WO2018061910A1 - Method for manufacturing molded body - Google Patents

Method for manufacturing molded body Download PDF

Info

Publication number
WO2018061910A1
WO2018061910A1 PCT/JP2017/033838 JP2017033838W WO2018061910A1 WO 2018061910 A1 WO2018061910 A1 WO 2018061910A1 JP 2017033838 W JP2017033838 W JP 2017033838W WO 2018061910 A1 WO2018061910 A1 WO 2018061910A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
film material
molding
layer
cellulose acylate
Prior art date
Application number
PCT/JP2017/033838
Other languages
French (fr)
Japanese (ja)
Inventor
彰人 佐部利
昭弘 池山
横山 和正
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020197008816A priority Critical patent/KR102178544B1/en
Priority to CN201780060520.3A priority patent/CN109803809B/en
Publication of WO2018061910A1 publication Critical patent/WO2018061910A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/12Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor of articles having inserts or reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/26Component parts, details or accessories; Auxiliary operations
    • B29C51/266Auxiliary operations after the thermoforming operation
    • B29C51/268Cutting, rearranging and joining the cut parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/26Component parts, details or accessories; Auxiliary operations
    • B29C51/42Heating or cooling
    • B29C51/421Heating or cooling of preforms, specially adapted for thermoforming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/04Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B23/08Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/20Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0012Mechanical treatment, e.g. roughening, deforming, stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0036Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2069/00Use of PC, i.e. polycarbonates or derivatives thereof, as moulding material

