WO2018061758A1 - Solar battery module - Google Patents

Solar battery module Download PDF

Info

Publication number
WO2018061758A1
WO2018061758A1 PCT/JP2017/032971 JP2017032971W WO2018061758A1 WO 2018061758 A1 WO2018061758 A1 WO 2018061758A1 JP 2017032971 W JP2017032971 W JP 2017032971W WO 2018061758 A1 WO2018061758 A1 WO 2018061758A1
Authority
WO
WIPO (PCT)
Prior art keywords
filler
holes
hole
solar cell
cell module
Prior art date
Application number
PCT/JP2017/032971
Other languages
French (fr)
Japanese (ja)
Inventor
大裕 岩田
淳平 入川
大介 藤嶋
篠原 亘
幹朗 田口
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2018061758A1 publication Critical patent/WO2018061758A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • This disclosure relates to a solar cell module.
  • This solar cell module includes a plurality of solar cells, a translucent surface protection member is disposed on the front surface side of the plurality of solar cells, and a back surface protection member is disposed on the back surface side.
  • the front side is a light receiving side on which light is mainly incident, and the back side is the opposite side.
  • the plurality of solar cells are arranged in a double row. Two or more solar cells arranged on the same straight line in each row are connected in series. The two or more solar cells and the wiring material connecting them in series constitute a string.
  • the back surface protection member is made of glass (hereinafter referred to as back glass). By providing the back surface protection member, the solar battery cell has excellent load resistance, and water entry from the outside is also efficiently suppressed.
  • a terminal box is attached to the outer surface of the back glass, and the back glass is provided with a plurality of cylindrical holes (hereinafter simply referred to as round holes).
  • the plurality of round holes are spaced from each other on the same straight line extending in a direction substantially orthogonal to the extending direction of the strings (direction in which the strings are arranged).
  • the output wiring for taking out the electrical output from the solar battery cell is electrically connected to the terminal in the terminal box after passing through the round hole.
  • the opening area of each round hole is set to such a size that only one output wiring can pass through, and only one output wiring passes through each round hole.
  • the back side protection member of the solar cell module is formed of the back glass and the through hole for passing the output wiring is provided in the back glass, there is a risk that moisture passes through the through hole and enters the solar cell module. Therefore, since there is a possibility that the solar battery cell may be deteriorated due to the permeation of moisture, it is preferable that the opening of the through hole is small.
  • the opening area of the through hole needs to be set to a size through which the output wiring can pass.
  • the length in the width direction of the output wiring at the opening of the through hole needs to be set longer than the width of the output wiring, and the length in the direction perpendicular to the width direction of the opening is near the through hole. Therefore, it is necessary to set in consideration of the bent shape of the output wiring.
  • the through hole provided in the back glass is a round hole, it is orthogonal to the width direction of the opening due to the bending of the output wiring in the vicinity of the through hole.
  • the length in the direction is increased, and the gap between the through hole and the output wiring is increased. For this reason, moisture easily passes through the through-holes, and it is difficult for moisture to enter the solar cell module, and the solar cells in the solar cell module may be deteriorated due to moisture penetration.
  • the purpose of the present disclosure is to reduce the gap between the through-hole provided in the back glass member and the output wiring passing through the through-hole, and it is difficult for moisture to pass through the through-hole and hardly cause deterioration due to moisture intrusion.
  • the object is to provide a solar cell module.
  • a solar cell module which is one embodiment of the present disclosure includes a plurality of solar cells, a translucent front-side member provided on a light receiving side on which light mainly enters the plurality of solar cells, and a plurality of solar cells.
  • a back glass member made of glass and provided on the opposite side of the light receiving side, and the back glass member is electrically connected to the solar cells and electrically connected to the same terminal box.
  • One or more through-holes that allow a plurality of output wires connected to each other to pass through are provided, and the through-holes extend in the thickness direction of the back glass member and have a substantially rectangular shape on a cut surface perpendicular to the thickness direction.
  • each through-hole provided in the back glass member extends in the thickness direction of the back glass member, and has a substantially rectangular shape in a cut surface perpendicular to the thickness direction.
  • the length in the direction perpendicular to the width direction of the output wiring passing through the through hole in the opening of the through hole is approximately the same as the length necessary for bending the output wiring. It becomes easy to set the length. Therefore, the gap between the through-hole provided in the back glass member and the output wiring passing through the through-hole can be reduced, and the moisture does not easily pass through the through-hole, thereby suppressing the deterioration of the solar cell module due to the ingress of moisture. it can.
  • FIG. 3 it is a mimetic diagram showing the back side of the solar cell module concerning one embodiment of this indication. It is a figure which shows a part of AA sectional view taken on the line of FIG. It is a figure which shows arrangement
  • (A) is a laminate in a reference example in which the front filler and the back filler are made of a material having the same degree of hardness and a material having the same degree of fluidity (reciprocal of viscosity) at the temperature at which the lamination is performed. It is a schematic cross section which shows the state before a process.
  • (b) is a schematic cross-sectional view showing a state after lamination processing of the reference example shown in (a).
  • (c) is a schematic cross-sectional view after lamination corresponding to (b) in the present embodiment. It is a schematic diagram when a part of back glass in the solar cell module of a modification is seen from the back side. When viewed from the thickness direction of the solar cell module, it is a schematic cross-sectional view including a central axis of a rectangular hole in a modification including a front filler, a back filler, and an additional filler in a region overlapping with the rectangular hole.
  • the side on which sunlight is mainly incident is the light receiving side (front side), and the side opposite to the front side is the back side.
  • the X direction is an extending direction of the string 50 described below
  • the Y direction is a direction orthogonal to the X direction. This is the direction of the alignment.
  • the Z direction is a direction orthogonal to the X direction and the Y direction, and is the thickness direction of the solar cell module 10.
  • the rectangular holes 21a, 21b, 121a to 121c, 221a to 221c, 321a, 321b, and 421 described in the following embodiments and modifications are all through-holes that penetrate the back glass member in the thickness direction.
  • FIG. 1 is a schematic diagram showing the back side of a solar cell module 10 according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram showing a part of a cross-sectional view taken along line AA of FIG.
  • the solar cell module 10 has a flat plate-like structure having a substantially rectangular shape in plan view, and includes a terminal box 60 on one side in the longitudinal direction (X direction) of the rectangular shape.
  • the solar cell module 10 includes a plurality of solar cells 1, a front glass member (hereinafter simply referred to as surface glass) 2 as an example of a translucent front member, a back glass member (hereinafter referred to as “surface glass”). 3), a wiring material 4 and a sealing material 5.
  • the solar battery cell 1 is made of a crystalline semiconductor made of, for example, single crystal silicon or polycrystalline silicon.
  • the solar battery cell 1 has, for example, an n-type region and a p-type region, and a junction for generating an electric field for carrier separation is provided at an interface portion between the n-type region and the p-type region.
  • the upper surface of the photovoltaic cell 1 has a substantially square shape, for example, it is not restricted to this.
  • any known structure may be used, and any shape may be used.
  • the surface glass 2 is provided on the light receiving side where light mainly enters the plurality of solar cells 1 and protects the front side of the solar cell module 10.
  • the surface glass 2 is made of tempered glass having translucency, and the thickness thereof is 0.5 mm to 4.0 mm, preferably about 2.0 mm to 3.2 mm.
  • a translucent front side member not only tempered glass but translucent members, such as translucent plastic, can be used.
  • the back glass 3 is provided on the side opposite to the light receiving side with respect to the plurality of solar cells 1 and is made of glass.
  • the back glass 3 protects the back side of the solar cell module 10.
  • the back glass 3 is made of tempered glass having a thickness of 0.5 mm to 4.0 mm, preferably about 2.0 mm to 3.2 mm, and is configured to have weather resistance.
  • the back glass 3 may be translucent or non-translucent.
  • the wiring member 4 electrically connects the electrode on the light receiving surface side of one solar cell 1 and the electrode on the back surface side of the other solar cell 1 in two solar cells 1 adjacent in the X direction.
  • the wiring member 4 is attached to each electrode with an adhesive or the like.
  • the wiring member 4 is preferably composed of, for example, a thin copper foil and solder plated on the surface of the copper foil, but may be composed of any other conductor.
  • the sealing material 5 is filled between the front glass 2 and the back glass 3 and seals the plurality of solar cells 1 between the front glass 2 and the back glass 3.
  • the sealing material 5 includes a front filler 5a and a back filler 5b.
  • the front filler 5a is disposed between the surface glass 2 and the solar battery cell 1, whereas the back filler 5b is a solar filler. Arranged between the battery cell 1 and the back glass 3.
  • the front filler 5a is made of a material having excellent translucency
  • the back filler 5b is made of a transparent or colored filler.
  • the front filler 5a is made of a transparent filler
  • the back filler 5b is made of a white filler that reflects light efficiently.
  • the encapsulating material 5 includes a front filler 5a excellent in translucency and a back filler 5b excellent in the property of reflecting light, thereby improving the light utilization efficiency.
  • the front filler 5a and the back filler 5b are laminated by laminating at a temperature of about 100 to 160 ° C.
  • the front filler 5a is laminated on the surface glass 2, and then the solar battery cell 1 and the wiring material 4 are placed, the back filler 5b and the back glass 3 are laminated thereon, and heated in this state. Press to integrate.
  • the back filler 5b is made of a material satisfying at least one of having a hardness higher than that of the front filler 5a and a fluidity lower than that of the front filler 5a at the temperature at which the lamination process is performed.
  • the front filler 5a is preferably composed of, for example, an ethylene / vinyl acetate copolymer or polyolefin, but is not limited thereto.
  • the back filler 5b is preferably composed of, for example, an ethylene / vinyl acetate copolymer or polyolefin, but is not limited thereto.
  • the plurality of solar cells 1 are arranged in a matrix on one side in the X direction with respect to the terminal box 60.
  • Two or more photovoltaic cells 1 arranged on the same straight line along the X direction are connected in series by a wiring member 4.
  • the two or more solar cells 1 and the wiring member 4 connecting the two or more solar cells 1 in series constitute a string 50.
  • the solar cells 1 at one end in the X direction are connected in series by the relay wiring 30 and all the solar cells 1 are connected in series.
  • the solar cell 1a arranged on the most terminal box 60 side in the X direction and on the rightmost side in the drawing is arranged on the highest potential side, and arranged on the most terminal box 60 side in the X direction and on the most left side on the drawing.
  • the provided solar battery cell 1b is disposed on the lowest potential side.
  • the solar cell module 10 includes five output wirings 30a, 30b, 30c, 30d, and 30e for electrically connecting to the terminals of the terminal box 60 on the terminal box 60 side in the X direction.
  • the surface of each output wiring 30a, 30b, 30c, 30d, 30e is covered with an insulating member such as an insulating film.
  • the three output wirings 30b, 30c, and 30d also have a function of connecting two adjacent strings 50 in series.
  • the output wiring 30a is arranged on the rightmost side in the Y direction and is electrically connected to the high potential side of the string 50 on the highest potential side, and the output wiring 30b is arranged in the second column from the right in the Y direction. Then, it is electrically connected to the lowest potential side of the second highest potential string 50.
  • the output wiring 30c is arranged in the fourth column from the right in the Y direction and is electrically connected to the lowest potential side of the fourth highest potential string 50, and the output wiring 30d is from the right in the Y direction. It is arranged in the sixth column and is electrically connected to the highest potential side of the sixth highest potential string 50.
  • the output wiring 30e is arranged in the eighth column from the right in the Y direction and is electrically connected to the lowest potential side of the string 50 having the lowest potential.
  • the terminal box 60 is attached to the back surface of the back glass 3.
  • the back glass 3 is provided with two through-holes having a rectangular cross section (hereinafter simply referred to as rectangular holes).
  • Each output wiring 30a, 30b, 30c, 30d, 30e is electrically connected to a predetermined terminal of the terminal box 60 after passing through one of the two rectangular holes.
  • a bypass diode for preventing backflow is provided between the terminals in the terminal box 60. If a light-shielding object such as fallen leaves covers a specific solar cell 1, the amount of power generated by the solar cell 1 may be reduced and heat may be generated.
  • the two strings 50 connected in series including the solar battery cells 1 whose power generation amount has decreased are short-circuited by a bypass diode. As a result, almost no current flows through the two strings 50, and damage to the solar battery cell 1 due to heat generation is suppressed.
  • the electric power from the solar cell module 10 is taken out by the two power supply wirings 40 and 41 electrically connected to the terminals of the terminal box 60.
  • FIG. 3 is a diagram showing the arrangement of the two rectangular holes 21 a and 21 b provided in the back glass 3.
  • the two rectangular holes 21a and 21b are located on the same straight line extending in the Y direction with a space in the Y direction.
  • the longitudinal direction of the rectangular opening of each rectangular hole 21a, 21b substantially coincides with the extending direction of the same straight line.
  • the sum of the output wirings (30a, 30b, 30c, 30d, 30e) passing through the rectangular holes 21a, 21b is an odd number.
  • the length of one rectangular hole 21a in the extending direction (Y direction) is 55% to 70% of the length of the other rectangular hole 21b in the extending direction (Y direction).
  • the length may be shorter than 55% or may be longer than 70%.
  • the total of the output wirings passing through the two rectangular holes may be an odd number other than 5, unlike the present embodiment.
  • the length of one rectangular hole in the extending direction (Y direction) is 55% to 70% of the length of the other rectangular hole in the extending direction (Y direction).
  • the length may be shorter than 55% or may be longer than 70%.
  • the aspect ratio of each rectangular hole 21a, 21b ratio of the length in the short direction (width direction) in the rectangular opening to the length in the longitudinal direction in the rectangular opening
  • the length of the rectangular holes 21a, 21b in the extending direction (Y direction) are preferably substantially equal.
  • the length of one rectangular hole 21a in the short direction (Y direction) is substantially the same as the length of the other rectangular hole 21b in the short direction.
  • the output wiring 30a and the output wiring 30b pass through the rectangular hole 21a in a state spaced from each other in the Y direction, and the output wiring 30c, the output wiring 30d, and the output wiring 30e are spaced from each other in the Y direction. Passes through the rectangular hole 21b.
  • the output wiring 30a having the highest potential and the output wiring 30e having the lowest potential are wider than the output wirings 30b, 30c, and 30d having the potential between the output wirings 30a and 30e. Has an area. In this way, by reducing the resistance of the highest potential output wiring 30a and the lowest potential output wiring 30e through which current flows normally, the power loss is reduced and the output during normal operation is increased.
  • the cross-sectional areas of all output wirings electrically connected to the same terminal box may be the same. .
  • FIG. 4 is a diagram corresponding to FIG. 3 in the solar cell module 510 of the reference example, and is a diagram in which five identical circular holes 521 are provided on the same straight line extending in the Y direction on the back glass 503.
  • FIG. 5 is a schematic cross-sectional view around the round hole 521 of the solar cell module 510.
  • 501 indicates surface glass
  • 505a indicates a front side filler
  • 505b indicates a back side filler.
  • the back side protection member of the solar cell module is configured by the back glass, it is necessary to provide a through hole for allowing the output wiring to pass through the back glass. Therefore, there is a possibility that moisture passes from the outside through the through hole and enters the solar cell module, and the solar cells are deteriorated by the moisture. In addition, the possibility of such deterioration increases as the opening area of the through hole increases.
  • the width in the width direction of the output wiring 530 is the dimension in the width direction (Y direction) of the output wiring 530 in each through hole. Required at a minimum.
