WO2018062619A1 - Sulfur dioxide-based redox flow secondary battery and electrolyte solution included therein - Google Patents

Sulfur dioxide-based redox flow secondary battery and electrolyte solution included therein Download PDF

Info

Publication number
WO2018062619A1
WO2018062619A1 PCT/KR2016/013767 KR2016013767W WO2018062619A1 WO 2018062619 A1 WO2018062619 A1 WO 2018062619A1 KR 2016013767 W KR2016013767 W KR 2016013767W WO 2018062619 A1 WO2018062619 A1 WO 2018062619A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
secondary battery
redox flow
flow secondary
sulfur dioxide
Prior art date
Application number
PCT/KR2016/013767
Other languages
French (fr)
Korean (ko)
Inventor
김영권
정구진
유지상
Original Assignee
전자부품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전자부품연구원 filed Critical 전자부품연구원
Publication of WO2018062619A1 publication Critical patent/WO2018062619A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/002Inorganic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a redox flow secondary battery, and more particularly to a sulfur dioxide-based redox flow secondary battery including a sulfur dioxide-based inorganic electrolyte.
  • a positive electrode and a negative electrode active material are dissolved in an electrolyte solution, the active material undergoes oxidation and reduction reactions on the surface of the positive electrode and the negative electrode, and ions are designed to move through the separator.
  • Redox flow secondary batteries using the V / V redox couple and the Zn / Br redox couple are widely used, but have disadvantages of low cell voltage and low energy density.
  • the development of redox couple using an organic solvent to implement a high voltage but there is a flammability problem of the electrolyte by using an organic solvent.
  • the role of a separator capable of transferring ions and suppressing efficiency due to self-discharge is very important, and since anolyte and catholyte must be separated, a system employing two electrolyte reservoirs has been applied. Accordingly, the conventional redox flow secondary battery has a problem that it is difficult to reduce the volume as desired, and the design is complicated.
  • an object of the present invention is to provide a redox flow secondary battery capable of designing a battery using a sulfur dioxide inorganic liquid electrolyte capable of high voltage implementation and non-flammable lithium (or sodium) and a specified capacity and output form It is to provide an electrolyte solution included therein.
  • an object of the present invention and redox flow secondary battery comprising two electrolyte additives to improve the capacity reduction due to the limitation of the electrode surface due to the precipitation of NaCl, the discharge product of lithium (or sodium) sulfur dioxide secondary battery and It is to provide an electrolyte solution included.
  • Redox flow secondary battery of the present invention for achieving the above object is a stack in which the electrolyte is injected, a positive electrode and a negative electrode disposed in the stack, an electrolyte storage tank for storing the electrolyte and replacing the electrolyte injected into the stack, And a pump used to inject the electrolyte stored in the electrolyte reservoir into the stack, wherein the electrolyte comprises an inorganic liquid electrolyte composed of sulfur dioxide and lithium salt or sodium salt.
  • the electrolyte solution is characterized in that the molar ratio SO 2 content NaAlCl 4 compared to the 0.5 to 10.
  • the electrolyte is characterized in that the SO 2 molar ratio content of NaAlCl 4 is 1.5 ⁇ 3.0.
  • the electrolytic solution is characterized in that the nitro compound or aluminum chloride salt is added 0.1 to 5 times by weight ratio to the inorganic liquid electrolyte.
  • the electrolyte solution is characterized in that two or more salts are added to the inorganic liquid electrolyte.
  • the positive electrode is characterized in that the carbon material.
  • the negative electrode is made of at least one of lithium or sodium metal, an alloy containing lithium or sodium, an intermetallic compound containing lithium or sodium, and an inorganic material containing lithium or sodium.
  • Electrolyte solution included in the redox flow secondary battery of the present invention is characterized in that it comprises an inorganic liquid electrolyte, two or more salts added by 0.1 to 5 times by weight to the inorganic liquid electrolyte.
  • the two or more salts are characterized by comprising nitro compound and aluminum chloride salts.
  • the redox flow secondary battery of the present invention may have a relatively simple configuration, have a nonflammability at a high voltage, and may provide a high power capacity.
  • FIG. 1 is a view schematically showing a redox flow secondary battery configuration according to an embodiment of the present invention
  • FIG. 2 is a view showing an SEM image before and after the discharge of the surface of the lithium sulfur dioxide secondary battery positive electrode according to an embodiment of the present invention
  • FIG. 3 is a view showing the stability test results of the non-aqueous solvent according to an embodiment of the present invention
  • FIG. 5 is a view showing an example of a beaker cell for comparing redox flow secondary battery characteristics according to an embodiment of the present invention
  • Example 6 is a view showing discharge capacities for Comparative Example 1, Example 1, and Example 2 mentioned in Table 1 according to an embodiment of the present invention.
  • FIG. 1 is a view schematically showing the configuration of a redox flow secondary battery according to an embodiment of the present invention.
  • the redox flow secondary battery 100 of the present invention may include a stack 110, an electrolyte reservoir 120, and a pump 130.
  • the redox flow secondary battery 100 is a first connection connecting the electrolyte reservoir 120 and the stack 110, a second connection passage connecting the electrolyte reservoir 120 and the pump 130.
  • the pump 130 may further include at least one of a third connection path connecting the stack 110.
  • the redox flow secondary battery 100 may further include electrode portions respectively connected to the positive electrode and the negative electrode disposed in the stack 110. At least some of the electrode portions may be disposed to be exposed to the outside of the stack 110.
  • the redox flow secondary battery 100 of the present invention described above uses a carbon material as a cathode and a cathode including lithium or sodium and a metal or an inorganic material including the same and without a separator. It is a hybrid type that can use a reservoir, and a structure including an inorganic electrolyte containing two kinds of additives can be adopted.
  • the stack 110 may be provided in various forms according to the shape of the product to be applied or the location of the product. According to one embodiment, the stack 110 may be provided in the form of a rectangular box. However, the present invention is not limited thereto, and the stack 110 may be variously modified according to the shape of the position to be disposed.
  • the stack 110 may include a negative electrode 111, a positive electrode 112, and an electrolyte 113.
  • the redox flow secondary battery 100 of the present invention may have a form in which no separator exists between the negative electrode 111 and the positive electrode 112.
  • the positive electrode 112 may be made of a porous carbon material.
  • the positive electrode 112 has LiAlCl 4 -xSO 2 depending on the type of electrolyte filled in the stack 110. Or a place where the redox reaction of NaAlCl 4 -xSO 2 takes place.
  • the positive electrode 112 may be fabricated using 10% PTFE binder in Ketjenblack 600JD.
  • the cathode 112 may include 0 to 20 at% of one or more heteroatoms in the carbon material, and the heteroelements include nitrogen (N), oxygen (O), boron (B), and fluorine ( F), phosphorus (P), sulfur (S), and silicon (Si).
  • the negative electrode 111 may be provided using a lithium metal sheet.
  • the negative electrode 111 may be formed of at least one of an alloy containing lithium, an intermetallic compound containing lithium, or an inorganic material containing lithium.
  • the inorganic material may include at least one of carbon, oxides, sulfides, phosphides, nitrides, and fluorides.
  • the electrolyte 113 may include a sulfur dioxide-based metal compound.
  • a sulfur dioxide-based metal compound for example, Li (or Na) AlCl 4 -xSO 2 may be used as the electrolyte 113.
  • the electrolyte 113 may be stored in the electrolyte reservoir 120 and supplied to the stack 110 by the pump 130.
  • the electrolyte reservoir 120 may be a reservoir for storing the electrolyte 113.
  • the electrolyte storage tank 120 of the present invention may supply the stored electrolyte solution 113 to the stack 110 according to the operation of the pump 130.
  • the pump 130 may perform a pumping operation in response to the control of the controller.
  • the amount of the electrolyte 113 supplied to the stack 110 varies according to the pumping operation of the pump 130.
  • the pumping operation control of the pump 130 may vary depending on the amount of power supplied to the load.
  • the pump 130 of the present invention may include one pump by using one electrolyte reservoir 120.
  • the redox flow secondary battery 100 of the present invention may be connected to a controller that performs the pumping speed control of the pump 130, and may also be connected to a load for supplying power generated from the redox flow secondary battery 100. have.
  • heat may be generated in the process of moving the electrolyte 113 stored in the electrolyte storage tank 120 to the stack 110 to generate power, and this heat increases the temperature of the electrolyte storage tank 120.
  • the redox flow secondary battery 100 may further include a cooling system for generating heat generated in the process of power generation and provision.
  • the cooling system detects the temperature of the electrolyte reservoir 120 and cools the electrolyte reservoir 120 to have a predefined temperature.
  • the cooling system may include a sensor for detecting the temperature of the electrolyte reservoir 120, and may perform cooling control of the electrolyte reservoir 120 based on the sensor signal collected by the sensor.
  • the redox flow secondary battery 100 of the present invention applies a sulfur dioxide-based lithium-based inorganic liquid electrolyte as an ion conductor and an active material, and a redox flow secondary battery to which one electrolyte storage tank 120 without a separator is applied. to be.
  • a redox flow secondary battery 100 is simpler than a conventional redox flow secondary battery and can freely design a capacity and output of a sulfur dioxide-based lithium secondary battery, thereby providing a high voltage and nonflammable redox flow secondary battery.
  • the lithium (or sodium) sulfur dioxide redox flow secondary battery has a merit that high voltage can be realized and safety can be secured by using a nonflammable liquid electrolyte.
  • the redox flow secondary battery 100 of the present invention may solve the capacity limitation problem due to the discharge product by removing the discharge product using two electrolyte additives.
  • FIG. 2 is a view showing SEM images before and after discharging the surface of a lithium sulfur secondary battery positive electrode; FIG. As shown, LiCl crystals are not formed on the surface of the positive electrode before the discharge 201, it can be clearly observed that the LiCl crystals formed on the surface of the positive electrode after the discharge (203).
  • an additive for removing the discharge product in addition to the electrolyte solution 113 may further comprise a solvent.
  • FIG. 3 is a view showing the stability test results of the non-aqueous solvent according to an embodiment of the present invention.
  • nitro compound 303 may be used as non-aqueous solvents capable of dissolving LiCl.
  • one of the nitro compounds in the initial electrolyte and stability test may be used. Only nitrobenzene 303 has shown stable results with the electrolyte solution.
  • the redox flow secondary battery 100 of the present invention uses a co-additive electrolyte additive capable of dissolving LiCl (or NaCl) in a large amount.
  • LiCl (or NaCl) solubility evaluation was performed by adding a new salt to the nitro compound of the SO 2 electrolyte.
  • FIG. 4 is a view showing the degree of dissolution according to the electrolyte solution containing an additive according to an embodiment of the present invention.
  • state 403 is a state dissolved 0.5M LiCl 2 jong salt (nitro-compounds and chlorinated aluminum salt) in the electrolyte SO 2 It is shown.
  • a salt nitrogen-compounds and aluminum chloride
  • a certain molar ratio as illustrated redox flow secondary Discharge products generated on the surface of the positive electrode during discharging of the battery may be dissolved to refresh the surface of the electrode.
  • Nitro compound or aluminum chloride salt may be added to the SO 2 electrolyte in an inorganic liquid electrolyte by 0.1 to 5 times by weight.
  • FIG. 5 is a view showing an example of a beaker cell for comparing the characteristics of the redox flow secondary battery according to an embodiment of the present invention.
  • the beaker cell may include a beaker 501, an electrolyte 113, a negative electrode 111, a positive electrode 112, and a load.
  • the electrolyte 113 may be either LiAlCl 4 -xSO 2 or NaAlCl 4 -xSO 2 .
  • the positive electrode 112 may be made of a carbon material, and the negative electrode 111 may be a lithium-based metal sheet.
  • the sulfur dioxide-based inorganic liquid electrolyte used as an electrolyte and a positive electrode active material is composed of LiAlCl 4 (solute) and SO 2 (solvent), and the content molar ratio of SO 2 to LiAlCl 4 corresponds to 0.5 to 10, preferably 1.5. Corresponds to ⁇ 3.
  • Example 6 is a view showing discharge capacities for Comparative Example 1, Example 1, and Example 2 mentioned in Table 1 according to an embodiment of the present invention.

