WO2018062675A1 - Apparatus for manufacturing optical cable comprising optical module device, and method for manufacturing optical cable, comprising optical module device, by using same - Google Patents

Apparatus for manufacturing optical cable comprising optical module device, and method for manufacturing optical cable, comprising optical module device, by using same Download PDF

Info

Publication number
WO2018062675A1
WO2018062675A1 PCT/KR2017/008314 KR2017008314W WO2018062675A1 WO 2018062675 A1 WO2018062675 A1 WO 2018062675A1 KR 2017008314 W KR2017008314 W KR 2017008314W WO 2018062675 A1 WO2018062675 A1 WO 2018062675A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical cable
receiving
coupling
cable
Prior art date
Application number
PCT/KR2017/008314
Other languages
French (fr)
Korean (ko)
Inventor
이상식
Original Assignee
이상식
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이상식 filed Critical 이상식
Publication of WO2018062675A1 publication Critical patent/WO2018062675A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • G02B6/06Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres the relative position of the fibres being the same at both ends, e.g. for transporting images
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/25Preparing the ends of light guides for coupling, e.g. cutting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2821Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals
    • G02B6/2826Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals using mechanical machining means for shaping of the couplers, e.g. grinding or polishing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/46Processes or apparatus adapted for installing or repairing optical fibres or optical cables
    • G02B6/50Underground or underwater installation; Installation through tubing, conduits or ducts
    • G02B6/54Underground or underwater installation; Installation through tubing, conduits or ducts using mechanical means, e.g. pulling or pushing devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2581Multimode transmission

Definitions

  • the present invention relates to an apparatus for manufacturing an optical cable including an optical module device and a method for manufacturing an optical cable including an optical module device using the same, and more specifically, to an optical fiber device, an optical fiber that can significantly reduce alignment work time in a manufacturing process of an optical module device.
  • optical fibers are not affected by electromagnetic interference, and are widely applied to high-capacity digital media transmission, including high-definition digital video display devices requiring large data transmission.
  • the optical module device refers to a data receiving device for converting an optical signal received through such an optical fiber into an electrical signal, or a data transmission device for converting an electrical signal into an optical signal and transmitting it through the optical fiber.
  • the optical module device requires alignment to adjust the arrangement between the elements constituting the device in order to minimize optical signal loss during transmission or reception.
  • the optical module device to which a plurality of optical fibers are applied has a problem that optical crosstalk between optical fibers occurs, and therefore, a considerable time is required in the alignment process in the manufacture of an optical cable including a conventional optical module device. In addition, the manufacturing cost of the optical cable including the optical module device has been increased.
  • the present invention provides an apparatus for manufacturing an optical cable including an optical module device having a structure in which a time required for the alignment process is reduced during the manufacturing process of the optical cable including the optical module device, and a method for manufacturing an optical cable including the optical module device using the same.
  • the present invention provides an optical cable holder portion formed to fix an optical cable, an optical cable end portion fixed to the optical cable holder portion is mounted to move to the left and right by the operation of the motor drive unit, and the optical fiber end portion And a control unit for controlling the motor driving unit, wherein the control unit controls the motor driving unit, wherein the control unit controls the motor driving unit.
  • an apparatus for manufacturing an optical cable including an optical module device, characterized in that it moves.
  • the module support part may have a front and rear drive part, and the module support part may be moved toward the optical cable by the front and rear drive part.
  • a recess is formed in the lower portion of the optical cable holder portion, and a holder rail portion formed in the longitudinal direction of the optical cable to be seated in the recess is further formed, and the holder rail portion is fixed to the optical cable tip mounting portion so that the optical cable tip mounting portion may be moved left and right.
  • the optical cable holder portion can be moved back and forth along the holder rail portion.
  • a UV lamp portion is further formed on the lens block so that the UV lamp irradiates light, the UV lamp portion includes a UV lamp, a support member for supporting the UV lamp, and a rail portion covering a recess formed under the support member;
  • the support member may include a cylinder portion formed to move on the rail portion.
  • the front and rear driving part includes a contact member formed in a vertical direction to the module support part, and a lift driver including a cylindrical member contacting the contact member on an upper part thereof.
  • a lift driver including a cylindrical member contacting the contact member on an upper part thereof.
  • the optical module device may include an optical module plate and a lens block fixed to an upper surface of the optical module plate, and the concave holder portion may be formed in the module support part to fit the optical module plate.
  • a receiving light quantity measuring device for transmitter optical coupling is further formed to measure light at the end of the optical fiber, and the receiving light quantity measuring apparatus for transmitting unit optical coupling includes a receiving light quantity detecting sensor for transmitting unit optical coupling, and a received light quantity detecting unit for the transmitting unit optical coupling.
  • Receiving light amount detection sensor for transmitting unit optical coupling is formed so that the sensor is mounted, the receiving light amount detection sensor for transmitting unit optical coupling may measure the amount of light flowing to the end of the optical fiber.
  • a receiving current measuring device for receiving optical coupling is further formed to measure a current flowing to the optical module plate.
  • the receiving current measuring device for receiving optical coupling includes a receiving current measuring sensor for receiving optical coupling, and a receiving current for receiving optical coupling.
  • Receiving unit optical coupling receiving current measuring sensor seating unit is formed so that the measurement sensor is seated, the receiving unit optical coupling receiving current measuring sensor can measure the current flowing to the optical module plate.
  • a robot arm may be further formed to apply an adhesive to fix the lens block to the optical module plate, and an adhesive outflow tube and a sensor unit may be formed on the robot arm to apply the adhesive.
  • a lens elastic pressing member for applying an elastic pressure to the lens block is further formed,
  • the lens elastic pressing member is a pressing portion formed pointed downward to contact the upper surface of the lens block, a horizontal rod for supporting the pressing portion,
  • the vertical rod and the vertical rod connected to the horizontal rod may include a cylinder member formed to be moved up and down inside.
  • the present invention is a manufacturing method of the optical cable including the optical module device using the optical cable manufacturing apparatus, the optical module device is a transmitting part optical module device and the receiving unit optical module device seating process for introducing the module module into the recess holder;
  • the optical cable is fixed to the optical cable holder, the optical cable end portion is seated on the optical cable tip mounting portion, the optical fiber mounting process is the optical cable end is introduced into the lens block Step 3 and the third step, which is a process of optical transmission of the transmitter in which the optical fiber end is positioned inside the lens block after the second step, and the optical fiber end is received at the receiver after the third step.
  • a fourth step which is a process of coupling the light receiver to the inside of the lens block.
  • the transmitter optical module device is inserted into the transmitter concave holder of the transmitter module support part, and the receiver optical module device is inserted into the receiver concave holder part of the receiver module support part.
  • An adhesive is applied to the process of drawing in and around the transmitter lens block of the transmitter optical module device, and a UV lamp is moved above the lens block to shine the UV light to cure, and to surround the receiver lens block of the receiver optical module device.
  • the adhesive may be applied, and the UV lamp may be moved above the lens block to cure the UV light to shine.
  • the second step of mounting the optical cable is a process of fixing the transmission portion of the optical cable to the transmitter optical cable holder, fixing the receiving portion to the receiver optical cable holder, and applying an adhesive to the optical fiber end of the optical cable, the optical cable And a process of seating the distal end of the transmission part on the distal end portion of the optical fiber for transmission, and the process of introducing the optical fiber end to the inside of the transmitter lens block.
  • the optical fiber end of the optical cable receiving portion contacts the receiving light quantity detecting sensor for transmitting optical coupling in the receiving optical quantity measuring device for transmitting optical coupling, and the control unit performs optical transmission coupling.
  • the control unit performs optical transmission coupling.
  • the controller sends an electrical signal to the transmitter optical module plate, the electrical signal is converted into a signal of light and proceeds to an optical cable optical fiber end to generate an optical output, and the optical output
  • the optical cable may be transmitted from the end of the optical fiber through the optical cable to the receiver optical cable core portion, and further comprising the step of detecting by the receiving light quantity detection sensor for optical coupling of the transmitter optical coupling of the receiving optical quantity measuring device for transmitting optical coupling to the control unit.
  • the optical coupling operation of the transmitter is a process of repeating the left and right movements of the ends of the optical fiber until the optical output value of the optical fiber core of the receiver reaches a value corresponding to the quality level, and the optical fiber core of the receiver If the optical output value of the part meets the quality level, stop the movement of the optical cable, and irradiate a UV lamp on the lens block of the optical module transmitter to cure the adhesive part of the lens block and the optical cable to fix the lens structure of the optical module transmitter. It may include.
  • the receiving optical fiber end of the optical cable is separated from a state in which the receiving optical fiber end of the optical cable is in contact with the receiving light quantity sensor for transmitting optical coupling, and then an adhesive is applied to the receiving optical fiber end, and the receiving portion of the optical cable
  • the receiving optical cable end seating portion is seated, the receiving optical fiber end of the optical cable is introduced into the inner space of the lens block located on the upper surface of the receiving optical module plate, the control unit transmits an electrical signal through the transmitting unit optical module plate, The electrical signal is transmitted through the optical fiber to the core portion of the optical fiber end of the receiver, and the light transmitted to the core portion of the optical fiber end of the receiver is transmitted as an electrical signal to the receiving optical module plate through the receiving lens block. can do.
  • the fourth step of the optical coupling operation of the receiver is a process of determining whether the current output value of the receiver corresponds to the quality level while repeating movement of the optical fiber end to the left and right, and the optical fiber when the current output value of the receiver corresponds to the quality level.
  • the UV module may be irradiated to the optical module lens block to cure the adhesive portion of the lens block and the optical cable.
  • the coupling process between the optical cable and the optical module which has been conventionally performed manually, can be performed accurately and quickly, thereby improving productivity and reducing costs.
  • FIG. 1 is a schematic perspective view showing an apparatus for manufacturing an optical cable including an optical module device according to the present invention.
  • Fig. 2 is a schematic perspective view showing the optical module manufacturing unit for transmission in the present invention.
  • FIG. 3 is an enlarged schematic perspective view of an optical module plate portion of FIG. 2.
  • Figure 4 is a perspective view showing that the epoxy adhesive is applied to the lens block and the optical fiber ends.
  • FIG. 5 is a schematic perspective view showing the UV lamp unit.
  • FIG. 6 is a longitudinal center cross-sectional view of the module support of FIG. 2.
  • FIG. 7 is a schematic side view illustrating the operation of the lift driver in FIG. 6.
  • FIG. 8 is a schematic perspective view showing a receiving optical module manufacturing unit of the present invention.
  • FIG. 9 is a schematic perspective view showing a state just before the optical fiber end of the optical cable is inserted into the receiving lens block on the receiver optical module plate.
  • FIG. 10 is a flowchart illustrating a method of manufacturing an optical cable including the optical module device of the present invention.
  • Fig. 11 is a schematic perspective view showing a state where an optical fiber end of an optical cable is located in a receiving light quantity measuring device for transmitting optical coupling.
  • FIG. 12 is a flowchart illustrating a coupling process between an optical cable and an optical module performed in a transmitter.
  • FIG. 13 is a flowchart illustrating a coupling process between an optical cable and an optical module performed in the receiver.
  • Figure 15 is a schematic perspective view showing that the robot arm for applying the adhesive of the present invention is further formed.
  • FIG. 1 is a schematic perspective view showing an optical cable manufacturing apparatus including an optical module device of the present invention
  • Figure 2 is a schematic perspective view showing an optical module manufacturing unit for transmission in the present invention
  • Figure 3 is an enlarged portion of the optical module plate of FIG.
  • Figure 4 is a schematic perspective view
  • Figure 4 is a perspective view showing that the epoxy adhesive is applied to the lens block and the optical fiber ends.
  • the apparatus 100 for manufacturing an optical cable including an optical module device includes a transmitting optical module manufacturing unit 200, a receiving optical module manufacturing unit 300, and a transmitting unit optical couple, which are located on an upper surface of the work bench 110 as shown in FIG. 1. Ring receiving light amount measuring device 380, the control unit 400 and the display unit 500 is included.
  • the transmitting optical module manufacturing unit 200 and the receiving optical module manufacturing unit 300 are positioned adjacent to each other, and thus, between the optical cable 600 and the transmitting unit optical module device 210 in the transmitting optical module manufacturing unit 200.
  • a process of manufacturing the reception optical coupling between the optical cable 600 and the receiver optical module device 310 is performed in the reception optical module manufacturing unit 300.
  • the optical module manufacturing unit for transmission 200 is formed so that the optical cable holder 230 and the front end of the optical cable fixed to the optical cable holder 230 is formed to act to fix the optical cable is moved to the left and right.
  • the transmitter optical module device 210 includes a transmitter optical module plate 270 on which a substrate to which an electrical signal is transmitted is mounted, and a transmitter lens block 272 bonded to an upper surface of the transmitter optical module plate 270 with an epoxy adhesive. do.
  • a transmitter lens block 272 is formed on an upper surface of the transmitter optical module plate 270 so that a space is formed so that the optical fiber end 601 of the front end of the optical cable 600 is inserted therein.
  • the epoxy adhesive 801 is fixed to the top surface of the transmitter optical module plate 270.
  • the module support part 290 is formed with a concave holder part 292 formed so that the transmitter optical module plate 270 is fitted, and the transmitter part optical module plate 270 is detachable to the concave holder part 292.
  • the optical cable tip seating portion 250 is shaped like a “U” so that its top shape is positioned at the tip of the optical cable 600, and the lower portion of the optical cable tip seating portion 250 opens the work table 110 through a first transverse hole 114 formed in the work table 110. It penetrates and extends downward.
  • the lower end of the optical cable tip seating part 250 is connected to the motor driving part 252 formed at the lower part of the work table 110, and the optical cable tip seating part 250 is first crossed by the operation of the motor driving part 252.
  • the direction hole 114 is moved to the left and right with respect to the longitudinal direction of the optical cable 600.
  • the transmitting optical module manufacturing unit 200 further includes a lens elastic pressing member 277 that is formed to ascend and descend above the transmitter lens block 272 to apply elastic pressure to the transmitter lens block 272.
  • the lens elastic pressing member 277 has a pressing portion 277a which is pointed downward to contact the upper surface of the transmitter lens block 272, a horizontal rod 277b supporting the pressing portion 277a, and the And a vertical rod 277c connected to the horizontal rod 277b and a cylinder member 277d which is inserted into the vertical rod 277c to move up and down by hydraulic pressure.
  • a UV (ultra violate) lamp unit 279 is formed above the transmitter lens block 272 in the transmitting optical module manufacturing unit 200 and the receiving optical module manufacturing unit 300.
  • FIG. 5 is a schematic perspective view showing the UV lamp unit.
  • the UV lamp unit 279 includes a UV lamp 279a, a horizontal support member 279b for supporting the UV lamp 279a, a vertical support member 279c for supporting the horizontal support member 279b, A rail portion 279e through which the recessed portion 279d formed below the vertical support member 279c extends, and a cylinder portion 279f formed such that the vertical support member 279c moves in a horizontal direction on the rail portion 279e. ).
  • the UV lamp portion 279 formed in this configuration is moved to the upper portion of the transmitter lens block 272 by the operation of the cylinder portion 279f and is coated with an epoxy adhesive 801 or a transmitter lens applied around the transmitter lens block 272. Irradiated to cure the epoxy adhesive 801 applied to the optical fiber end 601 of the optical cable 600 located inside the block 272.
  • FIG. 6 is a longitudinal center cross-sectional view of the module support of FIG. 2.
  • the front and rear driving portion is formed in the module support portion 290, the module support portion 290 is moved toward the optical cable by the front and rear driving portion.
  • the elevating driving part 118 which is lowered to the inside of the module support part 290 through the through hole 116a formed in the lower part of the module support part 290 in order to serve as a front and rear drive part of the module support part 290. ) Is formed.
  • a cylindrical member 118a having a vertical cross section is formed on an upper portion of the elevating driving unit 118, which is formed to move up and down in a cylindrical manner, and is in contact with the cylindrical member 118a inside the module support 290.