  • the round holes 521 adjacent to each other in the Y direction need to be arranged apart by a predetermined distance or more. There is.
  • the bending dimension a (see FIG. 5) of the output wiring 530 is required as a minimum in the extending direction (X direction) of the output wiring 530.
  • the through hole is the round hole 521
  • the length b in the X direction of the region where the output wiring 530 does not exist is increased, a useless space is increased, and moisture can pass through the through hole. Increases nature.
  • the round hole 521 is provided in the back glass 503, a through hole is generally formed by using a drill.
  • the round hole 521 needs to be provided in a number corresponding to the number of the output wirings 530, and the manufacturing cost. Becomes higher.
  • the rectangular holes 21a and 21b are provided in the back glass 3, compared with the case where the round holes 521 are provided in the back glass 503, the extending direction of the output wirings 30a to 30e (X (Direction) can be reduced, and useless space in the X direction can be reduced. Further, when the rectangular holes 21a and 21b are provided in the back glass 3, the rectangular holes 21a and 21b may be provided by laser processing or the like, which is smaller than the number of the output wirings 30a to 30e.
  • the opening area of the through holes provided in the back glass 3 can be reduced, and deterioration due to moisture intrusion can be suppressed.
  • the manufacturing cost can be reduced.
  • FIG. 6 is a schematic diagram showing a comparison of manufacturing costs and opening areas in a plurality of through-hole patterns provided on the back glass.
  • the aspect ratio (ratio of the rectangular dimension of the rectangular opening to the longitudinal dimension of the rectangular opening of the rectangular hole) is preferably as small as possible in order to suppress deterioration due to moisture intrusion.
  • the smaller the aspect ratio the more difficult the glass processing is and the more easily the finished product is broken.
  • FIG. 7A when the aspect ratio (opening area) of the rectangular hole 621 is large, deterioration due to moisture intrusion is likely to occur.
  • FIG. 7B when the aspect ratio of the rectangular hole 721 is reduced, the back glass is easily broken.
  • the rectangular hole is not the single hole but the two holes 21a and 21b as in this embodiment shown in FIG. 7C, the opening area can be reduced compared to the case shown in FIG.
  • the aspect ratio can be increased in comparison with the case shown in FIG. Therefore, deterioration due to moisture intrusion can be suppressed, and cracking of the back glass can also be suppressed.
  • Available terminal boxes may differ depending on the installation area. Moreover, the pitch between the terminals in the terminal box is different for each type of terminal box. Therefore, when a plurality of round holes corresponding to the number of output terminals are provided on the back glass, the location of the back glass through which the output wiring passes is limited to a narrow range. It becomes impossible to correspond to. On the other hand, when one rectangular hole is provided in the back glass, the longitudinal dimension of the rectangular hole tends to be large, and the back glass is easily broken.
  • the rear glass provided with five round holes 821 having a large adjacent interval c shown in FIG. 8A corresponds only to a terminal box having a large pitch in the Y direction.
  • the back glass provided with five round holes 921 shown in FIG. 8 (b) where the adjacent gap d is smaller than the case shown in FIG. 8 (a) is Y more than in the case shown in FIG. 8 (a). Only compatible with terminal boxes with small pitch in direction. That is, it is difficult to apply the terminal box corresponding to the round hole 921 shown in FIG. 8B as it is to the round hole 821 shown in FIG.
  • the back glass provided with a plurality of round holes corresponding to a plurality of output wirings electrically connected to the same terminal box is limited in applicable terminal boxes and has low versatility. This leads to an increase in the types of terminal box designs, which increases the cost of the solar cell module.
  • the rectangular holes 21a and 21b extending in the Y direction are provided in the back glass, and therefore, in FIGS. 8B and 8C.
  • the degree of freedom in the Y direction of the portion through which the output wiring passes is significantly increased.
  • the pitch setting in the Y direction of the plurality of output wirings is rectangular. It becomes difficult to be affected by the arrangement of the holes 21a and 21b. This makes it easy to reduce the pitch in the Y direction of the plurality of output wirings, and it is also possible to reduce the terminal box provided to cover the rectangular holes 21a and 21b.
  • FIG. 9A shows that the front filler 1005a and the back filler 1005b are made of a material having the same degree of hardness and a material having the same degree of fluidity (reciprocal of viscosity) at the temperature at which the laminating process is performed.
  • FIG.9 (b) is a schematic cross section which shows the state after the lamination process of the structure shown to Fig.9 (a), FIG.9 (c) respond
  • reference numeral 1002 denotes a front glass
  • 1003 denotes a back glass
  • 1030 denotes an output wiring.
  • the filler When there is a wiring take-out hole, the filler receives a force in the direction of discharging from the through hole during laminating.
  • the transparent front filler 1005a and the white back filler 1005b are made of a material having the same degree of hardness or the same degree at the temperature at which the lamination process is performed. It is made of fluid material. Therefore, as shown in FIG. 9B, after lamination, the front filler 1005a may push away the back filler 1005b and erode into the rectangular holes 1021 due to the force in the direction of discharging from the rectangular holes 1021. .
  • the back filler 1005b may be discharged from a part of the rectangular hole 1021 to the outside.
  • the front filler 1005a penetrates a part of the rectangular hole 1021 in the depth direction, the filled portion of the front filler 1005a becomes transparent, and light leaks out of the rectangular hole 1021 from the transparent part and is output. May decrease, and the appearance may also decrease.
  • the back filler 5b has higher hardness than the front filler 5a at the temperature at which the laminating process is performed, and from the front filler 5a. Satisfies at least one of low fluidity. Therefore, even if the back filler 5b receives a force from the front filler 5a to the outside of the rectangular hole 21a based on the force in the direction of discharging from the rectangular hole 21a generated during the lamination, the front filler 5a Penetration through the filler 5b is suppressed. Therefore, generation
  • the rectangular holes 21a and 21b provided in the back glass 3 extend in the thickness direction of the back glass 3 and are cut perpendicular to the thickness direction.
  • the surface has a substantially rectangular shape. Therefore, the length in the direction perpendicular to the width direction of the output wirings 30a to 30e in the rectangular holes 21a and 21b is compared with the length necessary for bending the output wirings 30a to 30e as compared with the case where a round hole is provided in the back glass. It becomes easy to set to the same length.
  • the gap between the rectangular holes 21a and 21b provided in the back glass 3 and the output wirings 30a to 30e passing through the rectangular holes 21a and 21b can be reduced, so that moisture does not easily pass through the rectangular holes 21a and 21b.
  • the module 10 is less likely to deteriorate due to moisture ingress.
  • the back glass may be provided with three rectangular holes 121a, 121b, and 121c that are positioned on the same straight line with an interval in the extending direction of the straight line.
  • the longitudinal direction of the rectangular opening of each rectangular hole 121a, 121b, 121c may substantially coincide with the extending direction of the same straight line.
  • the rectangular hole 121b located at the center of the extending direction is divided into three planes f1 that are perpendicularly divided into two including the direction orthogonal to the extending direction.
  • the rectangular holes 121a, 121b, and 121c may be disposed substantially plane-symmetrically. Further, the length in the extending direction of the rectangular hole 121b located at the center is longer than the length in the extending direction of the rectangular holes 121a, 121c located at the ends in the extending direction among the three rectangular holes 121a, 121b, 121c. May be longer.
  • the rectangular hole 121b may constitute the central through hole, or the rectangular holes 121a and 121c may constitute the end through hole.
  • the rectangular hole 221b positioned at the center of the extending direction includes three planes f2 that are perpendicularly divided into two including the direction orthogonal to the extending direction.
  • the rectangular holes 221a, 221b, and 221c may be disposed substantially plane-symmetrically.
  • the length in the extending direction of the rectangular hole 221b located at the center is longer than the length in the extending direction of the rectangular holes 221a, 221c located at the end in the extending direction among the three rectangular holes 221a, 221b, 221c. May be shorter.
  • the rectangular hole 221b may constitute the central through hole, or the rectangular holes 221a and 221c may constitute the end through hole.
  • the back glass 303 may be provided with two rectangular holes 321 a and 321 b.
  • the extending direction of one rectangular hole 321a (longitudinal direction of the rectangular opening; Y direction) may substantially coincide with the extending direction of the other rectangular hole 321b.
  • the dimension in the direction (X direction) orthogonal to the extending direction of one rectangular hole 321a may be shorter than the dimension in the direction orthogonal to the extending direction of the other rectangular hole 321b.
  • the back glass member may be provided with only one through-hole that allows a plurality of output wirings that are electrically connected to the solar battery cell and electrically connected to the same terminal box to pass therethrough.
  • only the one through-hole may extend in the thickness direction of the back side glass member, and may have a substantially rectangular shape in a cut surface perpendicular to the thickness direction.
  • the back filler 5b has at least one of having higher hardness than the front filler 5a and lower fluidity than the front filler 5a at the temperature at which the laminating process is performed will be described. did. However, in other configurations, exposure of the front filler to the back side of the back glass at the time of laminating may be suppressed.
  • an additional filler 406 is disposed between the back filler 405 b and the back glass 403 in a hole peripheral region overlapping the rectangular hole 421 when viewed from the thickness direction of the solar cell module.
  • the additional filler 406 may be disposed between the back filler 405b and the rectangular hole 421.
  • the additional filler 406 is made of, for example, a film or a filler, and is made of a material that is harder or less fluid than both the front filler 405a and the back filler 405b at the temperature at which the lamination process is performed.
  • a white and hard resin can be preferably used.
  • a polyethylene terephthalate resin can be preferably used, but is not limited thereto.
  • reference numeral 402 denotes surface glass.
  • the additional filler 406 can completely suppress the exposure of the front filler 405a to the back glass 403. Therefore, a decrease in output due to the provision of the rectangular hole can be prevented, and a deterioration in appearance does not occur.
  • the back filler does not have a higher hardness than the front filler and has a lower fluidity than the front filler at the temperature at which the lamination process is performed. You do not have to.
  • the sealing material may not include the front filler and the back filler, and may be configured with only one filler.
  • the solar cell module 10 has the eight strings 50, and the back surface glass 3 has the two rectangular holes 21a and 21b was demonstrated.
  • the solar cell module may have any number of strings other than 8, and the back glass may have any number of rectangular holes of 3 or more.
  • the solar cell module may have six strings, and the back glass may have two rectangular holes.
  • the terminal box 60 was arrange
  • the terminal box may be attached to the back side of the back glass so as to overlap a part of the plurality of solar cells when viewed from the thickness direction of the solar cell module.
  • a terminal box is one side of several photovoltaic cells. It may be arranged on both sides of the other side.
  • the solar cell module 10 includes a plurality of solar cells 1 and a surface glass 2 provided on the light receiving side on which light mainly enters the plurality of solar cells 1. May be.
  • the solar cell module 10 is provided with the back glass 3 which is provided in the opposite side to the light-receiving side with respect to the several photovoltaic cell 1, and is comprised with glass.
  • the back glass 3 includes one or more rectangular holes 21a and 21b that allow a plurality of output wirings 30a to 30e that are electrically connected to the solar cell 1 and electrically connected to the same terminal box 60 to pass therethrough. Is provided.
  • the rectangular holes 21a and 21e extend in the thickness direction of the back glass 3, and have a substantially rectangular shape on a cut surface perpendicular to the thickness direction.
  • the back glass 3 may be provided with a plurality of rectangular holes 21a, 21b.
  • the plurality of rectangular holes 21a and 21b may include a rectangular hole 21a through which two or more output wirings 30a and 30b pass, and may include a rectangular hole 21b through which two or more output wirings 30c to 30e pass. .
  • the plurality of rectangular holes 21a and 21b are configured by two rectangular holes 21a and 21b that are positioned on the same straight line with an interval in the extending direction of the straight line, and the length of the rectangular opening of each rectangular hole 21a and 21b.
  • the direction may substantially coincide with the extending direction of the same straight line.
  • the length in the extending direction of one rectangular hole 21a may be 55% or more and 70% or less of the length in the extending direction of the other rectangular hole 21b.
  • the plurality of rectangular holes 121a to 121c are configured by three rectangular holes 121a to 121c that are positioned on the same straight line with an interval in the extending direction of the straight line, and the length of the rectangular opening of each rectangular hole 121a to 121c is The direction may substantially coincide with the extending direction of the same straight line. Then, among the three rectangular holes 121a to 121c, the three rectangular holes with respect to the plane f1 that bisects the rectangular hole 121b located at the center in the extending direction, including the direction orthogonal to the extending direction, vertically. 121a to 121c may be arranged substantially symmetrically.
  • the length in the extending direction of the rectangular hole 121b located at the center in the extending direction is the same as the extending direction of the rectangular holes 121a and 121c positioned at the ends in the extending direction among the three rectangular holes 121a to 121c. It may be longer than the length.
  • the plurality of rectangular holes 221a to 221c are configured by three rectangular holes 221a to 221c that are positioned on the same straight line with an interval in the extending direction of the straight line, and the length of the rectangular opening of each rectangular hole 221a to 221c The direction may substantially coincide with the extending direction of the same straight line.
  • the three rectangular holes with respect to the plane f2 that bisects the rectangular hole 221b positioned at the center of the extending direction, including the direction orthogonal to the extending direction, into two parts. 221a to 221c may be disposed substantially symmetrically.
  • the length in the extending direction of the rectangular hole 221b located at the center in the extending direction is the same as the extending direction of the rectangular holes 221a and 221c positioned at the ends in the extending direction among the three rectangular holes 221a to 221c. It may be shorter than the length.
  • the length in the short direction of the rectangular openings of the rectangular holes 21a and 21b provided in the back glass 3 is 5% or more and 30% or less of the length in the longitudinal direction of the rectangular openings of the rectangular holes 21a and 21b. It's okay.
  • a sealing material 5 that is provided between the front glass 2 and the back glass 3 and seals the plurality of solar cells 1 may be provided.
  • the sealing material 5 may contain the front filler 5a provided in the surface glass 2 side, and the back filler 5b provided in the back glass 3 side of the front filler 5a. Then, at least one of the back filler 5b having a hardness higher than that of the front filler 5a and a fluidity lower than that of the front filler 5a at the temperature at which the lamination is performed may be satisfied.
  • a sealing material that is provided between the front glass and the rear glass and seals a plurality of solar cells may be provided.
  • the sealing material may include a front filler 405a provided on the front glass side, a back filler 405b provided on the back glass 403 side of the front filler 405a, and an additional filler 406.
  • the additional filler 406 may be provided between the back filler 405b and the plurality of rectangular holes 421.
  • the additional filler 406 has a higher hardness than the front filler 405a and the back filler 405b, and the additional filler 406 has a lower fluidity than the front filler and the back filler at the temperature at which the lamination process is performed. At least one of the following may be satisfied.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A solar battery module 10 is provided with a plurality of solar battery cells 1 and a front surface glass 2 disposed on a light receiving side where light is mainly incident with respect to the plurality of solar battery cells 1. The solar battery module 10 is also provided with a back surface glass 3 which is disposed on the opposite side from the light receiving side with respect to the plurality of solar battery cells 1, and which is made of glass. The back surface glass 3 is provided with a plurality of through-holes for passing a plurality of output wires which are electrically connected to the solar battery cells 1 and which are electrically connected to the same terminal box. Each of the through-holes extends in a thickness direction of the back surface glass 3 and has a substantially rectangular shape in a cross section perpendicular to the thickness direction. The plurality of through-holes include a through-hole for passing two or more output wires.

