WO2018062576A1 - 発光ダイオード式照明装置 - Google Patents

発光ダイオード式照明装置 Download PDF

Info

Publication number
WO2018062576A1
WO2018062576A1 PCT/JP2017/036898 JP2017036898W WO2018062576A1 WO 2018062576 A1 WO2018062576 A1 WO 2018062576A1 JP 2017036898 W JP2017036898 W JP 2017036898W WO 2018062576 A1 WO2018062576 A1 WO 2018062576A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
reflecting member
led element
emitting diode
illumination device
Prior art date
Application number
PCT/JP2017/036898
Other languages
English (en)
French (fr)
Inventor
英俊 三塚
小島 裕二郎
栗原 健一
和憲 小島
孝次 石井
Original Assignee
株式会社アブラム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アブラム filed Critical 株式会社アブラム
Priority to CN201780072448.6A priority Critical patent/CN110023670A/zh
Priority to US16/337,064 priority patent/US11221112B2/en
Publication of WO2018062576A1 publication Critical patent/WO2018062576A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/68Details of reflectors forming part of the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/27Retrofit light sources for lighting devices with two fittings for each light source, e.g. for substitution of fluorescent tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/27Retrofit light sources for lighting devices with two fittings for each light source, e.g. for substitution of fluorescent tubes
    • F21K9/278Arrangement or mounting of circuit elements integrated in the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/66Details of globes or covers forming part of the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2103/00Elongate light sources, e.g. fluorescent tubes
    • F21Y2103/10Elongate light sources, e.g. fluorescent tubes comprising a linear array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to a light emitting diode type lighting device, and more particularly to a straight tube type light emitting diode type lighting device.
  • LEDs can reduce power consumption and produce the same illuminance and light energy as conventional incandescent and fluorescent lamps, and are expected to become more popular in the future.
  • a straight tube type LED lighting tube having the same appearance as a fluorescent lamp that can be used as an alternative light source of a fluorescent lamp and can be directly attached to an existing fluorescent lamp fixture is known from Patent Documents 1 and 2, for example. ing.
  • Such a straight tube type LED lighting tube can uniformly irradiate light from an LED light source at a wide angle.
  • Conventional LED lighting tubes cannot provide light distribution from the light from the LED light source and cannot provide diversity in the light distribution intensity of the light from the LED light source.
  • the present invention has been made in view of the conventional drawbacks, and its purpose is to provide light distribution to the light from the LED light source and to provide diversity in the light distribution intensity of the light emitted from the LED light source.
  • the object is to provide a diode-type lighting device.
  • a light-emitting diode illumination device includes an LED illumination tube including a total luminous flux transmissive plate disposed in a light irradiation direction, and is disposed on a substrate facing the total luminous flux transmissive plate in the LED illumination tube.
  • Alignment illuminance control means for controlling the alignment illuminance irradiated by distributing light emitted from the LED elements and arranged to extend.
  • the light reflecting member has a light directivity formation for giving the light emitted from the LED element a light directivity and irradiating the light from the LED illumination tube through the total luminous flux transmission plate. And a condensing reflection surface including a pseudo LED element forming surface for projecting the pseudo LED element of the LED element.
  • the light emitting diode type illumination device according to the present invention is characterized in that the light reflecting member includes a material having a slit and / or a pore having a nano size and / or a light transmissive property.
  • the light emitting diode type illumination device according to the present invention includes the orientation illuminance control means.
  • the orientation illuminance control means comprises: (a) a light distribution intensity activation region of a light transmissive light reflecting member; and (b) a light distribution intensity attenuation region in a region immediately below the LED light source (angle 0 °) to 90 ° in the radial direction. (C) A light distribution intensity distribution curve including a light distribution intensity reduction region is formed.
  • the orientation illuminance control means varies the elevation angle of the light reflecting member, and / or varies the length of the light reflecting member, and / or varies the light transmittance of the light reflecting member, and / or from the light confinement means.
  • the light irradiation direction is varied, and / or the reflection member is disposed on the substrate on which the LED element is disposed, and / or the angle is set so that the irradiation light is oriented in the recess forming the light confinement means.
  • At least one reflecting plate is provided, and / or the side of the light reflecting member that faces the total light flux transmitting plate is formed in a curved surface and / or irregularities.
  • the reflecting member includes a first reflecting member disposed so as to be symmetrical or non-symmetrical with respect to the center line of the LED element with respect to an installation surface of the light source and extending in the light irradiation direction, and the first reflecting member And a second reflecting member disposed along the shape of the total luminous flux transmitting plate.
  • the first light reflection plate is installed on the substrate with an elevation angle of 2 to 5 degrees, preferably 30 degrees or more, with respect to the substrate.
  • the reflection member has light transmission characteristics and light reflection characteristics.
  • FIG. 1 is a perspective view of a straight tube type light emitting diode illumination device according to the present invention.
  • FIG. 2 is an exploded perspective view of the straight tube type light emitting diode illumination device shown in FIG.
  • FIG. 3 is a sectional view of the straight tube type light emitting diode illuminating device according to the first embodiment taken along a sectional line AA shown in FIG.
  • FIG. 4 is a schematic view showing an optical path of the straight pipe type product of the present invention.
  • FIG. 5 is a schematic view showing a means for confining light emitted from a light source which is an LED element in the light emitting diode type illumination device of FIG.
  • FIG. 1 is a perspective view of a straight tube type light emitting diode illumination device according to the present invention.
  • FIG. 2 is an exploded perspective view of the straight tube type light emitting diode illumination device shown in FIG.
  • FIG. 3 is a sectional view of the straight tube type light emitting diode il
  • FIG. 6 shows a photograph in which the pseudo LED element of the LED element mounted on the substrate in the light emitting diode type illumination device of the present invention is reflected on the reflecting member.
  • FIG. 7A is a schematic view showing the light distribution of irradiation from the LED elements.
  • FIG. 7B is a schematic diagram showing the light distribution of irradiation from the LED element of a commercially available straight tube type product.
  • FIG. 7C is a schematic view showing the light distribution of irradiation from the LED element of the straight tube product of the present invention.
  • FIG. 8 is a schematic view showing a light distribution intensity distribution curve of the straight tube type light emitting diode illuminating device according to the present invention.
  • FIG. 9 is a schematic view showing another light distribution intensity distribution curve of the straight tube type light emitting diode illuminating device according to the present invention.