  • Member 293 is formed.
  • the front and rear driving part includes a contact member 293 formed in a vertical direction to the module support part 290, and a lifting driver 118 having a cylindrical member 118a in contact with the contact member 293 formed thereon.
  • the work table 110 is provided with a vertical wall member 119a formed vertically upward, and an elastic member 119b such as a spring formed to contact the vertical wall member 119a.
  • the module support part 290 is formed with a front concave portion 293a so that the vertical wall member 119a and the elastic member 119b are located inside the front surface, and the front concave portion 293a has a front concave wall ( 293b).
  • FIG. 7 is a schematic side view illustrating the operation of the lift driver in FIG. 6.
  • the lower end of the contact member 293 is positioned above the central horizontal surface of the cylindrical member 118a as shown in FIG. 6A so as to contact the upper circumferential surface of the cylindrical member 118a.
  • the cylindrical member 118a rises, and the center horizontal surface of the cylindrical member 118a also rises, and the cylinder rotates about the central axis of the central portion.
  • the contact member 293, which is in contact with the member 118a, moves while being pushed, and the module support part 290 on which the contact member 293 is fixed also moves as a whole and is fixed to the module support part 290. 270 is also moved toward the optical cable 600.
  • the elastic member 119b positioned between the front concave wall 293b of the module support 290 and the vertical wall member 119a is elastically compressed, and the elevating driving part 118 is operated again.
  • the cylindrical member 118a is lowered, the lower end of the contact member 293 is brought into contact with the cylindrical member 118a by the elastic restoring force of the elastic member 119b, and the center axis of the cylindrical member 118a is lower than the horizontal plane at which the cylindrical member 118a is located. It is located above and moved to a state as shown in FIG.
  • the transmitter optical module plate 270 is moved forward and backward in the horizontal direction by the operation of the elevating driver 118, and the forward and backward movement range of the optical cable 600 is located inside the transmitter lens block 272.
  • the end of the fiber is in a very narrow range because it is within the range of finding the optimum position before and after.
  • FIG 8 is a schematic perspective view showing a receiving optical module manufacturing unit of the present invention
  • Figure 9 is a schematic perspective view showing a state immediately before the optical fiber end of the optical cable is inserted into the receiving lens block on the receiving optical module plate.
  • the receiving optical module manufacturing unit 300 includes the same configuration as the respective components of the transmitting optical module manufacturing unit 200, except for the receiving unit optical coupler adjacent to the receiving optical module plate 370 The difference is that the current measuring device 360 is additionally formed.
  • the receiver current coupling device 360 for receiving optical coupling includes a receiver current coupling sensor 362 for receiving optical coupling and receiving current measurement sensors 362 for receiving optical coupling. And a sensor cylinder part 366 formed to raise and lower the measurement sensor seat part 364 and the reception current measurement sensor seat part 364 for the receiver optical coupling.
  • the receiver current coupling sensor 362 for the receiver optical coupling includes a transmitter optical module after the optical fiber end 602 of the optical cable 600 is inserted into the receiver lens block 372 of the receiver optical module device 310.
  • An optical signal arrives from 210, and measures an electric current flowing through the optical element of the receiver optical module device 310 and the optical switch plate 370 to the receiver optical module plate 370 to indirectly measure the amount of light flowing through the optical fiber end 602.
  • Various wires such as copper wires may be arranged inside the optical cable 600, but only the optical fiber is used for coupling with the optical module device.
  • the receiving light quantity measuring device 380 for the transmitter optical coupling shown in Figure 1 is formed to measure the amount of light transmitted from the optical cable located in the transmitter to the optical cable located in the receiver when the transmitter optical coupling.
  • the receiving light quantity measuring device 380 for the optical transmission unit is formed to contact the optical fiber end 602 of the optical cable 600 located in the receiving unit to sense the amount of light transmitted through the core portion of the optical fiber end 602.
  • the optical fiber end 602 of 600 includes a receiving optical cable holder portion 386 for transmitting portion optical coupling which fixes the optical cable 600 of the receiving portion to contact the receiving light quantity detecting sensor 384 for transmitting portion optical coupling.
  • FIG. 10 is a flowchart illustrating a method of manufacturing an optical cable including the optical module device of the present invention
  • FIG. 11 is a schematic perspective view showing a state in which an optical fiber end of the optical cable is located in a receiving light quantity measuring device for transmitting optical coupling.
  • the method of manufacturing an optical cable including the optical module device of the present invention is performed after the first step (S100) and the first step (S100), which is a mounting process of the transmitting unit and the receiving unit optical module devices 210 and 310 through a start-up process.
  • a fourth step S400 which is a process of coupling the receiver optical coupling after the rough process.
  • the transmitter optical module device 210 is transferred to the transmitter module support unit 290.
  • FIGS. 1 to 3 A state in which the transmitter optical module device 210 and the receiver optical module device 310 are seated is illustrated in FIGS. 1 to 3.
  • An epoxy adhesive is applied around the transmitter lens block 272 of the transmitter optical module device 210 by the controller 400, and the UV lamp 279a is moved above the transmitter lens block 272 to move the UV light. It hardens in light of.
  • an epoxy adhesive is applied around the receiver lens block 272 of the receiver optical module device 310 by the controller 400, and a UV lamp 279a is moved above the transmitter lens block 272. UV light stiffens the light.
  • the optical fiber 600 is cut to an appropriate length, and then the optical fiber 600 is positioned at the transmitter module support part 290 through the first step (S100).
  • the transmitting part of the optical cable 600 is fixed to the transmitting part optical cable holder 230, and the receiving part is received. It is fixed to the optical cable holder 330.
  • the front end of the optical cable 600 transmission part is seated on the optical fiber front end mounting part 250 for transmission, and the transmission optical fiber end 601 is a transmission part. It is drawn into the lens block 272.
  • the average left and right side clearance gap between the inner wall surface of the transmitter lens block 272 and the optical fiber end 601 of the optical cable 600 is 20 ⁇ m.
  • the third step (S300) of the transmitter optical coupling operation process as shown in Figure 11 the optical fiber end 602 of the receiving portion of the optical cable 600, the receiving light quantity measuring device for the optical coupling of the transmitter ( 380 is in contact with a receiving light amount sensor 384 for the optical coupling of the transmitter.
  • the pressing portion 277a of the lens elastic pressing member 277 elastically presses the upper portion of the transmitter lens block 272.
  • control unit 400 moves the transmitter optical cable tip seating part 250 of FIG. 2 to the left and right for transmitting part optical coupling so that the optical fiber end 601 of the optical cable 600 is the transmitter lens block 272 in FIG. 3.
  • the transmission optical fiber end 601 is located back and forth.
  • the control unit 400 sends an electrical signal to the transmitter optical module plate 270, and as is generally known, a component called a vertical cavity surface emitting laser (VCSEL) formed in the transmitter optical module plate 270.
  • the electrical signal is converted into a signal of the light while passing through the aspherical lens of the transmitter lens block 272 to the optical fiber tip 601 of the optical cable 600 located inside the transmitter lens block 272. Proceeds and generates light output.
  • VCSEL vertical cavity surface emitting laser
  • the optical output is transmitted from the transmitter to the core portion of the optical fiber end 601 located in the receiver through the optical cable 600, and the received light quantity sensor 384 for the optical coupling of the transmitter of the receiving light quantity measuring device 380 for the optical coupling of the transmitter. And detect and transmit the same to the control unit 400 of FIG. 1, and the display unit 500 shows a green signal when it is normal with the light output value, and shows a yellow signal when it is outside the normal range.
  • the core portion refers to a portion where light propagates to an inner portion of the optical fiber.
  • the control unit 400 stops the left and right movement of the optical cable tip seating unit 250 and the forward and backward movement of the module support unit 290 when the green signal is displayed on the display unit 500.
  • the UV lamp unit shown in FIGS. 1 and 5 is shown. After moving 279 to the upper side of the transmitter lens block 272, the UV is irradiated with light to cure the epoxy located at the core portion of the optical fiber end 601 of the optical cable 600 and maintain a constant time.
  • the UV lamp 279a After the UV lamp 279a operates for a predetermined time, the UV lamp 279a is turned off.
  • FIG. 12 is a flowchart illustrating a coupling process between an optical cable and an optical module performed in a transmitter.
  • the first transmission coupling step S310 is a process of initializing the number of optical coupling attempts and the number of front and rear movements to zero, and the second transmission couple proceeds after the first transmission coupling step S310.
  • the ring step (S320) is a process of determining whether the receiver light output value matches the quality level, and the third transmission coupling proceeds when the receiver light output value does not match the quality level in the second transmission coupling step (S320).
  • Step S330 is a process of determining whether the optical coupling attempt is 10th or less, and the fourth transmission coupling step (3) is performed when the optical coupling attempt is 10th or less in the third transmission coupling step S330.
  • S340 is a process of repeating 10 times until the light output value of the optical fiber core portion of the receiver is repeated to the quality level while repeating movement to the left and right by applying a binary search algorithm
  • the fifth transmission coupling step (S350) performed after passing through 0) is a process of determining whether the optical output value of the optical fiber core portion of the receiver corresponds to the quality level, and in the fifth transmission coupling step (S350), the receiver optical The sixth transmission coupling step (S360), which is performed when the light output value of the cable core portion is in accordance with the quality level, irradiates the UV lamp 279a to the optical module transmitter lens block 272 after the optical cable 600 stops moving. By curing the epoxy portion of the transmitter lens block 272 and the optical cable 600 to fix the lens structure of the overall optical module transmission device.
  • the sixth transmission coupling step (S360) is moved.
  • the optical coupling attempt number variable in the eighth transmission coupling step (S380) is changed to 0 (Zero), and the transmission module support unit 290
  • the process of automatically reversing backwards and forwards again to complete the optical coupling retries is completed, and the number of forward and backward movement attempts is increased by one time and is moved to the second transmission coupling step (S320).
  • the worker action process of the ninth transmission coupling step (S390) is performed, and the worker automatically moves back and forth up to three times. If it is, the defect is processed and regular work is performed with the next sample.
  • the receiving optical fiber end 601 of the optical cable 600 is the receiving light quantity detection sensor for the optical coupling of the transmitter of the receiving optical quantity measuring device 380 for the optical coupling of the transmitter
  • an epoxy adhesive 801 is applied to the receiving optical fiber end 601, and the receiving portion of the optical cable 600 is seated on the receiving optical cable tip seat 250.
  • the receiving optical fiber end 601 of the optical cable 600 is introduced into the inner space of the transmitter lens block 272 located on the upper surface of the receiving transmitter optical module plate 270.
  • the control unit 400 transmits an electrical signal through the transmitting unit optical module plate 270, and the electrical signal is transmitted to the core portion of the receiving optical fiber end 601 by light through the transmitting optical cable 600, and receives the receiving optical fiber.
  • Light transmitted to the core portion of the end 601 is transmitted as an electrical signal to the receiving transmitter optical module plate 270 through the receiving transmitter lens block 272.
  • control unit 400 moves the receiving optical cable tip seating part 250 to the left and right, and the electric power transmitted to the receiving transmitter optical module plate 270 while moving the receiving module support part 290 back and forth. Judge the signal.
  • the control unit 400 determines the electric signal transmitted to the receiving transmitter optical module plate 270, and when it is determined to be an appropriate electric signal output value, the control unit 400 moves left and right of the receiving optical cable tip seating unit 250 and moves forward and backward of the receiving module support unit 290. Stop.
  • the control unit 400 utilizes the receiving current measuring device 360 for receiving optical coupling and the current sensing sensor for receiving optical coupling of the receiving unit 362 of the receiving current optical coupling. It can be measured indirectly.
  • the receiver current coupling device 360 for receiving optical coupling includes a receiver current coupling sensor 362 for receiving optical coupling and receiving current measurement sensors 362 for receiving optical coupling. And a sensor cylinder part 366 formed to raise and lower the measurement sensor seat part 364 and the reception current measurement sensor seat part 364 for the receiver optical coupling.
  • two current measuring sensors are used, but the present invention is not limited thereto, and the number may be variously changed according to a circuit.
  • the receiver current coupling sensor 362 for the receiver optical coupling includes a transmitter optical module after the optical fiber end 602 of the optical cable 600 is inserted into the receiver lens block 372 of the receiver optical module device 310.
  • An optical signal arrives from the optical element of the receiver optical module device 310 and flows to the optical fiber end 602 by selecting and contacting an appropriate pin on the substrate among currents flowing through the optical switching unit and the optical receiver plate 370 to the receiver optical module plate 370. Indirectly measures the amount of light.
  • the controller 400 moves the UV lamp unit 279 so that the UV lamp 379a is moved above the transmitter lens block 272, and then the UV lamp 379a causes the light to be irradiated to transmit the lens.
  • the epoxy adhesive 801 is cured at the core portion of the receiving optical fiber end 602 of the optical cable 600 located inside the block 272.
  • FIG. 13 is a flowchart illustrating a coupling process between an optical cable and an optical module performed in the receiver.
  • the first receiving coupling step S410 is a process of initializing the number of optical coupling attempts and the number of front and rear movements to zero, and a second receiving couple that proceeds after the first receiving coupling step S410.
  • the ring step (S420) is a process of determining whether the receiver current output value matches the quality level, and the third receiving coupling proceeds when the receiver current output value does not match the quality level in the second receiving coupling step (S420).
  • Step S430 is a process of determining whether the optical coupling attempt is 10th or less, and when the optical coupling attempt is 10th or less in the third receiving coupling step S430, S440 is a process of repeating movement to the left and right by applying a binary search algorithm and repeating about 10 times until the receiver current output value matches the quality level, and the fourth receiving coupling step (S440).
  • the fifth receiving coupling step (S450) is a process of determining whether the receiver current output value matches the quality level, and proceeds when the receiver current output value matches the quality level in the fifth receiving coupling step (S450).
  • the UV module 279a is irradiated to the optical module transmitter lens block 272 to cure the epoxy part of the transmitter lens block 272 and the optical cable 600. This is a process of fixing the lens structure of the overall optical module transmission device.
  • the process of determining whether the forward and backward movement attempt in the seventh receiving coupling step (S470) is the third or less is performed.
  • the optical coupling attempt number variable in the eighth reception coupling step (S480) is changed to 0 (Zero), and the receiving module support unit 290 is changed.
  • the process of automatically moving backward and then moving forward again to complete the optical coupling retry preparation is performed, and the number of forward and backward movement attempts is increased by one time and moved to the second step S200.
  • the worker action process of the ninth reception coupling step (S490) is performed, and the worker automatically moves back and forth up to three times. If it is, the defect is processed and regular work is performed with the next sample.
  • the coupling process between the optical cable 600 and the optical module which has been conventionally performed manually, can be performed accurately and quickly, thereby improving productivity and reducing costs.
  • a structure for moving the module support part 290 forward and backward as a modification of the forward and backward movement structure is omitted, and a recess 231 is formed in the lower portion of the optical cable holder 230, and the recess 231 is seated.
  • the holder rail portion 233 is formed in the longitudinal direction of the optical cable 600, it is also possible to move back and forth along the holder rail portion 233 in a state in which the optical cable 600 is fixed to the optical cable holder 230.
  • the holder rail portion 233 is also fixed when the tip of the holder rail portion 233 is fixed to the optical cable tip seating portion 250 so that the optical cable tip seating portion 250 is slightly moved from side to side. Finely moved as described above, in this state, the holder portion of the optical cable 600 is moved back and forth along the holder rail portion 233.
  • Figure 15 is a schematic perspective view showing that the robot arm for applying the adhesive of the present invention is further formed.
  • the present invention does not apply the epoxy adhesive 801 to the periphery of the transmitter lens block 272 or the core portion of the optical cable 600 by hand, the robot arm 1000 having a link structure 1100 to control the control unit ( It is formed to be controlled at 400, and the epoxy adhesive 801 can be automatically applied to the robot arm 1000 by forming the epoxy adhesive 801, the outflow tube 1200 and the sensor unit 1300.
  • optical module device 110 working table
  • elastic member 200 optical module manufacturing unit for transmission
  • optical cable holder portion 250 optical cable tip seating portion
  • optical module plate 272 lens block
  • lens elastic pressing member 279 UV lamp portion
  • module support portion 292 concave holder portion
  • control unit 500 display unit
  • optical cable 601 optical fiber end