Description

太陽電池モジュールSolar cell module
 本開示は、太陽電池モジュールに関する。 This disclosure relates to a solar cell module.
 従来、太陽電池モジュールとしては、特許文献1に記載されているものがある。この太陽電池モジュールは、複数の太陽電池セルを含み、複数の太陽電池セルの表面側に透光性表面保護部材が配設され、裏面側に裏面保護部材が配設される。表面側とは、光が主に入射する受光側であり、裏面側とは、それとは逆側である。複数の太陽電池セルは、複列に配置される。各列において同一の直線上に配置された2以上の太陽電池セルは、直列に接続される。当該2以上の太陽電池セルとそれを直列に接続する配線材は、ストリングを構成する。 Conventionally, as a solar cell module, there is one described in Patent Document 1. This solar cell module includes a plurality of solar cells, a translucent surface protection member is disposed on the front surface side of the plurality of solar cells, and a back surface protection member is disposed on the back surface side. The front side is a light receiving side on which light is mainly incident, and the back side is the opposite side. The plurality of solar cells are arranged in a double row. Two or more solar cells arranged on the same straight line in each row are connected in series. The two or more solar cells and the wiring material connecting them in series constitute a string.
 裏面保護部材は、ガラス(以下、裏面ガラスという)で構成される。裏面保護部材を設けることにより、太陽電池セルを、耐荷重性を優れたものにし、また、外部からの水の浸入も効率的に抑制している。裏面ガラスの外面には、端子ボックスが取り付けられ、裏面ガラスには、複数の円筒孔(以下、単に丸孔という)が設けられる。複数の丸孔は、ストリングの延在方向に略直交する方向(ストリングが並ぶ方向)に延びる同一の直線上に互いに間隔をおいて配置される。太陽電池セルからの電気出力を外部に取り出す出力配線が、丸孔を通過した後、端子ボックス内の端子に電気的に接続される。各丸孔の開口面積は、一つのみの出力配線が通過可能な大きさに設定され、一つのみの出力配線が各丸孔を通過する。 The back surface protection member is made of glass (hereinafter referred to as back glass). By providing the back surface protection member, the solar battery cell has excellent load resistance, and water entry from the outside is also efficiently suppressed. A terminal box is attached to the outer surface of the back glass, and the back glass is provided with a plurality of cylindrical holes (hereinafter simply referred to as round holes). The plurality of round holes are spaced from each other on the same straight line extending in a direction substantially orthogonal to the extending direction of the strings (direction in which the strings are arranged). The output wiring for taking out the electrical output from the solar battery cell is electrically connected to the terminal in the terminal box after passing through the round hole. The opening area of each round hole is set to such a size that only one output wiring can pass through, and only one output wiring passes through each round hole.
国際公開第2014/002329号公報International Publication No. 2014/002329
 太陽電池モジュールの裏側保護部材を裏面ガラスで構成して、裏面ガラスに出力配線通過用の貫通孔を設ける場合、水分が当該貫通孔を通過して太陽電池モジュールの内部に浸入する虞がある。したがって、係る水分の浸入によって、太陽電池セルが劣化する虞があるため、貫通孔の開口は、小さい方が好ましい。 When the back side protection member of the solar cell module is formed of the back glass and the through hole for passing the output wiring is provided in the back glass, there is a risk that moisture passes through the through hole and enters the solar cell module. Therefore, since there is a possibility that the solar battery cell may be deteriorated due to the permeation of moisture, it is preferable that the opening of the through hole is small.
 他方、貫通孔の開口面積は、出力配線が通過可能な大きさに設定される必要がある。詳しくは、貫通孔の開口における出力配線の幅方向の長さは、出力配線の幅よりも長く設定される必要があり、当該開口における幅方向に直交する方向の長さは、貫通孔の付近での出力配線の屈曲形状を考慮して設定される必要がある。 On the other hand, the opening area of the through hole needs to be set to a size through which the output wiring can pass. Specifically, the length in the width direction of the output wiring at the opening of the through hole needs to be set longer than the width of the output wiring, and the length in the direction perpendicular to the width direction of the opening is near the through hole. Therefore, it is necessary to set in consideration of the bent shape of the output wiring.
 このような背景において、特許文献1の太陽電池モジュールでは、裏面ガラスに設けられる貫通孔が丸孔であるので、貫通孔の付近での出力配線の屈曲に起因して開口における幅方向に直交する方向の長さが大きくなり、貫通孔と出力配線との間の隙間が大きくなる。そのため、水分が貫通孔を通過し易くなって、太陽電池モジュール内への水分の浸入が抑制されにくく、太陽電池モジュール内の太陽電池セルが水分の浸入によって劣化する虞がある。 In such a background, in the solar cell module of Patent Document 1, since the through hole provided in the back glass is a round hole, it is orthogonal to the width direction of the opening due to the bending of the output wiring in the vicinity of the through hole. The length in the direction is increased, and the gap between the through hole and the output wiring is increased. For this reason, moisture easily passes through the through-holes, and it is difficult for moisture to enter the solar cell module, and the solar cells in the solar cell module may be deteriorated due to moisture penetration.
 そこで、本開示の目的は、裏側ガラス部材に設ける貫通孔と、その貫通孔を通過する出力配線との隙間を小さくでき、水分が貫通孔を通過しにくくて水分の浸入による劣化を起こしにくい、太陽電池モジュールを提供することにある。 Therefore, the purpose of the present disclosure is to reduce the gap between the through-hole provided in the back glass member and the output wiring passing through the through-hole, and it is difficult for moisture to pass through the through-hole and hardly cause deterioration due to moisture intrusion. The object is to provide a solar cell module.
 本開示の一態様である太陽電池モジュールは、複数の太陽電池セルと、複数の太陽電池セルに対して光が主に入射する受光側に設けられる透光性表側部材と、複数の太陽電池セルに対して受光側とは反対側に設けられ、ガラスで構成される裏側ガラス部材と、を備え、裏側ガラス部材には、太陽電池セルに電気的に接続されると共に同一の端子ボックスに電気的に接続される複数の出力配線を通過させる1以上の貫通孔が設けられ、貫通孔は、裏側ガラス部材の厚さ方向に延在し、厚さ方向に垂直な切断面において略矩形の形状を有する。 A solar cell module which is one embodiment of the present disclosure includes a plurality of solar cells, a translucent front-side member provided on a light receiving side on which light mainly enters the plurality of solar cells, and a plurality of solar cells. A back glass member made of glass and provided on the opposite side of the light receiving side, and the back glass member is electrically connected to the solar cells and electrically connected to the same terminal box One or more through-holes that allow a plurality of output wires connected to each other to pass through are provided, and the through-holes extend in the thickness direction of the back glass member and have a substantially rectangular shape on a cut surface perpendicular to the thickness direction. Have.
 本開示の一態様の太陽電池モジュールによれば、裏側ガラス部材に設けられる各貫通孔は、裏側ガラス部材の厚さ方向に延在し、当該厚さ方向に垂直な切断面において略矩形の形状を有する。したがって、貫通孔が丸孔である場合との比較において、貫通孔の開口における貫通孔を通過する出力配線の幅方向に直交する方向の長さを、出力配線の折り曲げに必要な長さと同程度の長さに設定し易くなる。よって、裏側ガラス部材に設ける貫通孔と、その貫通孔を通過する出力配線との隙間を小さくでき、水分が貫通孔を通過しにくくなるので、太陽電池モジュールが水分の浸入によって劣化するのを抑制できる。 According to the solar cell module of one aspect of the present disclosure, each through-hole provided in the back glass member extends in the thickness direction of the back glass member, and has a substantially rectangular shape in a cut surface perpendicular to the thickness direction. Have Therefore, in comparison with the case where the through hole is a round hole, the length in the direction perpendicular to the width direction of the output wiring passing through the through hole in the opening of the through hole is approximately the same as the length necessary for bending the output wiring. It becomes easy to set the length. Therefore, the gap between the through-hole provided in the back glass member and the output wiring passing through the through-hole can be reduced, and the moisture does not easily pass through the through-hole, thereby suppressing the deterioration of the solar cell module due to the ingress of moisture. it can.
本開示の一実施形態に係る太陽電池モジュールの裏側を示す模式図である。It is a mimetic diagram showing the back side of the solar cell module concerning one embodiment of this indication. 図1のA-A線断面図の一部を示す図である。It is a figure which shows a part of AA sectional view taken on the line of FIG. 裏面ガラスに設けられた2つの矩形孔の配置を示す図である。It is a figure which shows arrangement | positioning of the two rectangular holes provided in the back glass. 参考例の太陽電池モジュールにおける図3に対応する図であり、裏面ガラスにおけるY方向に延在する同一直線上に5つの同一の丸孔を設けた図である。It is a figure corresponding to FIG. 3 in the solar cell module of a reference example, and is the figure which provided five identical round holes on the same straight line extended in the Y direction in a back surface glass. 上記参考例の太陽電池モジュールにおける丸孔周辺の模式断面図である。It is a schematic cross section around a round hole in the solar cell module of the reference example. 裏面ガラスに設ける複数の貫通孔パターンにおける製造コストと開口面積の比較を表す模式図である。It is a schematic diagram showing the comparison of the manufacturing cost and opening area in the some through-hole pattern provided in back glass. 裏面ガラスに1つの矩形孔を設ける場合に対する裏面ガラスに2つの矩形孔を設ける場合の優位性について説明する図である。It is a figure explaining the predominance in the case of providing two rectangular holes in a back glass with respect to the case where one rectangular hole is provided in a back glass. 裏面ガラスに複数の丸孔を設ける場合に対する裏面ガラスに2つの矩形孔を設けた場合の優位性について説明する図である。It is a figure explaining the advantage at the time of providing two rectangular holes in a back glass with respect to the case where a plurality of round holes are provided in a back glass. (a)は、表充填材と裏充填材を、ラミネートが実行される温度で、同程度の硬度を有する材質や同程度の流動性(粘度の逆数)を有する材質で構成した参考例におけるラミネート加工前の状態を示す模式断面図である。また、(b)は、(a)に示す参考例のラミネート加工後の状態を示す模式断面図である。また、(c)は、本実施形態における(b)に対応するラミネート加工後の模式断面図である。(A) is a laminate in a reference example in which the front filler and the back filler are made of a material having the same degree of hardness and a material having the same degree of fluidity (reciprocal of viscosity) at the temperature at which the lamination is performed. It is a schematic cross section which shows the state before a process. Moreover, (b) is a schematic cross-sectional view showing a state after lamination processing of the reference example shown in (a). Moreover, (c) is a schematic cross-sectional view after lamination corresponding to (b) in the present embodiment. 変形例の太陽電池モジュールにおける裏面ガラスの一部を裏側から見たときの模式図である。It is a schematic diagram when a part of back glass in the solar cell module of a modification is seen from the back side. 太陽電池モジュールの厚さ方向から見たとき、矩形孔に重なる領域に、表充填材、裏充填材、及び追加充填材を備える変形例における、矩形孔の中心軸を含む模式断面図である。When viewed from the thickness direction of the solar cell module, it is a schematic cross-sectional view including a central axis of a rectangular hole in a modification including a front filler, a back filler, and an additional filler in a region overlapping with the rectangular hole.
 以下に、本開示に係る実施の形態について添付図面を参照しながら詳細に説明する。なお、以下において説明される実施形態及び変形例の特徴部分を適宜に組み合わせて新たな実施形態を構築することは当初から想定されている。 Hereinafter, embodiments according to the present disclosure will be described in detail with reference to the accompanying drawings. In addition, it is assumed from the beginning that a new embodiment is constructed by appropriately combining the features of the embodiments and modifications described below.
 また、以下の説明では、太陽電池モジュール10において、太陽光が主に入射(50%超過~100%)する側を受光側(表側)とし、表側とは反対側を裏側とする。また、以下の説明及び図面の記載において、X方向は、以下で説明するストリング50の延在方向であり、Y方向は、X方向に直交する方向であり、複例に配設されたストリング50の並び方向である。また、Z方向は、X方向及びY方向に直交する方向であり、太陽電池モジュール10の厚さ方向である。また、以下の実施例及び変形例で説明する矩形孔21a,21b,121a~121c,221a~221c,321a,321b,421は、全て裏側ガラス部材をその厚さ方向に貫通する貫通孔である。 In the following description, in the solar cell module 10, the side on which sunlight is mainly incident (over 50% to 100%) is the light receiving side (front side), and the side opposite to the front side is the back side. In the following description and drawings, the X direction is an extending direction of the string 50 described below, and the Y direction is a direction orthogonal to the X direction. This is the direction of the alignment. Further, the Z direction is a direction orthogonal to the X direction and the Y direction, and is the thickness direction of the solar cell module 10. Further, the rectangular holes 21a, 21b, 121a to 121c, 221a to 221c, 321a, 321b, and 421 described in the following embodiments and modifications are all through-holes that penetrate the back glass member in the thickness direction.
 図1は、本開示の一実施形態に係る太陽電池モジュール10の裏側を示す模式図である。また、図2は、図1のA-A線断面図の一部を示す図である。 FIG. 1 is a schematic diagram showing the back side of a solar cell module 10 according to an embodiment of the present disclosure. FIG. 2 is a diagram showing a part of a cross-sectional view taken along line AA of FIG.
 図1に示すように、太陽電池モジュール10は、平面視において略矩形の形状を有する平板状の構造を有し、係る矩形形状の長手方向(X方向)の一方側に端子ボックス60を備える。また、図2に示すように、太陽電池モジュール10は、複数の太陽電池セル1、透光性表側部材の一例としての表側ガラス部材(以下、単に表面ガラスという)2、裏側ガラス部材(以下、単に裏面ガラスという)3、配線材4及び封止材5を備える。 As shown in FIG. 1, the solar cell module 10 has a flat plate-like structure having a substantially rectangular shape in plan view, and includes a terminal box 60 on one side in the longitudinal direction (X direction) of the rectangular shape. As shown in FIG. 2, the solar cell module 10 includes a plurality of solar cells 1, a front glass member (hereinafter simply referred to as surface glass) 2 as an example of a translucent front member, a back glass member (hereinafter referred to as “surface glass”). 3), a wiring material 4 and a sealing material 5.
 太陽電池セル1は、例えば、単結晶シリコンや多結晶シリコン等で構成される結晶系半導体からなる。太陽電池セル1は、例えば、n型領域とp型領域を有し、n型領域とp型領域の界面部分には、キャリア分離用の電界を生成するための接合部が設けられる。太陽電池セル1の上面は、例えば、略正方形の形状を有するが、これに限らない。太陽電池セル1として、公知の如何なる構造のものを用いてもよく、如何なる形状のものを用いてもよい。 The solar battery cell 1 is made of a crystalline semiconductor made of, for example, single crystal silicon or polycrystalline silicon. The solar battery cell 1 has, for example, an n-type region and a p-type region, and a junction for generating an electric field for carrier separation is provided at an interface portion between the n-type region and the p-type region. Although the upper surface of the photovoltaic cell 1 has a substantially square shape, for example, it is not restricted to this. As the solar cell 1, any known structure may be used, and any shape may be used.
 表面ガラス2は、複数の太陽電池セル1に対して光が主に入射する受光側に設けられ、太陽電池モジュール10の表側を保護する。表面ガラス2は、透光性を有する強化ガラスからなり、その板厚は、0.5mm~4.0mmであり、2.0mm~3.2mm程度とすることが好ましい。なお、透光性表側部材としては、強化ガラスに限らず、透光性プラスチック等の透光性の部材を用いることができる。 The surface glass 2 is provided on the light receiving side where light mainly enters the plurality of solar cells 1 and protects the front side of the solar cell module 10. The surface glass 2 is made of tempered glass having translucency, and the thickness thereof is 0.5 mm to 4.0 mm, preferably about 2.0 mm to 3.2 mm. In addition, as a translucent front side member, not only tempered glass but translucent members, such as translucent plastic, can be used.
 裏面ガラス3は、複数の太陽電池セル1に対して上記受光側とは反対側に設けられ、ガラスで構成される。裏面ガラス3は、太陽電池モジュール10の裏側を保護する。裏面ガラス3は、板厚0.5mm~4.0mm以下、好ましくは2.0mm~3.2mm程度の強化ガラスからなり、耐候性を有するように構成される。裏面ガラス3は、透光性であってもよく、非透光性であってもよい。 The back glass 3 is provided on the side opposite to the light receiving side with respect to the plurality of solar cells 1 and is made of glass. The back glass 3 protects the back side of the solar cell module 10. The back glass 3 is made of tempered glass having a thickness of 0.5 mm to 4.0 mm, preferably about 2.0 mm to 3.2 mm, and is configured to have weather resistance. The back glass 3 may be translucent or non-translucent.
 配線材4は、X方向に隣り合う2つの太陽電池セル1における一方の太陽電池セル1の受光面側の電極と、他方の太陽電池セル1の裏面側の電極とを電気的に接続する。配線材4は、各電極に接着剤等で取り付けられる。配線材4は、例えば、薄板状の銅箔と、銅箔の表面にメッキされた半田とで好適に構成されるが、それ以外の如何なる導体で構成されてもよい。 The wiring member 4 electrically connects the electrode on the light receiving surface side of one solar cell 1 and the electrode on the back surface side of the other solar cell 1 in two solar cells 1 adjacent in the X direction. The wiring member 4 is attached to each electrode with an adhesive or the like. The wiring member 4 is preferably composed of, for example, a thin copper foil and solder plated on the surface of the copper foil, but may be composed of any other conductor.