Abstract

The present invention relates to a sulfur dioxide-based redox flow secondary battery, the disclosed sulfur dioxide-based redox flow secondary battery comprising: a stack having an electrolyte solution injected therein; a cathode and an anode disposed in the stack; an electrolyte solution storage tank for storing the electrolyte solution and changing the electrolyte solution injected in the stack; and a pump used for injecting the electrolyte solution stored in the electrolyte solution storage tank into the stack, wherein the electrolyte solution comprises an inorganic liquid electrolyte comprising sulfur dioxide and a lithium salt or a sodium salt.

Description

이산화황계 레독스 흐름 이차 전지 및 이에 포함되는 전해액Sulfur dioxide-based redox flow secondary battery and electrolyte contained therein
본 발명은 레독스 흐름 이차 전지에 관한 것으로, 더욱 상세하게는 이산화황 기반 무기 전해질을 포함한 이산화황계 레독스 흐름 이차 전지에 관한 것이다.The present invention relates to a redox flow secondary battery, and more particularly to a sulfur dioxide-based redox flow secondary battery including a sulfur dioxide-based inorganic electrolyte.
최근 온실 가스 방출에 대한 관심이 높아지고 있다. 이에 온실 가스 방출을 줄이면서 안정적인 전기 에너지 공급이 가능한 해결 방안이 요구되고 있다. 상술한 방안에 대한 해결책으로, 신재생 에너지와 스마트 그리드가 융합된 대용량 에너지 저장 시스템이 제안되고 있다. 상술한 대용량 에너지 저장 시스템 중에서 레독스 흐름 이차 전지는 실현 가능성이 가장 높은 기술 중 하나이다. There is a growing interest in greenhouse gas emissions in recent years. Accordingly, there is a need for a solution that can provide stable electric energy while reducing greenhouse gas emissions. As a solution to the above-described method, a large-capacity energy storage system in which renewable energy and a smart grid are fused has been proposed. Among the above-described large-capacity energy storage systems, the redox flow secondary battery is one of the most feasible technologies.
종래의 레독스 흐름 이차 전지는 정극 및 부극 활물질이 전해액에 용해되어 있고, 활물질이 정극 및 부극 전극 표면에서 산화 및 환원 반응을 하며, 이온들은 분리막을 통해 이동하는 형태로 설계되었다. V/V redox couple, Zn/Br redox couple을 적용한 레독스 흐름 이차 전지가 널리 이용되고 있지만, 셀 전압이 낮고 에너지밀도가 낮은 단점이 있다. 이에, 고전압 구현을 위해 유기용매를 이용한 redox couple 개발이 진행되고 있으나 유기용매를 사용함으로써 전해액의 가연성 문제가 존재한다. In the conventional redox flow secondary battery, a positive electrode and a negative electrode active material are dissolved in an electrolyte solution, the active material undergoes oxidation and reduction reactions on the surface of the positive electrode and the negative electrode, and ions are designed to move through the separator. Redox flow secondary batteries using the V / V redox couple and the Zn / Br redox couple are widely used, but have disadvantages of low cell voltage and low energy density. Thus, the development of redox couple using an organic solvent to implement a high voltage, but there is a flammability problem of the electrolyte by using an organic solvent.
기존의 레독스 흐름 이차 전지에서는 자가 방전에 의한 효율 저하를 억제하고 이온이 전달 가능한 분리막의 역할이 매우 중요하며, anolyte와 catholyte가 분리되어 있어야 하므로 2개의 전해액 저장조가 채택된 시스템이 적용되고 있다. 이에 따라, 종래 레독스 흐름 이차 전지는 부피를 원하는 만큼 축소하기가 어렵고, 설계가 복잡한 문제가 있었다.In the existing redox flow secondary battery, the role of a separator capable of transferring ions and suppressing efficiency due to self-discharge is very important, and since anolyte and catholyte must be separated, a system employing two electrolyte reservoirs has been applied. Accordingly, the conventional redox flow secondary battery has a problem that it is difficult to reduce the volume as desired, and the design is complicated.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
한국등록특허 제10-1335431호(2013.11.22.)Korea Patent Registration No. 10-1335431 (2013.11.22.)
이에 따라, 본 발명의 목적은 고전압 구현이 가능하고 불연성인 리튬(또는 나트륨)을 기반으로 하는 이산화황 무기액체전해질을 사용하는 전지를 지정된 형태의 용량 및 출력 형태로 설계가 가능한 레독스 흐름 이차 전지 및 이에 포함되는 전해액을 제공하는데 있다.Accordingly, an object of the present invention is to provide a redox flow secondary battery capable of designing a battery using a sulfur dioxide inorganic liquid electrolyte capable of high voltage implementation and non-flammable lithium (or sodium) and a specified capacity and output form It is to provide an electrolyte solution included therein.
또한, 본 발명의 목적은 리튬(또는 나트륨) 이산화황 이차 전지의 방전산물인 NaCl 석출로 인한 전극 표면의 제한으로 인한 용량 감소를 개선하기 위하여 2종의 전해질 첨가제를 포함하는 레독스 흐름 이차 전지 및 이에 포함되는 전해액을 제공하는데 있다.In addition, an object of the present invention and redox flow secondary battery comprising two electrolyte additives to improve the capacity reduction due to the limitation of the electrode surface due to the precipitation of NaCl, the discharge product of lithium (or sodium) sulfur dioxide secondary battery and It is to provide an electrolyte solution included.
상술한 바와 같은 목적을 달성하기 위한 본 발명의 레독스 흐름 이차 전지는 전해액이 주입된 스택, 상기 스택 내에 배치된 정극 및 부극, 전해액을 저장하고 상기 스택에 주입된 전해액을 교체하는 전해액 저장조, 상기 전해액 저장조에 저장된 전해액을 상기 스택에 주입하는데 이용되는 펌프를 포함하고, 상기 전해액은 이산화황과 리튬염 또는 나트륨염으로 구성된 무기 액체 전해질을 포함하는 것을 특징으로 한다.Redox flow secondary battery of the present invention for achieving the above object is a stack in which the electrolyte is injected, a positive electrode and a negative electrode disposed in the stack, an electrolyte storage tank for storing the electrolyte and replacing the electrolyte injected into the stack, And a pump used to inject the electrolyte stored in the electrolyte reservoir into the stack, wherein the electrolyte comprises an inorganic liquid electrolyte composed of sulfur dioxide and lithium salt or sodium salt.
상기 전해액은 NaAlCl4 대비 SO2 몰비 함량이 0.5~10인 것을 특징으로 한다.The electrolyte solution is characterized in that the molar ratio SO 2 content NaAlCl 4 compared to the 0.5 to 10.
상기 전해액은 NaAlCl4 대비 SO2 몰비 함량이 1.5~3.0인 것을 특징으로 한다.The electrolyte is characterized in that the SO 2 molar ratio content of NaAlCl 4 is 1.5 ~ 3.0.
