WO2018061644A1 - Metal nitride-containing particles, dispersion composition, curable composition, cured film, production method for these, color filter, solid-state imaging element, solid-state imaging device, and infrared sensor - Google Patents

Metal nitride-containing particles, dispersion composition, curable composition, cured film, production method for these, color filter, solid-state imaging element, solid-state imaging device, and infrared sensor Download PDF

Info

Publication number
WO2018061644A1
WO2018061644A1 PCT/JP2017/031852 JP2017031852W WO2018061644A1 WO 2018061644 A1 WO2018061644 A1 WO 2018061644A1 JP 2017031852 W JP2017031852 W JP 2017031852W WO 2018061644 A1 WO2018061644 A1 WO 2018061644A1
Authority
WO
WIPO (PCT)
Prior art keywords
atom
group
metal nitride
curable composition
containing particles
Prior art date
Application number
PCT/JP2017/031852
Other languages
French (fr)
Japanese (ja)
Inventor
浜田 大輔
久保田 誠
貴規 田口
裕貴 坂本
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2018542042A priority Critical patent/JPWO2018061644A1/en
Priority to KR1020197007594A priority patent/KR102294518B1/en
Publication of WO2018061644A1 publication Critical patent/WO2018061644A1/en
Priority to JP2022039454A priority patent/JP7373000B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/076Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with titanium or zirconium or hafnium
    • C01B21/0763Preparation from titanium, zirconium or hafnium halides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/04Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polycarbonamides, polyesteramides or polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith

Definitions

  • the present invention relates to a metal nitride-containing particle, a dispersion composition, a curable composition, a cured film, a color filter, a solid-state imaging device, a solid-state imaging device, an infrared sensor, a method for producing metal nitride-containing particles, and a dispersion composition.
  • the present invention relates to a method, a method for producing a curable composition, and a method for producing a cured film.
  • metal nitride-containing particles are known as particles contained in a composition for producing a cured film having a light-shielding property (hereinafter also referred to as “light-shielding film”).
  • Metal nitride-containing particles are used for various applications, and in particular, compositions containing metal nitride-containing particles include, for example, image display devices (for example, liquid crystal display devices, organic EL (electroluminescence) devices, etc.), And a light-shielding film included in a solid-state imaging device or the like.
  • a color filter included in an image display device or the like includes a light-shielding film called a black matrix for the purpose of shielding light between colored pixels and improving contrast.
  • the solid-state imaging device includes a light shielding film for the purpose of preventing noise generation and improving image quality.
  • portable terminals of electronic devices such as mobile phones and PDAs (Personal Digital Assistants) are equipped with small and thin solid-state imaging devices.
  • Such a solid-state imaging device generally includes a solid-state imaging device such as a CCD (Charge Coupled Device) image sensor and a CMOS (Complementary Metal-Oxide Semiconductor) image sensor, and a lens for forming a subject image on the solid-state imaging device. It has.
  • Patent Document 1 discloses that the mass composition ratio of titanium nitride particles and titanium carbide particles is 80/20 to 20/80.
  • the shading material which is the range is described.
  • the present inventors have studied the composition containing the light shielding material described in Patent Document 1, and as a result, the light-shielding property of the resulting cured film, the anti-settling property of the composition, and the stability over time are recently required. I found out that the standard was not reached.
  • the light-shielding property, anti-settling property, and stability over time mean light-shielding property, anti-settling property, and stability over time measured by the methods described in Examples.
  • the present invention can be used for a curable composition having excellent anti-settling properties and excellent temporal stability, and capable of obtaining a cured film having excellent light-shielding properties. (Hereinafter also referred to as “having the effect of the present invention.”) It is an object to provide metal nitride-containing particles.
  • the present invention relates to a dispersion composition, a curable composition, a cured film, a color filter, a solid-state imaging device, a solid-state imaging device, an infrared sensor, a method for producing metal nitride-containing particles, a method for producing a dispersion composition, and a curable composition.
  • Another object of the present invention is to provide a method for producing a cured film and a method for producing a cured film.
  • T E mass-based content of atoms T in the metal nitride-containing particles detected by fluorescent X-ray analysis
  • T E / T X ⁇ Metal nitride-containing particles satisfying the relationship represented by 2.0.
  • the atomic ratio X of the nitrogen atom content to the transition metal atom content of the nitride, and the oxygen atom ratio Y of the oxygen atom content to the transition metal atom content of the nitride In addition, the metal nitride-containing particles according to [2], wherein the atomic ratio Z of the content of atoms T to the content of transition metal atoms contained in the nitride is more than 0 and less than 2.
  • the metal nitride-containing particles as described. [7] The metal nitride-containing particle according to [6], wherein the atom T is selected from Group 13-16 elements. [8] The metal nitride-containing material according to any one of [1] to [7], wherein the atom T is any atom selected from the group consisting of a boron atom, a carbon atom, a sulfur atom, and a phosphorus atom particle. [9] The metal nitride-containing particle according to any one of [1] to [8], wherein the atom T is any atom selected from the group consisting of a boron atom, a sulfur atom, and a phosphorus atom.
  • a dispersion composition comprising the metal nitride-containing particles according to any one of [1] to [9] and a resin.
  • the curable composition according to [11] or [12] further containing a solvent.
  • a cured film obtained by curing the curable composition according to any one of [11] to [13].
  • a method for producing metal nitride-containing particles comprising: obtaining a mixture; and condensing the gas phase mixture to obtain metal nitride-containing particles.
  • a method for producing a dispersion composition comprising: condensing a mixture in a state to obtain metal nitride-containing particles; and mixing metal nitride-containing particles and a resin to obtain a dispersion composition.
  • a method for producing a curable composition comprising a dispersion composition, a polymerizable compound, and a polymerization initiator, the method comprising the method for producing a dispersion composition according to [20].
  • Manufacturing method [22] A curable composition layer forming step of forming a curable composition layer using the curable composition according to any one of [11] to [13], and a pattern on the curable composition layer An exposure step of irradiating with actinic rays or radiation through a photomask having an opening of the exposure step, and a development step of developing the curable composition layer after exposure to form a cured film The manufacturing method of a cured film.
  • the composition can be used for a curable composition having excellent anti-settling property and excellent temporal stability and capable of obtaining a cured film having excellent light-shielding properties.
  • Metal nitride-containing particles can be provided.
  • a dispersion composition, a curable composition, a cured film, a color filter, a solid-state imaging device, a solid-state imaging device, an infrared sensor, a method for producing metal nitride-containing particles, a method for producing a dispersion composition, and curable properties The manufacturing method of a composition and the manufacturing method of a cured film can also be provided.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • substitution and non-substitution includes what does not contain a substituent and what contains a substituent.
  • the “alkyl group” includes not only an alkyl group not containing a substituent (unsubstituted alkyl group) but also an alkyl group containing a substituent (substituted alkyl group).
  • Actinic light or “radiation” in the present specification means, for example, deep ultraviolet light, extreme ultraviolet lithography (EUV), X-rays, and electron beams.
  • light means actinic rays and radiation.
  • exposure in this specification includes not only exposure with far ultraviolet rays, X-rays, EUV light, etc., but also drawing with particle beams such as electron beams and ion beams.
  • (meth) acrylate” represents acrylate and methacrylate.
  • (meth) acryl represents acryl and methacryl.
  • (meth) acryloyl represents acryloyl and methacryloyl.
  • (meth) acrylamide represents acrylamide and methacrylamide.
  • “monomer” and “monomer” are synonymous.
  • a monomer is distinguished from an oligomer and a polymer, and refers to a compound having a weight average molecular weight of 2,000 or less.
  • the polymerizable compound means a compound containing a polymerizable group, and may be a monomer or a polymer.
  • the polymerizable group refers to a group that participates in a polymerization reaction.
  • the metal nitride-containing particles contain a nitride of a specific transition metal (containing a nitrogen atom) and a specific atom T.
  • the metal nitride-containing particles are also referred to as “ESCA” (hereinafter, also referred to as “ESCA”.
  • ESCA is an abbreviation for Electron Spectroscopy for Chemical Analysis) on the surface of metal nitride-containing particles.
  • the mass-based content of the atom T is T E (mass%), and metal nitridation is detected by fluorescent X-ray analysis (hereinafter also referred to as “XRF”.
  • XRF is an abbreviation for X-ray Fluorescence.
  • ESCA refers to the inclusion of each atom present on the surface of a measurement object (metal nitride-containing particles) by irradiating the measurement object with X-rays and measuring the intrinsic energy of the generated photoelectrons. It is a method of analyzing the amount (content based on the number of atoms of each atom: atomic%), and an analysis method performed under the following conditions is intended.
  • Quantera-SXM (trade name) device manufactured by PHI
  • X-ray source Monochromatic Al K ⁇ ray (1486.6 eV, 25 W, 15 kV, beam diameter 200 ⁇ m ⁇ )
  • Measurement area 200 ⁇ m ⁇
  • Measurement method Press the particles using a press to obtain a thin pellet-shaped measurement sample. This measurement sample is set in the above apparatus, and the photoelectron take-off angle is set to 10 degrees.
  • the content (atomic%) of atoms T described later on the surface of the metal nitride-containing particles can be measured. From this measured value, the mass-based content T of atoms T on the surface of the metal nitride-containing particles. E (mass%) can be obtained.
  • the surface of the metal nitride-containing particle means a region within a depth of 5 nm from the outermost surface of the metal nitride-containing particle toward the center of the metal nitride-containing particle.
  • XRF refers to the content (mass) of each atom in the measurement object (metal nitride-containing particles) from the energy and intensity of the generated fluorescent X-rays when the measurement object is irradiated with X-rays. %) Is intended to be performed under the following conditions.
  • Measurement area 10 ⁇ m ⁇
  • Measurement time 10-240 deg / min (deg is an abbreviation for degree) -Sample
  • the particles are pressed using a press to obtain a thin pellet-shaped measurement sample. This measurement sample is set in the apparatus and measured.
  • the mass-based content T X (mass%) of atoms T described later in the metal nitride-containing particles can be obtained.
  • the metal nitride-containing particles are characterized in that T E and T X satisfy the relationship represented by the following formula (1).
  • the metal nitride-containing particle having the above characteristics is a composite of a specific transition metal and a specific atom T, and the atom T is present on the surface and inside of the metal nitride-containing particle.
  • T E / T x is preferably less than 1.1 in that the metal nitride-containing particles have more excellent effects of the present invention. That is, it is preferable that the atoms T exist more uniformly on the surface and inside.
  • the lower limit of T E / T x is not particularly limited, but is often 0.5 or more.
  • the atom T may form any other component, for example, a eutectic that forms a crystal separate from the nitride of the transition metal, a solid solution that completely dissolves, and a compound. Good.
  • the metal nitride-containing particles contain atoms T.
  • the atom T is not an oxygen atom, a chlorine atom, or a nitrogen atom, and is selected from elements in groups 13 to 17 of the periodic table, and is not particularly limited.
  • the atom T is preferably selected from the elements of the 2nd to 6th periods of the periodic table in that the metal nitride-containing particles have the excellent effect of the present invention, and among them, aluminum, gallium, indium, tin And more preferably selected from elements other than thallium, lead, and bismuth.
  • atom T boron atom, carbon atom, oxygen, fluorine atom, silicon atom, phosphorus atom, sulfur atom, germanium atom, arsenic atom, selenium atom, bromine atom, antimony atom, tellurium atom, iodine atom, polonium More preferred are any atom selected from the group consisting of an atom and an astatine atom.
  • the atom T is any one selected from the group consisting of a boron atom, a carbon atom, a sulfur atom, a silicon atom, a phosphorus atom, and a fluorine atom in that the metal nitride-containing particles have a further excellent effect of the present invention.
  • the atom T is particularly preferably selected from elements of groups 13 to 16 in the periodic table in that the metal nitride-containing particles have particularly excellent effects of the present invention, and boron atoms, carbon atoms, sulfur Any atom selected from the group consisting of an atom and a phosphorus atom is most preferable, and any atom selected from the group consisting of a boron atom, a sulfur atom, and a phosphorus atom is particularly preferable.
  • the content of atom T in the metal nitride-containing particles is not particularly limited, but is preferably 0.05 to 40% by mass, more preferably 0.5 to 20% by mass with respect to the total mass of the metal nitride-containing particles. preferable.
  • the atom T may be used individually by 1 type, or may use 2 or more types together. When using 2 or more types of atoms T together, it is preferable that total content is in the said range.
  • the metal nitride-containing particles contain a nitride of a group 3-11 transition metal (hereinafter simply referred to as “transition metal”).
  • the transition metal is preferably a transition metal having an electronegativity of 1.22 to 2.36 in that the metal nitride-containing particles have a more excellent effect of the present invention.
  • transition metal examples include, for example, Sc (1.36), Y (1.22), Dy (1.22), Ho (1.23) of Group 3 transition elements, Er (1.24), Tm (1.25), Lu (1.27), Th (1.3), Pa (1.5), U (1.38), Np (1.36), Pu (1.28), Am (1.3), Cm (1.3), Bk (1.3), Cf (1.3), Es (1.3), Fm (1.3), Md ( 1.3), No (1.3), Lr (1.3); Group 4 Ti (1.54), Zr (1.33), Hf (1.3); Group 5 V (1.
  • Ru, Rh, Pd, Ag, Hf, Ta, W, Re, Os, Ir, or Pt are preferable, Ti, Zr, V, Nb, Hf, Cr, W, Ta, Y, or Re are more preferable, and Ti , Zr, V, Hf, Cr, W, Ta, Y, or Re are more preferable, Ti, Zr, V, Hf, Cr, or W are still more preferable, Ti, Zr, or Cr are particularly preferable, and Ti is Most preferred.
  • the content of transition metal atoms in the metal nitride-containing particles is not particularly limited, but is preferably 10% by mass to 99% by mass, more preferably 30% to 90% by mass with respect to the total mass of the metal nitride-containing particles. 40 to 70% by mass is more preferable.
  • the content of transition metal atoms in the metal nitride-containing particles can be analyzed by a fluorescent X-ray analyzer. A transition metal may be used individually by 1 type, or may use 2 or more types together. When two or more transition metals are used in combination, the total content is preferably within the above range.
  • the metal nitride-containing particles contain nitrogen atoms.
  • the form of the nitrogen atom in the metal nitride-containing particle is not particularly limited, and examples thereof include a form in which a transition metal nitride is formed by combining with the transition metal described above.
  • the content of nitrogen atoms (N atoms) in the metal nitride-containing particles is not particularly limited, but is preferably 0.1 to 80% by mass with respect to the total mass of the metal nitride-containing particles, and 5 to 70% by mass. Is more preferable, and 20 to 50% by mass is still more preferable.
  • the nitrogen atom content can be analyzed by a fluorescent X-ray analyzer.
  • the metal nitride-containing particles preferably contain oxygen atoms.
  • the form of oxygen atoms in the metal nitride-containing particles is not particularly limited, but may be intentionally added in the process for producing metal nitride-containing particles, or the process for producing metal nitride-containing particles. However, it may be unintentionally mixed.
  • the oxygen atom content in the metal nitride-containing particles is not particularly limited, but is preferably 0.01 to 50% by mass and more preferably 1 to 20% by mass with respect to the total mass of the metal nitride-containing particles.
  • the content of oxygen atoms can be analyzed by a fluorescent X-ray analyzer.
  • the content atom number ratio Y of the oxygen atom content to the content and the content atom number ratio Z of the content of the atom T to the content of the transition metal atom are each preferably greater than 0 and less than 2.
  • the lower limit value of the content atom number ratio X of the nitrogen atom content to the transition metal atom content in the metal nitride-containing particles is more preferably more than 0.3, still more preferably 0.4 or more, and 0.64 The above is particularly preferable.
  • the upper limit is more preferably less than 1.3, still more preferably 1.2 or less, and particularly preferably less than 1.2.
  • X is 0.4 or more, the curable composition containing metal nitride-containing particles has more excellent anti-settling property and stability over time.
  • X is less than 1.3, the cured film obtained from the curable composition containing metal nitride-containing particles has more excellent light shielding properties.
  • the cured film obtained from the curable composition containing metal nitride-containing particles has further excellent light-shielding properties.
  • the curable composition containing metal nitride-containing particles has better stability over time.
  • the lower limit value of the content atom number ratio Y of the oxygen atom content to the transition metal atom content in the metal nitride-containing particles is more preferably more than 0.03, still more preferably 0.05 or more, and 0.08. The above is particularly preferable.
  • the upper limit value is more preferably less than 0.25, and still more preferably 0.2 or less.
  • Y is 0.05 or more
  • the curable composition containing metal nitride-containing particles has better anti-settling property and stability over time.
  • Y is 0.2 or less
  • the curable composition containing metal nitride-containing particles has more excellent temporal stability, and the obtained light-shielding film has more excellent light-shielding properties.
  • the lower limit value of the content atom number ratio Z of the content of atoms T to the content of transition metal atoms is more preferably more than 0.03, still more preferably 0.05 or more, and 0.08.
  • the above is particularly preferable.
  • the upper limit is more preferably less than 1.2 and even more preferably 0.5 or less.
  • Z is 0.05 or more
  • the curable composition containing metal nitride-containing particles has more excellent anti-settling property and stability over time.
  • Y is 0.5 or less
  • the curable composition containing metal nitride-containing particles has better stability over time, and the resulting light-shielding film has better light-shielding properties.
  • the sum of the containing atom number ratio Y and the containing atom number ratio Z of the content of atoms T to the content of transition metal atoms (hereinafter also referred to as “sum of X, Y, and Z” or “X + Y + Z”) is 0. More than 4 and less than 1.6 is preferable.
  • X + Y + Z is less than 1.6, the cured film obtained from the curable composition containing metal nitride-containing particles has more excellent light shielding properties.
  • X + Y + Z exceeds 0.4 the curable composition containing metal nitride-containing particles has better anti-settling property and stability over time.
  • the lower limit of the sum of X, Y, and Z is more preferably 0.5 or more, still more preferably 0.8 or more, in that the metal nitride-containing particles have more excellent effects of the present invention.
  • the above is particularly preferable.
  • the upper limit value is more preferably 1.5 or less.
  • the curable composition containing metal nitride-containing particles has more excellent anti-settling properties and stability over time.
  • the curable composition containing metal nitride-containing particles has better temporal stability, and the resulting light-shielding film is more excellent Has light shielding properties.
  • the average primary particle diameter of the metal nitride-containing particles is 200 nm or less, and is preferably 80 nm or less and more preferably less than 80 nm in terms of having a more excellent effect of the present invention.
  • the curable composition has excellent temporal stability.
  • the curable composition has better temporal stability.
  • the lower limit of the average primary particle diameter of the metal nitride-containing particles is not particularly limited, but is generally preferably 1.0 nm or more.
  • the average primary particle size is 1.0 nm or more, the interaction between the metal nitride-containing particles is suppressed, the metal nitride-containing particles are less likely to aggregate, and as a result, the curable composition has a more stable aging stability.
  • the average primary particle diameter is an average obtained by arithmetically averaging the diameters in terms of circles evaluated for 400 metal nitride-containing particles using a transmission electron microscope (TEM: Transmission Electron Microscope). The primary particle size is intended and the test method is as described in the examples.
  • the minimum value of ⁇ ′ at a wavelength of 400 to 1200 nm is not particularly limited, but is preferably less than 0, and the metal nitride-containing particles are
  • the minimum value of ⁇ ′ is preferably ⁇ 0.5 or less in that a cured film obtained from the curable composition contained has better light-shielding properties.
  • the lower limit value of the minimum value of ⁇ ′ is not particularly limited, but is often about ⁇ 20.
  • ⁇ ′ represents the real part of the complex permittivity ⁇
  • ⁇ ′′ represents the imaginary part of the complex permittivity ⁇
  • j represents the imaginary unit.
  • the real part ⁇ ′ of the complex dielectric constant is intended to be a value measured by the following method.
  • a film having a thickness of 0.3 ⁇ m is formed on a silicon wafer using a composition containing metal nitride-containing particles.
  • the complex dielectric constant of the formed film is measured by the method described in Examples using spectroscopic ellipsometry.
  • membrane when forming a film
  • the method for producing the metal nitride-containing particles is not particularly limited, and a known method can be used.
  • Examples of the method for producing metal nitride-containing particles include a gas phase reaction method.
  • Examples of the gas phase reaction method include an electric furnace method, a thermal plasma method, and the like.
  • the thermal plasma method is preferable in that impurities are less mixed, the particle diameter is easily uniformed, and productivity is high.
  • a method for generating thermal plasma is not particularly limited, and examples thereof include direct current arc discharge, multilayer arc discharge, radio frequency (RF) plasma, and hybrid plasma.
  • the specific method for producing metal nitride-containing particles by the thermal plasma method is not particularly limited.
  • titanium tetrachloride and ammonia are used in a plasma flame.
  • Gas reacting method JP-A-2-22110
  • Titanium powder is evaporated by high-frequency thermal plasma, nitrogen is introduced as a carrier gas, and nitriding is performed in the cooling process (JP-A-61-1140)
  • a method of injecting ammonia gas into the peripheral edge of the plasma Japanese Patent Laid-Open No. 63-85007.
  • the method for producing metal nitride-containing particles is not limited as long as metal nitride-containing particles having desired physical properties are obtained.
  • the raw material may be appropriately heated or cooled in order to supply the raw material into the plasma flame at a desired flow rate.
  • a production method including the following steps is preferred.
  • raw material preparation step B
  • Step of mixing two or more raw materials in a gas phase to obtain a mixture
  • mixing step Step of condensing a gas phase mixture to obtain metal nitride-containing particles
  • each said process is explained in full detail. In the following steps, oxygen atoms may be unintentionally mixed into the raw materials, the mixture, and the condensate.
  • the raw material preparation step is a step of preparing two or more kinds of raw materials in the following combinations.
  • the raw material A contains nitrogen atoms, and examples thereof include nitrogen gas.
  • the raw material B contains a transition metal atom and an atom T, and examples thereof include titanium tetrachloride.
  • the raw material C contains a transition metal atom, and examples thereof include transition metal powder.
  • Examples of the raw material D include a solid, liquid, or gas containing the atom T.
  • the method for preparing the raw material is not particularly limited, and examples thereof include a method in which the raw material is procured by purchase and the raw material is obtained by synthesis.
  • a raw material preparation process it will not restrict
  • each raw material is not particularly limited, and may be any of solid (including sublimable solid), liquid, and gas.
  • the raw material may be a slurry described in paragraphs 0024 and 0025 of JP-A-2005-170760.
  • the upper limit of the kind of raw material prepared in this process is not particularly limited, generally 10 or less are preferable.
  • the mixing step is a step of obtaining a mixture by mixing two or more raw materials including any raw material prepared in the (a) raw material preparing step in a gas phase state.
  • the mixing step is a step of obtaining a mixture by mixing all the raw materials prepared in the raw material preparation step, that is, raw material A and raw material B, or raw material A, raw material C and raw material D in a gas phase state. Also good.
  • a method for mixing two or more kinds of raw materials in a gas phase state is not particularly limited, but a thermal plasma method in which the raw materials are supplied to thermal plasma to evaporate the raw materials and mixed in a gas phase state is preferable.
  • a method for mixing raw materials in a gas phase state by a thermal plasma method is not particularly limited, and a known method can be used.
  • Known methods include, for example, the method described in paragraphs 0015 to 0037 of JP-A-2005-170760, paragraphs 0038 to 0086 of JP-A-2015-227282, and 0017 to JP-A-2005-343784. Examples include the method described in paragraph 0047.
  • a method of generating a thermal plasma by arc discharge and introducing a raw material into the thermal plasma is preferable in that a metal nitride-containing particle having the better effect of the present invention can be obtained.
  • a method for generating a thermal plasma by arc discharge and introducing a raw material into the thermal plasma is not particularly limited, and a known method can be used.
  • JP-A-2005-343784 paragraph 0042 and apparatus shown in FIG. 1, and JP-A-2005-170760, 0019 and 0020. Examples thereof include a method using the raw material supply apparatus described in the paragraph.
  • the condensing step is a step of condensing the gas phase mixture to obtain metal nitride-containing particles.
  • the method in particular of obtaining a condensate is not restrict
  • Examples of the method for obtaining the metal nitride-containing particles include a method in which a gas phase mixture is brought into contact with the inner wall of the apparatus and rapidly cooled.
  • the method for producing metal nitride-containing particles preferably further includes a step (heating step) of heating and removing the metal nitride-containing particles produced by the above-described production method to volatilize and remove impurities.
  • the minimum value of the real part ⁇ ′ of the complex dielectric constant at a wavelength of 400 to 1200 nm tends to be less than zero.
  • the heating temperature in the heating step is not particularly limited and is generally preferably 150 to 500 ° C.
  • the heating time is not particularly limited, and generally 1 hour to 3 days is preferable.
  • the atmosphere during heating is not particularly limited, but a nitrogen atmosphere or the like in which oxygen is less than 200 ppm is preferable. Further, the pressure may be reduced during heating.
  • the method for producing metal nitride-containing particles further includes a stationary step in which the metal nitride-containing particles produced by the above-described production method are allowed to stand in a nitrogen gas atmosphere.
  • the method of standing is not particularly limited, and a known method can be used.
  • the dispersion composition according to the embodiment of the present invention contains metal nitride-containing particles and a resin. Below, each component which a dispersion composition contains is explained in full detail.
  • Metal nitride-containing particles The metal nitride-containing particles contained in the dispersion composition are as already described in the form of the metal nitride-containing particles.
  • the content of the metal nitride-containing particles in the dispersion composition is not particularly limited, but is generally preferably 10 to 90% by mass and more preferably 20 to 80% by mass with respect to the total solid content of the dispersion composition.
  • the metal nitride-containing particles may be used alone or in combination of two or more. When two or more kinds of metal nitride-containing particles are used in combination, the total content is preferably within the above range.
  • the dispersion composition contains a resin.
  • the resin include a dispersant and an alkali-soluble resin.
  • the content of the resin in the dispersion composition is not particularly limited, but is generally preferably 5 to 40% by mass with respect to the total solid content of the dispersion composition.
  • Resin may be used individually by 1 type, or may use 2 or more types together. When using 2 or more types of resin together, it is preferable that total content is in the said range.
  • the dispersion composition preferably contains a dispersant (corresponding to a resin).
  • a dispersing agent intends the compound different from the alkali-soluble resin mentioned later.
  • the content of the dispersant in the composition is not particularly limited, but is generally preferably 5 to 40% by mass and more preferably 5 to 30% by mass with respect to the total solid content of the composition.
  • a dispersing agent may be used individually by 1 type, or may use 2 or more types together. When two or more dispersants are used in combination, the total content is preferably within the above range.
  • the dispersant for example, a known dispersant can be appropriately selected and used. Of these, polymer compounds are preferable.
  • the dispersant include a polymer dispersant (for example, polyamidoamine and its salt, polycarboxylic acid and its salt, high molecular weight unsaturated acid ester, modified polyurethane, modified polyester, modified poly (meth) acrylate, (meth) acrylic type) Copolymer, naphthalenesulfonic acid formalin condensate), polyoxyethylene alkyl phosphate ester, polyoxyethylene alkyl amine, and pigment derivative.
  • the polymer compounds can be further classified into linear polymers, terminal-modified polymers, graft polymers, and block polymers based on their structures.
  • Polymer compound The polymer compound is adsorbed on the surface of metal nitride-containing particles (hereinafter sometimes referred to as “pigments”) and acts to prevent re-aggregation of the dispersion. For this reason, terminal-modified polymers, graft-type (containing polymer chains), and block-type polymers containing an anchor site to the pigment surface are preferred.