 封止材5は、表面ガラス2と裏面ガラス3との間に充填され、複数の太陽電池セル1を表面ガラス2と裏面ガラス3との間に封止する。封止材5は、表充填材5aと、裏充填材5bとを含み、表充填材5aが表面ガラス2と太陽電池セル1との間に配置されるのに対し、裏充填材5bは太陽電池セル1と裏面ガラス3との間に配置される。表充填材5aは、透光性に優れる材質で構成され、裏充填材5bは、透明または着色された充填材で構成される。例えば、表充填材5aは、透明の充填材で構成され、裏充填材5bは、光を効率的に反射する白色の充填材で構成される。封止材5が、透光性に優れる表充填材5aと、光を反射する性質に優れる裏充填材5bとを含むようにして、光の利用効率を向上させている。 The sealing material 5 is filled between the front glass 2 and the back glass 3 and seals the plurality of solar cells 1 between the front glass 2 and the back glass 3. The sealing material 5 includes a front filler 5a and a back filler 5b. The front filler 5a is disposed between the surface glass 2 and the solar battery cell 1, whereas the back filler 5b is a solar filler. Arranged between the battery cell 1 and the back glass 3. The front filler 5a is made of a material having excellent translucency, and the back filler 5b is made of a transparent or colored filler. For example, the front filler 5a is made of a transparent filler, and the back filler 5b is made of a white filler that reflects light efficiently. The encapsulating material 5 includes a front filler 5a excellent in translucency and a back filler 5b excellent in the property of reflecting light, thereby improving the light utilization efficiency.
 表充填材5aと裏充填材5bは、100~160℃程度の温度で実行されるラミネート加工で貼り合わされて積層される。例えば、表面ガラス2に表充填材5aを積層し、その後、太陽電池セル1および配線材4を載置し、その上に裏充填材5b、裏面ガラス3を積層し、この状態で加熱しながら加圧して、一体化する。なお、裏面ガラス3上に、裏充填材5b、太陽電池セル1および配線材4、表充填材5a、表面ガラス2を積層して、加熱しながら加圧してもよい。裏充填材5bは、ラミネート加工が実行される温度において、表充填材5aよりも高い硬度を有することと表充填材5aよりも低い流動性を有することの少なくとも一方を満たす材質からなる。表充填材5aは、例えば、エチレン・酢酸ビニル共重合体やポリオレフィンで好適に構成されるが、これに限らない。また、裏充填材5bは、例えば、エチレン・酢酸ビニル共重合体やポリオレフィンで好適に構成されるが、これに限らない。 The front filler 5a and the back filler 5b are laminated by laminating at a temperature of about 100 to 160 ° C. For example, the front filler 5a is laminated on the surface glass 2, and then the solar battery cell 1 and the wiring material 4 are placed, the back filler 5b and the back glass 3 are laminated thereon, and heated in this state. Press to integrate. In addition, on the back glass 3, you may laminate | stack the back filler 5b, the photovoltaic cell 1, the wiring material 4, the surface filler 5a, and the surface glass 2, and may pressurize, heating. The back filler 5b is made of a material satisfying at least one of having a hardness higher than that of the front filler 5a and a fluidity lower than that of the front filler 5a at the temperature at which the lamination process is performed. The front filler 5a is preferably composed of, for example, an ethylene / vinyl acetate copolymer or polyolefin, but is not limited thereto. The back filler 5b is preferably composed of, for example, an ethylene / vinyl acetate copolymer or polyolefin, but is not limited thereto.
 再度、図1を参照して、複数の太陽電池セル1は、端子ボックス60に対してX方向の片側にマトリクス状配置される。X方向に沿って同一の直線上に配置された2以上の太陽電池セル1は、配線材4によって直列に接続される。当該2以上の太陽電池セル1と、その2以上の太陽電池セル1を直列に接続する配線材4とは、ストリング50を構成する。 Referring to FIG. 1 again, the plurality of solar cells 1 are arranged in a matrix on one side in the X direction with respect to the terminal box 60. Two or more photovoltaic cells 1 arranged on the same straight line along the X direction are connected in series by a wiring member 4. The two or more solar cells 1 and the wiring member 4 connecting the two or more solar cells 1 in series constitute a string 50.
 図1に示す例では、Y方向に隣り合う2つのストリング50においてX方向片側の端にある太陽電池セル1同士が中継配線30で直列に接続され、全ての太陽電池セル1が直列に接続される。その結果、X方向の最も端子ボックス60側かつ紙面における最も右側に配設される太陽電池セル1aが最も高電位側に配設され、X方向の最も端子ボックス60側かつ紙面における最も左側に配設される太陽電池セル1bが最も低電位側に配設される。 In the example shown in FIG. 1, in two strings 50 adjacent to each other in the Y direction, the solar cells 1 at one end in the X direction are connected in series by the relay wiring 30 and all the solar cells 1 are connected in series. The As a result, the solar cell 1a arranged on the most terminal box 60 side in the X direction and on the rightmost side in the drawing is arranged on the highest potential side, and arranged on the most terminal box 60 side in the X direction and on the most left side on the drawing. The provided solar battery cell 1b is disposed on the lowest potential side.
 太陽電池モジュール10は、X方向の端子ボックス60側に、端子ボックス60の端子に電気的に接続するための5つの出力配線30a,30b,30c,30d,30eを備える。各出力配線30a,30b,30c,30d,30eの表面は、絶縁性フィルム等の絶縁部材によって被覆されている。5つの出力配線30a,30b,30c,30d,30eのうちの3つの出力配線30b,30c,30dは、隣り合う2つのストリング50を直列に接続する機能も有する。出力配線30aは、Y方向で最も右側に配設されて最も高電位側にあるストリング50の高電位側に電気的に接続され、出力配線30bは、Y方向で右から2列目に配設されて2番目に高電位のストリング50の最も低電位側に電気的に接続される。また、出力配線30cは、Y方向で右から4列目に配設されて4番目に高電位のストリング50の最も低電位側に電気的に接続され、出力配線30dは、Y方向で右から6列目に配設されて6番目に高電位のストリング50の最も高電位側に電気的に接続される。また、出力配線30eは、Y方向で右から8列目に配設されて最も低い電位のストリング50の最も低電位側に電気的に接続される。 The solar cell module 10 includes five output wirings 30a, 30b, 30c, 30d, and 30e for electrically connecting to the terminals of the terminal box 60 on the terminal box 60 side in the X direction. The surface of each output wiring 30a, 30b, 30c, 30d, 30e is covered with an insulating member such as an insulating film. Of the five output wirings 30a, 30b, 30c, 30d, and 30e, the three output wirings 30b, 30c, and 30d also have a function of connecting two adjacent strings 50 in series. The output wiring 30a is arranged on the rightmost side in the Y direction and is electrically connected to the high potential side of the string 50 on the highest potential side, and the output wiring 30b is arranged in the second column from the right in the Y direction. Then, it is electrically connected to the lowest potential side of the second highest potential string 50. The output wiring 30c is arranged in the fourth column from the right in the Y direction and is electrically connected to the lowest potential side of the fourth highest potential string 50, and the output wiring 30d is from the right in the Y direction. It is arranged in the sixth column and is electrically connected to the highest potential side of the sixth highest potential string 50. The output wiring 30e is arranged in the eighth column from the right in the Y direction and is electrically connected to the lowest potential side of the string 50 having the lowest potential.
 端子ボックス60は、裏面ガラス3の裏面に取り付けられる。また、後に図3以下で詳述するが、裏面ガラス3には、2つの断面矩形の貫通孔(以下、単に矩形孔という)が設けられる。各出力配線30a,30b,30c,30d,30eは、2つの矩形孔のうちのいずれかを通過した後、端子ボックス60の所定の端子に電気的に接続される。詳述しないが、端子ボックス60内の端子間には、逆流防止用のバイパスダイオードが設けられる。落ち葉等の遮光物が特定の太陽電池セル1を覆うと、その太陽電池セル1の発電量が低下して発熱する恐れがある。発電量が低下した太陽電池セル1を含んで直列に接続された2つのストリング50は、バイパスダイオードによって短絡される。その結果、当該2つのストリング50に電流が略流れなくなり、発熱による太陽電池セル1の損傷が抑制される。太陽電池モジュール10からの電力は、端子ボックス60の端子に電気的に接続された2つの電力供給配線40,41によって外部に取り出される。 The terminal box 60 is attached to the back surface of the back glass 3. As will be described in detail later with reference to FIG. 3 and subsequent figures, the back glass 3 is provided with two through-holes having a rectangular cross section (hereinafter simply referred to as rectangular holes). Each output wiring 30a, 30b, 30c, 30d, 30e is electrically connected to a predetermined terminal of the terminal box 60 after passing through one of the two rectangular holes. Although not described in detail, a bypass diode for preventing backflow is provided between the terminals in the terminal box 60. If a light-shielding object such as fallen leaves covers a specific solar cell 1, the amount of power generated by the solar cell 1 may be reduced and heat may be generated. The two strings 50 connected in series including the solar battery cells 1 whose power generation amount has decreased are short-circuited by a bypass diode. As a result, almost no current flows through the two strings 50, and damage to the solar battery cell 1 due to heat generation is suppressed. The electric power from the solar cell module 10 is taken out by the two power supply wirings 40 and 41 electrically connected to the terminals of the terminal box 60.
 図3は、裏面ガラス3に設けられた2つの矩形孔21a,21bの配置を示す図である。図3に示すように、2つの矩形孔21a,21bは、Y方向に間隔をおいた状態でY方向に延在する同一直線上に位置する。各矩形孔21a,21bの矩形開口の長手方向は、その同一直線の延在方向に略一致する。矩形孔21a,21bを通過する出力配線(30a,30b,30c,30d,30e)の合計は奇数である。この場合、一方の矩形孔21aの延在方向(Y方向)の長さは、他方の矩形孔21bの延在方向(Y方向)の長さの55%以上70%以下の長さになっていると好ましいが、55%よりも短い長さでもよく、70%よりも長い長さでもよい。なお、2つの矩形孔を通過する出力配線の合計は、本実施形態と異なり5以外の奇数であってもよい。この場合も、一方の矩形孔の延在方向(Y方向)の長さは、他方の矩形孔の延在方向(Y方向)の長さの55%以上70%以下の長さになっていると好ましいが、55%よりも短い長さでもよく、70%よりも長い長さでもよい。また、各矩形孔21a,21bのアスペクト比(矩形開口における長手方向の長さに対する矩形開口における短手方向(幅方向)の長さの比)は、5%以上30%以下に設定されていると好ましいが、5%よりも小さくてもよく、70%よりも大きくてもよい。なお、図示しないが矩形孔21a,21bを通過する出力配線(30a,30b,30c,30d,30e)の合計が偶数の場合は、矩形孔21a,21bの延在方向(Y方向)の長さは略等しくすることが好ましい。 FIG. 3 is a diagram showing the arrangement of the two rectangular holes 21 a and 21 b provided in the back glass 3. As shown in FIG. 3, the two rectangular holes 21a and 21b are located on the same straight line extending in the Y direction with a space in the Y direction. The longitudinal direction of the rectangular opening of each rectangular hole 21a, 21b substantially coincides with the extending direction of the same straight line. The sum of the output wirings (30a, 30b, 30c, 30d, 30e) passing through the rectangular holes 21a, 21b is an odd number. In this case, the length of one rectangular hole 21a in the extending direction (Y direction) is 55% to 70% of the length of the other rectangular hole 21b in the extending direction (Y direction). However, the length may be shorter than 55% or may be longer than 70%. Note that the total of the output wirings passing through the two rectangular holes may be an odd number other than 5, unlike the present embodiment. Also in this case, the length of one rectangular hole in the extending direction (Y direction) is 55% to 70% of the length of the other rectangular hole in the extending direction (Y direction). However, the length may be shorter than 55% or may be longer than 70%. Further, the aspect ratio of each rectangular hole 21a, 21b (ratio of the length in the short direction (width direction) in the rectangular opening to the length in the longitudinal direction in the rectangular opening) is set to 5% or more and 30% or less. However, it may be smaller than 5% or larger than 70%. Although not shown, when the total number of output wires (30a, 30b, 30c, 30d, 30e) passing through the rectangular holes 21a, 21b is an even number, the length of the rectangular holes 21a, 21b in the extending direction (Y direction) Are preferably substantially equal.
 一方の矩形孔21aの短手方向(Y方向)の長さは、他方の矩形孔21bの短手方向の長さと略一致する。また、出力配線30a及び出力配線30bが、Y方向に互いに間隔をおいた状態で矩形孔21aを通過し、出力配線30c、出力配線30d及び出力配線30eが、Y方向に互いに間隔をおいた状態で矩形孔21bを通過する。 The length of one rectangular hole 21a in the short direction (Y direction) is substantially the same as the length of the other rectangular hole 21b in the short direction. In addition, the output wiring 30a and the output wiring 30b pass through the rectangular hole 21a in a state spaced from each other in the Y direction, and the output wiring 30c, the output wiring 30d, and the output wiring 30e are spaced from each other in the Y direction. Passes through the rectangular hole 21b.
 また、最も高電位の出力配線30a及び最も低電位の出力配線30eは、それらの出力配線30a,30eの間の電位を有する出力配線30b,30c,30dよりも、幅広になっており、大きな断面積を有する。このようにして、通常時に電流が流れる最も高電位の出力配線30aと最も低電位の出力配線30eの抵抗を小さくすることによって、電力ロスを低減し、通常動作時の出力を大きくしている。ただし、同一の端子ボックスに電気的に接続される全ての出力配線の断面積は同一でもよい。。 In addition, the output wiring 30a having the highest potential and the output wiring 30e having the lowest potential are wider than the output wirings 30b, 30c, and 30d having the potential between the output wirings 30a and 30e. Has an area. In this way, by reducing the resistance of the highest potential output wiring 30a and the lowest potential output wiring 30e through which current flows normally, the power loss is reduced and the output during normal operation is increased. However, the cross-sectional areas of all output wirings electrically connected to the same terminal box may be the same. .
 以下、図4~図6を用いて、裏面ガラスに円筒貫通孔(丸孔)を設けた場合に対する裏面ガラスに矩形孔を設けた場合の優位性について説明する。 Hereinafter, with reference to FIG. 4 to FIG. 6, the superiority of the case where the back glass is provided with the rectangular holes compared to the case where the back glass is provided with the cylindrical through hole (round hole) will be described.
 図4は、参考例の太陽電池モジュール510における図3に対応する図であり、裏面ガラス503にY方向に延在する同一直線上に5つの同一の丸孔521を設けた図である。また、図5は、太陽電池モジュール510の丸孔521周辺の模式断面図である。なお、図5において、501は、表面ガラスを示し、505aは、表側充填材を示し、505bは、裏側充填材を示す。 FIG. 4 is a diagram corresponding to FIG. 3 in the solar cell module 510 of the reference example, and is a diagram in which five identical circular holes 521 are provided on the same straight line extending in the Y direction on the back glass 503. FIG. 5 is a schematic cross-sectional view around the round hole 521 of the solar cell module 510. In FIG. 5, 501 indicates surface glass, 505a indicates a front side filler, and 505b indicates a back side filler.
 太陽電池モジュールの裏側保護部材を裏面ガラスで構成した場合、裏面ガラスに出力配線を通過させる貫通孔を設ける必要が生じる。したがって、水分が外部から当該貫通孔を通過して太陽電池モジュール内に侵入し、太陽電池セルが水分によって劣化する虞がある。また、係る劣化が生じる可能性は、貫通孔の開口面積が大きいほど高くなる。 When the back side protection member of the solar cell module is configured by the back glass, it is necessary to provide a through hole for allowing the output wiring to pass through the back glass. Therefore, there is a possibility that moisture passes from the outside through the through hole and enters the solar cell module, and the solar cells are deteriorated by the moisture. In addition, the possibility of such deterioration increases as the opening area of the through hole increases.
 よって、貫通孔の開口面積を小さくする方が良いが、図4に示すように、各貫通孔では、出力配線530の幅方向(Y方向)の寸法として、出力配線530の幅方向長さが最低限必要になる。また、裏面ガラス503に丸孔521を設ける場合、孔同士の間隔が近いと、裏面ガラス503が割れ易くなるため、Y方向に隣り合う丸孔521は所定距離以上離されて配設される必要がある。更には、各貫通孔では、出力配線530の延在方向(X方向)の寸法として、出力配線530の折り曲げ寸法a(図5参照)が最低限必要になる。ここで、貫通孔が丸孔521である場合、出力配線530が存在しない領域のX方向長さb(図5参照)が大きくなり、無駄なスペースが大きくなり、水分が貫通孔を通過する可能性が高くなる。また、裏面ガラス503に丸孔521を設ける場合、一般的にドリルを用いて貫通孔が形成されるが、丸孔521は出力配線530の数に対応する数だけ設けられる必要があり、製造コストが高くなる。 Therefore, it is better to reduce the opening area of the through hole. However, as shown in FIG. 4, the width in the width direction of the output wiring 530 is the dimension in the width direction (Y direction) of the output wiring 530 in each through hole. Required at a minimum. In addition, when the round holes 521 are provided in the back glass 503, the back glass 503 is easily broken when the distance between the holes is close. Therefore, the round holes 521 adjacent to each other in the Y direction need to be arranged apart by a predetermined distance or more. There is. Furthermore, in each through hole, the bending dimension a (see FIG. 5) of the output wiring 530 is required as a minimum in the extending direction (X direction) of the output wiring 530. Here, when the through hole is the round hole 521, the length b (see FIG. 5) in the X direction of the region where the output wiring 530 does not exist is increased, a useless space is increased, and moisture can pass through the through hole. Increases nature. In addition, when the round hole 521 is provided in the back glass 503, a through hole is generally formed by using a drill. However, the round hole 521 needs to be provided in a number corresponding to the number of the output wirings 530, and the manufacturing cost. Becomes higher.
 これに対し、図3に示すように、裏面ガラス3に矩形孔21a,21bを設ける場合、裏面ガラス503に丸孔521を設ける場合との比較において、出力配線30a~30eの延在方向(X方向)の寸法を小さくでき、X方向の無駄なスペースを削減できる。更には、裏面ガラス3に矩形孔21a,21bを設ける場合、矩形孔21a,21bを出力配線30a~30eの数よりも少ない数だけレーザ加工等によって設ければよい。よって、本実施形態の太陽電池モジュール10のように、裏面ガラス3に矩形孔21a,21bを設ける場合、裏面ガラス3に設ける貫通孔の開口面積を低減できて、水分の浸入による劣化を抑制できると共に、製造コストも低減できる。 On the other hand, as shown in FIG. 3, when the rectangular holes 21a and 21b are provided in the back glass 3, compared with the case where the round holes 521 are provided in the back glass 503, the extending direction of the output wirings 30a to 30e (X (Direction) can be reduced, and useless space in the X direction can be reduced. Further, when the rectangular holes 21a and 21b are provided in the back glass 3, the rectangular holes 21a and 21b may be provided by laser processing or the like, which is smaller than the number of the output wirings 30a to 30e. Therefore, when the rectangular holes 21a and 21b are provided in the back glass 3 as in the solar cell module 10 of the present embodiment, the opening area of the through holes provided in the back glass 3 can be reduced, and deterioration due to moisture intrusion can be suppressed. In addition, the manufacturing cost can be reduced.