Abstract

The present invention relates to an apparatus for manufacturing an optical cable comprising an optical module device, the apparatus comprising: an optical cable holder unit formed so as to fix an optical cable; an optical cable front end mounting unit, on which is mounted the front end of the optical cable fixed to the optical cable holder unit, and which is formed so as to move horizontally by the operation of a motor driving unit; a module support unit formed so as for an optical module device to be fixed thereto, the optical module device comprising a lens block to which is fixed the end of an optical fiber at the front end of the optical cable; and a control unit for controlling the motor driving unit, wherein the control unit controls the motor driving unit so as for the end of the optical fiber to move horizontally in the lens block.

Description

광 모듈 장치를 포함한 광케이블의 제조장치 및 이를 이용한 광 모듈 장치를 포함한 광케이블의 제조방법Optical cable manufacturing apparatus including optical module device and optical cable manufacturing method including optical module device using same
본 발명은 광 모듈 장치를 포함한 광케이블의 제조장치 및 이를 이용한 광 모듈 장치를 포함한 광케이블의 제조방법에 관한 것으로, 좀 더 자세히 설명하면 광 모듈 장치의 제조 과정에서 얼라인먼트 작업 시간을 상당히 감소시킬 수 있는 광 모듈 장치를 포함한 광케이블의 제조장치 및 이를 이용한 광 모듈 장치를 포함한 광케이블의 제조방법에 관한 것이다.The present invention relates to an apparatus for manufacturing an optical cable including an optical module device and a method for manufacturing an optical cable including an optical module device using the same, and more specifically, to an optical fiber device, an optical fiber that can significantly reduce alignment work time in a manufacturing process of an optical module device. An apparatus for manufacturing an optical cable including a module device and a method for manufacturing an optical cable including an optical module device using the same.
최근 다양한 멀티미디어 서비스가 등장함에 따라 대용량의 정보를 교환할 필요성이 증가하였으며, 그에 따라 네트워크를 통해 전송되는 데이터의 양도 증가하였다. As various multimedia services have recently appeared, the necessity of exchanging a large amount of information has increased, and accordingly, the amount of data transmitted through a network has increased.
특히, 유에이치디(UHD: Ultra High Definition) TV의 보급으로 인해 기존 구리선의 전송용량에 한계가 왔고, 이에 따라 광 섬유(Optical fiber) 기반 신호 전송방법이 실생활에 적용되고 있다. In particular, due to the spread of Ultra High Definition (UHD) TVs, transmission capacities of existing copper wires have been limited, and thus optical fiber based signal transmission methods are applied to real life.
광 섬유는 광대역 전송과 더불어 전자기파 간섭을 받지 않는 특성을 가지고 있어 대용량 데이터 전송이 요구되는 고화질 디지털 비디오 디스플레이 장치를 비롯한 대용량 디지털 미디어 전송에 널리 적용되고 있다.In addition to wideband transmission, optical fibers are not affected by electromagnetic interference, and are widely applied to high-capacity digital media transmission, including high-definition digital video display devices requiring large data transmission.
광 모듈 장치는 이러한 광 섬유를 통해 수신되는 광신호를 전기 신호로 변환하는 데이터 수신 장치 또는 전기 신호를 광신호로 변환하여 광 섬유를 통해 전송하는 데이터 송신 장치를 말한다.The optical module device refers to a data receiving device for converting an optical signal received through such an optical fiber into an electrical signal, or a data transmission device for converting an electrical signal into an optical signal and transmitting it through the optical fiber.
광 모듈 장치는 송신 또는 수신 과정에서 광신호 손실을 최소화하기 위하여 장치를 구성하는 각 요소들 간의 배치를 조정하는 얼라인먼트가 요구된다. The optical module device requires alignment to adjust the arrangement between the elements constituting the device in order to minimize optical signal loss during transmission or reception.
또한, 복수의 광 섬유가 적용되는 광 모듈 장치는 광 섬유 사이의 광 왜곡(Optical crosstalk) 현상이 발생하는 문제가 있어, 종래 광 모듈 장치를 포함한 광케이블의 제조에서는 얼라인먼트 과정에서 상당한 시간이 소요되는 문제가 있고 광 모듈 장치를 포함한 광케이블의 제조 원가가 상승하는 부작용이 있었다.In addition, the optical module device to which a plurality of optical fibers are applied has a problem that optical crosstalk between optical fibers occurs, and therefore, a considerable time is required in the alignment process in the manufacture of an optical cable including a conventional optical module device. In addition, the manufacturing cost of the optical cable including the optical module device has been increased.
본 발명은 광 모듈 장치를 포함한 광케이블의 제조과정 중 얼라인먼트 과정에서 소요되는 시간이 감소되는 구조가 형성된 광 모듈 장치를 포함한 광케이블의 제조장치 및 이를 이용한 광 모듈 장치를 포함한 광케이블의 제조방법을 제공한다.The present invention provides an apparatus for manufacturing an optical cable including an optical module device having a structure in which a time required for the alignment process is reduced during the manufacturing process of the optical cable including the optical module device, and a method for manufacturing an optical cable including the optical module device using the same.
본 발명은 광케이블을 고정하도록 형성되는 광케이블 홀더부와, 상기 광케이블 홀더부에 고정된 광케이블 선단부가 안착되어 모터 구동부의 작동에 의해 좌우로 이동되도록 형성되는 광케이블 선단 안착부와, 상기 광케이블 선단부의 광 섬유 끝단이 고정되는 렌즈 블록을 포함하는 광 모듈 장치가 고정될 수 있도록 형성된 모듈 지지부 및, 상기 모터 구동부를 제어하는 제어부를 포함하고, 상기 제어부는 모터 구동부를 제어하여 광 섬유 끝단이 렌즈 블록에서 좌우로 이동하도록 하는 것을 특징으로 하는 광 모듈 장치를 포함한 광케이블의 제조장치를 제공한다.The present invention provides an optical cable holder portion formed to fix an optical cable, an optical cable end portion fixed to the optical cable holder portion is mounted to move to the left and right by the operation of the motor drive unit, and the optical fiber end portion And a control unit for controlling the motor driving unit, wherein the control unit controls the motor driving unit, wherein the control unit controls the motor driving unit. Provided is an apparatus for manufacturing an optical cable including an optical module device, characterized in that it moves.
상기 모듈 지지부에는 전후 구동부가 형성되어, 상기 전후 구동부에 의해 모듈 지지부가 광케이블 쪽으로 이동될 수 있다.The module support part may have a front and rear drive part, and the module support part may be moved toward the optical cable by the front and rear drive part.
상기 광케이블 홀더부의 하부에 오목부가 형성되고, 상기 오목부에 안착되도록 광케이블의 길이 방향으로 형성되는 홀더레일부가 더 형성되며, 상기 홀더레일부가 광케이블 선단 안착부에 고정되어 광케이블 선단 안착부가 좌우로 이동될 때 홀더레일부도 좌우로 이동되고, 광케이블 홀더부는 홀더레일부를 따라서 전후 이동될 수 있다.A recess is formed in the lower portion of the optical cable holder portion, and a holder rail portion formed in the longitudinal direction of the optical cable to be seated in the recess is further formed, and the holder rail portion is fixed to the optical cable tip mounting portion so that the optical cable tip mounting portion may be moved left and right. When the holder rail portion is also moved left and right, the optical cable holder portion can be moved back and forth along the holder rail portion.
상기 렌즈 블록에 유브이 광을 조사하도록 형성되는 유브이 램프부가 더 형성되며, 상기 유브이 램프부는 유브이 램프와, 상기 유브이 램프를 지지하는 지지부재와, 상기 지지부재의 하부에 형성된 오목부가 걸쳐지는 레일부 및 상기 지지부재가 레일부 상에서 이동되도록 형성되는 실린더부를 포함할 수 있다.A UV lamp portion is further formed on the lens block so that the UV lamp irradiates light, the UV lamp portion includes a UV lamp, a support member for supporting the UV lamp, and a rail portion covering a recess formed under the support member; The support member may include a cylinder portion formed to move on the rail portion.
상기 전후 구동부는 상기 모듈 지지부에 수직 방향으로 형성된 접촉부재와, 상기 접촉부재가 접하는 원통부재가 상부에 형성되는 승하강 구동부가 포함되며, 상기 승하강 구동부가 작동되면 원통부재가 상승하면서 원통부재와 접하는 접촉부재가 이동되고, 접촉부재가 고정되어 있는 모듈 지지부도 광케이블 쪽으로 이동될 수 있다.The front and rear driving part includes a contact member formed in a vertical direction to the module support part, and a lift driver including a cylindrical member contacting the contact member on an upper part thereof. When the lift driver is operated, the cylindrical member is raised while the cylinder member is raised. In contact with the contact member is moved, and the module support portion to which the contact member is fixed can also be moved toward the optical cable.
상기 광 모듈 장치는 광 모듈 플레이트와, 광 모듈 플레이트의 상면에 고정되는 렌즈 블록을 포함하고, 상기 모듈 지지부에는 광 모듈 플레이트가 끼워지도록 형성된 오목홀더부가 형성될 수 있다.The optical module device may include an optical module plate and a lens block fixed to an upper surface of the optical module plate, and the concave holder portion may be formed in the module support part to fit the optical module plate.
상기 광 섬유 끝단의 광을 측정하도록 송신부 광 커플링용 수신 광량 측정 장치가 더 형성되고, 상기 송신부 광 커플링용 수신 광량 측정 장치는 송신부 광 커플링용 수신 광량 감지 센서와, 상기 송신부 광 커플링용 수신 광량 감지 센서가 안착되도록 형성되는 송신부 광 커플링용 수신 광량 감지 센서안착부를 포함하고, 상기 송신부 광 커플링용 수신 광량 감지 센서는 광 섬유 끝단에 흐르는 광량을 측정할 수 있다.A receiving light quantity measuring device for transmitter optical coupling is further formed to measure light at the end of the optical fiber, and the receiving light quantity measuring apparatus for transmitting unit optical coupling includes a receiving light quantity detecting sensor for transmitting unit optical coupling, and a received light quantity detecting unit for the transmitting unit optical coupling. Receiving light amount detection sensor for transmitting unit optical coupling is formed so that the sensor is mounted, the receiving light amount detection sensor for transmitting unit optical coupling may measure the amount of light flowing to the end of the optical fiber.
상기 광 모듈 플레이트로 흐르는 전류를 측정하도록 수신부 광 커플링용 수신 전류 측정 장치가 더 형성되고, 상기 수신부 광 커플링용 수신 전류 측정 장치는 수신부 광 커플링용 수신 전류 측정 센서와, 상기 수신부 광 커플링용 수신 전류 측정 센서가 안착되도록 형성되는 수신부 광 커플링용 수신 전류 측정 센서안착부를 포함하고, 상기 수신부 광 커플링용 수신 전류 측정 센서는 광 모듈 플레이트로 흐르는 전류를 측정할 수 있다.A receiving current measuring device for receiving optical coupling is further formed to measure a current flowing to the optical module plate. The receiving current measuring device for receiving optical coupling includes a receiving current measuring sensor for receiving optical coupling, and a receiving current for receiving optical coupling. Receiving unit optical coupling receiving current measuring sensor seating unit is formed so that the measurement sensor is seated, the receiving unit optical coupling receiving current measuring sensor can measure the current flowing to the optical module plate.
상기 렌즈 블록을 광 모듈 플레이트에 고정하기 위해 접착제를 도포하도록 로봇팔이 더 형성하고, 상기 로봇팔에는 접착제 유출 튜브 및 센서부가 형성되어 접착제를 도포할 수 있다.A robot arm may be further formed to apply an adhesive to fix the lens block to the optical module plate, and an adhesive outflow tube and a sensor unit may be formed on the robot arm to apply the adhesive.
상기 렌즈 블록에 탄성적인 압력을 가하는 렌즈 탄성 가압 부재가 더 형성되며, 상기 렌즈 탄성 가압 부재는 상기 렌즈 블록의 상면에 접하도록 하방으로 뾰족하게 형성된 누름부와, 상기 누름부를 지지하는 수평로드와, 상기 수평로드와 연결된 수직로드 및 상기 수직로드가 내부에 인입되어 승하강하도록 형성된 실린더부재를 포함할 수 있다.A lens elastic pressing member for applying an elastic pressure to the lens block is further formed, The lens elastic pressing member is a pressing portion formed pointed downward to contact the upper surface of the lens block, a horizontal rod for supporting the pressing portion, The vertical rod and the vertical rod connected to the horizontal rod may include a cylinder member formed to be moved up and down inside.
또한, 본 발명은 상기 광케이블의 제조장치를 이용한 광 모듈 장치를 포함한 광케이블의 제조방법에 있어서, 상기 광 모듈 장치를 모듈 지지부의 오목홀더부에 인입하는 송신부 광 모듈 장치와 수신부 광 모듈 장치 안착 과정인 제1단계와, 상기 제1단계를 거친 후에 광케이블을 광케이블 홀더부에 고정하고, 상기 광케이블 선단부를 광케이블 선단 안착부에 안착시키며, 상기 광 섬유 끝단이 렌즈 블록의 내측으로 인입되는 광케이블 안착 과정인 제2단계와, 상기 제2단계를 거친 후에 송신부에서 광 섬유 끝단이 렌즈 블록의 내측으로 위치 조절되는 송신부 광 커플링 작업 과정인 제3단계 및, 상기 제3단계를 거친 후에 수신부에서 광 섬유 끝단이 렌즈 블록의 내측으로 위치 조절되는 수신부 광 커플링 작업 과정인 제4단계를 포함할 수 있다.In addition, the present invention is a manufacturing method of the optical cable including the optical module device using the optical cable manufacturing apparatus, the optical module device is a transmitting part optical module device and the receiving unit optical module device seating process for introducing the module module into the recess holder; After the first step and after the first step, the optical cable is fixed to the optical cable holder, the optical cable end portion is seated on the optical cable tip mounting portion, the optical fiber mounting process is the optical cable end is introduced into the lens block Step 3 and the third step, which is a process of optical transmission of the transmitter in which the optical fiber end is positioned inside the lens block after the second step, and the optical fiber end is received at the receiver after the third step. And a fourth step, which is a process of coupling the light receiver to the inside of the lens block.
상기 제1단계인 송신부 광 모듈 장치와 수신부 광 모듈 장치 안착 과정은 상기 송신부 광 모듈 장치를 송신부 모듈 지지부의 송신부 오목홀더부에 인입하고, 상기 수신부 광 모듈 장치를 수신부 모듈 지지부의 수신부 오목홀더부에 인입하는 과정과, 상기 송신부 광 모듈 장치의 송신부 렌즈 블록의 둘레에 접착제가 도포되고, 렌즈 블록의 상방으로 유브이 램프가 이동되어 유브이 광을 비추어 경화시키며, 상기 수신부 광 모듈 장치의 수신부 렌즈 블록의 둘레에 접착제가 도포되고, 렌즈 블록의 상방으로 유브이 램프가 이동되어 유브이 광을 비추어 경화시키는 과정을 포함할 수 있다.In the first step of mounting the transmitter optical module device and the receiver optical module device, the transmitter optical module device is inserted into the transmitter concave holder of the transmitter module support part, and the receiver optical module device is inserted into the receiver concave holder part of the receiver module support part. An adhesive is applied to the process of drawing in and around the transmitter lens block of the transmitter optical module device, and a UV lamp is moved above the lens block to shine the UV light to cure, and to surround the receiver lens block of the receiver optical module device. The adhesive may be applied, and the UV lamp may be moved above the lens block to cure the UV light to shine.
상기 제2단계인 광케이블 안착 과정은 상기 광케이블의 송신부분을 송신부 광케이블 홀더부에 고정하고, 수신부분을 수신부 광케이블 홀더부에 고정하는 과정과, 상기 광케이블의 광 섬유 끝단에 접착제를 도포하고, 상기 광케이블 송신부분의 선단부를 송신용 광케이블 선단 안착부에 안착시키는 과정과, 상기 송신 광 섬유 끝단이 송신부 렌즈 블록의 내측으로 인입되는 과정을 포함할 수 있다.The second step of mounting the optical cable is a process of fixing the transmission portion of the optical cable to the transmitter optical cable holder, fixing the receiving portion to the receiver optical cable holder, and applying an adhesive to the optical fiber end of the optical cable, the optical cable And a process of seating the distal end of the transmission part on the distal end portion of the optical fiber for transmission, and the process of introducing the optical fiber end to the inside of the transmitter lens block.
상기 제3단계인 송신부 광 커플링 작업 과정은 상기 광케이블 수신부분의 광 섬유 끝단이 송신부 광 커플링용 수신 광량 측정 장치 내의 송신부 광 커플링용 수신 광량 감지 센서에 접촉되고, 상기 제어부는 송신부 광 커플링을 위해서 송신부 광케이블 선단 안착부를 좌우로 이동시켜 광케이블의 광 섬유 끝단이 송신부 렌즈 블록 내부에서 좌우로 이동되도록 하고, 모듈 지지부 또는 광케이블 홀더부를 전후로 이동시키면서 송신 광 섬유 끝단 또는 송신부 렌즈 블록을 전후로 이동시키는 과정을 포함할 수 있다.In the third step of the transmitter optical coupling operation, the optical fiber end of the optical cable receiving portion contacts the receiving light quantity detecting sensor for transmitting optical coupling in the receiving optical quantity measuring device for transmitting optical coupling, and the control unit performs optical transmission coupling. In order to move the optical fiber end of the transmitting part to the left and right to move the optical fiber end of the optical cable to the left and right inside the transmission lens block, and to move the transmission optical fiber end or the transmission lens block back and forth while moving the module support or optical cable holder back and forth. It may include.
상기 제3단계인 송신부 광 커플링 작업 과정은 상기 제어부가 송신부 광 모듈 플레이트로 전기 신호를 보내고, 전기신호가 빛의 신호로 전환되어 광케이블 광 섬유 끝단으로 진행되며 광 출력을 발생시키고, 상기 광 출력은 광케이블 광 섬유 끝단에서 광케이블을 통하여 수신부 광케이블 코어부분으로 전달되고, 송신부 광 커플링용 수신 광량 측정 장치의 송신부 광 커플링용 수신 광량 감지 센서에서 감지하여 제어부에 전달하는 과정을 더 포함할 수 있다.In the third step of the transmitter optical coupling operation, the controller sends an electrical signal to the transmitter optical module plate, the electrical signal is converted into a signal of light and proceeds to an optical cable optical fiber end to generate an optical output, and the optical output The optical cable may be transmitted from the end of the optical fiber through the optical cable to the receiver optical cable core portion, and further comprising the step of detecting by the receiving light quantity detection sensor for optical coupling of the transmitter optical coupling of the receiving optical quantity measuring device for transmitting optical coupling to the control unit.
상기 제3단계인 송신부 광 커플링 작업 과정은 광 섬유 끝단의 좌우측 이동을 반복하면서 수신부 광 케이블 코어 부분의 광 출력 값이 품질 수준에 맞는 값이 나올 때까지 반복하는 과정과, 상기 수신부 광 케이블 코어 부분의 광 출력 값이 품질 수준에 맞는 경우에 광케이블 이동 정지 후, 광 모듈 송신부 렌즈 블록에 유브이 램프를 조사시켜 렌즈 블록과 광케이블의 접착제 부분을 경화시켜 광 모듈 전송장치의 렌즈 구조부를 고정시키는 과정을 포함할 수 있다.In the third step, the optical coupling operation of the transmitter is a process of repeating the left and right movements of the ends of the optical fiber until the optical output value of the optical fiber core of the receiver reaches a value corresponding to the quality level, and the optical fiber core of the receiver If the optical output value of the part meets the quality level, stop the movement of the optical cable, and irradiate a UV lamp on the lens block of the optical module transmitter to cure the adhesive part of the lens block and the optical cable to fix the lens structure of the optical module transmitter. It may include.