상기 전해액은 무기 액체 전해질에 니트로컴파운드 또는 염화알루미늄 염을 무게비율로 0.1~5 배 첨가한 것을 특징으로 한다.The electrolytic solution is characterized in that the nitro compound or aluminum chloride salt is added 0.1 to 5 times by weight ratio to the inorganic liquid electrolyte.
상기 전해액은 무기 액체 전해질에 2종 이상의 염을 첨가한 것을 특징으로 한다.The electrolyte solution is characterized in that two or more salts are added to the inorganic liquid electrolyte.
상기 정극은 탄소재로 이루어진 것을 특징으로 한다.The positive electrode is characterized in that the carbon material.
상기 부극은 리튬 또는 나트륨 금속, 리튬 또는 나트륨을 함유한 합금, 리튬 또는 나트륨을 함유하는 금속간화합물, 리튬 또는 나트륨을 함유하는 무기계 재료 중 적어도 하나로 이루어진 것을 특징으로 한다.The negative electrode is made of at least one of lithium or sodium metal, an alloy containing lithium or sodium, an intermetallic compound containing lithium or sodium, and an inorganic material containing lithium or sodium.
본 발명의 레독스 흐름 이차 전지에 포함되는 전해액은 무기 액체 전해질, 상기 무기 액체 전해질에 무게비율로 0.1~5 배 첨가된 2종 이상의 염을 포함하는 것을 특징으로 한다.Electrolyte solution included in the redox flow secondary battery of the present invention is characterized in that it comprises an inorganic liquid electrolyte, two or more salts added by 0.1 to 5 times by weight to the inorganic liquid electrolyte.
상기 2종 이상의 염은 니트로컴파운드 및 염화알루미늄 염을 포함하는 것을 특징으로 한다.The two or more salts are characterized by comprising nitro compound and aluminum chloride salts.
상술한 바와 같이 본 발명의 실시 예에 따르면 본 발명의 레독스 흐름 이차 전지는 상대적으로 간단한 구성이 가능하며, 고전압에 불연성을 가지고, 높은 전원 용량을 제공할 수 있다.As described above, according to the exemplary embodiment of the present invention, the redox flow secondary battery of the present invention may have a relatively simple configuration, have a nonflammability at a high voltage, and may provide a high power capacity.
도 1은 본 발명의 실시 예에 따른 레독스 흐름 이차 전지 구성을 개략적으로 나타낸 도면,1 is a view schematically showing a redox flow secondary battery configuration according to an embodiment of the present invention,
도 2는 본 발명의 실시 예에 따른 리튬 이산화황 이차 전지 정극 전극 표면의 방전 전과 후의 SEM image를 나타낸 도면, 2 is a view showing an SEM image before and after the discharge of the surface of the lithium sulfur dioxide secondary battery positive electrode according to an embodiment of the present invention,
도 3은 본 발명의 실시 예에 따른 비수계 용매들의 안정성 실험 결과를 나타낸 도면,3 is a view showing the stability test results of the non-aqueous solvent according to an embodiment of the present invention,
도 4는 본 발명의 실시 예에 따른 첨가제가 포함된 전해액에 따른 용해 정도를 나타낸 도면,4 is a view showing the degree of dissolution according to the electrolyte solution containing an additive according to an embodiment of the present invention,
도 5는 본 발명의 실시 예에 따른 레독스 흐름 이차 전지 특성 비교를 위한 비이커 셀의 한 예를 나타낸 도면,5 is a view showing an example of a beaker cell for comparing redox flow secondary battery characteristics according to an embodiment of the present invention,
도 6은 본 발명의 실시 예에 따른 표 1에서 언급된 비교 예1, 실시 예1, 실시 예2에 대한 방전 용량을 나타낸 도면이다.6 is a view showing discharge capacities for Comparative Example 1, Example 1, and Example 2 mentioned in Table 1 according to an embodiment of the present invention.
본 발명의 상세한 설명에 앞서, 이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념으로 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시 예와 도면에 도시된 구성은 본 발명의 가장 바람직한 실시 예에 불과할 뿐, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다. Prior to the description of the present invention, the terms or words used in the specification and claims described below should not be construed as being limited to the ordinary or dictionary meanings, and the inventors should consider their own invention in the best way. For the purpose of explanation, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention on the basis of the principle that it can be properly defined as the concept of term. Therefore, the embodiments described in the present specification and the configuration shown in the drawings are only the most preferred embodiments of the present invention, and do not represent all of the technical ideas of the present invention, and various equivalents may be substituted for them at the time of the present application. It should be understood that there may be water and variations.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예들을 상세히 설명한다. 이때, 첨부된 도면에서 동일한 구성 요소는 가능한 동일한 부호로 나타내고 있음을 유의해야 한다. 또한, 본 발명의 요지를 흐리게 할 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략할 것이다. 마찬가지의 이유로 첨부 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 또는 개략적으로 도시되었으며, 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. In this case, it should be noted that like elements are denoted by like reference numerals as much as possible. In addition, detailed descriptions of well-known functions and configurations that may blur the gist of the present invention will be omitted. For the same reason, some components in the accompanying drawings are exaggerated, omitted, or schematically illustrated, and the size of each component does not entirely reflect the actual size.