  • the polymer compound may contain a curable group.
  • the curable group include an ethylenically unsaturated group (for example, (meth) acryloyl group, vinyl group, styryl group, etc.), and a cyclic ether group (for example, epoxy group, oxetanyl group, etc.).
  • an ethylenically unsaturated group is preferable as the curable group in that polymerization can be controlled by radical reaction.
  • the ethylenically unsaturated group is more preferably a (meth) acryloyl group.
  • the resin containing a curable group preferably contains at least one selected from the group consisting of a polyester structure and a polyether structure.
  • the main chain may contain a polyester structure and / or a polyether structure, and, as described later, when the resin contains a structural unit containing a graft chain, the polymer chain May contain a polyester structure and / or a polyether structure.
  • the said resin it is more preferable that the said polymer chain contains a polyester structure.
  • the polymer compound preferably contains a structural unit containing a graft chain.
  • structural unit is synonymous with “repeating unit”.
  • Such a polymer compound containing a structural unit containing a graft chain has an affinity for a solvent due to the graft chain, so that the dispersibility of metal nitride-containing particles, etc., and the dispersion stability after aging (stable with time) Property).
  • the polymer compound containing the structural unit containing the graft chain has an affinity with a polymerizable compound or other resin that can be used in combination. As a result, it becomes difficult to produce a residue by alkali development.
  • the graft chain When the graft chain becomes longer, the steric repulsion effect becomes higher and the dispersibility of the metal nitride-containing particles and the like is improved. On the other hand, if the graft chain is too long, the adsorptive power to the metal nitride-containing particles and the like is lowered, and the dispersibility of the metal nitride-containing particles and the like tends to be lowered. Therefore, the graft chain preferably has 40 to 10,000 atoms excluding hydrogen atoms, more preferably 50 to 2000, and still more preferably 60 to 500.
  • the graft chain means from the base of the main chain of the copolymer (the atom bonded to the main chain in a group branched from the main chain) to the end of the group branched from the main chain.
  • the graft chain preferably contains a polymer structure.
  • a polymer structure include a poly (meth) acrylate structure (for example, a poly (meth) acrylic structure), a polyester structure, a polyurethane structure, a polyurea structure, and a polyamide.
  • examples thereof include a structure and a polyether structure.
  • the graft chain is made of a group consisting of a polyester structure, a polyether structure and a poly (meth) acrylate structure. It is preferably a graft chain containing at least one selected, and more preferably a graft chain containing at least one of a polyester structure and a polyether structure.
  • a macromonomer containing such a graft chain (a monomer having a polymer structure and bound to the main chain of the copolymer to form a graft chain) is not particularly limited, but contains a reactive double bond group
  • the macromonomer to be used can be preferably used.
  • AA-6 (trade name, manufactured by Toa Gosei Co., Ltd.), AA-10 (trade name, manufactured by Toa Gosei Co., Ltd.), AB-6 (trade name, manufactured by Toa Gosei Co., Ltd.), AS-6 ( Trade name, manufactured by Toa Gosei Co., Ltd.), AN-6 (trade name, manufactured by Toa Gosei Co., Ltd.), and Bremer PME-4000 (trade name, manufactured by NOF Corporation) are used.
  • the dispersant preferably contains at least one structure selected from the group consisting of polymethyl acrylate, polymethyl methacrylate, and cyclic or chain polyester. More preferably, the dispersant contains at least one structure selected from the group consisting of polymethyl acrylate, polymethyl methacrylate, and chain polyester. More preferably, the dispersant contains at least one structure selected from the group consisting of a polymethyl acrylate structure, a polymethyl methacrylate structure, a polycaprolactone structure, and a polyvalerolactone structure.
  • the dispersing agent may contain the above structure alone in one dispersing agent, or may contain a plurality of these structures in one dispersing agent.
  • the polycaprolactone structure means a structure containing a ring-opened structure of ⁇ -caprolactone as a repeating unit.
  • the polyvalerolactone structure means a structure containing a ring-opened structure of ⁇ -valerolactone as a repeating unit.
  • Specific examples of the dispersant containing a polycaprolactone structure include those in which j and k are 5 in the following formula (1) and the following formula (2).
  • Specific examples of the dispersant containing a polyvalerolactone structure include those in which j and k in the following formula (1) and the following formula (2) are 4.
  • dispersant containing a polymethyl acrylate structure examples include those in which X 5 in the following formula (4) is a hydrogen atom and R 4 is a methyl group.
  • dispersant containing a polymethyl methacrylate structure examples include those in which X 5 in the following formula (4) is a methyl group and R 4 is a methyl group.
  • the polymer compound preferably contains a structural unit represented by any of the following formulas (1) to (4) as a structural unit containing a graft chain. It is more preferable to contain a structural unit represented by any one of (1A), the following formula (2A), the following formula (3A), the following formula (3B), and the following formula (4).
  • W 1 , W 2 , W 3 , and W 4 each independently represent an oxygen atom or NH. W 1 , W 2 , W 3 , and W 4 are preferably oxygen atoms.
  • X 1 , X 2 , X 3 , X 4 , and X 5 each independently represent a hydrogen atom or a monovalent organic group.
  • X 1 , X 2 , X 3 , X 4 , and X 5 may each independently be a hydrogen atom or an alkyl group having 1 to 12 carbon atoms (the number of carbon atoms) from the viewpoint of synthesis constraints.
  • a hydrogen atom or a methyl group is more preferable, and a methyl group is still more preferable.
  • Y 1 , Y 2 , Y 3 , and Y 4 each independently represent a divalent linking group, and the linking group is not particularly limited in structure.
  • Specific examples of the divalent linking group represented by Y 1 , Y 2 , Y 3 , and Y 4 include the following (Y-1) to (Y-21) linking groups.
  • a and B each represent a binding site. Of the structures shown below, (Y-2) or (Y-13) is more preferable because of the ease of synthesis.
  • Z 1 , Z 2 , Z 3 , and Z 4 each independently represent a monovalent organic group.
  • the structure of the organic group is not particularly limited. Specifically, an alkyl group, a hydroxyl group, an alkoxy group, an aryloxy group, a heteroaryloxy group, an alkylthioether group, an arylthioether group, a heteroarylthioether group, an amino group, and the like Is mentioned.
  • the organic groups represented by Z 1 , Z 2 , Z 3 , and Z 4 are preferably those containing a steric repulsion effect, particularly from the viewpoint of improving dispersibility.
  • alkyl groups or alkoxy groups More preferred are 24 alkyl groups or alkoxy groups, and each independently preferred is a branched alkyl group having 5 to 24 carbon atoms, a cyclic alkyl group having 5 to 24 carbon atoms, or an alkoxy group having 5 to 24 carbon atoms.
  • the alkyl group contained in the alkoxy group may be linear, branched, or cyclic.
  • n, m, p, and q are each independently an integer of 1 to 500.
  • j and k each independently represent an integer of 2 to 8.
  • J and k in the formulas (1) and (2) are more preferably an integer of 4 to 6, and further preferably 5, from the viewpoint of the temporal stability and developability of the composition.
  • n and m are preferably an integer of 10 or more, and more preferably an integer of 20 or more.
  • the dispersant contains a polycaprolactone structure and a polyvalerolactone structure
  • the sum of the number of repeats of the polycaprolactone structure and the number of repeats of polyvalerolactone is preferably an integer of 10 or more, and an integer of 20 or more Is more preferable.
  • R 3 represents a branched or straight chain alkylene group, preferably an alkylene group having 1 to 10 carbon atoms, and more preferably an alkylene group having 2 or 3 carbon atoms. When p is 2 to 500, a plurality of R 3 may be the same or different from each other.
  • R 4 represents a hydrogen atom or a monovalent organic group, and the monovalent organic group is not particularly limited in terms of structure.
  • R 4 is preferably a hydrogen atom, an alkyl group, an aryl group, or a heteroaryl group, and more preferably a hydrogen atom or an alkyl group.
  • R 4 is an alkyl group
  • a linear alkyl group having 1 to 20 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, or a cyclic alkyl group having 5 to 20 carbon atoms is preferable, and 1 to A linear alkyl group having 20 is more preferable, and a linear alkyl group having 1 to 6 carbon atoms is still more preferable.
  • q is 2 to 500
  • a plurality of X 5 and R 4 present in the graft copolymer may be the same or different from each other.
  • the polymer compound can contain structural units containing graft chains that differ in two or more structures. That is, the polymer compound molecule may contain structural units represented by formulas (1) to (4) having different structures, and n, m in formulas (1) to (4). , P, and q each represent an integer of 2 or more, in formula (1) and formula (2), j and k may contain structures different from each other in the side chain. In the formula (4), a plurality of R 3 , R 4 and X 5 present in the molecule may be the same or different from each other.
  • the structural unit represented by the formula (1) is more preferably a structural unit represented by the following formula (1A) from the viewpoint of temporal stability and developability of the composition.
  • the structural unit represented by the formula (2) is more preferably a structural unit represented by the following formula (2A) from the viewpoint of temporal stability and developability of the composition.
  • X 1, Y 1, Z 1 and n are as defined X 1, Y 1, Z 1 and n in Formula (1), and preferred ranges are also the same.
  • X 2, Y 2, Z 2 and m are as defined X 2, Y 2, Z 2 and m in the formula (2), and preferred ranges are also the same.
  • the structural unit represented by the formula (3) is more preferably a structural unit represented by the following formula (3A) or formula (3B) from the viewpoint of the temporal stability and developability of the composition.
  • X 3, Y 3, Z 3 and p are as defined X 3, Y 3, Z 3 and p in formula (3), and preferred ranges are also the same.
  • the polymer compound contains a structural unit represented by the formula (1A) as a structural unit containing a graft chain.
  • the structural unit containing a graft chain (for example, the structural unit represented by the above formulas (1) to (4)) is 2 to 90% in terms of mass with respect to the total mass of the polymer compound. Preferably, it is contained in the range of 5 to 30%.
  • the structural unit containing a graft chain is contained within this range, the dispersibility of the metal nitride-containing particles is high, and the developability when forming a cured film is good.
  • a high molecular compound contains the hydrophobic structural unit different from the structural unit containing a graft chain (namely, it does not correspond to the structural unit containing a graft chain).
  • a hydrophobic structural unit is a structural unit which does not have an acid group (for example, a carboxylic acid group, a sulfonic acid group, a phosphoric acid group, a phenolic hydroxyl group, etc.).
  • the hydrophobic structural unit is preferably a structural unit derived from (corresponding to) a compound (monomer) having a ClogP value of 1.2 or more, more preferably derived from a compound having a ClogP value of 1.2 to 8. A structural unit. Thereby, the effect of this invention can be expressed more reliably.
  • ClogP values are available from Daylight Chemical Information System, Inc. It is a value calculated by the program “CLOGP” available from This program provides the value of “computation logP” calculated by Hansch, Leo's fragment approach (see below). The fragment approach is based on the chemical structure of a compound, which divides the chemical structure into substructures (fragments) and estimates the logP value of the compound by summing the logP contributions assigned to that fragment. Details thereof are described in the following documents. In this specification, the ClogP value is intended to be a value calculated by the program CLOGP v4.82. A. J. et al. Leo, Comprehensive Medicinal Chemistry, Vol. 4, C.I. Hansch, P.A. G. Sammunens, J. et al.
  • log P means the common logarithm of the partition coefficient P (Partition Coefficient), and quantitatively determines how an organic compound is distributed in the equilibrium of a two-phase system of oil (generally 1-octanol) and water. It is a physical property value expressed as a numerical value, and is represented by the following formula.
  • logP log (Coil / Cwater)
  • Coil represents the molar concentration of the compound in the oil phase
  • Cwater represents the molar concentration of the compound in the aqueous phase.
  • the polymer compound preferably contains one or more structural units selected from structural units derived from monomers represented by the following formulas (i) to (iii) as hydrophobic structural units.
  • R 1 , R 2 , and R 3 each independently represent a hydrogen atom, a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, etc.), or a carbon number of 1 Represents an alkyl group of ⁇ 6 (for example, methyl group, ethyl group, propyl group, etc.).
  • R 1 , R 2 , and R 3 are preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and more preferably a hydrogen atom or a methyl group.
  • R 2 and R 3 are more preferably a hydrogen atom.
  • X represents an oxygen atom (—O—) or an imino group (—NH—), and is preferably an oxygen atom.
  • L is a single bond or a divalent linking group.
  • a divalent aliphatic group for example, alkylene group, substituted alkylene group, alkenylene group, substituted alkenylene group, alkynylene group, substituted alkynylene group
  • divalent aromatic group for example, arylene group
  • Substituted arylene group divalent heterocyclic group, oxygen atom (—O—), sulfur atom (—S—), imino group (—NH—), substituted imino group (—NR 31 —, where R 31 Include aliphatic groups, aromatic groups or heterocyclic groups), carbonyl groups (—CO—), and combinations thereof.
  • the divalent aliphatic group may have a cyclic structure or a branched structure.
  • the aliphatic group preferably has 1 to 20 carbon atoms, more preferably 1 to 15 carbon atoms, and still more preferably 1 to 10 carbon atoms.
  • the aliphatic group may be an unsaturated aliphatic group or a saturated aliphatic group, but is preferably a saturated aliphatic group.
  • the aliphatic group may have a substituent. Examples of the substituent include a halogen atom, an aromatic group and a heterocyclic group.
  • the carbon number of the divalent aromatic group is preferably 6 to 20, more preferably 6 to 15, and still more preferably 6 to 10.
  • the aromatic group may have a substituent. Examples of the substituent include a halogen atom, an aliphatic group, an aromatic group, and a heterocyclic group.
  • the divalent heterocyclic group preferably contains a 5-membered ring or a 6-membered ring as the heterocyclic ring. Another heterocyclic ring, an aliphatic ring or an aromatic ring may be condensed with the heterocyclic ring.
  • the heterocyclic group may have a substituent. Examples of substituents include halogen atoms, hydroxyl groups, oxo groups ( ⁇ O), thioxo groups ( ⁇ S), imino groups ( ⁇ NH), substituted imino groups ( ⁇ N—R 32 , where R 32 is aliphatic. Group, aromatic group or heterocyclic group), aliphatic group, aromatic group, or heterocyclic group.
  • L is preferably a single bond, an alkylene group or a divalent linking group containing an oxyalkylene structure.
  • the oxyalkylene structure is more preferably an oxyethylene structure or an oxypropylene structure.
  • L may contain a polyoxyalkylene structure containing two or more oxyalkylene structures.
  • the polyoxyalkylene structure is preferably a polyoxyethylene structure or a polyoxypropylene structure.
  • the polyoxyethylene structure is represented by — (OCH 2 CH 2 ) n—, where n is preferably an integer of 2 or more, and more preferably an integer of 2 to 10.
  • Z is an aliphatic group (eg, alkyl group, substituted alkyl group, unsaturated alkyl group, substituted unsaturated alkyl group), aromatic group (eg, aryl group, substituted aryl group, arylene group, substituted arylene group). , A heterocyclic group, or a combination thereof. These groups include an oxygen atom (—O—), a sulfur atom (—S—), an imino group (—NH—), a substituted imino group (—NR 31 —, wherein R 31 is an aliphatic group, an aromatic group Group or heterocyclic group), or a carbonyl group (—CO—) may be contained.
  • the aliphatic group may have a cyclic structure or a branched structure.
  • the aliphatic group preferably has 1 to 20 carbon atoms, more preferably 1 to 15 carbon atoms, and still more preferably 1 to 10 carbon atoms.
  • the aliphatic group further includes a ring assembly hydrocarbon group and a bridged cyclic hydrocarbon group. Examples of the ring assembly hydrocarbon group include a bicyclohexyl group, a perhydronaphthalenyl group, a biphenyl group, and 4- A cyclohexylphenyl group and the like are included.
  • bridged cyclic hydrocarbon ring examples include two rings such as pinane, bornane, norpinane, norbornane, bicyclooctane ring (bicyclo [2.2.2] octane ring, bicyclo [3.2.1] octane ring, etc.) Hydrocarbon rings, homobredan, adamantane, tricyclo [5.2.1.0 2,6 ] decane, and tricyclic hydrocarbon rings such as tricyclo [4.3.1.1 2,5 ] undecane ring, and Tetracyclo [4.4.0.1 2,5 .
  • tetracyclic hydrocarbon rings such as perhydro-1,4-methano-5,8-methanonaphthalene ring.
  • Bridged cyclic hydrocarbon rings include condensed cyclic hydrocarbon rings such as perhydronaphthalene (decalin), perhydroanthracene, perhydrophenanthrene, perhydroacenaphthene, perhydrofluorene, perhydroindene, and perhydrophenene.
  • a condensed ring in which a plurality of 5- to 8-membered cycloalkane rings such as a len ring are condensed is also included.
  • the aliphatic group is preferably a saturated aliphatic group rather than an unsaturated aliphatic group.
  • the aliphatic group may have a substituent. Examples of the substituent include a halogen atom, an aromatic group, and a heterocyclic group. However, the aliphatic group does not have an acid group as a substituent.
  • the carbon number of the aromatic group is preferably 6-20, more preferably 6-15, and still more preferably 6-10.
  • the aromatic group may have a substituent. Examples of the substituent include a halogen atom, an aliphatic group, an aromatic group, and a heterocyclic group. However, the aromatic group does not have an acid group as a substituent.
  • a heterocyclic group contains a 5-membered ring or a 6-membered ring as a heterocyclic ring.
  • Another heterocyclic ring, an aliphatic ring or an aromatic ring may be condensed with the heterocyclic ring.
  • the heterocyclic group may have a substituent. Examples of substituents include halogen atoms, hydroxyl groups, oxo groups ( ⁇ O), thioxo groups ( ⁇ S), imino groups ( ⁇ NH), substituted imino groups ( ⁇ N—R 32 , where R 32 is aliphatic. Group, aromatic group or heterocyclic group), aliphatic group, aromatic group and heterocyclic group. However, the heterocyclic group does not have an acid group as a substituent.
  • R 4 , R 5 , and R 6 are each independently a hydrogen atom, a halogen atom (eg, a fluorine atom, a chlorine atom, a bromine atom, etc.), or an alkyl group having 1 to 6 carbon atoms.
  • a halogen atom eg, a fluorine atom, a chlorine atom, a bromine atom, etc.
  • an alkyl group having 1 to 6 carbon atoms for example, a methyl group, an ethyl group, a propyl group, etc.
  • Z or LZ.
  • L and Z are as defined above.
  • R 4 , R 5 and R 6 are preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably a hydrogen atom.
  • R 1 , R 2 , and R 3 are a hydrogen atom or a methyl group
  • L is a single bond or an alkylene group or a divalent linking group containing an oxyalkylene structure
  • a compound in which X is an oxygen atom or imino group, and Z is an aliphatic group, heterocyclic group or aromatic group is preferred.
  • the monomer represented by the above formula (ii) is preferably a compound in which R 1 is a hydrogen atom or a methyl group, L is an alkylene group, and Z is an aliphatic group, a heterocyclic group or an aromatic group.
  • R 4 , R 5 , and R 6 are a hydrogen atom or a methyl group, and Z is an aliphatic group, a heterocyclic group, or an aromatic group is preferable.
  • Examples of typical compounds represented by the formulas (i) to (iii) include radical polymerizable compounds selected from acrylic acid esters, methacrylic acid esters, styrenes, and the like.
  • Examples of typical compounds represented by formulas (i) to (iii) compounds described in paragraphs 0089 to 0093 of JP2013-249417A can be referred to, and the contents thereof are described in the present specification. Incorporated into.
  • the hydrophobic structural unit is preferably contained in a range of 10 to 90%, more preferably in a range of 20 to 80% with respect to the total mass of the polymer compound in terms of mass. When the content is in the above range, sufficient pattern formation can be obtained.
  • the polymer compound can introduce a functional group capable of forming interaction with metal nitride-containing particles.
  • the polymer compound preferably further contains a structural unit containing a functional group capable of forming an interaction with metal nitride-containing particles and the like.
  • the functional group that can form an interaction with the metal nitride-containing particles include an acid group, a basic group, a coordinating group, and a reactive functional group.
  • the polymer compound contains an acid group, a basic group, a coordinating group, or a reactive functional group, the structural unit containing an acid group, the structural unit containing a basic group, and the coordination, respectively.
  • a structural unit containing a functional group or a structural unit having reactivity it is preferable to contain a structural unit containing a functional group or a structural unit having reactivity.
  • the polymer compound further contains an alkali-soluble group such as a carboxylic acid group as the acid group, developability for pattern formation by alkali development can be imparted to the polymer compound. That is, by introducing an alkali-soluble group into the polymer compound, the polymer compound as a dispersant that contributes to the dispersion of metal nitride-containing particles and the like has alkali solubility in the composition.
  • a composition containing such a polymer compound has excellent light-shielding properties in the exposed area, and the alkali developability in the unexposed area is improved.
  • a high molecular compound contains the structural unit containing an acid group
  • a high molecular compound becomes easy to become compatible with a solvent, and there exists a tendency for applicability
  • the acid group in the structural unit containing an acid group easily interacts with the metal nitride-containing particles and the like, and the polymer compound stably disperses the metal nitride-containing particles and the like, and the metal nitride-containing particles and the like It is presumed that the viscosity of the polymer compound in which the polymer is dispersed is low, and the polymer compound itself is easily dispersed stably.
  • the structural unit containing an alkali-soluble group as an acid group may be the same structural unit as the structural unit containing the graft chain or a different structural unit.
  • the structural unit containing a soluble group is a structural unit different from the hydrophobic structural unit described above (that is, does not correspond to the hydrophobic structural unit described above).
  • Examples of the acid group that is a functional group capable of forming an interaction with metal nitride-containing particles include a carboxylic acid group, a sulfonic acid group, a phosphoric acid group, or a phenolic hydroxyl group, and preferably a carboxylic acid group.
  • a sulfonic acid group, and a phosphoric acid group, and more preferable is a carboxylic acid group in terms of good adsorptive power to metal nitride-containing particles and high dispersibility.
  • the polymer compound preferably further contains a structural unit containing at least one of a carboxylic acid group, a sulfonic acid group, and a phosphoric acid group.
  • the polymer compound may have one or more structural units containing an acid group.
  • the polymer compound may or may not contain a structural unit containing an acid group. However, when it is contained, the content of the structural unit containing an acid group is calculated by mass conversion to the total mass of the polymer compound. On the other hand, it is preferably 5 to 80%, and more preferably 10 to 60% from the viewpoint of suppressing damage of image strength due to alkali development.
  • Examples of the basic group that is a functional group capable of forming an interaction with metal nitride-containing particles include a primary amino group, a secondary amino group, a tertiary amino group, and a heterocyclic ring containing an N atom. And an amide group, and a preferable one is a tertiary amino group in that it has a good adsorptive power to metal nitride-containing particles and has a high dispersibility.
  • the polymer compound can contain one or more of these basic groups.
  • the polymer compound may or may not contain a structural unit containing a basic group, but when it is contained, the content of the structural unit containing a basic group is the total amount of the polymer compound in terms of mass. Preferably it is 0.01% or more and 50% or less with respect to mass, More preferably, it is 0.01% or more and 30% or less from a viewpoint of developability inhibition suppression.
  • Examples of the coordinating group which is a functional group capable of forming an interaction with metal nitride-containing particles and the functional group having reactivity include, for example, an acetylacetoxy group, a trialkoxysilyl group, an isocyanate group, an acid anhydride, And acid chlorides.
  • Preferable one is an acetylacetoxy group in that the adsorbing power to the metal nitride-containing particles is good and the dispersibility of the metal nitride-containing particles is high.
  • the polymer compound may have one or more of these groups.
  • the polymer compound may or may not contain a structural unit containing a coordinating group or a structural unit containing a reactive functional group, but when it is contained, the content of these structural units is In terms of mass, it is preferably 10% or more and 80% or less, and more preferably 20% or more and 60% or less from the viewpoint of inhibiting developability inhibition, with respect to the total mass of the polymer compound.
  • the polymer compound contains a functional group capable of interacting with metal nitride-containing particles in addition to the graft chain, the functional group capable of interacting with the various metal nitride-containing particles described above.
  • the polymer compound is derived from the monomers represented by the following formulas (iv) to (vi) It is preferable to contain one or more structural units selected from these structural units.
  • R 11 , R 12 , and R 13 each independently represent a hydrogen atom, a halogen atom (eg, a fluorine atom, a chlorine atom, a bromine atom, etc.), or a carbon number of 1 Represents an alkyl group of ⁇ 6 (for example, methyl group, ethyl group, propyl group, etc.).
  • R 11 , R 12 and R 13 are preferably each independently a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably each independently Are a hydrogen atom or a methyl group.
  • R 12 and R 13 are each particularly preferably a hydrogen atom.
  • X 1 in the formula (iv) represents an oxygen atom (—O—) or an imino group (—NH—), and is preferably an oxygen atom.
  • Y in the formula (v) represents a methine group or a nitrogen atom.
  • L 1 in the formulas (iv) to (v) represents a single bond or a divalent linking group.
  • the definition of the divalent linking group is the same as the definition of the divalent linking group represented by L in the above-described formula (i).
  • L 1 is preferably a single bond, an alkylene group or a divalent linking group containing an oxyalkylene structure.
  • the oxyalkylene structure is more preferably an oxyethylene structure or an oxypropylene structure.
  • L 1 may include a polyoxyalkylene structure containing two or more oxyalkylene structures.
  • the polyoxyalkylene structure is preferably a polyoxyethylene structure or a polyoxypropylene structure.
  • the polyoxyethylene structure is represented by — (OCH 2 CH 2 ) n—, where n is preferably an integer of 2 or more, and more preferably an integer of 2 to 10.
  • Z 1 represents a functional group that can form an interaction with the metal nitride-containing particles in addition to the graft chain, and is a carboxylic acid group or a tertiary amino group. Are preferable, and a carboxylic acid group is more preferable.
  • R 14 , R 15 , and R 16 are each independently a hydrogen atom, a halogen atom (eg, a fluorine atom, a chlorine atom, a bromine atom, etc.), an alkyl group having 1 to 6 carbon atoms (for example, a methyl group, an ethyl group, a propyl group, etc.), - Z 1, or an L 1 -Z 1.
  • L 1 and Z 1 are the same meaning as L 1 and Z 1 in the above, it is the preferable examples.
  • R 14 , R 15 and R 16 are each independently preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably a hydrogen atom.
  • R 11 , R 12 and R 13 are each independently a hydrogen atom or a methyl group, and L 1 is an alkylene group or a divalent oxyalkylene structure.
  • a compound in which X 1 is an oxygen atom or imino group and Z 1 is a carboxylic acid group is preferable.
  • R 11 is a hydrogen atom or a methyl group
  • L 1 is an alkylene group
  • Z 1 is a carboxylic acid group
  • Y is a methine group.
  • R 14 , R 15 , and R 16 are each independently a hydrogen atom or a methyl group, L 1 is a single bond or an alkylene group, and Z 1 is Compounds that are carboxylic acid groups are preferred.
  • monomers represented by the formulas (iv) to (vi).
  • monomers include methacrylic acid, crotonic acid, isocrotonic acid, a reaction containing a compound having an addition polymerizable double bond and a hydroxyl group in the molecule (for example, 2-hydroxyethyl methacrylate) and succinic anhydride.