상기 제4단계인 수신부 광 커플링 작업 과정은 광케이블의 수신 광 섬유 끝단이 송신부 광 커플링용 수신 광량 감지 센서에 접촉된 상태로부터 분리된 후, 수신 광 섬유 끝단에 접착제가 도포되고, 광케이블의 수신부분이 수신 광케이블 선단 안착부에 안착되며, 광케이블의 수신 광 섬유 끝단이 수신 광 모듈 플레이트의 상면에 위치된 렌즈 블록의 내부 공간에 인입되고, 제어부는 송신부 광 모듈 플레이트를 통하여 전기 신호를 전달하고, 상기 전기 신호는 송신 광케이블을 통하여 광으로 수신부 광 섬유 끝단의 코어 부분으로 전달되고, 수신부 광 섬유 끝단의 코어 부분으로 전달된 광은 수신 렌즈 블록을 통하여 수신 광 모듈 플레이트에 전기 신호로 전달되는 과정을 포함할 수 있다.In the fourth step of receiving optical coupling, the receiving optical fiber end of the optical cable is separated from a state in which the receiving optical fiber end of the optical cable is in contact with the receiving light quantity sensor for transmitting optical coupling, and then an adhesive is applied to the receiving optical fiber end, and the receiving portion of the optical cable The receiving optical cable end seating portion is seated, the receiving optical fiber end of the optical cable is introduced into the inner space of the lens block located on the upper surface of the receiving optical module plate, the control unit transmits an electrical signal through the transmitting unit optical module plate, The electrical signal is transmitted through the optical fiber to the core portion of the optical fiber end of the receiver, and the light transmitted to the core portion of the optical fiber end of the receiver is transmitted as an electrical signal to the receiving optical module plate through the receiving lens block. can do.
상기 제4단계인 수신부 광 커플링 작업 과정은 광 섬유 끝단이 좌우측으로 이동을 반복하면서 수신부 전류 출력 값이 품질 수준에 맞는지를 판단하는 과정과, 상기 수신부 전류 출력 값이 품질 수준에 맞는 경우에 광섬유 이동 정지 후, 광 모듈 송신부 렌즈 블록에 유브이 램프를 조사시켜 렌즈 블록과 광케이블의 접착제 부분을 경화시키는 과정을 포함할 수 있다.The fourth step of the optical coupling operation of the receiver is a process of determining whether the current output value of the receiver corresponds to the quality level while repeating movement of the optical fiber end to the left and right, and the optical fiber when the current output value of the receiver corresponds to the quality level. After stopping the movement, the UV module may be irradiated to the optical module lens block to cure the adhesive portion of the lens block and the optical cable.
본 발명에 의해서 종래의 수작업으로 진행되었던 광케이블과 광 모듈 사이의 커플링 공정을 정확하고 신속하게 진행할 수 있어 생산성 향상과 비용 절감의 효과가 있다.According to the present invention, the coupling process between the optical cable and the optical module, which has been conventionally performed manually, can be performed accurately and quickly, thereby improving productivity and reducing costs.
도 1은 본 발명인 광 모듈 장치를 포함한 광케이블의 제조장치를 나타내는 개략사시도이다.1 is a schematic perspective view showing an apparatus for manufacturing an optical cable including an optical module device according to the present invention.
도 2는 본 발명 중 송신용 광 모듈 제조부를 나타내는 개략 사시도이다.Fig. 2 is a schematic perspective view showing the optical module manufacturing unit for transmission in the present invention.
도 3은 도 2의 광 모듈 플레이트 부분을 확대한 개략 사시도이다.3 is an enlarged schematic perspective view of an optical module plate portion of FIG. 2.
도 4는 렌즈 블록과 광 섬유 끝단에 에폭시 접착제가 도포된 것을 나타내는 사시도이다.Figure 4 is a perspective view showing that the epoxy adhesive is applied to the lens block and the optical fiber ends.
도 5는 유브이 램프부를 나타내는 개략 사시도이다.5 is a schematic perspective view showing the UV lamp unit.
도 6은 도 2의 모듈 지지부 길이 방향 중앙 단면도이다.FIG. 6 is a longitudinal center cross-sectional view of the module support of FIG. 2. FIG.
도 7은 도 6에서 승하강 구동부가 작동하는 것을 나타내는 개략 측면도이다.FIG. 7 is a schematic side view illustrating the operation of the lift driver in FIG. 6.
도 8은 본 발명 중 수신용 광 모듈 제조부를 나타내는 개략사시도이다.8 is a schematic perspective view showing a receiving optical module manufacturing unit of the present invention.
도 9는 광 케이블의 광 섬유 끝단이 수신부 광 모듈 플레이트 위에서 수신용 렌즈 블록에 삽입되기 직전의 상태를 나타내는 개략사시도이다.9 is a schematic perspective view showing a state just before the optical fiber end of the optical cable is inserted into the receiving lens block on the receiver optical module plate.
도 10은 본 발명인 광 모듈 장치를 포함한 광케이블의 제조방법을 나타내는 순서도이다.10 is a flowchart illustrating a method of manufacturing an optical cable including the optical module device of the present invention.
도 11은 광케이블의 광 섬유 끝단이 송신부 광 커플링용 수신 광량 측정 장치에 위치된 상태를 나타내는 개략사시도이다.Fig. 11 is a schematic perspective view showing a state where an optical fiber end of an optical cable is located in a receiving light quantity measuring device for transmitting optical coupling.
도 12는 송신부에서 진행되는 광케이블과 광 모듈 사이의 커플링 공정을 나타내는 순서도이다.12 is a flowchart illustrating a coupling process between an optical cable and an optical module performed in a transmitter.
도 13은 수신부에서 진행되는 광케이블과 광 모듈 사이의 커플링 공정을 나타내는 순서도이다.FIG. 13 is a flowchart illustrating a coupling process between an optical cable and an optical module performed in the receiver.
도 14는 본 발명 중 전후 이동 구조의 변형례를 나타내는 개략 사시도이다.It is a schematic perspective view which shows the modification of front and rear movement structure in this invention.
도 15는 본 발명의 접착제 도포용 로봇팔을 추가적으로 형성한 것을 나타내는 개략 사시도이다.Figure 15 is a schematic perspective view showing that the robot arm for applying the adhesive of the present invention is further formed.
이하 본 발명의 실시예에 대하여 첨부한 도면을 참조하여 상세하게 설명하기로 한다. 다만, 첨부된 도면은 본 발명의 내용을 보다 쉽게 개시하기 위하여 설명되는 것일 뿐, 본 발명의 범위가 첨부된 도면의 범위로 한정되는 것이 아님은 이 기술분야의 통상의 지식을 가진 자라면 용이하게 알 수 있을 것이다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the accompanying drawings are only described in order to more easily disclose the contents of the present invention, but the scope of the present invention is not limited to the scope of the accompanying drawings that will be readily available to those of ordinary skill in the art. You will know.
그리고, 본 실시예를 설명함에 있어서, 동일 구성에 대해서는 동일 명칭 및 동일 부호가 사용되며 이에 따른 부가적인 설명은 생략하기로 한다.In the description of the present embodiment, the same components and the same reference numerals are used for the same configuration, and additional description thereof will be omitted.
또한, 본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Also, the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the terms "comprise" or "have" are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.
도 1은 본 발명인 광 모듈 장치를 포함한 광케이블의 제조장치를 나타내는 개략사시도이고, 도 2는 본 발명 중 송신용 광 모듈 제조부를 나타내는 개략 사시도이며, 도 3은 도 2의 광 모듈 플레이트 부분을 확대한 개략 사시도이고, 도 4는 렌즈 블록과 광 섬유 끝단에 에폭시 접착제가 도포된 것을 나타내는 사시도이다.1 is a schematic perspective view showing an optical cable manufacturing apparatus including an optical module device of the present invention, Figure 2 is a schematic perspective view showing an optical module manufacturing unit for transmission in the present invention, Figure 3 is an enlarged portion of the optical module plate of FIG. Figure 4 is a schematic perspective view, Figure 4 is a perspective view showing that the epoxy adhesive is applied to the lens block and the optical fiber ends.
본 발명인 광 모듈 장치를 포함한 광케이블의 제조장치(100)는 도 1과 같이 작업대(110) 상면에 위치된 송신용 광 모듈 제조부(200), 수신용 광 모듈 제조부(300), 송신부 광 커플링용 수신 광량 측정 장치(380), 제어부(400) 및 디스플레이부(500)를 포함한다.The apparatus 100 for manufacturing an optical cable including an optical module device according to the present invention includes a transmitting optical module manufacturing unit 200, a receiving optical module manufacturing unit 300, and a transmitting unit optical couple, which are located on an upper surface of the work bench 110 as shown in FIG. 1. Ring receiving light amount measuring device 380, the control unit 400 and the display unit 500 is included.
상기 송신용 광 모듈 제조부(200)와 수신용 광 모듈 제조부(300)는 서로 인접하게 위치되어 송신용 광 모듈 제조부(200)에서 광케이블(600)과 송신부 광 모듈 장치(210) 사이의 송신용 광 커플링이 제조되면, 수신용 광 모듈 제조부(300)에서 광케이블(600)과 수신부 광 모듈 장치(310) 사이의 수신용 광 커플링이 제조되는 과정이 진행된다.The transmitting optical module manufacturing unit 200 and the receiving optical module manufacturing unit 300 are positioned adjacent to each other, and thus, between the optical cable 600 and the transmitting unit optical module device 210 in the transmitting optical module manufacturing unit 200. When the transmission optical coupling is manufactured, a process of manufacturing the reception optical coupling between the optical cable 600 and the receiver optical module device 310 is performed in the reception optical module manufacturing unit 300.
상기 송신용 광 모듈 제조부(200)는 광케이블을 고정시키는 작용을 하도록 형성되는 광케이블 홀더부(230)와, 상기 광케이블 홀더부(230)에 고정된 광케이블의 선단부가 안착되어 좌우로 이동되도록 형성되는 광케이블 선단 안착부(250)와, 상기 광케이블 선단 안착부(250)와 이격되어 형성되며 광케이블 선단부의 광 섬유 끝단(601)이 고정되는 송신부 광 모듈 장치(210)가 고정될 수 있도록 형성된 모듈 지지부(290)를 포함한다.The optical module manufacturing unit for transmission 200 is formed so that the optical cable holder 230 and the front end of the optical cable fixed to the optical cable holder 230 is formed to act to fix the optical cable is moved to the left and right. Module support part formed to be fixed to the optical cable end seating part 250, and the transmitting unit optical module device 210 is formed spaced apart from the optical cable end seating part 250 and the optical fiber end 601 of the optical cable end part is fixed ( 290).
상기 송신부 광 모듈 장치(210)는 전기 신호가 전달되는 기판이 실장된 송신부 광 모듈 플레이트(270)와, 송신부 광 모듈 플레이트(270)의 상면에 에폭시 접착제로 접합되는 송신부 렌즈 블록(272)을 포함한다.The transmitter optical module device 210 includes a transmitter optical module plate 270 on which a substrate to which an electrical signal is transmitted is mounted, and a transmitter lens block 272 bonded to an upper surface of the transmitter optical module plate 270 with an epoxy adhesive. do.
상기 송신부 광 모듈 플레이트(270)의 상면에는 광케이블(600) 선단부의 광 섬유 끝단(601)이 내부로 인입되도록 공간이 형성되는 송신부 렌즈 블록(272)이 형성되며, 상기 송신부 렌즈 블록(272)은 에폭시 접착제(801)에 의해 송신부 광 모듈 플레이트(270)의 상면에 고정된다.A transmitter lens block 272 is formed on an upper surface of the transmitter optical module plate 270 so that a space is formed so that the optical fiber end 601 of the front end of the optical cable 600 is inserted therein. The epoxy adhesive 801 is fixed to the top surface of the transmitter optical module plate 270.
상기 모듈 지지부(290)에는 송신부 광 모듈 플레이트(270)가 끼워지도록 형성된 오목홀더부(292)가 형성되며, 상기 송신부 광 모듈 플레이트(270)는 상기 오목홀더부(292)에 탈부착 가능하다.The module support part 290 is formed with a concave holder part 292 formed so that the transmitter optical module plate 270 is fitted, and the transmitter part optical module plate 270 is detachable to the concave holder part 292.
상기 광케이블 선단 안착부(250)는 상부 형상이 광케이블(600) 선단부가 위치되도록 "U"자 형태이고, 하부는 작업대(110)에 형성된 제1횡방향 구멍(114)을 통하여 작업대(110)를 관통하여 하방으로 연장 형성된다.The optical cable tip seating portion 250 is shaped like a “U” so that its top shape is positioned at the tip of the optical cable 600, and the lower portion of the optical cable tip seating portion 250 opens the work table 110 through a first transverse hole 114 formed in the work table 110. It penetrates and extends downward.
그리고 상기 광케이블 선단 안착부(250)의 하부는 작업대(110)의 하부에 형성된 모터 구동부(252)에 연결되어, 상기 모터 구동부(252)의 작동에 의해 광케이블 선단 안착부(250)가 제1횡방향 구멍(114)에서 광케이블(600)의 길이 방향을 기준으로 좌우로 이동된다.The lower end of the optical cable tip seating part 250 is connected to the motor driving part 252 formed at the lower part of the work table 110, and the optical cable tip seating part 250 is first crossed by the operation of the motor driving part 252. The direction hole 114 is moved to the left and right with respect to the longitudinal direction of the optical cable 600.
상기 송신용 광 모듈 제조부(200)에는 송신부 렌즈 블록(272)의 상방에서 승하강하도록 형성되어 송신부 렌즈 블록(272)에 탄성적인 압력을 가하는 렌즈 탄성 가압 부재(277)가 더 형성된다. The transmitting optical module manufacturing unit 200 further includes a lens elastic pressing member 277 that is formed to ascend and descend above the transmitter lens block 272 to apply elastic pressure to the transmitter lens block 272.
상기 렌즈 탄성 가압 부재(277)는 상기 송신부 렌즈 블록(272)의 상면에 접하도록 하방으로 뾰족하게 형성된 누름부(277a)와, 상기 누름부(277a)를 지지하는 수평로드(277b)와, 상기 수평로드(277b)와 연결된 수직로드(277c) 및 상기 수직로드(277c)가 내부에 인입되어 유압 등으로 승하강하도록 형성된 실린더부재(277d)를 포함한다.The lens elastic pressing member 277 has a pressing portion 277a which is pointed downward to contact the upper surface of the transmitter lens block 272, a horizontal rod 277b supporting the pressing portion 277a, and the And a vertical rod 277c connected to the horizontal rod 277b and a cylinder member 277d which is inserted into the vertical rod 277c to move up and down by hydraulic pressure.
또한, 상기 송신용 광 모듈 제조부(200)와 수신용 광 모듈 제조부(300)에는 송신부 렌즈 블록(272)의 상방으로 유브이(UV: Ultra Violate) 램프부(279)가 형성된다.In addition, a UV (ultra violate) lamp unit 279 is formed above the transmitter lens block 272 in the transmitting optical module manufacturing unit 200 and the receiving optical module manufacturing unit 300.
도 5는 유브이 램프부를 나타내는 개략 사시도이다.5 is a schematic perspective view showing the UV lamp unit.
상기 유브이 램프부(279)는 유브이 램프(279a)와, 상기 유브이 램프(279a)를 지지하는 수평 지지부재(279b)와, 상기 수평 지지부재(279b)를 지지하는 수직 지지부재(279c)와, 상기 수직 지지부재(279c)의 하부에 형성된 오목부(279d)가 걸쳐지는 레일부(279e) 및 상기 수직 지지부재(279c)가 레일부(279e) 상에서 수평 방향으로 이동되도록 형성되는 실린더부(279f)를 포함한다.The UV lamp unit 279 includes a UV lamp 279a, a horizontal support member 279b for supporting the UV lamp 279a, a vertical support member 279c for supporting the horizontal support member 279b, A rail portion 279e through which the recessed portion 279d formed below the vertical support member 279c extends, and a cylinder portion 279f formed such that the vertical support member 279c moves in a horizontal direction on the rail portion 279e. ).
이러한 구성으로 형성된 유브이 램프부(279)는 실린더부(279f)의 작동에 의해 송신부 렌즈 블록(272)의 상부로 이동되어 송신부 렌즈 블록(272) 주위에 도포된 에폭시 접착제(801)나, 송신부 렌즈 블록(272)의 내측에 위치된 광케이블(600)의 광 섬유 끝단(601)에 도포된 에폭시 접착제(801)를 경화시키도록 조사된다.The UV lamp portion 279 formed in this configuration is moved to the upper portion of the transmitter lens block 272 by the operation of the cylinder portion 279f and is coated with an epoxy adhesive 801 or a transmitter lens applied around the transmitter lens block 272. Irradiated to cure the epoxy adhesive 801 applied to the optical fiber end 601 of the optical cable 600 located inside the block 272.
도 6은 도 2의 모듈 지지부 길이 방향 중앙 단면도이다.FIG. 6 is a longitudinal center cross-sectional view of the module support of FIG. 2. FIG.
한편, 상기 모듈 지지부(290)에는 전후 구동부가 형성되어, 상기 전후 구동부에 의해 모듈 지지부(290)가 광케이블 쪽으로 이동된다.On the other hand, the front and rear driving portion is formed in the module support portion 290, the module support portion 290 is moved toward the optical cable by the front and rear driving portion.
상기 작업대(110)에는 모듈 지지부(290)의 전후 구동부 역할을 하기 위해 모듈 지지부(290)의 하부로 형성된 관통공(116a)을 통하여 모듈 지지부(290)의 내측으로 승하강하는 승하강 구동부(118)가 형성된다.The elevating driving part 118 which is lowered to the inside of the module support part 290 through the through hole 116a formed in the lower part of the module support part 290 in order to serve as a front and rear drive part of the module support part 290. ) Is formed.
실린더 방식으로 승하강되도록 형성되는 상기 승하강 구동부(118)의 상부에는 수직단면이 원형인 원통부재(118a)가 형성되고, 상기 모듈 지지부(290)의 내측에는 상기 원통부재(118a)와 접하는 접촉부재(293)가 형성된다.A cylindrical member 118a having a vertical cross section is formed on an upper portion of the elevating driving unit 118, which is formed to move up and down in a cylindrical manner, and is in contact with the cylindrical member 118a inside the module support 290. Member 293 is formed.
상기 전후 구동부는 상기 모듈 지지부(290)에 수직 방향으로 형성된 접촉부재(293)와, 상기 접촉부재(293)가 접하는 원통부재(118a)가 상부에 형성되는 승하강 구동부(118)가 포함된다.The front and rear driving part includes a contact member 293 formed in a vertical direction to the module support part 290, and a lifting driver 118 having a cylindrical member 118a in contact with the contact member 293 formed thereon.
그리고 상기 작업대(110)에는 수직 상방으로 형성된 수직벽부재(119a)와, 상기 수직벽부재(119a)에 접하도록 형성된 스프링 등의 탄성부재(119b)가 형성된다.The work table 110 is provided with a vertical wall member 119a formed vertically upward, and an elastic member 119b such as a spring formed to contact the vertical wall member 119a.
또한, 상기 모듈 지지부(290)는 상기 수직벽부재(119a)와 탄성부재(119b)가 전면 내측에 위치되도록 전면 오목부(293a)가 형성되며, 상기 전면 오목부(293a)에는 전면 오목벽(293b)이 형성된다.In addition, the module support part 290 is formed with a front concave portion 293a so that the vertical wall member 119a and the elastic member 119b are located inside the front surface, and the front concave portion 293a has a front concave wall ( 293b).
도 7은 도 6에서 승하강 구동부가 작동하는 것을 나타내는 개략 측면도이다.FIG. 7 is a schematic side view illustrating the operation of the lift driver in FIG. 6.
상기 승하강 구동부(118)가 작동되기 전에는 도 6의 (a)와 같이 원통부재(118a)의 중심부 수평면 보다 접촉부재(293) 하단이 상부에 위치되어 원통부재(118a)의 상부 둘레면과 접하고 있고, 상기 승하강 구동부(118)가 작동되면 도 6의 (b)와 같이 원통부재(118a)가 상승하면서 원통부재(118a)의 중심부 수평면도 상승하고, 상기 중심부의 중심축을 기준으로 회전되는 원통부재(118a)와 접하고 있는 접촉부재(293)는 밀리면서 이동하고, 접촉부재(293)가 고정되어 있는 모듈 지지부(290)도 전체적으로 이동되면서 모듈 지지부(290)에 고정되어 있는 송신부 광 모듈 플레이트(270)도 광케이블(600) 쪽으로 이동된다.Before the elevating drive unit 118 is operated, the lower end of the contact member 293 is positioned above the central horizontal surface of the cylindrical member 118a as shown in FIG. 6A so as to contact the upper circumferential surface of the cylindrical member 118a. In addition, when the elevating drive unit 118 is operated, as shown in FIG. 6 (b), the cylindrical member 118a rises, and the center horizontal surface of the cylindrical member 118a also rises, and the cylinder rotates about the central axis of the central portion. The contact member 293, which is in contact with the member 118a, moves while being pushed, and the module support part 290 on which the contact member 293 is fixed also moves as a whole and is fixed to the module support part 290. 270 is also moved toward the optical cable 600.
이때, 모듈 지지부(290)의 전면 오목벽(293b)과 수직벽부재(119a) 사이에 위치된 상기 탄성부재(119b)는 탄성적으로 압축된 상태가 되고, 승하강 구동부(118)가 다시 작동되어 원통부재(118a)가 하강하면 상기 탄성부재(119b)의 탄성복원력에 의해 상기 접촉부재(293)의 하단이 원통부재(118a)에 접하면서 원통부재(118a)의 중심축이 위치된 수평면보다 위쪽에 위치되면서 도 6의 (a)와 같은 상태로 이동된다.At this time, the elastic member 119b positioned between the front concave wall 293b of the module support 290 and the vertical wall member 119a is elastically compressed, and the elevating driving part 118 is operated again. When the cylindrical member 118a is lowered, the lower end of the contact member 293 is brought into contact with the cylindrical member 118a by the elastic restoring force of the elastic member 119b, and the center axis of the cylindrical member 118a is lower than the horizontal plane at which the cylindrical member 118a is located. It is located above and moved to a state as shown in FIG.