도 1은 본 발명의 실시 예에 따른 레독스 흐름 이차 전지 구성을 개략적으로 나타낸 도면이다.1 is a view schematically showing the configuration of a redox flow secondary battery according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 레독스 흐름 이차 전지(100)는 스택(110), 전해액 저장조(120), 펌프(130)를 포함할 수 있다. 추가적으로, 상기 레독스 흐름 이차 전지(100)는 상기 전해액 저장조(120)와 스택(110)을 연결하는 제1 연결로, 상기 전해액 저장조(120)와 상기 펌프(130)를 연결하는 제2 연결로, 상기 펌프(130)와 상기 스택(110)을 연결하는 제3 연결로 중 적어도 하나를 더 포함할 수 있다. 또한, 상기 레독스 흐름 이차 전지(100)는 상기 스택(110) 내부에 배치된 정극과 부극에 각각 연결되는 전극부들을 더 포함할 수 있다. 상기 전극부들의 적어도 일부는 상기 스택(110) 외부에 노출되도록 배치될 수 있다. 상술한 본 발명의 레독스 흐름 이차 전지(100)는 정극(Cathode)으로는 탄소재를 사용하며, 부극(Anode)으로는 리튬 또는 나트륨 및 이를 포함하는 금속 또는 무기재료를 포함하고 분리막이 없는 단일 저장조를 사용할 수 있는 하이브리드형 타입이며, 2종 첨가제가 포함된 무기전해질을 포함하는 구조를 채용할 수 있다.Referring to FIG. 1, the redox flow secondary battery 100 of the present invention may include a stack 110, an electrolyte reservoir 120, and a pump 130. In addition, the redox flow secondary battery 100 is a first connection connecting the electrolyte reservoir 120 and the stack 110, a second connection passage connecting the electrolyte reservoir 120 and the pump 130. In addition, the pump 130 may further include at least one of a third connection path connecting the stack 110. In addition, the redox flow secondary battery 100 may further include electrode portions respectively connected to the positive electrode and the negative electrode disposed in the stack 110. At least some of the electrode portions may be disposed to be exposed to the outside of the stack 110. The redox flow secondary battery 100 of the present invention described above uses a carbon material as a cathode and a cathode including lithium or sodium and a metal or an inorganic material including the same and without a separator. It is a hybrid type that can use a reservoir, and a structure including an inorganic electrolyte containing two kinds of additives can be adopted.
상기 스택(110)은 적용될 제품의 형상이나 제품이 배치될 위치 등에 따라 다양한 형태로 마련될 수 있다. 한 실시 예에 따르면, 상기 스택(110)은 직사각형의 박스 형태로 마련될 수 있다. 그러나, 본 발명이 이에 한정되는 것은 아니며, 상기 스택(110)은 배치될 위치의 형상에 따라 다양하게 변형 가공될 수 있다. 상기 스택(110)은 부극(111)(anode), 정극(112)(cathode), 전해액(113)이 내측에 배치될 수 있다. 특히, 본 발명의 레독스 흐름 이차 전지(100)는 부극(111)과 정극(112) 사이에 분리막이 존재하지 않는 형태를 가질 수 있다.The stack 110 may be provided in various forms according to the shape of the product to be applied or the location of the product. According to one embodiment, the stack 110 may be provided in the form of a rectangular box. However, the present invention is not limited thereto, and the stack 110 may be variously modified according to the shape of the position to be disposed. The stack 110 may include a negative electrode 111, a positive electrode 112, and an electrolyte 113. In particular, the redox flow secondary battery 100 of the present invention may have a form in which no separator exists between the negative electrode 111 and the positive electrode 112.
상기 정극(112)은 다공성의 탄소재로 이루어질 수 있다. 상기 정극(112)은 스택(110) 내부에 충진된 전해액이 종류에 따라 LiAlCl4-xSO2 또는 NaAlCl4-xSO2의 산화-환원 반응이 일어나는 장소를 제공한다. 한 예시로서, 정극(112)은 Ketjenblack 600JD에 PTFE 바인더 10%를 사용하여 제작될 수 있다. 다른 예시로서, 상기 정극(112)은 상기 탄소재에 하나 또는 둘 이상의 이종원소가 0~20 at% 포함될 수 있으며, 이종원소는 질소(N), 산소(O), 붕소(B), 불소(F), 인(P), 황(S), 규소(Si)를 포함할 수 있다.The positive electrode 112 may be made of a porous carbon material. The positive electrode 112 has LiAlCl 4 -xSO 2 depending on the type of electrolyte filled in the stack 110. Or a place where the redox reaction of NaAlCl 4 -xSO 2 takes place. As one example, the positive electrode 112 may be fabricated using 10% PTFE binder in Ketjenblack 600JD. As another example, the cathode 112 may include 0 to 20 at% of one or more heteroatoms in the carbon material, and the heteroelements include nitrogen (N), oxygen (O), boron (B), and fluorine ( F), phosphorus (P), sulfur (S), and silicon (Si).
상기 부극(111)은 리튬 금속 시트(sheet)를 이용하여 마련될 수 있다. 다른 예시로서, 부극(111)은 리튬을 함유한 합금, 또는 리튬을 함유하는 금속간화합물, 또는 리튬을 함유하는 무기계 재료 중 적어도 하나로 구성될 수 있다. 상기 무기계 재료는 탄소, 산화물, 황화물, 인화물, 질화물, 불화물 중 적어도 하나를 포함할 수 있다.The negative electrode 111 may be provided using a lithium metal sheet. As another example, the negative electrode 111 may be formed of at least one of an alloy containing lithium, an intermetallic compound containing lithium, or an inorganic material containing lithium. The inorganic material may include at least one of carbon, oxides, sulfides, phosphides, nitrides, and fluorides.
상기 전해액(113)은 이산화황계열의 금속 화합물을 포함할 수 있다. 예컨대, 전해액(113)은 Li(or Na)AlCl4-xSO2 이 이용될 수 있다. 상기 전해액(113)은 전해액 저장조(120)에 저장되고, 펌프(130)에 의해 스택(110)에 공급될 수 있다. The electrolyte 113 may include a sulfur dioxide-based metal compound. For example, Li (or Na) AlCl 4 -xSO 2 may be used as the electrolyte 113. The electrolyte 113 may be stored in the electrolyte reservoir 120 and supplied to the stack 110 by the pump 130.
상기 전해액 저장조(120)는 상기 전해액(113)을 저장하는 저장조일 수 있다. 본 발명의 전해액 저장조(120)는 펌프(130) 동작에 따라, 저장된 전해액(113)을 스택(110)에 공급할 수 있다. The electrolyte reservoir 120 may be a reservoir for storing the electrolyte 113. The electrolyte storage tank 120 of the present invention may supply the stored electrolyte solution 113 to the stack 110 according to the operation of the pump 130.
상기 펌프(130)는 제어기의 제어에 대응하여 펌핑 동작을 수행할 수 있다. 펌프(130)의 펌핑 동작에 따라 스택(110)에 공급되는 전해액(113)의 양이 달라지며, 결과적으로 스택(110)에서의 전해액(113)의 반응에 의하여 생산되는 전원의 양이 달라진다. 이에 따라 펌프(130)의 펌핑 동작 제어는 부하에 공급되는 전원의 양에 따라 달라질 수 있다. 본 발명의 펌프(130)는 하나의 전해액 저장조(120)를 사용함으로써, 하나의 펌프를 포함할 수 있다.The pump 130 may perform a pumping operation in response to the control of the controller. The amount of the electrolyte 113 supplied to the stack 110 varies according to the pumping operation of the pump 130. As a result, the amount of power generated by the reaction of the electrolyte 113 in the stack 110 varies. Accordingly, the pumping operation control of the pump 130 may vary depending on the amount of power supplied to the load. The pump 130 of the present invention may include one pump by using one electrolyte reservoir 120.