  • reaction product a reaction product of a compound containing an addition polymerizable double bond and a hydroxyl group in the molecule with phthalic anhydride, a compound containing an addition polymerizable double bond and a hydroxyl group in the molecule and tetrahydroxyphthalic anhydride Reaction product, a reaction product of a compound containing an addition polymerizable double bond and hydroxyl group in the molecule and trimellitic anhydride, a compound containing an addition polymerizable double bond and hydroxyl group in the molecule and pyromellitic anhydride Reaction products, acrylic acid, acrylic acid dimer, acrylic acid oligomer, maleic acid, itaconic acid, fumaric acid, 4-vinylbenzoic acid, vinylphenol, and 4- Hydroxyphenyl methacrylamide.
  • the content of the structural unit containing a functional group capable of forming an interaction with metal nitride-containing particles, etc. is from the viewpoint of interaction with metal nitride-containing particles, etc., stability over time, and permeability to developer.
  • the amount is preferably 0.05% by mass to 90% by mass, more preferably 1.0% by mass to 80% by mass, and still more preferably 10% by mass to 70% by mass with respect to the total mass of the polymer compound.
  • the polymer compound is a structural unit containing a graft chain, a hydrophobic structural unit, and metal nitriding, as long as the effects of the present invention are not impaired.
  • Other structural units having various functions different from structural units containing functional groups capable of forming interactions with substance-containing particles, etc. (for example, functional groups having affinity with the solvent used in the dispersion composition, etc. May further have a structural unit containing Examples of such other structural units include structural units derived from radically polymerizable compounds selected from acrylonitriles, methacrylonitriles, and the like.
  • the content thereof is preferably 0% to 80% in terms of mass with respect to the total mass of the polymer compound. More preferably, it is 10% to 60%. When the content is in the above range, sufficient pattern formability is maintained.
  • the acid value of the polymer compound is preferably in the range of 0 mgKOH / g to 250 mgKOH / g, more preferably in the range of 10 mgKOH / g to 200 mgKOH / g, and even more preferably 20 mgKOH. / G or more and 120 mgKOH / g or less.
  • the acid value of the polymer compound is 250 mgKOH / g or less, pattern peeling during development when forming a cured film is more effectively suppressed.
  • the acid value of the polymer compound is 10 mgKOH / g or more, the alkali developability becomes better.
  • the acid value of the polymer compound is 20 mgKOH / g or more, sedimentation of metal nitride-containing particles and the like can be further suppressed, the number of coarse particles can be reduced, and the temporal stability of the composition can be further improved.
  • the acid value of the polymer compound can be calculated, for example, from the average content of acid groups in the polymer compound.
  • a resin having a desired acid value can be obtained by changing the content of the structural unit containing an acid group which is a constituent component of the polymer compound.
  • the weight average molecular weight of the polymer compound is 4 in terms of polystyrene conversion by GPC (Gel Permeation Chromatography) method from the viewpoint of pattern peeling inhibition during development and developability when forming a cured film. It is preferably 000 or more and 300,000 or less, more preferably 5,000 or more and 200,000 or less, further preferably 6,000 or more and 100,000 or less, and 10,000 or more and 50,000 or less.
  • the GPC method is based on a method using HLC-8020GPC (manufactured by Tosoh), TSKgel SuperHZM-H, TSKgel SuperHZ4000, TSKgel SuperHZ2000 (manufactured by Tosoh, 4.6 mm ID ⁇ 15 cm) as a column and THF (tetrahydrofuran) as an eluent.
  • the polymer compound can be synthesized based on a known method.
  • polymer compound examples include “DA-7301” manufactured by Enomoto Kasei Co., Ltd., “Disperbyk-101 (polyamidoamine phosphate)” manufactured by BYK Chemie, 107 (carboxylic acid ester), and 110 (copolymer containing acid group).
  • Acrybase FFS-6752 Acrybase FFS-187
  • Acrycure-RD-F8 and Cyclomer P
  • Examples of commercially available amphoteric resins include DISPERBYK-130, DISPERBYK-140, DISPERBYK-142, DISPERBYK-145, DISPERBYK-180, DISPERBYK-187, DISPERBYK-191, DISPERBYK-2001, DISPER10K, 2001-DISPERBY, manufactured by BYK Chemie.
  • polymer compound As specific examples of the polymer compound, reference can be made to the polymer compounds described in paragraphs 0127 to 0129 of JP2013-249417A, the contents of which are incorporated herein.
  • a graft copolymer described in JP-A 2010-106268, paragraphs 0037 to 0115 (corresponding to paragraphs 0075 to 0133 in US2011 / 0124824) can be used. Can be incorporated and incorporated herein by reference.
  • Polymeric compounds containing components can be used, the contents of which can be incorporated and incorporated herein.
  • resins described in paragraphs 0033 to 0049 of JP-A-2016-109763 can also be used, the contents of which are incorporated herein.
  • the dispersion composition preferably contains an alkali-soluble resin (corresponding to a resin).
  • the alkali-soluble resin means a resin containing a group that promotes alkali solubility (alkali-soluble group), and a resin different from the dispersant already described.
  • the content of the alkali-soluble resin in the dispersion composition is not particularly limited, but generally 1 to 30% by mass is preferable with respect to the total solid content of the dispersion composition, and the dispersion composition has more excellent effects of the present invention. In this respect, 1 to 15% by mass is more preferable.
  • Alkali-soluble resin may be used individually by 1 type, or may use 2 or more types together. When using 2 or more types of alkali-soluble resin together, it is preferable that total content is in the said range.
  • alkali-soluble resin examples include resins containing at least one alkali-soluble group in the molecule, such as polyhydroxystyrene resin, polysiloxane resin, (meth) acrylic resin, (meth) acrylamide resin, and (meth) acrylic. / (Meth) acrylamide copolymer resin, epoxy resin, polyimide resin, and the like.
  • the alkali-soluble resin include a copolymer of an unsaturated carboxylic acid and an ethylenically unsaturated compound.
  • Unsaturated carboxylic acids are not particularly limited, but monocarboxylic acids such as (meth) acrylic acid, crotonic acid, and vinyl acetic acid; dicarboxylic acids such as itaconic acid, maleic acid, and fumaric acid, or acid anhydrides thereof; phthalic acid And polycarboxylic acid monoesters such as mono (2- (meth) acryloyloxyethyl).
  • Examples of the copolymerizable ethylenically unsaturated compound include methyl (meth) acrylate.
  • the compounds described in paragraph 0027 of JP2010-97210A and paragraphs 0036 to 0037 of JP2015-68893A can also be used, and the above contents are incorporated herein.
  • a copolymerizable ethylenically unsaturated compound that contains an ethylenically unsaturated group in the side chain may be used in combination.
  • a (meth) acrylic acid group is preferable.
  • An acrylic resin having an ethylenically unsaturated group in the side chain is obtained by, for example, adding an ethylenically unsaturated compound containing a glycidyl group or an alicyclic epoxy group to a carboxylic acid group of an acrylic resin containing a carboxylic acid group. Can be obtained.
  • alkali-soluble resin examples include JP-A-59-44615, JP-B-54-34327, JP-B-58-12777, JP-B-54-25957, JP-A-54-92723, JP-A-59-.
  • alkali-soluble resin for example, compounds described in paragraphs 0225 to 0245 of JP-A-2016-75845 can be used, and the above contents are incorporated in the present specification.
  • a polyimide precursor can also be used as the alkali-soluble resin.
  • the polyimide precursor intends a resin obtained by subjecting a compound containing an acid anhydride group and a diamine compound to an addition polymerization reaction at 40 to 100 ° C.
  • resin containing the repeating unit represented by following formula (1) is mentioned, for example.
  • the structure of the polyimide precursor include an amic acid structure represented by the following formula (2), the following formula (3) in which the amic acid structure is partially imide ring-closed, and / or the following formula ( What contains the imide structure shown by 4) is mentioned.
  • a polyimide precursor having an amic acid structure may be referred to as a polyamic acid.
  • R 1 represents a tetravalent organic group having 2 to 22 carbon atoms
  • R 2 represents a divalent organic group having 1 to 22 carbon atoms
  • n is 1 or 2 Represents.
  • polyimide precursor examples include compounds described in paragraphs 0011 to 0031 of JP 2008-106250 A, compounds described in paragraphs 0022 to 0039 of JP 2016-122101 A, and JP 2016-68401 A.
  • the compounds described in paragraphs 0061 to 0092 of the publication are listed, and the above contents are incorporated in the present specification.
  • the alkali-soluble resin preferably contains at least one selected from the group consisting of polyimide resins and polyimide precursors in that the pattern shape of the patterned cured film obtained using the dispersion composition is more excellent.
  • the polyimide resin containing an alkali-soluble group is not particularly limited, and a known polyimide resin containing an alkali-soluble group can be used. Examples of the polyimide resin include resins described in paragraph 0050 of JP2014-137523, resins described in paragraph 0058 of JP2015-187676, and 0012 of JP2014-106326A. The resins described in paragraphs -0013 are listed, and the above contents are incorporated in the present specification.
  • the said dispersion composition may contain another component in the range with the effect of this invention.
  • examples of other components include polymerization inhibitors, solvents, colorants, and those described as optional components of the curable composition described below. Below, the arbitrary component contained in a dispersion composition is explained in full detail.
  • the polymerization inhibitor is not particularly limited, and a known polymerization inhibitor can be used.
  • the polymerization inhibitor include phenol-based polymerization inhibitors (for example, p-methoxyphenol, 2,5-di-tert-butyl-4-methylphenol, 2,6-ditert-butyl-4-methylphenol, 4,4′-thiobis (3-methyl-6-tert-butylphenol), 2,2′-methylenebis (4-methyl-6-tert-butylphenol), 4-methoxynaphthol, etc.); hydroquinone polymerization inhibitor ( For example, hydroquinone and 2,6-di-tert-butylhydroquinone, etc.); quinone polymerization inhibitors (eg, benzoquinone, etc.); free radical polymerization inhibitors (eg, 2,2,6,6-tetra) Methylpiperidine 1-oxyl free radical and 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl
  • a phenol polymerization inhibitor or a free radical polymerization inhibitor is preferable in that the curable composition has the more excellent effects of the present invention.
  • a polymerization inhibitor may be mixed with other components at the time of preparation of a dispersion composition, and what was used for the synthesis
  • the content of the polymerization inhibitor in the dispersion composition is not particularly limited, but it is dispersed in that the dispersion composition has better aging stability and the curable composition described below has better curability.
  • the content is preferably 0.0001 to 1% by mass relative to the total solid content of the composition.
  • a polymerization inhibitor may be used individually by 1 type, or may use 2 or more types together. When two or more polymerization inhibitors are used in combination, the total content is preferably within the above range. The effect of the polymerization inhibitor is remarkable when used together with a resin containing a curable group.
  • the dispersion composition and / or the curable composition is at a high temperature. Even if there is a concern that polymerization of a resin containing a curable group proceeds due to storage for a long period of time or the like, it can be used without any problem.
  • the dispersion composition may contain a solvent.
  • a solvent in particular is not restrict
  • the content of the solvent in the dispersion composition is not particularly limited, but in general, the solid content of the dispersion composition is preferably adjusted to be 10 to 90% by mass, and adjusted to be 20 to 90% by mass. It is more preferable.
  • a solvent may be used individually by 1 type, or may use 2 or more types together. When using 2 or more types of solvent together, it is preferable to adjust so that the total solid content of a composition may become in the said range.
  • a solvent water or an organic solvent is mentioned, for example.
  • the organic solvent include acetone, methyl ethyl ketone, cyclohexane, ethyl acetate, ethylene dichloride, tetrahydrofuran, toluene, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, acetylacetone.
  • Cyclohexanone, cyclopentanone, diacetone alcohol ethylene glycol monomethyl ether acetate, ethylene glycol ethyl ether acetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether acetate, 3-methoxypropanol, methoxymethoxyethanol, diethylene glycol mono Chill ether, diethylene glycol monoethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, 3-methoxypropyl acetate, N, N-dimethylformamide, dimethyl sulfoxide, ⁇ -butyrolactone, ethyl acetate, Examples include but are not limited to butyl acetate, methyl lactate, N-methyl-2-pyrrolidone, and ethyl lactate.
  • the dispersion composition may contain a colorant.
  • the colorant intends a compound different from the metal nitride-containing particles.
  • pigments colored pigments
  • dyes colored dyes
  • examples of pigments include inorganic pigments and organic pigments.
  • a coloring agent may be used individually by 1 type, or may use 2 or more types together.
  • the inorganic pigment is not particularly limited, and a known inorganic pigment can be used.
  • examples of inorganic pigments include carbon black, silica, zinc white, lead white, lithopone, titanium oxide, chromium oxide, iron oxide, precipitated barium sulfate and barite powder, red lead, iron oxide red, yellow lead, zinc yellow ( Zinc yellow 1 type, zinc yellow 2 type), ultramarine blue, prussian blue (potassium ferrocyanide) zircon gray, praseodymium yellow, chrome titanium yellow, chrome green, peacock, Victoria green, bituminous blue (unrelated to Prussian blue) , Vanadium zirconium blue, chrome tin pink, ceramic red, salmon pink and the like.
  • black inorganic pigment As the inorganic pigment, carbon black, a metal pigment, and the like in that a composition capable of forming a cured film having at least a high optical density can be obtained.
  • black pigment examples include a metal oxide containing one or more metal elements selected from the group consisting of Nb, V, Co, Cr, Cu, Mn, Ru, Fe, Ni, Sn, Ti, and Ag. And metal carbides (for example, TiC, etc.).
  • the inorganic pigment preferably contains at least one selected from the group consisting of metal pigments containing silver, metal pigments containing tin, and metal pigments containing silver and tin.
  • An inorganic pigment may be used individually by 1 type, or may use 2 or more types together.
  • colorant examples include those described in JP-A-2014-42375, paragraphs 0027 to 0200, JP-A-2008-260927, paragraph 0031, and JP-A-2015-68893, paragraphs 0015 to 0025. And the above contents are incorporated herein.
  • a pigment having infrared absorptivity can also be used.
  • a tungsten compound, a metal boride, and the like are preferable, and among them, a tungsten compound is preferable from the viewpoint of excellent light-shielding properties at wavelengths in the infrared region.
  • a tungsten compound is preferable from the viewpoint of excellent light absorption wavelength region of an oxime polymerization initiator related to curing efficiency by exposure and transparency of visible light region.
  • Two or more of these pigments may be used in combination, or may be used in combination with a dye described later.
  • chromatic pigments such as red, green, yellow, orange, purple, and blue are added to black or infrared light-shielding pigments.
  • the form which mixes the dye mentioned later is mentioned. It is preferable to mix a red pigment or dye, or a purple pigment or dye with a black or infrared pigment, and it is more preferable to mix a red pigment with a black pigment or infrared pigment.
  • Organic pigment examples include, for example, Color Index (CI) Pigment Yellow 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 24, 31, 32, 34, 35, 35: 1, 36, 36: 1, 37, 37: 1, 40, 42, 43, 53, 55, 60, 61, 62, 63, 65, 73, 74, 77, 81, 83, 86, 93, 94, 95, 97, 98, 100, 101, 104, 106, 108, 109, 110, 113, 114, 115, 116, 117, 118, 119, 120, 123, 125, 126, 127, 128, 129, 137, 138, 139, 147, 148, 150, 151, 152, 153, 154, 155, 156, 161, 162, 164, 166, 16 7,168,169,170,171,172,173,174,175,176,177,179,180,181,182,185,187,188,193,19
  • a pigment may be used individually by 1 type, or may use 2 or more types together.
  • Examples of the dye include, for example, JP-A No. 64-90403, JP-A No. 64-91102, JP-A No. 1-94301, JP-A No. 6-11614, No. 2592207, and US Pat. No. 4,808,501. Disclosed in U.S. Pat. No. 5,667,920, U.S. Pat. No. 505950, JP-A-5-333207, JP-A-6-35183, JP-A-6-51115, and JP-A-6-194828. Can be used.
  • pyrazole azo compounds When classified as chemical structures, pyrazole azo compounds, pyromethene compounds, anilinoazo compounds, triphenylmethane compounds, anthraquinone compounds, benzylidene compounds, oxonol compounds, pyrazolotriazole azo compounds, pyridone azo compounds, cyanine compounds, phenothiazine compounds, and pyrrolopyrazole azomethine compounds Etc.
  • a dye multimer may be used as the dye. Examples of the dye multimer include compounds described in JP2011-213925A and JP2013-041097A.
  • a polymerizable dye having a polymerizable group in the molecule may be used, and examples of commercially available products include RDW series manufactured by Wako Pure Chemical Industries, Ltd.
  • the colorant may further contain an infrared absorber.
  • the infrared absorber means a compound having absorption in the wavelength region in the infrared region (preferably, a wavelength of 650 to 1300 nm).
  • a compound having a maximum absorption wavelength in a wavelength region of 675 to 900 nm is preferable.
  • Examples of colorants having such spectral characteristics include pyrrolopyrrole compounds, copper compounds, cyanine compounds, phthalocyanine compounds, iminium compounds, thiol complex compounds, transition metal oxide compounds, squarylium compounds, naphthalocyanine compounds, quaterylenes.
  • Examples include compounds, dithiol metal complex compounds, and croconium compounds.
  • the phthalocyanine compound naphthalocyanine compound, iminium compound, cyanine compound, squarylium compound, and croconium compound, the compounds disclosed in paragraphs 0010 to 0081 of JP 2010-1111750 A may be used. Incorporated.
  • the cyanine compound for example, “functional pigment, Shin Okawara / Ken Matsuoka / Keijiro Kitao / Kensuke Hirashima, written by Kodansha Scientific”, the contents of which are incorporated herein.
  • the compound having a maximum absorption wavelength in the wavelength region of 675 to 900 nm is preferably at least one selected from the group consisting of a cyanine compound, a pyrrolopyrrole compound, a squarylium compound, a phthalocyanine compound, and a naphthalocyanine compound.
  • the infrared absorber is preferably a compound that dissolves 1% by mass or more in 25 ° C. water, and more preferably a compound that dissolves 10% by mass or more in 25 ° C. water. By using such a compound, the solvent resistance is improved.
  • the pyrrolopyrrole compound can be referred to paragraphs 0049 to 0062 of JP 2010-222557 A, the contents of which are incorporated herein.
  • Cyanine compounds and squarylium compounds are disclosed in WO 2014/088063 paragraphs 0022 to 0063, WO 2014/030628, paragraphs 0053 to 0118, JP 2014-59550 A, paragraphs 0028 to 0074, international publication 2012 / No.
  • Paragraph 067 paragraphs 0029 to 0085 of JP-A-2015-40895, paragraphs 0022 to 0036 of JP-A-2014-126642, paragraphs 0011 to 0017 of JP-A-2014-148567, and JP-A-2015-157893.
  • the dispersion composition can be prepared by mixing the above components by a known mixing method (for example, a mixing method using a stirrer, a homogenizer, a high-pressure emulsifier, a wet pulverizer, a wet disperser, or the like).
  • the method for producing a dispersion composition preferably includes the following steps. Prepare raw material A containing nitrogen atom and raw material B containing transition metal atom and atom T, or raw material A containing nitrogen atom, raw material C containing transition metal atom, and raw material containing atom T
  • Process for preparing D (raw material preparation process) ⁇ A step of mixing two or more raw materials in a gas phase to obtain a mixture (mixing step) ⁇ Condensation of gas phase mixture to obtain metal nitride-containing particles (condensation process) -Mixing metal nitride-containing particles and resin to obtain a dispersion composition (dispersion step)
  • the raw material preparation step, the mixing step, and the condensation step are as already described in the method for producing metal nitride-containing particles.
  • the dispersion step is a step of obtaining a dispersion composition by mixing metal nitride-containing particles and a resin.
  • the method of mixing the metal nitride-containing particles and the resin is as described above.
  • optional components other than the above may be mixed together.
  • the curable composition which concerns on embodiment of this invention contains metal nitride containing particle
  • Metal nitride-containing particles The form of the metal nitride-containing particles contained in the curable composition is as already described as the form of the metal nitride-containing particles.
  • the content of the metal nitride-containing particles in the curable composition is not particularly limited, but is generally preferably 30 to 80% by mass with respect to the total solid content of the curable composition.
  • the metal nitride-containing particles may be used alone or in combination of two or more. When two or more kinds of metal nitride-containing particles are used in combination, the total content is preferably within the above range.
  • the form of the resin contained in the curable composition is as already described as the form of the resin contained in the dispersion composition.
  • the content of the resin in the curable composition is not particularly limited, but is generally preferably 3 to 60% by mass and more preferably 5 to 40% by mass with respect to the total solid content of the curable composition.
  • Resin may be used individually by 1 type, or may use 2 or more types together. When using 2 or more types of resin together, it is preferable that total content is in the said range.
  • a curable composition contains a dispersing agent and alkali-soluble resin as resin.
  • the form of the dispersant and the alkali-soluble resin is as already described as the form of the dispersant and the alkali-soluble resin contained in the dispersion composition.
  • the content of the dispersant in the curable composition is not particularly limited, but is generally preferably 2 to 40% by mass, more preferably 5 to 30% by mass, based on the total solid content of the curable composition.
  • a dispersing agent may be used individually by 1 type, or may use 2 or more types together. When two or more dispersants are used in combination, the total content is preferably within the above range.
  • the content of the alkali-soluble resin in the curable composition is not particularly limited, but is generally preferably 1 to 30% by mass with respect to the total solid content of the curable composition.
  • Alkali-soluble resin may be used individually by 1 type, or may use 2 or more types together. When using 2 or more types of alkali-soluble resin together, it is preferable that total content is in the said range.
  • the curable composition contains a polymerizable compound.
  • the polymerizable compound means a compound containing a polymerizable group and a component different from the dispersant and the alkali-soluble resin.
  • the content of the polymerizable compound in the curable composition is not particularly limited, but is generally preferably 5 to 30% by mass with respect to the total solid content of the curable composition.
  • a polymeric compound may be used individually by 1 type, or may use 2 or more types together. When using 2 or more types of polymeric compounds together, it is preferable that total content is in the said range.
  • the polymerizable compound is preferably a compound containing at least one group containing an ethylenically unsaturated bond, more preferably a compound containing 2 or more, further preferably containing 3 or more, and containing 5 or more. Is particularly preferred.
  • the upper limit is 15 or less, for example.
  • Examples of the group containing an ethylenically unsaturated bond include a vinyl group, a (meth) allyl group, and a (meth) acryloyl group.
  • polymerizable compound for example, compounds described in paragraph 0050 of JP-A-2008-260927 and paragraph 0040 of JP-A-2015-68893 can be used, and the above contents are described in this specification. Incorporated.
  • the polymerizable compound may be in any of chemical forms such as monomers, prepolymers, oligomers, mixtures thereof, and multimers thereof.
  • the polymerizable compound is preferably a 3 to 15 functional (meth) acrylate compound, more preferably a 3 to 6 functional (meth) acrylate compound.
  • the polymerizable compound is also preferably a compound having one or more groups containing an ethylenically unsaturated bond and having a boiling point of 100 ° C. or higher under normal pressure.
  • compounds described in JP-A-2013-29760, paragraph 0227, and JP-A-2008-292970, paragraphs 0254 to 0257 can be referred to, the contents of which are incorporated herein.
  • Polymerizable compounds are dipentaerythritol triacrylate (KAYARAD D-330 as a commercial product; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol tetraacrylate (KAYARAD D-320 as a commercial product; manufactured by Nippon Kayaku), di Pentaerythritol penta (meth) acrylate (KAYARAD D-310 as a commercial product; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol hexa (meth) acrylate (KAYARAD DPHA as a commercial product; manufactured by Nippon Kayaku Co., Ltd., A-DPH- 12E; manufactured by Shin-Nakamura Chemical Co., Ltd.) and a structure in which these (meth) acryloyl groups are mediated by an ethylene glycol residue or a propylene glycol residue (for example, SR454, SR499, commercially available from Sartomer).
  • oligomer types can also be used.
  • NK ester A-TMMT penentaerythritol tetraacrylate, manufactured by Shin-Nakamura Chemical Co., Ltd.
  • KAYARAD RP-1040 manufactured by Nippon Kayaku Co., Ltd.
  • Preferred embodiments of the polymerizable compound are shown below.
  • the polymerizable compound may have an acid group such as a carboxylic acid group, a sulfonic acid group, and a phosphoric acid group.
  • an ester of an aliphatic polyhydroxy compound and an unsaturated carboxylic acid is preferable, and a non-aromatic carboxylic acid anhydride is reacted with an unreacted hydroxyl group of the aliphatic polyhydroxy compound.
  • a polymerizable compound having a group is more preferable, and in this ester, the aliphatic polyhydroxy compound is pentaerythritol and / or dipentaerythritol. Examples of commercially available products include Aronix TO-2349, M-305, M-510, and M-520 manufactured by Toa Gosei Co., Ltd.
  • the preferred acid value of the polymerizable compound containing an acid group is 0.1 to 40 mgKOH / g, more preferably 5 to 30 mgKOH / g.
  • the acid value of the polymerizable compound is 0.1 mgKOH / g or more, the development dissolution properties are good, and when it is 40 mgKOH / g or less, it is advantageous in production and / or handling. Furthermore, the photopolymerization performance is good and the curability is excellent.
  • the polymerizable compound is also preferably a compound containing a caprolactone structure.
  • the compound containing a caprolactone structure is not particularly limited as long as it contains a caprolactone structure in the molecule.
  • compounds containing a caprolactone structure represented by the following formula (Z-1) are preferred.
  • R 1 represents a hydrogen atom or a methyl group
  • m represents a number of 1 or 2
  • “*” represents a bond.
  • R 1 represents a hydrogen atom or a methyl group, and “*” represents a bond.
  • a compound represented by the following formula (Z-4) or (Z-5) can also be used.
  • each E independently represents — ((CH 2 ) y CH 2 O) — or ((CH 2 ) y CH (CH 3 ) O) —.
  • Y represents an integer of 0 to 10
  • X independently represents a (meth) acryloyl group, a hydrogen atom, or a carboxylic acid group.
  • the total number of (meth) acryloyl groups is 3 or 4
  • each m independently represents an integer of 0 to 10
  • the total of each m is an integer of 0 to 40.
  • the total number of (meth) acryloyl groups is 5 or 6
  • each n independently represents an integer of 0 to 10 and the total of each n is an integer of 0 to 60.
  • m is preferably an integer of 0 to 6, and more preferably an integer of 0 to 4.
  • the total of each m is preferably an integer of 2 to 40, more preferably an integer of 2 to 16, and still more preferably an integer of 4 to 8.
  • n is preferably an integer of 0 to 6, and more preferably an integer of 0 to 4.
  • the total of each n is preferably an integer of 3 to 60, more preferably an integer of 3 to 24, and still more preferably an integer of 6 to 12.
  • — ((CH 2 ) y CH 2 O) — or ((CH 2 ) y CH (CH 3 ) O) — has a terminal on the oxygen atom side.
  • a form bonded to X is preferred.
  • the compounds represented by formula (Z-4) or formula (Z-5) may be used alone or in combination of two or more.
  • all six Xs are acryloyl groups
  • all six Xs are acryloyl groups
  • An embodiment which is a mixture with a compound having at least one hydrogen atom is preferred. With such a configuration, the developability can be further improved.
  • the total content of the compound represented by formula (Z-4) or formula (Z-5) in the polymerizable compound is preferably 20% by mass or more, and more preferably 50% by mass or more.
  • a pentaerythritol derivative and / or a dipentaerythritol derivative are more preferable.
  • the polymerizable compound may contain a cardo skeleton.
  • a polymerizable compound containing a 9,9-bisarylfluorene skeleton is preferable.