상기와 같이 승하강 구동부(118)의 작동에 의해 송신부 광 모듈 플레이트(270)는 수평 방향에서 전후진하게 되는데, 실질적으로 전후진 이동 범위는 송신부 렌즈 블록(272)의 내부에 위치된 광케이블(600)의 광섬유 끝단이 전후 최적 위치를 찾는 범위 내이므로 매우 근소한 범위 내이다.As described above, the transmitter optical module plate 270 is moved forward and backward in the horizontal direction by the operation of the elevating driver 118, and the forward and backward movement range of the optical cable 600 is located inside the transmitter lens block 272. The end of the fiber is in a very narrow range because it is within the range of finding the optimum position before and after.
도 8은 본 발명 중 수신용 광 모듈 제조부를 나타내는 개략사시도이고, 도 9는 광 케이블의 광 섬유 끝단이 수신부 광 모듈 플레이트 위에서 수신용 렌즈 블록에 삽입되기 직전의 상태를 나타내는 개략사시도이다.8 is a schematic perspective view showing a receiving optical module manufacturing unit of the present invention, Figure 9 is a schematic perspective view showing a state immediately before the optical fiber end of the optical cable is inserted into the receiving lens block on the receiving optical module plate.
한편, 상기 수신용 광 모듈 제조부(300)는 상기 송신용 광 모듈 제조부(200)의 각 구성과 동일한 구성을 포함하며, 다만, 수신부 광 모듈 플레이트(370)에 인접하여 수신부 광 커플리용 수신 전류 측정장치(360)가 추가적으로 형성되는 점이 차이이다. On the other hand, the receiving optical module manufacturing unit 300 includes the same configuration as the respective components of the transmitting optical module manufacturing unit 200, except for the receiving unit optical coupler adjacent to the receiving optical module plate 370 The difference is that the current measuring device 360 is additionally formed.
상기 수신부 광 커플링용 수신 전류 측정 장치(360)는 2개의 수신부 광 커플링용 수신 전류 측정 센서(362)와, 상기 수신부 광 커플링용 수신 전류 측정 센서(362)들이 안착되어 있는 수신부 광 커플링용 수신 전류 측정 센서안착부(364)와, 상기 수신부 광 커플링용 수신 전류 측정 센서안착부(364)를 승하강시키도록 형성되는 센서실린더부(366)를 포함한다.The receiver current coupling device 360 for receiving optical coupling includes a receiver current coupling sensor 362 for receiving optical coupling and receiving current measurement sensors 362 for receiving optical coupling. And a sensor cylinder part 366 formed to raise and lower the measurement sensor seat part 364 and the reception current measurement sensor seat part 364 for the receiver optical coupling.
상기 수신부 광 커플링용 수신 전류 측정 센서(362)는 광케이블(600)의 광 섬유 끝단(602)이 수신부 광 모듈 장치(310)의 수신부 렌즈 블록(372)에 삽입되고 난 후, 송신부 광 모듈 장치(210)로부터 광 신호가 도착하여 수신부 광 모듈 장치(310)의 광 소자와 광 전환부를 거쳐서 수신부 광 모듈 플레이트(370)로 흐르는 전류를 측정하여 광 섬유 끝단(602)에 흐르는 광량을 간접 측정한다.The receiver current coupling sensor 362 for the receiver optical coupling includes a transmitter optical module after the optical fiber end 602 of the optical cable 600 is inserted into the receiver lens block 372 of the receiver optical module device 310. An optical signal arrives from 210, and measures an electric current flowing through the optical element of the receiver optical module device 310 and the optical switch plate 370 to the receiver optical module plate 370 to indirectly measure the amount of light flowing through the optical fiber end 602.
상기 광케이블(600)의 내부에는 광 섬유 외에 구리선 등 다양한 전선 등이 배열될 수 있으나, 상기 광 섬유만 광 모듈 장치와의 커플링에 사용된다.Various wires such as copper wires may be arranged inside the optical cable 600, but only the optical fiber is used for coupling with the optical module device.
한편, 도 1에 도시된 송신부 광 커플링용 수신 광량 측정 장치(380)는 송신부 광 커플링 때 송신부에 위치된 광케이블로부터 수신부에 위치된 광케이블에 전달되는 광량을 측정하기 위해 형성된다.On the other hand, the receiving light quantity measuring device 380 for the transmitter optical coupling shown in Figure 1 is formed to measure the amount of light transmitted from the optical cable located in the transmitter to the optical cable located in the receiver when the transmitter optical coupling.
상기 송신부 광 커플링용 수신 광량 측정 장치(380)는 수신부에 위치된 광케이블(600)의 광 섬유 끝단(602)과 접촉되어 광 섬유 끝단(602)의 코어부분을 통하여 전달되는 광량을 감지하도록 형성되는 송신부 광 커플링용 수신 광량 감지 센서(384)와, 상기 송신부 광 커플링용 수신 광량 감지 센서(384)를 지지하도록 형성되는 송신부 광 커플링용 수신 광량 감지 센서안착부(382) 및, 수신부에 위치된 광케이블(600)의 광 섬유 끝단(602)이 송신부 광 커플링용 수신 광량 감지 센서(384)와 접촉하도록 수신부의 광케이블(600)을 고정시키는 송신부 광 커플링용 수신 광 케이블 홀더부(386)를 포함한다.The receiving light quantity measuring device 380 for the optical transmission unit is formed to contact the optical fiber end 602 of the optical cable 600 located in the receiving unit to sense the amount of light transmitted through the core portion of the optical fiber end 602. A receiving light quantity detecting sensor 384 for transmitting part optical coupling, a receiving light quantity detecting sensor seating portion 382 for transmitting part optical coupling formed to support the receiving light quantity detecting sensor 384 for transmitting part optical coupling, and an optical cable located in the receiving part The optical fiber end 602 of 600 includes a receiving optical cable holder portion 386 for transmitting portion optical coupling which fixes the optical cable 600 of the receiving portion to contact the receiving light quantity detecting sensor 384 for transmitting portion optical coupling.
도 10은 본 발명인 광 모듈 장치를 포함한 광케이블의 제조방법을 나타내는 순서도이고, 도 11은 광케이블의 광 섬유 끝단이 송신부 광 커플링용 수신 광량 측정 장치에 위치된 상태를 나타내는 개략사시도이다.FIG. 10 is a flowchart illustrating a method of manufacturing an optical cable including the optical module device of the present invention, and FIG. 11 is a schematic perspective view showing a state in which an optical fiber end of the optical cable is located in a receiving light quantity measuring device for transmitting optical coupling.
본 발명인 광 모듈 장치를 포함한 광케이블의 제조방법은 시작 과정을 거쳐 송신부와 수신부 광 모듈 장치(210, 310) 안착 과정인 제1단계(S100)와, 상기 제1단계(S100)를 거친 후에 진행되는 광케이블(600) 안착 과정인 제2단계(S200)와, 상기 제2단계(S200)를 거친 후에 진행되는 송신부 광 커플링 작업 과정인 제3단계(S300)와, 상기 제3단계(S300)를 거친 후에 진행되는 수신부 광 커플링 작업 과정인 제4단계(S400)를 포함한다.The method of manufacturing an optical cable including the optical module device of the present invention is performed after the first step (S100) and the first step (S100), which is a mounting process of the transmitting unit and the receiving unit optical module devices 210 and 310 through a start-up process. The second step (S200), which is a mounting process of the optical cable 600, the third step (S300) and the third step (S300), which is an optical coupling operation process performed after the second step (S200) And a fourth step S400, which is a process of coupling the receiver optical coupling after the rough process.
상기 제1단계(S100)인 송신부 광 모듈 장치(210)와 수신부 광 모듈 장치(310) 안착 과정은 광 커플링 작업이 진행되기 전에 송신부 광 모듈 장치(210)를 송신부 모듈 지지부(290)의 송신부 오목홀더부(292)에 인입하고, 상기 수신부 광 모듈 장치(310)를 수신부 모듈 지지부(290)의 수신부 오목홀더부(292)에 인입하는 과정이다.In the mounting process of the transmitter optical module device 210 and the receiver optical module device 310, which is the first step (S100), before the optical coupling operation is performed, the transmitter optical module device 210 is transferred to the transmitter module support unit 290. The process of pulling in the recess holder 292 and introducing the receiver optical module device 310 into the receiver recess holder 292 of the receiver module support 290.
송신부 광 모듈 장치(210)와 수신부 광 모듈 장치(310)가 안착된 상태는 도 1 내지 도 3에 도시되어 있다.A state in which the transmitter optical module device 210 and the receiver optical module device 310 are seated is illustrated in FIGS. 1 to 3.
그리고 제어부(400)에 의해 상기 송신부 광 모듈 장치(210)의 송신부 렌즈 블록(272)의 둘레에 에폭시 접착부가 도포되고, 송신부 렌즈 블록(272)의 상방으로 유브이 램프(279a)가 이동되어 유브이 광을 비추어 경화시킨다.An epoxy adhesive is applied around the transmitter lens block 272 of the transmitter optical module device 210 by the controller 400, and the UV lamp 279a is moved above the transmitter lens block 272 to move the UV light. It hardens in light of.
또한, 제어부(400)에 의해 상기 수신부 광 모듈 장치(310)의 수신부 송신부 렌즈 블록(272)의 둘레에 에폭시 접착부가 도포되고, 송신부 렌즈 블록(272)의 상방으로 유브이 램프(279a)가 이동되어 유브이 광을 비추어 경화시킨다.In addition, an epoxy adhesive is applied around the receiver lens block 272 of the receiver optical module device 310 by the controller 400, and a UV lamp 279a is moved above the transmitter lens block 272. UV light stiffens the light.
상기 제2단계(S200)인 광케이블(600) 안착 과정은 광케이블(600)을 적당한 길이로 절단한 후에 광케이블(600)을 제1단계(S100)를 통하여 송신부 모듈 지지부(290)에 위치된 송신부 광 모듈 장치(210) 및 수신부 모듈 지지부(290)에 위치된 수신부 광 모듈 장치(310)에 각각 결합하기 위해서 광케이블(600)의 송신부분을 송신부 광케이블 홀더부(230)에 고정하고, 수신부분을 수신부 광케이블 홀더부(330)에 고정한다.In the mounting process of the optical cable 600, which is the second step (S200), the optical fiber 600 is cut to an appropriate length, and then the optical fiber 600 is positioned at the transmitter module support part 290 through the first step (S100). In order to couple to the receiver optical module device 310 located in the module device 210 and the receiver module support 290, respectively, the transmitting part of the optical cable 600 is fixed to the transmitting part optical cable holder 230, and the receiving part is received. It is fixed to the optical cable holder 330.
그리고 광케이블(600)의 광 섬유 끝단(601)에 에폭시를 바른 후에 상기 광케이블(600) 송신부분의 선단부를 송신용 광케이블 선단 안착부(250)에 안착시키고, 상기 송신 광 섬유 끝단(601)이 송신부 렌즈 블록(272)의 내측으로 인입된다.After the epoxy is applied to the optical fiber end 601 of the optical cable 600, the front end of the optical cable 600 transmission part is seated on the optical fiber front end mounting part 250 for transmission, and the transmission optical fiber end 601 is a transmission part. It is drawn into the lens block 272.
이 상태에서 상기 송신부 렌즈 블록(272)의 내측벽면과 광케이블(600)의 송신 광 섬유 끝단(601) 사이의 좌우 옆면 평균 유격은 20um이다.In this state, the average left and right side clearance gap between the inner wall surface of the transmitter lens block 272 and the optical fiber end 601 of the optical cable 600 is 20 μm.
한편, 상기 제3단계(S300)인 송신부 광 커플링 작업 과정은 도 11에서 같이 광케이블(600) 수신부분의 광 섬유 끝단(602)이 에폭시를 바르지 않은 상태에서 송신부 광 커플링용 수신 광량 측정 장치(380)의 송신부 광 커플링용 수신 광량 감지 센서(384)에 접촉된다.On the other hand, the third step (S300) of the transmitter optical coupling operation process as shown in Figure 11 the optical fiber end 602 of the receiving portion of the optical cable 600, the receiving light quantity measuring device for the optical coupling of the transmitter ( 380 is in contact with a receiving light amount sensor 384 for the optical coupling of the transmitter.
그리고 도 3과 같이 렌즈 탄성 가압 부재(277)의 누름부(277a)가 송신부 렌즈 블록(272)의 상부를 탄성적으로 가압한다.3, the pressing portion 277a of the lens elastic pressing member 277 elastically presses the upper portion of the transmitter lens block 272.
이후, 제어부(400)는 송신부 광 커플링을 위해서 도 2의 송신부 광케이블 선단 안착부(250)를 좌우로 이동시켜 도 3에서 광케이블(600)의 광 섬유 끝단(601)이 송신부 렌즈 블록(272) 내부에서 좌우로 이동되도록 하고, 모듈 지지부(290)를 도 6과 같이 전후로 이동시키면서 송신 광 섬유 끝단(601)이 위치된 송신부 렌즈 블록(272)을 전후로 이동시킨다.Thereafter, the control unit 400 moves the transmitter optical cable tip seating part 250 of FIG. 2 to the left and right for transmitting part optical coupling so that the optical fiber end 601 of the optical cable 600 is the transmitter lens block 272 in FIG. 3. In order to move left and right inside, while moving the module support portion 290 back and forth as shown in Figure 6 to move the transmitter lens block 272, the transmission optical fiber end 601 is located back and forth.
이와 같은 과정을 진행하면서 제어부(400)는 송신부 광 모듈 플레이트(270)로 전기 신호를 보내고, 일반적으로 알려진 바와 같이 송신부 광 모듈 플레이트(270)에 형성된 빅셀(VCSEL, vertical cavity surface emitting laser)이라는 부품을 거치면서 전기신호가 빛의 신호로 전환되며, 전환된 빛은 송신부 렌즈 블록(272)의 비구면 렌즈를 거치면서 송신부 렌즈 블록(272) 내부에 위치된 광케이블(600) 광 섬유 끝단(601)으로 진행되며 광 출력을 발생시킨다.During this process, the control unit 400 sends an electrical signal to the transmitter optical module plate 270, and as is generally known, a component called a vertical cavity surface emitting laser (VCSEL) formed in the transmitter optical module plate 270. The electrical signal is converted into a signal of the light while passing through the aspherical lens of the transmitter lens block 272 to the optical fiber tip 601 of the optical cable 600 located inside the transmitter lens block 272. Proceeds and generates light output.
상기 광 출력은 송신부에서 광케이블(600)을 통하여 수신부에 위치한 광 섬유 끝단(601)의 코어부분으로 전달되고, 송신부 광 커플링용 수신 광량 측정 장치(380)의 송신부 광 커플링용 수신 광량 감지 센서(384)에서 감지하여 도 1의 제어부(400)에 전달하고 디스플레이부(500)에는 광 출력값과 함께 정상일 때는 녹색 신호를 보여주고, 정상 범위를 벗어난 경우에는 노란색 신호를 보여준다.The optical output is transmitted from the transmitter to the core portion of the optical fiber end 601 located in the receiver through the optical cable 600, and the received light quantity sensor 384 for the optical coupling of the transmitter of the receiving light quantity measuring device 380 for the optical coupling of the transmitter. And detect and transmit the same to the control unit 400 of FIG. 1, and the display unit 500 shows a green signal when it is normal with the light output value, and shows a yellow signal when it is outside the normal range.
상기 코어부분은 광 섬유의 내측 부분으로 광이 진행하는 부분을 말한다.The core portion refers to a portion where light propagates to an inner portion of the optical fiber.
제어부(400)는 디스플레이부(500)에서 녹색 신호가 나타날 때 광케이블 선단 안착부(250)의 좌우 이동과 모듈 지지부(290)의 전후 이동을 정지시키고, 도 1 및 도 5에 도시된 유브이 램프부(279)를 송신부 렌즈 블록(272)의 상방으로 이동시킨 후에 유브이 광을 조사하여 광케이블(600) 광 섬유 끝단(601) 코어부분에 위치된 에폭시를 경화시키면서 일정한 시간을 유지한다.The control unit 400 stops the left and right movement of the optical cable tip seating unit 250 and the forward and backward movement of the module support unit 290 when the green signal is displayed on the display unit 500. The UV lamp unit shown in FIGS. 1 and 5 is shown. After moving 279 to the upper side of the transmitter lens block 272, the UV is irradiated with light to cure the epoxy located at the core portion of the optical fiber end 601 of the optical cable 600 and maintain a constant time.
정해진 일정시간 동안 유브이 램프(279a)가 동작하고 나서 유브이 램프(279a)는 소등된다.After the UV lamp 279a operates for a predetermined time, the UV lamp 279a is turned off.
도 12는 송신부에서 진행되는 광케이블과 광 모듈 사이의 커플링 공정을 나타내는 순서도이다.12 is a flowchart illustrating a coupling process between an optical cable and an optical module performed in a transmitter.
상기 제어부(400)를 통하여 송신부에서 진행되는 광케이블(600)과 광 모듈 사이의 커플링 공정의 더욱 자세한 내용은 다음과 같은 제1송신커플링 단계(S310) 내지 제10송신커플링 단계(S391) 과정으로 진행된다.For more details of the coupling process between the optical cable 600 and the optical module that is carried out by the transmitter through the control unit 400, see the first transmission coupling step (S310) to the tenth transmission coupling step (S391). The process proceeds.
제1송신커플링 단계(S310)는 광 커플링 시도 횟수와 전후 이동 횟수 변수를 0(Zero)으로 초기화하는 과정이고, 상기 제1송신커플링 단계(S310)를 거친 후에 진행되는 제2송신커플링 단계(S320)는 수신부 광 출력 값이 품질 수준에 맞는지 판단하는 과정이며, 상기 제2송신커플링 단계(S320)에서 수신부 광 출력 값이 품질 수준에 맞지 않는 경우에 진행되는 제3송신커플링 단계(S330)는 광 커플링 시도가 10번째 이하인가를 판단하는 과정이고, 상기 제3송신커플링 단계(S330)에서 광 커플링 시도가 10번째 이하인 경우에 진행되는 제4송신커플링 단계(S340)는 바이너리서치(Binary Search) 알고리즘을 적용하여 좌우측으로 이동을 반복하면서 수신부 광 케이블 코어 부분의 광 출력 값이 품질 수준에 맞는 값이 나올 때까지 10회 반복하는 과정이고, 상기 제4송신커플링 단계(S340)를 거친 후에 진행되는 제5송신커플링 단계(S350)는 수신부 광 케이블 코어 부분의 광 출력 값이 품질 수준에 맞는지를 판단하는 과정이며, 상기 제5송신커플링 단계(S350)에서 수신부 광 케이블 코어 부분의 광 출력 값이 품질 수준에 맞는 경우에 진행되는 제6송신커플링 단계(S360)는 광케이블(600) 이동 정지 후, 광 모듈 송신부 렌즈 블록(272)에 유브이 램프(279a)를 조사시켜 송신부 렌즈 블록(272)과 광케이블(600)의 에폭시 부분을 경화시켜 전체적인 광 모듈 전송장치의 렌즈 구조부를 고정시키는 과정이다.The first transmission coupling step S310 is a process of initializing the number of optical coupling attempts and the number of front and rear movements to zero, and the second transmission couple proceeds after the first transmission coupling step S310. The ring step (S320) is a process of determining whether the receiver light output value matches the quality level, and the third transmission coupling proceeds when the receiver light output value does not match the quality level in the second transmission coupling step (S320). Step S330 is a process of determining whether the optical coupling attempt is 10th or less, and the fourth transmission coupling step (3) is performed when the optical coupling attempt is 10th or less in the third transmission coupling step S330. S340 is a process of repeating 10 times until the light output value of the optical fiber core portion of the receiver is repeated to the quality level while repeating movement to the left and right by applying a binary search algorithm, the fourth transmission coupler Ring step (S34) The fifth transmission coupling step (S350) performed after passing through 0) is a process of determining whether the optical output value of the optical fiber core portion of the receiver corresponds to the quality level, and in the fifth transmission coupling step (S350), the receiver optical The sixth transmission coupling step (S360), which is performed when the light output value of the cable core portion is in accordance with the quality level, irradiates the UV lamp 279a to the optical module transmitter lens block 272 after the optical cable 600 stops moving. By curing the epoxy portion of the transmitter lens block 272 and the optical cable 600 to fix the lens structure of the overall optical module transmission device.
그리고 상기 제2송신커플링 단계(S320)에서 수신부 광 출력 값이 품질 수준에 맞는 경우는 상기 제6송신커플링 단계(S360)로 이동된다.In the second transmission coupling step (S320), if the receiver light output value matches the quality level, the sixth transmission coupling step (S360) is moved.
또한, 상기 제3송신커플링 단계(S330)에서 광 커플링 시도가 10번째 이하가 아닌 경우에는 제7송신커플링 단계(S370)인 전후 이동 시도가 세번째 이하인지를 판단하는 과정이 진행된다.In addition, when the optical coupling attempt is not 10 or less in the third transmission coupling step (S330), a process of determining whether the forward and backward movement attempt in the seventh transmission coupling step (S370) is the third or less is performed.