 図6は、裏面ガラスに設ける複数の貫通孔パターンにおける製造コストと開口面積の比較を表す模式図である。 FIG. 6 is a schematic diagram showing a comparison of manufacturing costs and opening areas in a plurality of through-hole patterns provided on the back glass.
 図6に示すように、裏面ガラスに矩形孔を設ける(a)~(e)の場合は、(a)のように矩形孔の数が多くなると、穴の面積が小さくなって、矩形孔からの水分の侵入を抑制しやすいが、加工のためのコストは大きくなってしまう。一方、(e)のように矩形孔の数が少なくなると、穴の面積が大きくなって、矩形孔からの水分の侵入を抑制しにくいが、加工のためのコストは小さくできる。 As shown in FIG. 6, in the case of (a) to (e) in which a rectangular hole is provided on the back glass, as the number of rectangular holes increases as shown in (a), the area of the hole decreases, and Although it is easy to suppress the penetration | invasion of a water | moisture content, the cost for a process will become large. On the other hand, when the number of rectangular holes is reduced as shown in (e), the area of the holes is increased and it is difficult to suppress the intrusion of moisture from the rectangular holes, but the cost for processing can be reduced.
 次に、図7を用いて、裏面ガラスに1つの矩形孔を設ける場合に対する裏面ガラスに2つの矩形孔を設ける場合の優位性について説明する。 Next, with reference to FIG. 7, the superiority in the case of providing two rectangular holes in the back glass relative to the case of providing one rectangular hole in the back glass will be described.
 裏面ガラスに矩形孔を設ける場合、水分浸入に起因する劣化を抑制するため、アスペクト比(矩形孔の矩形開口の長手方向寸法に対する矩形開口の短手方向寸法の比)は小さいほど好ましい。他方、アスペクト比が小さいほどガラス加工は困難で、完成品も割れ易くなる。 When a rectangular hole is provided in the back glass, the aspect ratio (ratio of the rectangular dimension of the rectangular opening to the longitudinal dimension of the rectangular opening of the rectangular hole) is preferably as small as possible in order to suppress deterioration due to moisture intrusion. On the other hand, the smaller the aspect ratio, the more difficult the glass processing is and the more easily the finished product is broken.
 詳しくは、図7(a)に示すように、矩形孔621のアスペクト比(開口面積)が大きいと水分の浸入による劣化が起き易い。他方、図7(b)に示すように、矩形孔721のアスペクト比を小さくすると、裏面ガラスが割れ易くなる。これに対し、図7(c)に示す本実施形態のように、矩形孔を1孔でなく2孔21a,21bにすると、図7(a)に示す場合との比較で開口面積を小さくでき、図7(b)に示す場合との比較でアスペクト比を大きくできる。よって、水分の浸入による劣化を抑制でき、裏面ガラスの割れも抑制できる。 Specifically, as shown in FIG. 7A, when the aspect ratio (opening area) of the rectangular hole 621 is large, deterioration due to moisture intrusion is likely to occur. On the other hand, as shown in FIG. 7B, when the aspect ratio of the rectangular hole 721 is reduced, the back glass is easily broken. On the other hand, if the rectangular hole is not the single hole but the two holes 21a and 21b as in this embodiment shown in FIG. 7C, the opening area can be reduced compared to the case shown in FIG. The aspect ratio can be increased in comparison with the case shown in FIG. Therefore, deterioration due to moisture intrusion can be suppressed, and cracking of the back glass can also be suppressed.
 次に、図8を用いて、裏面ガラスに複数の丸孔を設ける場合に対する裏面ガラスに2つの矩形孔を設けた場合の優位性について説明する。 Next, with reference to FIG. 8, the superiority of the case where two rectangular holes are provided in the back glass relative to the case where a plurality of round holes are provided in the back glass will be described.
 設置地域毎に対応可能な端子ボックスが異なる場合がある。また、端子ボックスにおける端子間のピッチは、端子ボックスの種類毎に異なる。よって、裏面ガラスに出力端子の数に一致する数の複数の丸孔を設ける場合、出力配線が通過する裏面ガラスの箇所が狭い範囲に制限されるため、1つの裏面ガラスで複数種の端子ボックスに対応できなくなる。他方、裏面ガラスに1つの矩形孔を設ける場合、矩形孔の長手方向の寸法が大きくなりがちで、裏面ガラスが割れ易くなる。 ∙ Available terminal boxes may differ depending on the installation area. Moreover, the pitch between the terminals in the terminal box is different for each type of terminal box. Therefore, when a plurality of round holes corresponding to the number of output terminals are provided on the back glass, the location of the back glass through which the output wiring passes is limited to a narrow range. It becomes impossible to correspond to. On the other hand, when one rectangular hole is provided in the back glass, the longitudinal dimension of the rectangular hole tends to be large, and the back glass is easily broken.
 詳しくは、図8(a)に示す、隣り合う間隔cが大きい5つの丸孔821が設けられた裏面ガラスは、Y方向のピッチが大きい端子ボックスのみに対応する。また、図8(b)に示す、図8(a)に示す場合よりも隣り合う間隔dが小さい5つの丸孔921が設けられた裏面ガラスは、図8(a)に示す場合よりもY方向のピッチが小さい端子ボックスのみに対応する。すなわち、図8(a)に示す丸孔821に、図8(b)に示す丸孔921に対応する端子ボックスをそのまま適用することは難しい。よって、同一の端子ボックスに電気的に接続される複数の出力配線に対応する複数の丸孔が設けられた裏面ガラスは、適用できる端子ボックスが限られ、汎用性が低い。これは、端子ボックスの設計の種類を増やすことを招き、太陽電池モジュールのコストが高くなる。 Specifically, the rear glass provided with five round holes 821 having a large adjacent interval c shown in FIG. 8A corresponds only to a terminal box having a large pitch in the Y direction. Further, the back glass provided with five round holes 921 shown in FIG. 8 (b) where the adjacent gap d is smaller than the case shown in FIG. 8 (a) is Y more than in the case shown in FIG. 8 (a). Only compatible with terminal boxes with small pitch in direction. That is, it is difficult to apply the terminal box corresponding to the round hole 921 shown in FIG. 8B as it is to the round hole 821 shown in FIG. Accordingly, the back glass provided with a plurality of round holes corresponding to a plurality of output wirings electrically connected to the same terminal box is limited in applicable terminal boxes and has low versatility. This leads to an increase in the types of terminal box designs, which increases the cost of the solar cell module.
 これに対し、本実施形態を示す図8(c)に示す場合では、Y方向に延在する矩形孔21a,21bが裏面ガラスに設けられるため、図8(b)及び図8(c)に示す場合との比較において、出力配線が通過する箇所のY方向の自由度が格段に大きくなる。そして、図8(c)に示す矩形孔21a,21bを有する裏面ガラスは、図8(a)に示す丸孔821に対応する端子ボックスと、図8(b)に示す丸孔921に対応する端子ボックスとを含む多様な端子ボックスに適用でき、汎用性が向上する。更には、本実施形態を示す図8(c)に示す場合では、裏面ガラスに2つの矩形孔21a,21bが設けられるので、裏面ガラスのガラス割れも抑制できる。よって、ガラス割れを抑制でき、異なる端子ボックス毎に別の裏面ガラスを用意する必要もないので、部材費を低減できる。 On the other hand, in the case shown in FIG. 8C showing the present embodiment, the rectangular holes 21a and 21b extending in the Y direction are provided in the back glass, and therefore, in FIGS. 8B and 8C. In comparison with the case shown, the degree of freedom in the Y direction of the portion through which the output wiring passes is significantly increased. And the back glass which has the rectangular holes 21a and 21b shown in FIG.8 (c) respond | corresponds to the terminal box corresponding to the round hole 821 shown to Fig.8 (a), and the round hole 921 shown in FIG.8 (b). It can be applied to various terminal boxes including terminal boxes, improving versatility. Furthermore, in the case shown in FIG. 8C showing the present embodiment, since two rectangular holes 21a and 21b are provided in the back glass, glass cracking of the back glass can also be suppressed. Therefore, glass breakage can be suppressed, and there is no need to prepare a separate back glass for each different terminal box, so that member costs can be reduced.
 また、本実施形態を示す図8(c)に示す場合では、Y方向に延在する矩形孔21a,21bが裏面ガラスに設けられるため、複数の出力配線のY方向のピッチの設定が、矩形孔21a,21bの配置の影響を受けにくくなる。これによって、複数の出力配線のY方向のピッチを小さくすることが容易になり、矩形孔21a,21bを覆って設けられる端子ボックスを小さくすることも可能となる。 Further, in the case shown in FIG. 8C showing this embodiment, since the rectangular holes 21a and 21b extending in the Y direction are provided in the back glass, the pitch setting in the Y direction of the plurality of output wirings is rectangular. It becomes difficult to be affected by the arrangement of the holes 21a and 21b. This makes it easy to reduce the pitch in the Y direction of the plurality of output wirings, and it is also possible to reduce the terminal box provided to cover the rectangular holes 21a and 21b.
 次に、裏面ガラスを採用した場合に起こり得る出力低下と、それを改善した上記実施形態の優位性について、図9を用いて説明する。図9(a)は、表充填材1005aと裏充填材1005bを、ラミネート加工が実行される温度で、同程度の硬度を有する材質や同程度の流動性(粘度の逆数)を有する材質で構成した参考例の場合におけるラミネート加工前の状態を示す模式断面図である。また、図9(b)は、図9(a)に示す構成のラミネート加工後の状態を示す模式断面図であり、図9(c)は、本実施形態における図9(b)に対応する模式断面図である。なお、図9(a),図9(b)において、1002は、表面ガラスを示し、1003は、裏面ガラスを示し、1030は、出力配線を示す。 Next, the output drop that can occur when the back glass is employed and the superiority of the above-described embodiment that has improved it will be described with reference to FIG. FIG. 9A shows that the front filler 1005a and the back filler 1005b are made of a material having the same degree of hardness and a material having the same degree of fluidity (reciprocal of viscosity) at the temperature at which the laminating process is performed. It is a schematic cross section which shows the state before the lamination process in the case of the performed reference example. Moreover, FIG.9 (b) is a schematic cross section which shows the state after the lamination process of the structure shown to Fig.9 (a), FIG.9 (c) respond | corresponds to FIG.9 (b) in this embodiment. It is a schematic cross section. In FIGS. 9A and 9B, reference numeral 1002 denotes a front glass, 1003 denotes a back glass, and 1030 denotes an output wiring.
 配線取り出し孔が存在すると、充填材がラミネート加工時に貫通孔から排出する方向の力を受ける。係る背景において、図9(a)で示す参考例では、透明の表充填材1005aと白色の裏充填材1005bが、ラミネート加工が実行される温度で、同程度の硬度を有する材質や同程度の流動性を有する材質で構成される。よって、図9(b)に示すように、ラミネート加工後においては、矩形孔1021から排出する方向の力によって、表充填材1005aが裏充填材1005bを押しのけて矩形孔1021に浸食することがある。そして、裏充填材1005bが矩形孔1021の一部から外部に排出されることがある。そして、表充填材1005aが矩形孔1021の一部を深さ方向に突き抜けて、表充填材1005aの充填部分が透明になり、透明になった個所から光が矩形孔1021の外側に漏れて出力が低下し、見栄えも低下することがある。 When there is a wiring take-out hole, the filler receives a force in the direction of discharging from the through hole during laminating. In such a background, in the reference example shown in FIG. 9A, the transparent front filler 1005a and the white back filler 1005b are made of a material having the same degree of hardness or the same degree at the temperature at which the lamination process is performed. It is made of fluid material. Therefore, as shown in FIG. 9B, after lamination, the front filler 1005a may push away the back filler 1005b and erode into the rectangular holes 1021 due to the force in the direction of discharging from the rectangular holes 1021. . Then, the back filler 1005b may be discharged from a part of the rectangular hole 1021 to the outside. Then, the front filler 1005a penetrates a part of the rectangular hole 1021 in the depth direction, the filled portion of the front filler 1005a becomes transparent, and light leaks out of the rectangular hole 1021 from the transparent part and is output. May decrease, and the appearance may also decrease.
 これに対し、図9(c)に示す本実施形態の場合では、裏充填材5bが、ラミネート加工が実行される温度において、表充填材5aよりも高い硬度を有することと表充填材5aよりも低い流動性を有することの少なくとも一方を満たす。したがって、ラミネート加工時に生じる矩形孔21aから排出する方向の力に基づいて、裏充填材5bが、表充填材5aから矩形孔21aの外部側への力を受けても、表充填材5aが裏充填材5bを突き抜けることが抑制される。よって、高反射を実現できる裏充填材5bが存在しない個所の発生を抑制でき、出力の低下を抑性できる。更には、裏充填材5bが存在しない個所の発生が抑制されるので、外観も良好なものとなる。 On the other hand, in the case of the present embodiment shown in FIG. 9C, the back filler 5b has higher hardness than the front filler 5a at the temperature at which the laminating process is performed, and from the front filler 5a. Satisfies at least one of low fluidity. Therefore, even if the back filler 5b receives a force from the front filler 5a to the outside of the rectangular hole 21a based on the force in the direction of discharging from the rectangular hole 21a generated during the lamination, the front filler 5a Penetration through the filler 5b is suppressed. Therefore, generation | occurrence | production of the location where the back filler 5b which can implement | achieve high reflection does not exist can be suppressed, and the fall of an output can be suppressed. Furthermore, since the occurrence of a portion where the back filler 5b does not exist is suppressed, the appearance is also good.
 以上のように、上記構成の太陽電池モジュール10によれば、裏面ガラス3に設けられる各矩形孔21a,21bが、裏面ガラス3の厚さ方向に延在し、当該厚さ方向に垂直な切断面において略矩形の形状を有する。したがって、裏面ガラスに丸孔を設ける場合との比較で、矩形孔21a,21bにおける出力配線30a~30eの幅方向に直交する方向の長さを、出力配線30a~30eの折り曲げに必要な長さと同程度の長さに設定し易くなる。よって、裏面ガラス3に設ける矩形孔21a,21bと、その矩形孔21a,21bを通過する出力配線30a~30eとの隙間を小さくでき、水分が矩形孔21a,21bを通過しにくくなり、太陽電池モジュール10が水分の浸入によって劣化しにくくなる。 As described above, according to the solar cell module 10 having the above-described configuration, the rectangular holes 21a and 21b provided in the back glass 3 extend in the thickness direction of the back glass 3 and are cut perpendicular to the thickness direction. The surface has a substantially rectangular shape. Therefore, the length in the direction perpendicular to the width direction of the output wirings 30a to 30e in the rectangular holes 21a and 21b is compared with the length necessary for bending the output wirings 30a to 30e as compared with the case where a round hole is provided in the back glass. It becomes easy to set to the same length. Therefore, the gap between the rectangular holes 21a and 21b provided in the back glass 3 and the output wirings 30a to 30e passing through the rectangular holes 21a and 21b can be reduced, so that moisture does not easily pass through the rectangular holes 21a and 21b. The module 10 is less likely to deteriorate due to moisture ingress.
 なお、本開示は、上記実施形態およびその変形例に限定されるものではなく、本願の特許請求の範囲に記載された事項およびその均等な範囲において種々の改良や変更が可能である。 It should be noted that the present disclosure is not limited to the above-described embodiment and modifications thereof, and various improvements and modifications can be made within the matters described in the claims of the present application and their equivalent ranges.
 例えば、上記実施形態では、裏面ガラス3に、Y方向に延在する同一直線上に2つの矩形孔21a,21bを設ける場合について説明した。しかし、図6(b)に示すように、裏面ガラスに、同一直線上にその直線の延在方向に間隔をおいて位置する3つの矩形孔121a,121b,121cを設けてもよい。また、各矩形孔121a,121b,121cの矩形開口の長手方向が当該同一直線の延在方向に略一致してもよい。そして、3つの矩形孔121a,121b,121cのうちで延在方向の中央に位置する矩形孔121bを延在方向に直交する方向を含んで垂直に二等分する平面f1に対して、3つの矩形孔121a,121b,121cが略面対称に配設されてもよい。また、中央に位置する矩形孔121bの延在方向の長さが、3つの矩形孔121a,121b,121cのうちで延在方向の端に位置する矩形孔121a,121cの延在方向の長さよりも長くてもよい。このような構成で、矩形孔121bが中央貫通孔を構成するようにしてもよく、矩形孔121a,121cが端貫通孔を構成するようにしてもよい。 For example, in the above-described embodiment, the case where two rectangular holes 21a and 21b are provided on the same straight line extending in the Y direction on the back glass 3 has been described. However, as shown in FIG. 6B, the back glass may be provided with three rectangular holes 121a, 121b, and 121c that are positioned on the same straight line with an interval in the extending direction of the straight line. Moreover, the longitudinal direction of the rectangular opening of each rectangular hole 121a, 121b, 121c may substantially coincide with the extending direction of the same straight line. Of the three rectangular holes 121a, 121b, and 121c, the rectangular hole 121b located at the center of the extending direction is divided into three planes f1 that are perpendicularly divided into two including the direction orthogonal to the extending direction. The rectangular holes 121a, 121b, and 121c may be disposed substantially plane-symmetrically. Further, the length in the extending direction of the rectangular hole 121b located at the center is longer than the length in the extending direction of the rectangular holes 121a, 121c located at the ends in the extending direction among the three rectangular holes 121a, 121b, 121c. May be longer. With such a configuration, the rectangular hole 121b may constitute the central through hole, or the rectangular holes 121a and 121c may constitute the end through hole.