  • FIG. 10 is a schematic view showing still another light distribution intensity distribution curve of the straight tube type light emitting diode illumination device according to the present invention.
  • a light-emitting diode illumination device includes an LED illumination tube including a total luminous flux transmission plate disposed in the light irradiation direction, and a light source disposed on a substrate facing the total luminous flux transmission plate in the LED illumination tube. And a light reflecting member including a condensing reflection surface having a light reflection characteristic disposed on the light emitting side of the LED element. The light reflecting member is disposed to extend in the light emitting direction symmetrically or asymmetrically with respect to the center line of the LED element.
  • FIG. 4 is a schematic diagram illustrating an optical path of light emitted from a light source that is an LED element in the light emitting diode type illumination device. In FIG.
  • the light reflecting member 19 includes a first reflecting member 191 and a second reflecting member 193.
  • the reflecting member preferably includes a heat sink member such as an Al material.
  • the first reflecting member has an elevation angle with respect to the substrate and an elevation angle with respect to the substrate of 2 to 5 degrees, preferably 30 degrees or more, preferably 40 degrees to 85 degrees, preferably 50 degrees to 65 degrees, and 85 It is set from 120 degrees to 120 degrees.
  • the second reflecting member is preferably disposed in the wide-angle direction outward from the first reflecting member along the shape of the total luminous flux transmitting plate. As shown in FIG.
  • the light emitted from the LED element (1) travels straight through the internal space of the first reflecting member from directly under the light source of the LED element, and is irradiated from the total luminous flux transmission plate to the outside of the tubular body. Further, (2) the light is reflected by the condensing reflection surface of the first reflecting member, passes through the internal space of the first reflecting member, and is irradiated from the total light flux transmitting plate to the outside of the tubular body, and (3) the first reflecting member The light reflected by the condensing reflection surface and passing through the internal space of the first reflecting member and reaching the total light flux transmitting plate is further reflected by the second reflecting member and is reflected from the total light flux transmitting plate through the light confinement means.
  • the light confinement means is provided in the total light flux transmitting plate 31 and / or provided in the gap 60 of the light reflecting member facing the total light flux transmitting plate, and also provided in the light reflecting member facing the total light flux transmitting plate. It is preferable to be provided in the recess 62 and / or in the space 64 between the total light flux transmitting plate 31 and the light reflecting member 19 (FIG. 5).
  • the light confinement means may include light confinement illuminance activation means.
  • the light confinement illuminance activating means is such that the light diffusing sheet or light diffusing film transmits the total luminous flux in the inner surface of the reflecting member facing the total luminous flux transmitting plate and / or the space provided between the reflecting member and the total luminous flux transmitting plate. It is preferable to provide a light diffusing sheet or light diffusing film on the inner surface of the reflecting member facing the plate and / or to apply metal plating such as gold on the inner surface.
  • the light confinement illuminance activation means is preferably provided on the side going outward from the center line of the LED light source.
  • the first reflecting member 191 includes a light directivity forming surface 20a for imparting light directivity to the light emitted from the LED element and irradiating the light from the LED illumination tube through the total luminous flux transmission plate 31 to the outside of the tube.
  • the second reflecting member includes a condensing / reflecting surface 19a that is disposed in the illuminating tube and has a light reflecting property so as to face the total luminous flux transmitting plate.
  • the second reflecting member 193 is preferably disposed in the wide-angle direction outward from the end of the first reflecting member along the shape of the total light flux transmitting plate.
  • the LED illumination tube may not include a total luminous flux transmission plate arranged in the light irradiation direction.
  • the reflecting member may be provided with a third light reflecting member 195 between the first reflecting member and the second reflecting member.
  • the light reflecting member can be provided with a shape that is closer to the shape of the curved surface of the total luminous flux transmission plate by providing the third light reflecting member.
  • the first light reflecting member 191 includes a light directivity forming surface 20a for irradiating the LED illumination tube to the outside of the tube and a pseudo LED element of the LED element mounted on the condensing reflection surface on the side facing the LED element.
  • a pseudo LED element forming surface 20b to be projected is provided. It is preferable that the pseudo LED element forming surface projects the pseudo LED elements of the mounted LED elements in a plurality of rows, for example, 2 rows, 3 rows, and 5 rows.
  • the pseudo LED element forming surface may form a light directivity forming surface.
  • FIG. 6 shows that the pseudo LED element 13a of the LED element 13 mounted on the substrate is first reflected when the LED element is viewed from the direction in which the light emitted from the LED element disposed on the substrate is irradiated.
  • a photograph seen on the left and right pseudo LED forming surfaces 19b of the member is shown.
  • Fig.7 (a) is a figure which shows the light distribution state of irradiation from a LED light source.
  • FIG.7 (b) is a figure which shows the light distribution from a commercially available straight tube
  • FIG.7 (c) is a figure which shows the light distribution from the commercially available straight tube
  • light distribution from a commercially available straight tube LED light source is normally 120 degrees light distribution, and 30 degrees on the left and right are not effectively used for design.
  • the orientation illuminance control means in the light emitting diode type illumination device according to the present invention light in a region of 65 degrees left and right from the center line of the light source is redistributed to a total of 180 degrees 90 degrees left and right from the center line (FIG. 7c).
  • the illuminance in the region 120 degrees from the center line is increased by 10% or more, preferably 50% or more.
  • the reflecting member preferably has a total reflectance of 40% or more.
  • the light reflecting member preferably has a light transmittance of several% to 50% or more.
  • the total reflectance and / or light transmittance of the reflecting member is preferably selected as appropriate according to the purpose of use. In order to improve the light transmission characteristics, it is preferable to use a graphene thin film or a highly transparent polycarbonate material.
  • the light reflecting member is preferably subjected to silver coating, silver plating, or a coating or plating equivalent thereto in order to increase the reflection efficiency.
  • the light reflecting member may be subjected to silver coating or plating on the surface of the highly transparent resin.
  • the orientation illuminance control means varies the elevation angle of the light reflecting member, and / or varies the length of the light reflecting member, and / or varies the light transmittance of the light reflecting member, and / or from the light confinement means.