  • Examples of the polymerizable compound containing a cardo skeleton include, but are not limited to, oncoat EX series (manufactured by Nagase Sangyo Co., Ltd.) and Ogsol (manufactured by Osaka Gas Chemical Co., Ltd.).
  • the curable composition contains a polymerization initiator.
  • the polymerization initiator is not particularly limited, and a known polymerization initiator can be used.
  • a polymerization initiator a photoinitiator, a thermal polymerization initiator, etc. are mentioned, for example, A photoinitiator is preferable.
  • the polymerization initiator is preferably a so-called radical polymerization initiator.
  • the content of the polymerization initiator in the curable composition is not particularly limited, but is generally preferably 0.5 to 20% by mass with respect to the total solid content of the curable composition.
  • a polymerization initiator may be used individually by 1 type, or may use 2 or more types together. When two or more polymerization initiators are used in combination, the total content is preferably within the above range.
  • thermal polymerization initiator examples include 2,2′-azobisisobutyronitrile (AIBN), 3-carboxypropionitrile, azobismaleonitrile, and dimethyl- (2,2 ′)-azobis (2- Azo compounds such as methyl propionate) [V-601], and organic peroxides such as benzoyl peroxide, lauroyl peroxide, and potassium persulfate.
  • AIBN 2,2′-azobisisobutyronitrile
  • 3-carboxypropionitrile azobismaleonitrile
  • dimethyl- (2,2 ′)-azobis (2- Azo compounds such as methyl propionate
  • organic peroxides such as benzoyl peroxide, lauroyl peroxide, and potassium persulfate.
  • organic peroxides such as benzoyl peroxide, lauroyl peroxide, and potassium persulfate.
  • organic peroxides such as benzoyl peroxide, lauroyl peroxid
  • the curable composition preferably contains a photopolymerization initiator.
  • a photoinitiator if a polymerization of a polymeric compound can be started, it will not restrict
  • the photopolymerization initiator for example, those having photosensitivity from the ultraviolet region to the visible light region are preferable. Further, it may be an activator that generates an active radical by generating some action with a photoexcited sensitizer, and may be an initiator that initiates cationic polymerization according to the type of the polymerizable compound.
  • the photopolymerization initiator preferably contains at least one compound having a molar extinction coefficient of at least about 50 within a range of about 300 nm to 800 nm (more preferably 330 nm to 500 nm).
  • the content of the photopolymerization initiator in the curable composition is not particularly limited, but is generally preferably 0.5 to 20% by mass with respect to the total solid content of the curable composition.
  • a photoinitiator may be used individually by 1 type, or may use 2 or more types together. When using 2 or more types of photoinitiators together, it is preferable that total content is in the said range.
  • Examples of the photopolymerization initiator include halogenated hydrocarbon derivatives (for example, those containing a triazine skeleton, those containing an oxadiazole skeleton, etc.), acylphosphine compounds such as acylphosphine oxide, hexaarylbiimidazole, Examples include oxime compounds such as oxime derivatives, organic peroxides, thio compounds, ketone compounds, aromatic onium salts, aminoacetophenone compounds, and hydroxyacetophenones.
  • paragraphs 0265 to 0268 of JP2013-29760A can be referred to, the contents of which are incorporated herein.
  • the photopolymerization initiator for example, an aminoacetophenone-based initiator described in JP-A-10-291969 and an acylphosphine-based initiator described in Japanese Patent No. 4225898 can also be used.
  • an aminoacetophenone-based initiator described in JP-A-10-291969 and an acylphosphine-based initiator described in Japanese Patent No. 4225898 can also be used.
  • the hydroxyacetophenone compound IRGACURE-184, DAROCUR-1173, IRGACURE-500, IRGACURE-2959, and IRGACURE-127 (trade names: all manufactured by BASF) can be used.
  • the aminoacetophenone compound commercially available products IRGACURE-907, IRGACURE-369, or IRGACURE-379EG (trade names: all manufactured by BASF) can be used.
  • aminoacetophenone compound a compound described in JP-A-2009-191179 in which an absorption wavelength is matched with a long wave light source such as 365 nm or 405 nm can also be used.
  • acylphosphine compound commercially available IRGACURE-819 or IRGACURE-TPO (trade name: all manufactured by BASF) can be used.
  • More preferred examples of the photopolymerization initiator include oxime ester polymerization initiators (oxime compounds).
  • oxime compounds have high sensitivity and high polymerization efficiency, can cure the curable composition layer regardless of the content concentration of metal nitride-containing particles in the curable composition, and design a high content of metal nitride-containing particles It is preferable because it is easy to do.
  • a compound described in JP-A No. 2001-233842 a compound described in JP-A No. 2000-80068, or a compound described in JP-A No. 2006-342166 can be used.
  • Examples of the oxime compound include 3-benzoyloxyiminobutan-2-one, 3-acetoxyiminobutan-2-one, 3-propionyloxyiminobutan-2-one, 2-acetoxyiminopentan-3-one, 2-acetoxyimino-1-phenylpropan-1-one, 2-benzoyloxyimino-1-phenylpropan-1-one, 3- (4-toluenesulfonyloxy) iminobutan-2-one, and 2-ethoxycarbonyl And oxyimino-1-phenylpropan-1-one.
  • J.H. C. S. Perkin II (1979) pp. 1653-1660) J.M. C. S.
  • IRGACURE-OXE01 manufactured by BASF
  • IRGACURE-OXE02 manufactured by BASF
  • IRGACURE-OXE03 manufactured by BASF
  • IRGACURE-OXE04 manufactured by BASF
  • TR-PBG-304 manufactured by Changzhou Powerful Electronic New Materials Co., Ltd.
  • Adeka Arcles NCI-831 and Adeka Arcles NCI-930 manufactured by ADEKA
  • N-1919 carboxyl ether skeleton containing photoinitiator
  • An agent manufactured by ADEKA
  • oxime compounds compounds described in JP-T-2009-519904 in which an oxime is linked to the carbazole N-position; compounds described in US Pat. No. 7,626,957 in which a hetero substituent is introduced into a benzophenone moiety; a dye moiety Japanese Patent Application Laid-Open No. 2010-15025 and US Patent Publication No. 2009-292209; a ketoxime compound described in International Publication No. 2009-131189; a triazine skeleton and an oxime skeleton in the same molecule A compound described in U.S. Pat. No.
  • the oxime compound is preferably a compound represented by the following formula (OX-1).
  • the N—O bond of the oxime compound may be an (E) oxime compound, a (Z) oxime compound, a mixture of (E) isomer and (Z) isomer. Good.
  • R and B each independently represent a monovalent substituent
  • A represents a divalent organic group
  • Ar represents an aryl group.
  • the monovalent substituent represented by R is preferably a monovalent nonmetallic atomic group.
  • the monovalent nonmetallic atomic group include an alkyl group, an aryl group, an acyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, a heterocyclic group, an alkylthiocarbonyl group, and an arylthiocarbonyl group.
  • these groups may have one or more substituents.
  • the substituent mentioned above may be further substituted by another substituent.
  • the substituent examples include a halogen atom, an aryloxy group, an alkoxycarbonyl group or an aryloxycarbonyl group, an acyloxy group, an acyl group, an alkyl group, and an aryl group.
  • the monovalent substituent represented by B is preferably an aryl group, a heterocyclic group, an arylcarbonyl group, or a heterocyclic carbonyl group, and preferably an aryl group or a heterocyclic group. These groups may have one or more substituents. Examples of the substituent include the substituents described above.
  • the divalent organic group represented by A is preferably an alkylene group having 1 to 12 carbon atoms, a cycloalkylene group, or an alkynylene group. These groups may have one or more substituents. Examples of the substituent include the substituents described above.
  • An oxime compound containing a fluorine atom can also be used as a photopolymerization initiator.
  • Specific examples of the oxime compound containing a fluorine atom include compounds described in JP2010-262028; compounds 24 and 36 to 40 described in JP2014-500852; compounds described in JP2013-164471A (C-3); and the like. This content is incorporated herein.
  • photopolymerization initiator compounds represented by the following general formulas (1) to (4) can also be used.
  • R 1 and R 2 each independently represents an alkyl group having 1 to 20 carbon atoms, an alicyclic hydrocarbon group having 4 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, or carbon And when R 1 and R 2 are phenyl groups, the phenyl groups may be bonded to each other to form a fluorene group, and R 3 and R 4 are each independently hydrogen Represents an atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms or a heterocyclic group having 4 to 20 carbon atoms, and X is a direct bond or a carbonyl group Indicates.
  • R 1, R 2, R 3 and R 4 have the same meanings as R 1, R 2, R 3 and R 4 in Formula (1)
  • R 5 is -R 6, -OR 6 , —SR 6 , —COR 6 , —CONR 6 R 6 , —NR 6 COR 6 , —OCOR 6 , —COOR 6 , —SCOR 6 , —OCSR 6 , —COSR 6 , —CSOR 6 , —CN
  • halogen R 6 represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms or a heterocyclic group having 4 to 20 carbon atoms
  • X represents a direct bond or a carbonyl group, and a represents an integer of 0 to 4.
  • R 1 represents an alkyl group having 1 to 20 carbon atoms, an alicyclic hydrocarbon group having 4 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an arylalkyl having 7 to 30 carbon atoms.
  • Each of R 3 and R 4 independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, or 4 to 4 carbon atoms; 20 represents a heterocyclic group, and X represents a direct bond or a carbonyl group.
  • R 1, R 3 and R 4 have the same meanings as R 1, R 3 and R 4 in the formula (3)
  • R 5 is, -R 6, -OR 6, -SR 6, Represents —COR 6 , —CONR 6 R 6 , —NR 6 COR 6 , —OCOR 6 , —COOR 6 , —SCOR 6 , —OCSR 6 , —COSR 6 , —CSOR 6 , —CN, a halogen atom or a hydroxyl group
  • R 6 represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms or a heterocyclic group having 4 to 20 carbon atoms
  • X is a direct bond or Represents a carbonyl group, and a represents an integer of 0 to 4.
  • R 1 and R 2 are preferably each independently a methyl group, ethyl group, n-propyl group, i-propyl group, cyclohexyl group or phenyl group.
  • R 3 is preferably a methyl group, an ethyl group, a phenyl group, a tolyl group or a xylyl group.
  • R 4 is preferably an alkyl group having 1 to 6 carbon atoms or a phenyl group.
  • R 5 is preferably a methyl group, an ethyl group, a phenyl group, a tolyl group or a naphthyl group.
  • X is preferably a direct bond.
  • R 1 is preferably each independently a methyl group, ethyl group, n-propyl group, i-propyl group, cyclohexyl group or phenyl group.
  • R 3 is preferably a methyl group, an ethyl group, a phenyl group, a tolyl group or a xylyl group.
  • R 4 is preferably an alkyl group having 1 to 6 carbon atoms or a phenyl group.
  • R 5 is preferably a methyl group, an ethyl group, a phenyl group, a tolyl group or a naphthyl group.
  • X is preferably a direct bond.
  • Specific examples of the compounds represented by formula (1) and formula (2) include the compounds described in paragraphs 0076 to 0079 of JP-A No. 2014-137466. This content is incorporated herein.
  • oxime compounds preferably used in the curable composition are shown below.
  • oxime compound a compound described in Table 1 of International Publication No. 2015-036910 can also be used, and the above contents are incorporated herein.
  • the oxime compound preferably has a maximum absorption wavelength in the wavelength region of 350 nm to 500 nm, more preferably has a maximum absorption wavelength in the wavelength region of 360 nm to 480 nm, and more preferably has a high absorbance at 365 nm and 405 nm.
  • the molar extinction coefficient at 365 nm or 405 nm of the oxime compound is preferably 1,000 to 300,000, more preferably 2,000 to 300,000, more preferably 5,000 to 200,000 from the viewpoint of sensitivity. More preferably, it is 000.
  • a known method can be used. It is preferable to measure. You may use a photoinitiator in combination of 2 or more type as needed.
  • the curable composition may contain components other than those described above within the scope of the effects of the present invention.
  • components other than the above include polymerization inhibitors, solvents, colorants, surfactants, ultraviolet absorbers, silane coupling agents, and adhesion improvers.
  • the curable composition preferably contains a polymerization inhibitor.
  • the content of the polymerization inhibitor in the curable composition is not particularly limited. 2 mass% is more preferable.
  • a polymerization inhibitor may be used individually by 1 type, or may use 2 or more types together. When two or more polymerization inhibitors are used in combination, the total content is preferably within the above range.
  • As a polymerization inhibitor it is as having already demonstrated as a polymerization inhibitor which a dispersion composition can contain.
  • the curable composition preferably contains a solvent.
  • the content of the solvent in the curable composition is not particularly limited, but in general, the solid content of the curable composition is preferably adjusted to 20 to 90% by mass, and adjusted to be 30 to 90% by mass. More preferably.
  • a solvent may be used individually by 1 type, or may use 2 or more types together. When using 2 or more types of solvent together, it is preferable that solid content of a curable composition is in the said range.
  • a solvent it is as having already demonstrated as a solvent which a dispersion composition can contain.
  • the curable composition may contain a colorant.
  • the content of the colorant in the curable composition is not particularly limited, but is generally preferably 0.0001 to 70% by mass with respect to the total solid content of the curable composition.
  • a coloring agent may be used individually by 1 type, or may use 2 or more types together. When two or more colorants are used in combination, the total content is preferably within the above range.
  • As a coloring agent it is as having already demonstrated as a solvent which a dispersion composition can contain.
  • the curable composition may contain a surfactant.
  • Surfactant contributes to the applicability
  • the content of the surfactant is preferably 0.001 to 2.0% by mass with respect to the total solid content of the curable composition.
  • Surfactant may be used individually by 1 type, or may use 2 or more types together. When two or more surfactants are used in combination, the total amount is preferably within the above range.
  • surfactant examples include fluorine surfactants, nonionic surfactants, cationic surfactants, anionic surfactants, and silicone surfactants.
  • the liquid properties (particularly fluidity) of the curable composition are further improved. That is, when a film is formed using a curable composition containing a fluorosurfactant, wettability to the surface to be coated is improved by reducing the interfacial tension between the surface to be coated and the coating liquid. The coating property to the coated surface is improved. For this reason, even when a thin film of about several ⁇ m is formed with a small amount of liquid, it is effective in that a film having a uniform thickness with little thickness unevenness can be more suitably formed.
  • the fluorine content in the fluorosurfactant is preferably 3 to 40% by mass, more preferably 5 to 30% by mass, and still more preferably 7 to 25% by mass.
  • a fluorosurfactant having a fluorine content within this range is effective in terms of uniformity in the thickness of the coating film and / or liquid-saving properties, and has good solubility in the curable composition. .
  • fluorosurfactant examples include Megafac F171, F172, F173, F176, F176, F177, F141, F142, F143, F144, R30, F437, F475, F479, F482, F554, F780 (above DIC Corporation), Florad FC430, FC431, FC171 (Sumitomo 3M Limited), Surflon S-382, SC-101, SC- 103, SC-104, SC-105, SC-1068, SC-381, SC-383, S-393, K-H-40 (above, manufactured by Asahi Glass Co., Ltd.), PF636, PF656, PF6320, PF6520, PF7002 (made by OMNOVA) etc. are mentioned.
  • a block polymer can also be used as the fluorosurfactant, and specific examples thereof include compounds described in JP-A No. 2011-89090.
  • the curable composition may contain an ultraviolet absorber. Thereby, the shape of the pattern of a cured film can be made more excellent (fine).
  • an ultraviolet absorber salicylate, benzophenone, benzotriazole, substituted acrylonitrile, and triazine ultraviolet absorbers can be used.
  • compounds of paragraphs 0137 to 0142 corresponding paragraphs 0251 to 0254 of US2012 / 0068292
  • JP2012-068418A can be used, the contents of which are incorporated herein.
  • a diethylamino-phenylsulfonyl-based ultraviolet absorber (manufactured by Daito Chemical Co., Ltd., trade name: UV-503) is also preferably used.
  • the ultraviolet absorber include compounds exemplified in paragraphs 0134 to 0148 of JP2012-32556A.
  • the content of the ultraviolet absorber is preferably 0.001 to 15% by mass, more preferably 0.01 to 10% by mass, and further preferably 0.1 to 5% by mass with respect to the total solid content of the curable composition. preferable.
  • the curable composition may contain a silane coupling agent.
  • a silane coupling agent is a compound containing a hydrolyzable group and other functional groups in the molecule.
  • a hydrolyzable group such as an alkoxy group is bonded to a silicon atom.
  • the hydrolyzable group refers to a substituent that is directly bonded to a silicon atom and can form a siloxane bond by a hydrolysis reaction and / or a condensation reaction.
  • Examples of the hydrolyzable group include a halogen atom, an alkoxy group, an acyloxy group, and an alkenyloxy group.
  • the hydrolyzable group contains a carbon atom
  • the number of carbon atoms is preferably 6 or less, and more preferably 4 or less.
  • an alkoxy group having 4 or less carbon atoms or an alkenyloxy group having 4 or less carbon atoms is preferable.
  • the silane coupling agent improves the adhesion between the substrate and the cured film, so fluorine atoms and silicon atoms (however, excluding silicon atoms to which hydrolyzable groups are bonded) Is not contained, and is a fluorine atom, a silicon atom (excluding a silicon atom to which a hydrolyzable group is bonded), an alkylene group substituted with a silicon atom, a linear alkyl group having 8 or more carbon atoms, and carbon It is desirable not to include a branched alkyl group of several or more.
  • the content of the silane coupling agent in the curable composition is preferably 0.1 to 10% by mass, more preferably 0.5 to 8% by mass with respect to the total solid content in the curable composition. More preferably, the content is 0.0 to 6% by mass.
  • the curable composition may contain one silane coupling agent or two or more silane coupling agents. When a curable composition contains 2 or more types of silane coupling agents, the sum should just be in the said range.
  • the curable composition may contain a silane coupling agent as an adhesion improver.
  • the silane coupling agent include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, and 3-glycidoxypropylmethyldiethoxysilane. , Vinyltrimethoxysilane, vinyltriethoxysilane, and the like.
  • the content of the adhesion improver is not particularly limited, but is preferably 0.02 to 20% by mass with respect to the total solid content of the curable composition.
  • Another form of curable composition is a curable composition containing the dispersion composition described above, a polymerizable compound, and a polymerization initiator.
  • the dispersion composition, the polymerizable compound, and the polymerization initiator are as already described.
  • the content of each component in the curable composition is as already described.
  • the volume average particle size of the metal nitride-containing particles in the curable composition is not particularly limited, but a cumulative 90% particle size in terms of volume (measured using a particle size distribution meter based on the dynamic light scattering method) D90) is preferably less than 0.5 ⁇ m, and more preferably less than 0.2 ⁇ m.
  • D90 a cumulative 90% particle size in terms of volume (measured using a particle size distribution meter based on the dynamic light scattering method
  • the lower limit of D90 is not particularly limited, but is generally preferably 0.01 ⁇ m or more.
  • the curable composition can be prepared by mixing the above components by a known mixing method (for example, a mixing method using a stirrer, a homogenizer, a high-pressure emulsifier, a wet pulverizer, a wet disperser, or the like). .
  • the curable composition may be prepared by mixing the above-described dispersion composition and the above-described components.
  • the manufacturing method of a curable composition may include the manufacturing method of the dispersion composition already demonstrated.
  • each component may be blended at once, or each component may be blended sequentially after being dissolved or dispersed in a solvent. There are no particular restrictions on the order of introduction and working conditions when blending.
  • the curable composition is preferably filtered with a filter for the purpose of removing foreign substances or reducing defects.
  • a filter can be used without particular limitation as long as it has been conventionally used for filtration.
  • a filter made of a fluororesin such as PTFE (polytetrafluoroethylene), a polyamide resin such as nylon, and a polyolefin resin (including high density and ultra high molecular weight) such as polyethylene and polypropylene (PP).
  • PTFE polytetrafluoroethylene
  • nylon such as polyamide resin
  • PP polyolefin resin
  • polypropylene including high density polypropylene
  • nylon are preferable.
  • the filter has a pore diameter of about 0.1 to 7.0 ⁇ m, preferably about 0.2 to 2.5 ⁇ m, more preferably about 0.2 to 1.5 ⁇ m, and still more preferably 0.3 to 0.0 ⁇ m. 7 ⁇ m.
  • a pore diameter of about 0.1 to 7.0 ⁇ m, preferably about 0.2 to 2.5 ⁇ m, more preferably about 0.2 to 1.5 ⁇ m, and still more preferably 0.3 to 0.0 ⁇ m. 7 ⁇ m.
  • different filters for example, a first filter and a second filter
  • the filtering by the first filter may be performed only once or may be performed twice or more.
  • the second and subsequent pore diameters are the same or larger than the pore diameter of the first filtering.
  • the pore diameter here can refer to the nominal value of the filter manufacturer.
  • a commercially available filter for example, it can be selected from various filters provided by Nippon Pole Co., Ltd., Advantech Toyo Co., Ltd., Japan Entegris Co., Ltd. (formerly Japan Microlith Co., Ltd.) or KITZ Micro Filter Co., Ltd. .
  • the second filter a filter formed of the same material as the first filter described above can be used.
  • the pore size of the second filter is suitably about 0.2 to 10.0 ⁇ m, preferably about 0.2 to 7.0 ⁇ m, more preferably about 0.3 to 6.0 ⁇ m.
  • a curable composition does not contain impurities, such as a metal, the metal salt containing a halogen, an acid, and an alkali.
  • the content of impurities contained in these materials is preferably 1 ppm or less, more preferably 1 ppb or less, still more preferably 100 ppt or less, particularly preferably 10 ppt or less, and substantially free (below the detection limit of the measuring device). ) Is most preferred.
  • the impurities can be measured by an inductively coupled plasma mass spectrometer (manufactured by Yokogawa Analytical Systems, Agilent 7500cs type).
  • the cured film which concerns on embodiment of this invention is a cured film obtained by hardening
  • the thickness of the cured film is not particularly limited, but is generally preferably 0.2 to 7 ⁇ m, more preferably 0.4 to 5 ⁇ m.
  • the above thickness is an average thickness, and is a value obtained by measuring the thicknesses of five or more arbitrary points of the cured film and arithmetically averaging them.
  • substrate, forming a coating film, performing a hardening process with respect to a coating film, and manufacturing a cured film is mentioned.
  • the method of the curing treatment is not particularly limited, and examples thereof include a photocuring treatment or a thermosetting treatment, and a photocuring treatment (particularly a curing treatment by irradiation with actinic rays or radiation) is preferable from the viewpoint of easy pattern formation. .
  • the cured film which concerns on embodiment of this invention is a cured film obtained by hardening
  • the manufacturing method in particular of a cured film is not restrict
  • a curable composition layer formation process is a process of forming a curable composition layer using the said curable composition.
  • a process of forming a curable composition layer using a curable composition the process of apply
  • the type of substrate is not particularly limited, but when used as a solid-state imaging device, for example, a silicon substrate is used. When used as a color filter (including a color filter for a solid-state imaging device), a glass substrate (glass wafer) or the like Is mentioned.
  • various coating methods such as spin coating, slit coating, ink jet method, spray coating, spin coating, cast coating, roll coating, and screen printing are applied. Can do.
  • the curable composition applied on the substrate is usually dried at 70 to 150 ° C. for about 1 to 4 minutes to form a curable composition layer.
  • the curable composition layer formed in the curable composition layer forming step was exposed to light by irradiating actinic rays or radiation through a photomask having a pattern-shaped opening, and was irradiated with light. Only the curable composition layer is cured.
  • the exposure is preferably performed by irradiation of radiation.
  • radiation that can be used for exposure ultraviolet rays such as g-line, h-line, and i-line are preferably used, and a high-pressure mercury lamp is preferable as a light source.
  • the irradiation intensity is preferably 5 ⁇ 1500mJ / cm 2, more preferably 10 ⁇ 1000mJ / cm 2.
  • development processing (development step) is performed to elute the light non-irradiated portion in the exposure step into the developer. Thereby, only the photocured part remains.
  • An alkaline developer may be used as the developer.
  • An inorganic alkali developer or an organic alkali developer can be used, but an organic alkali developer is preferably used.
  • the development temperature is usually preferably 20 to 40 ° C., and the development time is preferably 20 to 180 seconds.
  • an alkaline compound such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium hydrogen carbonate, sodium oxalate, and sodium metasuccinate
  • the concentration is preferably 0.001 to 10% by mass, preferably Is an alkaline aqueous solution dissolved so as to be 0.005 to 0.5% by mass.
  • Organic alkali developers include ammonia water, ethylamine, diethylamine, dimethylethanolamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethylammonium hydroxide, choline, pyrrole , Piperidine, and alkaline compounds such as 1,8-diazabicyclo- [5,4,0] -7-undecene have a concentration of 0.001 to 10% by mass, preferably 0.005 to 0.5% by mass. An aqueous alkali solution dissolved in this manner can be mentioned.
  • an appropriate amount of a water-soluble organic solvent such as methanol and ethanol, and / or a surfactant can be added to the alkaline aqueous solution.
  • a developer composed of such an alkaline aqueous solution is used, the cured film is generally washed (rinsed) with pure water after development.
  • the manufacturing method of a cured film may contain another process.
  • the other steps include a substrate surface treatment step, a preheating step (pre-baking step), and a post-heating step (post-baking step).
  • the heating temperature in the preheating step and the postheating step is preferably 80 to 300 ° C.
  • the upper limit is more preferably 220 ° C. or lower.
  • the lower limit is more preferably 90 ° C. or higher.
  • the heating time in the preheating step and the postheating step is preferably 30 to 300 seconds.
  • the cured film has an excellent light-shielding property, and the optical density (OD: Optical Density) per film thickness of 1.0 ⁇ m in the wavelength region of 400 to 1200 nm is preferably more than 2.0, more than 3.0. More preferred. The upper limit is not particularly limited, but is generally preferably 10 or less.
  • the cured film can be preferably used as a light shielding film.
  • an optical density intends the optical density measured by the method described in the Example.
  • the optical density per film thickness of 1.0 ⁇ m in the wavelength region of 400 to 1200 nm is more than 3.0.
  • the optical density per 1.0 ⁇ m of film thickness in the entire wavelength range of 400 to 1200 nm is 3. Intended to be greater than zero.
  • the cured film preferably has a surface uneven structure. By doing so, the reflectance of a light shielding layer can be reduced. Even if the surface of the light shielding layer itself has a concavo-convex structure, another layer may be provided on the light shielding layer to provide the concavo-convex structure.
  • the shape of the surface concavo-convex structure is not particularly limited, but the surface roughness is preferably in the range of 0.55 ⁇ m to 1.5 ⁇ m.
  • the reflectance of the light shielding layer is preferably 5% or less, more preferably 3% or less, and still more preferably 2% or less.
  • the method for producing the surface concavo-convex structure is not particularly limited, but includes a method of adding an organic filler or an inorganic filler to the light-shielding layer or other layers, a lithography method using exposure and development, etching, sputtering, nanoimprint method, etc. A method of roughening the surface of the light shielding layer or other layers may also be used.
  • a method for reducing the reflectance of the cured film in addition to the above, a method of providing a low refractive index layer on the light shielding layer, a method of providing a plurality of layers having different refractive indexes (for example, a high refractive index layer), for example, there is a method for forming a low optical density layer and a high optical density layer described in JP-A-2015-1654 (in this case, as a black pigment, nitriding a transition metal of Group 3 to 11 of the present invention) Metal nitride-containing particles containing the product may be used).