추가적으로, 본 발명의 레독스 흐름 이차 전지(100)는 펌프(130)의 펌핑 속도 제어를 수행하는 제어기에 연결되고, 또한 레독스 흐름 이차 전지(100)에서 발생하는 전력을 공급하는 부하와 연결될 수 있다. 또한, 전해액 저장조(120)에 저장된 전해액(113)을 스택(110)에 이동시켜 전원을 생성하도록 반응시키는 과정에서 열이 발생할 수 있으며, 이러한 열은 전해액 저장조(120)의 온도를 증가시키게 된다. 이에 따라, 레독스 흐름 이차 전지(100)는 전력 생산 및 제공 과정에서 발생하는 열을 발열시키기 위한 냉각 시스템을 더 포함할 수 있다. 냉각 시스템은 전해액 저장조(120)의 온도를 검출하고, 전해액 저장조(120)가 사전 정의된 온도를 가지도록 냉각시키는 구성이다. 이를 위하여 냉각 시스템은 전해액 저장조(120)의 온도를 검측하는 센서를 포함하고, 상기 센서가 수집한 센서 신호를 기반으로 상기 전해액 저장조(120)의 냉각 제어를 수행할 수 있다. In addition, the redox flow secondary battery 100 of the present invention may be connected to a controller that performs the pumping speed control of the pump 130, and may also be connected to a load for supplying power generated from the redox flow secondary battery 100. have. In addition, heat may be generated in the process of moving the electrolyte 113 stored in the electrolyte storage tank 120 to the stack 110 to generate power, and this heat increases the temperature of the electrolyte storage tank 120. Accordingly, the redox flow secondary battery 100 may further include a cooling system for generating heat generated in the process of power generation and provision. The cooling system detects the temperature of the electrolyte reservoir 120 and cools the electrolyte reservoir 120 to have a predefined temperature. To this end, the cooling system may include a sensor for detecting the temperature of the electrolyte reservoir 120, and may perform cooling control of the electrolyte reservoir 120 based on the sensor signal collected by the sensor.
상술한 바와 같이, 본 발명의 레독스 흐름 이차 전지(100)는 이산화황 기반 리튬계 무기액체 전해질을 이온전도체 및 활물질로 적용하며, 분리막이 없는 한 개의 전해액 저장조(120)를 적용한 레독스 흐름 이차 전지이다. 이러한 레독스 흐름 이차 전지(100)는 기존의 레독스 흐름 이차 전지 대비 구성이 간단하고 이산화황 기반 리튬계 이차 전지의 용량 및 출력 설계를 자유롭게 할 수 있어, 고전압 및 불연성 레독스 흐름 이차 전지를 제공할 수 있다. 상술한 바와 같이 리튬(또는 나트륨) 이산화황 레독스 흐름 이차 전지는 고전압 구현이 가능하고 불연성인 액체 전해질을 사용함으로써 안전성을 확보할 수 있는 장점이 있다. As described above, the redox flow secondary battery 100 of the present invention applies a sulfur dioxide-based lithium-based inorganic liquid electrolyte as an ion conductor and an active material, and a redox flow secondary battery to which one electrolyte storage tank 120 without a separator is applied. to be. Such a redox flow secondary battery 100 is simpler than a conventional redox flow secondary battery and can freely design a capacity and output of a sulfur dioxide-based lithium secondary battery, thereby providing a high voltage and nonflammable redox flow secondary battery. Can be. As described above, the lithium (or sodium) sulfur dioxide redox flow secondary battery has a merit that high voltage can be realized and safety can be secured by using a nonflammable liquid electrolyte.
추가적으로, 본 발명의 레독스 흐름 이차 전지(100)는 2종의 전해액 첨가제를 이용하여 방전산물을 제거함으로써, 방전산물로 인한 용량제한 문제를 해결할 수 있다. In addition, the redox flow secondary battery 100 of the present invention may solve the capacity limitation problem due to the discharge product by removing the discharge product using two electrolyte additives.
도 2는 리튬 이산화황 이차 전지 정극 전극 표면의 방전 전과 후의 SEM image를 나타낸 도면이다. 도시된 바와 같이, 방전 전(201)에는 정극 전극의 표면에 LiCl 결정이 형성되지 않은 반면, 방전 후(203) LiCl 결정이 정극 전극의 표면에 형성된 것을 뚜렷하게 관찰 할 수 있다. FIG. 2 is a view showing SEM images before and after discharging the surface of a lithium sulfur secondary battery positive electrode; FIG. As shown, LiCl crystals are not formed on the surface of the positive electrode before the discharge 201, it can be clearly observed that the LiCl crystals formed on the surface of the positive electrode after the discharge (203).
따라서, 방전 후 생성된 방전산물인 LiCl(or NaCl)을 용해 또는 정극에서 탈착시켜 레독스 흐름 이차 전지의 구동 및 성능 향상을 위해 전해액 저장조(120)에는 전해액(113) 외에 방전산물 제거를 위한 첨가제 또는 용매를 더 포함할 수 있다. Therefore, in order to improve driving and performance of the redox flow secondary battery by dissolving or dissolving LiCl (or NaCl), which is a discharge product generated after discharge, in the electrolyte storage tank 120, an additive for removing the discharge product in addition to the electrolyte solution 113. Or it may further comprise a solvent.
도 3은 본 발명의 실시 예에 따른 비수계 용매들의 안정성 실험 결과를 나타낸 도면이다.3 is a view showing the stability test results of the non-aqueous solvent according to an embodiment of the present invention.
도 3을 참조하면, LiCl을 용해할 수 있는 비수계 용매들로는 Pyridine 계열(301), 니트로컴파운드(303), 알콜계열(305) 등이 사용될 수 있으나, 초기 전해액과 안정성 실험에서 니트로컴파운드 중 하나인 니트로벤젠(303)만이 전해액과 안정한 결과를 나타내고 있다. 그러나, 니트로컴파운드 등의 단수 용매를 사용할 경우, 방전산물인 LiCl(or NaCl)의 용해의 한계를 나타내는 문제가 있다. 이에 따라, 본 발명의 레독스 흐름 이차 전지(100)는 LiCl (or NaCl)을 다량으로 용해시킬 수 있는 2종(Co-additive) 전해액 첨가제를 이용하고 있다. 예컨대, 본 발명에서는 SO2 전해액의 니트로컴파운드에 새로운 염을 추가하여 LiCl(or NaCl) 용해도 평가를 진행하였다. Referring to FIG. 3, Pyridine-based 301, nitro compound 303, alcohol-based 305, and the like may be used as non-aqueous solvents capable of dissolving LiCl. However, one of the nitro compounds in the initial electrolyte and stability test may be used. Only nitrobenzene 303 has shown stable results with the electrolyte solution. However, when using a single solvent, such as nitro compound, there exists a problem which shows the limit of the dissolution of LiCl (or NaCl) which is a discharge product. Accordingly, the redox flow secondary battery 100 of the present invention uses a co-additive electrolyte additive capable of dissolving LiCl (or NaCl) in a large amount. For example, in the present invention, LiCl (or NaCl) solubility evaluation was performed by adding a new salt to the nitro compound of the SO 2 electrolyte.
도 4는 본 발명의 실시 예에 따른 첨가제가 포함된 전해액에 따른 용해 정도를 나타낸 도면이다.4 is a view showing the degree of dissolution according to the electrolyte solution containing an additive according to an embodiment of the present invention.