  • the light irradiation direction is varied, and / or the reflection member is disposed on the substrate on which the LED element is disposed, and / or the angle is set so that the irradiation light is oriented in the recess forming the light confinement means.
  • At least one reflecting plate is provided, and / or the side of the light reflecting member that faces the total light flux transmitting plate is formed in a curved surface and / or irregularities.
  • the orientation illuminance control means is set to minus 30 degrees to 30 degrees with respect to the LED installation position on the side facing the total luminous flux transmission plate. You may form with the 4th reflection member 80 arrange
  • the light reflecting member preferably has a light transmission characteristic in order to include the orientation illuminance control means.
  • the light reflecting member needs to have a light transmission characteristic.
  • the light reflection member is provided with a light penetrating means, for example, a slit or a nano-sized fine hole, and / or light transmission. It is preferable to use a material having excellent properties.
  • the light reflecting member may be prepared by mixing a high reflectance polycarbonate material with a high reflectance polycarbonate material, or the light reflecting surface may be formed only from the high transmittance polycarbonate material.
  • the light reflecting member may be provided with a highly reflecting member on the surface.
  • the light reflecting member is preferably made of a resin material such as polycarbonate or acrylic, a metal material such as aluminum, iron or stainless steel, glass, wood, paper, Japanese paper or the like.
  • FIG. 8 shows a light distribution intensity distribution curve of light emitted from the LED light source.
  • the vertical axis represents illuminance (lux) and the horizontal axis represents the light distribution angle.
  • the illuminance is the illuminance at 25 cm from directly under the light emitting position of the LED element in a state where the total luminous flux transmission plate is not attached.
  • the illuminance and irradiation angle of the light distribution intensity distribution curve are the case where the elevation angle of the light reflecting member: 60 degrees, LED light source: 20 W, total luminous flux: 2640 lm, and if these conditions are different, the light distribution intensity distribution curve The illuminance and irradiation angle are different. Further, if the installation condition of the light reflecting member on the substrate is varied, the illuminance and the irradiation angle of the light distribution intensity distribution curve can be varied.
  • (1) is a single LED
  • (2) is a high reflectivity polycarbonate material
  • thickness is 0.8 mm
  • lengths are 20 mm, 15 mm, 10 mm
  • (3) is a high reflectivity of 50%.
  • the orientation illuminance control means includes (a) a light distribution intensity activation region of a light-transmissive light reflecting member and (b) a light distribution in a region immediately below the LED light source (angle 0 °) to 90 ° in the radial direction.
  • a light distribution intensity distribution curve including an intensity attenuation region and (c) a light distribution intensity reduction region is formed.
  • the light distribution intensity activation region (a) is a region where the irradiation intensity is activated and increased from the irradiation intensity of the single LED, and the light distribution intensity attenuation region (b) is at least 80% from the activated light distribution intensity. It is preferable to provide an irradiation intensity reduction region (c) that is a region attenuated to 20% and has an irradiation intensity that is lower than the light distribution intensity attenuation region of (b).
  • the (a) light distribution intensity activation region, (b) light distribution intensity attenuation region, and (c) irradiation intensity decrease region of the light distribution intensity distribution curve are at least (a) 0 to 15 on the left and right sides immediately below the LED light source.
  • FIG. 9 shows a light distribution intensity distribution curve when the elevation angle of the light reflecting member is varied from 70 degrees to 30 degrees. A light distribution intensity distribution curve similar to that in FIG. 8 is obtained.
  • (a) light distribution intensity activation region, (b) light distribution intensity attenuation region, and (c) irradiation intensity decrease region of the light distribution intensity distribution curve are respectively at least (a) 0 degree to the left and right from directly under the LED light source. It is preferable to have a region of 20 degrees, (b) 35 degrees to 45 degrees, and (c) 50 degrees to 90 degrees. As shown in FIG.
  • the orientation illuminance control means preferably includes an attenuation illuminance width of the light distribution intensity attenuation region; 200 lux, preferably at least 300 lux.
  • the elevation angle of the first light reflection plate is changed from 40 degrees to 85 degrees, the distance between the arrangement end of the LED elements and the first light reflection plate is set to 0.1 to 5.0 mm, and the height of the first light reflection plate is set to LED.
  • the illuminance irradiated by the LED light source is preferably 1.5 to 2.0 times.
  • the elevation angle of the first reflecting member with respect to the substrate, the distance between the LED element end and the reflecting plate, and the height of the reflecting plate depend on the driving voltage and luminous flux of the LED, and the size of the LED illumination device, etc. Variable.
  • the tube of the light emitting diode illumination device is not limited to a substantially semi-cylindrical shape, but may have various shapes.
  • the tube of the light emitting diode illumination device can be formed of a material such as glass or synthetic resin, for example.
  • a member integrally formed so as to be a long semi-cylinder made of a material having predetermined elasticity such as polycarbonate resin may be used.
  • the whole or a part of the tube of the light emitting diode type illumination lamp has translucency, and may be formed of a transparent, translucent, and colored transparent material as long as it can transmit light.
  • the LED element is a surface-mounted white LED that emits white light when the above-described predetermined voltage is applied. It is preferable that the LED elements are arranged at regular intervals so as to form a line along the longitudinal direction of the substrate 12 at the center position in the width direction on the surface side of the substrate.
  • the LED elements may be arranged in a plurality of rows along the longitudinal direction of the substrate 12.
  • FIG. 1 is a schematic view showing a light emitting diode illumination device according to the present invention.
  • FIG. 2 is an exploded perspective view of the straight tube type light emitting diode illumination device shown in FIG.
  • FIG. 3 is a cross-sectional view of the straight tube type light emitting diode illuminating device according to the first embodiment taken along a cross-sectional line AA shown in FIG. As shown in FIG.
  • the light-emitting diode illuminating device 1 is provided in a cylindrical tube body 10 including a translucent cover 31 and a tube member 15 including a total luminous flux transmission plate, and the cylindrical tube body 10.
  • the LED element 13 as the light source, the substrate 12 on which the LED element 13 is mounted, the substrate support member 17, the light reflecting member 19, the LED controller 22, and the end cap 50 are provided.
  • the light reflecting member 19 includes a first light reflecting member 191, a second light reflecting member 193, and a third light reflecting member 195.
  • the tube member 15, the substrate support member 17, the first light reflecting member 191, the second light reflecting member 193, and the third light reflecting member 195 are made of a heat-resistant material such as aluminum, copper, or plastic. Preferably it is made.