  • Hardened films are portable devices such as personal computers, tablets, mobile phones, smart phones, and digital cameras; OA (Office Automation) devices such as printer multifunction devices and scanners; surveillance cameras, barcode readers, automatic teller machines ( ATM (automated teller machine), high-speed camera, and industrial equipment such as equipment with identity authentication function using facial image authentication; in-vehicle camera equipment; medical equipment such as endoscope, capsule endoscope, and catheter Camera equipment; Space sensors such as biosensors, biosensors, military reconnaissance cameras, 3D map cameras, weather and ocean observation cameras, land resource exploration cameras, and exploration cameras for space astronomy and deep space targets; Light filter member and light shield for optical filter and module used And further is suitable for anti-reflection member and the antireflection film.
  • OA Office Automation
  • surveillance cameras barcode readers, automatic teller machines ( ATM (automated teller machine), high-speed camera, and industrial equipment such as equipment with identity authentication function using facial image authentication
  • in-vehicle camera equipment medical equipment such as endoscope, capsule endoscope,
  • the cured film can also be used for applications such as micro LED (Light Emitting Diode) and micro OLED (Organic Light Emitting Diode).
  • the cured film is suitable for members that provide a light shielding function or an antireflection function, in addition to optical filters and optical films used in micro LEDs and micro OLEDs.
  • Examples of the micro LED and the micro OLED include those described in JP-T-2015-500562 and JP-T-2014-533890.
  • the cured film is suitable as an optical filter and an optical film used for a quantum dot display. Moreover, it is suitable as a member which provides a light shielding function and an antireflection function. Examples of quantum dot displays are described in US Patent Application Publication No. 2013/0335677, US Patent Application Publication No. 2014/0036536, US Patent Application Publication No. 2014/0036203, and US Patent Application Publication No. 2014/0035960. The thing which was done is mentioned.
  • Solid-state imaging device and solid-state imaging device contain the cured film.
  • the form in which the solid-state imaging device contains a cured film is not particularly limited.
  • the solid-state imaging device includes a plurality of photodiodes and polysilicon constituting a light receiving area of a solid-state imaging device (CCD image sensor, CMOS image sensor, etc.) on a substrate. And having the cured film of the present invention on the light receiving element forming surface side of the support (for example, the portion other than the light receiving portion and / or the color adjustment pixel) or the opposite side of the forming surface. Things.
  • the solid-state imaging device contains the solid-state imaging element.
  • the solid-state imaging device 100 includes a rectangular solid-state imaging element 101 and a transparent cover glass 103 that is held above the solid-state imaging element 101 and seals the solid-state imaging element 101. Yes. Further, a lens layer 111 is provided on the cover glass 103 with a spacer 104 interposed therebetween.
  • the lens layer 111 includes a support body 113 and a lens material 112. The lens layer 111 may have a configuration in which the support 113 and the lens material 112 are integrally formed.
  • the peripheral region of the lens layer 111 is shielded from light by providing a light shielding film 114.
  • the cured film according to the embodiment of the present invention can also be used as the light shielding film 114.
  • the solid-state imaging device 101 photoelectrically converts an optical image formed by the imaging unit 102 serving as a light receiving surface thereof and outputs it as an image signal.
  • the solid-state imaging device 101 includes a laminated substrate 105 in which two substrates are laminated.
  • the laminated substrate 105 includes a rectangular chip substrate 106 and a circuit substrate 107 having the same size, and the circuit substrate 107 is laminated on the back surface of the chip substrate 106.
  • the material of the substrate used as the chip substrate 106 is not particularly limited, and a known material can be used.
  • An imaging unit 102 is provided at the center of the surface of the chip substrate 106. Further, when stray light is incident on the peripheral area of the imaging unit 102, dark current (noise) is generated from a circuit in the peripheral area. Therefore, the peripheral area is shielded from light by providing a light shielding film 115.
  • the cured film according to the embodiment of the present invention can also be used as the light shielding film 115.
  • a plurality of electrode pads 108 are provided on the surface edge of the chip substrate 106.
  • the electrode pad 108 is electrically connected to the imaging unit 102 via a signal line (not shown) provided on the surface of the chip substrate 106 (which may be a bonding wire).
  • External connection terminals 109 are provided on the back surface of the circuit board 107 at positions substantially below the electrode pads 108, respectively. Each external connection terminal 109 is connected to an electrode pad 108 via a through electrode 110 that vertically penetrates the multilayer substrate 105. Each external connection terminal 109 is connected to a control circuit that controls driving of the solid-state imaging device 101 and an image processing circuit that performs image processing on an imaging signal output from the solid-state imaging device 101 via a wiring (not shown). Yes.
  • the imaging unit 102 is configured by each unit provided on a substrate 204 such as a light receiving element 201, a color filter 202, and a microlens 203.
  • the color filter 202 includes a blue pixel 205b, a red pixel 205r, a green pixel 205g, and a black matrix 205bm.
  • the cured film according to the embodiment of the present invention can also be used as the black matrix 205bm.
  • a p-well layer 206 is formed on the surface layer of the substrate 204.
  • light receiving elements 201 which are n-type layers and generate and store signal charges by photoelectric conversion, are arranged in a square lattice pattern.
  • a vertical transfer path 208 made of an n-type layer is formed via a readout gate portion 207 on the surface layer of the p-well layer 206.
  • a vertical transfer path 208 belonging to an adjacent pixel is formed via an element isolation region 209 made of a p-type layer.
  • the read gate unit 207 is a channel region for reading signal charges accumulated in the light receiving element 201 to the vertical transfer path 208.
  • a gate insulating film 210 made of an ONO (Oxide-Nitride-Oxide) film is formed on the surface of the substrate 204.
  • a vertical transfer electrode 211 made of polysilicon or amorphous silicon is formed on the gate insulating film 210 so as to cover the vertical transfer path 208, the read gate portion 207, and the element isolation region 209.
  • the vertical transfer electrode 211 functions as a drive electrode that drives the vertical transfer path 208 to perform charge transfer, and a read electrode that drives the read gate unit 207 to read signal charges.
  • the signal charges are sequentially transferred from the vertical transfer path 208 to a horizontal transfer path (not shown) and an output unit (floating diffusion amplifier), and then output as a voltage signal.
  • a light shielding film 212 is formed on the vertical transfer electrode 211 so as to cover the surface thereof.
  • the light shielding film 212 has an opening at a position directly above the light receiving element 201 and shields light from other areas.
  • the cured film according to the embodiment of the present invention can also be used as the light shielding film 212.
  • an insulating film 213 made of BPSG (borophosphosilicate glass), an insulating film (passivation film) 214 made of P-SiN, and a transparent intermediate layer made of a planarizing film 215 made of transparent resin or the like are provided on the light shielding film 212.
  • BPSG borophosphosilicate glass
  • passivation film insulating film
  • a transparent intermediate layer made of a planarizing film 215 made of transparent resin or the like
  • a black matrix contains the cured film which concerns on embodiment of this invention.
  • the black matrix may be contained in a color filter, a solid-state image sensor, and a liquid crystal display device.
  • black edges provided at the peripheral edge of a display device such as a liquid crystal display device; grids between red, blue, and green pixels, and / or striped blacks A dot-like and / or linear black pattern for light shielding a TFT (thin film transistor).
  • TFT thin film transistor
  • the black matrix improves the display contrast, and in the case of an active matrix liquid crystal display device using a thin film transistor (TFT), in order to prevent deterioration in image quality due to light current leakage, it has a high light shielding property (with an optical density OD). 3 or more).
  • TFT thin film transistor
  • the manufacturing method of the black matrix is not particularly limited, but can be manufactured by the same method as the manufacturing method of the cured film. Specifically, a curable composition is applied to a substrate to form a curable composition layer, and exposure and development can be performed to produce a patterned cured film (black matrix).
  • the thickness of the cured film used as the black matrix is preferably 0.1 to 4.0 ⁇ m.
  • the material of the substrate is not particularly limited, but preferably has a transmittance of 80% or more with respect to visible light (wavelength: 400 to 800 nm).
  • Specific examples of such materials include glass such as soda lime glass, alkali-free glass, quartz glass, and borosilicate glass; plastics such as polyester resins and polyolefin resins; From the viewpoint of chemical resistance and heat resistance, alkali-free glass or quartz glass is preferred.
  • the color filter according to the embodiment of the present invention contains a cured film.
  • the form in which the color filter contains a cured film is not particularly limited, and examples thereof include a color filter including a substrate and the black matrix. That is, a color filter including red, green, and blue colored pixels formed in the openings of the black matrix formed on the substrate can be exemplified.
  • a color filter containing a black matrix can be produced, for example, by the following method.
  • a coating film (resin composition layer) of a resin composition containing a pigment corresponding to each colored pixel of a color filter is formed in an opening of a patterned black matrix formed on a substrate.
  • the resin composition for each color is not particularly limited, and a known resin composition can be used.
  • the metal nitride-containing particles correspond to each pixel. It is preferable to use a colorant replaced.
  • it exposes with respect to the resin composition layer through the photomask which has a pattern corresponding to the opening part of a black matrix.
  • the colored pixels can be formed in the openings of the black matrix by baking.
  • a color filter having red, green, and blue pixels can be manufactured by performing a series of operations using a resin composition for each color containing red, green, and blue pigments, for example.
  • the liquid crystal display device contains a cured film.
  • a liquid crystal display device contains a cured film is not restrict
  • liquid crystal display device for example, a mode provided with a pair of substrates arranged opposite to each other and a liquid crystal compound sealed between the substrates can be mentioned.
  • the substrate is as already described as the substrate for the black matrix.
  • liquid crystal display device for example, from the user side, a polarizing plate / substrate / color filter / transparent electrode layer / alignment film / liquid crystal layer / alignment film / transparent electrode layer / TFT (Thin Film Transistor)
  • TFT Thin Film Transistor
  • the liquid crystal display device is not limited to the above.
  • Display device (Junsho Ibuki) The liquid crystal display device described in the book “Industry Books Co., Ltd.” issued in 1989).
  • the infrared sensor which concerns on embodiment of this invention contains the said cured film.
  • the infrared sensor which concerns on the said embodiment is demonstrated using FIG.
  • reference numeral 310 denotes a solid-state image sensor.
  • the imaging region provided on the solid-state imaging device 310 is configured by combining the infrared absorption filter 311 and the color filter 312 according to the embodiment of the present invention.
  • the infrared absorption filter 311 transmits light in the visible light region (for example, light having a wavelength of 400 to 700 nm), and transmits light in the infrared region (for example, light having a wavelength of 800 to 1300 nm, preferably light having a wavelength of 900 to 1200 nm).
  • it is a film that shields light having a wavelength of 900 to 1000 nm, and a cured film containing an infrared absorber (as already described in the form of the infrared absorber) as a colorant can be used.
  • the color filter 312 is a color filter in which pixels that transmit and absorb light of a specific wavelength in the visible light region are formed.
  • red (R), green (G), and blue (B) pixels are formed.
  • a color filter or the like is used, and its form is as described above.
  • a resin film 314 for example, a transparent resin film or the like
  • the infrared transmission filter 313 is a filter that has visible light shielding properties and transmits infrared light having a specific wavelength, and is a colorant that absorbs light in the visible light region (for example, a perylene compound and / or bisbenzofuranone).
  • an infrared absorber for example, a pyrrolopyrrole compound, a phthalocyanine compound, a naphthalocyanine compound, a polymethine compound, and the like
  • the infrared transmission filter 313 preferably blocks light having a wavelength of 400 to 830 nm and transmits light having a wavelength of 900 to 1300 nm.
  • a micro lens 315 is disposed on the incident light h ⁇ side of the color filter 312 and the infrared transmission filter 313.
  • a planarization film 316 is formed so as to cover the microlens 315. In the embodiment shown in FIG.
  • the resin film 314 is disposed, but an infrared transmission filter 313 may be formed instead of the resin film 314. That is, the infrared transmission filter 313 may be formed on the solid-state image sensor 310.
  • the film thickness of the color filter 312 and the film thickness of the infrared transmission filter 313 are the same, but the film thickness of both may be different.
  • the color filter 312 is provided on the incident light h ⁇ side with respect to the infrared absorption filter 311, but the order of the infrared absorption filter 311 and the color filter 312 is changed to change the infrared absorption filter 311. May be provided closer to the incident light h ⁇ than the color filter 312.
  • the infrared absorption filter 311 and the color filter 312 are stacked adjacent to each other.
  • both filters do not necessarily have to be adjacent to each other, and other layers may be provided therebetween.
  • the cured film according to the embodiment of the present invention can be used as a light-shielding film such as an end or side surface of the surface of the infrared absorption filter 311, or can be used for an inner wall of the infrared sensor device to cause internal reflection or light reception. It is possible to prevent the incident of unintended light and improve the sensitivity.
  • this infrared sensor since image information can be captured simultaneously, motion sensing or the like that recognizes a target whose motion is to be detected is possible. Furthermore, since distance information can be acquired, an image including 3D information can be taken.
  • the solid-state imaging device includes a lens optical system, a solid-state imaging device, an infrared light emitting diode, and the like.
  • paragraphs 0032 to 0036 of JP 2011-233983 A can be referred to, and the contents thereof are incorporated in this specification.
  • Metal nitride-containing particles P-1 were produced by the following method.
  • the apparatus described in paragraph 0042 of JP-A-2005-343784 and FIG. 1 was used for the production.
  • a metal nitride is used using an apparatus (hereinafter referred to as “nanoparticle manufacturing apparatus”) in which the discharge vessel 1 is a stainless steel vacuum chamber (Fukushin Kogyo Co., Ltd.). Containing particles were produced. First, the air in the vacuum chamber was exhausted by an exhaust pump.
  • a mixed gas of helium (He) gas (purity 99.99%) and argon gas (mixing ratio 50/50% by volume in the standard state) is brought to a pressure of 600 Torr (79.99 kPa) in the vacuum chamber. Until supplied.
  • a tungsten electrode formed into a hollow rod having a length of 500 mm, a diameter of 12 mm, and a hollow diameter of 6 mm was used as the discharge electrode of the nanoparticle production apparatus.
  • the arrangement of the discharge electrodes was the same as that shown in FIG. 1 of JP-A-2005-343784. Specifically, 12 discharge electrodes were arranged in two stages of 6 each. The distance between the upper stage and the lower stage was about 160 mm.
  • the discharge electrode having a hollow structure is connected to a raw material supply device so that the source gas can be supplied from the hollow portion of the discharge electrode into the vacuum chamber.
  • the discharge starts with the tip of each discharge electrode in contact with each discharge electrode while applying an alternating current (voltage 20 to 40 V, current 70 to 100 A) having a phase difference to each discharge electrode.
  • an alternating current voltage 20 to 40 V, current 70 to 100 A
  • the tip of each discharge electrode is moved outward so as to be separated, and the arc discharge is continued by setting the distance between the tips of adjacent discharge electrodes to be 5 to 10 mm. .
  • the supply tank of the raw material supply apparatus was heated, and the source gas was introduced into the vacuum chamber.
  • NH 3 gas liquefied ammonium ECOAN, Showa Denko KK
  • H 2 gas hydrogen gas, Showa Denko Gas Products
  • Ar gas argon gas, Taiyo Nippon Sanso
  • TiCl 4 gas TiCl 4 gas
  • a fine sulfur powder (fine powder sulfur 325 mesh, manufactured by Tsurumi Chemical Co., Ltd., corresponding to atom T) was supplied with nitrogen gas using a powder supply device TP-99010FDR (manufactured by JEOL). The supply amount was adjusted so that T E / T X in the obtained metal nitride-containing particles was as shown in Tables 2-1 to 2-9. After introducing nitrogen gas mixed with TiCl 4 gas and fine sulfur powder into the vacuum chamber for 1 hour, voltage application from the AC power supply was stopped and supply of the gas was stopped. Next, the particles adhering to the inner wall of the vacuum chamber were collected.
  • the obtained particles, O 2 content, and water content was controlled to 100ppm or less each nitrogen (N 2) placed in a sealed container in which the gas is introduced and allowed to stand 24 hours.
  • metal nitride-containing particles P-2 to P-63 Similar to the metal nitride-containing particle P-1, except that each metal described below was used as the transition metal instead of Ti, and each atom described in Table 1 was used as the atom T instead of sulfur. Thus, metal nitride-containing particles P-2 to P to 63 were produced.
  • the powder supply device is used if the raw material is powder, and the supply container is heated by a ribbon heater if the raw material is liquid or sublimable solid. Volatilized gas was supplied.
  • the transition metal content contained in each metal nitride-containing particle was measured using a fluorescent X-ray analyzer. The measurement conditions are as described above.
  • Nb powder Niobium (powder) ⁇ 100-325 mesh> manufactured by Mitsuwa Chemicals ⁇
  • V powder Metal vanadium powder VHO made by Taiyo Mining -Zr powder: Zirconium powder made by Wako Pure Chemical Industries-Tantalum Nodal: Tantalum Nodal made by Global Advanced Metal ⁇ Hf powder: Hafnium powder made by Furuuchi Chemical ⁇ Y powder: Yttrium powder made in Japan yttrium ⁇ Cr powder: Degassed electrolytic metal chrome powder made by Kosei ⁇ Re powder: Rhenium powder made by Rhenium Alloys ⁇ W powder: Tungsten powder AW3110 made by Eurotungsten ⁇ Ag powder: Ag powder made by Mitsui Kinzoku SPQ03R
  • Metal nitride-containing particles P-C1 were produced in the same manner except that the fine sulfur powder was not used in the production of metal nitride-containing particles P-1.
  • Metal nitride-containing particles P-C2 were obtained in the same manner as the metal nitride-containing particles P-1, except that Ag powder (“SPQ03R” manufactured by Mitsui Kinzoku Co., Ltd.) was used instead of the fine sulfur powder. It was.
  • TiN nanopowders manufactured by Nisshin Engineering Co., Ltd. were used as the metal nitride-containing particles PC3.
  • TiC nanopowder manufactured by Hefei Kai'er was added as a colorant.
  • the ratio of TiN nanopowder and TiC nanopowder in the dispersion composition was adjusted as follows. -Nissin Engineering Co., Ltd., TiN nano powder: 9.43 mass parts-Hefei Kai'er Co., TiC nano powder: 2.35 mass parts
  • Metal nitride-containing particles PC4 were prepared by the following method. 100 g of titanium oxide MT-150A having an average particle size of 15 nm (trade name: manufactured by Teika Co., Ltd.) and silica particles having a BET (Brunauer, Emmett, Teller) surface area of 300 m 2 / g AEROPERL (registered trademark) 300/30 (manufactured by Evonik) ) And a dispersant Disperbyk190 (trade name: manufactured by Big Chemie) were weighed, 71 g of ion-exchanged water was added, and a planetary stirrer (MURASUSTAR KK-400W manufactured by KURABO) was used, and the revolution speed was 1360 rpm.
  • BET Brunauer, Emmett, Teller
  • metal nitride-containing particles P-C5 were produced.
  • a specific manufacturing method is as follows. First, 300 g of hydrous titanium dioxide was suspended in 1 liter of water in terms of TiO 2 to obtain a slurry. Next, the pH of the slurry was adjusted to 10 with an aqueous sodium hydroxide solution, and then the slurry temperature was heated to 70 ° C. A sodium silicate aqueous solution was dropped into the heated slurry over 2 hours. Next, the slurry temperature was heated to 90 ° C.
  • Diluted sulfuric acid was added dropwise to the heated slurry over 2 hours to neutralize the pH of the slurry to 5. The neutralized slurry was held for 30 minutes. Next, the slurry was dehydrated to obtain a solid content. Next, the solid content was washed, and the washed solid content was heated to 850 ° C. in air and baked for 5 hours. As described above, titanium dioxide coated with silicon oxide (0.3% by mass as SiO 2 ) was obtained. The obtained titanium dioxide was anatase type. Next, the titanium dioxide coated with silicon oxide was put in a quartz tube having an inner diameter of 7.5 cm. Next, the quartz tube was heated at a temperature of 980 ° C.
  • composition formula was expressed as TiN 0.95 O 0.20 ⁇ 0.01SiO 2.
  • Metal nitride-containing particles PC5 were obtained.
  • metal nitride-containing particles P-C6 were produced.
  • a specific manufacturing method is as follows. Deionized water was added to the metal nitride-containing particles P-1C to obtain a suspension having a metal nitride-containing particle P-1C content of 100 g / L. Next, 1 liter of this suspension was heated to 70 ° C.
  • a solution obtained by dissolving 23.5 g of 50% tin chloride aqueous solution, 1.3 g of antimony chloride in 59 g of 35% hydrochloric acid aqueous solution and 17% sodium hydroxide aqueous solution was added in parallel to the heated suspension. During the addition, the pH of the suspension was maintained at 2 to 3, and the addition time was 60 minutes. Next, the suspension was filtered and washed until the specific resistance of the filtrate reached 50 ⁇ S / cm to obtain a solid content. Next, the solid content is dried at 120 ° C. for a whole day and night, and the solid content after drying is fired at 600 ° C. for 1 hour using an electric furnace to contain a metal nitride coated with a conductive layer of antimony solid solution tin oxide Particles P-1C were obtained and designated as metal nitride-containing particles PC6.
  • compositions of the metal nitride-containing particles P-1 to P-63 and P-C1 to P-C6 are summarized in Tables 2-1 to 2-9.
  • T E / T X of the metal nitride-containing particles was measured by the following method. Each metal nitride containing particle
  • X-ray photoelectron spectroscopy (measurement of T E)
  • Device Quantera-SXM (trade name) device manufactured by PHI
  • X-ray source Monochromatic Al K ⁇ ray (1486.6 ev, 25 W, 15 kV, beam diameter 200 ⁇ m ⁇ )
  • Measurement area 200 ⁇ m ⁇
  • Measurement method A sample was set in the apparatus, and the photoelectron take-off angle was 10 degrees.
  • Dispersant A was synthesized by the following method.
  • ⁇ Synthesis Example A1 Synthesis of Macromonomer A-1> ⁇ -caprolactone (1044.2 g), ⁇ -valerolactone (184.3 g), and 2-ethyl-1-hexanol (71.6 g) were introduced into a 3000 mL three-necked flask to obtain a mixture. Next, the above mixture was stirred while blowing nitrogen. Next, Disperbyk111 (12.5 g, manufactured by Big Chemie, phosphoric acid resin) was added to the mixture, and the resulting mixture was heated to 90 ° C. After 6 hours, the mixture was heated to 110 ° C.
  • V-601 2,2′-azobis (methyl 2-methylpropionate) (1.48 g, hereinafter also referred to as “V-601”) are added to the mixture, and polymerization is performed. The reaction was started. After the mixture was heated at 75 ° C. for 2 hours, additional V-601 (1.48 g) was added to the mixture. After 2 hours, additional V-601 (1.48 g) was added to the mixture. After further reaction for 2 hours, the mixture was heated to 90 ° C. and stirred for 3 hours. By the above operation, the polymerization reaction was completed, and Dispersant A was obtained.
  • composition of dispersion composition -Each metal nitride-containing particle (described in Tables 2-1 to 2-9): 11.79 parts by mass-30% by mass of propylene glycol monomethyl ether acetate in Dispersant A: 11.79 parts by mass-Propylene glycol monomethyl Ether acetate: 23.58 parts by mass
  • the above components were mixed, and then the resulting mixture was dispersed under the following conditions using NPM-Pilot manufactured by Shinmaru Enterprises Co., Ltd. Obtained.
  • composition of curable composition Next, the dispersion composition, alkali-soluble resin, polymerization initiator, polymerizable compound, surfactant, polymerization inhibitor, and organic solvent were mixed to obtain a curable composition according to each example. Content (mass%) of the component contained in each curable composition is shown below.
  • Alkali-soluble resin A-1 (“Acryl RD-F8” manufactured by Nippon Shokubai Co., Ltd., solid content 40%, solvent: propylene glycol monomethyl ether): 8.32 parts by mass
  • Polymerizable compound M1 (“KAYARAD DPHA”, manufactured by Nippon Kayaku Co., Ltd., hexafunctional polymerizable compound (amount of ethylenically unsaturated group: 10.4 mmol / g), and pentafunctional polymerizable compound (ethylenically unsaturated group) Amount of 9.5 mmol / g)): 6.82 parts by mass
  • the dispersant B used in Example 64 was synthesized by the following method.
  • Polymerizable compound M2 Shin-Nakamura Chemical Co., Ltd., trade name “U-15HA”
  • Polymerizable compound M3 Nippon Kayaku Co., Ltd., trade name “KAYARAD RP-1040”
  • Polymerizable compound M4 A compound represented by the following formula (synthesized with reference to JP2009-169049)
  • -Polymerization initiator I-1 Polymerization initiator of the following formula (I-1)-Polymerization initiator I-2: Irgacure OXE01 (trade name, manufactured by BASF Japan Ltd., polymerization initiator of the above formula (C-7)) Polymerization initiator I-3: Irgacure OXE02 (trade name, manufactured by BASF Japan, polymerization initiator of the above formula (C-11)) -Polymerization initiator I-4: Polymerization initiator of the following formula (I-4)-Polymerization initiator I-5: Polymerization initiator of the following formula (I-5)-Polymerization initiator I-6: The following formula (I -6) polymerization initiator / polymerization initiator I-7: Adeka Arcles NCI-831 (trade name, manufactured by Adeka) Polymerization initiator I-8: N-1919 (trade name, manufactured by Adeka)
  • the silicon wafer after the paddle development is fixed to the horizontal rotary table by a vacuum chuck method, and the silicon wafer is rotated at a rotation speed of 50 rpm by a rotating device, and pure water is sprayed from the nozzle above the rotation center.
  • a silicon wafer provided with a 2 cm ⁇ 2 cm patterned cured film.
  • the obtained silicon wafer was heat-treated at 220 ° C. for 1 hour using a clean oven (High Temp Clean Oven CLH-300S, manufactured by Koyo Thermo Systems Co., Ltd.).
  • the curable composition used was appropriately diluted with PGMEA (propyleneglycol monomethyl ether acetate) to obtain a film having a thickness of 0.3 ⁇ m.
  • the obtained cured film was subjected to spectroscopic ellipsometry (M-2000XI-210: spectroscopic ellipsometry manufactured by JA Woollam), and the phase difference between p-polarized light (parallel) and s-polarized light (vertical) at a wavelength of 400 to 1200 nm.
  • a spectrum of ⁇ and amplitude ratio ⁇ was obtained. Fitting analysis is performed on the obtained ( ⁇ , ⁇ ) spectrum using a Bruggeman effective medium approximation (EMA) model, and the dielectric constant of the true metal nitride-containing particles contained in the film is determined. Asked.
  • EMA Bruggeman effective medium approximation
  • the metal nitride-containing particles in the cured film were separated by separating the metal nitride-containing particles in the cured film by the following method.
  • the real part of the complex dielectric constant was evaluated from the obtained complex dielectric constant according to the following criteria. The results are shown in Tables 2-1 to 2-9.
  • Method for separating metal nitride-containing particles from a curable composition First, an organic solvent containing chloroform is added to the curable composition, and components other than the metal nitride-containing particles are dissolved to obtain a solution. The lysate is centrifuged to obtain a precipitate. Next, the precipitate is heated and concentrated to obtain metal nitride-containing particles.
  • B The minimum value of the real part of the complex dielectric constant was 0 or more.
  • the average primary particle diameter of the metal nitride-containing particles contained in each curable composition was measured by the following method.
  • TEM transmission electron microscope
  • the diameter when the obtained area was converted into a circle was calculated, and the diameter in terms of a circle evaluated for 400 particles was obtained by arithmetic averaging.
  • the results were evaluated according to the following criteria and are shown in Tables 2-1 to 2-9.