Definitions

  • the present invention relates to a method for producing a molded body.
  • Glass is often used in molded products that require transparency, such as surveillance camera covers and incubator cases. And when impact resistance and / or workability are further required, synthetic resin such as acrylic or polycarbonate is used instead of glass.
  • JP-A-6-143339 describes a method for producing swimming goggles as a molded body.
  • the molded body has a transparent base material as the molded body and a lens provided with an antifogging layer as an antifogging film, and the transparency may decrease due to fogging due to condensation. It is suppressed.
  • the base material is preliminarily molded into a shape having a hole for mounting a lens, using a transparent thermoplastic resin such as polycarbonate.
  • the lens has a base material placed in an injection mold, and is injected into the mold in a molten state of a thermoplastic transparent cellulose resin such as triacetyl cellulose. Formed.
  • the mold temperature as the molding temperature is set to 70 ° C. to 85 ° C.
  • the film having antifogging properties is formed by subjecting the lens surface to a saponification treatment as a hydrophilic treatment.
  • JP-A-2009-139964 describes a method for producing an optical composite molded article that is used as a lens such as goggles and has a base material and a polarizing composite sheet.
  • the polarizing composite sheet has a cellulose triacetate film, a polarizing film, an adhesive layer, and a polycarbonate resin film, and is previously formed into a sheet-like spherical body.
  • the molded body is manufactured by placing the polarizing composite sheet in a molding machine and injection-molding a polycarbonate resin forming a substrate at a molding temperature of 280 ° C.
  • the film can be formed along a curved surface such as irregularities, or can be processed along the shape of the end of the substrate.
  • the film may be colored.
  • coloring such as a colorless film turning brown also causes a narrow use of the molded body.
  • the film described in JP-A-6-143339 may be deteriorated in antifogging properties when the molding temperature is too high.
  • the molded body produced by the methods described in JP-A-6-143339 and JP-A-2009-139964 may impair transparency due to the occurrence of rainbow unevenness. Rainbow spots are multi-colored spots like a rainbow.
  • an object of the present invention is to provide a method for producing a molded body that suppresses the occurrence of coloring and is excellent in transparency, workability, and moldability.
  • the method for producing a molded article of the present invention comprises a film material forming step and a molding step, and produces a molded article having a cellulose acylate film and a transparent substrate.
  • a film material forming step a long film material is formed from cellulose acylate.
  • the molding step the film material and the base material formed from the thermoplastic resin are integrally molded by thermoforming at a molding temperature within a range of 150 ° C. or higher and 240 ° C. or lower to obtain a molded body.
  • the film material has a saponification step for forming a saponified layer containing saponified cellulose acylate, and the film material used for the molding step is an acyl group of the saponified layer.
  • the amount of acyl groups in the cellulose acylate layer formed from the cellulose acylate not saponified in the saponification step is Y and the amount of acyl groups determined by X / Y is 0.7, Preferably there is.
  • a protective layer forming step for forming a protective layer for protecting the saponified layer on the surface of the saponified layer between the saponification step and the molding step.
  • the time from the start of heating of the film material to the end of forming be within a range of 30 seconds to 600 seconds.
  • the film material preferably has a thickness in the range of 15 ⁇ m to 100 ⁇ m.
  • the molding temperature is preferably in the range of (Tg + 5 ° C.) to (Tg + 40 ° C.).
  • an adhesive layer forming step for forming an adhesive layer on the film surface of the film material, and the forming step is performed in such a state that the adhesive layer and the substrate material are in close contact with each other. It is preferable to integrally form the material and the base material.
  • thermoplastic resin is preferably acrylic or polycarbonate.
  • a cover as an example of the molded body 10 is used for, for example, a surveillance camera 100 that is required to be transparent, that is, a thing existing beyond the cover is visible.
  • the surveillance camera 100 includes a camera body 102 having a photographing function, a support member 104 that supports the camera body 102, and a cover for covering the camera body 102, and this cover is the molded body 10.
  • the molded body 10 has a dome shape.
  • the molded body 10 includes a base material 11 as a molded body, an adhesive layer 12, and a cellulose acylate film 13.
  • the thickness of the molded body 10 is not particularly limited and is, for example, in the range of 1 mm or more and 50 mm or less. From the viewpoint of further improving the transparency and strength of the molded body 10, it is more preferably in the range of 2 mm to 20 mm. In the present embodiment, the thickness of the molded body 10 is 2.1 mm, for example.
  • the molded body 10 may not have the adhesive layer 12.
  • the base material 11 is transparent.
  • transparent means that it has a light transmittance that can be photographed.
  • the light here includes visible light (wavelength range of approximately 380 nm to 750 nm) and near infrared light (wavelength range of approximately 750 nm to 2500 nm).
  • the base material 11 is formed in a curved sheet shape, and has a dome shape in this embodiment. However, it is not limited to the sheet-like substrate 11 and may be a lens-like substrate. The shape of the substrate is not limited to the dome shape, and may be a desired shape. On at least one surface of the base material 11, an adhesive layer 12 for further suppressing the cellulose acylate film 13 from peeling from the base material 11 is provided. Although this base material 11 has a curved surface, in FIG. 2, the surface of the base material 11 is drawn on a plane for convenience of explanation.
  • the thickness of the base material 11 is not specifically limited, For example, it shall be in the range of 1 mm or more and 50 mm or less.
  • the thickness of the substrate 11 is more preferably in the range of 2 mm or more and 20 mm or less.
  • the thickness of the base material 11 is 2 mm, for example.
  • the cellulose acylate film 13 is made of cellulose acylate.
  • the cellulose acylate is cellulose triacetate (triacetyl cellulose, hereinafter referred to as TAC) in the present embodiment, but is not limited to TAC, and may be other cellulose acylate different from TAC.
  • TAC triacetyl cellulose
  • rainbow unevenness is suppressed, and as a result, transparency is ensured.
  • Rainbow spot is a light interference phenomenon caused by reflection of light on the film surface and refraction of incident light on each film surface when irradiated with light.
  • the cellulose acylate film 13 is provided on the base material 11 through the adhesive layer 12. That is, the cellulose acylate film 13 is provided on the surface of the adhesive layer 12 opposite to the substrate 11.
  • the cellulose acylate film 13 has a two-layer structure having a saponified layer 14 and a cellulose acylate layer 15, and the cellulose acylate layer 15 is arranged in a state where it is on the substrate 11 side, that is, the adhesive layer 12 side. ing.
  • the saponification layer 14 is for imparting antifogging properties to the cellulose acylate film 13. Therefore, when the anti-fogging function is unnecessary, the saponified layer 14 may not be provided.
  • Antifogging properties include initial antifogging properties and long-term antifogging properties.
  • the initial anti-fogging property is a function that prevents instantaneous condensation.
  • Long-term antifogging is a function that prevents condensation for a long time.
  • the saponification layer 14 bears both functions of initial antifogging property and long-term antifogging property.
  • the saponified layer 14 comprises saponified cellulose acylate, in this example saponified TAC.
  • the cellulose acylate layer 15 is made of cellulose acylate, in this example, TAC.
  • the cellulose acylate layer 15 does not contain saponified cellulose acylate.
  • the molded body 10 includes a first material forming step 31 for forming a film material 20 as a first material, and a base material 22 as a film material 20 and a second material. It is manufactured by a molding step 32 which is integrally formed by thermoforming.
  • the first material forming step 31 includes a film material forming step 33, a saponification step 34, a protective layer forming step 35, an adhesive layer forming step 36, and a film material cutting step 37.
  • the 1st raw material obtained through the process is the film material 20 (refer FIG. 4).
  • the film material forming step 33 is a step of forming a long film material from cellulose acylate. This film material is referred to as a first intermediate.
  • a saponified layer containing saponified cellulose acylate is formed on the first intermediate.
  • a protective layer for protecting the saponified layer is formed on the surface of the saponified layer.
  • an adhesive layer is formed on the film surface of the film material. The details of the saponification layer, the protective layer, and the adhesive layer will be described later with reference to another drawing.
  • thermoforming method in the forming step 32 is any one of vacuum / pressure forming, vacuum forming, pressure forming, film insert forming, and in-mold forming, and in this embodiment, vacuum / pressure forming.
  • the integral molding means that a product (molded body) is molded integrally with the joining of the members based on Japanese Industrial Standard JIS K-7010.
  • the first material forming step 31 will be described with reference to FIGS. 3 and 4.
  • a film material which is a first intermediate is formed by a solution casting method in this example. Specifically, it is produced by casting a polymer solution containing TAC as cellulose acylate (hereinafter referred to as a dope) to a support to form a cast film, peeling the cast film from the support and drying it. Is done.
  • the glass transition point Tg of the cellulose acylate used in the film material forming step 33 is preferably in the range of 150 ° C. or higher and 180 ° C. or lower.
  • Cellulose acylate has a ratio in which the hydroxy group of cellulose is esterified with carboxylic acid, that is, the substitution degree of acyl group (hereinafter referred to as acyl substitution degree) satisfies all the conditions of the following formulas (1) to (3). What is satisfactory is particularly preferred.
  • a and B are both acyl group substitution degrees
  • the acyl group in A is an acetyl group
  • the acyl group in B has 3 to 22 carbon atoms.
  • the glucose unit constituting cellulose and having ⁇ -1,4 bonds has hydroxy groups at the 2nd, 3rd and 6th positions.
  • Cellulose acylate is a polymer in which some or all of the hydroxy groups of cellulose are esterified, and the hydrogen of the hydroxy group is substituted with an acyl group having 2 or more carbon atoms.
  • substitution degree is 1 when esterification of one hydroxy group in the glucose unit is 100%, in the case of cellulose acylate, the hydroxy groups at the 2nd, 3rd and 6th positions are 100 respectively.
  • the degree of substitution is 3.
  • the total acyl group substitution degree obtained by “DS2 + DS3 + DS6”, where the acyl group substitution degree at the 2-position in the glucose unit is DS2, the acyl substitution degree at the 3-position is DS3, and the acyl substitution degree at the 6-position is DS6 is 2. It is preferably 00 to 2.97, and 2.86 in this embodiment.
  • acyl group There may be only one kind of acyl group or two or more kinds. When there are two or more acyl groups, it is preferable that one of them is an acetyl group.
  • DSA is the sum of the substitution degrees of the hydrogen groups of the hydroxy groups at the 2nd, 3rd and 6th positions with the acetyl group
  • DSB is the sum of the substitution degrees with the acyl groups other than the acetyl groups at the 2nd, 3rd and 6th positions.
  • the value of “DSA + DSB” is preferably 2.20 to 2.86, and particularly preferably 2.40 to 2.80.
  • DSB is preferably 1.50 or more, and particularly preferably 1.7 or more.
  • DSB 28% or more is preferably 6-position hydroxy group substitution, more preferably 30% or more, further preferably 31% or more, particularly preferably 32% or more substitution of 6-position hydroxy group. It is preferable that the value of “DSA + DSB” at the 6-position of cellulose acylate is preferably 0.75 or more, more preferably 0.80 or more, and particularly preferably 0.85 or more.
  • the acyl group having 2 or more carbon atoms may be an aliphatic group or an aryl group, and is not particularly limited.
  • alkyl carbonyl ester there are alkenyl carbonyl ester, aromatic carbonyl ester, and aromatic alkyl carbonyl ester of cellulose, and these may each further have a substituted group.
  • a propionyl group, a butanoyl group, a dodecanoyl group, an octadecanoyl group, a t-butanoyl group, an oleoyl group, a benzoyl group, a naphthylcarbonyl group, a cinnamoyl group, and the like are more preferable, and a propionyl group and a butanoyl group are particularly preferable.
  • the saponification process 34 manufactures the film base 23 as a 2nd intermediate body by performing a saponification process to a 1st intermediate body. In this embodiment, it manufactures by apply
  • the cellulose acylate is saponified by the saponification treatment, and a region formed in a layer form is the saponified layer 24.
  • the saponification step 34 is a step of forming a saponification layer 24 containing saponified cellulose acylate on a film material.
  • the saponification layer 24 forms one base surface (hereinafter referred to as a first base surface) 23 a of the film base 23.
  • This saponified layer 24 becomes the saponified layer 14 of the molded body 10.
  • the cellulose acylate layer 25 is a non-saponified portion that has not been saponified in the film base 23, that is, the remainder excluding the saponified layer 24. Therefore, the cellulose acylate layer 25 is formed from cellulose acylate that has not been saponified in the saponification step 34.
  • the cellulose acylate layer 25 forms the other base surface (hereinafter referred to as a second base surface) 23 b of the film base 23.
  • the cellulose acylate layer 25 becomes the cellulose acylate layer 15 of the molded body 10.
  • the saponification layer 24 has comprised the 1st base surface 23a
  • the film base 23 is not restricted to this. That is, the saponification layer 24 may be provided so as to form a second base surface in addition to the first base surface 23a.
  • the thickness of the film base 23 (the sum of the thickness of the cellulose acylate layer 25 (see FIG. 4) and the thickness of the saponified layer 24 (see FIG. 4)) T23 is preferably in the range of 15 ⁇ m to 100 ⁇ m.
  • a film material that does not have at least one of the saponified layer 24 and the protective layer 26 (see FIG. 4) may be used as the first material.
  • the thickness of the first material to be used is regarded as T23 described above and is in the range of 15 ⁇ m to 100 ⁇ m.
  • the thickness T23 is 15 ⁇ m or more, generation of tears and wrinkles during molding is suppressed as compared with the case where the thickness T23 is less than 15 ⁇ m, and when the thickness T23 is 100 ⁇ m or less, the thickness T23 is larger than 100 ⁇ m.
  • the shape of the base material 22 having a curved surface such as a dome shape and unevenness (hereinafter referred to as moldability) and the shape of the end of the sheet-like or flat base material. This is because it is more excellent in ease of processing (hereinafter referred to as processability).
  • the thickness T23 is more preferably in the range of 18 ⁇ m or more and 60 ⁇ m or less, and further preferably in the range of 20 ⁇ m or more and 50 ⁇ m or less. In the present embodiment, the thickness T23 is set to 40 ⁇ m, for example.
  • the thickness T23 has a correlation with the moisture permeability of the film material 20. Specifically, the smaller the thickness T23, the higher the moisture permeability, that is, the better the moisture permeability of the film material 20.
  • the outgas is considered that the moisture contained in the base material 22 and / or the adhesive layer 27 is evaporated, and the film material 20 having moisture permeability transmits the outgas. Based on the Japanese Industrial Standard JIS Z-0208, when the moisture permeability is evaluated at 40 ° C. and 90% RH (relative humidity), the moisture permeability of the film material 20 is 550 g / (m 2 ⁇ 24 h) or more. Is preferred.
  • the thickness T23 is within the above range. Furthermore, since the film material 20 is formed of cellulose acylate, the film material 20 is superior in moisture permeability as compared with a case where it is formed of polyethylene terephthalate (hereinafter referred to as PET). Since the film material 20 having excellent moisture permeability as described above is neatly bonded to the base material 22, the design of the molded body 10 is improved. Furthermore, since the stuck state is maintained over a long period of time, the durability of the molded body 10 is improved.
  • PET polyethylene terephthalate
  • the ratio of acyl groups determined by X / Y (hereinafter referred to as the acyl group ratio) is 0. 0.7, that is, 0.7 or less, and in this embodiment, for example, 0.3.
  • the smaller the acyl group ratio the fewer the acyl groups of the saponified layer 24 relative to the cellulose acylate layer 25, which means that more acyl groups were saponified in the saponification treatment, resulting in hydrophilic groups.
  • the acyl group ratio is related to the initial antifogging property. Specifically, the smaller the acyl group ratio, the better the initial antifogging property. When the acyl group ratio is 0.7 or less, that is, in the range of 0 or more and 0.7 or less, a superior initial antifogging property is exhibited as compared with a case where the ratio is larger than 0.7.
  • the acyl group ratio is more preferably in the range of 0.01 to 0.6, and still more preferably in the range of 0.05 to 0.5.
  • the acyl group amount X and the acyl group amount Y are the total reflection measurement (ATR, Attenuated Total Reflection) method (hereinafter, referred to as FT-IR, Fourier Transform Infrared Spectroscopy, hereinafter referred to as FT-IR). This is determined as the spectral intensity of the acyl group determined by the ATR method. Specifically, the spectral intensity of the acyl group signal of the cellulose acylate is corrected (normalized) with the spectral intensity of the common signal of the cellulose polymer.
  • ATR Attenuated Total Reflection
  • FT-IR Fourier Transform Infrared Spectroscopy
  • the acyl group is an acetyl group, and the signal of the acetyl group is 1210 cm ⁇ 1 .
  • the common signal of the cellulosic polymer is preferably 1030 cm ⁇ 1 .
  • the spectrum intensity of the acyl group signal of the cellulose acylate obtained by the correction is determined as an acyl group amount X or an acyl group amount Y, respectively.
  • the acyl group amount X and the acyl group amount Y are indices that are replaced by the number of acyl groups.
  • the FT-IR ATR method is a method for obtaining a spectral intensity by allowing light to enter a measurement sample, and the obtained spectral intensity is not the surface of the measurement sample in the strict sense.
  • the measurement angle is 45 degrees
  • the light penetration depth from the surface of the measurement sample is about 2 to 3 ⁇ m. It is. Since the saponification layer 24 of the present embodiment is very thin as will be described later, the reliability as the amount of acyl groups required for the saponification layer 24 decreases as the light penetration depth becomes deeper than 2 ⁇ m.
  • the spectrum intensity in the range of 2 ⁇ m depth from the first base surface 23a of the film base 23 is obtained.
  • the light penetration depth is set to 2 ⁇ m
  • the first The spectrum intensity in the range of 2 ⁇ m or less from the base surface 23a is defined as the acyl group amount X.
  • the acyl group amount Y it is preferable to obtain the spectrum intensity in the range of 2 ⁇ m in depth from the second base surface 23b of the film base 23 as the acyl group amount Y, and this is also the case in this embodiment.
  • the saponification layer 24 has not only the first base surface 23a but also the second base surface, that is, a saponification layer is provided on both surfaces of the film base, and a cellulose acylate layer is provided between the saponification layers. Is provided, the amount of acyl group is determined at the center in the thickness direction of the film base, and this is used as the amount of acyl group Y. From the viewpoint of simplicity and reliability as the amount of acyl group required for the film base From the viewpoint of sex.
  • the film base is dissolved in methylene chloride and / or chloroform, and a film is formed from this solution.
  • the amount of acyl group on the film surface may be determined by other methods such as IR (infrared absorption spectroscopy).
  • Long-term antifogging is related to the contact angle after 15 seconds.
  • the contact angle after 15 seconds is a characteristic indicating that the hydrophilic component is sufficiently present on the first base surface 23 a of the film base 23.
  • the contact angle after 15 seconds is 35 ° or less, the anti-fogging property tends to be particularly good.
  • the first base surface 23a has a contact angle of 35 ° or less after 15 seconds, and is, for example, 25 ° in this embodiment.
  • the contact angle after 15 seconds is related to the long-term antifogging property, but in order to make the contact angle after 15 seconds 35 ° or less, the saponification treatment conditions are adjusted, and the acyl group ratio becomes 0.7 or less.
  • the acyl group amount X of the first base surface 23a by controlling the acyl group amount X of the first base surface 23a, the plasticizer and / or additive in the cellulose acylate depending on the temperature and / or time of the thermoforming process is ensured by sufficiently securing the thickness of the saponified layer.
  • Plasticity by controlling the diffusion and / or migration of the saponification layer to the surface, adjusting the type of plasticizer and / or additive, and increasing the molecular weight of the plasticizer and / or additive in cellulose acylate Suppressing diffusion and / or migration of agents and / or additives to the surface of the saponification layer, and suppressing increase in contact angle due to migration components from the laminate film by selecting a laminate film to be described later There is.
  • the contact angle after 15 seconds is preferably 30 ° or less, more preferably 25 ° or less, and further preferably 20 ° or less.
  • the contact angle is obtained in consideration of the time after the pure water is dropped, and the contact angle after 15 seconds, which is 15 seconds later, is used to obtain a film base 23 with excellent long-term antifogging properties. It is done.
  • the contact angle after 15 seconds is a characteristic showing the affinity of the film surface with water.
  • pure water permeates into a hydrophilic portion (hereinafter referred to as a hydrophilic film) formed in a film shape with a very small thickness on the surface of the saponified layer 24, or a hydrophilic film.
  • the contact angle after 15 seconds is preferably measured with respect to the film base 23 after humidity adjustment (humidity adjustment).
  • the humidity treatment conditions are a temperature range of 23 ° C. to 28 ° C., and a relative humidity of The atmosphere is preferably in the range of 55% to 65%, and the humidity adjustment time is more preferably 1 hour or more. In this embodiment, the humidity is adjusted for 1 hour in an atmosphere having a temperature of 25 ° C. and a relative humidity of 60%.
  • the entire film base 23 may be humidity-conditioned, but at least the saponified layer 24 may be conditioned.
  • the thickness T24 of the saponified layer 24 is set within a predetermined range, it is possible to more surely satisfy both the initial antifogging property and the long-term antifogging property. Specifically, it is as follows. There is a correlation between the acyl group ratio and the thickness T24, and the thickness T24 increases as the acyl group ratio decreases. As described above, the initial antifogging property is better as the acyl group ratio is smaller, and as the thickness T24 is larger, it is better.
  • the contact angle gradually decreases after 15 seconds, but gradually increases when the thickness T24 increases to some extent.
  • the following (1) or (2) can be considered. That is, (1) when the saponification conditions described later are increased in order to increase the thickness T24, the aforementioned hydrophilic film that reduces the contact angle after 15 seconds decreases, and (2) the thickness T24 increases. If it is too much, the holding area where water can be held becomes too large, and as a result, the water enters the inside of the first base surface 23a.
  • the long-term antifogging property is manifested when the contact angle after 15 seconds is 35 ° or less as described above, the long-term antifogging property corresponds to 35 ° in the gradually increasing region of the contact angle after 15 seconds.
  • the thickness T24 is preferably set with the thickness as the upper limit. Thereby, in addition to initial antifogging property, long-term antifogging property is ensured more reliably.
  • the thickness T24 is preferably in the range of 1 ⁇ m or more and 6 ⁇ m or less in order to express the initial antifogging property and the long-term antifogging property more reliably.
  • the thickness T24 is in the range of 2 ⁇ m or more and 5 ⁇ m. It is within. That is, when the thickness T24 is 1 ⁇ m or more, the initial antifogging property is more reliable than when it is less than 1 ⁇ m, and when it is 6 ⁇ m or less, the long-term antifogging property is more than when it is larger than 6 ⁇ m. Be certain.
  • thickness T24 is calculated
  • a sample sampled from the film base 23 is immersed in dichloromethane for 24 hours.
  • the sample which remained undissolved by this immersion was dried, and the thickness of the dried sample was measured three times.
  • the average of the three measured values is defined as thickness T24.
  • the amount of C ⁇ O (carboxyl group) of the acyl group bonded to the hydroxyl group component of cellulose in the range of 2 ⁇ m in depth from the first base surface 23a is the hydroxyl group component of cellulose on the second base surface 23b. It is preferably 70% or less with respect to the amount of C ⁇ O of the acyl group bonded to, and in the present embodiment, it is in the range of 30% to 70%. For example, when the acyl group ratio cannot be obtained, the contact angle is set to 20 ° or less after 15 seconds, and the amount of C ⁇ O of the acyl group bonded to the hydroxyl group component of the cellulose group on the second base surface 23b is determined.
  • the initial antifogging property and the long-term antifogging property are To express.
  • the cellulose acylate forming the film base 23 preferably contains an ester oligomer or an ester derivative of sugar. By including these, the processability and moldability of cellulose acylate can be improved, and the diffusion and / or migration of the additive to the surface of the saponified layer can be suppressed.
  • the dope used in the film material forming step 33 is preferably made of cellulose acylate containing the ester oligomer or sugar ester derivative. These ester oligomers and ester derivatives of sugar function as plasticizers.
  • the glass transition point of cellulose acylate containing ester oligomer or sugar ester derivative is smaller than the glass transition point of cellulose acylate not containing ester oligomer or sugar ester derivative. It is effective as a plasticizer when molding by thermoforming.
  • the ester oligomer and the ester derivative of sugar the ester oligomer is more preferable as the plasticizer. More specifically, it is preferable that an ester oligomer having a molecular weight in the range of 400 or more and 10,000 or less is included as a plasticizer, and the film base 23 of the present embodiment also includes this.
  • the molecular weight of the ester oligomer is determined by GPC (Gel Permeation Chromatography), weight average molecular weight or number average molecular weight, terminal functionality. It can be determined by a number average molecular weight measurement method based on measurement of base weight or osmotic pressure, a viscosity average molecular weight based on viscosity measurement, and the like. In this embodiment, the hydroxyl group or acid group of the ester is measured as the terminal functional group, and the molecular weight of the ester oligomer is determined by the number average molecular weight measurement method using this.
  • GPC Gel Permeation Chromatography
  • the film base 23 can be attached and / or easily applied to the base material 22 that is an object to be attached.
  • the so-called handleability such as ease of re-sticking is reliably improved.
  • precipitation on the first base surface 23a is more reliably suppressed as compared with the case of using a general plasticizer monomer having a molecular weight of less than 400, and Since the contact angle after 15 seconds on the first base surface 23a tends to be small, the long-term antifogging property is more reliably exhibited.
  • the molecular weight of the ester oligomer is more preferably in the range of 700 to 5000, more preferably 900 to 3000. It is further preferable to be within the range.
  • ester oligomer used as a plasticizer is a compound having a relatively low molecular weight having a repeating unit containing an ester bond of a dicarboxylic acid and a diol, and having a repeating unit in the range of 2 to 100.
  • An ester oligomer is preferred. This is because the action of cellulose acylate as a plasticizer is more reliable.
  • the above dicarboxylic acid is more preferably an aliphatic dicarboxylic acid having a carbon number in the range of 2 to 10.
  • the diol is more preferably an aliphatic diol having 2 to 10 carbon atoms. This is because by using an aliphatic dicarboxylic acid and an aliphatic diol, flexibility can be imparted to the film base 23, and it is difficult to generate degradation products that inhibit the reduction of the contact angle after 15 seconds described later. is there.
  • the aliphatic carboxylic acid include malonic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, azelaic acid, cyclohexanedicarboxylic acid, maleic acid, fumaric acid and the like.
  • Aliphatic diols include ethanediol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 2-methyl-1,3-propanediol, 1, 4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol (neopentyl glycol), 1,4-hexanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedi Methanol etc. are mentioned.
  • an oligomer having an ester of adipic acid and ethylene glycol as a repeating unit an oligomer having an ester of succinic acid and ethylene glycol as a repeating unit, an ester of terephthalic acid and ethylene glycol, and an ester of phthalic acid and ethylene glycol Oligomers having an ester as a repeating unit are preferred.
  • an ester oligomer composed of adipic acid and ethanediol (the number average molecular weight determined by the terminal hydroxyl group determination method is about 1000) is used as the ester.
  • the mass of the ester oligomer is preferably 30% at most, that is, 30% or less with respect to the mass of the cellulose acylate. That is, when the mass of the cellulose acylate in the film base 23 (including the saponified cellulose acylate in the saponified layer 24) is MA and the mass of the ester oligomer in the film base 23 is MB, the film base 23 is ( The mass ratio (unit:%) determined by (MB / MA) ⁇ 100 is 30% or less.
  • the mass ratio in the cellulose acylate film 13 is more preferably 4% or more and 30% or less, and further preferably 10% or more and 25% or less.
  • the sugar ester derivative may be either a monosaccharide ester derivative or a polysaccharide ester derivative.
  • the film base 23 may include both of these.
  • the monocarboxylic acid used for esterifying all or part of the OH groups in the monosaccharide and polysaccharide structures is not particularly limited, and is a known aliphatic monocarboxylic acid, alicyclic monocarboxylic acid, An aromatic monocarboxylic acid or the like can be used.
  • the carboxylic acid used may be one kind or a mixture of two or more kinds.
  • Preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecylic acid, lauric acid , Saturated fatty acids such as tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, cerotic acid, heptacosanoic acid, montanic acid, melicic acid, and laccelic acid, Undecylenic acid, oleic acid, sorbic acid, linoleic acid, linolenic acid, arachidonic acid, octenoic acid and other unsatur
  • sugar examples include monosaccharides such as glucose, galactose, mannose, fructose, xylose, arabinose, lactose, sucrose, nystose, 1F-fructosyl nystose, stachyose, maltitol, lactitol, lactulose, cellobiose, maltose, cellotriose, maltotriose
  • polysaccharides such as oose, raffinose or kestose, gentiobiose, gentiotriose, gentiotetraose, xylotriose, galactosyl sucrose.
  • Oligosaccharides can also be used as polysaccharides, which are produced by causing an enzyme such as amylase to act on starch, sucrose, etc.
  • examples of oligosaccharides include malto-oligosaccharides, iso-saccharides, and the like. Examples include maltooligosaccharide, fructooligosaccharide, galactooligosaccharide, and xylo-oligosaccharide.
  • aromatic monocarboxylic acids examples include aromatic monocarboxylic acids having an alkyl group or alkoxy group introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, cinnamic acid, benzylic acid, biphenylcarboxylic acid, and naphthalene.
  • aromatic monocarboxylic acids having two or more benzene rings such as carboxylic acid and tetralincarboxylic acid, or derivatives thereof, and benzoic acid and naphthylic acid are particularly preferable.
  • the mass of the sugar ester derivative is preferably at most 15%, that is, 15% or less with respect to the mass of the cellulose acylate. That is, when the mass of the cellulose acylate in the film base 23 (including the saponified cellulose acylate in the saponified layer 24) is MA and the mass of the sugar ester derivative in the film base 23 is MC, the film base 23 is , (MC / MA) ⁇ 100, the mass ratio (unit:%) obtained is 15% or less. When the mass ratio is 15% or less, the precipitation of the sugar ester derivative can be suppressed as compared with the case where the mass ratio is larger than 15%, and the white turbidity due to the precipitation of the sugar ester derivative can be suppressed even during heat molding.
  • the mass ratio in the cellulose acylate film 13 is more preferably 4% or more and 15% or less, and further preferably 6% or more and 15% or less.
  • the film base 23 includes various additives such as an ultraviolet absorber and a deterioration preventing agent, and / or fine particles for preventing the film bases 23 from sticking to each other, for example. It may be.
  • the protective layer forming step 35 is a step of forming a protective layer 26 that protects the saponified layer 24 on the surface of the saponified layer 24 of the film base 23.
  • the protective layer 26 is formed by superposing a commercially available laminate film on the saponified layer 24.
  • the film material having the protective layer 26 is referred to as a third intermediate.
  • the protective layer 26 is affixed until the molded body 10 is used, and is removed when the molded body 10 is used. For this reason, the protective layer 26 prevents the saponification layer 24 from being contaminated and / or damaged during molding.
  • the protective layer 26 protects the saponified layer 14 exposed as an outer surface during use from contamination and / or damage during storage and / or transportation of the molded body 10, that is, protects the molded body 10 before use. It also has a function to do.
  • the laminate film used as the protective layer 26 is a commercially available laminate film from the viewpoint of heat resistance in thermoforming, suppressing the increase in contact angle due to the transfer from the laminate film during thermoforming and / or storage, and the like. Can be selected as appropriate.
  • a film formed of polyethylene or polypropylene can be used, and examples thereof include a polyolefin-based film and a polyethylene terephthalate film.
  • the laminate film which suppresses the raise of the contact angle of the saponification layer 24 is the saponification as a molded object obtained by heat-molding the contact angle of the saponification layer before heat-molding, and bonding a commercial item to the saponification layer.
  • the contact angle of the layers can be selected as appropriate by comparing the contact angle and confirming the change.
  • LG Chemical's laminate film LDM-EPDC (50 ⁇ ) and Sumilon Laminated film EC7501 (polyolefin) is available.
  • the former laminate film is used.
  • the adhesive layer forming step 36 is a step of forming the adhesive layer 27 on the film surface of the third intermediate.
  • This adhesive layer 27 becomes the adhesive layer 12 of the molded body 10.
  • the adhesive layer 27 is more closely attached to the base material 22 in the molding step 32, thereby further improving the difficulty of peeling the cellulose acylate film 13 from the base material 11 in the molded body 10.
  • the adhesive layer 27 is formed by providing a commercially available adhesive or pressure-sensitive adhesive on the surface on the cellulose acylate layer 25 side of the film material as the third intermediate.
  • the film material having the adhesive layer 27 is referred to as a fourth intermediate.
  • the adhesive layer 27 is for suppressing the peeling between the cellulose acylate film 13 and the substrate 11, it is formed by using a heat-resistant adhesive or pressure-sensitive adhesive that can withstand heating in thermoforming. It is preferable.
  • the adhesive layer 27 is preferably formed of any one of vinyl acetate resin, epoxy resin, vinyl chloride resin, hot melt adhesive, acrylic pressure-sensitive adhesive, silicone pressure-sensitive adhesive, and rubber-based pressure-sensitive adhesive. Among them, an acrylic adhesive or a silicone adhesive is more preferable, and an acrylic adhesive is used in the present embodiment.
  • “adhesion” means that the objects to be attached are attached in an integrated state, and “adhesion” is a kind of adhesion, and after being attached to an adherend.
  • an adhesive or pressure-sensitive adhesive having a usable temperature, that is, a heat resistant temperature of 150 ° C. or higher.
  • This usable temperature can be selected depending on the temperature at the time of adhesion processing depending on the presence or absence of adhesiveness or tackiness, smoothness, coloring, foaming (bubbles) and the like.
  • the adhesiveness means, for example, the degree of adhesive force between objects to be attached.
  • Adhesive means, for example, the degree of adhesive strength.
  • Smoothness means, for example, the degree of unevenness on the surface.
  • the adhesive or the pressure-sensitive adhesive preferably has a heat resistant temperature in the range of 150 ° C. or higher and 250 ° C. or lower.
  • the heat resistant temperature is 220 ° C.
  • coloring and / or foaming of the adhesive layer 27 at the time of molding can be suppressed as compared with the case where the heat resistant temperature is lower than 150 ° C., and the heat resistant temperature is 250 ° C. or lower.
  • the heat resistant temperature is more preferably in the range of 160 ° C. or higher and 240 ° C. or lower, and further preferably in the range of 180 ° C. or higher and 230 ° C. or lower.
  • the adhesive or pressure-sensitive adhesive is appropriately selected from the viewpoints of durability in a high-temperature and high-humidity environment after adhesion or adhesion, white turbidity, outgas, transparency of the molded body, and the like. be able to.
  • a commercially available adhesive for example, an acrylic adhesive sheet manufactured by Soken Chemical Co., Ltd. is used.
  • 3M Co., Ltd. silicone baseless double-sided tape 91022, Nichiei Kako Co., Ltd. optical baseless double-sided tape MHM, and Mitsubishi Rayon Co., Ltd. Dianal (registered trademark), Toa Gosei Co., Ltd. Aron, Sumitomo Chemical Co., Ltd. Sumipex (registered trademark), etc. may be used.
  • the thickness T27 of the adhesive layer 27 is preferably in the range of 1 ⁇ m to 50 ⁇ m, and in this embodiment, the thickness of the adhesive layer 27 is set to 15 ⁇ m, for example. Compared to the case where the thickness T27 is 1 ⁇ m or more, compared to the case where the thickness T27 is less than 1 ⁇ m, the adhesive force or adhesive strength after heat molding is excellent. Foaming of the adhesive or pressure-sensitive adhesive during heat molding is suppressed, and further, coloring of the molded body itself is suppressed by suppressing coloring of the adhesive or pressure-sensitive adhesive.
  • the thickness T27 is more preferably in the range of 3 ⁇ m to 40 ⁇ m, and still more preferably in the range of 5 ⁇ m to 30 ⁇ m.
  • the film material cutting step 37 is a step of cutting a long film material into a sheet shape.
  • the film material 20 is manufactured by cutting into the sheet form of a desired magnitude
  • the first material forming step 31 includes a film material forming step 33, a saponification step 34, a protective layer forming step 35, an adhesive layer forming step 36, and a film material cutting step 37.
  • the film material forming step 33 is performed and at least one of the other steps is not performed.
  • the saponification step 34 is not performed, the film material does not have the saponification layer 24.
  • the protective layer forming step 35 is not performed, the protective layer 26 is not present in the film material.
  • the adhesive layer forming step 36 is not performed, the adhesive layer 27 does not exist in the film material.
  • a film material is long.
  • each of the first intermediate body, the second intermediate body, the third intermediate body, and the fourth intermediate body can be provided to the forming step 32 as a film material.
  • the second material is formed from a thermoplastic resin by the second material forming step.
  • the thermoplastic resin is preferably polycarbonate (hereinafter referred to as PC) or acrylic.
  • PC polycarbonate
  • acrylic is used.
  • PC or acrylic is used because it has high transparency, is lighter and more durable than glass, and can be easily formed into a desired shape.
  • the PC as the second material preferably has a glass transition point of 150 ° C.
  • the acrylic as the second material preferably has a glass transition point of 100 ° C.
  • the second material is different in the form used for the molding apparatus 50 described later according to the thermoforming technique.
  • vacuum pressure forming, vacuum forming, and pressure forming for example, injection molding is performed in the second material forming step, the thermoplastic resin forming the base material 11 is melted, and this molten resin is filled in a mold.
  • the molded product formed into a desired shape by cooling and solidifying is the second material.
  • the base material 22 formed in a dome shape is used as the second material.
  • a thin sheet material may be manufactured by a solution casting method, and this may be used as the second material.
  • the thermoplastic resin forming the base material 11 is melted, and this molten resin is the second material.
  • the forming step 32 is performed using, for example, a forming apparatus 50 shown in FIG.
  • the forming apparatus 50 forms the formed body 10 by integrally forming the film material 20 and the base material 22 by thermoforming.
  • the molding device 50 includes a chamber 51, a heater 52, a table 53, a moving mechanism 54, a vacuum pump 55, a compressor 56, and a control unit 57, and is a device for performing vacuum / pressure forming as thermoforming. is there.
  • the base material 22 having a dome shape is provided to the molding apparatus 50, but in FIG. 5, the base material 22 is drawn in a flat plate shape for convenience of explanation. Further, in FIG. 5, the thickness of the film material 20 is exaggerated for easy understanding of each layer of the film material 20.
  • a commercially available device such as a TOM (Three (dimension Overlay Method) molding machine (trade name; NGF (Next Generation Forming) molding machine) manufactured by Fuse Vacuum Co., Ltd. is used as the molding device 50.
  • the chamber 51 includes an upper chamber 51a and a lower chamber 51b, and the upper chamber 51a is movable in the vertical direction in FIG. 5, that is, in the direction of increasing or decreasing the distance between the upper chamber 51a and the lower chamber 51b. ing. By lowering the upper chamber 51a and bringing the upper chamber 51a and the lower chamber 51b into close contact with each other, the inside of the chamber 51 is brought into an airtight state.
  • the upper chamber 51 a is provided with a heater 52 for heating the film material 20.
  • the lower chamber 51b is provided with a table 53 on which the base material 22 is placed.
  • the heater 52 emits, for example, far-infrared rays (wavelength range of approximately 4 ⁇ m or more and 1000 ⁇ m or less) when it operates to heat the film material 20.
  • the table 53 is movable in the vertical direction in FIG. 5 with respect to the lower chamber 51b.
  • the moving mechanism 54 moves the upper chamber 51a and the table 53 in the vertical direction in FIG.
  • the vacuum pump 55 is connected to an exhaust hole 58 provided in the upper chamber 51a and an exhaust hole 59 provided in the lower chamber 51b.
  • the vacuum pump 55 exhausts air from the exhaust holes 58 and 59 when the inside of the chamber 51 is in an airtight state, and makes the inside of the chamber 51 in a vacuum state.
  • the compressor 56 is connected to an exhaust hole 58 provided in the upper chamber 51a, and the compressed air is jetted into the upper chamber 51a through the exhaust hole 58.
  • These moving mechanism 54, heater 52, vacuum pump 55, and compressor 56 are controlled by a control unit 57.
  • the molding device 50 is provided with a thermometer (not shown) for measuring the temperature of the film material 20, and the control unit 57 controls the amount of heat generated by the heater 52 based on the temperature of the thermometer.
  • a thermometer for example, a non-contact thermometer that measures the surface temperature of the film material 20 in a non-contact manner is used.
  • control unit 57 has a timer function, and controls the time (hereinafter referred to as molding time) from the start of heating the film material 20 to the end of molding.
  • start heating means when the heater 52 is activated.
  • the molding is completed means that the upper chamber 51a and the lower chamber 51b are brought to atmospheric pressure by the compressor 56 after the film material 20 is molded and bonded to the base material 22.
  • the film material 20 is set between the upper chamber 51a and the lower chamber 51b with the adhesive layer 27 facing the lower chamber 51b.
  • the base material 22 is set on the table 53.
  • the upper chamber 51a is lowered and the inside of the chamber 51 is made airtight with the film material 20 being sandwiched between the upper chamber 51a and the lower chamber 51b.
  • the vacuum pump 55 is operated to bring the chamber 51 into a vacuum state.
  • the heater 52 is operated to heat the film material 20. This heating causes the film material 20 to hang down due to its own weight, but the film material 20 is brought into a substantially horizontal state by adjusting the degree of vacuum in the upper chamber 51a and the degree of vacuum in the lower chamber 51b. During this time, the temperature of the film material 20 is measured by a thermometer (not shown).
  • the temperature of the film material 20 as the molding temperature is in the range of 150 ° C. or higher and 240 ° C. or lower, and is 200 ° C. in this embodiment. Compared to the case where the molding temperature is 150 ° C. or higher, the moldability and workability are excellent compared to the case where the molding temperature is less than 150 ° C., and the molding temperature is 240 ° C. or lower, compared to the case where the molding temperature is higher than 240 ° C. This is because the occurrence of coloring is suppressed. In addition, when the molding temperature is 240 ° C. or lower, the cellulose acylate is also prevented from being thermally decomposed.
  • the molding temperature is more preferably in the range of 180 ° C. or higher and 220 ° C.
  • the molding temperature is more preferably in the range of (Tg + 5 ° C.) or more and (Tg + 40 ° C.) or less, and (Tg + 8 ° C.) or more (Tg + 30 ° C.) or less when Tg is the glass transition point of cellulose acylate. More preferably, it is in the range.
  • the object whose temperature is adjusted is the film material 20 in the present embodiment, the object whose temperature is adjusted is different for each thermoforming technique.
  • it is a film material in the case of vacuum pressure forming, vacuum forming, and pressure forming, a film material and a thermoplastic resin in the case of film insert molding, and a thermoplastic resin in the case of in-mold forming.
  • the molding temperature is the temperature of the film material in the case of vacuum pressure forming, vacuum forming, and pressure forming, the temperature of the film material and the temperature of the thermoplastic resin in the case of film insert molding, In the case, it is the temperature of the thermoplastic resin.
  • These molding temperatures can be adjusted by the far infrared heater, the temperature of the mold to be molded, the temperature of the thermoplastic resin used for molding, and the like. Adjustment by far infrared heater is preferably used for vacuum / pressure forming, vacuum forming, and pressure forming, adjustment by mold temperature is preferably used for film insert molding, and adjustment by temperature of thermoplastic resin used for forming is film It is preferably used for insert molding and in-mold molding.
  • the temperature to be temperature controlled can be controlled by means such as a monitor, and the temperature unevenness is small within a certain area range for molding.
  • a method by adjusting the temperature of the far infrared heater or the molding die is preferable, and a method by the far infrared heater is particularly preferable.
  • the table 53 in the lower chamber 51b is raised. Thereby, the base material 22 on the table 53 is covered with the film material 20.
  • the film material 20 is pressed against the base material 22 by setting the inside of the upper chamber 51a to an atmospheric pressure state. Furthermore, the film material 20 adheres to the base material 22 by operating the compressor 56 and ejecting compressed air into the upper chamber 51a. Thereby, shaping
  • the inside of the upper chamber 51a and the lower chamber 51b is brought to atmospheric pressure, and molding is completed.
  • the molding time is in the range of 30 seconds to 600 seconds, and in this embodiment is 180 seconds.
  • the film material 20 can be molded along the shape of the base material 22 as compared with the case of less than 30 seconds, and the molding time is set to 600 seconds or less. Therefore, the contact of the saponification layer 24 in which the coloration of the film material 20 and wrinkles and / or tearing (breaking) due to heat are suppressed, and the foaming and / or coloration of the adhesive layer 27 is suppressed as compared with the case where it is longer than 600 seconds.
  • a molded article having good antifogging properties can be obtained because the corners are small.
  • the molding time is more preferably in the range of 60 seconds to 400 seconds, and more preferably in the range of 90 seconds to 300 seconds.
  • the upper chamber 51a is raised and the molded object 10 is taken out.
  • the base material 22 and the film material are obtained by setting the above forming temperature.
  • the molded body 10 is excellent in moldability and workability with No. 20, and further by the above molding time, the occurrence of coloring and wrinkles and / or tears is suppressed, and the molded body 10 is excellent in transparency, antifogging properties, etc. can do.
  • Example 1 to [Example 19]
  • the dope used in the film material forming step 33 is completely dissolved by putting a composition having the following formulation into a hermetic container and stirring while keeping at 40 ° C. under normal pressure. I made it.
  • the raw material for TAC is linter.
  • the fine particles are R972 (silica manufactured by Nippon Aerosil Co., Ltd.). The fine particles were previously mixed and dispersed in a solution in which TAC was dissolved in a solvent that was a mixture of dichloromethane and methanol.
  • this dispersion liquid was thrown into said airtight container, and it was set as the composition of the following prescription.
  • filter paper No. 63, manufactured by Advantech Toyo Co., Ltd.
  • this liquid was filtered while being kept at 30 ° C., and after defoaming operation, a dope was obtained.
  • Second component Part by mass 100 parts by mass Second component Part by mass shown in the “Amount” column of Table 1
  • Fine particles 1.3 parts by mass
  • the first component is cellulose acylate.
  • CA is described in the “Substance” column of “First component”.
  • all acyl groups are acetyl groups, and the viscosity average degree of polymerization is 320.
  • the acyl group substitution degree of cellulose acylate is shown in the “Acyl group substitution degree” column of Table 1.
  • the second component is a plasticizer, and is A to E shown in the “Substance” column of “Second component” in Table 1.
  • A is an oligomer having a repeating unit of an ester of adipic acid and ethylene glycol (molecular weight determined by terminal functional group determination method is 1000).
  • B is an oligomer having a repeating unit of an ester of terephthalic acid and ethylene glycol and an ester of phthalic acid and ethylene glycol (molecular weight by terminal functional group determination method is 700).
  • C is a benzoate ester of sucrose which is an ester derivative of sugar (Monopet SB manufactured by Daiichi Kogyo Seiyaku).
  • D is polymethyl methacrylate (PMMA).
  • E is triphenyl phosphate (TPP) and biphenyl diphenyl phosphate (BDP). Note that “-” shown in the “Substance” column of “Second component” in Table 1 indicates that the plasticizer is
  • the dope whose temperature was adjusted to 30 ° C. was cast on the support.
  • the support is an endless belt made of stainless steel.
  • the cast film is dried by applying hot air of 100 ° C. immediately after the formation, and 120 seconds after the formation, the cast film is peeled off from the support with a peel tension of 150 N / m.
  • a film material as an intermediate was formed.
  • the temperature of the support at the peeling position was 10 ° C.
  • the residual solvent amount of the cast film at the time of peeling was 100% by mass.
  • the dried first intermediate was dried while being transported in a state where the tension in the longitudinal direction was set to 100 N / m by a number of rolls arranged in the transport path. Drying was carried out by transporting the first drying zone set at 80 ° C. for 5 minutes and further transporting it for 10 minutes in the second drying zone set at 120 ° C.
  • the film roll was obtained by winding up the 1st intermediate body in roll shape after drying.
  • the width of the first intermediate was 1.5 m, and the winding length in the film roll was 2000 m.
  • the residual solvent amount of the film material before saponification treatment at the time of winding was 0.3%.
  • the first intermediate was saponified in the saponification step 34 to produce a film material as the second intermediate.
  • the saponification treatment time and treatment temperature were appropriately changed.
  • the second intermediate was produced by the following method.
  • the first intermediate was unwound from the film roll and conveyed, and the saponification solution was applied to one film surface of the first intermediate by a coating device provided in the conveyance path.
  • the prescription of the saponification solution is as follows. In the following formulation,% is a percentage by mass.
  • KOH Potassium hydroxide
  • Isopropyl alcohol 88% 3% water
  • Propylene glycol 5% Surfactant 0.04%
  • the first intermediate coated with the saponification solution was guided to the heating chamber provided in the conveyance path, heated while being conveyed, and then sent to a water tank containing water and washed with water.
  • the thickness, the contact angle after 15 seconds, the acyl group ratio, and the glass transition point were determined.
  • Each method of obtaining the contact angle after 15 seconds and the acyl group ratio is as described above.
  • the thickness is an average value of values measured at intervals of 0.5 mm in the width direction using a contact-type thickness meter.
  • the glass transition point (Tg) of the second intermediate was determined from the following method.
  • a sample in the form of a rectangular sheet (short side 5 mm, long side 30 mm) was conditioned for 2 hours or more at 25 ° C. and 60% relative humidity, and then the dynamic viscoelasticity measuring device DVA-225 (IT Measurement Control Co., Ltd.)
  • the adhesive layer 27 was formed on the second intermediate in the adhesive layer forming step 36.
  • the adhesive layer 27 was formed by using a commercially available adhesive. By cutting the film material on which the adhesive layer 27 was formed in the film material cutting step 37, nine sheet-like film materials were obtained.
  • the film materials A to I thus obtained and the base material 22 having a dome shape or the base material having a flat plate shape are integrally formed by thermoforming using a molding device 50, respectively. Molded bodies were produced and Examples 1 to 19 were obtained. The molding temperature is shown in the “molding temperature” column of Table 2.
  • an acrylic dome having a diameter of 100 mm and a thickness of 2 mm was made of polymethyl methacrylate (PMMA), which is acrylic having a glass transition point of 100 ° C.
  • PMMA polymethyl methacrylate
  • Table 2 “acrylic” is described in the “substance” column of “base material”, “dome” is described in the “shape” column, and “100” is described in the “diameter” column. The “diameter” is an outer diameter.
  • a square plate-shaped base material (not shown) is a commercially available PC plate made of PC having a glass transition point of 150 ° C. and having a side length of 100 mm and a thickness (height) of 5 mm.
  • PC1600 manufactured by Takiron Co., Ltd. was used.
  • PC is described in the “Substance” column of “Substrate”
  • Platinum is described in the “Shape” column.
  • the body was designated Example 19.
  • the adhesives or pressure-sensitive adhesives used for forming the adhesive layer 27 are A to C shown in the “Adhesive layer” column of Table 2.
  • A is an acrylic adhesive sheet manufactured by Soken Chemical Co., Ltd.
  • B is a silicone baseless double-sided tape 91022 manufactured by 3M Corporation.
  • C is Dianar (registered trademark) BR77 manufactured by Mitsubishi Rayon Co., Ltd.
  • Each of the obtained molded bodies was evaluated for rainbow unevenness, coloring, contact angle, formability to a curved surface, and workability at the end by the following evaluation methods and standards. Each evaluation result is shown in Table 2.
  • a film material J is produced by forming an adhesive layer on a polyethylene terephthalate film (Lumirror (registered trademark) U34 (for optical) 50 ⁇ m) manufactured by polyethylene terephthalate) in the same manner as in the example and cutting it into a sheet. did.
  • a polyethylene terephthalate film Limirror (registered trademark) U34 (for optical) 50 ⁇ m) manufactured by polyethylene terephthalate
  • the film materials A and J and the base material 22 having a dome shape or the base material having a flat plate shape are integrally formed by thermoforming in the same manner as in Examples 1 to 19, and three types of molded bodies are obtained. Produced as Comparative Examples 1 to 3.
  • the molding temperature is shown in the “molding temperature” column of Table 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polarising Elements (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