상기 제7송신커플링 단계(S370)에서 전후 이동 시도가 세번째 이하인 경우에는 제8송신커플링 단계(S380)인 광커플링 시도 횟수 변수를 0(Zero)으로 변경하고, 송신 모듈 지지부(290)를 자동으로 뒤로 후진했다가 다시 앞으로 전진하여 광 커플링 재시도 준비 완료시키는 과정이 진행되며 전후 이동 시도 횟수를 1회 증가시키고 제2송신커플링 단계(S320)로 이동된다.If the forward and backward movement attempt is the third or less in the seventh transmission coupling step (S370), the optical coupling attempt number variable in the eighth transmission coupling step (S380) is changed to 0 (Zero), and the transmission module support unit 290 The process of automatically reversing backwards and forwards again to complete the optical coupling retries is completed, and the number of forward and backward movement attempts is increased by one time and is moved to the second transmission coupling step (S320).
상기 제7송신커플링 단계(S370)에서 전후 이동 시도가 세번째 이하가 아닌 경우에는 제9송신커플링 단계(S390)인 작업자 조치 과정이 진행되며, 이 과정에서 작업자는 자동으로 세 번까지 전후 이동을 했을 경우에는 불량 처리를 하고 다음 샘플로 정규 작업을 실시한다.In the seventh transmission coupling step (S370), if the forward and backward movement attempt is not less than the third or less, the worker action process of the ninth transmission coupling step (S390) is performed, and the worker automatically moves back and forth up to three times. If it is, the defect is processed and regular work is performed with the next sample.
상기 제5송신커플링 단계(S350)에서 수신부 광 케이블 코어 부분의 광 출력 값이 품질 수준에 맞지 않은 경우에는 제10송신커플링 단계(S391)인 광 커플링 시도 횟수변수를 1회 증가하는 과정이 진행된 후 다시 제3송신커플링 단계(S330)로 진행된다.If the optical output value of the optical fiber core portion of the receiver in the fifth transmission coupling step (S350) does not match the quality level, the process of increasing the number of optical coupling attempts variable in the tenth transmission coupling step (S391) once After this progresses to the third transmission coupling step (S330).
한편, 상기 제4단계(S400)인 수신부 광 커플링 작업 과정은 광케이블(600)의 수신 광 섬유 끝단(601)이 송신부 광 커플링용 수신 광량 측정 장치(380)의 송신부 광 커플링용 수신 광량 감지 센서(384)에 접촉된 상태로부터 분리된 후, 수신 광 섬유 끝단(601)에 에폭시 접착제(801)가 도포되고, 광케이블(600)의 수신부분이 수신 광케이블 선단 안착부(250)에 안착된다. On the other hand, in the fourth step (S400) of the receiver optical coupling process, the receiving optical fiber end 601 of the optical cable 600 is the receiving light quantity detection sensor for the optical coupling of the transmitter of the receiving optical quantity measuring device 380 for the optical coupling of the transmitter After detaching from contact with 384, an epoxy adhesive 801 is applied to the receiving optical fiber end 601, and the receiving portion of the optical cable 600 is seated on the receiving optical cable tip seat 250.
그리고 광케이블(600)의 수신 광 섬유 끝단(601)이 수신 송신부 광 모듈 플레이트(270)의 상면에 위치된 송신부 렌즈 블록(272)의 내부 공간에 인입된다.And the receiving optical fiber end 601 of the optical cable 600 is introduced into the inner space of the transmitter lens block 272 located on the upper surface of the receiving transmitter optical module plate 270.
제어부(400)는 송신부 광 모듈 플레이트(270)를 통하여 전기 신호를 전달하고, 상기 전기 신호는 송신 광케이블(600)을 통하여 광으로 수신 광 섬유 끝단(601)의 코어 부분으로 전달되고, 수신 광 섬유 끝단(601)의 코어 부분으로 전달된 광은 수신 송신부 렌즈 블록(272)을 통하여 수신 송신부 광 모듈 플레이트(270)에 전기 신호로 전달된다.The control unit 400 transmits an electrical signal through the transmitting unit optical module plate 270, and the electrical signal is transmitted to the core portion of the receiving optical fiber end 601 by light through the transmitting optical cable 600, and receives the receiving optical fiber. Light transmitted to the core portion of the end 601 is transmitted as an electrical signal to the receiving transmitter optical module plate 270 through the receiving transmitter lens block 272.
이와 같은 전기 신호 전달 상태를 유지하면서 제어부(400)는 수신 광케이블 선단 안착부(250)를 좌우로 이동시키고, 수신 모듈 지지부(290)를 전후로 이동시키면서 수신 송신부 광 모듈 플레이트(270)로 전달된 전기 신호를 판단한다.While maintaining the electrical signal transmission state as described above, the control unit 400 moves the receiving optical cable tip seating part 250 to the left and right, and the electric power transmitted to the receiving transmitter optical module plate 270 while moving the receiving module support part 290 back and forth. Judge the signal.
제어부(400)는 수신 송신부 광 모듈 플레이트(270)로 전달된 전기 신호를 판단하여 적절한 전기 신호 출력값으로 판단되면 수신 광케이블 선단 안착부(250)의 좌우 이동과, 수신 모듈 지지부(290)의 전후 이동을 중지시킨다.The control unit 400 determines the electric signal transmitted to the receiving transmitter optical module plate 270, and when it is determined to be an appropriate electric signal output value, the control unit 400 moves left and right of the receiving optical cable tip seating unit 250 and moves forward and backward of the receiving module support unit 290. Stop.
제어부(400)는 수신부 광 커플링용 수신 전류 측정 장치(360)와 수신부 광 커플링용 전류 감지 수신부 광 커플링용 수신 전류 측정 센서(362)를 활용하여 수신 광 모듈 플레이트로 전달된 송신부 전기 신호가 정상적으로 도달 되었는지를 간접적으로 측정할 수 있다.The control unit 400 utilizes the receiving current measuring device 360 for receiving optical coupling and the current sensing sensor for receiving optical coupling of the receiving unit 362 of the receiving current optical coupling. It can be measured indirectly.
상기 수신부 광 커플링용 수신 전류 측정 장치(360)는 2개의 수신부 광 커플링용 수신 전류 측정 센서(362)와, 상기 수신부 광 커플링용 수신 전류 측정 센서(362)들이 안착되어 있는 수신부 광 커플링용 수신 전류 측정 센서안착부(364)와, 상기 수신부 광 커플링용 수신 전류 측정 센서안착부(364)를 승하강시키도록 형성되는 센서실린더부(366)를 포함한다. 본 실시예의 경우 전류 측정 센서를 2개 사용하였으나, 이에 한정되는 것은 아니며 개수는 회로에 따라 다양하게 변경될 수 있다.The receiver current coupling device 360 for receiving optical coupling includes a receiver current coupling sensor 362 for receiving optical coupling and receiving current measurement sensors 362 for receiving optical coupling. And a sensor cylinder part 366 formed to raise and lower the measurement sensor seat part 364 and the reception current measurement sensor seat part 364 for the receiver optical coupling. In the present embodiment, two current measuring sensors are used, but the present invention is not limited thereto, and the number may be variously changed according to a circuit.
상기 수신부 광 커플링용 수신 전류 측정 센서(362)는 광케이블(600)의 광 섬유 끝단(602)이 수신부 광 모듈 장치(310)의 수신부 렌즈 블록(372)에 삽입되고 난 후, 송신부 광 모듈 장치(210)로부터 광 신호가 도착하여 수신부 광 모듈 장치(310)의 광 소자와 광전환부를 거쳐서 수신부 광 모듈 플레이트(370)로 흐르는 전류 중 기판상의 적절한 핀을 골라서 접촉하여 광 섬유 끝단(602)에 흐르는 광량을 간접 측정한다.The receiver current coupling sensor 362 for the receiver optical coupling includes a transmitter optical module after the optical fiber end 602 of the optical cable 600 is inserted into the receiver lens block 372 of the receiver optical module device 310. An optical signal arrives from the optical element of the receiver optical module device 310 and flows to the optical fiber end 602 by selecting and contacting an appropriate pin on the substrate among currents flowing through the optical switching unit and the optical receiver plate 370 to the receiver optical module plate 370. Indirectly measures the amount of light.
이 상태에서 제어부(400)는 유브이 램프부(279)를 이동시켜 유브이 램프(379a)가 송신부 렌즈 블록(272)의 상방으로 이동되도록 한 후, 유브이 램프(379a)에서 광이 조사되도록 하여 송신부 렌즈 블록(272)의 내부에 위치된 광케이블(600)의 수신 광 섬유 끝단(602)의 코어 부분에 에폭시 접착제(801)를 경화시킨다.In this state, the controller 400 moves the UV lamp unit 279 so that the UV lamp 379a is moved above the transmitter lens block 272, and then the UV lamp 379a causes the light to be irradiated to transmit the lens. The epoxy adhesive 801 is cured at the core portion of the receiving optical fiber end 602 of the optical cable 600 located inside the block 272.
한편, 도 13은 수신부에서 진행되는 광케이블과 광 모듈 사이의 커플링 공정을 나타내는 순서도이다.FIG. 13 is a flowchart illustrating a coupling process between an optical cable and an optical module performed in the receiver.
상기 제어부(400)를 통하여 수신부에서 진행되는 광케이블(600)과 광 모듈 사이의 커플링 공정에 대한 보다 자세한 내용은 다음과 같은 제1수신커플링 단계(S410) 내지 제10수신커플링 단계(S491) 과정으로 진행된다.For more information on the coupling process between the optical cable 600 and the optical module that is carried out by the receiver through the control unit 400, see the first receiving coupling step (S410) to the tenth receiving coupling step (S491). ) Process.
제1수신커플링 단계(S410)는 광 커플링 시도 횟수와 전후 이동 횟수 변수를 0(Zero)으로 초기화하는 과정이고, 상기 제1수신커플링 단계(S410)를 거친 후에 진행되는 제2수신커플링 단계(S420)는 수신부 전류 출력 값이 품질 수준에 맞는지 판단하는 과정이며, 상기 제2수신커플링 단계(S420)에서 수신부 전류 출력 값이 품질 수준에 맞지 않는 경우에 진행되는 제3수신커플링 단계(S430)는 광 커플링 시도가 10번째 이하인가를 판단하는 과정이고, 상기 제3수신커플링 단계(S430)에서 광 커플링 시도가 10번째 이하인 경우에 진행되는 제4수신커플링 단계(S440)는 바이너리서치(Binary Search) 알고리즘을 적용하여 좌우측으로 이동을 반복하면서 수신부 전류 출력 값이 품질 수준에 맞는 값이 나올 때까지 약 10회 반복하는 과정이고, 상기 제4수신커플링 단계(S440)를 거친 후에 진행되는 제5수신커플링 단계(S450)는 수신부 전류 출력 값이 품질 수준에 맞는지를 판단하는 과정이며, 상기 제5수신커플링 단계(S450)에서 수신부 전류 출력 값이 품질 수준에 맞는 경우에 진행되는 제6수신커플링 단계(S460)는 광섬유 이동 정지 후, 광 모듈 송신부 렌즈 블록(272)에 유브이 램프(279a)를 조사시켜 송신부 렌즈 블록(272)과 광케이블(600)의 에폭시 부분을 경화시켜 전체적인 광 모듈 전송장치의 렌즈 구조부를 고정시키는 과정이다.The first receiving coupling step S410 is a process of initializing the number of optical coupling attempts and the number of front and rear movements to zero, and a second receiving couple that proceeds after the first receiving coupling step S410. The ring step (S420) is a process of determining whether the receiver current output value matches the quality level, and the third receiving coupling proceeds when the receiver current output value does not match the quality level in the second receiving coupling step (S420). Step S430 is a process of determining whether the optical coupling attempt is 10th or less, and when the optical coupling attempt is 10th or less in the third receiving coupling step S430, S440 is a process of repeating movement to the left and right by applying a binary search algorithm and repeating about 10 times until the receiver current output value matches the quality level, and the fourth receiving coupling step (S440). ) The fifth receiving coupling step (S450) is a process of determining whether the receiver current output value matches the quality level, and proceeds when the receiver current output value matches the quality level in the fifth receiving coupling step (S450). In the sixth receiving coupling step (S460), after the optical fiber movement stops, the UV module 279a is irradiated to the optical module transmitter lens block 272 to cure the epoxy part of the transmitter lens block 272 and the optical cable 600. This is a process of fixing the lens structure of the overall optical module transmission device.
그리고 상기 제2수신커플링 단계(S420)에서 수신부 전류 출력 값이 품질 수준에 맞는 경우는 상기 제6수신커플링 단계(S460)로 이동된다.When the receiver current output value matches the quality level in the second receive coupling step S420, the flow moves to the sixth receive coupling step S460.
또한, 상기 제3수신커플링 단계(S430)에서 광 커플링 시도가 10번째 이하가 아닌 경우에는 제7수신커플링 단계(S470)인 전후 이동 시도가 세번째 이하인지를 판단하는 과정이 진행된다.In addition, when the optical coupling attempt is not the tenth or less in the third receiving coupling step (S430), the process of determining whether the forward and backward movement attempt in the seventh receiving coupling step (S470) is the third or less is performed.
상기 제7수신커플링 단계(S470)에서 전후 이동 시도가 세번째 이하인 경우에는 제8수신커플링 단계(S480)인 광커플링 시도 횟수 변수를 0(Zero)으로 변경하고 수신 모듈 지지부(290)를 자동으로 뒤로 후진했다가 다시 앞으로 전진하여 광 커플링 재시도 준비 완료시키는 과정이 진행되며 전후 이동 시도 횟수를 1회 증가시키고 제2단계(S200)로 이동된다.When the forward and backward movement attempt is the third or less in the seventh reception coupling step (S470), the optical coupling attempt number variable in the eighth reception coupling step (S480) is changed to 0 (Zero), and the receiving module support unit 290 is changed. The process of automatically moving backward and then moving forward again to complete the optical coupling retry preparation is performed, and the number of forward and backward movement attempts is increased by one time and moved to the second step S200.
상기 제7수신커플링 단계(S470)에서 전후 이동 시도가 세번째 이하가 아닌 경우에는 제9수신커플링 단계(S490)인 작업자 조치 과정이 진행되며, 이 과정에서 작업자는 자동으로 세 번까지 전후 이동을 했을 경우에는 불량 처리를 하고 다음 샘플로 정규 작업을 실시한다.When the forward and backward movement attempt is not the third or less in the seventh reception coupling step (S470), the worker action process of the ninth reception coupling step (S490) is performed, and the worker automatically moves back and forth up to three times. If it is, the defect is processed and regular work is performed with the next sample.
상기 제5수신커플링 단계(S450)에서 수신부 전류 출력 값이 품질 수준에 맞지 않은 경우에는 제10수신커플링 단계(S491)인 광 커플링 시도 횟수변수를 1회 증가하는 과정이 진행된 후 다시 제3수신커플링 단계(S430)로 진행된다.If the receiver current output value does not match the quality level in the fifth receiving coupling step (S450), a process of increasing the optical coupling attempt number variable, which is the tenth receiving coupling step (S491), is performed once and then again performed. Proceeds to three receiving coupling step (S430).
본 발명의 상기와 같은 작업을 통하여 종래의 수작업으로 진행되었던 광케이블(600)과 광 모듈 사이의 커플링 공정을 정확하고 신속하게 진행할 수 있어 생산성 향상과 비용 절감의 효과가 있다.Through the above-described operation of the present invention, the coupling process between the optical cable 600 and the optical module, which has been conventionally performed manually, can be performed accurately and quickly, thereby improving productivity and reducing costs.
도 14는 본 발명 중 전후 이동 구조의 변형례를 나타내는 개략 사시도이다.It is a schematic perspective view which shows the modification of front and rear movement structure in this invention.
본 발명에서 전후 이동 구조의 변형례로 모듈 지지부(290)를 전후로 이동시키는 구조를 생략하고, 광케이블 홀더부(230)의 하부에 오목부(231)가 형성되고, 상기 오목부(231)가 안착되는 홀더레일부(233)가 광케이블(600)의 길이 방향으로 형성되어 광케이블 홀더부(230)에 광케이블(600)이 고정된 상태로 홀더레일부(233)를 따라서 전후 이동하는 것도 가능하다.In the present invention, a structure for moving the module support part 290 forward and backward as a modification of the forward and backward movement structure is omitted, and a recess 231 is formed in the lower portion of the optical cable holder 230, and the recess 231 is seated. The holder rail portion 233 is formed in the longitudinal direction of the optical cable 600, it is also possible to move back and forth along the holder rail portion 233 in a state in which the optical cable 600 is fixed to the optical cable holder 230.
그리고 전후 이동 구조의 변형례에서는 상기 홀더레일부(233)의 선단이 광케이블 선단 안착부(250)에 고정되어 광케이블 선단 안착부(250)가 좌우로 미세하게 이동될 때 홀더레일부(233)도 같이 미세하게 이동되고, 이 상태에서 광케이블(600) 홀더부가 홀더레일부(233)를 따라서 전후 이동된다.In the modified example of the front and rear movement structure, the holder rail portion 233 is also fixed when the tip of the holder rail portion 233 is fixed to the optical cable tip seating portion 250 so that the optical cable tip seating portion 250 is slightly moved from side to side. Finely moved as described above, in this state, the holder portion of the optical cable 600 is moved back and forth along the holder rail portion 233.
한편, 도 15는 본 발명의 접착제 도포용 로봇팔을 추가적으로 형성한 것을 나타내는 개략 사시도이다.On the other hand, Figure 15 is a schematic perspective view showing that the robot arm for applying the adhesive of the present invention is further formed.
본 발명은 상기 에폭시 접착제(801)를 작업자가 수작업으로 송신부 렌즈 블록(272)의 주위나 광케이블(600)의 코어부분에 도포하지 않고, 링크 구조(1100)를 갖는 로봇팔(1000)을 제어부(400)에서 제어되도록 형성하고, 상기 로봇팔(1000)에 에폭시 접착제(801) 유출 튜브(1200) 및 센서부(1300)를 형성하여 자동으로 에폭시 접착제(801)를 도포할 수 있다.The present invention does not apply the epoxy adhesive 801 to the periphery of the transmitter lens block 272 or the core portion of the optical cable 600 by hand, the robot arm 1000 having a link structure 1100 to control the control unit ( It is formed to be controlled at 400, and the epoxy adhesive 801 can be automatically applied to the robot arm 1000 by forming the epoxy adhesive 801, the outflow tube 1200 and the sensor unit 1300.
이상과 같이 본 발명에 따른 실시예를 살펴보았으며, 앞서 설명된 실시예 이외에도 본 발명이 그 취지나 범주에서 벗어남이 없이 다른 특정 형태로 구체화 될 수 있다는 사실은 해당 기술에 통상의 지식을 가진 이들에게는 자명한 것이다. 그러므로, 상술된 실시예는 제한적인 것이 아니라 예시적인 것으로 여겨져야 하고, 이에 따라 본 발명은 상술한 설명에 한정되지 않고 첨부된 청구항의 범주 및 그 동등 범위 내에서 변경될 수도 있다.As described above, the embodiments of the present invention have been described, and the fact that the present invention can be embodied in other specific forms without departing from the spirit or scope of the present invention can be embodied by those skilled in the art. It is self-evident to. Therefore, the above-described embodiments should be regarded as illustrative rather than restrictive, and thus, the present invention is not limited to the above description and may be modified within the scope of the appended claims and their equivalents.
*** 도면 보호의 설명 ****** Description of drawing protection ***
100: 광 모듈 장치를 포함한 광케이블의 제조장치 110: 작업대100: manufacturing apparatus for optical cable including optical module device 110: working table
119b: 탄성부재 200: 송신용 광 모듈 제조부119b: elastic member 200: optical module manufacturing unit for transmission
230: 광케이블 홀더부 250: 광케이블 선단 안착부230: optical cable holder portion 250: optical cable tip seating portion
270: 광 모듈 플레이트 272: 렌즈 블록270: optical module plate 272: lens block
277: 렌즈 탄성 가압 부재 279: 유브이 램프부277: lens elastic pressing member 279: UV lamp portion
290: 모듈 지지부 292: 오목홀더부290: module support portion 292: concave holder portion
300: 수신용 광 모듈 제조부 310: 광 모듈 장치300: receiving optical module manufacturing unit 310: optical module device
380: 송신부 광 커플링용 수신 광량 측정 장치380: Receiving light amount measuring device for the optical coupling of the transmitter
382: 송신부 광 커플링용 수신 광량 감지 센서안착부382: Receiving light amount sensor for the optical coupling of the transmitter section
384: 송신부 광 커플링용 수신 광량 감지 센서384: Received light amount sensor for transmitter optical coupling
386: 송신부 광 커플링용 수신 광 케이블 홀더부386: receiving optical cable holder for transmitting optical coupling
400: 제어부 500: 디스플레이부400: control unit 500: display unit
600: 광케이블 601: 광 섬유 끝단600: optical cable 601: optical fiber end