  • the light reflecting member a polycarbonate material obtained by mixing a polycarbonate material having a high reflectance (LN5000RM manufactured by Teijin Ltd.) and a polycarbonate material having a high transmittance (MN48005Z manufactured by Teijin Ltd.) was used.
  • the substrate support member 17 and the first light reflecting member 191 are preferably formed integrally. Further, it is preferable that the first light reflecting member 191, the second light reflecting member 193, and the third light reflecting member 195 are integrally formed. Furthermore, it is preferable that the substrate support member 17, the first light reflecting member 191, the second light reflecting member 193, and the third light reflecting member 195 are integrally formed.
  • these members 17, 191, 193, 195 can be easily formed integrally.
  • the substrate support member 17, the first light reflecting member 191, the second light reflecting member 193, and the third light reflecting member 195 are individually formed, and then these members are selected and bonded with an adhesive, screws, or the like. May be.
  • the cylindrical tubular body 10 may lock the upper end portion 71 of the light reflecting member 19 with a locking portion.
  • the substrate support member 17 and the light reflection member 19 are integrally formed, the light reflection member 19 and the substrate support member 17 may be fixed with screws or an adhesive.
  • the light reflecting member 19 provided with the substrate support member 17 may be detachably attached to the locking portion.
  • the light reflecting member 19 and the substrate support member 17 may be separately attached to the locking portion so as to be removable.
  • the first light reflecting member 19 is preferably provided integrally on the substrate 17.
  • a heat sink for the tube member 15, the substrate support member 17, the light reflecting members 191, 193, and 195, a high heat dissipation effect can be obtained.
  • the heat can be at a safe temperature, for example 40 ° C.
  • the heat sink material is generally aluminum or copper, which is excellent in heat conduction efficiency.
  • the substrate 12 is accommodated and supported in a longitudinal internal space (closed space) of the substrate support member 17.
  • the LED element 13 is disposed in a stripe-like opening formed on the side of the translucent cover 31 of the substrate support member 17 with the light emitting surface facing the translucent cover 31.
  • the total luminous flux transmission plate 31 is preferably a total luminous flux transmission plate having a total luminous flux transmittance of 95% or more.
  • the total luminous flux transmission plate preferably has a total luminous flux transmittance of 95 (%) or more.
  • the total luminous flux transmittance (%) is represented by the total luminous flux when the test piece is placed / total luminous flux when the test piece is not placed ⁇ 100.
  • the LED elements 13 mounted on the substrate 12 may be arranged in one row or in a plurality of rows with a predetermined interval in the longitudinal direction of the substrate. As shown in FIG.
  • a plurality of LED elements 13 are mounted on the substrate 12 at equal intervals along the longitudinal direction.
  • An LED controller 21 is disposed at the end of the substrate 12.
  • the distance (S) between the LED element end and the condensing reflection surface 19a of the first reflecting member 19 is 0.1 mm to 5.0 mm, preferably 0.5 mm to 2.0 mm, and the first light reflection.
  • the elevation angle ⁇ of the member 19 is preferably 45 to 85 degrees, preferably 50 to 65 degrees, and the total reflectance of the reflecting member is preferably 80% or more.
  • the interval may be zero if an electrical insulating material is provided on a part of the condensing reflection surface.
  • the first light reflecting member 19 extends along the curved shape of the first light reflecting member 191 and the first light reflecting member 191 extending at a predetermined elevation angle; an angle of 50 degrees to 75 degrees toward the total light flux transmitting plate 31.
  • a second light reflecting member 193 provided by bending, a third light reflecting member 195 connecting the first light reflecting member 191 and the second light reflecting member 193 are provided.
  • the light reflecting member 19 is not limited to the structure of the first light reflecting member 191, the second light reflecting member 193, and the third light reflecting member 195, and may be configured in a multistage structure by connecting the light reflecting members.
  • the second light reflection member 193 and the third light reflection member 195 preferably include light reflection surfaces 193a and 195a having light reflection characteristics on the side facing the total light flux transmission plate 31, respectively.
  • the light emitted from the LED element irradiates the outside of the tube through the total luminous flux transmission plate 31 through the light reflecting member 19.
  • the light emitted from the LED element is arranged corresponding to the light reflecting surface 193a of the second light reflecting member 193 when irradiating the tube through the total light flux transmitting plate 31 via the first light reflecting member 191. It is confined in the provided total light flux transmission plate 31 and / or confined in the light confinement path 60 formed between the total light flux transmission plate 31 and the second light reflecting member 193, and further provided in the light confinement path 60.
  • the confined light is confined in the recess 62 of the light reflecting member, is further confined in the space 64 formed by the light reflecting member 19 and the total luminous flux transmission plate 31, and the confined light is transmitted from the total luminous flux transmission plate 31 to the tube body. It is preferable to irradiate outside.
  • the first light reflecting member 191 has an elevation angle with respect to the substrate; 45 From 85 degrees to 85 degrees, preferably from 50 degrees to 65 degrees, the distance (S) between the LED element end and the first light reflecting member: 0.5 to 5.0 mm, the height of the reflector; the width of the LED element It is preferably set to 5 times or more, preferably 10 to 20 mm.
  • the illuminance distribution can be wide angle (140 degrees or more), and the performance (illuminance and light distribution) of the conventional fluorescent lamp is 50% of the power consumption of the fluorescent lamp. This makes it possible to use energy-saving lighting sources.
  • the power consumption can be about 12 to 13 compared with the fluorescent lamp, and the illuminance / PPFD can be increased 2 to 3 times (compared to the conventional LED). Contributes to safety and security without generating high heat like fluorescent tubes.
  • pipe type light emitting diode type illumination lamp 1 can be 500 g or less.
  • a driving device such as an AC power source is preferably disposed below the substrate on which the LED elements in the LED lighting tube are mounted, or on the back side of the condensing reflection surface of the reflecting member.
  • the forward voltage for driving the LED element of the light emitting diode type lighting device the LED element mounted on the substrate by driving the light emitting diode type lighting device by applying the LED element of at least 1.5V to 4.5V
  • the pseudo LED element is displayed on the pseudo LED formation surface.
  • the pseudo LED element preferably projects the pseudo LED element on the pseudo LED formation surface if the LED element emits light.
  • the driving voltage is preferably driven by a single power source.
  • the light-emitting diode illumination device according to the present invention is preferably a straight tube light-emitting diode illumination device.
  • the light emitting diode type illumination device according to the present invention may be used for a light source of an electronic device, for example, a backlight of a liquid crystal device.
  • the present invention is a light emitting diode type illumination lamp, electronic device, plant factory, LED signboard

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)

Abstract

光源としてのLED素子で発光した光の配向の照度を高照度をもって制御する発光ダイオード式照明装置を提供する。 LED素子13から発光された光を配向させて照射される配向照度を制御する配向照度制御手段を備える発光ダイオード式照明装置1であってLED素子13の発光側に配設された集光反射面19aを備える光反射部材19と、光反射部材19は、LED素子13の中心線に対して対称又は非対称に光の照射方向に向けて延出して配設され、かつ、前記LED素子13から発光された光を配光させて照射される配向照度を制御する配向照度制御手段を備える。

Description

発光ダイオード式照明装置
 本発明は、発光ダイオード式照明装置、特に直管型発光ダイオード式照明装置に関する。
 LEDは、従来の照明器具と比較した場合、消費電力を減らして従来の白熱灯や蛍光灯と同程度の照度・光エネルギーを出すことが可能で、今後さらに普及していくことが期待されている。蛍光灯の代替光源として使用できる蛍光灯と同様な外観を有し、既設の蛍光灯器具にもそのまま取り付けることが可能な、直管型のLED照明管は、例えば特許文献1及び2に知られている。
 このような直管型のLED照明管は、LED光源からの光を広角度に均一に照射することが可能である。従来のLED照明管は、LED光源からの光に配光をもたせ、かつLED光源からの光の配光強度に多様性をもたせることができなかった。
特開2014−053267号公報 特開2013−219004号公報
 本発明は、従来の欠点を鑑みてなされたもので、その目的はLED光源からの光に配光をもたせ、かつLED光源から照射される光の配光強度に多様性をもたせることができる発光ダイオード式照明装置を提供することにある。
 本発明に係る発光ダイオード式照明装置は、光の照射方向に配設された全光束透過板を備えるLED照明管と、前記LED照明管内に前記全光束透過板に対向して基板に配置されたLED素子と、該LED素子の発光側に配設された集光反射面を備える光反射部材と、前記光反射部材は、前記LED素子の中心線に対して対称又は非対称に光の照射方向に向けて延出して配設され、かつ前記該LED素子から発光された光を配光させて照射される配向照度を制御する配向照度制御手段を備える。
 本発明に係る発光ダイオード式照明装置は、光反射部材が、前記LED素子から発光した光に光指向性を持たせてLED照明管から全光束透過板を通して管外に照射させるための光指向形成面と、前記LED素子の擬似LED素子を映し出すための擬似LED素子形成面を備える集光反射面を備えることを特徴とする。
 本発明に係る発光ダイオード式照明装置は、前記光反射部材が、該反射部材にスリット及び又はナノサイズを備える細孔を備える、及び又は光透過性を備える材料を用いることを特徴とする。
 本発明に係る発光ダイオード式照明装置は、前記配向照度制御手段を備える。配向照度制御手段は、LED光源直下(角度0度)から半径方向90度の領域において、(a)光透過性の光反射部材の配光強度賦活領域と、(b)配光強度減衰領域と、(c)配光強度低下領域とを備える配光強度分布曲線を形成する。
 配向照度制御手段は、前記光反射部材の仰角を可変する、及び又は前記光反射部材の長さを可変する、及び又は光反射部材の光透過率を可変する、及び又は前記光閉じ込め手段からの光の照射方向を可変する、及び又はLED素子が配設される基材上に反射部材を配設する、及び又は、光閉じ込め手段を形成する凹所内に照射の光が配向するように角度を持たせた少なくとも1つの反射板を配設する、及び又は光反射部材の全光束透過板に対向する側を曲面に及び又は凹凸に形成する。
 反射部材は、光源の設置面に対して前記LED素子の中心線に対して対称又は非対象に光の照射方向に向けて延出して配設された第1反射部材と、該第1反射部材に接続して前記前記全光束透過板の形状に沿っては配設された第2反射部材を備える。
 第1光反射板は、基板に対して仰角を2~5度、好ましくは30度以上に可変されて基板に設置される。
 LED素子から発光した光を前記全光束透過板に、及び又は前記全光束透過板と前記光反射部材との間の空間に閉じ込めて該全光束透過板を通して前記管外に照射するための光閉じ込め手段とを備える。
 反射部材は、光透過特性及び光反射特性を備える。
 本発明によれば、LED光源からの光に配光をもたせ、かつLED光源から照射される光の配光強度に多様性をもたせることができる発光ダイオード式照明装置を提供することにある。
 図1は本発明に係わる直管形発光ダイオード照明装置の斜視図である。
 図2は図1に示す直管形発光ダイオード照明装置の分解斜視図である。
 図3は図1に示す断面線AーAにおける第1実施形態に係る直管形発光ダイオード照明装置の断面図である。
 図4は本発明の直管型製品の光路を示す概略図である。
 図5は図1の発光ダイオード式照明装置におけるLED素子である光源から発光された光を閉じ込める手段を示す概略図である。
 図6は本発明の発光ダイオード式照明装置における基板に実装されているLED素子の擬似LED素子が反射部材に映って見える写真を示す。
 図7(a)はLED素子からの照射の配光を示す概略図である。
 図7(b)は市販の直管型製品のLED素子からの照射の配光を示す概略図である。
 図7(c)は本発明の直管型製品のLED素子からの照射の配光を示す概略図である。
 図8は本発明に係わる直管形発光ダイオード照明装置の配光強度分布曲線を示す概略図である。
 図9は本発明に係わる直管形発光ダイオード照明装置の他の配光強度分布曲線を示す概略図である。
 図10は本発明に係わる直管形発光ダイオード照明装置のさらに他の配光強度分布曲線を示す概略図である。
 本発明に係る発光ダイオード式照明装置は、光の照射方向に配設された全光束透過板を備えるLED照明管と、LED照明管内に全光束透過板に対向して基板に配置された光源としてのLED素子と、LED素子の発光側に配設された光反射特性を有する集光反射面を備える光反射部材とを備える。光反射部材は、LED素子の中心線に対して対称又は非対称に光の発光方向に向けて延出して配設される。
 図4は、発光ダイオード式照明装置におけるLED素子である光源から発光された光の光路を説明する概略図である。
 図4において、光反射部材19は、第1反射部材191及び第2反射部材193を備える。反射部材は、Al材等のヒートシンク部材を備えることが好ましい。第1反射部材は、基板に対して仰角を基板に対して仰角を2~5度、好ましくは30度以上に、好ましくは40度から85度に、好ましくは50度から65度に、さらに85度から120度に設定される。第2反射部材は、第1反射部材から全光束透過板の形状に沿って外方に向かって広角方向に配設されることが好ましい。
 図4に示すように、LED素子から発光された光は、▲1▼LED素子の光源直下から第1反射部材の内部空間を直進して全光束透過板から管体の外に照射される、さらに▲2▼第1反射部材の集光反射面で反射して第1反射部材の内部空間を通って全光束透過板から管体の外に照射される、さらに▲3▼第1反射部材の集光反射面で反射して第1反射部材の内部空間を通って全光束透過板に到達した光がさらに第2反射部材で反射して光閉じ込め手段を介して全光束透過板から管体の外に照射される、さらに▲4▼LED素子から発光した光が第1反射部材を透過又は通過して第1反射部材と全光束透過板との間に形成された空間の閉じ込め手段に閉じ込められた後全光束透過板から管体の外に照射される。
 光閉じ込め手段は、全光束透過板31に設けられ、及び又は全光束透過板と対向する光反射部材の空隙60に設けられ、及び又前記全光束透過板に対向する光反射部材に設けられた凹所62に設けられ、及び又は前記全光束透過板31と光反射部材19との空所64に設けられることが好ましい(図5)。
 光閉じ込め手段は、光閉じ込め照度賦活手段を備えてもよい。光閉じ込め照度賦活手段は、光拡散シートや光拡散フィルムが、全光束透過板と対向する反射部材の内面、及び又は反射部材と全光束透過板との間に設けられた空所の全光束透過板と対向する反射部材の内面に光拡散シートや光拡散フィルムを設け、及び又は内面に金等の金属メッキを施すことが好ましい。光閉じ込め照度賦活手段は、LED光源の中心線より外方に向かう側に光閉じ込め照度賦活手段を設けることが好ましい。外方に向かう側からより多くの光が照射される向きに光閉じ込め照度賦活手段としての光拡散シートや光拡散フィルムの形状を形成し、また凹凸を形成することが好ましい。
 第1反射部材191は、LED素子から発光した光に光指向性を持たせてLED照明管から全光束透過板31を通して管外に照射させるための光指向形成面20aを備える。第2反射部材は、照明管に配設され全光束透過板に対向して光反射特性を有する集光反射面19aを備える。第2反射部材193は、第1反射部材の終端から全光束透過板の形状に沿って外方に向かって広角方向に配設されることが好ましい。なお、LED照明管は、光の照射方向に配設された全光束透過板を備えないことも可能である。さらに、反射部材は、第1反射部材と第2反射部材との間に第3光反射部材195を設けてもよい。光反射部材は、第3光反射部材を設けることにより全光束透過板の曲面の形状により近い形状を備えることができる。
 第1光反射部材191は、LED照明管から管外に照射するための光指向性形成面20aと、LED素子に面する側の集光反射面に前記実装されたLED素子の擬似LED素子を映し出す擬似LED素子形成面20bを備える。擬似LED素子形成面は、実装されたLED素子の擬似LED素子を、複数列、例えば2列、3列、5列に写し出すことが好ましい。なお、擬似LED素子形成面は、光指向性形成面を形成していてもよい。図6は、前記基板に配設されたLED素子から発光した光が、照射される方向からLED素子を見た際に、基板に実装されているLED素子13の擬似LED素子13aが第1反射部材の左右の擬似LED形成面19bに映って見える写真を示す。
 図7(a)は、LED光源からの照射の配光状態を示す図である。図7(b)は、市販の直管型LED光源からの配光を示す図である。図7(c)は、本発明の市販の直管型LED光源からの配光を示す図である。
 図7bに示すように、市販の直管型LED光源からの配光は、通常120度配光で設計のため左右30度を有効に使用されていない。本発明に係る発光ダイオード式照明装置に配向照度制御手段を設けることにより、光源の中心線から左右65度ずつ合計130度の領域の光を中心線から左右90度、合計180度まで再配光することができる(図7c)。これにより中心線から120度の領域の照度が10%以上、好ましくは50%以上高くなる。
 反射部材は、全反射率を40%以上備えることが好ましい。光反射部材は、光透過率を数%から50%以上を備えることが好ましい。反射部材の全反射率及び又は光透過率は、使用目的に応じて適宜選択することが好ましい。光透過特性を高めるためにグラフェン薄膜や、高透過性ポリカ材を用いることが好ましい。光反射部材は、反射効率を高めるために銀塗装、銀メッキあるいはこれに準ずる塗装やメッキを施すことが好ましい。光反射部材は、高透過性樹脂の表面にストライブ上に銀塗装やメッキを施してもよい。
 配向照度制御手段は、前記光反射部材の仰角を可変する、及び又は前記光反射部材の長さを可変する、及び又は光反射部材の光透過率を可変する、及び又は前記光閉じ込め手段からの光の照射方向を可変する、及び又はLED素子が配設される基材上に反射部材を配設する、及び又は、光閉じ込め手段を形成する凹所内に照射の光が配向するように角度を持たせた少なくとも1つの反射板を配設する、及び又は光反射部材の全光束透過板に対向する側を曲面に及び又は凹凸に形成する。
 配向照度制御手段は、閉じ込め手段が、第1反射部材と全光束透過板とを備える空所である場合、全光束透過板と対向する側でLED設置位置に対してマイナス30度から30度の位置に配設された第4反射部材80で形成してもよい。
 光反射部材は、配向照度制御手段を備えるために光透過特性を備えることが好ましい。光反射部材は、配向照度制御手段を設けるために、光透過特性を持たせることが必要であり、このために光貫通手段、例えばスリットやナノサイズを備える細孔等を備え、及び又は光透過性の優れた材料を用いることが好ましい。光反射部材は、高反射率ポリカ材に高透過率ポリカ材を混ぜて作成してもよく、又は高透過率ポリカ材のみで光反射面を形成してもよい。光反射部材は、表面に高反射部材を設けてもよい。光反射部材は、ポリカやアクリル等の樹脂材、アルミ、鉄、ステンレス等の金属材、ガラス、木材、紙、和紙等で作られることが好ましい。
 図8は、LED光源から照射される光の配光強度分布曲線を示す。図8において、縦軸は照度(ルクス)、横軸は配光角度である。ここで、照度は、全光束透過板を取り付けていない状態で、LED素子の発光位置直下から25cmにおける照度である。配光強度分布曲線の照度及び照射角度は、光反射部材の仰角;60度、LED光源;20W、全光束;2640lmを用いた場合であり、これら条件を異にすれば、配光強度分布曲線の照度及び照射角度は、異なる。また、光反射部材の基板への設置条件を可変すれば配光強度分布曲線の照度及び照射角度は、可変される。
 図8において、▲1▼はLED単体、▲2▼は、高反射率のポリカ材である厚さ;0.8mmで、長さ20mm、15mm、10mm、▲3▼は、高反射率50%と高光透率50%のポリカ材である厚さ0.8mmで、長さ20mm、長さ15mm、長さ10mmをそれぞれ使用した配向角度と照度(ルクス)との関係を示す。
 図8において、配向照度制御手段は、LED光源直下(角度0度)から半径方向90度の領域において、(a)光透過性の光反射部材の配光強度賦活領域と、(b)配光強度減衰領域と、(c)配光強度低下領域とを備える配光強度分布曲線を形成する。配光強度賦活領域(a)は、LED単体の照射強度より照射強度が賦活されて高められて領域であり、配光強度減衰領域(b)は、賦活された配光強度より少なくとも80%~20%に減衰した領域であり、かつ(b)の配光強度減衰領域よりさらに低い照射強度を有する照射強度低下領域(c)を備えることが好ましい。
 図8において、配光強度分布曲線の(a)配光強度賦活領域、(b)配光強度減衰領域、(c)照射強度低下領域は、それぞれLED光源直下から左右少なくとも(a)0~15度、(b)25度~40度、(c)60度~90度の領域を備えることが好ましい。
 図9は、光反射部材の仰角の角度を70度から30度に可変した際の配光強度分布曲線を示す。図8と同様な配光強度分布曲線が得られる。図9において、配光強度分布曲線の(a)配光強度賦活領域、(b)配光強度減衰領域、(c)照射強度低下領域は、それぞれLED光源直下から左右少なくとも(a)0度~20度、(b)35度~45度、(c)50度~90度の領域を備えることが好ましい。
 配向照度制御手段は、図9に示すように、配光強度減衰領域の減衰照度幅;200ルクス、好ましくは少なくとも300ルクスを備えることが好ましい。
 第1光反射板の仰角を40度から85度に、さらにLED素子の配置端と第1光反射板との間隔を0.1~5.0mmに、第1光反射板の高さをLED素子の幅の5倍以上、好ましくは10mm~20mmに設定することにより、広い照射角度で光量のロスを無くして、照度やPPFDを向上させることができる。LED光源により照射される照度は、1.5~2.0倍を得ることが好ましい。なお、第1反射部材を基板に対して仰角、LED素子端部と反射板との間隔、反射板の高さは、LEDの駆動電圧や光束、さらにLED照明装置の直径等のサイズに応じて可変される。
 なお、発光ダイオード式照明装置の管体は、略半円筒状に限らずに種々の形状を備えることができる。発光ダイオード式照明装置の管体は、例えば、ガラスや合成樹脂等の材料で形成することができる。例えば、ポリカーボネート樹脂等の所定の弾性を有する材料により長尺の半円筒となるように一体成形した部材でもよい。また、発光ダイオード式照明灯の管体の全体又は一部は、透光性を有しており、透光可能な限りにおいて透明、半透明、有色透明の材料で形成されていてもよい。
 LED素子は、上述した所定の電圧を印加すると白色に発光する表面実装型の白色LEDである。このLED素子が、基板の表面側の幅方向中央位置に基板12の長手方向に沿って一列となるように一定間隔で配置されていることが好ましい。LED素子は、基板12の長手方向に沿って複数列となるように配置してもよい。
 以下、本発明の一実施形態について添付図面を参照して具体的に説明する。本発明は、上述した実施形態には限定されない。すなわち、当業者は、本発明の技術的範囲又はその均等の範囲内において、上述した実施形態の構成要素に関し、様々な変更、組み合わせ、代替を行なってもよい。
 図1は、本発明に係る発光ダイオード式照明装置を示す概略図である。図2は、図1に示す直管形発光ダイオード照明装置の分解斜視図である。図3は、図1に示す断面線AーAにおける第1実施形態に係る直管形発光ダイオード照明装置の断面図である。
 図3に示すように、発光ダイオード式照明装置1は、全光束透過板を備える透光性カバー31及び管体部材15を備える円筒状管体10と、円筒状管体10の内部に配設された光源としてのLED素子13と、LED素子13が実装された基板12と、基板支持部材17と、光反射部材19と、LED制御器22と、端部キャップ50とを備える。さらに、光反射部材19は、第1光反射部材191と、第2光反射部材193と、第3光反射部材195とを備える。ここで、管体部材15と、基板支持部材17と、第1光反射部材191と、第2光反射部材193と、第3光反射部材195は、アルミや、銅、プラスチック等のヒートシクン材で作られることが好ましい。光反射部材は、高反射率のポリカ材(帝人社製LN5000RM)と高透過率のポリカ材(帝人社製MN48005Z)とを混合させたポリカ材を使用した。
 また、本実施形態において、基板支持体部材17と第1光反射部材191は一体成形して作られることが好ましい。また、第1光反射部材191と、第2光反射部材193と、第3光反射部材195とを一体成形して作られることが好ましい。さらに、基板支持部材17、第1光反射部材191と、第2光反射部材193と、第3光反射部材195とは一体成形して作られることが好ましい。これら部材17、191、193、195にプラスチックを使用すれば、これら部材を一体成形することが容易にできる。基板支持部材17、第1光反射部材191と、第2光反射部材193と、第3光反射部材195を、それぞれ個別に形成して、その後これら部材を選択して接着剤やネジ等で接合してもよい。円筒状管体10は、光反射部材19の上端部71を係止部で係止してもよい。
 基板支持部材17と光反射部材19とは、一体に形成されているが、光反射部材19と基板支持部材17は、ねじや接着材で固定してもよい。基板支持部材17を備えた光反射部材19は、係止部に着脱可能に取り付けられてもよい。光反射部材19と基板支持部材17とは、係止部から別々に取りは外し可能に取り付けられていてもよい。第1光反射部材19は、基板17上に一体して設けられていることが好ましい。
 管体部材15、基板支持部材17、光反射部材191、193、195にヒートシンクを使用することにより、高い放熱効果を得ることができ、例えばヒートシンクの素材をアルミニウムにした場合、人体の触れる部分の熱を安全な温度、例えば40℃とすることができる。ヒートシンクの素材は、熱伝導効率に優れているアルミニウムあるいは銅が一般的である。
 図3に示すように、基板12は、基板支持部材17の長手形状の内部空間(閉空間)内に収容され支持されている。また、LED素子13は、基板支持部材17の透光性カバー31側に形成されたストライブ状の開口部に発光面を透光性カバー31と対向させて配設される。
 全光束透過板31は、全光束透過率95%以上を有する全光束透過板であることが好ましい。全光束透過板は、全光束透過率95(%)以上を備えることが好ましい。全光束透過板31は、帝人社製の高拡散タイプである樹脂製のMLシリーズを用いた。ここで、全光束透過率(%)は、試験片を載せた時の全光束/試験片を載せない時の全光束×100で表される。
 基板12に実装されたLED素子13は、基板の長手方向に所定の間隔をもって1列に、もしくは複数列に配設されてもよい。図2に示すように基板12上には長手方向に沿って等間隔に複数のLED素子13が実装されている。また、基板12の端部にはLED制御器21が配置されている。
 前記LED素子端部と第1反射部材19の集光反射面19aとの間隔長(S)は、0.1mmから5.0mmに、好ましくは0.5mmから2.0mmに、第1光反射部材19の仰角αは、45度から85度に、好ましくは50度から65度に、かつ前記反射部材の全反射率を80%以上に規定されていることが好ましい。上記間隔は、集光反射面の一部に電気絶縁材を設ければ、ゼロであってもよい。
 第1光反射部材19は、全光束透過板31に向かって所定の仰角;50度から75度の角度で延出する第1光反射部材191と、全光束透過板31の湾曲形状に沿って屈曲して設けられている第2光反射部材193と 第1光反射部材191と第2光反射部材193とを繋ぐ第3光反射部材195とを備える。光反射部材19は、第1光反射部材191、第2光反射部材193、第3光反射部材195の構成に限らずに光反射部材を繋いでさらに多段構成にしてもよい。
 第2光反射部材193及び第3光反射部材195は、全光束透過板31と対向する側に光反射特性を有する光反射面193a及び195aをそれぞれ備えることが好ましい。
 前記LED素子から発光した光は、光反射部材19を介して全光束透過板31を通して管体の外に照射する。前記LED素子から発光した光は、第1光反射部材191を介して全光束透過板31を通して管体の外に照射する際に、第2光反射部材193の光反射面193aに対応して配設された全光束透過板31に閉じ込められ、及び又は前記全光束透過板31と前記第2光反射部材193との間に形成された光閉じ込め路60に閉じ込められ、さらに光閉じ込め路60に設けられた光反射部材の凹所62に閉じ込められ、さらに光反射部材19と全光束透過板31とにより形成された空所64に閉じ込められ、そして閉じ込められた光が全光束透過板31から管体の外に照射されることが好ましい。
 さらに、前記LED素子から発光した光は、第1光反射部材191を介して全光束透過板を通して管体の外に照射する際に、第1光反射部材191は、基板に対して仰角;45度から85度に、好ましくは50度から65度、LED素子端部と第1光反射部材との間隔(S);0.5~5.0mm、反射板の高さ;LED素子の幅の5倍以上、好ましくは10~20mmに設定されることが好ましい。
 LED素子から全光束透過板を介して管外に照射される光は、照射角度;120度から180度、全光束全光束;2000~3000lmで照射される。この際に、擬似LEDが、第1光反射部材に映し出されることが好ましい。
 直管形発光ダイオード式照明装置1によれば、照度分布を広角(140度以上)にすることが可能となり、従来の蛍光灯の性能(照度と配光)を蛍光灯の50%の消費電力で可能となり、省エネ照明光源を可能にする。具体的には、消費電力を蛍光灯に比べて12~13程度のでき、照度・PPFDを2から3倍(従来のLED比較)にできる。蛍光管のような高熱を発することがなく、安全と安心に寄与する。また、直管形発光ダイオード式照明灯1は、500g以下にできる。
 AC電源等の駆動装置は、LED照明管内のLED素子を実装した基板の下方に、又は反射部材の集光反射面の裏側に配設されることが好ましい。
 ここで、発光ダイオード式照明装置のLED素子を駆動する順方向電圧;少なくとも1.5V~4.5VをLED素子を印加して発光ダイオード式照明装置を駆動し、前記基板に実装されたLED素子から発光される光の方向から該基板に実装されたLED素子方法を見た際に、前記擬似LED形成面に擬似LED素子が映し出される。なお、擬似LED素子は、LED素子が発光すれば、前記擬似LED形成面に擬似LED素子が映し出されることが好ましい。前記駆動電圧は、単一電源で駆動することが好ましい。
 本発明に係る前記発光ダイオード式照明装置は、直管形発光ダイオード式照明装置であることが好ましい。本発明に係る発光ダイオード式照明装置は、電子装置の光源、例えば液晶装置のバックライトに使用してもよい。
 本発明は、発光ダイオード式照明灯、電子装置、植物工場、LED看板
1   発光ダイオード式照明装置
10  円筒状管体
12  基板
13  LED素子
13a 疑似LED素子
15  管体部材
16  中心線
17  基板支持部材
19  光反射部材
191 第1光反射部材
19a 集光反射面
193 第2光反射部材
193a光反射面
195 第3光反射部材
195a光反射面
20a 光指向形成面
20b 疑似LED形成面
23  第1光反射部材の延出部
31  全光束透過板
50  端部キャップ
60  光閉込め路
62  光閉込め凹所
64  光閉込め空所
65  電源
80  第4反射部材

Claims (11)

  1.  光の照射方向に配設された全光束透過板を備えるLED照明管と、前記LED照明管内に前記全光束透過板に対向して基板に配置されたLED素子と、該LED素子の発光側に配設された集光反射面を備える光反射部材と、前記光反射部材は、前記LED素子の中心線に対して対称又は非対象に光の照射方向に向けて延出して配設され、かつ前記該LED素子から発光された光を配向させて照射される配向照度を制御する配向照度制御手段を備える発光ダイオード式照明装置。
  2.  前記光反射部材は、前記LED素子から発光した光に光指向性を持たせてLED照明管から全光束透過板を通して管外に照射させるための光指向形成面と、前記LED素子の擬似LED素子を映し出すための擬似LED素子形成面を備える集光反射面を備えることを特徴とする請求項1記載の発光ダイオード式照明装置。
  3.  前記光反射部材は、該反射部材に光を貫通する手段及び又は光透過性の優れた材料を用いることを特徴とする請求項1記載の発光ダイオード式照明装置。
  4.  前記配向照度制御手段は、LED光源直下(角度0度)から半径方向90度の領域において、(a)光透過性の光反射部材の配光強度賦活領域と、(b)配光強度減衰領域と、(c)配光強度低下領域とを備える配光強度分布曲線を形成することを特徴とする請求項1記載の発光ダイオード式照明装置。
  5.  前記配向照度制御手段は、前記光反射部材の仰角を可変する、及び又は前記光反射部材の長さを可変する、及び又は光反射部材の光透過率を可変する、及び又は前記光閉じ込め手段からの光の照射方向を可変する、及び又はLED素子が配設される基材上に反射部材を配設する、及び又は、光閉じ込め手段を形成する凹所内に照射の光が配向するように角度を持たせた少なくとも1つの反射板を配設することを特徴とする請求項1記載の発光ダイオード式照明装置。
  6.  前記反射部材は、光源の設置面に対して前記LED素子の中心線に対して対称又は非対象に光の照射方向に向けて延出して配設された第1反射部材と、該第1反射部材に接続して前記前記全光束透過板の形状に沿っては配設された第2反射部材を備えることを特徴とする請求項1記載の発光ダイオード式照明装置。
  7.  前記第1光反射板は、基板に対して仰角;2~5度から30度以上に可変されて基板に設置されることを特徴とする請求項6記載の発光ダイオード式照明装置。
  8.  前記前記LED素子から発光した光を前記全光束透過板に、及び又は前記全光束透過板と前記光反射部材との間の空間に閉じ込めて該全光束透過板を通して前記管外に照射するための光閉じ込め手段とを備えることを特徴とする請求項1記載の発光ダイオード式照明装置。
  9.  前記反射部材は、光透過特性及び光反射特性を備えることを特徴とする請求項8記載の発光ダイオード式照明装置。
  10.  前記光反射部材は、光透過特性を持たせるために光貫通手段を備えることを特徴とする請求項8記載の発光ダイオード式照明装置。
  11.  前期光貫通手段は、スリットやナノサイズを備える細孔及び又は光透過性を備える材料であることを特徴とする請求項8記載の発光ダイオード式照明装置。
PCT/JP2017/036898 2016-09-29 2017-09-26 発光ダイオード式照明装置 WO2018062576A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780072448.6A CN110023670A (zh) 2016-09-29 2017-09-26 发光二极管式照明装置
US16/337,064 US11221112B2 (en) 2016-09-29 2017-09-26 LED illumination device having light reflecting and transmitting member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-203910 2016-09-29
JP2016203910A JP2018056105A (ja) 2016-09-29 2016-09-29 発光ダイオード式照明装置

Publications (1)

Publication Number Publication Date
WO2018062576A1 true WO2018062576A1 (ja) 2018-04-05

Family

ID=61760583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036898 WO2018062576A1 (ja) 2016-09-29 2017-09-26 発光ダイオード式照明装置

Country Status (5)

Country Link
US (1) US11221112B2 (ja)
JP (1) JP2018056105A (ja)
CN (1) CN110023670A (ja)
TW (1) TWI650510B (ja)
WO (1) WO2018062576A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010231941A (ja) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd アンビエント照明システム
JP2011049154A (ja) * 2009-07-30 2011-03-10 Cremona:Kk Led照明灯
JP2011150916A (ja) * 2010-01-22 2011-08-04 Toshiba Lighting & Technology Corp 照明器具
JP5717114B1 (ja) * 2014-10-17 2015-05-13 株式会社アブラム 直管形発光ダイオード式照明灯

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6860628B2 (en) * 2002-07-17 2005-03-01 Jonas J. Robertson LED replacement for fluorescent lighting
US7267461B2 (en) * 2004-01-28 2007-09-11 Tir Systems, Ltd. Directly viewable luminaire
KR20080053712A (ko) * 2006-12-11 2008-06-16 삼성전기주식회사 Led 광원장치
US7815338B2 (en) * 2008-03-02 2010-10-19 Altair Engineering, Inc. LED lighting unit including elongated heat sink and elongated lens
US7976196B2 (en) * 2008-07-09 2011-07-12 Altair Engineering, Inc. Method of forming LED-based light and resulting LED-based light
TWM367286U (en) * 2008-12-22 2009-10-21 Hsin I Technology Co Ltd Structure of LED lamp tube
TW201116775A (en) * 2009-11-02 2011-05-16 Ledtech Electronics Corp LDE lighting device
CN101975345B (zh) * 2010-10-28 2013-05-08 鸿富锦精密工业(深圳)有限公司 Led日光灯
TWM438603U (en) * 2012-05-24 2012-10-01 Justing Tech Taiwan Pte Ltd Improved lamp casing structure
TW201413164A (zh) * 2012-09-20 2014-04-01 Lextar Electronics Corp 燈具
US9285084B2 (en) * 2013-03-14 2016-03-15 Ilumisys, Inc. Diffusers for LED-based lights
US10161570B2 (en) * 2014-01-22 2018-12-25 Philips Lighting Holding B.V. Lighting device and luminaire
CN204141303U (zh) * 2014-08-16 2015-02-04 鹤山市银雨照明有限公司 一种新型led日光灯管
CN204164997U (zh) * 2014-09-26 2015-02-18 河南盈硕半导体照明科技有限公司 Led灯散热结构及led日光灯
US9752735B2 (en) * 2015-08-21 2017-09-05 Linmore Led Labs, Inc. Optically and thermally efficient high bay light fixture
CN105757487A (zh) * 2016-04-29 2016-07-13 中山华园光电科技有限公司 一种配置有电源支架的led灯管

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010231941A (ja) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd アンビエント照明システム
JP2011049154A (ja) * 2009-07-30 2011-03-10 Cremona:Kk Led照明灯
JP2011150916A (ja) * 2010-01-22 2011-08-04 Toshiba Lighting & Technology Corp 照明器具
JP5717114B1 (ja) * 2014-10-17 2015-05-13 株式会社アブラム 直管形発光ダイオード式照明灯

Also Published As

Publication number Publication date
CN110023670A (zh) 2019-07-16
US20200141544A1 (en) 2020-05-07
JP2018056105A (ja) 2018-04-05
TW201816321A (zh) 2018-05-01
TWI650510B (zh) 2019-02-11
US11221112B2 (en) 2022-01-11

Similar Documents

Publication Publication Date Title
US20110249467A1 (en) Light emitting device creating decorative light effects in a luminaire
JP2020510969A (ja) 導光体を備える照明器具
JP6190561B1 (ja) 発光モジュール
JP2017228490A (ja) 車両用灯具
TW201702522A (zh) 發光二極體式照明裝置
TWM422633U (en) The luminaire with asymmetric luminous intensity
JP2010192388A (ja) 照明器具
US9766385B2 (en) Illumination device with waveguide and LEDs
JP2008300298A (ja) 面照明光源装置及び面照明装置
JP5588217B2 (ja) 照明装置
WO2018062576A1 (ja) 発光ダイオード式照明装置
JP2011070922A (ja) 照明器具
WO2017092604A1 (zh) 一种led灯
US11156329B2 (en) Light-emitting diode-type illumination device
TWM462330U (zh) 曲面燈具
JP5853128B2 (ja) 照明器具
JP5701675B2 (ja) カバー及び当該カバーを備えた照明装置
JP2017050266A (ja) 発光ダイオード式照明装置
JP6179766B2 (ja) 照明器具
JP6081563B2 (ja) 照明装置
JP5860132B2 (ja) カバー及び当該カバーを備えた照明装置
JP2017050265A (ja) 発光ダイオード式照明装置
WO2016163532A1 (ja) 発光ダイオード式照明装置
WO2014183242A1 (zh) 一种led直下式面板灯具
JP2013118084A (ja) 照明器具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17856522

Country of ref document: EP

Kind code of ref document: A1