Provided is a method for manufacturing a molded body that has superior transparency, processability, and formability while still suppressing the occurrence of coloring. A method for manufacturing a molded body (10) has a film-material forming step (33) and a molding step (32). In the film-material forming step (33), an elongated film material is formed from cellulose acylate. In the molding step (32), the obtained film material (20) and a substrate material (22) formed of a thermoplastic resin are integrally molded thereby forming the molded body (10) having a cellulose acylate film (13) and a transparent substrate (11) by thermoforming at a forming temperature in the range of 150-240°C inclusive.

Description

成形体の製造方法Manufacturing method of molded body
 本発明は、成形体の製造方法に関するものである。 The present invention relates to a method for producing a molded body.
 監視カメラのカバー及び保育器のケースなどの透明性が要求される成形体の製品では、ガラスが多く用いられている。そして、さらに耐衝撃性及び/または加工性などが要求される場合には、ガラスの代わりに、アクリルまたはポリカーボネートなどの合成樹脂が用いられる。 ガ ラ ス Glass is often used in molded products that require transparency, such as surveillance camera covers and incubator cases. And when impact resistance and / or workability are further required, synthetic resin such as acrylic or polycarbonate is used instead of glass.
 成形体の製造方法として、例えば、特開平6-143339号公報には、成形体としてのスイミングゴーグルを製造する方法が記載されている。成形体は、成形体本体としての透明な基材と、防曇性をもつフィルムとしての防曇層を設けたレンズとを有しており、結露等で曇ることにより透明性が低下することが抑制されている。基材は、ポリカーボネートなどの透明な熱可塑性樹脂を用いて、レンズを装着する孔を持つ形状に予め成形されている。レンズは、基材を射出成形金型内に配置し、トリアセチルセルロースなどの熱可塑性透明セルロース樹脂を溶融した状態で上記金型へ射出することにより、成形と同時に基材の孔の内周面に形成される。成形温度としての金型温度は、70℃~85℃とされている。防曇性をもつフィルムは、レンズの表面に親水化処理としてのけん化処理を施すことにより形成されている。 As a method for producing a molded body, for example, JP-A-6-143339 describes a method for producing swimming goggles as a molded body. The molded body has a transparent base material as the molded body and a lens provided with an antifogging layer as an antifogging film, and the transparency may decrease due to fogging due to condensation. It is suppressed. The base material is preliminarily molded into a shape having a hole for mounting a lens, using a transparent thermoplastic resin such as polycarbonate. The lens has a base material placed in an injection mold, and is injected into the mold in a molten state of a thermoplastic transparent cellulose resin such as triacetyl cellulose. Formed. The mold temperature as the molding temperature is set to 70 ° C. to 85 ° C. The film having antifogging properties is formed by subjecting the lens surface to a saponification treatment as a hydrophilic treatment.
 特開2009-139964号公報には、ゴーグルなどのレンズとして用いられ、基材と偏光複合シートとを有する成形体としての光学用複合成形品を製造する方法が記載されている。偏光複合シートは、セルローストリアセテートフィルムと偏光フィルムと接着層とポリカーボネート樹脂フィルムとを有しており、予めシート状の球面体に成形されている。成形体は、この偏光複合シートを成形機内に配置し、基材を形成するポリカーボネート樹脂を280℃の成形温度で射出成形することにより製造されている。 JP-A-2009-139964 describes a method for producing an optical composite molded article that is used as a lens such as goggles and has a base material and a polarizing composite sheet. The polarizing composite sheet has a cellulose triacetate film, a polarizing film, an adhesive layer, and a polycarbonate resin film, and is previously formed into a sheet-like spherical body. The molded body is manufactured by placing the polarizing composite sheet in a molding machine and injection-molding a polycarbonate resin forming a substrate at a molding temperature of 280 ° C.
 特開平6-143339号公報と特開2009-139964号公報とに記載される方法では、フィルムを凹凸などの曲面に沿って成形することも、基材の端部の形状に沿って加工することも難しいため、用途が限られた成形体しかつくることができない。上記成形及び加工をしやすくするために成形温度を高くしすぎた場合には、フィルムに着色が発生する場合がある。例えば無色のフィルムが褐色に色づくなどの着色は、成形体の用途を狭める原因にもなる。また、特開平6-143339号公報に記載されるフィルムは、成形温度が高すぎると防曇性が低下する場合がある。さらに、特開平6-143339号公報と特開2009-139964号公報とに記載される方法で製造した成形体は、虹むらが発生することにより透明性を損なう場合がある。虹むらは、虹のような複数色の色むらである。 In the methods described in JP-A-6-143339 and JP-A-2009-139964, the film can be formed along a curved surface such as irregularities, or can be processed along the shape of the end of the substrate. However, it is difficult to form a compact with limited use. If the molding temperature is too high to facilitate the molding and processing, the film may be colored. For example, coloring such as a colorless film turning brown also causes a narrow use of the molded body. In addition, the film described in JP-A-6-143339 may be deteriorated in antifogging properties when the molding temperature is too high. Furthermore, the molded body produced by the methods described in JP-A-6-143339 and JP-A-2009-139964 may impair transparency due to the occurrence of rainbow unevenness. Rainbow spots are multi-colored spots like a rainbow.
 そこで本発明は、着色の発生を抑制し、かつ透明性と加工性と成形性とにより優れた成形体の製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for producing a molded body that suppresses the occurrence of coloring and is excellent in transparency, workability, and moldability.
 上記目的を達成するために、本発明の成形体の製造方法は、フィルム材形成工程と、成形工程と、を有し、セルロースアシレートフィルムと透明な基材とを有する成形体を製造する。フィルム材形成工程は、セルロースアシレートから長尺のフィルム材を形成する。成形工程は、フィルム材と、熱可塑性樹脂から形成された基材用素材とを、150℃以上240℃以下の範囲内の成形温度の熱成形で一体成形することにより、成形体にする。 In order to achieve the above object, the method for producing a molded article of the present invention comprises a film material forming step and a molding step, and produces a molded article having a cellulose acylate film and a transparent substrate. In the film material forming step, a long film material is formed from cellulose acylate. In the molding step, the film material and the base material formed from the thermoplastic resin are integrally molded by thermoforming at a molding temperature within a range of 150 ° C. or higher and 240 ° C. or lower to obtain a molded body.
 フィルム材形成工程と成形工程との間に、長尺のフィルム材をシート状に切断するフィルム材切断工程を有することが好ましい。 It is preferable to have a film material cutting step of cutting a long film material into a sheet shape between the film material forming step and the forming step.
 フィルム材形成工程と成形工程との間に、フィルム材に、けん化されたセルロースアシレートを含むけん化層を形成するけん化工程を有し、成形工程に供されるフィルム材は、けん化層のアシル基量をXとし、けん化工程でけん化されなかったセルロースアシレートから形成されたセルロースアシレート層のアシル基量をYとするときに、X/Yで求めるアシル基割合が大きくても0.7であることが好ましい。 Between the film material forming step and the molding step, the film material has a saponification step for forming a saponified layer containing saponified cellulose acylate, and the film material used for the molding step is an acyl group of the saponified layer. When the amount of acyl groups in the cellulose acylate layer formed from the cellulose acylate not saponified in the saponification step is Y and the amount of acyl groups determined by X / Y is 0.7, Preferably there is.
 けん化工程と成形工程との間に、けん化層の表面に、けん化層を保護する保護層を形成する保護層形成工程を有することが好ましい。 It is preferable to have a protective layer forming step for forming a protective layer for protecting the saponified layer on the surface of the saponified layer between the saponification step and the molding step.
 成形工程は、フィルム材の加熱を開始してから成形が終了するまでの時間を30秒以上600秒以下の範囲内とすることが好ましい。 In the forming step, it is preferable that the time from the start of heating of the film material to the end of forming be within a range of 30 seconds to 600 seconds.
 フィルム材は、厚みが15μm以上100μm以下の範囲内であることが好ましい。 The film material preferably has a thickness in the range of 15 μm to 100 μm.
 セルロースアシレートのガラス転移点をTgとするときに、成形温度は(Tg+5℃)以上(Tg+40℃)以下の範囲内であることが好ましい。 When the glass transition point of cellulose acylate is defined as Tg, the molding temperature is preferably in the range of (Tg + 5 ° C.) to (Tg + 40 ° C.).
 フィルム材形成工程と成形工程との間に、フィルム材のフィルム面に接着層を形成する接着層形成工程を有し、成形工程は、接着層と基材用素材とを密着した状態に、フィルム材と基材用素材とを一体成形することが好ましい。 Between the film material forming step and the forming step, there is an adhesive layer forming step for forming an adhesive layer on the film surface of the film material, and the forming step is performed in such a state that the adhesive layer and the substrate material are in close contact with each other. It is preferable to integrally form the material and the base material.
 熱可塑性樹脂は、アクリルまたはポリカーボネートであることが好ましい。 The thermoplastic resin is preferably acrylic or polycarbonate.
 本発明によれば、着色の発生を抑制し、かつ透明性と加工性と成形性とにより優れた成形体が得られる。 According to the present invention, it is possible to obtain a molded article that suppresses the occurrence of coloring and is excellent in transparency, workability, and moldability.
成形体の使用態様を示す説明図である。It is explanatory drawing which shows the usage condition of a molded object. 成形体の一部の断面概略図である。It is a section schematic diagram of a part of a forming object. 成形体の製造方法を説明するフローチャートである。It is a flowchart explaining the manufacturing method of a molded object. フィルム材の一部の断面概略図である。It is a section schematic diagram of a part of film material. 成形装置の断面概略図である。It is a section schematic diagram of a forming device.
 図1において、成形体10の一例としてのカバーは、透明性、すなわち、その先にあるものが透けて見えることが要求されるもの、例えば監視カメラ100に用いられる。監視カメラ100は、撮影機能を有するカメラ本体102と、カメラ本体102を支持する支持部材104と、カメラ本体102を覆うためのカバーとを備えており、このカバーが成形体10である。この例では、成形体10は、ドーム形状とされている。 In FIG. 1, a cover as an example of the molded body 10 is used for, for example, a surveillance camera 100 that is required to be transparent, that is, a thing existing beyond the cover is visible. The surveillance camera 100 includes a camera body 102 having a photographing function, a support member 104 that supports the camera body 102, and a cover for covering the camera body 102, and this cover is the molded body 10. In this example, the molded body 10 has a dome shape.
 図2に示すように成形体10は、成形体本体としての基材11と、接着層12と、セルロースアシレートフィルム13とを備える。成形体10の厚みは、特に限定されず、例えば1mm以上50mm以下の範囲内とされる。成形体10としての透明性と強度とをより向上させるという観点では、2mm以上20mm以下の範囲内であることがより好ましい。なお、本実施形態では、成形体10の厚みを例えば2.1mmとしてある。成形体10は、接着層12が無い場合もある。 As shown in FIG. 2, the molded body 10 includes a base material 11 as a molded body, an adhesive layer 12, and a cellulose acylate film 13. The thickness of the molded body 10 is not particularly limited and is, for example, in the range of 1 mm or more and 50 mm or less. From the viewpoint of further improving the transparency and strength of the molded body 10, it is more preferably in the range of 2 mm to 20 mm. In the present embodiment, the thickness of the molded body 10 is 2.1 mm, for example. The molded body 10 may not have the adhesive layer 12.
 基材11は、透明である。透明とは、撮影可能な程度の光の透過率をもつことを意味する。ここでの光は、可視光線(波長範囲が概ね380nm以上750nm以下の領域)と近赤外線(波長範囲が概ね750nm以上2500nm以下の領域)とを含む。 The base material 11 is transparent. The term “transparent” means that it has a light transmittance that can be photographed. The light here includes visible light (wavelength range of approximately 380 nm to 750 nm) and near infrared light (wavelength range of approximately 750 nm to 2500 nm).
 基材11は、湾曲したシート状に形成されており、本実施形態ではドーム形状としている。ただし、シート状の基材11に限られず、レンズ状の基材としても良い。また、基材の形状は、ドーム形状に限られず、所望の形状にして良い。基材11の少なくとも一方の表面には、基材11からセルロースアシレートフィルム13が剥がれることをより抑制するための接着層12が設けられている。この基材11は湾曲した表面を有するが、図2においては、説明の便宜上、基材11の表面を平面に描いている。基材11の厚みは、特に限定されず、例えば1mm以上50mm以下の範囲内とされる。基材11としての透明性と所望の形状への成形性とをより向上させるという観点では、基材11の厚みは2mm以上20mm以下の範囲内であることがより好ましい。本実施形態では、基材11の厚みを例えば2mmとしてある。 The base material 11 is formed in a curved sheet shape, and has a dome shape in this embodiment. However, it is not limited to the sheet-like substrate 11 and may be a lens-like substrate. The shape of the substrate is not limited to the dome shape, and may be a desired shape. On at least one surface of the base material 11, an adhesive layer 12 for further suppressing the cellulose acylate film 13 from peeling from the base material 11 is provided. Although this base material 11 has a curved surface, in FIG. 2, the surface of the base material 11 is drawn on a plane for convenience of explanation. The thickness of the base material 11 is not specifically limited, For example, it shall be in the range of 1 mm or more and 50 mm or less. From the viewpoint of further improving the transparency as the substrate 11 and the moldability to a desired shape, the thickness of the substrate 11 is more preferably in the range of 2 mm or more and 20 mm or less. In this embodiment, the thickness of the base material 11 is 2 mm, for example.
 セルロースアシレートフィルム13は、セルロースアシレートで形成されている。セルロースアシレートは、本実施形態ではセルローストリアセテート(トリアセチルセルロース、以下TACと称する)であるが、TACに限られず、TACと異なる他のセルロースアシレートであっても良い。セルロースアシレートを用いることにより、虹むらが抑制され、その結果、透明性が確保される。虹むらは、光が照射された際に、フィルム面における光の反射と、入射光の各フィルム面における屈折とにより起こる光干渉現象である。セルロースアシレートフィルム13は、接着層12を介して基材11に設けられている。すなわち、セルロースアシレートフィルム13は、接着層12の基材11とは反対側の表面に設けられている。 The cellulose acylate film 13 is made of cellulose acylate. The cellulose acylate is cellulose triacetate (triacetyl cellulose, hereinafter referred to as TAC) in the present embodiment, but is not limited to TAC, and may be other cellulose acylate different from TAC. By using cellulose acylate, rainbow unevenness is suppressed, and as a result, transparency is ensured. Rainbow spot is a light interference phenomenon caused by reflection of light on the film surface and refraction of incident light on each film surface when irradiated with light. The cellulose acylate film 13 is provided on the base material 11 through the adhesive layer 12. That is, the cellulose acylate film 13 is provided on the surface of the adhesive layer 12 opposite to the substrate 11.
 セルロースアシレートフィルム13は、けん化層14と、セルロースアシレート層15とを有する2層構造とされており、セルロースアシレート層15が基材11側、すなわち接着層12側となる状態に配されている。 The cellulose acylate film 13 has a two-layer structure having a saponified layer 14 and a cellulose acylate layer 15, and the cellulose acylate layer 15 is arranged in a state where it is on the substrate 11 side, that is, the adhesive layer 12 side. ing.
 けん化層14は、セルロースアシレートフィルム13に防曇性を付与するためのものである。したがって、防曇機能が不要な場合には、けん化層14は無くても良い。防曇性には、初期防曇性と長期防曇性とがある。初期防曇性は、瞬間的な結露を防止する機能である。長期防曇性は、結露を長時間防止する機能である。本実施形態では、けん化層14は、初期防曇性と長期防曇性との両機能を担うものである。けん化層14は、けん化されたセルロースアシレート、この例ではけん化されたTACを含む。 The saponification layer 14 is for imparting antifogging properties to the cellulose acylate film 13. Therefore, when the anti-fogging function is unnecessary, the saponified layer 14 may not be provided. Antifogging properties include initial antifogging properties and long-term antifogging properties. The initial anti-fogging property is a function that prevents instantaneous condensation. Long-term antifogging is a function that prevents condensation for a long time. In this embodiment, the saponification layer 14 bears both functions of initial antifogging property and long-term antifogging property. The saponified layer 14 comprises saponified cellulose acylate, in this example saponified TAC.
 セルロースアシレート層15は、セルロースアシレート、この例ではTACで形成されている。なお、セルロースアシレート層15は、けん化されたセルロースアシレートを非含有としている。 The cellulose acylate layer 15 is made of cellulose acylate, in this example, TAC. The cellulose acylate layer 15 does not contain saponified cellulose acylate.
 図3に示すように、成形体10は、第1の素材としてのフィルム材20を形成する第1の素材形成工程31と、フィルム材20と第2の素材としての基材用素材22とを熱成形で一体成形する成形工程32とにより製造される。 As shown in FIG. 3, the molded body 10 includes a first material forming step 31 for forming a film material 20 as a first material, and a base material 22 as a film material 20 and a second material. It is manufactured by a molding step 32 which is integrally formed by thermoforming.
 第1の素材形成工程31は、フィルム材形成工程33と、けん化工程34と、保護層形成工程35と、接着層形成工程36と、フィルム材切断工程37とを有しており、これら全ての工程を経て得られた第1の素材がフィルム材20である(図4参照)。 The first material forming step 31 includes a film material forming step 33, a saponification step 34, a protective layer forming step 35, an adhesive layer forming step 36, and a film material cutting step 37. The 1st raw material obtained through the process is the film material 20 (refer FIG. 4).
 フィルム材形成工程33は、セルロースアシレートから長尺のフィルム材を形成する工程である。このフィルム材を第1の中間体と称する。けん化工程34は、第1の中間体に、けん化されたセルロースアシレートを含むけん化層を形成する。保護層形成工程35は、けん化層の表面に、けん化層を保護する保護層を形成する。接着層形成工程36は、フィルム材のフィルム面に接着層を形成する。なお、けん化層と保護層と接着層の詳細については、別の図面を用いて後述する。 The film material forming step 33 is a step of forming a long film material from cellulose acylate. This film material is referred to as a first intermediate. In the saponification step 34, a saponified layer containing saponified cellulose acylate is formed on the first intermediate. In the protective layer forming step 35, a protective layer for protecting the saponified layer is formed on the surface of the saponified layer. In the adhesive layer forming step 36, an adhesive layer is formed on the film surface of the film material. The details of the saponification layer, the protective layer, and the adhesive layer will be described later with reference to another drawing.
 成形工程32における熱成形の手法は、真空圧空成形、真空成形、圧空成形、フィルムインサート成形、及びインモールド成形のうちのいずれかであり、本実施形態では真空圧空成形である。一体成形とは、日本工業規格JIS K-7010に基づき、部材の接合と同時に製品(成形体)を一体で成形することを意味する。 The thermoforming method in the forming step 32 is any one of vacuum / pressure forming, vacuum forming, pressure forming, film insert forming, and in-mold forming, and in this embodiment, vacuum / pressure forming. The integral molding means that a product (molded body) is molded integrally with the joining of the members based on Japanese Industrial Standard JIS K-7010.
 以上の工程による成形体10の製造方法について、以下に説明する。第1の素材形成工程31については、図3と図4とを参照しながら説明する。フィルム材形成工程33は、第1の中間体であるフィルム材を、この例では溶液製膜方法によりつくる。具体的には、セルロースアシレートとしてTACを含むポリマー溶液(以下、ドープと称する)を支持体へ流延して流延膜を形成し、支持体から流延膜を剥がして乾燥することに製造される。フィルム材形成工程33で用いるセルロースアシレートのガラス転移点Tgは、150℃以上180℃以下の範囲内であることが好ましい。 A method for manufacturing the molded body 10 by the above steps will be described below. The first material forming step 31 will be described with reference to FIGS. 3 and 4. In the film material forming step 33, a film material which is a first intermediate is formed by a solution casting method in this example. Specifically, it is produced by casting a polymer solution containing TAC as cellulose acylate (hereinafter referred to as a dope) to a support to form a cast film, peeling the cast film from the support and drying it. Is done. The glass transition point Tg of the cellulose acylate used in the film material forming step 33 is preferably in the range of 150 ° C. or higher and 180 ° C. or lower.
 セルロースアシレートについて、詳細を以下に説明する。セルロースアシレートは、セルロースのヒドロキシ基をカルボン酸でエステル化している割合、つまりアシル基の置換度(以下、アシル基置換度と称する)が下記式(1)~(3)の全ての条件を満足するものが特に好ましい。なお、(1)~(3)において、AおよびBはともにアシル基置換度であり、Aにおけるアシル基はアセチル基であり、Bにおけるアシル基は炭素原子数が3~22のものである。
    2.0≦A+B≦3.0・・・(1)
    0≦A≦3.0・・・(2)
    0≦B≦2.9・・・(3)
Details of the cellulose acylate will be described below. Cellulose acylate has a ratio in which the hydroxy group of cellulose is esterified with carboxylic acid, that is, the substitution degree of acyl group (hereinafter referred to as acyl substitution degree) satisfies all the conditions of the following formulas (1) to (3). What is satisfactory is particularly preferred. In (1) to (3), A and B are both acyl group substitution degrees, the acyl group in A is an acetyl group, and the acyl group in B has 3 to 22 carbon atoms.
2.0 ≦ A + B ≦ 3.0 (1)
0 ≦ A ≦ 3.0 (2)
0 ≦ B ≦ 2.9 (3)
 セルロースを構成し、β-1,4結合しているグルコース単位は、2位、3位および6位にヒドロキシ基を有している。セルロースアシレートは、このようなセルロースのヒドロキシ基の一部または全部がエステル化されて、ヒドロキシ基の水素が炭素数2以上のアシル基に置換されたポリマーである。なお、グルコース単位中のひとつのヒドロキシ基のエステル化が100%されていると置換度は1であるので、セルロースアシレートの場合には、2位、3位および6位のヒドロキシ基がそれぞれ100%エステル化されていると置換度は3となる。 The glucose unit constituting cellulose and having β-1,4 bonds has hydroxy groups at the 2nd, 3rd and 6th positions. Cellulose acylate is a polymer in which some or all of the hydroxy groups of cellulose are esterified, and the hydrogen of the hydroxy group is substituted with an acyl group having 2 or more carbon atoms. In addition, since the substitution degree is 1 when esterification of one hydroxy group in the glucose unit is 100%, in the case of cellulose acylate, the hydroxy groups at the 2nd, 3rd and 6th positions are 100 respectively. When% esterified, the degree of substitution is 3.
 ここで、グルコース単位で2位のアシル基置換度をDS2、3位のアシル基置換度をDS3、6位のアシル基置換度をDS6として「DS2+DS3+DS6」で求められる全アシル基置換度は2.00~2.97であることが好ましく、本実施形態では2.86である。 Here, the total acyl group substitution degree obtained by “DS2 + DS3 + DS6”, where the acyl group substitution degree at the 2-position in the glucose unit is DS2, the acyl substitution degree at the 3-position is DS3, and the acyl substitution degree at the 6-position is DS6 is 2. It is preferably 00 to 2.97, and 2.86 in this embodiment.
 アシル基は1種類だけでも良いし、2種類以上であっても良い。アシル基が2種類以上であるときには、そのひとつがアセチル基であることが好ましい。2位、3位、および6位のヒドロキシ基の水素のアセチル基による置換度の総和をDSAとし、2位、3位、および6位におけるアセチル基以外のアシル基による置換度の総和をDSBとするとき、「DSA+DSB」の値は、2.20~2.86であることが好ましく、2.40~2.80であることが特に好ましい。DSBは1.50以上であることが好ましく、1.7以上であることが特に好ましい。そして、DSBは、その28%以上が6位ヒドロキシ基の置換であることが好ましいが、より好ましくは30%以上、さらに好ましくは31%以上、特に好ましくは32%以上が6位ヒドロキシ基の置換であることが好ましい。また、セルロースアシレートの6位の「DSA+DSB」の値が0.75以上であることが好ましく、0.80以上であることがより好ましく、0.85以上であることが特に好ましい。 There may be only one kind of acyl group or two or more kinds. When there are two or more acyl groups, it is preferable that one of them is an acetyl group. DSA is the sum of the substitution degrees of the hydrogen groups of the hydroxy groups at the 2nd, 3rd and 6th positions with the acetyl group, and DSB is the sum of the substitution degrees with the acyl groups other than the acetyl groups at the 2nd, 3rd and 6th positions. In this case, the value of “DSA + DSB” is preferably 2.20 to 2.86, and particularly preferably 2.40 to 2.80. DSB is preferably 1.50 or more, and particularly preferably 1.7 or more. In DSB, 28% or more is preferably 6-position hydroxy group substitution, more preferably 30% or more, further preferably 31% or more, particularly preferably 32% or more substitution of 6-position hydroxy group. It is preferable that In addition, the value of “DSA + DSB” at the 6-position of cellulose acylate is preferably 0.75 or more, more preferably 0.80 or more, and particularly preferably 0.85 or more.
 炭素数が2以上であるアシル基としては、脂肪族基でもアリール基でもよく、特に限定されない。例えばセルロースのアルキルカルボニルエステル、アルケニルカルボニルエステルあるいは芳香族カルボニルエステル、芳香族アルキルカルボニルエステルなどがあり、これらは、それぞれさらに置換された基を有していても良い。プロピオニル基、ブタノイル基、ペンタノイル基、ヘキサノイル基、オクタノイル基、デカノイル基、ドデカノイル基、トリデカノイル基、テトラデカノイル基、ヘキサデカノイル基、オクタデカノイル基、iso-ブタノイル基、t-ブタノイル基、シクロヘキサンカルボニル基、オレオイル基、ベンゾイル基、ナフチルカルボニル基、シンナモイル基などを挙げることが出来る。これらの中でも、プロピオニル基、ブタノイル基、ドデカノイル基、オクタデカノイル基、t-ブタノイル基、オレオイル基、ベンゾイル基、ナフチルカルボニル基、シンナモイル基などがより好ましく、プロピオニル基、ブタノイル基が特に好ましい。 The acyl group having 2 or more carbon atoms may be an aliphatic group or an aryl group, and is not particularly limited. For example, there are alkyl carbonyl ester, alkenyl carbonyl ester, aromatic carbonyl ester, and aromatic alkyl carbonyl ester of cellulose, and these may each further have a substituted group. Propionyl group, butanoyl group, pentanoyl group, hexanoyl group, octanoyl group, decanoyl group, dodecanoyl group, tridecanoyl group, tetradecanoyl group, hexadecanoyl group, octadecanoyl group, iso-butanoyl group, t-butanoyl group, cyclohexane Examples thereof include a carbonyl group, an oleoyl group, a benzoyl group, a naphthylcarbonyl group, and a cinnamoyl group. Among these, a propionyl group, a butanoyl group, a dodecanoyl group, an octadecanoyl group, a t-butanoyl group, an oleoyl group, a benzoyl group, a naphthylcarbonyl group, a cinnamoyl group, and the like are more preferable, and a propionyl group and a butanoyl group are particularly preferable.
 けん化工程34は、第1の中間体にけん化処理を施すことにより、第2の中間体としてのフィルムベース23を製造する。本実施形態では、第1の中間体としてのフィルム材の一方のフィルム面にけん化液としてのアルカリ溶液を塗布し、塗布されたフィルム材を加熱し、水で洗浄することにより製造している。けん化液にはイソプロピルアルコールを含有させることが好ましく、本実施形態でもそのようにしている。フィルムベース23のうち、上記けん化処理によってセルロースアシレートがけん化され、層状に形成された領域がけん化層24である。すなわち、けん化工程34は、フィルム材に、けん化されたセルロースアシレートを含むけん化層24を形成する工程である。けん化層24は、フィルムベース23の一方のベース面(以下、第1のベース面と称する)23aをなす。このけん化層24が成形体10のけん化層14になる。 The saponification process 34 manufactures the film base 23 as a 2nd intermediate body by performing a saponification process to a 1st intermediate body. In this embodiment, it manufactures by apply | coating the alkaline solution as a saponification liquid to one film surface of the film material as a 1st intermediate body, heating the apply | coated film material, and wash | cleaning with water. It is preferable to contain isopropyl alcohol in the saponification solution, and this is the case in this embodiment. In the film base 23, the cellulose acylate is saponified by the saponification treatment, and a region formed in a layer form is the saponified layer 24. That is, the saponification step 34 is a step of forming a saponification layer 24 containing saponified cellulose acylate on a film material. The saponification layer 24 forms one base surface (hereinafter referred to as a first base surface) 23 a of the film base 23. This saponified layer 24 becomes the saponified layer 14 of the molded body 10.
 フィルムベース23のうち、けん化されなかった非けん化部分、すなわち、けん化層24を除く残部が、セルロースアシレート層25である。したがって、セルロースアシレート層25は、けん化工程34でけん化されなかったセルロースアシレートから形成されている。セルロースアシレート層25は、フィルムベース23の他方のベース面(以下、第2のベース面と称する)23bをなす。このセルロースアシレート層25が成形体10のセルロースアシレート層15になる。 The cellulose acylate layer 25 is a non-saponified portion that has not been saponified in the film base 23, that is, the remainder excluding the saponified layer 24. Therefore, the cellulose acylate layer 25 is formed from cellulose acylate that has not been saponified in the saponification step 34. The cellulose acylate layer 25 forms the other base surface (hereinafter referred to as a second base surface) 23 b of the film base 23. The cellulose acylate layer 25 becomes the cellulose acylate layer 15 of the molded body 10.
 なお、フィルムベース23は、けん化層24が第1のベース面23aをなしているが、これに限られない。すなわち、けん化層24は、第1のベース面23aに加えて、第2のベース面をなすように設けられていても良い。 In addition, although the saponification layer 24 has comprised the 1st base surface 23a, the film base 23 is not restricted to this. That is, the saponification layer 24 may be provided so as to form a second base surface in addition to the first base surface 23a.