 又は、図6(c)に示すように、裏面ガラスに、同一直線上にその直線の延在方向に間隔をおいて位置する3つの矩形孔221a,221b,221cを設けてもよい。また、各矩形孔221a,221b,221cの矩形開口の長手方向が当該同一直線の延在方向に略一致してもよい。そして、3つの矩形孔221a,221b,221cのうちで延在方向の中央に位置する矩形孔221bを延在方向に直交する方向を含んで垂直に二等分する平面f2に対して、3つの矩形孔221a,221b,221cが略面対称に配設されてもよい。また、中央に位置する矩形孔221bの延在方向の長さが、3つの矩形孔221a,221b,221cのうちで延在方向の端に位置する矩形孔221a,221cの延在方向の長さよりも短くてもよい。このような構成で、矩形孔221bが中央貫通孔を構成するようにしてもよく、矩形孔221a,221cが端貫通孔を構成するようにしてもよい。 Or as shown in FIG.6 (c), you may provide three rectangular holes 221a, 221b, and 221c located in the back surface glass at intervals in the extension direction of the straight line. Further, the longitudinal direction of the rectangular openings of the respective rectangular holes 221a, 221b, 221c may substantially coincide with the extending direction of the same straight line. Of the three rectangular holes 221a, 221b, and 221c, the rectangular hole 221b positioned at the center of the extending direction includes three planes f2 that are perpendicularly divided into two including the direction orthogonal to the extending direction. The rectangular holes 221a, 221b, and 221c may be disposed substantially plane-symmetrically. Further, the length in the extending direction of the rectangular hole 221b located at the center is longer than the length in the extending direction of the rectangular holes 221a, 221c located at the end in the extending direction among the three rectangular holes 221a, 221b, 221c. May be shorter. With such a configuration, the rectangular hole 221b may constitute the central through hole, or the rectangular holes 221a and 221c may constitute the end through hole.
 そして、図6(b)及び図6(c)に示すような矩形孔121a,121b,121c、221a,221b,221cを裏面ガラスに設けて、製造コストを低減し、開口面積を小さくしてもよい。 Then, rectangular holes 121a, 121b, 121c, 221a, 221b, and 221c as shown in FIGS. 6B and 6C are provided in the back glass to reduce the manufacturing cost and reduce the opening area. Good.
 また、図10、すなわち、変形例の太陽電池モジュール310における裏面ガラス303の一部を裏側から見たときの模式図に示すように、裏面ガラス303に2つの矩形孔321a,321bを設けてもよい。また、一方の矩形孔321aの延在方向(矩形開口の長手方向;Y方向)が、他方の矩形孔321bの延在方向と略一致してもよい。また、一方の矩形孔321aの延在方向に直交する方向(X方向)の寸法が、他方の矩形孔321bの延在方向に直交する方向の寸法よりも短くてもよい。又は、裏側ガラス部材には、太陽電池セルに電気的に接続されると共に同一の端子ボックスに電気的に接続される複数の出力配線を通過させる1つのみの貫通孔が設けられてもよい。そして、その1つのみの貫通孔が、裏側ガラス部材の厚さ方向に延在し、厚さ方向に垂直な切断面において略矩形の形状を有してもよい。 In addition, as shown in FIG. 10, that is, a schematic view of a part of the back glass 303 in the solar cell module 310 of the modification example when viewed from the back side, the back glass 303 may be provided with two rectangular holes 321 a and 321 b. Good. Further, the extending direction of one rectangular hole 321a (longitudinal direction of the rectangular opening; Y direction) may substantially coincide with the extending direction of the other rectangular hole 321b. In addition, the dimension in the direction (X direction) orthogonal to the extending direction of one rectangular hole 321a may be shorter than the dimension in the direction orthogonal to the extending direction of the other rectangular hole 321b. Alternatively, the back glass member may be provided with only one through-hole that allows a plurality of output wirings that are electrically connected to the solar battery cell and electrically connected to the same terminal box to pass therethrough. And only the one through-hole may extend in the thickness direction of the back side glass member, and may have a substantially rectangular shape in a cut surface perpendicular to the thickness direction.
 また、裏充填材5bが、ラミネート加工が実行される温度において、表充填材5aよりも高い硬度を有することと表充填材5aよりも低い流動性を有することの少なくとも一方が満たされる場合について説明した。しかし、他の構成で、ラミネート加工時における表充填材の裏面ガラスの裏面側への露出を抑制してもよい。 In addition, the case where the back filler 5b has at least one of having higher hardness than the front filler 5a and lower fluidity than the front filler 5a at the temperature at which the laminating process is performed will be described. did. However, in other configurations, exposure of the front filler to the back side of the back glass at the time of laminating may be suppressed.
 例えば、図11に示すように、太陽電池モジュールの厚さ方向から見たとき矩形孔421に重なる孔周辺領域で、裏充填材405b材と裏面ガラス403との間に追加充填材406を配設してもよく、裏充填材405b材と矩形孔421との間に追加充填材406を配設してもよい。この追加充填材406は、例えば、フィルムや充填材で構成され、ラミネート加工が実行される温度で、表充填材405a及び裏充填材405bの両方よりも硬いか又は流動性が低い材質で構成される。追加充填材406の材質としては、白くて硬い樹脂を好適に採用でき、例えば、ポリエチレンテレフタレート樹脂を好適に採用できるが、それに限らない。なお、図11において、402は、表面ガラスを示す。 For example, as shown in FIG. 11, an additional filler 406 is disposed between the back filler 405 b and the back glass 403 in a hole peripheral region overlapping the rectangular hole 421 when viewed from the thickness direction of the solar cell module. Alternatively, the additional filler 406 may be disposed between the back filler 405b and the rectangular hole 421. The additional filler 406 is made of, for example, a film or a filler, and is made of a material that is harder or less fluid than both the front filler 405a and the back filler 405b at the temperature at which the lamination process is performed. The As a material of the additional filler 406, a white and hard resin can be preferably used. For example, a polyethylene terephthalate resin can be preferably used, but is not limited thereto. In FIG. 11, reference numeral 402 denotes surface glass.
 この変形例によれば、図11に示すように、ラミネート加工後において、追加充填材406で表充填材405aの裏面ガラス403の裏面側への露出を完全に抑え込むことができる。よって、矩形孔を設けたことに起因する出力低下を防止でき、見栄えの低下が起きることもない。 According to this modified example, as shown in FIG. 11, after the lamination process, the additional filler 406 can completely suppress the exposure of the front filler 405a to the back glass 403. Therefore, a decrease in output due to the provision of the rectangular hole can be prevented, and a deterioration in appearance does not occur.
 なお、表充填材と裏充填材を設ける場合において、裏充填材は、ラミネート加工が実行される温度で、表充填材よりも高い硬度を有さず、かつ、表充填材よりも低い流動性も有さなくてもよい。又は、封止材は、表充填材と裏充填材とを含まなくてもよく、1つのみの充填材で構成されてもよい。 In the case where the front filler and the back filler are provided, the back filler does not have a higher hardness than the front filler and has a lower fluidity than the front filler at the temperature at which the lamination process is performed. You do not have to. Alternatively, the sealing material may not include the front filler and the back filler, and may be configured with only one filler.
 また、図1に示すように、太陽電池モジュール10が、8つのストリング50を有し、裏面ガラス3が2つの矩形孔21a,21bを有する場合について説明した。しかし、太陽電池モジュールは、8以外の如何なる数のストリングを有してもよく、裏面ガラスは、3以上の如何なる数の矩形孔を有してもよい。例えば、太陽電池モジュールが、6つのストリングを有し、裏面ガラスが、2つの矩形孔を有してもよい。 Moreover, as shown in FIG. 1, the case where the solar cell module 10 has the eight strings 50, and the back surface glass 3 has the two rectangular holes 21a and 21b was demonstrated. However, the solar cell module may have any number of strings other than 8, and the back glass may have any number of rectangular holes of 3 or more. For example, the solar cell module may have six strings, and the back glass may have two rectangular holes.
 また、図1に示すように、端子ボックス60が、複数の太陽電池セル1にX方向に間隔をおいて配置され、Z方向から見たとき複数の太陽電池セル1に重ならない場合について説明した。しかし、端子ボックスは、太陽電池モジュールの厚さ方向から見たとき、複数の太陽電池セルの一部に重なるように裏面ガラスの裏側に取り付けられてもよい。また、端子ボックス60が、複数の太陽電池セル1のX方向の一方側のみに存在する場合について説明したが、端子ボックスは、ストリングが延在する方向において、複数の太陽電池セルの一方側と他方側の両側に配置されてもよい。 Moreover, as shown in FIG. 1, the terminal box 60 was arrange | positioned in the X direction at intervals in the several photovoltaic cell 1, and demonstrated the case where it did not overlap with the several photovoltaic cell 1 when it sees from a Z direction. . However, the terminal box may be attached to the back side of the back glass so as to overlap a part of the plurality of solar cells when viewed from the thickness direction of the solar cell module. Moreover, although the case where the terminal box 60 exists only in the one side of the X direction of the some photovoltaic cell 1 was demonstrated, in the direction where a string extends, a terminal box is one side of several photovoltaic cells. It may be arranged on both sides of the other side.
 以上の説明より明らかなように、太陽電池モジュール10は、複数の太陽電池セル1と、複数の太陽電池セル1に対して光が主に入射する受光側に設けられる表面ガラス2と、を備えてもよい。また、太陽電池モジュール10は、複数の太陽電池セル1に対して受光側とは反対側に設けられ、ガラスで構成される裏面ガラス3を備える。また、裏面ガラス3には、太陽電池セル1に電気的に接続されると共に同一の端子ボックス60に電気的に接続される複数の出力配線30a~30eを通過させる1以上の矩形孔21a,21bが設けられる。また、矩形孔21a,21eは、裏面ガラス3の厚さ方向に延在し、厚さ方向に垂直な切断面において略矩形の形状を有する。 As is clear from the above description, the solar cell module 10 includes a plurality of solar cells 1 and a surface glass 2 provided on the light receiving side on which light mainly enters the plurality of solar cells 1. May be. Moreover, the solar cell module 10 is provided with the back glass 3 which is provided in the opposite side to the light-receiving side with respect to the several photovoltaic cell 1, and is comprised with glass. In addition, the back glass 3 includes one or more rectangular holes 21a and 21b that allow a plurality of output wirings 30a to 30e that are electrically connected to the solar cell 1 and electrically connected to the same terminal box 60 to pass therethrough. Is provided. The rectangular holes 21a and 21e extend in the thickness direction of the back glass 3, and have a substantially rectangular shape on a cut surface perpendicular to the thickness direction.
 また、裏面ガラス3には、複数の矩形孔21a,21bが設けられてもよい。そして、複数の矩形孔21a,21bには、2以上の出力配線30a,30bが通過する矩形孔21aが含まれ、2以上の出力配線30c~30eが通過する矩形孔21bが含まれてもよい。 Also, the back glass 3 may be provided with a plurality of rectangular holes 21a, 21b. The plurality of rectangular holes 21a and 21b may include a rectangular hole 21a through which two or more output wirings 30a and 30b pass, and may include a rectangular hole 21b through which two or more output wirings 30c to 30e pass. .
 また、複数の矩形孔21a,21bは、同一直線上にその直線の延在方向に間隔をおいて位置する2つの矩形孔21a,21bで構成され、各矩形孔21a,21bの矩形開口の長手方向が当該同一直線の延在方向に略一致してもよい。 In addition, the plurality of rectangular holes 21a and 21b are configured by two rectangular holes 21a and 21b that are positioned on the same straight line with an interval in the extending direction of the straight line, and the length of the rectangular opening of each rectangular hole 21a and 21b. The direction may substantially coincide with the extending direction of the same straight line.
 更には、係る場合において、一方の矩形孔21aの延在方向の長さが、他方の矩形孔21bの延在方向の長さの55%以上70%以下の長さであってもよい。 Furthermore, in such a case, the length in the extending direction of one rectangular hole 21a may be 55% or more and 70% or less of the length in the extending direction of the other rectangular hole 21b.
 また、複数の矩形孔121a~121cが、同一直線上にその直線の延在方向に間隔をおいて位置する3つの矩形孔121a~121cで構成され、各矩形孔121a~121cの矩形開口の長手方向が当該同一直線の延在方向に略一致してもよい。そして、3つの矩形孔121a~121cのうちで延在方向の中央に位置する矩形孔121bを延在方向に直交する方向を含んで垂直に二等分する平面f1に対して、3つの矩形孔121a~121cが略面対称に配設されてもよい。そして、延在方向の中央に位置する矩形孔121bの延在方向の長さが、3つの矩形孔121a~121cのうちで延在方向の端に位置する矩形孔121a,121cの延在方向の長さよりも長くてもよい。 In addition, the plurality of rectangular holes 121a to 121c are configured by three rectangular holes 121a to 121c that are positioned on the same straight line with an interval in the extending direction of the straight line, and the length of the rectangular opening of each rectangular hole 121a to 121c is The direction may substantially coincide with the extending direction of the same straight line. Then, among the three rectangular holes 121a to 121c, the three rectangular holes with respect to the plane f1 that bisects the rectangular hole 121b located at the center in the extending direction, including the direction orthogonal to the extending direction, vertically. 121a to 121c may be arranged substantially symmetrically. The length in the extending direction of the rectangular hole 121b located at the center in the extending direction is the same as the extending direction of the rectangular holes 121a and 121c positioned at the ends in the extending direction among the three rectangular holes 121a to 121c. It may be longer than the length.
 また、複数の矩形孔221a~221cが、同一直線上にその直線の延在方向に間隔をおいて位置する3つの矩形孔221a~221cで構成され、各矩形孔221a~221cの矩形開口の長手方向が当該同一直線の延在方向に略一致してもよい。そして、3つの矩形孔221a~221cのうちで延在方向の中央に位置する矩形孔221bを延在方向に直交する方向を含んで垂直に二等分する平面f2に対して、3つの矩形孔221a~221cが略面対称に配設されてもよい。そして、延在方向の中央に位置する矩形孔221bの延在方向の長さが、3つの矩形孔221a~221cのうちで延在方向の端に位置する矩形孔221a,221cの延在方向の長さよりも短くてもよい。 In addition, the plurality of rectangular holes 221a to 221c are configured by three rectangular holes 221a to 221c that are positioned on the same straight line with an interval in the extending direction of the straight line, and the length of the rectangular opening of each rectangular hole 221a to 221c The direction may substantially coincide with the extending direction of the same straight line. Of the three rectangular holes 221a to 221c, the three rectangular holes with respect to the plane f2 that bisects the rectangular hole 221b positioned at the center of the extending direction, including the direction orthogonal to the extending direction, into two parts. 221a to 221c may be disposed substantially symmetrically. The length in the extending direction of the rectangular hole 221b located at the center in the extending direction is the same as the extending direction of the rectangular holes 221a and 221c positioned at the ends in the extending direction among the three rectangular holes 221a to 221c. It may be shorter than the length.
 また、裏面ガラス3に設けられる各矩形孔21a,21bの矩形開口における短手方向の長さが、その矩形孔21a,21bの矩形開口における長手方向の長さの5%以上30%以下の長さでもよい。 Further, the length in the short direction of the rectangular openings of the rectangular holes 21a and 21b provided in the back glass 3 is 5% or more and 30% or less of the length in the longitudinal direction of the rectangular openings of the rectangular holes 21a and 21b. It's okay.
 また、表面ガラス2と裏面ガラス3との間に設けられ、複数の太陽電池セル1を封止する封止材5を備えてもよい。そして、封止材5が、表面ガラス2側に設けられる表充填材5aと、表充填材5aの裏面ガラス3側に設けられる裏充填材5bとを含んでもよい。そして、裏充填材5bが、ラミネートが実行される温度において、表充填材5aよりも高い硬度を有することと表充填材5aよりも低い流動性を有することの少なくとも一方が満たされてもよい。 Further, a sealing material 5 that is provided between the front glass 2 and the back glass 3 and seals the plurality of solar cells 1 may be provided. And the sealing material 5 may contain the front filler 5a provided in the surface glass 2 side, and the back filler 5b provided in the back glass 3 side of the front filler 5a. Then, at least one of the back filler 5b having a hardness higher than that of the front filler 5a and a fluidity lower than that of the front filler 5a at the temperature at which the lamination is performed may be satisfied.
 又は、表面ガラスと裏面ガラスとの間に設けられ、複数の太陽電池セルを封止する封止材を備えてもよい。そして、封止材は、表面ガラス側に設けられる表充填材405aと、表充填材405aの裏面ガラス403側に設けられる裏充填材405bと、追加充填材406とを含んでもよい。また、追加充填材406は、裏充填材405bと、複数の矩形孔421との間に設けられてもよい。また、ラミネート加工が実行される温度において、追加充填材406が表充填材405a及び裏充填材405bよりも高い硬度を有することと追加充填材406が表充填材及び裏充填材よりも低い流動性を有することの少なくとも一方が満たされてもよい。 Alternatively, a sealing material that is provided between the front glass and the rear glass and seals a plurality of solar cells may be provided. The sealing material may include a front filler 405a provided on the front glass side, a back filler 405b provided on the back glass 403 side of the front filler 405a, and an additional filler 406. Further, the additional filler 406 may be provided between the back filler 405b and the plurality of rectangular holes 421. In addition, the additional filler 406 has a higher hardness than the front filler 405a and the back filler 405b, and the additional filler 406 has a lower fluidity than the front filler and the back filler at the temperature at which the lamination process is performed. At least one of the following may be satisfied.
 1 太陽電池セル、 2,  402 表面ガラス、 3,  303,  403 裏面ガラス、 5 封止材、 5a,  405a 表充填材、 5b,  405b 裏充填材、 10,  310 太陽電池モジュール、 21a,  21b,  121a,  121b,  121c,  221a,  221b,  221c,  321a,  321b,  421 矩形孔、 30a,  30b,  30c,  30d,  30e 出力配線、 60 端子ボックス、 406 追加充填材、 f1,  f2 中央貫通孔を延在方向に直交する方向を含んで垂直に二等分する平面。 1 solar cell, 2, 402, surface glass, 3, 303, 403, back glass, 5 sealing material, 5a, 405a, front filler, 5b, 405b, back filler, 10, 310, solar cell module, 21a, 21b, 121a , 121b, 121c, 221a, 221b, 221c, 321a, 321b, 421 rectangular hole, 30a, 30b, 30c, 30d, 30e output wiring, 60 terminal box, 406 additional filler, f1, f2 extending through the central through hole A plane that bisects vertically, including a direction perpendicular to.