  • all the average primary particle diameters of the metal nitride containing particle which concerns on each Example and a comparative example were 1 nm or more.
  • B The average primary particle size of the metal nitride-containing particles was 80 nm or more and 200 nm or less.
  • C The average primary particle size of the metal nitride-containing particles exceeded 200 nm.
  • volume average particle diameter D90 of the metal nitride-containing particles contained in each curable composition was measured by the following method.
  • the above sample was measured using a nanotrack UPA-EX150 manufactured by Nikkiso Co., Ltd. with the dynamic light scattering method as a measurement principle, and the volume average particle diameter D90 of the metal nitride-containing particles was calculated. The results were evaluated according to the following criteria and are shown in Tables 2-1 to 2-9.
  • each curable composition was evaluated by the following method. First, the curable composition was diluted twice with propylene glycol monomethyl ether acetate to obtain a diluted solution. Next, 20 mL of the diluted solution was collected, and the collected diluted solution was placed in a 50 mL resin container and allowed to stand in an environment at 23 ° C. for 6 months. After standing, 5 g of the supernatant liquid from the liquid level of the diluted liquid in the resin container to a depth of 1 cm was collected, and the solid content was measured. The amount of change in the solid content was calculated by comparing the solid content of the supernatant with the solid content of each curable composition immediately after preparation.
  • C The amount of change in solid content concentration was 2% or more and less than 3%.
  • D The amount of change in the solid content concentration was 3% or more.
  • the temporal stability of the curable composition was evaluated by the following method. First, 50 g of each curable composition was sealed in a 100 mL glass container. Next, the container was held at 45 ° C. and allowed to stand for 7 days, then held at ⁇ 20 ° C. and left to stand for 10 days. After standing, a curable composition having a depth of 1 cm from the bottom of the container was collected. The collected curable composition was applied onto a glass substrate by a spin coating method to obtain a curable composition layer. Next, the glass substrate was placed on a hot plate with the glass substrate surface facing down, and heated at 100 ° C. for 2 minutes. Next, the curable composition layer after heating was allowed to stand at room temperature for 3 days.
  • the planar shape of the curable composition layer after standing was observed using an optical microscope MT-3600LW (manufactured by FLOVEL).
  • the temporal stability of the curable composition was evaluated by the occurrence of foreign matter in the curable composition after being left. It can be said that the smaller the foreign matter, the better the temporal stability of the curable composition. Practically, “C” or more is preferable.
  • each curable composition was applied by spin coating on a glass substrate (Eagle XG, manufactured by Corning) having a thickness of 0.7 mm and a size of 10 cm square to obtain a curable composition layer.
  • the rotational speed of the spin coater was adjusted so that the thickness of the curable composition layer after drying was 1.0 ⁇ m.
  • the glass substrate was placed on a hot plate with the glass substrate surface down, and heat-treated at 100 ° C. for 2 minutes to dry the curable composition layer.
  • the curable composition layer was exposed with a wavelength of 365 nm and an exposure amount of 500 mJ / cm 2 using an i-line stepper exposure apparatus FPA-3000i5 + (manufactured by Canon).
  • the glass substrate on which the curable composition layer after exposure was formed was placed on a horizontal rotary table of a spin shower developing machine (DW-30 type, manufactured by Chemtronics), and CD-2000 (Fuji Film). Paddle development was performed at 23 ° C. for 60 seconds using an organic alkali developer (manufactured by Electronics Materials).
  • the silicon wafer after the paddle development is fixed to the horizontal rotary table by a vacuum chuck method, and the silicon wafer is rotated at a rotation speed of 50 rpm by a rotating device, and pure water is sprayed from the nozzle above the rotation center. And then rinsed to obtain a cured film.
  • OD optical density: optical density
  • X-rite 361T visual densitometer
  • the cured film (film thickness: 1.0 ⁇ m) of each example has an OD value equal to or greater than the OD value shown in the table over the entire wavelength range of 400 to 1200 nm.
  • the curable compositions of Examples 1 to 85 had the effects of the present invention.
  • the curable compositions of Comparative Examples 1 to 6 did not have the effects of the present invention.
  • the curable composition of Example 1 in which X, Y, and Z are each greater than 0 and less than 2 is superior to the curable composition of Example 61 in terms of anti-settling property and superior It was stable over time.
  • the curable composition of Example 1 in which the sum of X, Y, and Z is more than 0.4 and less than 1.6 is superior to the curable composition of Example 50 in terms of anti-settling property, And better stability over time.
  • the curable composition of Example 1 has more excellent temporal stability compared with the curable composition of Example 55, and the cured film obtained by the said curable composition is more excellent. It had a light-shielding property.
  • the curable composition of Example 1 in which the minimum value of the imaginary part ⁇ ′ of the complex dielectric constant of the metal nitride-containing particles at a wavelength of 400 to 1200 nm is less than 0 is compared with the curable composition of Example 63. It had a better light-shielding property.
  • the curable composition of Example 1 in which the atom T is selected from elements other than aluminum, gallium, indium, tin, thallium, lead, and bismuth among the elements of the second to sixth periods is the examples 9-12.
  • the curable composition of Example 1 in which the atom T is selected from Group 13 to 16 elements is superior to the curable compositions of Examples 6 to 8 in terms of anti-settling property and superior It was stable over time.
  • the curable composition of Example 1 wherein the atom T is any atom selected from the group consisting of a boron atom, a carbon atom, a sulfur atom, and a phosphorus atom the curable composition of Example 5 Compared to the above, it had better temporal stability.
  • Example 1 The curable composition of Example 1 in which the atom T is any atom selected from the group consisting of a boron atom, a sulfur atom, and a phosphorus atom is compared with the curable composition of Example 3, It had better aging stability.
  • the curable composition of Example 64 containing Agent B, the curable composition of Example 67 containing Dispersant E, and the curable composition of Example 68 containing Dispersant F were Example 65, As compared with the curable composition of Example 66, the anti-settling property was more excellent.
  • the curable composition of Example 1 containing the polymerization initiator I-1 in which the monovalent substituent represented by B is an aryl group or a heterocyclic group, the polymerization initiator I The curable composition of Example 80 containing -3, the curable composition of Example 83 containing polymerization initiator I-6, the curable composition of Example 84 containing polymerization initiator I-7, And the curable composition of Example 85 containing the polymerization initiator I-8 has superior temporal stability compared to the curable compositions of Example 79, Example 81, and Example 82. It was.
  • Example 1-WL Production and evaluation of cured film for wafer level lens
  • thermosetting cured film 5 ⁇ 5 cm of a curable composition for lenses (a composition obtained by adding 1% by mass of an arylsulfonium salt derivative (SP-172 manufactured by ADEKA) to an alicyclic epoxy resin (EHPE-3150 manufactured by Daicel Chemical Industries)
  • SPD-172 arylsulfonium salt derivative
  • EHPE-3150 alicyclic epoxy resin
  • the film was coated on a glass substrate (thickness 1 mm, manufactured by Schott, BK7), and the coating film was cured by heating at 200 ° C. for 1 minute to form a film on which the residue on the lens could be evaluated.
  • the curable composition of Example 1 was apply
  • the glass wafer was placed on a hot plate and heated at 120 ° C. for 120 seconds.
  • the film thickness of the curable composition layer after heating was 2.0 ⁇ m.
  • the curable composition layer after heating was exposed using a high-pressure mercury lamp. It exposed through the photomask which has a 10 mm hole pattern, and the exposure amount was 500 mJ / cm ⁇ 2 >.
  • the curable composition layer after exposure is subjected to paddle development for 60 seconds at a temperature of 23 ° C.
  • a curable composition for lenses (alicyclic epoxy resin (EHPE-3150 manufactured by Daicel Chemical Industries) and arylsulfonium salt derivative (SP-172 manufactured by ADEKA)). 1% by weight of the composition), a curable resin layer is formed, the shape is transferred with a quartz mold having a lens shape, and cured by a high-pressure mercury lamp at an exposure amount of 400 mJ / cm 2 , thereby producing a wafer. A wafer level lens array having a plurality of level lenses was produced.
  • the produced wafer level lens array was cut and a lens module was produced using the obtained wafer level lens, and then an imaging device and a sensor substrate were attached to produce an imaging unit (solid-state imaging device).
  • the obtained wafer level lens had no residue at the lens opening and had good transparency, and the light shielding layer also had high uniformity of the coated surface and high light shielding properties.
  • Example 1-BL Production and evaluation of a color filter including a black matrix
  • the curable composition of Example 1 was applied to a glass wafer by a spin coat method to obtain a curable composition layer.
  • the glass wafer was placed on a hot plate and heated at 120 ° C. for 2 minutes.
  • the film thickness of the curable composition layer after heating was 2.0 ⁇ m.
  • the curable composition layer was exposed at a dose of 500 mJ / cm 2 through a photomask having an Island pattern with a pattern of 0.1 mm.
  • the curable composition layer after exposure was subjected to paddle development at 23 ° C.
  • a curable composition was prepared and evaluated in the same manner as in Example 1 except that the polymerization inhibitor was not used. The evaluation was the same as in Example 1 except that the temporal stability was B. Results were obtained.
  • Example 1 In the curable composition of Example 1, instead of the metal nitride-containing particles P-1, the metal nitride-containing particles P-1 and a colorant (carbon black, trade name “Color Black S170”, manufactured by Degussa, average A curable composition was prepared using a mixture of a primary particle diameter of 17 nm, a BET specific surface area of 200 m 2 / g, and carbon black produced by a gas black method. The mass ratio of the metal nitride-containing particles P-1 and the colorant in the curable composition (colorant / metal nitride-containing particles P-1) was adjusted to 2/8. When the said curable composition was evaluated, it turned out that it has a performance equivalent to Example 1. FIG.
  • Example 1 In the curable composition of Example 1, instead of the metal nitride-containing particles P-1, the metal nitride-containing particles P-1 and a colorant (Pigment Yellow 150, manufactured by Hangzhou Star-up Pigment Co., Ltd., A curable composition was prepared using a mixture with trade name 6150 Pigment Yellow 5GN). The mass ratio of the metal nitride-containing particles P-1 and the colorant in the curable composition (colorant / metal nitride-containing particles P-1) was adjusted to 2/8. When the said curable composition was evaluated, it turned out that it has the performance equivalent to Example 1, and also it turned out that a darker light-shielding film is obtained. From this result, it was found that the effect of the present invention can be obtained even when used in combination with a colorant (organic pigment or chromatic dye).
  • a colorant organic pigment or chromatic dye
  • Solid-state imaging device 101 Solid-state image sensor 102 ... Imaging part 103 ... Cover glass 104 ... Spacer 105 ... Laminated substrate 106 ... Chip substrate 107 ... Circuit board 108 ... Electrode pad 109 ... External connection terminal 110 ... Penetration electrode 111 ... Lens layer 112 ... Lens material 113 ... Supports 114, 115 ... Curing film 201 ... Light receiving element 202 ... Color filter 201 ... Light receiving element 202 ... Color filter 203 ... Micro lens 204 ... Substrate 205b ... Blue pixel 205r ... Red pixel 205g ... Green pixel 205bm ... Black matrix 206...
  • P well layer 207 Readout gate portion 208... Vertical transfer path 209. Insulating film 211... Vertical transfer electrode 212... Cured film 213, 214... Insulating film 215. Absorption filter 312 ... Color filter 313 ... Infrared transmission filter 314 ... Resin film 315 ... Micro lens 316 ... Flattening film

Abstract

Provided are metal nitride-containing particles capable of being used in a curable composition that has excellent anti-settling properties and excellent stability over time and is capable of obtaining a cured film having excellent light shielding properties. Also provided are: a dispersion composition; a curable composition; a cured film; a color filter; a solid-state imaging element; a solid-state imaging device; an infrared sensor; a production method for the metal nitride-containing particles; a production method for the dispersion composition; a production method for the curable composition; and a production method for the cured film. The metal nitride-containing particles: contain a nitride of a group 3–11 transition metal; have an average primary particle diameter of no more than 200 nm; and contain a nitrogen atom and an atom T. The atom T: is not an oxygen atom, a chlorine atom, or a nitrogen atom; is selected from group 13–17 elements; and fulfils TE/TX < 2.0 when the atom T content on a mass basis as detected by X ray photoelectron spectroscopic analysis is TE and the atom T content on a mass basis as detected by fluorescent X ray analysis is TX.

Description

金属窒化物含有粒子、分散組成物、硬化性組成物、硬化膜、及びそれらの製造方法、並びにカラーフィルタ、固体撮像素子、固体撮像装置、赤外線センサMetal nitride-containing particles, dispersion composition, curable composition, cured film, and production method thereof, color filter, solid-state imaging device, solid-state imaging device, infrared sensor
 本発明は、金属窒化物含有粒子、分散組成物、硬化性組成物、硬化膜、カラーフィルタ、固体撮像素子、固体撮像装置、赤外線センサ、金属窒化物含有粒子の製造方法、分散組成物の製造方法、硬化性組成物の製造方法、及び、硬化膜の製造方法に関する。 The present invention relates to a metal nitride-containing particle, a dispersion composition, a curable composition, a cured film, a color filter, a solid-state imaging device, a solid-state imaging device, an infrared sensor, a method for producing metal nitride-containing particles, and a dispersion composition. The present invention relates to a method, a method for producing a curable composition, and a method for producing a cured film.
 従来から、遮光性を有する硬化膜(以下、「遮光膜」ともいう。)を製造するための組成物に含有される粒子として、金属窒化物含有粒子が知られている。金属窒化物含有粒子は様々な用途に用いられ、特に、金属窒化物含有粒子を含有する組成物は、例えば、画像表示装置(例えば、液晶表示装置、及び有機EL(electro luminescence)装置等)、及び固体撮像装置等が備える遮光膜の作製に使用されてきた。
 具体的には、画像表示装置等が備えるカラーフィルタは着色画素間の光を遮蔽し、コントラストを向上させる等の目的で、ブラックマトリクスと呼ばれる遮光膜を備えている。
 また、固体撮像素子は、ノイズ発生防止、及び画質の向上等を目的として、遮光膜を備えている。現在、携帯電話及びPDA(Personal Digital Assistant)等の電子機器の携帯端末には、小型で薄型な固体撮像装置が搭載されている。このような固体撮像装置は、一般に、CCD(Charge Coupled Device)イメージセンサ及びCMOS(Complementary Metal-Oxide Semiconductor)イメージセンサ等の固体撮像素子と、固体撮像素子上に被写体像を形成するためのレンズとを備えている。
Conventionally, metal nitride-containing particles are known as particles contained in a composition for producing a cured film having a light-shielding property (hereinafter also referred to as “light-shielding film”). Metal nitride-containing particles are used for various applications, and in particular, compositions containing metal nitride-containing particles include, for example, image display devices (for example, liquid crystal display devices, organic EL (electroluminescence) devices, etc.), And a light-shielding film included in a solid-state imaging device or the like.
Specifically, a color filter included in an image display device or the like includes a light-shielding film called a black matrix for the purpose of shielding light between colored pixels and improving contrast.
The solid-state imaging device includes a light shielding film for the purpose of preventing noise generation and improving image quality. Currently, portable terminals of electronic devices such as mobile phones and PDAs (Personal Digital Assistants) are equipped with small and thin solid-state imaging devices. Such a solid-state imaging device generally includes a solid-state imaging device such as a CCD (Charge Coupled Device) image sensor and a CMOS (Complementary Metal-Oxide Semiconductor) image sensor, and a lens for forming a subject image on the solid-state imaging device. It has.
 上記のような硬化膜を製造するための組成物に含有される粒子としては、例えば、特許文献1には、チタン窒化物粒子とチタン炭化物粒子の質量組成比が80/20~20/80の範囲である遮光材が記載されている。 As particles contained in the composition for producing a cured film as described above, for example, Patent Document 1 discloses that the mass composition ratio of titanium nitride particles and titanium carbide particles is 80/20 to 20/80. The shading material which is the range is described.
特開2010-95716号公報JP 2010-95716 A
 本発明者らは、特許文献1に記載された遮光材を含有する組成物について検討したところ、得られる硬化膜の遮光性、並びに組成物の沈降防止性、及び経時安定性が昨今要求される水準に達していないことを知見した。
 なお、本明細書において、遮光性、沈降防止性、及び経時安定性とは、実施例に記載した方法により測定される遮光性、沈降防止性、及び経時安定性を意図する。
The present inventors have studied the composition containing the light shielding material described in Patent Document 1, and as a result, the light-shielding property of the resulting cured film, the anti-settling property of the composition, and the stability over time are recently required. I found out that the standard was not reached.
In the present specification, the light-shielding property, anti-settling property, and stability over time mean light-shielding property, anti-settling property, and stability over time measured by the methods described in Examples.
 そこで、本発明は、優れた沈降防止性、及び優れた経時安定性を有する硬化性組成物であって、かつ、優れた遮光性を有する硬化膜が得られる硬化性組成物に用いることができる(以下、「本発明の効果を有する」ともいう。)金属窒化物含有粒子を提供することを課題とする。
 本発明は、分散組成物、硬化性組成物、硬化膜、カラーフィルタ、固体撮像素子、固体撮像装置、赤外線センサ、金属窒化物含有粒子の製造方法、分散組成物の製造方法、硬化性組成物の製造方法、及び硬化膜の製造方法を提供することも課題とする。
Therefore, the present invention can be used for a curable composition having excellent anti-settling properties and excellent temporal stability, and capable of obtaining a cured film having excellent light-shielding properties. (Hereinafter also referred to as “having the effect of the present invention.”) It is an object to provide metal nitride-containing particles.
The present invention relates to a dispersion composition, a curable composition, a cured film, a color filter, a solid-state imaging device, a solid-state imaging device, an infrared sensor, a method for producing metal nitride-containing particles, a method for producing a dispersion composition, and a curable composition. Another object of the present invention is to provide a method for producing a cured film and a method for producing a cured film.
 本発明者らは、上記課題を達成すべく鋭意検討した結果、以下の構成により上記課題を達成することができることを見出した。 As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that the above-described problems can be achieved by the following configuration.
 [1] 3~11族の遷移金属の窒化物を含有する、金属窒化物含有粒子であって、平均一次粒子径が200nm以下であり、窒素原子と、原子Tとを含有し、原子Tは、酸素原子、塩素原子、及び窒素原子のいずれでもなく、13~17族元素から選択され、X線光電子分光分析により検出される、金属窒化物含有粒子の表面における、原子Tの質量基準の含有量をT(質量%)、蛍光X線分析により検出される、金属窒化物含有粒子における、原子Tの質量基準の含有量をT(質量%)としたとき、T/T<2.0で表される関係を満たす、金属窒化物含有粒子。
 [2] 更に酸素原子を含有する、[1]に記載の金属窒化物含有粒子。
 [3] 窒化物が含有する遷移金属原子の含有量に対する窒素原子の含有量の含有原子数比X、窒化物が含有する遷移金属原子の含有量に対する酸素原子の含有量の含有原子数比Y、及び窒化物が含有する遷移金属原子の含有量に対する原子Tの含有量の含有原子数比Zが、それぞれ0を超え2未満である、[2]に記載の金属窒化物含有粒子。
 [4] X、Y、及びZの和が、0.4を超え1.6未満である、[3]に記載の金属窒化物含有粒子。
 [5] 波長400~1200nmにおける、金属窒化物含有粒子の複素誘電率εをε=ε’+ε”jで表すとき、ε’の最小値が0未満である、[1]~[4]のいずれかに記載の金属窒化物含有粒子。ε’は複素誘電率εの実数部、ε”は複素誘電率εの虚数部、jは虚数単位を表す。
 [6] 原子Tが、第2~6周期の元素のうち、アルミニウム、ガリウム、インジウム、スズ、タリウム、鉛、及びビスマス以外の元素から選択される、[1]~[5]のいずれかに記載の金属窒化物含有粒子。
 [7] 原子Tが、13~16族元素から選択される、[6]に記載の金属窒化物含有粒子。
 [8] 原子Tが、ホウ素原子、炭素原子、硫黄原子、及びリン原子からなる群から選択されるいずれかの原子である、[1]~[7]のいずれかに記載の金属窒化物含有粒子。
 [9] 原子Tが、ホウ素原子、硫黄原子、及びリン原子からなる群から選択されるいずれかの原子である、[1]~[8]のいずれかに記載の金属窒化物含有粒子。
 [10] [1]~[9]のいずれかに記載の金属窒化物含有粒子と、樹脂とを含有する分散組成物。
 [11] [10]に記載の分散組成物と、重合性化合物と、重合開始剤とを含有する硬化性組成物。
 [12] [1]~[9]のいずれかに記載の金属窒化物含有粒子と、樹脂と、重合性化合物と、重合開始剤とを含有する硬化性組成物。
 [13] 更に、溶剤を含有する、[11]又は[12]に記載の硬化性組成物。
 [14] [11]~[13]のいずれかに記載の硬化性組成物を硬化して得られる硬化膜。
 [15] [14]に記載の硬化膜を含有する、カラーフィルタ。
 [16] [14]に記載の硬化膜を含有する、固体撮像素子。
 [17] [14]に記載の硬化膜を含有する、固体撮像装置。
 [18] [14]に記載の硬化膜を含有する、赤外線センサ。
 [19] [1]~[9]のいずれかに記載の金属窒化物含有粒子の製造方法であって、窒素原子を含有する原材料A、並びに遷移金属原子及び原子Tを含有する原材料Bを準備する、又は窒素原子を含有する原材料A、遷移金属原子を含有する原材料C、及び原子Tを含有する原材料Dを準備する、原材料準備工程と、2種以上の原材料を気相状態で混合して、混合物を得る工程と、気相状態の混合物を凝縮して、金属窒化物含有粒子を得る工程とを含む、金属窒化物含有粒子の製造方法。
 [20] [10]に記載の分散組成物の製造方法であって、窒素原子を含有する原材料A、並びに遷移金属原子及び原子Tを含有する原材料Bを準備する、又は窒素原子を含有する原材料A、遷移金属原子を含有する原材料C、及び原子Tを含有する原材料Dを準備する、原材料準備工程と、2種以上の原材料を気相状態で混合して、混合物を得る工程と、気相状態の混合物を凝縮して、金属窒化物含有粒子を得る工程と、金属窒化物含有粒子、及び樹脂を混合し、分散組成物を得る工程とを含む、分散組成物の製造方法。
 [21] 分散組成物と、重合性化合物と、重合開始剤とを含有する硬化性組成物の製造方法であって、[20]に記載の分散組成物の製造方法を含む、硬化性組成物の製造方法。
 [22] [11]~[13]のいずれかに記載の硬化性組成物を用いて硬化性組成物層を形成する、硬化性組成物層形成工程と、硬化性組成物層に、パターン状の開口部を備えるフォトマスクを介して、活性光線又は放射線を照射して露光する、露光工程と、露光後の硬化性組成物層を現像して、硬化膜を形成する、現像工程とを含む、硬化膜の製造方法。
[1] A metal nitride-containing particle containing a transition metal nitride of Group 3 to 11 and having an average primary particle diameter of 200 nm or less, containing nitrogen atoms and atoms T, , Oxygen atom, chlorine atom, and nitrogen atom, selected from group 13-17 elements, and detected by X-ray photoelectron spectroscopy, containing atomic basis of mass T on the surface of metal nitride-containing particles When the amount is T E (mass%) and the mass-based content of atoms T in the metal nitride-containing particles detected by fluorescent X-ray analysis is T X (mass%), T E / T X < Metal nitride-containing particles satisfying the relationship represented by 2.0.
[2] The metal nitride-containing particle according to [1], further containing an oxygen atom.
[3] The atomic ratio X of the nitrogen atom content to the transition metal atom content of the nitride, and the oxygen atom ratio Y of the oxygen atom content to the transition metal atom content of the nitride In addition, the metal nitride-containing particles according to [2], wherein the atomic ratio Z of the content of atoms T to the content of transition metal atoms contained in the nitride is more than 0 and less than 2.
[4] The metal nitride-containing particle according to [3], wherein the sum of X, Y, and Z is more than 0.4 and less than 1.6.
[5] When the complex dielectric constant ε of the metal nitride-containing particles at a wavelength of 400 to 1200 nm is represented by ε = ε ′ + ε ″ j, the minimum value of ε ′ is less than 0, [1] to [4] The metal nitride-containing particles according to any one of the above, wherein ε ′ represents a real part of the complex dielectric constant ε, ε ″ represents an imaginary part of the complex dielectric constant ε, and j represents an imaginary unit.
[6] In any one of [1] to [5], the atom T is selected from elements other than aluminum, gallium, indium, tin, thallium, lead, and bismuth among the elements in the second to sixth periods. The metal nitride-containing particles as described.
[7] The metal nitride-containing particle according to [6], wherein the atom T is selected from Group 13-16 elements.
[8] The metal nitride-containing material according to any one of [1] to [7], wherein the atom T is any atom selected from the group consisting of a boron atom, a carbon atom, a sulfur atom, and a phosphorus atom particle.
[9] The metal nitride-containing particle according to any one of [1] to [8], wherein the atom T is any atom selected from the group consisting of a boron atom, a sulfur atom, and a phosphorus atom.
[10] A dispersion composition comprising the metal nitride-containing particles according to any one of [1] to [9] and a resin.
[11] A curable composition containing the dispersion composition according to [10], a polymerizable compound, and a polymerization initiator.
[12] A curable composition containing the metal nitride-containing particles according to any one of [1] to [9], a resin, a polymerizable compound, and a polymerization initiator.
[13] The curable composition according to [11] or [12], further containing a solvent.
[14] A cured film obtained by curing the curable composition according to any one of [11] to [13].
[15] A color filter containing the cured film according to [14].
[16] A solid-state imaging device containing the cured film according to [14].
[17] A solid-state imaging device containing the cured film according to [14].
[18] An infrared sensor containing the cured film according to [14].
[19] A method for producing metal nitride-containing particles according to any one of [1] to [9], comprising preparing a raw material A containing nitrogen atoms and a raw material B containing transition metal atoms and atoms T Preparing a raw material A containing nitrogen atoms, a raw material C containing transition metal atoms, and a raw material D containing atoms T, and mixing two or more raw materials in a gas phase state A method for producing metal nitride-containing particles, comprising: obtaining a mixture; and condensing the gas phase mixture to obtain metal nitride-containing particles.
[20] A method for producing a dispersion composition according to [10], wherein a raw material A containing nitrogen atoms and a raw material B containing transition metal atoms and atoms T are prepared, or a raw material containing nitrogen atoms Preparing a raw material C containing A, a transition metal atom, and a raw material D containing an atom T, a step of mixing two or more raw materials in a gas phase to obtain a mixture, and a gas phase A method for producing a dispersion composition, comprising: condensing a mixture in a state to obtain metal nitride-containing particles; and mixing metal nitride-containing particles and a resin to obtain a dispersion composition.
[21] A method for producing a curable composition comprising a dispersion composition, a polymerizable compound, and a polymerization initiator, the method comprising the method for producing a dispersion composition according to [20]. Manufacturing method.
[22] A curable composition layer forming step of forming a curable composition layer using the curable composition according to any one of [11] to [13], and a pattern on the curable composition layer An exposure step of irradiating with actinic rays or radiation through a photomask having an opening of the exposure step, and a development step of developing the curable composition layer after exposure to form a cured film The manufacturing method of a cured film.