도 4의 401 상태는 SO2 전해액에 니트로컴파운드와 염화알루미늄 염이 동시에 용해된 상태를 나타낸 것이며, 403 상태는 SO2 전해액에 0.5M LiCl 2종 염(니트로컴파운드 및 염화알루미늄 염)이 용해된 상태를 나타낸 것이다. 도시된 바와 같이, SO2 전해액에 니트로컴파운드와 염화알루미늄 염을 동시 용해시킬 수 있으며, 일정 몰비로 SO2 전해액에 상기 2종의 염(니트로컴파운드 및 염화알루미늄)을 첨가제로 사용할 경우 레독스 흐름 이차 전지의 방전 시 정극 표면에 발생하는 방전 산물을 용해시켜 전극 표면을 refresh 할 수 있다. 상기 SO2 전해액에는 무기 액체 전해질에 니트로컴파운드 또는 염화알루미늄 염을 무게비율로 0.1~5 배 첨가될 수 있다.Will showing a state of FIG. 401 is a 4-nitro compound and the aluminum chloride salt at the same time dissolved SO 2 in the electrolyte solution state, state 403 is a state dissolved 0.5M LiCl 2 jong salt (nitro-compounds and chlorinated aluminum salt) in the electrolyte SO 2 It is shown. When using as the additive a salt (nitro-compounds and aluminum chloride) in the two above the SO 2 electrolyte in SO 2 may be co-dissolved in a nitro compound and the aluminum chloride salt in the electrolytic solution, a certain molar ratio as illustrated redox flow secondary Discharge products generated on the surface of the positive electrode during discharging of the battery may be dissolved to refresh the surface of the electrode. Nitro compound or aluminum chloride salt may be added to the SO 2 electrolyte in an inorganic liquid electrolyte by 0.1 to 5 times by weight.
도 5는 본 발명의 실시 예에 따른 레독스 흐름 이차 전지 특성 비교를 위한 비이커 셀의 한 예를 나타낸 도면이다.5 is a view showing an example of a beaker cell for comparing the characteristics of the redox flow secondary battery according to an embodiment of the present invention.
상술한 본 발명의 리튬 이산화항 레독스 흐름 이차 전지의 특성 비교를 위하여 도 5에 나타낸 바와 같이 분리막이 없고 전해액의 흐름이 없지만 레독스 흐름 이차 전지와 유사한 조건의 비이커 셀(Beaker cell)을 제작하여 전지특성을 비교하였다. 비이커 셀은 도시된 바와 같이 비이커(501), 전해액(113), 부극(111), 정극(112), 부하를 포함할 수 있다. 상기 전해액(113)은 앞서 언급한 바와 같이 LiAlCl4-xSO2 또는 NaAlCl4-xSO2 중 어느 하나가 될 수 있다. 정극(112)은 탄소재로 이루어지며, 부극(111)은 리튬계 금속 시트가 될 수 있다. 전해질 및 정극반응 활물질로 사용되는 이산화황 기반 무기액체 전해질은 LiAlCl4(용질)과 SO2(용매)로 구성되어 있으며, LiAlCl4 대비 SO2의 함량 몰비는 0.5 ~ 10에 해당하는 것으로 바람직하게는 1.5~3에 해당한다. In order to compare the characteristics of the lithium dioxide redox flow secondary battery of the present invention described above, as shown in FIG. 5, there is no separator and there is no flow of electrolyte, but a beaker cell having a condition similar to a redox flow secondary battery is manufactured. Battery characteristics were compared. The beaker cell may include a beaker 501, an electrolyte 113, a negative electrode 111, a positive electrode 112, and a load. As described above, the electrolyte 113 may be either LiAlCl 4 -xSO 2 or NaAlCl 4 -xSO 2 . The positive electrode 112 may be made of a carbon material, and the negative electrode 111 may be a lithium-based metal sheet. The sulfur dioxide-based inorganic liquid electrolyte used as an electrolyte and a positive electrode active material is composed of LiAlCl 4 (solute) and SO 2 (solvent), and the content molar ratio of SO 2 to LiAlCl 4 corresponds to 0.5 to 10, preferably 1.5. Corresponds to ~ 3.
실시 예 및 비교 예의 전지구성 및 전극/전해질 조건은 다음의 표 1과 같다.The battery configuration and electrode / electrolyte conditions of Examples and Comparative Examples are shown in Table 1 below.
주성분chief ingredient 비고Remarks
비교 예 1Comparative Example 1 정극(cathode)Cathode Ketjenblack 600JDKetjenblack 600JD PTFE 바인더 10% 사용전극면적 : 1.13㎠PTFE Binder 10% Electrode Area: 1.13㎠
부극(anode)Anode Li metal sheetLi metal sheet 전극면적 : 1.13㎠Electrode Area: 1.13㎠
전해질(electrolyte)Electrolyte LiAlCl4-xSO2 3mlLiAlCl 4 -xSO 2 3ml
실시 예 1Example 1 정극(cathode)Cathode Ketjenblack 600JDKetjenblack 600JD PTFE 바인더 10% 사용전극면적 : 1.13㎠PTFE Binder 10% Electrode Area: 1.13㎠
부극(anode)Anode Li metal sheetLi metal sheet 전극면적 : 1.13㎠Electrode Area: 1.13㎠
전해질(electrolyte)Electrolyte LiAlCl4-xSO2 3ml+Nitrobenzene 3mlLiAlCl 4 -xSO 2 3ml + Nitrobenzene 3ml
실시 예 2Example 2 정극(cathode)Cathode Ketjenblack 600JDKetjenblack 600JD PTFE 바인더 10% 사용전극면적 : 1.13㎠PTFE Binder 10% Electrode Area: 1.13㎠
부극(anode)Anode Li metal sheetLi metal sheet 전극면적 : 1.13㎠Electrode Area: 1.13㎠
전해질(electrolyte)Electrolyte LiAlCl4-xSO2 3ml+3ml Nitrobenzene+AlCl3 LiAlCl 4 -xSO 2 3ml + 3ml Nitrobenzene + AlCl 3
도 6은 본 발명의 실시 예에 따른 표 1에서 언급된 비교 예1, 실시 예1, 실시 예2에 대한 방전 용량을 나타낸 도면이다.6 is a view showing discharge capacities for Comparative Example 1, Example 1, and Example 2 mentioned in Table 1 according to an embodiment of the present invention.
도 6에 나타낸 바와 같이 실시 예와 비교 예의 결과를 면적당 방전용량을 비교해 보면 동일한 활물질인 LiAlCl4-xSO2 전해액을 사용하였음에도 불구하고 Nitrobenzene 첨가제가 적용된 전해액은 방전용량이 약 2배 정도 증가한 결과할 확인하였다. 또한, Nitrobenzene과 염화알루미늄 2종의 co-additive를 적용한 전해액은 면적당 방전용량이 비교 예 대비 약 7배의 용량 증대 효과를 확인할 수 있었다. 이는 앞서 언급한 것처럼 방전 산물인 다량의 LiCl 결정을 용해하여 전극 반응이 일어날 수 있는 정극 전극의 표면을 보다 많이 확보하였기 때문으로 판단된다. In the comparative example results in the embodiment as shown in Fig. 6, compare the same discharge capacity per active material LiAlCl 4 -xSO 2 Although the electrolyte was used, the electrolyte with Nitrobenzene additive was confirmed to result in an increase of about two times the discharge capacity. In addition, the electrolytic solution to which the co-additives of Nitrobenzene and aluminum chloride were applied was found to have a capacity increase of about 7 times that of the discharge capacity per area. This is because, as mentioned above, a large amount of the surface of the positive electrode electrode capable of electrode reaction can be obtained by dissolving a large amount of LiCl crystal as a discharge product.
이상 본 발명을 몇 가지 바람직한 실시 예를 사용하여 설명하였으나, 이들 실시 예는 예시적인 것이며 한정적인 것이 아니다. 이와 같이, 본 발명이 속하는 기술 분야에서 통상의 지식을 지닌 자라면 본 발명의 사상과 첨부된 특허청구범위에 제시된 권리범위에서 벗어나지 않으면서 균등론에 따라 다양한 변화와 수정을 가할 수 있음을 이해할 것이다.While the present invention has been described using some preferred embodiments, these embodiments are illustrative and not restrictive. As such, those of ordinary skill in the art will appreciate that various changes and modifications can be made according to equivalents without departing from the spirit of the present invention and the scope of rights set forth in the appended claims.
[부호의 설명][Description of the code]
100 : 레독스 흐름 이차 전지100: redox flow secondary battery
110 : 스택110: stack
120 : 전해액 저장조120: electrolyte storage tank
130 : 펌프130: pump