Claims (8)

  1.  複数の太陽電池セルと、
     前記複数の太陽電池セルに対して光が主に入射する受光側に設けられる透光性表側部材と、
     前記複数の太陽電池セルに対して前記受光側とは反対側に設けられ、ガラスで構成される裏側ガラス部材と、を備え、
     前記裏側ガラス部材には、前記太陽電池セルに電気的に接続されると共に同一の端子ボックスに電気的に接続される複数の出力配線を通過させる1以上の貫通孔が設けられ、
     前記貫通孔は、前記裏側ガラス部材の厚さ方向に延在し、前記厚さ方向に垂直な切断面において略矩形の形状を有する、太陽電池モジュール。
    A plurality of solar cells,
    A translucent front side member provided on the light receiving side on which light is mainly incident on the plurality of solar cells;
    A back side glass member that is provided on the opposite side of the light receiving side with respect to the plurality of solar cells and is made of glass,
    The back glass member is provided with one or more through-holes that allow a plurality of output wirings that are electrically connected to the solar cells and electrically connected to the same terminal box to pass therethrough,
    The said through-hole is a solar cell module extended in the thickness direction of the said back side glass member, and having a substantially rectangular shape in the cut surface perpendicular | vertical to the said thickness direction.
  2.  請求項1に記載の太陽電池モジュールにおいて、
     前記裏側ガラス部材には、複数の前記貫通孔が設けられ、
     前記複数の貫通孔には、2以上の前記出力配線が通過する前記貫通孔が含まれる、太陽電池モジュール。
    The solar cell module according to claim 1, wherein
    The back glass member is provided with a plurality of the through holes,
    The solar cell module, wherein the plurality of through holes include the through holes through which two or more of the output wirings pass.
  3.  請求項2に記載の太陽電池モジュールにおいて、
     前記複数の貫通孔は、同一直線上にその直線の延在方向に間隔をおいて位置する2つの前記貫通孔で構成され、
     前記各貫通孔の矩形開口の長手方向が、前記延在方向に略一致する、太陽電池モジュール。
    In the solar cell module according to claim 2,
    The plurality of through holes are composed of two through holes that are positioned on the same straight line with an interval in the extending direction of the straight line,
    The solar cell module in which the longitudinal direction of the rectangular opening of each through hole substantially coincides with the extending direction.
  4.  請求項3に記載の太陽電池モジュールにおいて、
     一方の前記貫通孔の前記延在方向の長さは、他方の前記貫通孔の前記延在方向の長さの55%以上70%以下の長さである、太陽電池モジュール。
    In the solar cell module according to claim 3,
    The length in the extending direction of one of the through holes is a solar cell module that is not less than 55% and not more than 70% of the length in the extending direction of the other through hole.
  5.  請求項2に記載の太陽電池モジュールにおいて、
     前記複数の貫通孔は、同一直線上にその直線の延在方向に間隔をおいて位置する3つの前記貫通孔で構成され、
     前記各貫通孔の矩形開口の長手方向が、前記延在方向に略一致し、
     前記3つの貫通孔のうちで前記延在方向の中央に位置する中央貫通孔を前記延在方向に直交する方向を含んで垂直に二等分する平面に対して、前記3つの貫通孔が略面対称に配設され、
     前記中央貫通孔の前記延在方向の長さは、前記3つの貫通孔のうちで前記延在方向の端に位置する端貫通孔の前記延在方向の長さよりも長いか又は短い、太陽電池モジュール。
    In the solar cell module according to claim 2,
    The plurality of through-holes are configured by three through-holes positioned on the same straight line at intervals in the extending direction of the straight line,
    The longitudinal direction of the rectangular opening of each through hole substantially coincides with the extending direction,
    Of the three through-holes, the three through-holes are substantially parallel to a plane that bisects the central through-hole located at the center of the extending direction, including the direction orthogonal to the extending direction. Arranged symmetrically,
    The length of the central through hole in the extending direction is longer or shorter than the length in the extending direction of an end through hole located at the end of the extending direction among the three through holes. module.
  6.  請求項1乃至5のいずれか1つに記載の太陽電池モジュールにおいて、
     前記各貫通孔の矩形開口における短手方向の長さは、その貫通孔の前記矩形開口における長手方向の長さの5%以上30%以下の長さである、太陽電池モジュール。
    In the solar cell module according to any one of claims 1 to 5,
    The length in the short direction of the rectangular opening of each through hole is a length of 5% to 30% of the length of the through hole in the longitudinal direction of the rectangular opening.
  7.  請求項1乃至6のいずれか1つに記載の太陽電池モジュールにおいて、
     前記透光性表側部材と前記裏側ガラス部材との間に設けられ、前記複数の太陽電池セルを封止する封止材を備え、
     前記封止材は、
     前記透光性表側部材側に設けられる表充填材と、
     前記表充填材の前記裏側ガラス部材側に設けられ、ラミネート加工が実行される温度において、前記表充填材よりも高い硬度を有することと前記表充填材よりも低い流動性を有することの少なくとも一方が満たされる裏充填材と、を含む太陽電池モジュール。
    In the solar cell module according to any one of claims 1 to 6,
    Provided between the translucent front side member and the back side glass member, comprising a sealing material for sealing the plurality of solar cells,
    The sealing material is
    A front filler provided on the translucent front side member side;
    At least one of having higher hardness than the front filler and lower fluidity than the front filler at a temperature at which the front side filler is provided on the back glass member side and laminating is performed. And a back filler that is filled with a solar cell module.
  8.  請求項1乃至6のいずれか1つに記載の太陽電池モジュールにおいて、
     前記透光性表側部材と前記裏側ガラス部材との間に設けられ、前記複数の太陽電池セルを封止する封止材を備え、
     前記封止材は、
     前記透光性表側部材側に設けられる表充填材と、
     前記表充填材の前記裏側ガラス部材側に設けられる裏充填材と、
     前記裏充填材と、前記複数の貫通孔との間に設けられ、ラミネート加工が実行される温度において、前記表充填材及び前記裏充填材よりも高い硬度を有することと前記表充填材及び前記裏充填材よりも低い流動性を有することの少なくとも一方が満たされる追加充填材と、を含む太陽電池モジュール。
    In the solar cell module according to any one of claims 1 to 6,
    Provided between the translucent front side member and the back side glass member, comprising a sealing material for sealing the plurality of solar cells,
    The sealing material is
    A front filler provided on the translucent front side member side;
    A back filler provided on the back glass member side of the front filler;
    It is provided between the back filler and the plurality of through holes, and has a higher hardness than the front filler and the back filler at a temperature at which laminating is performed, and the front filler and the An additional filler that is filled with at least one of having lower fluidity than the back filler.
PCT/JP2017/032971 2016-09-29 2017-09-13 Solar battery module WO2018061758A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016191539 2016-09-29
JP2016-191539 2016-09-29