 本発明によれば、優れた沈降防止性、及び優れた経時安定性を有する硬化性組成物であって、かつ、優れた遮光性を有する硬化膜が得られる硬化性組成物に用いることができる金属窒化物含有粒子を提供できる。
 本発明によれは、分散組成物、硬化性組成物、硬化膜、カラーフィルタ、固体撮像素子、固体撮像装置、赤外線センサ、金属窒化物含有粒子の製造方法、分散組成物の製造方法、硬化性組成物の製造方法、及び硬化膜の製造方法を提供することもできる。
According to the present invention, the composition can be used for a curable composition having excellent anti-settling property and excellent temporal stability and capable of obtaining a cured film having excellent light-shielding properties. Metal nitride-containing particles can be provided.
According to the present invention, a dispersion composition, a curable composition, a cured film, a color filter, a solid-state imaging device, a solid-state imaging device, an infrared sensor, a method for producing metal nitride-containing particles, a method for producing a dispersion composition, and curable properties The manufacturing method of a composition and the manufacturing method of a cured film can also be provided.
固体撮像装置の構成例を示す概略断面図である。It is a schematic sectional drawing which shows the structural example of a solid-state imaging device. 図1の撮像部を拡大して示す概略断面図である。It is a schematic sectional drawing which expands and shows the imaging part of FIG. 赤外線センサの構成例を示す概略断面図である。It is a schematic sectional drawing which shows the structural example of an infrared sensor.
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書における基(原子団)の表記において、置換及び無置換を記していない表記は、置換基を含有しないものと共に置換基を含有するものをも包含するものである。例えば、「アルキル基」とは、置換基を含有しないアルキル基(無置換アルキル基)のみならず、置換基を含有するアルキル基(置換アルキル基)をも包含する。
 本明細書中における「活性光線」又は「放射線」とは、例えば、遠紫外線、極紫外線(EUV:Extreme ultraviolet lithography光)、X線、及び電子線等を意味する。本明細書において「光」とは、活性光線及び放射線を意味する。本明細書中における「露光」とは、特に断らない限り、遠紫外線、X線、及びEUV光等による露光のみならず、電子線及びイオンビーム等の粒子線による描画も包含する。
 本明細書において、「(メタ)アクリレート」はアクリレート及びメタアクリレートを表す。本明細書において、「(メタ)アクリル」はアクリル及びメタアクリルを表す。本明細書において、「(メタ)アクリロイル」は、アクリロイル及びメタクリロイルを表す。本明細書において、「(メタ)アクリルアミド」は、アクリルアミド及びメタアクリルアミドを表す。本明細書中において、「単量体」と「モノマー」とは同義である。単量体は、オリゴマー及びポリマーと区別され、重量平均分子量が2,000以下の化合物をいう。本明細書中において、重合性化合物とは、重合性基を含有する化合物のことをいい、単量体であっても、ポリマーであってもよい。重合性基とは、重合反応に関与する基をいう。
Hereinafter, the present invention will be described in detail.
The description of the constituent elements described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments.
In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
In the description of the group (atomic group) in this specification, the description which does not describe substitution and non-substitution includes what does not contain a substituent and what contains a substituent. For example, the “alkyl group” includes not only an alkyl group not containing a substituent (unsubstituted alkyl group) but also an alkyl group containing a substituent (substituted alkyl group).
“Actinic light” or “radiation” in the present specification means, for example, deep ultraviolet light, extreme ultraviolet lithography (EUV), X-rays, and electron beams. As used herein, “light” means actinic rays and radiation. Unless otherwise specified, “exposure” in this specification includes not only exposure with far ultraviolet rays, X-rays, EUV light, etc., but also drawing with particle beams such as electron beams and ion beams.
In the present specification, “(meth) acrylate” represents acrylate and methacrylate. In the present specification, “(meth) acryl” represents acryl and methacryl. In this specification, “(meth) acryloyl” represents acryloyl and methacryloyl. In this specification, “(meth) acrylamide” represents acrylamide and methacrylamide. In the present specification, “monomer” and “monomer” are synonymous. A monomer is distinguished from an oligomer and a polymer, and refers to a compound having a weight average molecular weight of 2,000 or less. In the present specification, the polymerizable compound means a compound containing a polymerizable group, and may be a monomer or a polymer. The polymerizable group refers to a group that participates in a polymerization reaction.
[金属窒化物含有粒子]
 本発明の実施形態に係る金属窒化物含有粒子は、特定の遷移金属の窒化物(窒素原子を含有する)、及び特定の原子Tを含有する。
 金属窒化物含有粒子は、X線光電子分光分析(以下「ESCA」ともいう。なお、ESCAは、Electron Spectroscopy for Chemical Analysisの略語である。)により検出される、金属窒化物含有粒子の表面における、原子Tの質量基準の含有量をT(質量%)、蛍光X線分析(以下「XRF」ともいう。なお、XRFは、X-ray Fluorescenceの略語である。)により検出される、金属窒化物含有粒子における、原子Tの質量基準の含有量をT(質量%)としたとき、下記式(1)で表される関係を満たす。
式(1) T/T<2.0
[Metal nitride-containing particles]
The metal nitride-containing particles according to the embodiment of the present invention contain a nitride of a specific transition metal (containing a nitrogen atom) and a specific atom T.
The metal nitride-containing particles are also referred to as “ESCA” (hereinafter, also referred to as “ESCA”. ESCA is an abbreviation for Electron Spectroscopy for Chemical Analysis) on the surface of metal nitride-containing particles. The mass-based content of the atom T is T E (mass%), and metal nitridation is detected by fluorescent X-ray analysis (hereinafter also referred to as “XRF”. XRF is an abbreviation for X-ray Fluorescence). When the mass-based content of atoms T in the substance-containing particles is T X (mass%), the relationship represented by the following formula (1) is satisfied.
Formula (1) T E / T X <2.0
 本明細書において、ESCAとは、測定対象物にX線を照射し、発生した光電子の固有エネルギーを測定することで、測定対象物(金属窒化物含有粒子)の表面に存在する各原子の含有量(各原子の原子数基準の含有量:原子(atomic)%)を分析する方法であって、以下の条件により行われる分析方法を意図する。
・装置:PHI社製Quantera-SXM(商品名)装置
・X線源:単色化Al Kα線(1486.6eV、25W、15kV、ビーム径200μmφ)
・測定領域:200μmφ
・測定条件:Pass Energy=140eV、step=0.1eV、積算回数4~8回
・測定方法:粒子をプレス機を用いてプレスし、薄いペレット状の測定試料を得る。この測定試料を上記装置にセットし、光電子取り出し角を10度として測定する。
In this specification, ESCA refers to the inclusion of each atom present on the surface of a measurement object (metal nitride-containing particles) by irradiating the measurement object with X-rays and measuring the intrinsic energy of the generated photoelectrons. It is a method of analyzing the amount (content based on the number of atoms of each atom: atomic%), and an analysis method performed under the following conditions is intended.
・ Device: Quantera-SXM (trade name) device manufactured by PHI ・ X-ray source: Monochromatic Al Kα ray (1486.6 eV, 25 W, 15 kV, beam diameter 200 μmφ)
・ Measurement area: 200μmφ
Measurement conditions: Pass Energy = 140 eV, step = 0.1 eV, number of integrations 4 to 8 Measurement method: Press the particles using a press to obtain a thin pellet-shaped measurement sample. This measurement sample is set in the above apparatus, and the photoelectron take-off angle is set to 10 degrees.
 ESCAによれば、金属窒化物含有粒子の表面における後述する原子Tの含有量(原子%)を測定でき、この測定値から、金属窒化物含有粒子の表面における原子Tの質量基準の含有量T(質量%)を得ることができる。
 なお、本明細書において、金属窒化物含有粒子の表面とは、金属窒化物含有粒子の最表面から、金属窒化物含有粒子の中心方向に向かって、深さ5nm以内の領域を意図する。
According to ESCA, the content (atomic%) of atoms T described later on the surface of the metal nitride-containing particles can be measured. From this measured value, the mass-based content T of atoms T on the surface of the metal nitride-containing particles. E (mass%) can be obtained.
In the present specification, the surface of the metal nitride-containing particle means a region within a depth of 5 nm from the outermost surface of the metal nitride-containing particle toward the center of the metal nitride-containing particle.
 本明細書において、XRFとは、測定対象物にX線を照射し、発生した蛍光X線のエネルギー、及び強度から、測定対象物(金属窒化物含有粒子)中の各原子の含有量(質量%)を分析する方法であって、以下の条件により行われる分析方法を意図する。
・装置:Rigaku製ZSM PrimusII型XRF
・X線源:Rh 30-50 kV, 48-80 mA
・測定領域:10μmφ
・測定時間:10-240 deg/min(degはdegreeの略語である。)
・試料 粒子をプレス機を用いてプレスし、薄いペレット状の測定試料を得る。この測定試料を上記装置にセットし測定する。
In this specification, XRF refers to the content (mass) of each atom in the measurement object (metal nitride-containing particles) from the energy and intensity of the generated fluorescent X-rays when the measurement object is irradiated with X-rays. %) Is intended to be performed under the following conditions.
・ Equipment: Rigaku ZSM Primus II type XRF
・ X-ray source: Rh 30-50 kV, 48-80 mA
・ Measurement area: 10μmφ
Measurement time: 10-240 deg / min (deg is an abbreviation for degree)
-Sample The particles are pressed using a press to obtain a thin pellet-shaped measurement sample. This measurement sample is set in the apparatus and measured.
 XRFによれば、金属窒化物含有粒子における、後述する原子Tの質量基準の含有量T(質量%)を得ることができる。 According to XRF, the mass-based content T X (mass%) of atoms T described later in the metal nitride-containing particles can be obtained.
 金属窒化物含有粒子は、T、及びTが下記式(1)で表される関係を満たすことを特徴とする。
式(1) T/T<2.0
The metal nitride-containing particles are characterized in that T E and T X satisfy the relationship represented by the following formula (1).
Formula (1) T E / T X <2.0
 上記特徴を有する金属窒化物含有粒子は、特定の遷移金属と、特定の原子Tとの複合体であって、原子Tが、金属窒化物含有粒子の表面、及び内部に存在する。
 なかでも、金属窒化物含有粒子がより優れた本発明の効果を有する点で、T/Tは1.1未満が好ましい。すなわち、原子Tが、表面、及び内部に、より均一に存在している状態が好ましい。T/Tの下限は特に制限されないが、0.5以上の場合が多い。
 なお、金属窒化物含有粒子において、原子Tは他の成分、例えば、遷移金属の窒化物と別個の結晶となる共晶体、完全に溶け合う固溶体、及び化合物等のいずれの状態を形成していてもよい。
The metal nitride-containing particle having the above characteristics is a composite of a specific transition metal and a specific atom T, and the atom T is present on the surface and inside of the metal nitride-containing particle.
Among these, T E / T x is preferably less than 1.1 in that the metal nitride-containing particles have more excellent effects of the present invention. That is, it is preferable that the atoms T exist more uniformly on the surface and inside. The lower limit of T E / T x is not particularly limited, but is often 0.5 or more.
In the metal nitride-containing particles, the atom T may form any other component, for example, a eutectic that forms a crystal separate from the nitride of the transition metal, a solid solution that completely dissolves, and a compound. Good.
〔原子T〕
 金属窒化物含有粒子は原子Tを含有する。
 原子Tは、酸素原子、塩素原子、及び窒素原子のいずれでもなく、周期表の13~17族の元素から選択され、特に制限されない。
 金属窒化物含有粒子がより優れた本発明の効果を有する点で、原子Tとしては、周期表の第2~6周期の元素から選択されることが好ましく、そのうち、アルミニウム、ガリウム、インジウム、スズ、タリウム、鉛、及びビスマス以外の元素から選択されることがより好ましい。言い換えれば、原子Tとしては、ホウ素原子、炭素原子、酸素、フッ素原子、ケイ素原子、リン原子、硫黄原子、ゲルマニウム原子、ヒ素原子、セレン原子、臭素原子、アンチモン原子、テルル原子、ヨウ素原子、ポロニウム原子、及びアスタチン原子からなる群から選択されるいずれかの原子がより好ましい。
 金属窒化物含有粒子が、更に優れた本発明の効果を有する点で、原子Tとしてはホウ素原子、炭素原子、硫黄原子、ケイ素原子、リン原子、及びフッ素原子からなる群から選択されるいずれかの原子が更に好ましい。
 なかでも、金属窒化物含有粒子が特に優れた本発明の効果を有する点で、原子Tは、周期表の13~16族の元素から選択されることが特に好ましく、ホウ素原子、炭素原子、硫黄原子、及びリン原子からなる群から選択されるいずれかの原子が最も好ましく、ホウ素原子、硫黄原子、及びリン原子からなる群から選択されるいずれかの原子が特に好ましい。
[Atom T]
The metal nitride-containing particles contain atoms T.
The atom T is not an oxygen atom, a chlorine atom, or a nitrogen atom, and is selected from elements in groups 13 to 17 of the periodic table, and is not particularly limited.
The atom T is preferably selected from the elements of the 2nd to 6th periods of the periodic table in that the metal nitride-containing particles have the excellent effect of the present invention, and among them, aluminum, gallium, indium, tin And more preferably selected from elements other than thallium, lead, and bismuth. In other words, as atom T, boron atom, carbon atom, oxygen, fluorine atom, silicon atom, phosphorus atom, sulfur atom, germanium atom, arsenic atom, selenium atom, bromine atom, antimony atom, tellurium atom, iodine atom, polonium More preferred are any atom selected from the group consisting of an atom and an astatine atom.
The atom T is any one selected from the group consisting of a boron atom, a carbon atom, a sulfur atom, a silicon atom, a phosphorus atom, and a fluorine atom in that the metal nitride-containing particles have a further excellent effect of the present invention. Are more preferred.
Among them, the atom T is particularly preferably selected from elements of groups 13 to 16 in the periodic table in that the metal nitride-containing particles have particularly excellent effects of the present invention, and boron atoms, carbon atoms, sulfur Any atom selected from the group consisting of an atom and a phosphorus atom is most preferable, and any atom selected from the group consisting of a boron atom, a sulfur atom, and a phosphorus atom is particularly preferable.
 なお、金属窒化物含有粒子中における原子Tの含有量は特に制限されないが、金属窒化物含有粒子の全質量に対して0.05~40質量%が好ましく、0.5~20質量%がより好ましい。
 原子Tは1種を単独で用いても、2種以上を併用してもよい。2種以上の原子Tを併用する場合には、合計含有量が上記範囲内であることが好ましい。
The content of atom T in the metal nitride-containing particles is not particularly limited, but is preferably 0.05 to 40% by mass, more preferably 0.5 to 20% by mass with respect to the total mass of the metal nitride-containing particles. preferable.
The atom T may be used individually by 1 type, or may use 2 or more types together. When using 2 or more types of atoms T together, it is preferable that total content is in the said range.
〔3~11族の遷移金属の窒化物〕
 上記金属窒化物含有粒子は、3~11族の遷移金属(以下、単に「遷移金属」という。)の窒化物を含有する。
 上記遷移金属としては、金属窒化物含有粒子がより優れた本発明の効果を有する点で、電気陰性度が1.22~2.36である遷移金属が好ましい。
 上記遷移金属(カッコ内は電気陰性度)としては、例えば、3族の遷移元素のSc(1.36)、Y(1.22)、Dy(1.22)、Ho(1.23)、Er(1.24)、Tm(1.25)、Lu(1.27)、Th(1.3)、Pa(1.5)、U(1.38)、Np(1.36)、Pu(1.28)、Am(1.3)、Cm(1.3)、Bk(1.3)、Cf(1.3)、Es(1.3)、Fm(1.3)、Md(1.3)、No(1.3)、Lr(1.3);4族のTi(1.54)、Zr(1.33)、Hf(1.3);5族のV(1.63)、Nb(1.6)、Ta(1.5);6族のCr(1.66)、Mo(2.16)、W(2.36);7族のMn(1.55)、Tc(1.9)、Re(1.9);8族のFe(1.83)、Ru(2.2)、Os(2.2);9族のCo(1.88)、Rh(2.28)、Ir(2.2);10族のNi(1.91)、Pd(2.2)、Pt(2.28);11族のCu(1.9)、Ag(1.93);が挙げられる。
 なかでも、金属窒化物含有粒子が、より優れた本発明の効果を有する点で、Sc、V、Cr、Mn、Fe、Co、Ni、Cu、Y、Ti、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Hf、Ta、W、Re、Os、Ir、又はPtが好ましく、Ti、Zr、V、Nb、Hf、Cr、W、Ta、Y、又はReがより好ましく、Ti、Zr、V、Hf、Cr、W、Ta、Y、又はReが更に好ましく、Ti、Zr、V、Hf、Cr、又はWが更により好ましく、Ti、Zr、又はCrが特に好ましく、Tiが最も好ましい。
[Group 3-11 transition metal nitrides]
The metal nitride-containing particles contain a nitride of a group 3-11 transition metal (hereinafter simply referred to as “transition metal”).
The transition metal is preferably a transition metal having an electronegativity of 1.22 to 2.36 in that the metal nitride-containing particles have a more excellent effect of the present invention.
Examples of the transition metal (electronegativity in parentheses) include, for example, Sc (1.36), Y (1.22), Dy (1.22), Ho (1.23) of Group 3 transition elements, Er (1.24), Tm (1.25), Lu (1.27), Th (1.3), Pa (1.5), U (1.38), Np (1.36), Pu (1.28), Am (1.3), Cm (1.3), Bk (1.3), Cf (1.3), Es (1.3), Fm (1.3), Md ( 1.3), No (1.3), Lr (1.3); Group 4 Ti (1.54), Zr (1.33), Hf (1.3); Group 5 V (1. 63), Nb (1.6), Ta (1.5); Group 6 Cr (1.66), Mo (2.16), W (2.36); Group 7 Mn (1.55) , Tc (1.9), Re (1.9); Group 8 Fe (1.8 ), Ru (2.2), Os (2.2); Group 9 Co (1.88), Rh (2.28), Ir (2.2); Group 10 Ni (1.91), Pd (2.2), Pt (2.28); Group 11 Cu (1.9), Ag (1.93);
Among these, Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Y, Ti, Zr, Nb, Mo, Tc, metal nitride-containing particles have a more excellent effect of the present invention. Ru, Rh, Pd, Ag, Hf, Ta, W, Re, Os, Ir, or Pt are preferable, Ti, Zr, V, Nb, Hf, Cr, W, Ta, Y, or Re are more preferable, and Ti , Zr, V, Hf, Cr, W, Ta, Y, or Re are more preferable, Ti, Zr, V, Hf, Cr, or W are still more preferable, Ti, Zr, or Cr are particularly preferable, and Ti is Most preferred.
 金属窒化物含有粒子中の遷移金属原子の含有量は、特に制限されないが、金属窒化物含有粒子の全質量に対して、10質量%~99質量%が好ましく、30~90質量%がより好ましく、40~70質量%が更に好ましい。金属窒化物含有粒子中における遷移金属原子の含有量は、蛍光X線分析装置により分析できる。
 遷移金属は1種を単独で用いても、2種以上を併用してもよい。2種以上の遷移金属を併用する場合には、合計含有量が上記範囲内であることが好ましい。
The content of transition metal atoms in the metal nitride-containing particles is not particularly limited, but is preferably 10% by mass to 99% by mass, more preferably 30% to 90% by mass with respect to the total mass of the metal nitride-containing particles. 40 to 70% by mass is more preferable. The content of transition metal atoms in the metal nitride-containing particles can be analyzed by a fluorescent X-ray analyzer.
A transition metal may be used individually by 1 type, or may use 2 or more types together. When two or more transition metals are used in combination, the total content is preferably within the above range.
〔窒素原子〕
 金属窒化物含有粒子は、窒素原子を含有する。
 金属窒化物含有粒子中における、窒素原子の形態は特に制限されないが、例えば、既に説明した遷移金属と結合して、遷移金属の窒化物を形成する形態が挙げられる。
 金属窒化物含有粒子中の窒素原子(N原子)の含有量は、特に制限されないが、金属窒化物含有粒子の全質量に対して、0.1~80質量%が好ましく、5~70質量%がより好ましく、20~50質量%が更に好ましい。窒素原子の含有量は蛍光X線分析装置により分析することができる。
[Nitrogen atom]
The metal nitride-containing particles contain nitrogen atoms.
The form of the nitrogen atom in the metal nitride-containing particle is not particularly limited, and examples thereof include a form in which a transition metal nitride is formed by combining with the transition metal described above.
The content of nitrogen atoms (N atoms) in the metal nitride-containing particles is not particularly limited, but is preferably 0.1 to 80% by mass with respect to the total mass of the metal nitride-containing particles, and 5 to 70% by mass. Is more preferable, and 20 to 50% by mass is still more preferable. The nitrogen atom content can be analyzed by a fluorescent X-ray analyzer.
〔酸素原子〕
 金属窒化物含有粒子は酸素原子を含有することが好ましい。
 金属窒化物含有粒子中における、酸素原子の形態は特に制限されないが、金属窒化物含有粒子の製造工程において、意図的に添加されたものであってもよいし、金属窒化物含有粒子の製造工程において、意図せず混入したものであってもよい。
 金属窒化物含有粒子中の酸素原子の含有量は、特に制限されないが、金属窒化物含有粒子の全質量に対して、0.01~50質量%が好ましく、1~20質量%がより好ましい。酸素原子の含有量は、蛍光X線分析装置により分析することができる。
[Oxygen atom]
The metal nitride-containing particles preferably contain oxygen atoms.
The form of oxygen atoms in the metal nitride-containing particles is not particularly limited, but may be intentionally added in the process for producing metal nitride-containing particles, or the process for producing metal nitride-containing particles. However, it may be unintentionally mixed.
The oxygen atom content in the metal nitride-containing particles is not particularly limited, but is preferably 0.01 to 50% by mass and more preferably 1 to 20% by mass with respect to the total mass of the metal nitride-containing particles. The content of oxygen atoms can be analyzed by a fluorescent X-ray analyzer.
 金属窒化物含有粒子中における、窒化物が含有する遷移金属原子(以下、単に「遷移金属原子」ともいう。)の含有量に対する窒素原子の含有量の含有原子数比X、遷移金属原子の含有量に対する酸素原子の含有量の含有原子数比Y、及び遷移金属原子の含有量に対する原子Tの含有量の含有原子数比Zは、それぞれ0を超え2未満が好ましい。 In the metal nitride-containing particles, the ratio of the number of nitrogen atoms contained to the content of transition metal atoms contained in the nitride (hereinafter also simply referred to as “transition metal atoms”) X, the content of transition metal atoms The content atom number ratio Y of the oxygen atom content to the content and the content atom number ratio Z of the content of the atom T to the content of the transition metal atom are each preferably greater than 0 and less than 2.
 金属窒化物含有粒子中における、遷移金属原子の含有量に対する窒素原子の含有量の含有原子数比Xの下限値は、0.3超がより好ましく、0.4以上が更に好ましく、0.64以上が特に好ましい。上限値は、1.3未満がより好ましく、1.2以下が更に好ましく、1.2未満が特に好ましい。
 Xが0.4以上であると、金属窒化物含有粒子を含有する硬化性組成物はより優れた沈降防止性、及び経時安定性を有する。
 Xが1.3未満であると、金属窒化物含有粒子を含有する硬化性組成物により得られる硬化膜はより優れた遮光性を有する。Xが1.2以下であると、金属窒化物含有粒子を含有する硬化性組成物により得られる硬化膜は更に優れた遮光性を有する。Xが1.2未満であると、金属窒化物含有粒子を含有する硬化性組成物はより優れた経時安定性を有する。
The lower limit value of the content atom number ratio X of the nitrogen atom content to the transition metal atom content in the metal nitride-containing particles is more preferably more than 0.3, still more preferably 0.4 or more, and 0.64 The above is particularly preferable. The upper limit is more preferably less than 1.3, still more preferably 1.2 or less, and particularly preferably less than 1.2.
When X is 0.4 or more, the curable composition containing metal nitride-containing particles has more excellent anti-settling property and stability over time.
When X is less than 1.3, the cured film obtained from the curable composition containing metal nitride-containing particles has more excellent light shielding properties. When X is 1.2 or less, the cured film obtained from the curable composition containing metal nitride-containing particles has further excellent light-shielding properties. When X is less than 1.2, the curable composition containing metal nitride-containing particles has better stability over time.
 金属窒化物含有粒子中における、遷移金属原子の含有量に対する酸素原子の含有量の含有原子数比Yの下限値は、0.03超がより好ましく、0.05以上が更に好ましく、0.08以上が特に好ましい。上限値は、0.25未満がより好ましく、0.2以下が更に好ましい。
 Yが0.05以上であると、金属窒化物含有粒子を含有する硬化性組成物はより優れた沈降防止性、及び経時安定性を有する。
 Yが0.2以下であると、金属窒化物含有粒子を含有する硬化性組成物はより優れた経時安定性を有し、また、得られる遮光膜はより優れた遮光性を有する。
The lower limit value of the content atom number ratio Y of the oxygen atom content to the transition metal atom content in the metal nitride-containing particles is more preferably more than 0.03, still more preferably 0.05 or more, and 0.08. The above is particularly preferable. The upper limit value is more preferably less than 0.25, and still more preferably 0.2 or less.
When Y is 0.05 or more, the curable composition containing metal nitride-containing particles has better anti-settling property and stability over time.
When Y is 0.2 or less, the curable composition containing metal nitride-containing particles has more excellent temporal stability, and the obtained light-shielding film has more excellent light-shielding properties.
 金属窒化物含有粒子中における、遷移金属原子の含有量に対する原子Tの含有量の含有原子数比Zの下限値は、0.03超がより好ましく、0.05以上が更に好ましく、0.08以上が特に好ましい。上限値は、1.2未満がより好ましく、0.5以下が更に好ましい。
 Zが0.05以上であると、金属窒化物含有粒子を含有する硬化性組成物はより優れた沈降防止性、及び経時安定性を有する。
 Yが0.5以下であると、金属窒化物含有粒子を含有する硬化性組成物はより優れた経時安定性を有し、また、得られる遮光膜はより優れた遮光性を有する。
In the metal nitride-containing particles, the lower limit value of the content atom number ratio Z of the content of atoms T to the content of transition metal atoms is more preferably more than 0.03, still more preferably 0.05 or more, and 0.08. The above is particularly preferable. The upper limit is more preferably less than 1.2 and even more preferably 0.5 or less.
When Z is 0.05 or more, the curable composition containing metal nitride-containing particles has more excellent anti-settling property and stability over time.
When Y is 0.5 or less, the curable composition containing metal nitride-containing particles has better stability over time, and the resulting light-shielding film has better light-shielding properties.
 金属窒化物含有粒子がより優れた本発明の効果を有する点で、遷移金属原子の含有量に対する窒素原子の含有量の含有原子数比X、遷移金属原子の含有量に対する酸素原子の含有量の含有原子数比Y、及び遷移金属原子の含有量に対する原子Tの含有量の含有原子数比Zの和(以下「X、Y、及びZの和」又は「X+Y+Z」ともいう。)は、0.4を超え1.6未満が好ましい。
 X+Y+Zが1.6未満だと、金属窒化物含有粒子を含有する硬化性組成物により得られる硬化膜はより優れた遮光性を有する。
 X+Y+Zが0.4を超えると、金属窒化物含有粒子を含有する硬化性組成物はより優れた沈降防止性、及び経時安定性を有する。
The ratio of the number of nitrogen atoms to the content of transition metal atoms X, the content of oxygen atoms to the content of transition metal atoms, in that the metal nitride-containing particles have the effect of the present invention more excellent. The sum of the containing atom number ratio Y and the containing atom number ratio Z of the content of atoms T to the content of transition metal atoms (hereinafter also referred to as “sum of X, Y, and Z” or “X + Y + Z”) is 0. More than 4 and less than 1.6 is preferable.