Claims (18)

  1. 광케이블을 고정시키도록 형성되는 광케이블 홀더부와, An optical cable holder portion formed to fix the optical cable;
    상기 광케이블 홀더부에 고정된 광케이블 선단부가 안착되어 모터 구동부의 작동에 의해 좌우로 이동되도록 형성되는 광케이블 선단 안착부와, An optical cable tip seating portion fixed to the optical cable holder portion to be seated to move left and right by an operation of a motor driver;
    상기 광케이블 선단부의 광 섬유 끝단이 고정되는 렌즈 블록을 포함하는 광 모듈 장치가 고정될 수 있도록 형성된 모듈 지지부 및, A module support part formed to fix an optical module device including a lens block to which an optical fiber end of the optical cable tip part is fixed;
    상기 모터 구동부를 제어하는 제어부Control unit for controlling the motor driving unit
    를 포함하고, Including,
    상기 제어부는 모터 구동부를 제어하여 광 섬유 끝단이 렌즈 블록에서 좌우로 이동하도록 하는 것을 특징으로 하는 광 모듈 장치를 포함한 광케이블의 제조장치.The control unit controls the motor drive unit for manufacturing an optical cable including an optical module device, characterized in that the optical fiber end to move from side to side in the lens block.
  2. 청구항 1에 있어서, The method according to claim 1,
    상기 모듈 지지부에는 전후 구동부가 형성되어, 상기 전후 구동부에 의해 모듈 지지부가 광케이블 쪽으로 이동되는 것을 특징으로 하는 광 모듈 장치를 포함한 광케이블의 제조장치.A front and rear drive part is formed in the module support part, and the module support part is moved toward the optical cable by the front and rear drive part.
  3. 청구항 1에 있어서, The method according to claim 1,
    상기 광케이블 홀더부의 하부에 오목부가 형성되고, A recess is formed in the lower portion of the optical cable holder,
    상기 오목부에 안착되도록 광케이블의 길이 방향으로 형성되는 홀더레일부가 더 형성되며, The holder rail portion is further formed in the longitudinal direction of the optical cable to be seated in the recess,
    상기 홀더레일부가 광케이블 선단 안착부에 고정되어 광케이블 선단 안착부가 좌우로 이동될 때 홀더레일부도 좌우로 이동되고, When the holder rail portion is fixed to the optical cable tip seating portion and the optical cable tip seating portion is moved to the left and right, the holder rail portion is also moved to the left and right,
    광케이블 홀더부는 홀더레일부를 따라서 전후 이동되는 것을 특징으로 하는 광 모듈 장치를 포함한 광케이블의 제조장치.The optical cable holder portion is moved back and forth along the holder rail portion, manufacturing apparatus of an optical cable comprising an optical module device.
  4. 청구항 1에 있어서, The method according to claim 1,
    상기 렌즈 블록에 유브이 광을 조사하도록 형성되는 유브이 램프부가 더 형성되며, A yuv lamp unit is further formed on the lens block so that the yuv irradiates light.
    상기 유브이 램프부는 The UV lamp unit
    유브이 램프와, UV lamps,
    상기 유브이 램프를 지지하는 지지부재와, A support member for supporting the UV lamp,
    상기 지지부재의 하부에 형성된 오목부가 걸쳐지는 레일부 및 A rail portion in which a recess formed in a lower portion of the support member is spread;
    상기 지지부재가 레일부 상에서 이동되도록 형성되는 실린더부를 포함하는 것을 특징으로 하는 광 모듈 장치를 포함한 광케이블의 제조장치.Apparatus for manufacturing an optical cable including an optical module device, characterized in that it comprises a cylinder portion formed so that the support member is moved on the rail portion.
  5. 청구항 2에 있어서, The method according to claim 2,
    상기 전후 구동부는 The front and rear drive unit
    상기 모듈 지지부에 수직 방향으로 형성된 접촉부재와, A contact member formed in a direction perpendicular to the module support portion;
    상기 접촉부재가 접하는 원통부재가 상부에 형성되는 승하강 구동부가 포함되며, It includes a lifting and lowering driving unit formed in the upper cylindrical member in contact with the contact member,
    상기 승하강 구동부가 작동되면 원통부재가 상승하면서 원통부재와 접하는 접촉부재가 이동되고, 접촉부재가 고정되어 있는 모듈 지지부도 광케이블 쪽으로 이동되는 것을 특징으로 하는 광 모듈 장치를 포함한 광케이블의 제조장치.When the elevating drive unit is operated, the cylindrical member is raised while the contact member in contact with the cylindrical member is moved, the module support portion is fixed to the optical cable device, characterized in that the optical module device is moved to the optical cable.
  6. 청구항 1에 있어서, The method according to claim 1,
    상기 광 모듈 장치는 광 모듈 플레이트와, 광 모듈 플레이트의 상면에 고정되는 렌즈 블록을 포함하고, The optical module device includes an optical module plate and a lens block fixed to an upper surface of the optical module plate,
    상기 모듈 지지부에는 광 모듈 플레이트가 끼워지도록 형성된 오목홀더부가 형성되는 것을 특징으로 하는 광 모듈 장치를 포함한 광케이블의 제조장치.And a concave holder portion formed to insert the optical module plate in the module support portion.
  7. 청구항 1에 있어서, The method according to claim 1,
    상기 광 섬유 끝단의 광을 측정하도록 송신부 광 커플링용 수신 광량 측정 장치가 더 형성되고, A reception light quantity measuring device for transmitting optical coupling is further formed to measure light at the end of the optical fiber,
    상기 송신부 광 커플링용 수신 광량 측정 장치는 The reception light amount measuring device for the optical coupling of the transmitter
    송신부 광 커플링용 수신 광량 감지 센서와, Receiving light amount detection sensor for optical coupling of the transmitter,
    상기 송신부 광 커플링용 수신 광량 감지 센서가 안착되도록 형성되는 송신부 광 커플링용 수신 광량 감지 센서안착부를 포함하고, Receiving light amount receiving sensor for the transmitter light coupling is formed so as to receive the receiving light amount detection sensor for the optical coupling coupling unit,
    상기 송신부 광 커플링용 수신 광량 감지 센서는 광 섬유 끝단에 흐르는 광량을 측정하는 것을 특징으로 하는 광 모듈 장치를 포함한 광케이블의 제조장치.Receiving light amount detection sensor for the optical coupling unit for transmitting the optical cable manufacturing apparatus including an optical module device, characterized in that for measuring the amount of light flowing to the end of the optical fiber.
  8. 청구항 6에 있어서, The method according to claim 6,
    상기 광 모듈 플레이트로 흐르는 전류를 측정하도록 수신부 광 커플링용 수신 전류 측정 장치가 더 형성되고, A reception current measuring device for receiving optical coupling is further formed to measure a current flowing to the optical module plate,
    상기 수신부 광 커플링용 수신 전류 측정 장치는 Receiving current measuring device for the optical coupling of the receiver
    수신부 광 커플링용 수신 전류 측정 센서와, Receiving current measuring sensor for optical coupling of the receiver,
    상기 수신부 광 커플링용 수신 전류 측정 센서가 안착되도록 형성되는 수신부 광 커플링용 수신 전류 측정 센서안착부를 포함하고, Receiving unit optical coupling receiving current measuring sensor seating portion is formed to be seated to the receiving unit optical coupling includes;
    상기 수신부 광 커플링용 수신 전류 측정 센서는 광 모듈 플레이트로 흐르는 전류를 측정하는 것을 특징으로 하는 광 모듈 장치를 포함한 광케이블의 제조장치.The receiving current measuring sensor for optical coupling of the receiving unit is a manufacturing apparatus of an optical cable including an optical module device, characterized in that for measuring the current flowing to the optical module plate.
  9. 청구항 1에 있어서, The method according to claim 1,
    상기 렌즈 블록을 광 모듈 플레이트에 고정하기 위해 접착제를 도포하도록 로봇팔이 더 형성하고, The robot arm is further formed to apply an adhesive to fix the lens block to the optical module plate,
    상기 로봇팔에는 접착제 유출 튜브 및 센서부가 형성되어 접착제를 도포하는 것을 특징으로 하는 광 모듈 장치를 포함한 광케이블의 제조장치.The robot arm is provided with an adhesive outflow tube and a sensor unit is applied to the optical module device, characterized in that for applying an adhesive.
  10. 청구항 7에 있어서, The method according to claim 7,
    상기 렌즈 블록에 탄성적인 압력을 가하는 렌즈 탄성 가압 부재가 더 형성되며, A lens elastic pressing member for applying an elastic pressure to the lens block is further formed,
    상기 렌즈 탄성 가압 부재는 The lens elastic pressing member is
    상기 렌즈 블록의 상면에 접하도록 하방으로 뾰족하게 형성된 누름부와, A pressing part pointed downward to contact the upper surface of the lens block;
    상기 누름부를 지지하는 수평로드와, A horizontal rod supporting the pressing portion;
    상기 수평로드와 연결된 수직로드 및 A vertical rod connected with the horizontal rod and
    상기 수직로드가 내부에 인입되어 승하강하도록 형성된 실린더부재를 포함하는 것을 특징으로 하는 광 모듈 장치를 포함한 광케이블의 제조장치.Apparatus for manufacturing an optical cable including an optical module device, characterized in that it comprises a cylinder member formed so that the vertical rod is inserted into the vertical rod.
  11. 청구항 1 내지 10 중 어느 한 항의 광케이블의 제조장치를 이용한 광 모듈 장치를 포함한 광케이블의 제조방법에 있어서, In the optical cable manufacturing method including the optical module device using the optical cable manufacturing apparatus of any one of claims 1 to 10,
    상기 광 모듈 장치를 모듈 지지부의 오목홀더부에 인입하는 송신부 광 모듈 장치와 수신부 광 모듈 장치 안착 과정인 제1단계와, A first step of seating the optical module device into the concave holder of the module support part;
    상기 제1단계를 거친 후에 광케이블을 광케이블 홀더부에 고정하고, 상기 광케이블 선단부를 광케이블 선단 안착부에 안착시키며, 상기 광 섬유 끝단이 렌즈 블록의 내측으로 인입되는 광케이블 안착 과정인 제2단계와, A second step of fixing the optical cable to the optical cable holder after the first step, and mounting the optical cable tip to the optical cable tip seating part, and an optical cable seating process in which the optical fiber end is introduced into the lens block;
    상기 제2단계를 거친 후에 송신부에서 광 섬유 끝단이 렌즈 블록의 내측으로 위치 조절되는 송신부 광 커플링 작업 과정인 제3단계 및, A third step of a transmission part optical coupling process of adjusting the position of the optical fiber end in the lens block after the second step, and
    상기 제3단계를 거친 후에 수신부에서 광 섬유 끝단이 렌즈 블록의 내측으로 위치 조절되는 수신부 광 커플링 작업 과정인 제4단계를 포함하는 것을 특징으로 하는 광케이블의 제조장치를 이용한 광 모듈 장치를 포함한 광케이블의 제조방법.An optical cable including an optical module device using the apparatus for manufacturing an optical cable, comprising a fourth step of performing an optical coupling operation of the receiving unit in which the optical fiber end is positioned inside the lens block after the third step. Manufacturing method.
  12. 청구항 11에 있어서, The method according to claim 11,
    상기 제1단계인 송신부 광 모듈 장치와 수신부 광 모듈 장치 안착 과정은 The first step of mounting the transmitter optical module device and the receiver optical module device is
    상기 송신부 광 모듈 장치를 송신부 모듈 지지부의 송신부 오목홀더부에 인입하고, The transmitter optical module device is led into the transmitter recessed holder of the transmitter module support;
    상기 수신부 광 모듈 장치를 수신부 모듈 지지부의 수신부 오목홀더부에 인입하는 과정과, Introducing the receiver optical module device into the receiver recessed holder of the receiver module support;
    상기 송신부 광 모듈 장치의 송신부 렌즈 블록의 둘레에 접착제가 도포되고, 렌즈 블록의 상방으로 유브이 램프가 이동되어 유브이 광을 비추어 경화시키며, Adhesive is applied around the transmitter lens block of the transmitter optical module device, the UV lamp is moved above the lens block to shine the UV light to cure,
    상기 수신부 광 모듈 장치의 수신부 렌즈 블록의 둘레에 접착제가 도포되고, 렌즈 블록의 상방으로 유브이 램프가 이동되어 유브이 광을 비추어 경화시키는 과정을 포함하는 것을 특징으로 하는 광케이블의 제조장치를 이용한 광 모듈 장치를 포함한 광케이블의 제조방법.Adhesive is applied around the receiver lens block of the receiver optical module device, and the UV lamp is moved above the lens block to shine the UV light to cure the optical module device using the manufacturing apparatus of the optical cable Method of manufacturing an optical cable comprising a.
  13. 청구항 11에 있어서, The method according to claim 11,
    상기 제2단계인 광케이블 안착 과정은 The second step of the optical cable seating process
    상기 광케이블의 송신부분을 송신부 광케이블 홀더부에 고정하고, 수신부분을 수신부 광케이블 홀더부에 고정하는 과정과, Fixing the transmitting part of the optical cable to the transmitting part optical cable holder, and fixing the receiving part to the receiving optical fiber holder;
    상기 광케이블의 광 섬유 끝단에 접착제를 도포하고, 상기 광케이블 송신부분의 선단부를 송신용 광케이블 선단 안착부에 안착시키는 과정과, Applying an adhesive to an optical fiber end of the optical cable, and placing the front end of the optical cable transmission part on a transmission end of the optical cable;
    상기 송신 광 섬유 끝단이 송신부 렌즈 블록의 내측으로 인입되는 과정을 포함하는 것을 특징으로 하는 광케이블의 제조장치를 이용한 광 모듈 장치를 포함한 광케이블의 제조방법.The optical fiber manufacturing method including an optical module device using the manufacturing apparatus of the optical cable, characterized in that it comprises the step of the optical fiber end is introduced into the inside of the transmitter lens block.
  14. 청구항 11에 있어서, The method according to claim 11,
    상기 제3단계인 송신부 광 커플링 작업 과정은 The third step of the optical coupling operation of the transmitter is
    상기 광케이블 수신부분의 광 섬유 끝단이 송신부 광 커플링용 수신 광량 측정 장치 내의 송신부 광 커플링용 수신 광량 감지 센서에 접촉되고, An optical fiber end of the optical cable receiving portion is in contact with a receiving light quantity detecting sensor for transmitting optical coupling in the receiving light quantity measuring apparatus for transmitting optical coupling;
    상기 제어부는 송신부 광 커플링을 위해서 송신부 광케이블 선단 안착부를 좌우로 이동시켜 광케이블의 광 섬유 끝단이 송신부 렌즈 블록 내부에서 좌우로 이동되도록 하고, 모듈 지지부 또는 광케이블 홀더부를 전후로 이동시키면서 송신 광 섬유 끝단 또는 송신부 렌즈 블록을 전후로 이동시키는 과정을 포함하는 것을 특징으로 하는 광케이블의 제조장치를 이용한 광 모듈 장치를 포함한 광케이블의 제조방법.The control unit moves the optical fiber end portion of the optical fiber end to the left and right for transmitting optical coupling, so that the optical fiber end of the optical cable is moved left and right within the lens block of the transmission, while moving the module support or the optical cable holder back and forth, A method of manufacturing an optical cable including an optical module device using an apparatus for manufacturing an optical cable, comprising moving the lens block back and forth.
  15. 청구항 14에 있어서, The method according to claim 14,
    상기 제3단계인 송신부 광 커플링 작업 과정은 The third step of the optical coupling operation of the transmitter is
    상기 제어부가 송신부 광 모듈 플레이트로 전기 신호를 보내고, 전기신호가 빛의 신호로 전환되어 광케이블 광 섬유 끝단으로 진행되며 광 출력을 발생시키고, The control unit sends an electrical signal to the transmitter optical module plate, the electrical signal is converted into a signal of the light proceeds to the end of the optical cable optical fiber to generate an optical output,
    상기 광 출력은 광케이블 광 섬유 끝단에서 광케이블을 통하여 수신부 광케이블 코어부분으로 전달되고, 송신부 광 커플링용 수신 광량 측정 장치의 송신부 광 커플링용 수신 광량 감지 센서에서 감지하여 제어부에 전달하는 과정을 더 포함하는 것을 특징으로 하는 광케이블의 제조장치를 이용한 광 모듈 장치를 포함한 광케이블의 제조방법.The optical output is transmitted from the end of the optical fiber to the optical fiber core portion of the receiving unit through the optical cable, and further comprising the step of detecting by the receiving light quantity sensor for the optical coupling of the transmitting unit of the receiving optical quantity measuring device for transmitting optical coupling to the control unit An optical cable manufacturing method comprising an optical module device using an optical cable manufacturing apparatus.
  16. 청구항 15에 있어서, The method according to claim 15,
    상기 제3단계인 송신부 광 커플링 작업 과정은 The third step of the optical coupling operation of the transmitter is
    광 섬유 끝단의 좌우측 이동을 반복하면서 수신부 광 케이블 코어 부분의 광 출력 값이 품질 수준에 맞는 값이 나올 때까지 반복하는 과정과, Repeating the left and right movement of the end of the optical fiber until the light output value of the optical fiber core of the receiver is a value corresponding to the quality level;
    상기 수신부 광 케이블 코어 부분의 광 출력 값이 품질 수준에 맞는 경우에 광케이블 이동 정지 후, 광 모듈 송신부 렌즈 블록에 유브이 램프를 조사시켜 렌즈 블록과 광케이블의 접착제 부분을 경화시켜 광 모듈 전송장치의 렌즈 구조부를 고정시키는 과정을 포함하는 것을 특징으로 하는 광케이블의 제조장치를 이용한 광 모듈 장치를 포함한 광케이블의 제조방법.After the optical cable stops moving when the optical output value of the optical fiber core portion of the receiving unit is equal to the quality level, the UV module is irradiated to the optical module transmission unit lens block to cure the adhesive portion of the lens block and the optical cable to harden the lens structure of the optical module transmitter. Method for manufacturing an optical cable, including an optical module device using an apparatus for manufacturing an optical cable, characterized in that it comprises a step of fixing the.
  17. 청구항 11에 있어서, The method according to claim 11,
    상기 제4단계인 수신부 광 커플링 작업 과정은 In the fourth step, the optical coupling operation of the receiver is
    광케이블의 수신 광 섬유 끝단이 송신부 광 커플링용 수신 광량 감지 센서에 접촉된 상태로부터 분리된 후, After the receiving optical fiber end of the optical cable is separated from the contact with the receiving light quantity detecting sensor for transmitting optical coupling,
    수신 광 섬유 끝단에 접착제가 도포되고, 광케이블의 수신부분이 수신 광케이블 선단 안착부에 안착되며, Adhesive is applied to the end of the receiving optical fiber, the receiving portion of the optical cable is seated on the receiving portion of the receiving optical cable end,
    광케이블의 수신 광 섬유 끝단이 수신 광 모듈 플레이트의 상면에 위치된 렌즈 블록의 내부 공간에 인입되고, The receiving optical fiber end of the optical cable is introduced into the inner space of the lens block located on the upper surface of the receiving optical module plate,
    제어부는 송신부 광 모듈 플레이트를 통하여 전기 신호를 전달하고, 상기 전기 신호는 송신 광케이블을 통하여 광으로 수신부 광 섬유 끝단의 코어 부분으로 전달되고, 수신부 광 섬유 끝단의 코어 부분으로 전달된 광은 수신 렌즈 블록을 통하여 수신 광 모듈 플레이트에 전기 신호로 전달되는 과정을 포함하는 것을 특징으로 하는 광케이블의 제조장치를 이용한 광 모듈 장치를 포함한 광케이블의 제조방법.The control unit transmits an electrical signal through the transmitter optical module plate, and the electrical signal is transmitted to the core portion of the receiver optical fiber end through the transmission optical cable and the light transmitted to the core portion of the receiver optical fiber end is received. Method of manufacturing an optical cable, including an optical module device using the manufacturing apparatus of the optical cable, characterized in that it comprises the step of transmitting the electrical signal to the receiving optical module plate through.
  18. 청구항 17에 있어서, The method according to claim 17,
    상기 제4단계인 수신부 광 커플링 작업 과정은 In the fourth step, the optical coupling operation of the receiver is
    광 섬유 끝단이 좌우측으로 이동을 반복하면서 수신부 전류 출력 값이 품질 수준에 맞는지를 판단하는 과정과, Determining whether the current output value of the receiver corresponds to the quality level while repeating movement of the optical fiber end to the left and right;
    상기 수신부 전류 출력 값이 품질 수준에 맞는 경우에 광섬유 이동 정지 후, 광 모듈 송신부 렌즈 블록에 유브이 램프를 조사시켜 렌즈 블록과 광케이블의 접착제 부분을 경화시키는 과정을 포함하는 것을 특징으로 하는 광케이블의 제조장치를 이용한 광 모듈 장치를 포함한 광케이블의 제조방법.And irradiating a UV lamp to the lens module of the optical module transmission unit when the current output value of the receiver is equal to the quality level, thereby curing the adhesive portion of the lens block and the optical cable. Method for manufacturing an optical cable including an optical module device using.
PCT/KR2017/008314 2016-09-28 2017-08-01 Apparatus for manufacturing optical cable comprising optical module device, and method for manufacturing optical cable, comprising optical module device, by using same WO2018062675A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0124828 2016-09-28
KR1020160124828A KR101761860B1 (en) 2016-09-28 2016-09-28 Manufacturing apparatus of optical cable with optical module device and optical cable manufacturing method using it

Publications (1)

Publication Number Publication Date
WO2018062675A1 true WO2018062675A1 (en) 2018-04-05

Family

ID=59427251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/008314 WO2018062675A1 (en) 2016-09-28 2017-08-01 Apparatus for manufacturing optical cable comprising optical module device, and method for manufacturing optical cable, comprising optical module device, by using same

Country Status (2)

Country Link
KR (1) KR101761860B1 (en)
WO (1) WO2018062675A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101865556B1 (en) * 2017-09-22 2018-06-08 주식회사 유나이브 An integrated or detachable device and a method for manufacturing an optical cable

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100071309A (en) * 2008-12-19 2010-06-29 (주)씨티에스 Optical transmitter, optical receiver, and otical transmitting receiving system
JP4659629B2 (en) * 2006-02-02 2011-03-30 富士通株式会社 Optical component manufacturing apparatus and method, and lens assembling apparatus for optical component
KR20110035772A (en) * 2009-09-30 2011-04-06 유나이브 인코포레이티드 Optical transmitter and optical receiver and optical transmission system
KR20120029673A (en) * 2010-09-17 2012-03-27 주식회사 유나이브 Optical transmitter, optical receiver for passive alignment of parts and method for passive alignment of parts
KR101502318B1 (en) * 2013-11-28 2015-03-13 (주)옵토마인드 Optical Element Alignment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4659629B2 (en) * 2006-02-02 2011-03-30 富士通株式会社 Optical component manufacturing apparatus and method, and lens assembling apparatus for optical component
KR20100071309A (en) * 2008-12-19 2010-06-29 (주)씨티에스 Optical transmitter, optical receiver, and otical transmitting receiving system
KR20110035772A (en) * 2009-09-30 2011-04-06 유나이브 인코포레이티드 Optical transmitter and optical receiver and optical transmission system
KR20120029673A (en) * 2010-09-17 2012-03-27 주식회사 유나이브 Optical transmitter, optical receiver for passive alignment of parts and method for passive alignment of parts
KR101502318B1 (en) * 2013-11-28 2015-03-13 (주)옵토마인드 Optical Element Alignment

Also Published As

Publication number Publication date
KR101761860B1 (en) 2017-07-26

Similar Documents

Publication Publication Date Title
WO2017039171A1 (en) Laser processing device and laser processing method
WO2018038334A1 (en) Tilting stage system
WO2015083858A1 (en) Display panel inspection device for inspecting amoled panel, and method therefor
EP2853109A1 (en) Method for detecting cause of radio link failure or handover failure
WO2018062675A1 (en) Apparatus for manufacturing optical cable comprising optical module device, and method for manufacturing optical cable, comprising optical module device, by using same
WO2014148857A1 (en) Device and method for transferring substrate and substrate-transferring tray
WO2020204377A1 (en) Contact monitoring device for vacuum circuit breaker and vacuum circuit breaker comprising same
WO2019182247A1 (en) Display apparatus and control method for display apparatus
WO2015156431A1 (en) Multiwavelength optical sub-assembly module
WO2018043869A1 (en) Shaping process monitoring apparatus of three-dimensional printer and three-dimensional printer comprising same
WO2019177337A1 (en) Transfer apparatus and method for transferring light-emitting diode chip
WO2017095071A1 (en) Camera module inspection device
WO2018093219A1 (en) Camera module
WO2020004872A1 (en) Optical connector
WO2014109540A1 (en) Sensor module and method for operating the same
WO2012026677A2 (en) Apparatus and method for manufacturing a swing-ring plate
WO2024043403A1 (en) Semiconductor wafer defect inspection device and defect inspection method
WO2012161369A1 (en) Device and method for measuring noise of hard disk drive
WO2020171328A1 (en) Contact point monitoring device for vacuum circuit breaker, and vacuum circuit breaker comprising same
WO2018026075A1 (en) Polishing measurement device and abrasion time controlling method thereof, and polishing control system including same
WO2021242015A1 (en) Substrate processing system and method for inspecting substrate processing system
JP2020201086A (en) Inspection device of led-mounted substrate
WO2017007065A1 (en) Autoclave device capable of removing bubbles in multiple stages
WO2020153741A1 (en) Jig for test device, test device, test set, and object testing method using same
WO2023008637A1 (en) Round-battery inspection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17856561

Country of ref document: EP

Kind code of ref document: A1