Publications (1)

Publication Number Publication Date
WO2018061758A1 true WO2018061758A1 (en) 2018-04-05

Family

ID=61759526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032971 WO2018061758A1 (en) 2016-09-29 2017-09-13 Solar battery module

Country Status (1)

Country Link
WO (1) WO2018061758A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102616A (en) * 1999-09-29 2001-04-13 Sharp Corp Solar cell module
JP2006210405A (en) * 2005-01-25 2006-08-10 Dainippon Printing Co Ltd Solar battery module
JP2012204533A (en) * 2011-03-24 2012-10-22 Sanyo Electric Co Ltd Solar cell module and manufacturing method of the same
US20140345674A1 (en) * 2013-05-24 2014-11-27 Silevo, Inc. Moisture ingress resistant photovoltaic module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102616A (en) * 1999-09-29 2001-04-13 Sharp Corp Solar cell module
JP2006210405A (en) * 2005-01-25 2006-08-10 Dainippon Printing Co Ltd Solar battery module
JP2012204533A (en) * 2011-03-24 2012-10-22 Sanyo Electric Co Ltd Solar cell module and manufacturing method of the same
US20140345674A1 (en) * 2013-05-24 2014-11-27 Silevo, Inc. Moisture ingress resistant photovoltaic module

Similar Documents

Publication Publication Date Title
KR102257808B1 (en) Solar cell module
US20160163902A1 (en) Solar module having shingled solar cells
US11538950B2 (en) Solar cell panel
US20200313017A1 (en) Solar cell module and solar cell system
JP5598003B2 (en) Solar cell module
WO2014208312A1 (en) Solar battery cell module and method of manufacturing same
EP3379582A1 (en) Double-sided light receiving solar cell module
KR102244597B1 (en) Solar cell module
US11177406B2 (en) Solar cell and solar cell module using the same
JP6365898B2 (en) Solar cell module
KR20230093447A (en) solar module
WO2012090694A1 (en) Solar cell module
WO2018061758A1 (en) Solar battery module
US9954484B2 (en) Solar battery module
KR102298447B1 (en) Solar cell module
JP6587191B2 (en) Solar cell module and method for manufacturing solar cell module
JP2018056290A (en) Solar cell module
JP2015029069A (en) Solar cell module
JP6331038B2 (en) Solar cell module
JP6289725B2 (en) Solar panel
JP7565988B2 (en) Solar Cell Module
JP2014041914A (en) Wiring board, solar battery with wiring board, solar battery cell connection body with wiring board, and solar battery module
EP4372827A1 (en) Solar cell module
US20230207714A1 (en) Solar cell
JP6871044B2 (en) Solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17855715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP