líquido térmico del termo-depósito a la aplicación, a través de un perno roscado y de un sistema de medición se regulará la temperatura a diferentes temperaturas. Al elevarse la temperatura de! líquido térmico #39 producto del mismo aumento en la temperatura del transmisor de temperatura #36, se incrementara la temperatura de los elementos bimetálicos de los que están hecho los resortes internos #40 que soportan el peso de la masa, con esto los resortes bimetálicos reducen su fuerza y estos se elongarán, al elevarse la temperatura del líquido térmico desciende también su densidad y la fuerza vertical que ejerce este sobre la masa, por estos motivos el eje #41 experimenta el aumento de la fuerza descendente producto al relativo incremento en peso, con lo cual vencerá el resorte #40 ubicado en la parte exterior, con ello, se elevará el contactor #42 (desconectando el suministro de energía térmica), cuando el líquido térmico
#39 se enfría regresa a su estado original, esto es debido a que los resortes recuperan su fuerza y la densidad del líquido térmico se incrementa ejerciendo una fuerza vertical mayor sobre el peso, por lo que el resorte exterior es capaz de vencer el mecanismo y logra que el conector descienda y haga la conexión, este contactor #42 puede ser elaborado con una barra metálica que una la dos terminales #43 o también por un juego de terminales encapsulados ert un depósito que pivotea, en su interior contendrá un metal contactor líquido como lo es el mercurio, que en una posición horizontal conecta ambas terminales y cuando gira desconecta, el perno roscado ajustará la fuerza que el resorte exterior ejerce y que definirá el rango de temperatura en que se desea operar la aplicación. Este ministrador térmico también puede ser utilizado para el caso en que se desee utilizar la energía térmica colectada solo hasta que el termo tanque #45 Fig. 17 hubiera alcanzado una temperatura determinada. Esquema de construcción de una aplicación de energía térmica.
La radiación #12 Fig,7 incide sobre la superficie de los concentradores, esta energía traspasara la cubierta superior transparente #8 y tanto la energía incidida directamente sobre ¡os elementos cuboide reflejantes #1 Fig. 1-6 así como la reflejadas a estos por la cubierta elipsoide inferior #9 Fig.
7, serán dirigidas al cono central #3 de estos elementos Fig.6 ubicadas en la parte posterior de cada uno de ellas para finalmente incidir en el termo conducto ubicado en el centro de ellas, esta trasmitirá el calor a la sustancia o líquido térmico #39 ubicado en el termo tanque ya que por este ducto central circula un líquido térmico (el cual puede ser impulsado por una bomba #34 Fig.17 desde la parte baja del termo tanque o puede hacerse circular por un fenómeno de convección a fin de elevar la temperatura de este líquido depositado en los termo-tanques), este líquido elevará su temperatura en varios cientos de grados centígrados pero por las características de insolación térmica del termo tanque permanecerá térmicamente aislado, la forma de aprovecha esta energía es a través de os ductos de conducción #36 Fig.17 por las cuales circula el líquido térmico #39 del termo tanque a elevada temperatura y que serán conectadas a la aplicación a través de los ministradores termo-mecánicos #35 Fig. 17 así como de otros elementos como pueden ser una electroválvula o una bomba impulsora, así por ejemplo cuando se desea calentar grandes volúmenes de agua durante el día y la noche, el ministrador termo-mecánico dosificara la energía proveniente de ducto de conducción #36 hacia un depósito en el cual se encuentre el líquido que se desea le sea aumentada la temperatura a través de un intercambiador de calor #48 Fig. 17, cuando esta es alcanzada, el ministrador termo-mecánico suspenderá el suministro de calor hasta que la aplicación nuevamente registre ¡a necesidad de suministrar más energía calorífica a la aplicación. Otro ejemplo puede ser la obtención de vapor de agua en un ciclo cerrado para la generación de corriente eléctrica a través de un motor de combustión externa (motor a vapor) y de un generador eléctrico, en este ejemplo el ducto de conducción del líquido térmico proveniente de! termo tanque suministrará la energía a la aplicación para obtener el vapor a la temperatura deseada con la cual se alimentará el motor y este accionará el generador eléctrico, más aún, si se desea que este proceso inicie a partir de registrar determinada temperatura en e! termo-tanque, entonces se colocarán para este fin sendos ministradores termo-mecánicos, el testigo térmico del primero conectado al termo-tanque y el testigo del segundo conectada a la aplicación, al llegar la aplicación a cierta temperatura el segundo ministrador termo-mecánico desconcertará el suministro de energía térmica.
Los procesos de manufactura involucrados en la elaboración de esta invención que son el moldeado de vidrio a través de hornos, el formado de vidrio por soplado, así como su metalizado por sublimado, además los procesos de endurecimiento químico de vidrio, otros procesos involucrados son el roto moldeado o soplado de polímero, así como el maquinado y estampado de metales, todos ellos elaborados con maquinaria ampliamente conocida en la industria.