Claims (8)

  1. 전해액이 주입된 스택;A stack into which electrolyte is injected;
    상기 스택 내에 배치된 정극 및 부극;A positive electrode and a negative electrode disposed in the stack;
    전해액을 저장하고 상기 스택에 주입된 전해액을 교체하는 전해액 저장조;An electrolyte reservoir for storing an electrolyte and replacing the electrolyte injected into the stack;
    상기 전해액 저장조에 저장된 전해액을 상기 스택에 주입하는데 이용되는 펌프;를 포함하고,And a pump used to inject the electrolyte stored in the electrolyte reservoir into the stack.
    상기 전해액은 The electrolyte solution
    이산화황과 리튬염 또는 나트륨염으로 구성된 무기 액체 전해질을 포함하는 것을 특징으로 하는 이산화황계 레독스 흐름 이차 전지.A sulfur dioxide-based redox flow secondary battery comprising an inorganic liquid electrolyte composed of sulfur dioxide and lithium or sodium salts.
  2. 제1항에 있어서,The method of claim 1,
    상기 전해액은 The electrolyte solution
    NaAlCl4 대비 SO2 몰비 함량이 0.5~10인 것을 특징으로 하는 이산화황계 레독스 흐름 이차 전지.Sulfur dioxide-based redox flow secondary battery, characterized in that the molar ratio of SO 2 to NaAlCl 4 is 0.5 to 10.
  3. 제2항에 있어서,The method of claim 2,
    상기 전해액은The electrolyte solution
    NaAlCl4 대비 SO2 몰비 함량이 1.5~3.0인 것을 특징으로 하는 이산화황계 레독스 흐름 이차 전지.Sulfur dioxide-based redox flow secondary battery, characterized in that the molar ratio of SO 2 to NaAlCl 4 is 1.5 ~ 3.0.
  4. 제1항에 있어서,The method of claim 1,
    상기 전해액은 The electrolyte solution
    무기 액체 전해질에 니트로컴파운드 또는 염화알루미늄 염을 무게비율로 0.1~5 배 첨가한 것을 특징으로 하는 이산화황계 레독스 흐름 이차 전지.A sulfur dioxide-based redox flow secondary battery comprising 0.1 to 5 times the weight ratio of nitro compound or aluminum chloride salt to an inorganic liquid electrolyte.
  5. 제1항에 있어서,The method of claim 1,
    상기 전해액은The electrolyte solution
    무기 액체 전해질에 2종 이상의 염을 첨가한 것을 특징으로 하는 이산화황계 레독스 흐름 이차 전지.A sulfur dioxide-based redox flow secondary battery comprising two or more salts added to an inorganic liquid electrolyte.
  6. 제1항에 있어서,The method of claim 1,
    상기 정극은 탄소재로 이루어지고,The positive electrode is made of a carbon material,
    상기 부극은 리튬 또는 나트륨 금속, 리튬 또는 나트륨을 함유한 합금, 리튬 또는 나트륨을 함유하는 금속간화합물, 리튬 또는 나트륨을 함유하는 무기계 재료 중 적어도 하나로 이루어진 것을 특징으로 하는 이산화황계 레독스 흐름 이차 전지.The negative electrode is a sulfur dioxide-based redox flow secondary battery, characterized in that made of at least one of lithium or sodium metal, an alloy containing lithium or sodium, an intermetallic compound containing lithium or sodium, and an inorganic material containing lithium or sodium.
  7. 레독스 흐름 이차 전지에 사용되는 전해액에 있어서,In the electrolyte used for the redox flow secondary battery,
    무기 액체 전해질;Inorganic liquid electrolytes;
    상기 무기 액체 전해질에 무게비율로 0.1~5 배 첨가된 2종 이상의 염;Two or more salts added in an amount of 0.1 to 5 times by weight to the inorganic liquid electrolyte;
    을 포함하는 것을 특징으로 하는 이산화황계 레독스 흐름 이차 전지에 사용되는 전해액.Electrolyte used in the sulfur dioxide-based redox flow secondary battery comprising a.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 2종 이상의 염은 The two or more salts are
    니트로컴파운드 및 염화알루미늄 염을 포함하는 것을 특징으로 하는 이산화황계 레독스 흐름 이차 전지에 사용되는 전해액.An electrolytic solution for a sulfur dioxide-based redox flow secondary battery comprising nitro compound and aluminum chloride salt.
PCT/KR2016/013767 2016-09-29 2016-11-28 Sulfur dioxide-based redox flow secondary battery and electrolyte solution included therein WO2018062619A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160125469A KR20180035973A (en) 2016-09-29 2016-09-29 Sulfur Dioxide Redox flow Secondary Battery and Electrolyte including the same
KR10-2016-0125469 2016-09-29

Publications (1)

Publication Number Publication Date
WO2018062619A1 true WO2018062619A1 (en) 2018-04-05

Family

ID=61759878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013767 WO2018062619A1 (en) 2016-09-29 2016-11-28 Sulfur dioxide-based redox flow secondary battery and electrolyte solution included therein

Country Status (2)

Country Link
KR (1) KR20180035973A (en)
WO (1) WO2018062619A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060125853A (en) * 2004-01-06 2006-12-06 싸이언 파워 코포레이션 Electrolytes for lithium sulfur cells
KR20140053206A (en) * 2011-07-21 2014-05-07 내셔널 유니버시티 오브 싱가포르 A redox flow battery system
KR20140097754A (en) * 2013-01-30 2014-08-07 전자부품연구원 Anode active material comprising phosphorus, lithium secondary battery having the anode active material and manufacturing method thereof
KR20150115526A (en) * 2014-04-04 2015-10-14 에스케이이노베이션 주식회사 Electrolyte for Sodium Secondary Battery and Sodium Secondary Battery using thereof
KR20160082372A (en) * 2014-12-26 2016-07-08 전자부품연구원 Redox flow battery that do not contain physically seperation the electrolyte layer part and stacked redox flow secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060125853A (en) * 2004-01-06 2006-12-06 싸이언 파워 코포레이션 Electrolytes for lithium sulfur cells
KR20140053206A (en) * 2011-07-21 2014-05-07 내셔널 유니버시티 오브 싱가포르 A redox flow battery system
KR20140097754A (en) * 2013-01-30 2014-08-07 전자부품연구원 Anode active material comprising phosphorus, lithium secondary battery having the anode active material and manufacturing method thereof
KR20150115526A (en) * 2014-04-04 2015-10-14 에스케이이노베이션 주식회사 Electrolyte for Sodium Secondary Battery and Sodium Secondary Battery using thereof
KR20160082372A (en) * 2014-12-26 2016-07-08 전자부품연구원 Redox flow battery that do not contain physically seperation the electrolyte layer part and stacked redox flow secondary battery

Also Published As

Publication number Publication date
KR20180035973A (en) 2018-04-09

Similar Documents

Publication Publication Date Title
Yao et al. Advanced post‐potassium‐ion batteries as emerging potassium‐based alternatives for energy storage
Li et al. Progress in electrolytes for rechargeable Li-based batteries and beyond
JP5727372B2 (en) Electrochemical devices such as ionic liquid electrolytes containing anionic surfactants and storage batteries containing them
KR100413907B1 (en) Electrolytic solution for cells and cells made by using the same
EP2485317B1 (en) Battery and energy system
JP5157107B2 (en) Non-aqueous electrolyte battery
US20110311865A1 (en) Ionic liquid, electrolyte, lithium secondary battery using the same, and process for producing ionic liquid
KR20210057155A (en) battery
WO2016085191A1 (en) Sodium secondary battery
CN103219542A (en) High-salinity non-aqueous electrolyte and use thereof
WO2019035575A1 (en) Electrolyte for secondary battery and secondary battery comprising same
Yoshimoto et al. Nonflammable gel electrolyte containing alkyl phosphate for rechargeable lithium batteries
WO2016043444A1 (en) Electrolyte solution comprising sulfur dioxide-based ionic liquid electrolyte, and sodium-sulfur dioxide secondary battery having same
WO2018062621A1 (en) Sulfur dioxide-based redox flow secondary battery not having separator membrane
CN105428703A (en) Lithium ion battery containing additives
JP5062505B2 (en) Non-aqueous electrolyte battery
WO2018062619A1 (en) Sulfur dioxide-based redox flow secondary battery and electrolyte solution included therein
CN116505081A (en) Electrolyte and sulfur-based lithium battery containing same
Tsunashima et al. Effect of quaternary phosphonium salts in organic electrolyte for lithium secondary batteries
CN114447426A (en) Lithium-sulfur battery electrolyte, preparation method thereof and lithium-sulfur battery
KR102181846B1 (en) Liquid electrolyte formulation for lithium metal secondary battery and lithium metal secondary battery comprising said liquid electrolyte formulation
JP3974012B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
WO2016043443A1 (en) Electrolyte solution comprising sulfur dioxide-based, gallium-based inorganic electrolyte, and sodium-sulfur dioxide secondary battery having same
KR101693576B1 (en) Sulfur dioxide based inorganic electrolyte solution and sulfur dioxide based redox flow secondary battery using the same
WO2018062620A1 (en) Sulfur dioxide based redox flow secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917820

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16917820

Country of ref document: EP

Kind code of ref document: A1