 フィルムベース23の厚み(セルロースアシレート層25(図4参照)の厚みとけん化層24(図4参照)の厚みとの和)T23は、15μm以上100μm以下の範囲内であることが好ましい。なお、後述のように、けん化層24、保護層26(いずれも図4参照)の少なくとも一方が無いフィルム材を第1の素材として用いる場合もある。この場合には、用いる第1素材の厚みを上記のT23とみなし、15μm以上100μm以下の範囲内とすることが好ましい。厚みT23が15μm以上であることにより、15μm未満である場合に比べて、成形時の破れとしわなどの発生が抑制され、厚みT23が100μm以下であることにより、100μmよりも大きい場合に比べて、ドーム形状及び凹凸などの曲面を有する基材用素材22への成形のしやすさ(以下、成形性と称する)、および、シート状または平板状の基材用素材の端部の形状に沿った加工のしやすさ(以下、加工性と称する)に、より優れるからである。厚みT23は、18μm以上60μm以下の範囲内であることがより好ましく、20μm以上50μm以下の範囲内であることがさらに好ましい。なお、本実施形態では、厚みT23を例えば40μmとしてある。 The thickness of the film base 23 (the sum of the thickness of the cellulose acylate layer 25 (see FIG. 4) and the thickness of the saponified layer 24 (see FIG. 4)) T23 is preferably in the range of 15 μm to 100 μm. As will be described later, a film material that does not have at least one of the saponified layer 24 and the protective layer 26 (see FIG. 4) may be used as the first material. In this case, it is preferable that the thickness of the first material to be used is regarded as T23 described above and is in the range of 15 μm to 100 μm. When the thickness T23 is 15 μm or more, generation of tears and wrinkles during molding is suppressed as compared with the case where the thickness T23 is less than 15 μm, and when the thickness T23 is 100 μm or less, the thickness T23 is larger than 100 μm. Along with the shape of the base material 22 having a curved surface such as a dome shape and unevenness (hereinafter referred to as moldability) and the shape of the end of the sheet-like or flat base material. This is because it is more excellent in ease of processing (hereinafter referred to as processability). The thickness T23 is more preferably in the range of 18 μm or more and 60 μm or less, and further preferably in the range of 20 μm or more and 50 μm or less. In the present embodiment, the thickness T23 is set to 40 μm, for example.
 厚みT23は、フィルム材20の透湿度と相関関係がある。具体的には、厚みT23が小さいほど、透湿度が高い、すなわち、フィルム材20の透湿性が良い。アウトガスは、基材用素材22及び/または接着層27に含まれる水分等が蒸発したものと考えられ、透湿性を有するフィルム材20は、このアウトガスを透過させる。日本工業規格JIS Z-0208に基づいて、40℃、90%RH(relative humidity)において透湿度を評価した場合に、フィルム材20の透湿度は、550g/(m2・24h)以上であることが好ましい。アウトガスが発生しても、成形体10では、アウトガスがセルロースアシレートフィルム13を通り抜けて外部に放出されるため、上記気泡及び/または剥がれの発生は抑制される。したがって、厚みT23が上記範囲内であることは、透湿性の観点からも好ましい。さらに、フィルム材20は、セルロースアシレートで形成されているため、ポリエチレンテレフタレート(以下、PETと称する)で形成する場合と比較して、透湿性により優れている。上記のように優れた透湿性をもつフィルム材20は、基材用素材22にきれいに貼り合わせられるため、成形体10の意匠性を向上させる。さらに、貼り付いた状態が長期間に渡り維持されるため、成形体10としての耐久性を向上させる。 The thickness T23 has a correlation with the moisture permeability of the film material 20. Specifically, the smaller the thickness T23, the higher the moisture permeability, that is, the better the moisture permeability of the film material 20. The outgas is considered that the moisture contained in the base material 22 and / or the adhesive layer 27 is evaporated, and the film material 20 having moisture permeability transmits the outgas. Based on the Japanese Industrial Standard JIS Z-0208, when the moisture permeability is evaluated at 40 ° C. and 90% RH (relative humidity), the moisture permeability of the film material 20 is 550 g / (m 2 · 24 h) or more. Is preferred. Even if outgas is generated, in the molded body 10, since the outgas passes through the cellulose acylate film 13 and is released to the outside, the occurrence of the bubbles and / or peeling is suppressed. Therefore, it is preferable from the viewpoint of moisture permeability that the thickness T23 is within the above range. Furthermore, since the film material 20 is formed of cellulose acylate, the film material 20 is superior in moisture permeability as compared with a case where it is formed of polyethylene terephthalate (hereinafter referred to as PET). Since the film material 20 having excellent moisture permeability as described above is neatly bonded to the base material 22, the design of the molded body 10 is improved. Furthermore, since the stuck state is maintained over a long period of time, the durability of the molded body 10 is improved.
 けん化層24のアシル基量をXとし、セルロースアシレート層25のアシル基量をYとするときに、X/Yで求めるアシル基の割合(以下、アシル基割合と称する)が大きくても0.7、すなわち、0.7以下であることが好ましく、本実施形態では例えば0.3としている。アシル基割合が小さいほど、セルロースアシレート層25に対するけん化層24のアシル基が少なく、上記けん化処理において、より多くのアシル基がけん化され、その結果親水基になったことを意味する。 When the amount of acyl groups in the saponified layer 24 is X and the amount of acyl groups in the cellulose acylate layer 25 is Y, the ratio of acyl groups determined by X / Y (hereinafter referred to as the acyl group ratio) is 0. 0.7, that is, 0.7 or less, and in this embodiment, for example, 0.3. The smaller the acyl group ratio, the fewer the acyl groups of the saponified layer 24 relative to the cellulose acylate layer 25, which means that more acyl groups were saponified in the saponification treatment, resulting in hydrophilic groups.
 アシル基割合は、初期防曇性と関係がある。具体的には、アシル基割合が小さいほど、初期防曇性が良い。アシル基割合が0.7以下、すなわち0以上0.7以下の範囲内であることにより、0.7よりも大きい場合に比べて、より優れた初期防曇性を発現する。アシル基割合は、0.01以上0.6以下の範囲内であることがより好ましく、0.05以上0.5以下の範囲内であることがさらに好ましい。 The acyl group ratio is related to the initial antifogging property. Specifically, the smaller the acyl group ratio, the better the initial antifogging property. When the acyl group ratio is 0.7 or less, that is, in the range of 0 or more and 0.7 or less, a superior initial antifogging property is exhibited as compared with a case where the ratio is larger than 0.7. The acyl group ratio is more preferably in the range of 0.01 to 0.6, and still more preferably in the range of 0.05 to 0.5.
 アシル基量Xとアシル基量Yとは、フーリエ変換赤外分光法(FT-IR,Fourier Transform Infrared Spectroscopy、以下FT-IRと称する)の全反射測定(ATR,Attenuated Total Reflection)法(以下、ATR法と称する)によって求められるアシル基のスペクトル強度として求める。具体的には、セルロースアシレートのアシル基のシグナルのスペクトル強度を、セルロース系ポリマーの共通シグナルのスペクトル強度で補正(規格化)する。本実施形態ではセルロースアシレートとしてTACを用いているのでアシル基はアセチル基であり、アセチル基のシグナルは1210cm-1である。セルロース系ポリマーの共通シグナルは1030cm-1とすることが好ましい。そして、補正により得られたセルロースアシレートのアシル基のシグナルのスペクトル強度を、アシル基量Xまたはアシル基量Yとしてそれぞれ求める。このように、アシル基量Xとアシル基量Yとは、アシル基の数に置き換えられる指標である。 The acyl group amount X and the acyl group amount Y are the total reflection measurement (ATR, Attenuated Total Reflection) method (hereinafter, referred to as FT-IR, Fourier Transform Infrared Spectroscopy, hereinafter referred to as FT-IR). This is determined as the spectral intensity of the acyl group determined by the ATR method. Specifically, the spectral intensity of the acyl group signal of the cellulose acylate is corrected (normalized) with the spectral intensity of the common signal of the cellulose polymer. In this embodiment, since TAC is used as the cellulose acylate, the acyl group is an acetyl group, and the signal of the acetyl group is 1210 cm −1 . The common signal of the cellulosic polymer is preferably 1030 cm −1 . Then, the spectrum intensity of the acyl group signal of the cellulose acylate obtained by the correction is determined as an acyl group amount X or an acyl group amount Y, respectively. Thus, the acyl group amount X and the acyl group amount Y are indices that are replaced by the number of acyl groups.
 FT-IRのATR法は、周知のように測定試料に対して光を侵入させることによりスペクトル強度を求める方法であり、得られるスペクトル強度は、測定試料の厳格な意味での表面のものではない。一般的なFT-IRのATR法での一手法である、ダイアモンドプリズムを用い、測定角度を45度にして実施した場合には、測定試料の表面からの光の侵入深さは約2~3μmである。本実施形態のけん化層24は後述のように非常に薄いため、光の侵入深さが2μmよりも深くなるほど、けん化層24について求めるアシル基量としての信頼性が薄れる。そこで、フィルムベース23の第1のベース面23aから深さ2μmの範囲のスペクトル強度を、アシル基量Xとして求めることが好ましく、本実施形態でも光の侵入深さを2μmに設定し、第1のベース面23aから2μm以下の範囲のスペクトル強度をアシル基量Xとしている。 As is well known, the FT-IR ATR method is a method for obtaining a spectral intensity by allowing light to enter a measurement sample, and the obtained spectral intensity is not the surface of the measurement sample in the strict sense. . When a diamond prism is used as a method in a general FT-IR ATR method and the measurement angle is 45 degrees, the light penetration depth from the surface of the measurement sample is about 2 to 3 μm. It is. Since the saponification layer 24 of the present embodiment is very thin as will be described later, the reliability as the amount of acyl groups required for the saponification layer 24 decreases as the light penetration depth becomes deeper than 2 μm. Therefore, it is preferable to obtain the spectrum intensity in the range of 2 μm depth from the first base surface 23a of the film base 23 as the acyl group amount X. In this embodiment, the light penetration depth is set to 2 μm, and the first The spectrum intensity in the range of 2 μm or less from the base surface 23a is defined as the acyl group amount X.
 同様に、フィルムベース23の第2のベース面23bから深さ2μmの範囲のスペクトル強度を、アシル基量Yとして求めることが好ましく、本実施形態でもそのようにしている。けん化層24が第1のベース面23aのみならず第2のベース面をもなしている場合、すなわち、フィルムベースの両面にけん化層が設けられており、各けん化層の間にセルロースアシレート層が設けられている場合には、フィルムベースの厚み方向の中央でアシル基量を求め、これをアシル基量Yとして用いることが、簡易性の観点と、フィルムベースについて求めるアシル基量としての信頼性の観点とから好ましい。第2のベース面におけるアシル基量Yを上記の方法で求めることが困難な場合には、フィルムベースをメチレンクロライドおよび/またはクロロホルム等に溶解し、この溶液からフィルムを形成し、形成したフィルムのフィルム面におけるアシル基量をIR(infrared absorption spectrometry,赤外吸収分光法)で求める等、他の手法で求めても良い。 Similarly, it is preferable to obtain the spectrum intensity in the range of 2 μm in depth from the second base surface 23b of the film base 23 as the acyl group amount Y, and this is also the case in this embodiment. When the saponification layer 24 has not only the first base surface 23a but also the second base surface, that is, a saponification layer is provided on both surfaces of the film base, and a cellulose acylate layer is provided between the saponification layers. Is provided, the amount of acyl group is determined at the center in the thickness direction of the film base, and this is used as the amount of acyl group Y. From the viewpoint of simplicity and reliability as the amount of acyl group required for the film base From the viewpoint of sex. When it is difficult to determine the acyl group amount Y on the second base surface by the above method, the film base is dissolved in methylene chloride and / or chloroform, and a film is formed from this solution. The amount of acyl group on the film surface may be determined by other methods such as IR (infrared absorption spectroscopy).
 長期防曇性は、15秒後接触角と関係がある。15秒後接触角は、フィルムベース23の第1のベース面23aに親水性成分が十分存在することを示す特性である。このように第1のベース面23aに親水性成分が多い場合には、第1のベース面23aに結露した水滴が十分濡れ広がった状態を維持できるため、長期防曇性に効果を示すものと考えられる。15秒後接触角が35°以下である場合に特に長期防曇性が良い傾向を示す。第1のベース面23aは、15秒後接触角が35°以下とされており、本実施形態では例えば25°である。15秒後接触角は、長期防曇性と関係するが、15秒後接触角を35°以下とするためには、けん化処理の条件を調整し、上記アシル基割合が0.7以下となるように第1のベース面23aのアシル基量Xを制御することでけん化層の厚みを十分確保することにより加熱成形加工の温度及び/又は時間によるセルロースアシレート中の可塑剤及び/又は添加剤のけん化層表面への拡散及び/又は移行を抑制する、可塑剤及び/又は添加剤の種類を調整することとセルロースアシレート中の可塑剤及び/又は添加剤の分子量を大きくすること等により可塑剤及び/又は添加剤のけん化層表面への拡散及び/又は移行を抑制する、後述するラミネートフィルムの選択によりラミネートフィルムからの移行成分による接触角の上昇を抑制する等の方法がある。15秒後接触角は30°以下であることが好ましく、25°以下であることがより好ましく、20°以下であることがさらに好ましい。なお、純水を滴下してからの時間を考慮して接触角を求め、この時間が15秒後である15秒後接触角にすることで、長期防曇性に優れたフィルムベース23が得られる。15秒後接触角はフィルム面の水との親和性を示す特性である。水に対する接触角の測定においては、けん化層24の表面に極わずかな厚みで膜状に形成された親水性部分(以下、親水性膜と称する)の内部へ純水がしみこんだり、親水性膜内部からフィルム成分が出てくるなどの現象が純水の滴下後の時間経過に伴って生じるが、測定を滴下後15秒にすることによりフィルム面の長期防曇性と対応する親水性を測定できることを見出した。 Long-term antifogging is related to the contact angle after 15 seconds. The contact angle after 15 seconds is a characteristic indicating that the hydrophilic component is sufficiently present on the first base surface 23 a of the film base 23. As described above, when the first base surface 23a has a large amount of hydrophilic components, the water droplets condensed on the first base surface 23a can be maintained in a sufficiently wet and spread state, which is effective for long-term antifogging properties. Conceivable. When the contact angle after 15 seconds is 35 ° or less, the anti-fogging property tends to be particularly good. The first base surface 23a has a contact angle of 35 ° or less after 15 seconds, and is, for example, 25 ° in this embodiment. The contact angle after 15 seconds is related to the long-term antifogging property, but in order to make the contact angle after 15 seconds 35 ° or less, the saponification treatment conditions are adjusted, and the acyl group ratio becomes 0.7 or less. As described above, by controlling the acyl group amount X of the first base surface 23a, the plasticizer and / or additive in the cellulose acylate depending on the temperature and / or time of the thermoforming process is ensured by sufficiently securing the thickness of the saponified layer. Plasticity by controlling the diffusion and / or migration of the saponification layer to the surface, adjusting the type of plasticizer and / or additive, and increasing the molecular weight of the plasticizer and / or additive in cellulose acylate Suppressing diffusion and / or migration of agents and / or additives to the surface of the saponification layer, and suppressing increase in contact angle due to migration components from the laminate film by selecting a laminate film to be described later There is. The contact angle after 15 seconds is preferably 30 ° or less, more preferably 25 ° or less, and further preferably 20 ° or less. The contact angle is obtained in consideration of the time after the pure water is dropped, and the contact angle after 15 seconds, which is 15 seconds later, is used to obtain a film base 23 with excellent long-term antifogging properties. It is done. The contact angle after 15 seconds is a characteristic showing the affinity of the film surface with water. In the measurement of the contact angle with respect to water, pure water permeates into a hydrophilic portion (hereinafter referred to as a hydrophilic film) formed in a film shape with a very small thickness on the surface of the saponified layer 24, or a hydrophilic film. The phenomenon of film components coming out from the inside occurs with the passage of time after the addition of pure water, but measuring the hydrophilicity corresponding to the long-term antifogging property of the film surface by making the measurement 15 seconds after dropping. I found out that I can do it.
 15秒後接触角は、調湿(湿度調整)した後のフィルムベース23について測定することが好ましく、調湿の処理条件は、温度が23℃以上28℃以下の範囲内であり、相対湿度が55%以上65%以下の範囲内である雰囲気下とすることが好ましく、調湿の時間を1時間以上とすることがより好ましい。本実施形態では温度が25℃、相対湿度が60%の雰囲気下で1時間調湿している。この調湿処理は、フィルムベース23全体を調湿しても良いが、少なくともけん化層24を調湿すれば足りる。 The contact angle after 15 seconds is preferably measured with respect to the film base 23 after humidity adjustment (humidity adjustment). The humidity treatment conditions are a temperature range of 23 ° C. to 28 ° C., and a relative humidity of The atmosphere is preferably in the range of 55% to 65%, and the humidity adjustment time is more preferably 1 hour or more. In this embodiment, the humidity is adjusted for 1 hour in an atmosphere having a temperature of 25 ° C. and a relative humidity of 60%. In this humidity conditioning treatment, the entire film base 23 may be humidity-conditioned, but at least the saponified layer 24 may be conditioned.
 また、けん化層24の厚みT24を所定の範囲内にすることにより、初期防曇性と長期防曇性とをより確実に両立することができる。具体的には以下の通りである。アシル基割合と厚みT24とには相関性があり、厚みT24は、アシル基割合が小さくなるほど大きくなる。初期防曇性は、前述のようにアシル基割合が小さいほど良いから、厚みT24が大きいほど良くなる。 Further, by setting the thickness T24 of the saponified layer 24 within a predetermined range, it is possible to more surely satisfy both the initial antifogging property and the long-term antifogging property. Specifically, it is as follows. There is a correlation between the acyl group ratio and the thickness T24, and the thickness T24 increases as the acyl group ratio decreases. As described above, the initial antifogging property is better as the acyl group ratio is smaller, and as the thickness T24 is larger, it is better.
 また、けん化層24の厚みT24が0(ゼロ)から大きくなるに従い、15秒後接触角は漸減するが、ある程度以上に厚みT24が大きくなった場合には漸増するようになる。この漸増の理由としては、以下の(1)もしくは(2)が考えられる。すなわち、(1)厚みT24を大きくするために後述のけん化の条件を強くした場合に、15秒後接触角を低減している前述の親水性膜が減少すること、(2)厚みT24が大きすぎることにより水を保持することができる保持領域が大きくなりすぎてしまい、その結果、水が第1のベース面23aよりも内部に入り込んでいくこと、である。長期防曇性は前述のように15秒後接触角が35°以下であることで発現するから、長期防曇性を求める場合には、15秒後接触角の漸増領域において35°と対応する厚みを上限値として、厚みT24を設定することが好ましい。これにより、初期防曇性に加えて、長期防曇性がより確実に確保される。 Further, as the thickness T24 of the saponified layer 24 increases from 0 (zero), the contact angle gradually decreases after 15 seconds, but gradually increases when the thickness T24 increases to some extent. As the reason for this gradual increase, the following (1) or (2) can be considered. That is, (1) when the saponification conditions described later are increased in order to increase the thickness T24, the aforementioned hydrophilic film that reduces the contact angle after 15 seconds decreases, and (2) the thickness T24 increases. If it is too much, the holding area where water can be held becomes too large, and as a result, the water enters the inside of the first base surface 23a. Since the long-term antifogging property is manifested when the contact angle after 15 seconds is 35 ° or less as described above, the long-term antifogging property corresponds to 35 ° in the gradually increasing region of the contact angle after 15 seconds. The thickness T24 is preferably set with the thickness as the upper limit. Thereby, in addition to initial antifogging property, long-term antifogging property is ensured more reliably.
 以上のことから、厚みT24は、初期防曇性と長期防曇性とをより確実に発現するために、1μm以上6μm以下の範囲内であることが好ましく、本実施形態では2μm以上5μmの範囲内としている。すなわち、厚みT24が1μm以上であることにより、1μm未満である場合に比べて初期防曇性がより確実になり、6μm以下であることにより、6μmより大きい場合に比べて長期防曇性がより確実になる。 From the above, the thickness T24 is preferably in the range of 1 μm or more and 6 μm or less in order to express the initial antifogging property and the long-term antifogging property more reliably. In the present embodiment, the thickness T24 is in the range of 2 μm or more and 5 μm. It is within. That is, when the thickness T24 is 1 μm or more, the initial antifogging property is more reliable than when it is less than 1 μm, and when it is 6 μm or less, the long-term antifogging property is more than when it is larger than 6 μm. Be certain.
 なお、厚みT24は、本実施形態では以下の方法で求めている。フィルムベース23からサンプリングした試料を、ジクロロメタンに24時間浸漬する。この浸漬で溶け残った試料を乾燥し、乾燥した試料の厚みを3回測定した。3つの測定値の平均を、厚みT24とする。 In addition, thickness T24 is calculated | required with the following method in this embodiment. A sample sampled from the film base 23 is immersed in dichloromethane for 24 hours. The sample which remained undissolved by this immersion was dried, and the thickness of the dried sample was measured three times. The average of the three measured values is defined as thickness T24.
 フィルムベース23は、第1のベース面23aから深さ2μmの範囲のセルロースの水酸基成分に結合したアシル基のC=O(カルボキシル基)の量が、第2のベース面23bにおけるセルロースの水酸基成分に結合したアシル基のC=Oの量に対して70%以下であることが好ましく、本実施形態では30%以上70%以下の範囲内としている。なお、例えばアシル基割合が求められない場合には、15秒後接触角を20°以下とし、第2のベース面23bにおけるセルロース基の水酸基成分に結合したアシル基のC=Oの量に対して第1のベース面23aから深さ2μmの範囲のセルロース基の水酸基成分に結合したアシル基のC=Oの量を70%以下とすることでも、初期防曇性と長期防曇性とは発現する。 In the film base 23, the amount of C═O (carboxyl group) of the acyl group bonded to the hydroxyl group component of cellulose in the range of 2 μm in depth from the first base surface 23a is the hydroxyl group component of cellulose on the second base surface 23b. It is preferably 70% or less with respect to the amount of C═O of the acyl group bonded to, and in the present embodiment, it is in the range of 30% to 70%. For example, when the acyl group ratio cannot be obtained, the contact angle is set to 20 ° or less after 15 seconds, and the amount of C═O of the acyl group bonded to the hydroxyl group component of the cellulose group on the second base surface 23b is determined. Even if the amount of C═O of the acyl group bonded to the hydroxyl group component of the cellulose group having a depth in the range of 2 μm from the first base surface 23a is 70% or less, the initial antifogging property and the long-term antifogging property are To express.
 フィルムベース23を形成するセルロースアシレートは、エステルオリゴマーまたは糖のエステル誘導体を含んでいることが好ましい。これらを含むことでセルロースアシレートの加工性及び成形性を高め、かつ、添加剤のけん化層表面への拡散及び/又は移行を抑制することができる。エステルオリゴマーまたは糖のエステル誘導体をセルロースアシレートに含有させる場合は、フィルム材形成工程33で使用するドープを、エステルオリゴマーまたは糖のエステル誘導体を含むセルロースアシレートでつくることが好ましい。これらエステルオリゴマーと糖のエステル誘導体とは、可塑剤として機能する。エステルオリゴマーまたは糖のエステル誘導体を含むセルロースアシレートのガラス転移点は、エステルオリゴマーまたは糖のエステル誘導体を非含有のセルロースアシレートのガラス転移点よりも小さいため、エステルオリゴマーと糖のエステル誘導体とは、熱成形により成形を行う場合に可塑剤として有効である。エステルオリゴマーと糖のエステル誘導体のうち、可塑剤としては、エステルオリゴマーがより好ましい。より具体的には、分子量が400以上10000以下の範囲内であるエステルオリゴマーを可塑剤として含むことが好ましく、本実施形態のフィルムベース23もこれを含んでいる。エステルオリゴマーは、前述の400未満の分子量の可塑剤と異なり分子量の分布をもつため、エステルオリゴマーの分子量は、GPC(Gel Permeation Chromatography、ゲルパーミエーションクロマトグラフィ)による重量平均分子量または数平均分子量、末端官能基量測定または浸透圧測定による数平均分子量測定法、粘度測定による粘度平均分子量などで求めることができる。本実施形態では、末端官能基としてエステルの水酸基もしくは酸基を測定し、これによる数平均分子量測定法によりエステルオリゴマーの分子量を求めている。分子量が400以上10000以下の範囲内であるエステルオリゴマーを可塑剤として用いることにより、フィルムベース23は、貼り付け対象物である基材用素材22へ貼り付ける際の、貼り付けやすさ及び/または貼り直しやすさといったいわゆる取り扱い性が確実に向上する。また、可塑剤として上記のエステルオリゴマーを用いることにより、分子量が400未満である一般的な可塑剤モノマーを用いた場合に比べて、第1のベース面23aにおける析出がより確実に抑えられ、かつ、第1のベース面23aにおける15秒後接触角が小さくなりやすいために長期防曇性がより確実に発現する。エスエルオリゴマーの分子量が大きいほど長期防曇性が良く、分子量が小さいほどセルロースアシレートとの相溶性が良いため、エステルオリゴマーの分子量は、700以上5000以下の範囲内がより好ましく、900以上3000以下の範囲内がさらに好ましい。 The cellulose acylate forming the film base 23 preferably contains an ester oligomer or an ester derivative of sugar. By including these, the processability and moldability of cellulose acylate can be improved, and the diffusion and / or migration of the additive to the surface of the saponified layer can be suppressed. When the ester oligomer or sugar ester derivative is contained in cellulose acylate, the dope used in the film material forming step 33 is preferably made of cellulose acylate containing the ester oligomer or sugar ester derivative. These ester oligomers and ester derivatives of sugar function as plasticizers. The glass transition point of cellulose acylate containing ester oligomer or sugar ester derivative is smaller than the glass transition point of cellulose acylate not containing ester oligomer or sugar ester derivative. It is effective as a plasticizer when molding by thermoforming. Of the ester oligomer and the ester derivative of sugar, the ester oligomer is more preferable as the plasticizer. More specifically, it is preferable that an ester oligomer having a molecular weight in the range of 400 or more and 10,000 or less is included as a plasticizer, and the film base 23 of the present embodiment also includes this. Since the ester oligomer has a molecular weight distribution unlike the above-described plasticizer having a molecular weight of less than 400, the molecular weight of the ester oligomer is determined by GPC (Gel Permeation Chromatography), weight average molecular weight or number average molecular weight, terminal functionality. It can be determined by a number average molecular weight measurement method based on measurement of base weight or osmotic pressure, a viscosity average molecular weight based on viscosity measurement, and the like. In this embodiment, the hydroxyl group or acid group of the ester is measured as the terminal functional group, and the molecular weight of the ester oligomer is determined by the number average molecular weight measurement method using this. By using an ester oligomer having a molecular weight in the range of 400 or more and 10,000 or less as a plasticizer, the film base 23 can be attached and / or easily applied to the base material 22 that is an object to be attached. The so-called handleability such as ease of re-sticking is reliably improved. Further, by using the above ester oligomer as a plasticizer, precipitation on the first base surface 23a is more reliably suppressed as compared with the case of using a general plasticizer monomer having a molecular weight of less than 400, and Since the contact angle after 15 seconds on the first base surface 23a tends to be small, the long-term antifogging property is more reliably exhibited. The longer the molecular weight of the SL oligomer, the better the long-term antifogging property, and the smaller the molecular weight, the better the compatibility with the cellulose acylate. Therefore, the molecular weight of the ester oligomer is more preferably in the range of 700 to 5000, more preferably 900 to 3000. It is further preferable to be within the range.
 さらに、可塑剤として用いるエステルオリゴマーは、ジカルボン酸とジオールとのエステル結合が含まれる繰り返し単位をもち、繰り返し単位が2個以上100個以下の範囲程度の比較的分子量が低い化合物であり、脂肪族エステルオリゴマーであることが好ましい。セルロースアシレートの可塑剤としての作用がより確実だからである。 Furthermore, the ester oligomer used as a plasticizer is a compound having a relatively low molecular weight having a repeating unit containing an ester bond of a dicarboxylic acid and a diol, and having a repeating unit in the range of 2 to 100. An ester oligomer is preferred. This is because the action of cellulose acylate as a plasticizer is more reliable.
 上記のジカルボン酸は、炭素数が2以上10以下の範囲内である脂肪族ジカルボン酸であることがより好ましい。上記のジオールは、炭素数が2以上10以下の範囲内である脂肪族ジオールであることがより好ましい。これは、脂肪族ジカルボン酸と脂肪族ジオールとを用いることで、フィルムベース23に柔軟性を付与することができ、後述の15秒後接触角の低減を阻害する分解物が生成しにくいからである。脂肪族カルボン酸としては、マロン酸、コハク酸、グルタル酸、アジピン酸、セバシン酸、アゼライン酸、シクロヘキサンジカルボン酸、マレイン酸、フマル酸等が挙げられる。脂肪族ジオールとしては、エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、2-メチル-1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、1,4-ヘキサンジオール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール等が挙げられる。エステルオリゴマーの末端水酸基及び/または酸基をモノカルボン酸またはモノアルコールなどにより封止することも好ましい。これらのうち、アジピン酸とエチレングリコールとのエステルを繰り返し単位とするオリゴマー、コハク酸とエチレングリコールとのエステルを繰り返し単位とするオリゴマー、テレフタル酸とエチレングリコールとのエステル及びフタル酸とエチレングリコールとのエステルとを繰り返し単位とするオリゴマーなどが好ましい。本実施形態ではエステルとしてアジピン酸とエタンジオールによるエステルオリゴマー(末端水酸基定量法による数平均分子量が約1000である)を用いている。 The above dicarboxylic acid is more preferably an aliphatic dicarboxylic acid having a carbon number in the range of 2 to 10. The diol is more preferably an aliphatic diol having 2 to 10 carbon atoms. This is because by using an aliphatic dicarboxylic acid and an aliphatic diol, flexibility can be imparted to the film base 23, and it is difficult to generate degradation products that inhibit the reduction of the contact angle after 15 seconds described later. is there. Examples of the aliphatic carboxylic acid include malonic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, azelaic acid, cyclohexanedicarboxylic acid, maleic acid, fumaric acid and the like. Aliphatic diols include ethanediol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 2-methyl-1,3-propanediol, 1, 4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol (neopentyl glycol), 1,4-hexanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedi Methanol etc. are mentioned. It is also preferable to seal the terminal hydroxyl group and / or acid group of the ester oligomer with a monocarboxylic acid or monoalcohol. Among these, an oligomer having an ester of adipic acid and ethylene glycol as a repeating unit, an oligomer having an ester of succinic acid and ethylene glycol as a repeating unit, an ester of terephthalic acid and ethylene glycol, and an ester of phthalic acid and ethylene glycol Oligomers having an ester as a repeating unit are preferred. In this embodiment, an ester oligomer composed of adipic acid and ethanediol (the number average molecular weight determined by the terminal hydroxyl group determination method is about 1000) is used as the ester.
 エステルオリゴマーの質量は、セルロースアシレートの質量に対して、大きくても30%、すなわち、30%以下であることが好ましい。すなわち、フィルムベース23におけるセルロースアシレート(けん化層24におけるけん化されたセルロースアシレートも含む)の質量をMAとし、フィルムベース23におけるエステルオリゴマーの質量をMBとするときに、フィルムベース23は、(MB/MA)×100で求める質量割合(単位;%)が30%以下である。この質量割合が30%以下であることにより、30%よりも大きい場合に比べて、エステルオリゴマーの析出が抑えられ、加熱成形時においてもエステルオリゴマーの析出による白濁を抑制することができ、かつ、成形体10としてのけん化層14の接触角が大きくなることを抑制することができる。セルロースアシレートフィルム13におけるこの質量割合は、4%以上30%以下であることがより好ましく、10%以上25%以下であることがさらに好ましい。 The mass of the ester oligomer is preferably 30% at most, that is, 30% or less with respect to the mass of the cellulose acylate. That is, when the mass of the cellulose acylate in the film base 23 (including the saponified cellulose acylate in the saponified layer 24) is MA and the mass of the ester oligomer in the film base 23 is MB, the film base 23 is ( The mass ratio (unit:%) determined by (MB / MA) × 100 is 30% or less. When this mass ratio is 30% or less, the precipitation of the ester oligomer is suppressed as compared with the case where it is larger than 30%, and the white turbidity due to the precipitation of the ester oligomer can be suppressed even during the heat molding, and It can suppress that the contact angle of the saponification layer 14 as the molded object 10 becomes large. The mass ratio in the cellulose acylate film 13 is more preferably 4% or more and 30% or less, and further preferably 10% or more and 25% or less.
 糖のエステル誘導体について、詳細を以下に説明する。糖のエステル誘導体は、単糖のエステル誘導体と多糖のエステル誘導体とのいずれでも良い。フィルムベース23はこれら両者を含んでも良い。 Details of the ester derivatives of sugar will be described below. The sugar ester derivative may be either a monosaccharide ester derivative or a polysaccharide ester derivative. The film base 23 may include both of these.
 上記単糖及び多糖類構造中のOH基のすべてもしくは一部をエステル化するのに用いられるモノカルボン酸としては、特に制限はなく、公知の脂肪族モノカルボン酸、脂環族モノカルボン酸、芳香族モノカルボン酸等を用いることができる。用いられるカルボン酸は1種類でも良いし、2種以上の混合であっても良い。 The monocarboxylic acid used for esterifying all or part of the OH groups in the monosaccharide and polysaccharide structures is not particularly limited, and is a known aliphatic monocarboxylic acid, alicyclic monocarboxylic acid, An aromatic monocarboxylic acid or the like can be used. The carboxylic acid used may be one kind or a mixture of two or more kinds.
 好ましい脂肪族モノカルボン酸としては、酢酸、プロピオン酸、酪酸、イソ酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2-エチル-ヘキサンカルボン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸、オクテン酸等の不飽和脂肪酸、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、等の脂環族モノカルボン酸等を挙げることができる。糖としては、グルコース、ガラクトース、マンノース、フルクトース、キシロース、アラビノース等の単糖類、ラクトース、スクロース、ニストース、1F-フラクトシルニストース、スタキオース、マルチトール、ラクチトール、ラクチュロース、セロビオース、マルトース、セロトリオース、マルトトリオース、ラフィノースあるいはケストース、ゲンチオビオース、ゲンチオトリオース、ゲンチオテトラオース、キシロトリオース、ガラクトシルスクロースなどの多糖類が挙げられる。好ましくはグルコース、フルクトース、スクロース、ケストース、ニストース、1F-フラクトシルニストース、スタキオースなどが好ましく、更に好ましくは、スクロース、グルコースである。また、多糖類としてオリゴ糖を用いることもでき、オリゴ糖としては、澱粉、ショ糖等にアミラーゼ等の酵素を作用させて製造されるものであり、オリゴ糖としては、例えば、マルトオリゴ糖、イソマルトオリゴ糖、フラクトオリゴ糖、ガラクトオリゴ糖、キシロオリゴ糖が挙げられる。 Preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecylic acid, lauric acid , Saturated fatty acids such as tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, cerotic acid, heptacosanoic acid, montanic acid, melicic acid, and laccelic acid, Undecylenic acid, oleic acid, sorbic acid, linoleic acid, linolenic acid, arachidonic acid, octenoic acid and other unsaturated fatty acids, cyclopentanecarboxylic acid, cyclohexanecarboxylic acid, cyclooctanecarboxylic acid, and other alicyclic monocarboxylic acids, etc. Can be mentioned. Examples of the sugar include monosaccharides such as glucose, galactose, mannose, fructose, xylose, arabinose, lactose, sucrose, nystose, 1F-fructosyl nystose, stachyose, maltitol, lactitol, lactulose, cellobiose, maltose, cellotriose, maltotriose Examples include polysaccharides such as oose, raffinose or kestose, gentiobiose, gentiotriose, gentiotetraose, xylotriose, galactosyl sucrose. Glucose, fructose, sucrose, kestose, nystose, 1F-fructosyl nystose, stachyose and the like are preferable, and sucrose and glucose are more preferable. Oligosaccharides can also be used as polysaccharides, which are produced by causing an enzyme such as amylase to act on starch, sucrose, etc. Examples of oligosaccharides include malto-oligosaccharides, iso-saccharides, and the like. Examples include maltooligosaccharide, fructooligosaccharide, galactooligosaccharide, and xylo-oligosaccharide.
 好ましい芳香族モノカルボン酸の例としては、安息香酸、トルイル酸等の安息香酸のベンゼン環にアルキル基、アルコキシ基を導入した芳香族モノカルボン酸、ケイ皮酸、ベンジル酸、ビフェニルカルボン酸、ナフタリンカルボン酸、テトラリンカルボン酸等のベンゼン環を2個以上有する芳香族モノカルボン酸、またはそれらの誘導体を挙げることができ、特に安息香酸、ナフチル酸が好ましい。 Examples of preferred aromatic monocarboxylic acids include aromatic monocarboxylic acids having an alkyl group or alkoxy group introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, cinnamic acid, benzylic acid, biphenylcarboxylic acid, and naphthalene. Examples thereof include aromatic monocarboxylic acids having two or more benzene rings such as carboxylic acid and tetralincarboxylic acid, or derivatives thereof, and benzoic acid and naphthylic acid are particularly preferable.
 糖のエステル誘導体の質量は、セルロースアシレートの質量に対して、大きくても15%、すなわち15%以下であることが好ましい。すなわち、フィルムベース23におけるセルロースアシレート(けん化層24におけるけん化されたセルロースアシレートも含む)の質量をMAとし、フィルムベース23における糖のエステル誘導体の質量をMCとするときに、フィルムベース23は、(MC/MA)×100で求める質量割合(単位;%)が15%以下である。この質量割合が15%以下であることにより、15%よりも大きい場合に比べて、糖のエステル誘導体の析出が抑えられ、加熱成形時においても糖のエステル誘導体の析出による白濁を抑制することができ、かつ、成形体10としてのけん化層14の接触角が大きくなることを抑制することができる。セルロースアシレートフィルム13におけるこの質量割合は、4%以上15%以下であることがより好ましく、6%以上15%以下であることがさらに好ましい。 The mass of the sugar ester derivative is preferably at most 15%, that is, 15% or less with respect to the mass of the cellulose acylate. That is, when the mass of the cellulose acylate in the film base 23 (including the saponified cellulose acylate in the saponified layer 24) is MA and the mass of the sugar ester derivative in the film base 23 is MC, the film base 23 is , (MC / MA) × 100, the mass ratio (unit:%) obtained is 15% or less. When the mass ratio is 15% or less, the precipitation of the sugar ester derivative can be suppressed as compared with the case where the mass ratio is larger than 15%, and the white turbidity due to the precipitation of the sugar ester derivative can be suppressed even during heat molding. And the increase in the contact angle of the saponified layer 14 as the molded body 10 can be suppressed. The mass ratio in the cellulose acylate film 13 is more preferably 4% or more and 15% or less, and further preferably 6% or more and 15% or less.
 フィルムベース23には、セルロースアシレートおよび上記可塑剤の他に、紫外線吸収剤、劣化防止剤等の各種添加剤、および/または、例えばフィルムベース23同士の貼り付きを防止するための微粒子が含まれていても良い。 In addition to cellulose acylate and the above plasticizer, the film base 23 includes various additives such as an ultraviolet absorber and a deterioration preventing agent, and / or fine particles for preventing the film bases 23 from sticking to each other, for example. It may be.
 保護層形成工程35は、フィルムベース23のけん化層24の表面に、けん化層24を保護する保護層26を形成する工程である。本実施形態では、けん化層24に市販のラミネートフィルムを重ね合わせることにより、保護層26を形成している。この保護層26を有するフィルム材を第3の中間体と称する。保護層26は、成形体10を使用するまで貼りつけられた状態とされ、成形体10を使用する際に除去される。このため、保護層26は、成形の際に、けん化層24が汚染及び/または損傷することを抑制する。また、保護層26は、使用中において外表面として露出するけん化層14を、成形体10の保管及び/または輸送の際の汚染及び/または損傷から保護する、すなわち使用前の成形体10を保護する機能も有している。保護層26として用いられるラミネートフィルムは、加熱成形における耐熱性の観点、加熱成形及び/又は保管の際にラミネートフィルムからの転写物による接触角の上昇を抑制するといった観点等により、市販のラミネートフィルムから適宜選択できる。ラミネートフィルムとしては、ポリエチレン又はポリプロピレン等により形成されたフィルムを用いることができ、例えば、ポリオレフィン系フィルムとポリエチレンテレフタレートフィルム等がある。これらのうち、本発明の加熱成形加工においては、耐熱性の観点からポリエチレンテレフタレートフィルムがより好ましい。また、けん化層24の接触角の上昇を抑えるラミネートフィルムは、加熱成形する前のけん化層の接触角と、市販品をけん化層に貼り合わせた状態で加熱成形して得た成形体としてのけん化層の接触角とを比較し、その変化を確認する等の方法により適宜選ぶことができ、このような市販のラミネートフィルムとしては、LG化学社製ラミネートフィルム LDM-EPDC(50μ)と、スミロン社製ラミネートフィルム EC7501(ポリオレフィン)などがある。本実施形態では前者のラミネートフィルムを用いている。 The protective layer forming step 35 is a step of forming a protective layer 26 that protects the saponified layer 24 on the surface of the saponified layer 24 of the film base 23. In this embodiment, the protective layer 26 is formed by superposing a commercially available laminate film on the saponified layer 24. The film material having the protective layer 26 is referred to as a third intermediate. The protective layer 26 is affixed until the molded body 10 is used, and is removed when the molded body 10 is used. For this reason, the protective layer 26 prevents the saponification layer 24 from being contaminated and / or damaged during molding. The protective layer 26 protects the saponified layer 14 exposed as an outer surface during use from contamination and / or damage during storage and / or transportation of the molded body 10, that is, protects the molded body 10 before use. It also has a function to do. The laminate film used as the protective layer 26 is a commercially available laminate film from the viewpoint of heat resistance in thermoforming, suppressing the increase in contact angle due to the transfer from the laminate film during thermoforming and / or storage, and the like. Can be selected as appropriate. As the laminate film, a film formed of polyethylene or polypropylene can be used, and examples thereof include a polyolefin-based film and a polyethylene terephthalate film. Among these, in the thermoforming process of the present invention, a polyethylene terephthalate film is more preferable from the viewpoint of heat resistance. Moreover, the laminate film which suppresses the raise of the contact angle of the saponification layer 24 is the saponification as a molded object obtained by heat-molding the contact angle of the saponification layer before heat-molding, and bonding a commercial item to the saponification layer. The contact angle of the layers can be selected as appropriate by comparing the contact angle and confirming the change. As such a commercially available laminate film, LG Chemical's laminate film LDM-EPDC (50μ) and Sumilon Laminated film EC7501 (polyolefin) is available. In the present embodiment, the former laminate film is used.
 接着層形成工程36は、第3の中間体のフィルム面に接着層27を形成する工程である。この接着層27が、成形体10の接着層12になる。接着層27は、成形工程32で基材用素材22と密着することにより、成形体10において、セルロースアシレートフィルム13の基材11からの剥がれにくさをより向上させる。本実施形態では、第3の中間体としてのフィルム材のうち、セルロースアシレート層25側の表面に市販の接着剤又は粘着剤を設けることにより、接着層27を形成している。この接着層27を有するフィルム材を第4の中間体と称する。 The adhesive layer forming step 36 is a step of forming the adhesive layer 27 on the film surface of the third intermediate. This adhesive layer 27 becomes the adhesive layer 12 of the molded body 10. The adhesive layer 27 is more closely attached to the base material 22 in the molding step 32, thereby further improving the difficulty of peeling the cellulose acylate film 13 from the base material 11 in the molded body 10. In the present embodiment, the adhesive layer 27 is formed by providing a commercially available adhesive or pressure-sensitive adhesive on the surface on the cellulose acylate layer 25 side of the film material as the third intermediate. The film material having the adhesive layer 27 is referred to as a fourth intermediate.
 接着層27は、セルロースアシレートフィルム13と基材11との剥がれをより抑制するためのものであるから、熱成形での加熱に耐える耐熱性をもつ接着剤又は粘着剤を用いることにより形成することが好ましい。接着層27は、酢酸ビニル樹脂、エポキシ樹脂、塩化ビニル樹脂、ホットメルト接着剤、アクリル系粘着剤、シリコーン系粘着剤、ゴム系粘着剤のいずれかひとつにより形成されていることが好ましく、これらのうちアクリル系粘着剤またはシリコーン系粘着剤がより好ましく、本実施形態ではアクリル系粘着剤を用いている。なお、本明細書において「接着」とは、貼り付ける対象物同士が一体の状態に貼り付くことを意味しており、「粘着」とは、接着の一種であり、被着物に貼り付けた後一定時間経過しても貼り付いている力(粘着力)の変化が小さく、必要に応じて剥離することが可能であることを意味する。本発明では使用可能温度、すなわち耐熱温度が、150℃以上である接着剤又は粘着剤を用いることが好ましい。この使用可能温度は接着加工時の温度により接着性又は粘着性、平滑性、着色、発泡(気泡)などの有無により選択できる。接着性とは、例えば貼り付ける対象物間の接着力の程度を意味する。粘着性とは、例えば粘着力の程度を意味する。平滑性とは、例えば表面の凹凸の程度を意味する。ここで、接着剤又は粘着剤は、耐熱温度が150℃以上250℃以下の範囲内であることが好ましく、本実施形態では、耐熱温度が220℃である。耐熱温度が150℃以上であることにより、150℃未満である場合に比べて、成形時の接着層27の着色及び/又は発泡などを抑制することができ、耐熱温度が250℃以下であることにより、250℃よりも大きい場合に比べて、成形体としての接着性能(又は粘着性能)の各種耐久性(高温高湿及び/又は経時環境下での剥がれと白濁など)、成形体10のセルロースアシレートフィルム13を貼り替える際の再剥離性が良好である。上記耐熱温度は、160℃以上240℃以下の範囲内であることがより好ましく、180℃以上230℃以下の範囲内であることがさらに好ましい。また、接着剤又は粘着剤は、接着層27の強度の他、接着又は粘着させた後の高温高湿の環境下における耐久性、白濁、アウトガス、成形体の透明性などの観点で適宜選択することができる。 Since the adhesive layer 27 is for suppressing the peeling between the cellulose acylate film 13 and the substrate 11, it is formed by using a heat-resistant adhesive or pressure-sensitive adhesive that can withstand heating in thermoforming. It is preferable. The adhesive layer 27 is preferably formed of any one of vinyl acetate resin, epoxy resin, vinyl chloride resin, hot melt adhesive, acrylic pressure-sensitive adhesive, silicone pressure-sensitive adhesive, and rubber-based pressure-sensitive adhesive. Among them, an acrylic adhesive or a silicone adhesive is more preferable, and an acrylic adhesive is used in the present embodiment. In this specification, “adhesion” means that the objects to be attached are attached in an integrated state, and “adhesion” is a kind of adhesion, and after being attached to an adherend. It means that the change in the sticking force (adhesive force) is small even after a certain period of time and can be peeled off if necessary. In the present invention, it is preferable to use an adhesive or pressure-sensitive adhesive having a usable temperature, that is, a heat resistant temperature of 150 ° C. or higher. This usable temperature can be selected depending on the temperature at the time of adhesion processing depending on the presence or absence of adhesiveness or tackiness, smoothness, coloring, foaming (bubbles) and the like. The adhesiveness means, for example, the degree of adhesive force between objects to be attached. Adhesive means, for example, the degree of adhesive strength. Smoothness means, for example, the degree of unevenness on the surface. Here, the adhesive or the pressure-sensitive adhesive preferably has a heat resistant temperature in the range of 150 ° C. or higher and 250 ° C. or lower. In this embodiment, the heat resistant temperature is 220 ° C. When the heat resistant temperature is 150 ° C. or higher, coloring and / or foaming of the adhesive layer 27 at the time of molding can be suppressed as compared with the case where the heat resistant temperature is lower than 150 ° C., and the heat resistant temperature is 250 ° C. or lower. As compared with the case where the temperature is higher than 250 ° C., various durability of the adhesive performance (or adhesive performance) as a molded body (peeling and clouding in a high temperature and high humidity and / or time environment), cellulose of the molded body 10 The removability when the acylate film 13 is replaced is good. The heat resistant temperature is more preferably in the range of 160 ° C. or higher and 240 ° C. or lower, and further preferably in the range of 180 ° C. or higher and 230 ° C. or lower. In addition to the strength of the adhesive layer 27, the adhesive or pressure-sensitive adhesive is appropriately selected from the viewpoints of durability in a high-temperature and high-humidity environment after adhesion or adhesion, white turbidity, outgas, transparency of the molded body, and the like. be able to.
 本実施形態では、市販の粘着剤、例えば綜研化学(株)社製アクリル粘着シートを用いている。この他、3M(株)製シリコーン基材レス両面テープ91022、日栄化工(株)製光学用基材レス両面テープMHM、また市販のアクリルポリマーとして三菱レーヨン(株)製ダイヤナール(登録商標)、東亜合成(株)製アロン、住友化学(株)スミペックス(登録商標)などを用いても良い。 In the present embodiment, a commercially available adhesive, for example, an acrylic adhesive sheet manufactured by Soken Chemical Co., Ltd. is used. In addition, 3M Co., Ltd. silicone baseless double-sided tape 91022, Nichiei Kako Co., Ltd. optical baseless double-sided tape MHM, and Mitsubishi Rayon Co., Ltd. Dianal (registered trademark), Toa Gosei Co., Ltd. Aron, Sumitomo Chemical Co., Ltd. Sumipex (registered trademark), etc. may be used.
 接着層27の厚みT27は、1μm以上50μm以下の範囲内であることが好ましく、本実施形態では、接着層27の厚みを例えば15μmとしてある。厚みT27が1μm以上であることにより、1μm未満である場合に比べて、加熱成形後の接着力又は粘着力に優れ、厚みT27が50μm以下であることにより、50μm以上である場合に比べて、加熱成形時の接着剤又は粘着剤の発泡が抑制され、さらに接着剤又は粘着剤の着色を抑えることにより成形体自体の着色が抑制される。厚みT27は、3μm以上40μm以下の範囲内であることがより好ましく、5μm以上30μm以下の範囲内であることがさらに好ましい。 The thickness T27 of the adhesive layer 27 is preferably in the range of 1 μm to 50 μm, and in this embodiment, the thickness of the adhesive layer 27 is set to 15 μm, for example. Compared to the case where the thickness T27 is 1 μm or more, compared to the case where the thickness T27 is less than 1 μm, the adhesive force or adhesive strength after heat molding is excellent. Foaming of the adhesive or pressure-sensitive adhesive during heat molding is suppressed, and further, coloring of the molded body itself is suppressed by suppressing coloring of the adhesive or pressure-sensitive adhesive. The thickness T27 is more preferably in the range of 3 μm to 40 μm, and still more preferably in the range of 5 μm to 30 μm.
 フィルム材切断工程37は、長尺のフィルム材をシート状に切断する工程である。本実施形態では、第4の中間体が長尺のフィルム材とされているから、所望の大きさのシート状にカットすることにより、フィルム材20を製造している。したがって、フィルム材20は、シート状に形成されており、けん化層24と、セルロースアシレート層25と、保護層26と、接着層27とを有している。 The film material cutting step 37 is a step of cutting a long film material into a sheet shape. In this embodiment, since the 4th intermediate body is made into the elongate film material, the film material 20 is manufactured by cutting into the sheet form of a desired magnitude | size. Therefore, the film material 20 is formed in a sheet shape, and has a saponified layer 24, a cellulose acylate layer 25, a protective layer 26, and an adhesive layer 27.
 なお、本実施形態では、第1の素材形成工程31として、フィルム材形成工程33と、けん化工程34と、保護層形成工程35と、接着層形成工程36と、フィルム材切断工程37とを有しているが、少なくともフィルム材形成工程33については実施し、その他の工程のうち少なくとも1つの工程を実施しない場合もある。けん化工程34を実施しない場合は、フィルム材にけん化層24がない。保護層形成工程35を実施しない場合は、フィルム材に保護層26がない。接着層形成工程36を実施しない場合は、フィルム材に接着層27がない。フィルム材切断工程37を実施しない場合は、フィルム材が長尺である。このように、第1の中間体、第2の中間体、第3の中間体、及び第4の中間体のそれぞれは、いずれもフィルム材として成形工程32に供することができる。 In the present embodiment, the first material forming step 31 includes a film material forming step 33, a saponification step 34, a protective layer forming step 35, an adhesive layer forming step 36, and a film material cutting step 37. However, there is a case where at least the film material forming step 33 is performed and at least one of the other steps is not performed. When the saponification step 34 is not performed, the film material does not have the saponification layer 24. When the protective layer forming step 35 is not performed, the protective layer 26 is not present in the film material. When the adhesive layer forming step 36 is not performed, the adhesive layer 27 does not exist in the film material. When not performing the film material cutting process 37, a film material is long. As described above, each of the first intermediate body, the second intermediate body, the third intermediate body, and the fourth intermediate body can be provided to the forming step 32 as a film material.
 第2の素材は、第2の素材形成工程により、熱可塑性樹脂から形成される。熱可塑性樹脂としては、ポリカーボネート(以下、PCと称する)またはアクリルであることが好ましい。本実施形態ではアクリルとしている。PCまたはアクリルを用いるのは、高い透明性をもちつつ、ガラスに比べて軽量かつ耐久性に優れ、さらに、所望の形状に形成しやすいからである。第2の素材としてのPCは、ガラス転移点が150℃であることが好ましい。第2の素材としてのアクリルは、ガラス転移点が100℃であることが好ましい。 The second material is formed from a thermoplastic resin by the second material forming step. The thermoplastic resin is preferably polycarbonate (hereinafter referred to as PC) or acrylic. In this embodiment, acrylic is used. PC or acrylic is used because it has high transparency, is lighter and more durable than glass, and can be easily formed into a desired shape. The PC as the second material preferably has a glass transition point of 150 ° C. The acrylic as the second material preferably has a glass transition point of 100 ° C.
 第2の素材は、熱成形の手法に応じて、後述する成形装置50に供する態様が異なっている。真空圧空成形、真空成形、及び圧空成形の場合は、第2の素材形成工程で例えばインジェクション成形が行われ、基材11を形成する熱可塑性樹脂を溶融し、この溶融樹脂を金型に充填し、冷却し、固化させることにより、所望の形状に成形した成形物が第2の素材である。本実施形態では、ドーム状に形成した基材用素材22を第2の素材として用いている。また、第2の素材形成工程で例えば溶液製膜方法により薄いシート状物を製造し、これを第2の素材としても良い。一方、フィルムインサート成形及びインモールド成形の場合は、第2の素材形成工程として、基材11を形成する熱可塑性樹脂の溶融が行われ、この溶融樹脂が第2の素材である。 The second material is different in the form used for the molding apparatus 50 described later according to the thermoforming technique. In the case of vacuum pressure forming, vacuum forming, and pressure forming, for example, injection molding is performed in the second material forming step, the thermoplastic resin forming the base material 11 is melted, and this molten resin is filled in a mold. The molded product formed into a desired shape by cooling and solidifying is the second material. In the present embodiment, the base material 22 formed in a dome shape is used as the second material. Further, in the second material forming step, for example, a thin sheet material may be manufactured by a solution casting method, and this may be used as the second material. On the other hand, in the case of film insert molding and in-mold molding, as the second material forming step, the thermoplastic resin forming the base material 11 is melted, and this molten resin is the second material.
 成形工程32は、例えば図5に示す成形装置50を用いて行う。成形装置50は、フィルム材20と基材用素材22とを熱成形で一体成形することにより、成形体10にする。 The forming step 32 is performed using, for example, a forming apparatus 50 shown in FIG. The forming apparatus 50 forms the formed body 10 by integrally forming the film material 20 and the base material 22 by thermoforming.
 成形装置50は、チャンバ51と、ヒータ52と、テーブル53と、移動機構54と、真空ポンプ55と、コンプレッサ56と、制御部57とを備え、熱成形として真空圧空成形をするための装置である。本実施形態では、ドーム形状をした基材用素材22が成形装置50に供されるが、図5においては、説明の便宜上、基材用素材22を平板形状に描いている。また、図5では、フィルム材20の各層をわかりやすくするために、フィルム材20の厚みを誇張して描いている。成形装置50としては、本実施形態では、市販の装置、例えば布施真空社製TOM(Three dimension Overlay Method)成形機(商品名;NGF(Next Generation Forming)成形機)を用いる。 The molding device 50 includes a chamber 51, a heater 52, a table 53, a moving mechanism 54, a vacuum pump 55, a compressor 56, and a control unit 57, and is a device for performing vacuum / pressure forming as thermoforming. is there. In the present embodiment, the base material 22 having a dome shape is provided to the molding apparatus 50, but in FIG. 5, the base material 22 is drawn in a flat plate shape for convenience of explanation. Further, in FIG. 5, the thickness of the film material 20 is exaggerated for easy understanding of each layer of the film material 20. In this embodiment, a commercially available device such as a TOM (Three (dimension Overlay Method) molding machine (trade name; NGF (Next Generation Forming) molding machine) manufactured by Fuse Vacuum Co., Ltd. is used as the molding device 50.
 チャンバ51は、上チャンバ51aと下チャンバ51bとで構成されており、上チャンバ51aが、図5における上下方向、すなわち、上チャンバ51aと下チャンバ51bとの距離を増減する方向に移動自在とされている。上チャンバ51aを降下させ、上チャンバ51aと下チャンバ51bとを密着させることにより、チャンバ51内が気密状態とされる。上チャンバ51aには、フィルム材20を加熱するためのヒータ52が設けられている。下チャンバ51bには、基材用素材22を載せるためのテーブル53が設けられている。 The chamber 51 includes an upper chamber 51a and a lower chamber 51b, and the upper chamber 51a is movable in the vertical direction in FIG. 5, that is, in the direction of increasing or decreasing the distance between the upper chamber 51a and the lower chamber 51b. ing. By lowering the upper chamber 51a and bringing the upper chamber 51a and the lower chamber 51b into close contact with each other, the inside of the chamber 51 is brought into an airtight state. The upper chamber 51 a is provided with a heater 52 for heating the film material 20. The lower chamber 51b is provided with a table 53 on which the base material 22 is placed.
 ヒータ52は、作動した場合に例えば遠赤外線(波長範囲が概ね4μm以上1000μm以下の領域)を発し、フィルム材20を加熱する。テーブル53は、下チャンバ51bに対し、図5における上下方向に移動自在とされている。移動機構54は、上チャンバ51aとテーブル53とを、それぞれ図5における上下方向に移動する。真空ポンプ55は、上チャンバ51aに設けられた排気孔58と下チャンバ51bに設けられた排気孔59とに接続されている。真空ポンプ55は、チャンバ51内が気密状態である場合に各排気孔58,59から空気を排出し、チャンバ51内を真空状態にする。コンプレッサ56は、上チャンバ51aに設けられた排気孔58と接続されており、この排気孔58を通して、上チャンバ51a内に圧縮空気を噴出する。これら移動機構54、ヒータ52、真空ポンプ55、およびコンプレッサ56は、制御部57により制御される。 The heater 52 emits, for example, far-infrared rays (wavelength range of approximately 4 μm or more and 1000 μm or less) when it operates to heat the film material 20. The table 53 is movable in the vertical direction in FIG. 5 with respect to the lower chamber 51b. The moving mechanism 54 moves the upper chamber 51a and the table 53 in the vertical direction in FIG. The vacuum pump 55 is connected to an exhaust hole 58 provided in the upper chamber 51a and an exhaust hole 59 provided in the lower chamber 51b. The vacuum pump 55 exhausts air from the exhaust holes 58 and 59 when the inside of the chamber 51 is in an airtight state, and makes the inside of the chamber 51 in a vacuum state. The compressor 56 is connected to an exhaust hole 58 provided in the upper chamber 51a, and the compressed air is jetted into the upper chamber 51a through the exhaust hole 58. These moving mechanism 54, heater 52, vacuum pump 55, and compressor 56 are controlled by a control unit 57.
 成形装置50にはフィルム材20の温度を測定するための温度計(図示せず)が設けられており、制御部57は、温度計の温度に基づきヒータ52による発熱量を制御する。温度計としては、例えば、フィルム材20の表面の温度を非接触で測定する非接触式温度計が用いられる。 The molding device 50 is provided with a thermometer (not shown) for measuring the temperature of the film material 20, and the control unit 57 controls the amount of heat generated by the heater 52 based on the temperature of the thermometer. As the thermometer, for example, a non-contact thermometer that measures the surface temperature of the film material 20 in a non-contact manner is used.
 また、制御部57は、タイマ機能を有しており、フィルム材20の加熱を開始してから成形が終了するまでの時間(以下、成形時間と称する)を制御する。「加熱を開始」とは、本実施形態では、ヒータ52を作動させたときを意味する。「成形が終了する」とは、本実施形態では、フィルム材20の成形および基材用素材22への貼り合わせを行った後に、上チャンバ51aおよび下チャンバ51b内をコンプレッサ56で大気圧状態にしたときを意味する。 Further, the control unit 57 has a timer function, and controls the time (hereinafter referred to as molding time) from the start of heating the film material 20 to the end of molding. In this embodiment, “start heating” means when the heater 52 is activated. In this embodiment, “the molding is completed” means that the upper chamber 51a and the lower chamber 51b are brought to atmospheric pressure by the compressor 56 after the film material 20 is molded and bonded to the base material 22. Means when
 上記の成形装置50を用いて成形体10を製造する手順について説明する。フィルム材20を、接着層27を下チャンバ51bに向けて、上チャンバ51aと下チャンバ51bとの間にセットする。 A procedure for manufacturing the molded body 10 using the molding apparatus 50 will be described. The film material 20 is set between the upper chamber 51a and the lower chamber 51b with the adhesive layer 27 facing the lower chamber 51b.
 次に、テーブル53に基材用素材22をセットする。上チャンバ51aを降下させ、上チャンバ51aと下チャンバ51bとの間にフィルム材20を挟んだ状態で、チャンバ51内を気密状態にする。そして、真空ポンプ55を作動させ、チャンバ51内を真空状態にする。 Next, the base material 22 is set on the table 53. The upper chamber 51a is lowered and the inside of the chamber 51 is made airtight with the film material 20 being sandwiched between the upper chamber 51a and the lower chamber 51b. Then, the vacuum pump 55 is operated to bring the chamber 51 into a vacuum state.
 上記真空状態でヒータ52を作動し、フィルム材20を加熱する。この加熱によりフィルム材20は自重で垂れ下がるが、上チャンバ51a内の真空度と下チャンバ51b内の真空度とを調節することにより、フィルム材20がほぼ水平状態とされる。この間、温度計(図示せず)によりフィルム材20の温度を測定する。 In the above vacuum state, the heater 52 is operated to heat the film material 20. This heating causes the film material 20 to hang down due to its own weight, but the film material 20 is brought into a substantially horizontal state by adjusting the degree of vacuum in the upper chamber 51a and the degree of vacuum in the lower chamber 51b. During this time, the temperature of the film material 20 is measured by a thermometer (not shown).
 成形温度としてのフィルム材20の温度は、150℃以上240℃以下の範囲内とされ、本実施形態では200℃とされる。成形温度が150℃以上であることにより、150℃未満である場合に比べて、成形性及び加工性に優れ、成形温度が240℃以下であることにより、240℃よりも大きい場合に比べて、着色の発生が抑制されるからである。また、成形温度が240℃以下であることにより、セルロースアシレートが熱分解することも抑制される。成形温度は、180℃以上220℃以下の範囲内とされることがより好ましい。さらに、成形温度は、セルロースアシレートのガラス転移点をTgとするときに、(Tg+5℃)以上(Tg+40℃)以下の範囲内であることがより好ましく、(Tg+8℃)以上(Tg+30℃)以下の範囲内であることがさらに好ましい。ここで、本実施形態では温度を調整する対象をフィルム材20としているが、温度を調整する対象は、熱成形の手法ごとに異なる。例えば、真空圧空成形、真空成形、及び圧空成形の場合はフィルム材であり、フィルムインサート成形の場合はフィルム材及び熱可塑性樹脂であり、インモールド成形の場合は熱可塑性樹脂である。したがって、成形温度とは、真空圧空成形、真空成形、及び圧空成形の場合はフィルム材の温度であり、フィルムインサート成形の場合はフィルム材の温度及び熱可塑性樹脂の温度であり、インモールド成形の場合は熱可塑性樹脂の温度である。これらの成形温度は、遠赤外線ヒータ、成形する金型の温度、成形に用いる熱可塑性樹脂の温度などにより調整できる。遠赤外線ヒータによる調整は、真空圧空成形、真空成形、圧空成形に好ましく用いられ、成形する金型の温度による調整はフィルムインサート成形に好ましく用いられ、成形に用いる熱可塑性樹脂の温度による調整はフィルムインサート成形、インモールド成形に好ましく用いられる。これらの温度調整方法のうち、成形温度を一定温度範囲内で調整し易いこと、温度調整する対象の温度をモニター等の手段により制御できること、成形に供する一定の面積範囲内で温度のむら等が小さいこと、といった観点から遠赤外線ヒータまたは成形する金型温度の調整による方法が好ましく、遠赤外線ヒータによる方法が特に好ましい。 The temperature of the film material 20 as the molding temperature is in the range of 150 ° C. or higher and 240 ° C. or lower, and is 200 ° C. in this embodiment. Compared to the case where the molding temperature is 150 ° C. or higher, the moldability and workability are excellent compared to the case where the molding temperature is less than 150 ° C., and the molding temperature is 240 ° C. or lower, compared to the case where the molding temperature is higher than 240 ° C. This is because the occurrence of coloring is suppressed. In addition, when the molding temperature is 240 ° C. or lower, the cellulose acylate is also prevented from being thermally decomposed. The molding temperature is more preferably in the range of 180 ° C. or higher and 220 ° C. or lower. Further, the molding temperature is more preferably in the range of (Tg + 5 ° C.) or more and (Tg + 40 ° C.) or less, and (Tg + 8 ° C.) or more (Tg + 30 ° C.) or less when Tg is the glass transition point of cellulose acylate. More preferably, it is in the range. Here, although the object whose temperature is adjusted is the film material 20 in the present embodiment, the object whose temperature is adjusted is different for each thermoforming technique. For example, it is a film material in the case of vacuum pressure forming, vacuum forming, and pressure forming, a film material and a thermoplastic resin in the case of film insert molding, and a thermoplastic resin in the case of in-mold forming. Therefore, the molding temperature is the temperature of the film material in the case of vacuum pressure forming, vacuum forming, and pressure forming, the temperature of the film material and the temperature of the thermoplastic resin in the case of film insert molding, In the case, it is the temperature of the thermoplastic resin. These molding temperatures can be adjusted by the far infrared heater, the temperature of the mold to be molded, the temperature of the thermoplastic resin used for molding, and the like. Adjustment by far infrared heater is preferably used for vacuum / pressure forming, vacuum forming, and pressure forming, adjustment by mold temperature is preferably used for film insert molding, and adjustment by temperature of thermoplastic resin used for forming is film It is preferably used for insert molding and in-mold molding. Among these temperature adjustment methods, it is easy to adjust the molding temperature within a certain temperature range, the temperature to be temperature controlled can be controlled by means such as a monitor, and the temperature unevenness is small within a certain area range for molding. In view of the above, a method by adjusting the temperature of the far infrared heater or the molding die is preferable, and a method by the far infrared heater is particularly preferable.
 フィルム材20の成形温度が200℃に達した後、下チャンバ51b内のテーブル53を上昇させる。これにより、テーブル53上の基材用素材22がフィルム材20に覆われる。この状態で、上チャンバ51a内を大気圧状態とすることで、フィルム材20が基材用素材22に押し付けられる。さらに、コンプレッサ56を作動させ、上チャンバ51a内に圧縮空気を噴出することにより、基材用素材22にフィルム材20が密着する。これにより、フィルム材20の成形、および基材用素材22への貼り合わせが行われる。その後、上チャンバ51aおよび下チャンバ51b内を大気圧状態にし、成形が終了する。成形時間は、30秒以上600秒以下の範囲内とし、本実施形態では180秒としている。成形時間を30秒以上とすることにより、30秒未満の場合と比べて、基材用素材22の形状に沿ってフィルム材20を成形することが可能となり、成形時間を600秒以下とすることにより、600秒より大きい場合と比べて、フィルム材20の着色と熱によるしわ及び/又は破れ(裂け)とが抑えられる、接着層27の発泡及び/又は着色が抑えられる、けん化層24の接触角が小さいことで良好な防曇性を持つ成形体が得られる。成形時間は、60秒以上400秒以下の範囲内であることがより好ましく、90秒以上300秒以下の範囲内であることがより好ましい。そして、上チャンバ51aを上昇させ、成形体10を取り出す。なお、板状の成形体を製造する場合も、上記の手順で行われる。以上のように、真空圧空成形、真空成形、圧空成形、フィルムインサート成形、及びインモールド成形のうちのいずれかの熱成形の手法において、上記成形温度とすることにより基材用素材22とフィルム材20との成形性及び加工性により優れ、さらに、上記成形時間とすることにより、着色としわ及び/又は破れの発生が抑制され、かつ透明性、防曇性等により優れた成形体10を製造することができる。 After the molding temperature of the film material 20 reaches 200 ° C., the table 53 in the lower chamber 51b is raised. Thereby, the base material 22 on the table 53 is covered with the film material 20. In this state, the film material 20 is pressed against the base material 22 by setting the inside of the upper chamber 51a to an atmospheric pressure state. Furthermore, the film material 20 adheres to the base material 22 by operating the compressor 56 and ejecting compressed air into the upper chamber 51a. Thereby, shaping | molding of the film material 20 and bonding to the raw material 22 for base materials are performed. Thereafter, the inside of the upper chamber 51a and the lower chamber 51b is brought to atmospheric pressure, and molding is completed. The molding time is in the range of 30 seconds to 600 seconds, and in this embodiment is 180 seconds. By setting the molding time to 30 seconds or longer, the film material 20 can be molded along the shape of the base material 22 as compared with the case of less than 30 seconds, and the molding time is set to 600 seconds or less. Therefore, the contact of the saponification layer 24 in which the coloration of the film material 20 and wrinkles and / or tearing (breaking) due to heat are suppressed, and the foaming and / or coloration of the adhesive layer 27 is suppressed as compared with the case where it is longer than 600 seconds. A molded article having good antifogging properties can be obtained because the corners are small. The molding time is more preferably in the range of 60 seconds to 400 seconds, and more preferably in the range of 90 seconds to 300 seconds. And the upper chamber 51a is raised and the molded object 10 is taken out. In addition, when manufacturing a plate-shaped molded object, it is performed in said procedure. As described above, in the thermoforming method of any one of vacuum / pressure forming, vacuum forming, pressure forming, film insert forming, and in-mold forming, the base material 22 and the film material are obtained by setting the above forming temperature. The molded body 10 is excellent in moldability and workability with No. 20, and further by the above molding time, the occurrence of coloring and wrinkles and / or tears is suppressed, and the molded body 10 is excellent in transparency, antifogging properties, etc. can do.
 [実施例1]~[実施例19]
 第1の素材形成工程31で第1の素材として9種のフィルム材をつくり、フィルム材A~Iとした。第1の素材形成工程31において、フィルム材形成工程33で用いるドープは、下記の処方からなる組成物を密閉容器に投入し、常圧下で40℃に保温しながら攪拌することにより完全に溶解させることでつくった。TACの原料はリンターである。微粒子は、R972(日本アエロジル(株)製のシリカ)である。この微粒子は、ジクロロメタンとメタノールとの混合物である溶剤にTACを溶解した溶液に、予め混合して分散した。そして、この分散液を、上記の密閉容器に投入し、下記処方の組成物とした。静置後、ろ紙(No.63、アドバンテック東洋(株)製)を使用し、この液を30℃に保持した状態で濾過し、脱泡操作を施した後、ドープを得た。
[Example 1] to [Example 19]
In the first material forming step 31, nine kinds of film materials were produced as the first material, and film materials A to I were obtained. In the first material forming step 31, the dope used in the film material forming step 33 is completely dissolved by putting a composition having the following formulation into a hermetic container and stirring while keeping at 40 ° C. under normal pressure. I made it. The raw material for TAC is linter. The fine particles are R972 (silica manufactured by Nippon Aerosil Co., Ltd.). The fine particles were previously mixed and dispersed in a solution in which TAC was dissolved in a solvent that was a mixture of dichloromethane and methanol. And this dispersion liquid was thrown into said airtight container, and it was set as the composition of the following prescription. After standing, filter paper (No. 63, manufactured by Advantech Toyo Co., Ltd.) was used, and this liquid was filtered while being kept at 30 ° C., and after defoaming operation, a dope was obtained.
 第1成分                           100質量部
 第2成分                    表1の「量」欄に示す質量部
 ジクロロメタン                        635質量部
 メタノール                          125質量部
 微粒子                            1.3質量部
First component 100 parts by mass Second component Part by mass shown in the “Amount” column of Table 1 Dichloromethane 635 parts by mass Methanol 125 parts by mass Fine particles 1.3 parts by mass
 表1に示すように、第1成分は、セルロースアシレートである。表1には、「第1成分」の「物質」欄に「CA」と記載している。このセルロースアシレートは、すべてのアシル基がアセチル基であり、粘度平均重合度が320である。セルロースアシレートのアシル基置換度は表1の「アシル基置換度」欄に示す。 As shown in Table 1, the first component is cellulose acylate. In Table 1, “CA” is described in the “Substance” column of “First component”. In this cellulose acylate, all acyl groups are acetyl groups, and the viscosity average degree of polymerization is 320. The acyl group substitution degree of cellulose acylate is shown in the “Acyl group substitution degree” column of Table 1.
 第2成分は、可塑剤であり、表1の「第2成分」の「物質」欄に示すA~Eである。Aは、アジピン酸とエチレングリコールとのエステルを繰り返し単位とするオリゴマー(末端官能基定量法による分子量は1000)である。Bは、テレフタル酸とエチレングリコールとのエステルおよびフタル酸とエチレングリコールとのエステルとを繰り返し単位とするオリゴマー(末端官能基定量法による分子量は700)である。Cは、糖のエステル誘導体のスクロースの安息香酸エステル(第1工業製薬製モノペットSB)である。Dは、ポリメチルメタクリレート(PMMA)である。Eは、トリフェニルフォスフェート(TPP)およびビフェニルジフェニルフォスフェート(BDP)である。なお、表1の「第2成分」の「物質」欄に示す「-」は、可塑剤が非含有であることを示す。 The second component is a plasticizer, and is A to E shown in the “Substance” column of “Second component” in Table 1. A is an oligomer having a repeating unit of an ester of adipic acid and ethylene glycol (molecular weight determined by terminal functional group determination method is 1000). B is an oligomer having a repeating unit of an ester of terephthalic acid and ethylene glycol and an ester of phthalic acid and ethylene glycol (molecular weight by terminal functional group determination method is 700). C is a benzoate ester of sucrose which is an ester derivative of sugar (Monopet SB manufactured by Daiichi Kogyo Seiyaku). D is polymethyl methacrylate (PMMA). E is triphenyl phosphate (TPP) and biphenyl diphenyl phosphate (BDP). Note that “-” shown in the “Substance” column of “Second component” in Table 1 indicates that the plasticizer is not contained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 30℃に温度調整されたドープを、支持体上に流延した。支持体は、ステンレス製の無端のベルトである。流延膜に対して、形成直後から100℃の温風をあてて乾燥し、形成してから120秒後に、150N/mの剥離張力で流延膜を支持体から剥離し、これにより第1の中間体としてのフィルム材を形成した。剥離位置における支持体の温度は10℃とした。剥離時おける流延膜の残留溶媒量は100質量%であった。 The dope whose temperature was adjusted to 30 ° C. was cast on the support. The support is an endless belt made of stainless steel. The cast film is dried by applying hot air of 100 ° C. immediately after the formation, and 120 seconds after the formation, the cast film is peeled off from the support with a peel tension of 150 N / m. A film material as an intermediate was formed. The temperature of the support at the peeling position was 10 ° C. The residual solvent amount of the cast film at the time of peeling was 100% by mass.
 剥離した第1の中間体を、搬送路に配した多数のロールにより長手方向における張力を100N/mにした状態で搬送しながら、乾燥した。乾燥は、80℃に設定された第1乾燥ゾーンを5分間搬送させた後、さらに120℃に設定された第2乾燥ゾーンで10分間搬送させることにより、行った。乾燥後、第1の中間体をロール状に巻き取ることにより、フィルムロールを得た。この第1の中間体の幅は1.5m、フィルムロールにおける巻長は2000mであった。巻き取り時のけん化処理前のフィルム材の残留溶媒量は0.3%であった。 The dried first intermediate was dried while being transported in a state where the tension in the longitudinal direction was set to 100 N / m by a number of rolls arranged in the transport path. Drying was carried out by transporting the first drying zone set at 80 ° C. for 5 minutes and further transporting it for 10 minutes in the second drying zone set at 120 ° C. The film roll was obtained by winding up the 1st intermediate body in roll shape after drying. The width of the first intermediate was 1.5 m, and the winding length in the film roll was 2000 m. The residual solvent amount of the film material before saponification treatment at the time of winding was 0.3%.
 第1の中間体をけん化工程34でけん化し、第2の中間体としてのフィルム材をつくった。けん化の処理時間及び処理温度は適宜変更した。第2の中間体は、具体的には以下の方法で製造した。第1の中間体をフィルムロールから巻き出して搬送し、搬送路に設けた塗布装置により、第1の中間体の一方のフィルム面にけん化液を塗布した。けん化液の処方は以下である。なお、下記の処方において、%は質量での百分率である。
 水酸化カリウム(KOH)                 3.3%
 イソプロピルアルコール                   88%
 水                              3%
 プロピレングリコール                     5%
 界面活性剤                       0.04%
The first intermediate was saponified in the saponification step 34 to produce a film material as the second intermediate. The saponification treatment time and treatment temperature were appropriately changed. Specifically, the second intermediate was produced by the following method. The first intermediate was unwound from the film roll and conveyed, and the saponification solution was applied to one film surface of the first intermediate by a coating device provided in the conveyance path. The prescription of the saponification solution is as follows. In the following formulation,% is a percentage by mass.
Potassium hydroxide (KOH) 3.3%
Isopropyl alcohol 88%
3% water
Propylene glycol 5%
Surfactant 0.04%
 けん化液が塗布された第1の中間体を、搬送路に設けてある加熱室に案内し、搬送しながら加熱し、その後、水が収容されている水槽に送って水で洗浄した。このようにして得られた長尺の第2の中間体について、厚みと、15秒後接触角と、アシル基割合と、ガラス転移点とを、それぞれ求めた。15秒後接触角と、アシル基割合との各求め方は前述の通りである。厚みは、接触式厚み計を用いて幅方向0.5mm間隔で測定した値の平均値である。第2の中間体のガラス転移点(Tg)は以下の方法から求めた。長方形のシート状をしたサンプル(短辺が5mm、長辺が30mm)を、25℃相対湿度60%で2時間以上調湿した後に動的粘弾性測定装置DVA-225(アイティー計測制御(株)社製)を用いて、つかみ間距離20mm、周波数1Hzで測定することによって得られるtanδ(=損失弾性率(E")/貯蔵弾性率(E'))の極大温度を求め、これをTgとした。 The first intermediate coated with the saponification solution was guided to the heating chamber provided in the conveyance path, heated while being conveyed, and then sent to a water tank containing water and washed with water. With respect to the long second intermediate thus obtained, the thickness, the contact angle after 15 seconds, the acyl group ratio, and the glass transition point were determined. Each method of obtaining the contact angle after 15 seconds and the acyl group ratio is as described above. The thickness is an average value of values measured at intervals of 0.5 mm in the width direction using a contact-type thickness meter. The glass transition point (Tg) of the second intermediate was determined from the following method. A sample in the form of a rectangular sheet (short side 5 mm, long side 30 mm) was conditioned for 2 hours or more at 25 ° C. and 60% relative humidity, and then the dynamic viscoelasticity measuring device DVA-225 (IT Measurement Control Co., Ltd.) The maximum temperature of tan δ (= loss elastic modulus (E ″) / storage elastic modulus (E ′)) obtained by measuring at a distance between grips of 20 mm and a frequency of 1 Hz is obtained using Tg. It was.
 第2の中間体に、接着層形成工程36で接着層27を形成した。接着層27は、市販の接着剤を用いることにより形成した。接着層27が形成されたフィルム材をフィルム材切断工程37で切断することにより、シート状の9種のフィルム材とした。 The adhesive layer 27 was formed on the second intermediate in the adhesive layer forming step 36. The adhesive layer 27 was formed by using a commercially available adhesive. By cutting the film material on which the adhesive layer 27 was formed in the film material cutting step 37, nine sheet-like film materials were obtained.
 こうして得られたフィルム材A~Iと、ドーム形状をした基材用素材22または平板形状をした基材用素材とを、成形装置50を用いて、それぞれ熱成形で一体成形し、19種の成形体を製造し、実施例1~19とした。成形温度は、表2の「成形温度」欄に示す。 The film materials A to I thus obtained and the base material 22 having a dome shape or the base material having a flat plate shape are integrally formed by thermoforming using a molding device 50, respectively. Molded bodies were produced and Examples 1 to 19 were obtained. The molding temperature is shown in the “molding temperature” column of Table 2.
 ドーム形状をした基材用素材22として、ガラス転移点が100℃のアクリルであるポリメチルメタクリレート(PMMA)により、径が100mm、厚みが2mmのアクリルドームをつくった。表2には、「基材」の「物質」欄に「アクリル」と記載し、「形状」欄に「ドーム」と記載し、「径」欄に「100」と記載している。なお、「径」とは、外径である。 As the base material 22 having a dome shape, an acrylic dome having a diameter of 100 mm and a thickness of 2 mm was made of polymethyl methacrylate (PMMA), which is acrylic having a glass transition point of 100 ° C. In Table 2, “acrylic” is described in the “substance” column of “base material”, “dome” is described in the “shape” column, and “100” is described in the “diameter” column. The “diameter” is an outer diameter.
 正方形の平板形状をした基材用素材(図示無し)として、ガラス転移点が150℃のPCにより形成されており、一辺の長さが100mm、厚み(高さ)が5mmの市販のPC板(タキロン(株)製PC1600)を用いた。表2には、「基材」の「物質」欄に「PC」と記載し、「形状」欄に「板」と記載している。なお、平板形状をした基材用素材と、けん化層24の表面に保護層26としてLG化学社製ラミネートフィルム LDM-EPDC(50μ)を貼り合わせたフィルム材Aとを一体成形して得た成形体を、実施例19とした。 A square plate-shaped base material (not shown) is a commercially available PC plate made of PC having a glass transition point of 150 ° C. and having a side length of 100 mm and a thickness (height) of 5 mm. PC1600 manufactured by Takiron Co., Ltd.) was used. In Table 2, “PC” is described in the “Substance” column of “Substrate”, and “Plate” is described in the “Shape” column. In addition, the shaping | molding obtained by integrally shaping | molding the base material for a flat plate and the film material A which bonded the laminate film LDM-EPDC (50 micrometer) by LG Chemical as a protective layer 26 on the surface of the saponification layer 24 The body was designated Example 19.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 接着層27の形成に用いた接着剤又は粘着剤は、表2の「接着層」欄に示すA~Cである。Aは、綜研化学(株)社製アクリル粘着シートである。Bは、3M(株)製シリコーン基材レス両面テープ91022である。Cは、三菱レーヨン(株)製ダイヤナール(登録商標)BR77である。 The adhesives or pressure-sensitive adhesives used for forming the adhesive layer 27 are A to C shown in the “Adhesive layer” column of Table 2. A is an acrylic adhesive sheet manufactured by Soken Chemical Co., Ltd. B is a silicone baseless double-sided tape 91022 manufactured by 3M Corporation. C is Dianar (registered trademark) BR77 manufactured by Mitsubishi Rayon Co., Ltd.
 得られた各成形体につき、虹むらと、着色と、接触角と、曲面への成形性と、端部での加工性とを以下の評価方法および基準で評価した。各評価結果については表2に示す。 Each of the obtained molded bodies was evaluated for rainbow unevenness, coloring, contact angle, formability to a curved surface, and workability at the end by the following evaluation methods and standards. Each evaluation result is shown in Table 2.
 (1)虹むら
 基材側から成形体に蛍光灯の光を照射し、目視により観察し、以下の基準で評価した。
   合格;色むらが確認されなかった。
   不合格;色むらが確認された。
(1) Rainbow spotting The molded body was irradiated with fluorescent light from the substrate side, observed visually, and evaluated according to the following criteria.
Pass; color unevenness was not confirmed.
Fail: Color irregularity was confirmed.
 (2)着色
 セルロースアシレートフィルムの色味を目視により観察し、以下の基準に基づいて、成形体の着色を評価した。評価結果は「着色」欄に示す。2,3が合格である。
   3;成形体に着色は見られなかった。
   2;成形体にわずかな着色が見られたものの、ほぼ無色であった。
   1;成形体がはっきりと褐色に見えた。
(2) Coloring The color of the cellulose acylate film was visually observed, and the coloration of the molded product was evaluated based on the following criteria. The evaluation results are shown in the “coloring” column. 2 and 3 are acceptable.
3; Coloring was not seen in the molded product.
2: Slight coloring was observed in the molded product, but it was almost colorless.
1; The molded body was clearly brown.
 (3)接触角
 15秒後接触角を前述のとおり求め、これを接触角の評価とした。上記のように、接触角が35°以下である場合に特に長期防曇性が良い傾向を示す。
(3) Contact angle The contact angle after 15 seconds was determined as described above, and this was used as the evaluation of the contact angle. As described above, a long-term antifogging property tends to be particularly good when the contact angle is 35 ° or less.
 (4)曲面への成形性
 セルロースアシレートフィルムのアクリルドームへの成形のしやすさについて、以下の基準で評価し、これを曲面への成形性の評価とした。3~5が合格である。
   5;浮きは発生しなかった。
   4;アクリルドームの端部でごくわずかに浮きが発生したものの、端部以外では浮きは発生しなかった。
   3;アクリルドームの端部で浮きが発生したものの、端部以外では浮きは発生しなかった。
   2;アクリルドームの端部から中央部まで浮きが発生した。
   1;貼り合わせた部分の全体にしわが発生した。
(4) Formability to a curved surface The ease with which a cellulose acylate film can be formed into an acrylic dome was evaluated according to the following criteria, and this was evaluated as the moldability to a curved surface. 3 to 5 are acceptable.
5: No floating occurred.
4; Although a slight float occurred at the end of the acrylic dome, no float occurred at the end other than the end.
3; Although floating occurred at the end of the acrylic dome, no floating occurred at the other end.
2: Floating occurred from the end to the center of the acrylic dome.
1; Wrinkles were generated in the entire bonded portion.
 (5)端部での加工性
 セルロースアシレートフィルムのPC板への加工のしやすさについて、以下の基準で評価し、これを加工性の評価とした。3,4が合格である。
   4;PC板の端部に沿って変形した。
   3;PC板の端部で一部浮きが生じるものの、折り曲げ加工が可能である。
   2;折り曲げ加工は可能であるが、PC板の端部で浮きが生じる。
   1;折り曲げ加工が不可能であり、PC板の端部で浮きが生じる。
(5) Workability at the edge portion The ease of processing of a cellulose acylate film into a PC plate was evaluated according to the following criteria, and this was regarded as the workability evaluation. 3 and 4 are acceptable.
4; Deformed along the edge of the PC plate.
3: Although some floating occurs at the end of the PC plate, it can be bent.
2: Although bending is possible, floating occurs at the end of the PC plate.
1; Folding is impossible and floating occurs at the end of the PC board.
 [比較例1]~[比較例3]
 ポリエチレンテレフタレートにより形成したポリエチレンテレフタレートフィルム(東レ製ルミラー(登録商標)U34(光学用) 50μm)に実施例と同様に接着層を形成し、これをシート状に切断することにより、フィルム材Jを製造した。表1には、「第1成分」の「物質」欄に「PET」と記載している。得られたフィルム材Jについて、厚みと、15秒後接触角と、ガラス転移点とを、それぞれ求めた。これらの結果は表1に示す。
[Comparative Example 1] to [Comparative Example 3]
A film material J is produced by forming an adhesive layer on a polyethylene terephthalate film (Lumirror (registered trademark) U34 (for optical) 50 μm) manufactured by polyethylene terephthalate) in the same manner as in the example and cutting it into a sheet. did. In Table 1, “PET” is described in the “Substance” column of “First component”. With respect to the obtained film material J, the thickness, the contact angle after 15 seconds, and the glass transition point were determined. These results are shown in Table 1.
 フィルム材A,Jと、ドーム形状をした基材用素材22または平板形状をした基材用素材とを、実施例1~19と同様に、熱成形で一体成形し、3種類の成形体を製造し、比較例1~3とした。成形温度は、表2の「成形温度」欄に示す。 The film materials A and J and the base material 22 having a dome shape or the base material having a flat plate shape are integrally formed by thermoforming in the same manner as in Examples 1 to 19, and three types of molded bodies are obtained. Produced as Comparative Examples 1 to 3. The molding temperature is shown in the “molding temperature” column of Table 2.
 得られた各成形体につき、虹むらと、着色と、接触角と、曲面への成形性と、端部での加工性とを、実施例と同じ方法および基準で評価した。各評価結果については表2に示す。 For each molded body obtained, rainbow unevenness, coloring, contact angle, formability to a curved surface, and workability at the end were evaluated by the same method and standard as in the examples. Each evaluation result is shown in Table 2.

Claims (9)

  1.  セルロースアシレートフィルムと透明な基材とを有する成形体を製造する成形体の製造方法において、
     セルロースアシレートから長尺のフィルム材を形成するフィルム材形成工程と、
     前記フィルム材と、熱可塑性樹脂から形成された基材用素材とを、150℃以上240℃以下の範囲内の成形温度の熱成形で一体成形することにより、前記成形体にする成形工程と、
     を有する成形体の製造方法。
    In the method for producing a molded article for producing a molded article having a cellulose acylate film and a transparent substrate,
    A film material forming step of forming a long film material from cellulose acylate;
    A molding step of forming the molded body by integrally molding the film material and a base material formed from a thermoplastic resin by thermoforming at a molding temperature within a range of 150 ° C. or higher and 240 ° C. or lower;
    The manufacturing method of the molded object which has.
  2.  前記フィルム材形成工程と前記成形工程との間に、長尺の前記フィルム材をシート状に切断するフィルム材切断工程を有する請求項1に記載の成形体の製造方法。 The method for producing a molded body according to claim 1, further comprising a film material cutting step of cutting the long film material into a sheet shape between the film material forming step and the molding step.
  3.  前記フィルム材形成工程と前記成形工程との間に、前記フィルム材に、けん化された前記セルロースアシレートを含むけん化層を形成するけん化工程を有し、
     前記成形工程に供される前記フィルム材は、前記けん化層のアシル基量をXとし、前記けん化工程でけん化されなかった前記セルロースアシレートから形成されたセルロースアシレート層のアシル基量をYとするときに、X/Yで求めるアシル基割合が大きくても0.7である請求項1または2に記載の成形体の製造方法。
    Between the film material forming step and the molding step, the film material has a saponification step of forming a saponified layer containing the saponified cellulose acylate,
    The film material to be subjected to the molding step has an acyl group amount of the saponified layer as X, and an acyl group amount of the cellulose acylate layer formed from the cellulose acylate not saponified in the saponification step as Y. The method for producing a molded article according to claim 1 or 2, wherein the acyl group ratio obtained by X / Y is 0.7 at most.
  4.  前記セルロースアシレート層の厚みと前記けん化層の厚みとの和は、厚みが15μm以上100μm以下の範囲内である請求項3に記載の成形体の製造方法。 The method for producing a molded article according to claim 3, wherein the sum of the thickness of the cellulose acylate layer and the thickness of the saponified layer is in the range of 15 µm to 100 µm.
  5.  前記けん化工程と前記成形工程との間に、前記けん化層の表面に、前記けん化層を保護する保護層を形成する保護層形成工程を有する請求項3または4に記載の成形体の製造方法。 The method for producing a molded article according to claim 3 or 4, further comprising a protective layer forming step of forming a protective layer for protecting the saponified layer on the surface of the saponified layer between the saponification step and the molding step.
  6.  前記成形工程は、加熱を開始してから成形が終了するまでの時間を30秒以上600秒以下の範囲内とする請求項3から5のいずれか1項に記載の成形体の製造方法。 The method for producing a molded body according to any one of claims 3 to 5, wherein in the molding step, the time from the start of heating to the end of molding is in a range of 30 seconds to 600 seconds.
  7.  前記セルロースアシレートのガラス転移点をTgとするときに、前記成形温度は(Tg+5℃)以上(Tg+40℃)以下の範囲内である請求項1から6のいずれか1項に記載の成形体の製造方法。 The molding body according to any one of claims 1 to 6, wherein when the glass transition point of the cellulose acylate is Tg, the molding temperature is in the range of (Tg + 5 ° C) to (Tg + 40 ° C). Production method.
  8.  前記フィルム材形成工程と前記成形工程との間に、前記フィルム材のフィルム面に接着層を形成する接着層形成工程を有し、
     前記成形工程は、前記接着層と前記基材用素材とを密着した状態に、前記フィルム材と前記基材用素材とを一体成形する請求項1から7のいずれか1項に記載の成形体の製造方法。
    Between the film material forming step and the molding step, an adhesive layer forming step of forming an adhesive layer on the film surface of the film material,
    The molded body according to any one of claims 1 to 7, wherein in the molding step, the film material and the base material are integrally formed in a state where the adhesive layer and the base material are in close contact with each other. Manufacturing method.
  9.  前記熱可塑性樹脂は、アクリルまたはポリカーボネートである請求項1から8のいずれか1項に記載の成形体の製造方法。 The method for producing a molded body according to any one of claims 1 to 8, wherein the thermoplastic resin is acrylic or polycarbonate.
PCT/JP2017/033838 2016-09-29 2017-09-20 Method for manufacturing molded body WO2018061910A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197008816A KR102178544B1 (en) 2016-09-29 2017-09-20 Manufacturing method of molded article
CN201780060520.3A CN109803809B (en) 2016-09-29 2017-09-20 Method for producing molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-190816 2016-09-29
JP2016190816A JP6629701B2 (en) 2016-09-29 2016-09-29 Manufacturing method of molded body

Publications (1)

Publication Number Publication Date
WO2018061910A1 true WO2018061910A1 (en) 2018-04-05

Family

ID=61760687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033838 WO2018061910A1 (en) 2016-09-29 2017-09-20 Method for manufacturing molded body

Country Status (4)

Country Link
JP (1) JP6629701B2 (en)
KR (1) KR102178544B1 (en)
CN (1) CN109803809B (en)
WO (1) WO2018061910A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60101042A (en) * 1983-11-08 1985-06-05 三菱レイヨン株式会社 Manufacture of non-fogging synthetic resin sheet-shaped article
JPH06143339A (en) * 1992-06-19 1994-05-24 Kazuatsu Kanemitsu Composite resin molded body and manufacture thereof
JPH06190972A (en) * 1992-12-25 1994-07-12 Tsutsunaka Plast Ind Co Ltd Production of anti-fogging plate made of synthetic resin
JPH07112483A (en) * 1993-10-20 1995-05-02 Dainippon Printing Co Ltd Vacuum laminate molding method and apparatus
JPH08267531A (en) * 1995-03-30 1996-10-15 Tsutsunaka Plast Ind Co Ltd Production of anti-fogging corrugated panel made of polycarbonate resin
JP2013064771A (en) * 2011-09-15 2013-04-11 Sumitomo Chemical Co Ltd Laminated body and method for producing the same
JP2013099879A (en) * 2011-11-08 2013-05-23 Konica Minolta Advanced Layers Inc Thin anti-fog film
JP2016083841A (en) * 2014-10-27 2016-05-19 河西工業株式会社 Film coating forming device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303005A (en) * 2000-04-20 2001-10-31 Sun A Kaken Co Ltd Surface protective film for polycarbonate resin plate
JP2005307142A (en) * 2004-03-25 2005-11-04 Fuji Photo Film Co Ltd Cellulose acylate film, polarizing plate protective film, polarizing plate and liquid crystal display

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60101042A (en) * 1983-11-08 1985-06-05 三菱レイヨン株式会社 Manufacture of non-fogging synthetic resin sheet-shaped article
JPH06143339A (en) * 1992-06-19 1994-05-24 Kazuatsu Kanemitsu Composite resin molded body and manufacture thereof
JPH06190972A (en) * 1992-12-25 1994-07-12 Tsutsunaka Plast Ind Co Ltd Production of anti-fogging plate made of synthetic resin
JPH07112483A (en) * 1993-10-20 1995-05-02 Dainippon Printing Co Ltd Vacuum laminate molding method and apparatus
JPH08267531A (en) * 1995-03-30 1996-10-15 Tsutsunaka Plast Ind Co Ltd Production of anti-fogging corrugated panel made of polycarbonate resin
JP2013064771A (en) * 2011-09-15 2013-04-11 Sumitomo Chemical Co Ltd Laminated body and method for producing the same
JP2013099879A (en) * 2011-11-08 2013-05-23 Konica Minolta Advanced Layers Inc Thin anti-fog film
JP2016083841A (en) * 2014-10-27 2016-05-19 河西工業株式会社 Film coating forming device

Also Published As

Publication number Publication date
CN109803809B (en) 2021-03-12
JP6629701B2 (en) 2020-01-15
CN109803809A (en) 2019-05-24
KR102178544B1 (en) 2020-11-16
KR20190049759A (en) 2019-05-09
JP2018051936A (en) 2018-04-05

Similar Documents

Publication Publication Date Title
JP2009098666A (en) Antireflection film, polarizing plate, image display device and production method of transparent support for antireflection film
KR20180103974A (en) Polarizer, polarizing protective film, polarizing film with pressure-sensitive adhesive layer, image display apparatus and continuous manufacturing method thereof
JP2010032795A (en) Hard coat film, manufacturing method of hard coat film, antireflection film, polarizing plate, and display device
JP2010076181A (en) Method of manufacturing optical film, optical film and polarizing plate
JPWO2015093168A1 (en) Anti-fog film and anti-fog glass
JPWO2015033701A1 (en) Antifogging film, antifogging glass, glass laminate and liquid crystal display device
US10744746B2 (en) Formed body
KR101777532B1 (en) Optical film, polarizing plate and image display device
CN108780184B (en) Single-side protective polarizing film, polarizing film with adhesive layer, image display device, and continuous production method thereof
JP6164050B2 (en) Optical film, polarizing plate, manufacturing method thereof, and image display device
CN108026306B (en) Antifogging film
WO2018061910A1 (en) Method for manufacturing molded body
KR101587374B1 (en) Process for production of hard coat film
JP6586072B2 (en) Film laminate
KR102180044B1 (en) Manufacturing method of nano cellulose film
WO2022255034A1 (en) Display device
WO2015002178A1 (en) Anti-fogging film, light-permeable member and electronic device each manufactured using said anti-fogging film, and method for manufacturing said anti-fogging film
JP6713583B2 (en) Sheet, sheet manufacturing method, and sticking method
CN118043201A (en) Cover film
JP2020201508A (en) Piece protection polarizing film, polarizing film having adhesive layer, picture display unit and consecutive manufacturing method thereof
JP4665939B2 (en) Manufacturing method of optical film
JP2017066288A (en) Cellulose acylate film, polarizing plate and liquid crystal display device
KR20110073027A (en) Cellulose film for liquid crystal display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855865

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197008816

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17855865

Country of ref document: EP

Kind code of ref document: A1