Claims

REIVINDICACIONES Habiendo descrito suficientemente mi invención, considero como una novedad y por tanto reclamo como de mi exclusiva propiedad lo contenido en las siguientes clausulas:
1. - Concentrador de energía (7) que comprende:
Ursa envolvente formada por una cubierta alargada de sección elipsoidal cuya superficie inferior tiene un recubrimiento reflejante de ondas; Dos cabeceras (11) colocadas en los extremos de la envolvente y en ambas cabeceras se encuentra un sistema de unión encastrable hermética {14} para conectarse en serie con otros concentradores; Uno o más elementos de captación y reflexión de energía (1), que son colocados de forma consecutiva y en el mismo sentido a todo lo largo de la línea central del concentrador y que se caracteriza porque estos son elementos de geometría cuboíde, en donde cuatro de sus lados son superficies curvas cóncavas hacia su parte externa (4) orientadas desde el perímetro de su cara frontal hacia el centro de la cara posterior de dicho elemento, como se muestra en las Fig. 1-3,
2. - Concentrador de energía como se menciona en la reivindicación 1, que se caracterizan porque en la cara frontal de ios elementos (1), que es en donde inciden los rayos solares dirigidos por el elemento reflejante (1} localizado frente a ellos, se coloca una celda solar.
3. - Concentrador de energía como se menciona en la reivindicación 2, que se caracterizan porque ios elementos (1), tienen acoplados un elemento rectangular de soporte (5) el cual apoya cada uno de sus extremos a los perfiles (15) adheridos a las superficies interiores de la cubierta elipsoidal.
4. - Concentrador de energía como se menciona en la reivindicación 2, que se caracteriza porque tiene acoplado un elemento tubular (6) bajo la línea central para suministrar líquido térmico refrigerante;
5. - Concentrador de energía como se menciona en la reivindicación 1 que se caracteriza porque los elementos (1) son instalados (de forma consecutiva y en el mismo sentido) a todo lo largo en un elemento tubular colocado en la línea central y que transporta un líquido térmico (6) hacia el termo- tanque y que posee un segundo elemento tubular bajo la línea central para suministrar líquido térmico a baja temperatura hacía los concentradores (6)
6. - Concentrador de energía como se menciona en Sa reivindicación 1, que se caracterizan porque en el interior de ¡os elementos (1), que es en donde inciden los rayos solares dirigidos por el elemento reflejante localizado frente a cada uno de ellos, se coloca un elemento captador y reflejante de ondas cónico (3) como se muestra en la Fig.6.
7. - Concentrador de energía como se menciona en la reivindicación 1, y que se caracteriza por tener entre ia línea central de elementos reflejantes (1) y la cubierta elipsoidal inferior, una pantalla reflectiva alargada de sección semí-elipsoidal a todo lo largo del concentrador.
8. - Concentrador de energía como se menciona en la reivindicación 1, que se caracteriza porque la cubierta está compuesta de una cubierta superior de sección semi-elipsoidai (8) hecha de un material transparente y por una cubierta inferior de sección semi-elipsoidal (9) la cual tiene ai menos la superficie interior al concentrador con un acabado reflejante de ondas, unidas a todo lo largo en sus costados por dos perfiles (10).
9. ~ Sistema de Almacenamiento de Energía Solar que comprende un termo-tanque (17) que se caracteriza por tener una cubierta (20) con la forma geométrica mostrada en las fig. 9-11 para reflejar la radiación incidida en ella hacía los colectores solares.
10. - Sistema de Almacenamiento de Energía Solar como es descrito en la reivindicación 10, que se caracteriza por tener cuerpos cilindricos canalizadores de colectores solares (25) en ia parte baja de uno de sus costados con la forma que es mostrada en la Fig. 9, 10 yll, y que su tanque interior posee costillas longitudinales y transversales (27), en donde se colocan camisas o cinturones metálicos de refuerzo (28),
11. - interruptor térmico de colector de energía térmica, que comprende:
Al menos una terminal térmica (36) y unido a ellas elementos en forma de laminillas semicirculares (37) los cuales tienen, al final de cada laminilla, un contactor térmicamente aislado y que son instalados coaxialmente a las bujías (33) del colector solar y del termo-tanque.
12. - Interruptor térmico de colector energía térmica que comprende:
Al menos una terminal térmica (36) y unidos a ellas, un elemento espiral bimetálico (37), el cual tiene, al final de la espiral, un contactor térmicamente aislado, que es instalado coaxialmente a las bujías (33) de! colector solar y del termo-tanque.
13. -Sistema de administración de energía térmica (35) que comprende:
Un interruptor termo-mecánico e! cual es accionado por un masa (38) conectada a una eje (41.) suspendidos por sistema de resortes (40) , que este conjunto está inmerso en líquido térmico en un depósito sellado el cual recibe calor a través de un transmisor térmico (36), que el eje (41) está conectado a un contactor (42) y que este es calibrado a través de un sistema de resorte y perno de ajuste.
PCT/MX2017/000114 2016-09-30 2017-09-28 Sistema de concentración, almacenamiento y administración de energía solar WO2018062985A2 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MX2016012872A MX2016012872A (es) 2016-09-30 2016-09-30 Sistema de concentracion, almacenamiento y administracion de energia solar.
MXMX/A/2016/012872 2016-09-30

Publications (3)

Publication Number Publication Date
WO2018062985A2 true WO2018062985A2 (es) 2018-04-05
WO2018062985A3 WO2018062985A3 (es) 2018-05-24
WO2018062985A4 WO2018062985A4 (es) 2018-07-26

Family

ID=61760695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2017/000114 WO2018062985A2 (es) 2016-09-30 2017-09-28 Sistema de concentración, almacenamiento y administración de energía solar

Country Status (2)

Country Link
MX (1) MX2016012872A (es)
WO (1) WO2018062985A2 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109904270A (zh) * 2019-03-07 2019-06-18 宁波大学 一种基于碳量子点的荧光太阳集光器的制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4427838A (en) * 1981-06-09 1984-01-24 Goldman Arnold J Direct and diffused solar radiation collector
DE4335914C2 (de) * 1992-10-22 1998-12-03 Michael Nord Solarkollektor
FR2951251B1 (fr) * 2009-10-08 2012-03-30 Soitec Silicon On Insulator Systeme de production d'energie combinant l'energie solaire thermique et l'energie photovoltaique
DE102009051589B4 (de) * 2009-11-02 2013-06-13 Tobias Schmidt Vorrichtung zum Sammeln von Licht
US20120007434A1 (en) * 2010-02-04 2012-01-12 Massachusetts Institute Of Technology Three-dimensional photovoltaic apparatus and method
CH704007A1 (de) * 2010-10-24 2012-04-30 Airlight Energy Ip Sa Sonnenkollektor mit einer ersten Konzentratoranordnung und gegenüber dieser verschwenkbaren zweiten Konzentratoranordnung.
CH705811A2 (de) * 2011-11-29 2013-05-31 Airlight Energy Ip Sa Rinnenkollektor mit einer Anzahl von Sekundärkonzentratoren.
US9575244B2 (en) * 2013-01-04 2017-02-21 Bal Makund Dhar Light guide apparatus and fabrication method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109904270A (zh) * 2019-03-07 2019-06-18 宁波大学 一种基于碳量子点的荧光太阳集光器的制备方法

Also Published As

Publication number Publication date
WO2018062985A4 (es) 2018-07-26
MX2016012872A (es) 2018-03-30
WO2018062985A3 (es) 2018-05-24

Similar Documents

Publication Publication Date Title
ES2638858T3 (es) Captador solar
US20110226308A1 (en) Solar energy hybrid module
AU3487395A (en) Solar concentrator for heat and electricity
US20120132195A1 (en) Convection Driven Two-Component Solar Water Heater Using All-Glass Evacuated Tubes with a Heat Separator
WO2010100293A1 (es) Planta de concentración solar tipo fresnel con reconcentrador secundario optimizado
WO2013072363A1 (en) Energy conversion device
WO2012055160A1 (zh) 锁光式太阳能集热器及锁光式太阳能集热方法
WO2018062985A2 (es) Sistema de concentración, almacenamiento y administración de energía solar
WO2008012390A1 (es) Caldera de energía solar
US20120011851A1 (en) Solar Heat Collector
Singh et al. A review on solar energy collection for thermal applications
WO2012107605A1 (es) Elemento, y panel de captación y concentración de la radiación solar directa
US8800549B2 (en) Solar energy collecting assembly
WO2010146201A1 (es) Torre para planta de concentración solar con refrigeración de tiro natural
JP2004205062A (ja) 集光式太陽熱温水器
JP2016031177A (ja) 太陽光熱交換装置
AU2010244392B2 (en) Getter support structure for a solar thermal power plant
KR20180086692A (ko) 히트펌프에 연계된 태양열 및 공기열 복합집열기의 공기순환 방지구조를 이용한 복합 시스템
CN110214254B (zh) 曲面吸收器型太阳能流体加热器
WO2010070702A1 (ja) 自然エネルギを利用した動力発生装置
KR20190115896A (ko) 열매체 순환회로를 가진 집광형 태양열 발전 축열 시스템
ES2966702T3 (es) Receptor de calor para energía solar concentrada urbana
CN201443894U (zh) 一种双效壁挂式真空球形太阳能集热器
KR101103591B1 (ko) 반사율을 유지하고 열손실을 줄일 수 있는 집열기
WO2017002127A1 (en) Solar collector with absorber integrated heat storage

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856870

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17856870

Country of ref document: EP

Kind code of ref document: A2