When X + Y + Z is less than 1.6, the cured film obtained from the curable composition containing metal nitride-containing particles has more excellent light shielding properties.
When X + Y + Z exceeds 0.4, the curable composition containing metal nitride-containing particles has better anti-settling property and stability over time.
 金属窒化物含有粒子がより優れた本発明の効果を有する点で、X、Y、及びZの和の下限値は、0.5以上がより好ましく、0.8以上が更に好ましく、1.0以上が特に好ましい。上限値は、1.5以下がより好ましい。
 X、Y、及びZの和が0.5以上であると、金属窒化物含有粒子を含有する硬化性組成物はより優れた沈降防止性、及び経時安定性を有する。
 X、Y、及びZの和が1.5以下であると、金属窒化物含有粒子を含有する硬化性組成物はより優れた経時安定性を有し、また、得られる遮光膜はより優れた遮光性を有する。
The lower limit of the sum of X, Y, and Z is more preferably 0.5 or more, still more preferably 0.8 or more, in that the metal nitride-containing particles have more excellent effects of the present invention. The above is particularly preferable. The upper limit value is more preferably 1.5 or less.
When the sum of X, Y, and Z is 0.5 or more, the curable composition containing metal nitride-containing particles has more excellent anti-settling properties and stability over time.
When the sum of X, Y, and Z is 1.5 or less, the curable composition containing metal nitride-containing particles has better temporal stability, and the resulting light-shielding film is more excellent Has light shielding properties.
〔金属窒化物含有粒子の物性〕
 以下では、金属窒化物含有粒子の物性について説明する。
[Physical properties of metal nitride-containing particles]
Below, the physical property of metal nitride containing particle | grains is demonstrated.
<平均一次粒子径>
 金属窒化物含有粒子の平均一次粒子径は200nm以下であり、より優れた本発明の効果を有する点で、80nm以下が好ましく、80nm未満がより好ましい。
 金属窒化物含有粒子の平均一次粒子径が200nm以下であると、硬化性組成物は、優れた経時安定性を有する。金属窒化物含有粒子の平均一次粒子径が80nm未満であると、硬化性組成物は、より優れた経時安定性を有する。
 金属窒化物含有粒子の平均一次粒子径の下限値は、特に制限されないが、一般的に1.0nm以上が好ましい。平均一次粒子径が1.0nm以上であると、金属窒化物含有粒子間の相互作用が抑えられ、金属窒化物含有粒子が凝集しにくくなり、結果として硬化性組成物は、より優れた経時安定性を有する。
 なお、本明細書において、平均一次粒子径とは、透過型電子顕微鏡(TEM:Transmission Electron Microscope)を用いて金属窒化物含有粒子400個について評価した円換算の直径を算術平均して求めた平均一次粒子径を意図し、試験方法は、実施例に記載したとおりである。
<Average primary particle size>
The average primary particle diameter of the metal nitride-containing particles is 200 nm or less, and is preferably 80 nm or less and more preferably less than 80 nm in terms of having a more excellent effect of the present invention.
When the average primary particle diameter of the metal nitride-containing particles is 200 nm or less, the curable composition has excellent temporal stability. When the average primary particle diameter of the metal nitride-containing particles is less than 80 nm, the curable composition has better temporal stability.
The lower limit of the average primary particle diameter of the metal nitride-containing particles is not particularly limited, but is generally preferably 1.0 nm or more. When the average primary particle size is 1.0 nm or more, the interaction between the metal nitride-containing particles is suppressed, the metal nitride-containing particles are less likely to aggregate, and as a result, the curable composition has a more stable aging stability. Have sex.
In addition, in this specification, the average primary particle diameter is an average obtained by arithmetically averaging the diameters in terms of circles evaluated for 400 metal nitride-containing particles using a transmission electron microscope (TEM: Transmission Electron Microscope). The primary particle size is intended and the test method is as described in the examples.
<複素誘電率の実数部>
 金属窒化物含有粒子の複素誘電率εをε=ε’+ε”jで表すとき、波長400~1200nmにおける、ε’の最小値は特に制限されないが、0未満が好ましく、金属窒化物含有粒子を含有する硬化性組成物により得られる硬化膜がより優れた遮光性を有する点で、ε’の最小値は、-0.5以下が好ましい。
 ε’の最小値の下限値は特に制限されないが、-20程度の場合が多い。
 なお、ε’は複素誘電率εの実数部、ε”は複素誘電率εの虚数部、jは虚数単位を表す。また、本明細書において、複素誘電率の実数部ε’の最小値とは、400~1200nmの各波長に対応する複素誘電率の実数部ε’のうちの最小となる値を意図する。
<Real part of complex permittivity>
When the complex dielectric constant ε of the metal nitride-containing particles is represented by ε = ε ′ + ε ″ j, the minimum value of ε ′ at a wavelength of 400 to 1200 nm is not particularly limited, but is preferably less than 0, and the metal nitride-containing particles are The minimum value of ε ′ is preferably −0.5 or less in that a cured film obtained from the curable composition contained has better light-shielding properties.
The lower limit value of the minimum value of ε ′ is not particularly limited, but is often about −20.
Ε ′ represents the real part of the complex permittivity ε, ε ″ represents the imaginary part of the complex permittivity ε, and j represents the imaginary unit. In this specification, the minimum value of the real part ε ′ of the complex permittivity Is intended to be the smallest value of the real part ε ′ of the complex dielectric constant corresponding to each wavelength of 400 to 1200 nm.
 本明細書において、複素誘電率の実数部ε’は、以下の方法により測定した値を意図する。まず、シリコンウェハ上に金属窒化物含有粒子を含有する組成物を用いて0.3μmの厚みの膜を形成する。その後、形成した膜について、分光エリプソメトリーを用いて、実施例に記載した方法により複素誘電率を測定する。
 なお、膜を形成する際、組成物が重合性化合物を含む組成物である場合、シリコンウェハ上に形成した塗膜に対して硬化処理を施して、測定対象となる膜を形成する。
In this specification, the real part ε ′ of the complex dielectric constant is intended to be a value measured by the following method. First, a film having a thickness of 0.3 μm is formed on a silicon wafer using a composition containing metal nitride-containing particles. Thereafter, the complex dielectric constant of the formed film is measured by the method described in Examples using spectroscopic ellipsometry.
In addition, when forming a film | membrane, when a composition is a composition containing a polymeric compound, a hardening process is performed with respect to the coating film formed on the silicon wafer, and the film | membrane used as a measuring object is formed.
[金属窒化物含有粒子の製造方法]
 金属窒化物含有粒子の製造方法としては特に制限されず、公知の方法を用いることができる。金属窒化物含有粒子の製造方法としては、例えば、気相反応法が挙げられる。気相反応法としては、電気炉法、及び熱プラズマ法等が挙げられるが、不純物の混入が少なく、粒子径が揃いやすく、また、生産性が高い点で、熱プラズマ法が好ましい。
 熱プラズマ法において、熱プラズマを発生させる方法は、特に制限されず、直流アーク放電、多層アーク放電、高周波(RF)プラズマ、及びハイブリッドプラズマ等が挙げられる。
 熱プラズマ法による金属窒化物含有粒子の具体的な製造方法は、特に制限されないが、例えば、遷移金属としてチタンを含有する金属窒化物含有粒子の製造方法として、プラズマ炎中で四塩化チタンとアンモニアガスを反応させる方法(特開平2-22110号公報)、チタン粉末を高周波熱プラズマにより蒸発させ窒素をキャリアーガスとして導入し冷却過程にて窒化させ合成する方法(特開昭61-11140号公報)、及びプラズマの周縁部にアンモニアガスを吹き込む方法(特開昭63-85007号)等が挙げられる。
[Method for producing metal nitride-containing particles]
The method for producing the metal nitride-containing particles is not particularly limited, and a known method can be used. Examples of the method for producing metal nitride-containing particles include a gas phase reaction method. Examples of the gas phase reaction method include an electric furnace method, a thermal plasma method, and the like. The thermal plasma method is preferable in that impurities are less mixed, the particle diameter is easily uniformed, and productivity is high.
In the thermal plasma method, a method for generating thermal plasma is not particularly limited, and examples thereof include direct current arc discharge, multilayer arc discharge, radio frequency (RF) plasma, and hybrid plasma.
The specific method for producing metal nitride-containing particles by the thermal plasma method is not particularly limited. For example, as a method for producing metal nitride-containing particles containing titanium as a transition metal, titanium tetrachloride and ammonia are used in a plasma flame. Gas reacting method (JP-A-2-22110), Titanium powder is evaporated by high-frequency thermal plasma, nitrogen is introduced as a carrier gas, and nitriding is performed in the cooling process (JP-A-61-1140) And a method of injecting ammonia gas into the peripheral edge of the plasma (Japanese Patent Laid-Open No. 63-85007).
 ただし、金属窒化物含有粒子の製造方法は、所望とする物性を有する金属窒化物含有粒子が得られれば制限されるものではない。
 また、熱プラズマ法により、金属窒化物含有粒子を製造する際、その原材料をプラズマ炎中に所望の流量で供給するため、適宜原材料を加熱又は冷却してもよい。
However, the method for producing metal nitride-containing particles is not limited as long as metal nitride-containing particles having desired physical properties are obtained.
Further, when producing the metal nitride-containing particles by the thermal plasma method, the raw material may be appropriately heated or cooled in order to supply the raw material into the plasma flame at a desired flow rate.
<金属窒化物含有粒子の製造方法の好適形態>
 金属窒化物含有粒子の製造方法としては、以下の各工程を含む製造方法が好ましい。
(a)窒素原子を含有する原材料A、並びに遷移金属原子及び原子Tを含有する原材料Bを準備する、又は窒素原子を含有する原材料A、遷移金属原子を含有する原材料C、及び原子Tを含有する原材料Dを準備する工程(原材料準備工程)
(b)2種以上の原材料を気相状態で混合して、混合物を得る工程(混合工程)
(c)気相状態の混合物を凝縮して、金属窒化物含有粒子を得る工程(凝縮工程)
 以下では、上記各工程について詳述する。なお、以下の各工程において、原材料、混合物、及び凝縮物には、酸素原子が意図せず混入してもよい。
<Preferred embodiment of the method for producing metal nitride-containing particles>
As a method for producing metal nitride-containing particles, a production method including the following steps is preferred.
(A) preparing a raw material A containing a nitrogen atom and a raw material B containing a transition metal atom and an atom T, or containing a raw material A containing a nitrogen atom, a raw material C containing a transition metal atom, and an atom T To prepare raw material D to be processed (raw material preparation step)
(B) Step of mixing two or more raw materials in a gas phase to obtain a mixture (mixing step)
(C) Step of condensing a gas phase mixture to obtain metal nitride-containing particles (condensation step)
Below, each said process is explained in full detail. In the following steps, oxygen atoms may be unintentionally mixed into the raw materials, the mixture, and the condensate.
(a)原材料準備工程
 原材料準備工程は、以下の組み合わせの2種以上の原材料を準備する工程である。
・窒素原子を含有する原材料A、並びに遷移金属原子及び原子Tを含有する原材料B、又は
・窒素原子を含有する原材料A、遷移金属原子を含有する原材料C、及び原子Tを含有する原材料D
 原材料Aは窒素原子を含有し、例えば、窒素ガス等が挙げられる。原材料Bは、遷移金属原子、及び原子Tを含有し、例えば、四塩化チタン等が挙げられる。原材料Cは遷移金属原子を含有し、遷移金属粉末等が挙げられる。原材料Dは、原子Tを含有する固体、液体、又はガス等が挙げられる。
 原材料を準備する方法は特に制限されず、原材料を購入等により調達する、及び原材料を合成により得る等の方法が挙げられる。
 なお、原材料準備工程においては、上記組み合わせの2種以上の原材料を準備すれば特に制限されず、他の原材料をあわせて準備してもよい。
(A) Raw material preparation step The raw material preparation step is a step of preparing two or more kinds of raw materials in the following combinations.
A raw material A containing nitrogen atoms and a raw material B containing transition metal atoms and atoms T, or a raw material A containing nitrogen atoms, a raw material C containing transition metal atoms, and a raw material D containing atoms T
The raw material A contains nitrogen atoms, and examples thereof include nitrogen gas. The raw material B contains a transition metal atom and an atom T, and examples thereof include titanium tetrachloride. The raw material C contains a transition metal atom, and examples thereof include transition metal powder. Examples of the raw material D include a solid, liquid, or gas containing the atom T.
The method for preparing the raw material is not particularly limited, and examples thereof include a method in which the raw material is procured by purchase and the raw material is obtained by synthesis.
In addition, in a raw material preparation process, it will not restrict | limit especially if two or more types of raw materials of the said combination are prepared, You may prepare together with other raw materials.
 各原材料の形態は特に制限されず、固体(昇華性固体を含む)、液体、及び気体のいずれであってもよい。また、原材料は、特開2005-170760号公報の0024、及び0025段落に記載されたスラリーであってもよい。
 また、本工程において準備する原材料の種類の上限は特に制限されないが、一般に10種以下が好ましい。
The form of each raw material is not particularly limited, and may be any of solid (including sublimable solid), liquid, and gas. The raw material may be a slurry described in paragraphs 0024 and 0025 of JP-A-2005-170760.
Moreover, although the upper limit of the kind of raw material prepared in this process is not particularly limited, generally 10 or less are preferable.
(b)混合工程
 混合工程は、(a)原材料準備工程で準備したいずれかの原材料を含む、2種以上の原材料を気相状態で混合して、混合物を得る工程である。混合工程は、(a)原材料準備工程で準備した全ての原材料、すなわち原材料A及び原材料B、又は原材料A、原材料C及び原材料D、を気相状態で混合して、混合物を得る工程であってもよい。2種以上の原材料を気相状態で混合する方法は特に制限されないが、原材料を熱プラズマに供給して原材料を蒸発させ、気相状態で混合する、熱プラズマ法が好ましい。
 熱プラズマ法により気相状態の原材料を混合する方法は特に制限されず、公知の方法を用いることができる。公知の方法としては、例えば、特開2005-170760号公報の0015~0037段落に記載された方法、特開2015-227282号公報の0038~0086段落、及び特開2005-343784号公報の0017~0047段落に記載された方法等が挙げられる。
 なかでも、より優れた本発明の効果を有する金属窒化物含有粒子が得られる点で、アーク放電により熱プラズマを発生させ、熱プラズマに原材料を導入する方法が好ましい。
 アーク放電により熱プラズマを発生させて、熱プラズマに原材料を導入する方法は特に制限されず公知の方法を用いることができる。
(B) Mixing step The mixing step is a step of obtaining a mixture by mixing two or more raw materials including any raw material prepared in the (a) raw material preparing step in a gas phase state. The mixing step is a step of obtaining a mixture by mixing all the raw materials prepared in the raw material preparation step, that is, raw material A and raw material B, or raw material A, raw material C and raw material D in a gas phase state. Also good. A method for mixing two or more kinds of raw materials in a gas phase state is not particularly limited, but a thermal plasma method in which the raw materials are supplied to thermal plasma to evaporate the raw materials and mixed in a gas phase state is preferable.
A method for mixing raw materials in a gas phase state by a thermal plasma method is not particularly limited, and a known method can be used. Known methods include, for example, the method described in paragraphs 0015 to 0037 of JP-A-2005-170760, paragraphs 0038 to 0086 of JP-A-2015-227282, and 0017 to JP-A-2005-343784. Examples include the method described in paragraph 0047.
Among them, a method of generating a thermal plasma by arc discharge and introducing a raw material into the thermal plasma is preferable in that a metal nitride-containing particle having the better effect of the present invention can be obtained.
A method for generating a thermal plasma by arc discharge and introducing a raw material into the thermal plasma is not particularly limited, and a known method can be used.
 熱プラズマ法による金属窒化物含有粒子の具体的な製造方法は、特開2005-343784号公報の0042段落、及び図1に記載された装置、並びに特開2005-170760号公報の0019、及び0020段落に記載された原材料供給装置等を用いる方法が挙げられる。 A specific method for producing metal nitride-containing particles by the thermal plasma method is described in JP-A-2005-343784, paragraph 0042 and apparatus shown in FIG. 1, and JP-A-2005-170760, 0019 and 0020. Examples thereof include a method using the raw material supply apparatus described in the paragraph.
(c)凝縮工程
 凝縮工程は、気相状態の混合物を凝縮して、金属窒化物含有粒子を得る工程である。凝縮物を得る方法は特に制限されず、公知の方法を用いることができる。金属窒化物含有粒子を得る方法としては、例えば、気相状態の混合物を装置内壁に接触させて急冷する方法等が挙げられる。
(C) Condensing step The condensing step is a step of condensing the gas phase mixture to obtain metal nitride-containing particles. The method in particular of obtaining a condensate is not restrict | limited, A well-known method can be used. Examples of the method for obtaining the metal nitride-containing particles include a method in which a gas phase mixture is brought into contact with the inner wall of the apparatus and rapidly cooled.
(加熱工程)
 金属窒化物含有粒子の製造方法は、上記の製造方法で作製した金属窒化物含有粒子を加熱して、不純物を揮発させて除去する工程(加熱工程)を更に含有することが好ましい。
 加熱工程を経て作製された金属窒化物含有粒子は、波長400~1200nmにおける複素誘電率の実数部ε’の最小値が0未満になりやすい。
 加熱工程における加熱温度は特に制限されず、一般に150~500℃が好ましい。加熱時間は特に制限されず、一般に1時間~3日が好ましい。加熱中の雰囲気は特に制限されないが、酸素が200ppm未満の窒素雰囲気等が好ましい。また、加熱中に減圧してもよい。
(Heating process)
The method for producing metal nitride-containing particles preferably further includes a step (heating step) of heating and removing the metal nitride-containing particles produced by the above-described production method to volatilize and remove impurities.
In the metal nitride-containing particles produced through the heating process, the minimum value of the real part ε ′ of the complex dielectric constant at a wavelength of 400 to 1200 nm tends to be less than zero.
The heating temperature in the heating step is not particularly limited and is generally preferably 150 to 500 ° C. The heating time is not particularly limited, and generally 1 hour to 3 days is preferable. The atmosphere during heating is not particularly limited, but a nitrogen atmosphere or the like in which oxygen is less than 200 ppm is preferable. Further, the pressure may be reduced during heating.
(静置工程)
 金属窒化物含有粒子の製造方法は、上記の製造方法で作製した金属窒化物含有粒子を窒素ガス雰囲気で静置する、静置工程を更に含有することが好ましい。
 静置の方法は特に制限されず、公知の方法を用いることができる。
(Standing process)
It is preferable that the method for producing metal nitride-containing particles further includes a stationary step in which the metal nitride-containing particles produced by the above-described production method are allowed to stand in a nitrogen gas atmosphere.
The method of standing is not particularly limited, and a known method can be used.
[分散組成物]
 本発明の実施形態に係る分散組成物は、金属窒化物含有粒子と、樹脂とを含有する。以下では、分散組成物が含有する各成分について詳述する。
[Dispersion composition]
The dispersion composition according to the embodiment of the present invention contains metal nitride-containing particles and a resin. Below, each component which a dispersion composition contains is explained in full detail.
〔金属窒化物含有粒子〕
 分散組成物が含有する金属窒化物含有粒子としては、金属窒化物含有粒子の形態として既に説明したとおりである。分散組成物中における金属窒化物含有粒子の含有量は特に制限されないが、一般に分散組成物の全固形分に対して、10~90質量%が好ましく、20~80質量%がより好ましい。金属窒化物含有粒子は、1種を単独で用いても、2種以上を併用してもよい。2種以上の金属窒化物含有粒子を併用する場合には、合計含有量が上記範囲内であることが好ましい。
[Metal nitride-containing particles]
The metal nitride-containing particles contained in the dispersion composition are as already described in the form of the metal nitride-containing particles. The content of the metal nitride-containing particles in the dispersion composition is not particularly limited, but is generally preferably 10 to 90% by mass and more preferably 20 to 80% by mass with respect to the total solid content of the dispersion composition. The metal nitride-containing particles may be used alone or in combination of two or more. When two or more kinds of metal nitride-containing particles are used in combination, the total content is preferably within the above range.
〔樹脂〕
 分散組成物は樹脂を含有する。樹脂としては例えば、分散剤、及びアルカリ可溶性樹脂等が挙げられる。
 分散組成物中における樹脂の含有量は特に制限されないが、一般に分散組成物の全固形分に対して、5~40質量%が好ましい。樹脂は、1種を単独で用いても、2種以上を併用してもよい。2種以上の樹脂を併用する場合には、合計含有量が上記範囲内であることが好ましい。
〔resin〕
The dispersion composition contains a resin. Examples of the resin include a dispersant and an alkali-soluble resin.
The content of the resin in the dispersion composition is not particularly limited, but is generally preferably 5 to 40% by mass with respect to the total solid content of the dispersion composition. Resin may be used individually by 1 type, or may use 2 or more types together. When using 2 or more types of resin together, it is preferable that total content is in the said range.
<分散剤>
 分散組成物は分散剤(樹脂に該当する)を含有することが好ましい。なお、本明細書において、分散剤とは、後述するアルカリ可溶性樹脂とは異なる化合物を意図する。
 組成物中における分散剤の含有量は特に制限されないが、一般に組成物の全固形分に対して5~40質量%が好ましく、5~30質量%がより好ましい。
 分散剤は、1種を単独で用いても、2種以上を併用してもよい。2種以上の分散剤を併用する場合には、合計含有量が上記範囲内であることが好ましい。
<Dispersant>
The dispersion composition preferably contains a dispersant (corresponding to a resin). In addition, in this specification, a dispersing agent intends the compound different from the alkali-soluble resin mentioned later.
The content of the dispersant in the composition is not particularly limited, but is generally preferably 5 to 40% by mass and more preferably 5 to 30% by mass with respect to the total solid content of the composition.
A dispersing agent may be used individually by 1 type, or may use 2 or more types together. When two or more dispersants are used in combination, the total content is preferably within the above range.
 分散剤は、例えば、公知の分散剤を適宜選択して用いることができる。なかでも、高分子化合物が好ましい。
 分散剤としては、高分子分散剤(例えば、ポリアミドアミンとその塩、ポリカルボン酸とその塩、高分子量不飽和酸エステル、変性ポリウレタン、変性ポリエステル、変性ポリ(メタ)アクリレート、(メタ)アクリル系共重合体、ナフタレンスルホン酸ホルマリン縮合物)、ポリオキシエチレンアルキルリン酸エステル、ポリオキシエチレンアルキルアミン、及び顔料誘導体等を挙げることができる。
 高分子化合物は、その構造から更に直鎖状高分子、末端変性型高分子、グラフト型高分子、及びブロック型高分子に分類することができる。
As the dispersant, for example, a known dispersant can be appropriately selected and used. Of these, polymer compounds are preferable.
Examples of the dispersant include a polymer dispersant (for example, polyamidoamine and its salt, polycarboxylic acid and its salt, high molecular weight unsaturated acid ester, modified polyurethane, modified polyester, modified poly (meth) acrylate, (meth) acrylic type) Copolymer, naphthalenesulfonic acid formalin condensate), polyoxyethylene alkyl phosphate ester, polyoxyethylene alkyl amine, and pigment derivative.
The polymer compounds can be further classified into linear polymers, terminal-modified polymers, graft polymers, and block polymers based on their structures.
(高分子化合物)
 高分子化合物は、金属窒化物含有粒子(以下、「顔料」ということがある。)の表面に吸着し、被分散体の再凝集を防止するように作用する。そのため、顔料表面へのアンカー部位を含有する、末端変性型高分子、グラフト型(高分子鎖を含有する)高分子、及びブロック型高分子が好ましい。
(Polymer compound)
The polymer compound is adsorbed on the surface of metal nitride-containing particles (hereinafter sometimes referred to as “pigments”) and acts to prevent re-aggregation of the dispersion. For this reason, terminal-modified polymers, graft-type (containing polymer chains), and block-type polymers containing an anchor site to the pigment surface are preferred.
 高分子化合物は硬化性基を含有してもよい。
 硬化性基としては、例えば、エチレン性不飽和基(例えば、(メタ)アクリロイル基、ビニル基、及びスチリル基等)、及び環状エーテル基(例えば、エポキシ基、及びオキセタニル基等)等が挙げられるが、これらに制限されない。
 なかでも、ラジカル反応で重合制御が可能な点で、硬化性基としては、エチレン性不飽和基が好ましい。エチレン性不飽和基は(メタ)アクリロイル基がより好ましい。
The polymer compound may contain a curable group.
Examples of the curable group include an ethylenically unsaturated group (for example, (meth) acryloyl group, vinyl group, styryl group, etc.), and a cyclic ether group (for example, epoxy group, oxetanyl group, etc.). However, it is not limited to these.
Among these, an ethylenically unsaturated group is preferable as the curable group in that polymerization can be controlled by radical reaction. The ethylenically unsaturated group is more preferably a (meth) acryloyl group.
 硬化性基を含有する樹脂は、ポリエステル構造、及びポリエーテル構造からなる群から選択される少なくとも1種を含有することが好ましい。この場合、主鎖にポリエステル構造、及び/又はポリエーテル構造を含有していてもよいし、後述するように、上記樹脂がグラフト鎖を含有する構造単位を含有する場合には、上記高分子鎖がポリエステル構造、及び/又はポリーエーテル構造を含有していてもよい。
 上記樹脂は、上記高分子鎖がポリエステル構造を含有することがより好ましい。
The resin containing a curable group preferably contains at least one selected from the group consisting of a polyester structure and a polyether structure. In this case, the main chain may contain a polyester structure and / or a polyether structure, and, as described later, when the resin contains a structural unit containing a graft chain, the polymer chain May contain a polyester structure and / or a polyether structure.
As for the said resin, it is more preferable that the said polymer chain contains a polyester structure.
 高分子化合物は、グラフト鎖を含有する構造単位を含有することが好ましい。なお、本明細書において、「構造単位」とは「繰り返し単位」と同義である。
 このようなグラフト鎖を含有する構造単位を含有する高分子化合物は、グラフト鎖によって溶剤との親和性を有するため、金属窒化物含有粒子等の分散性、及び経時後の分散安定性(経時安定性)に優れるものである。また、グラフト鎖の存在により、グラフト鎖を含有する構造単位を含有する高分子化合物は重合性化合物又はその他の併用可能な樹脂等との親和性を有する。結果として、アルカリ現像で残渣を生じにくくなる。
 グラフト鎖が長くなると立体反発効果が高くなり金属窒化物含有粒子等の分散性は向上する。一方、グラフト鎖が長すぎると金属窒化物含有粒子等への吸着力が低下して、金属窒化物含有粒子等の分散性は低下する傾向となる。このため、グラフト鎖は、水素原子を除いた原子数が40~10000であるものが好ましく、50~2000であるものがより好ましく、60~500であるものが更に好ましい。
 ここで、グラフト鎖とは、共重合体の主鎖の根元(主鎖から枝分かれしている基において主鎖に結合する原子)から、主鎖から枝分かれしている基の末端までを示す。
The polymer compound preferably contains a structural unit containing a graft chain. In the present specification, “structural unit” is synonymous with “repeating unit”.
Such a polymer compound containing a structural unit containing a graft chain has an affinity for a solvent due to the graft chain, so that the dispersibility of metal nitride-containing particles, etc., and the dispersion stability after aging (stable with time) Property). Further, due to the presence of the graft chain, the polymer compound containing the structural unit containing the graft chain has an affinity with a polymerizable compound or other resin that can be used in combination. As a result, it becomes difficult to produce a residue by alkali development.
When the graft chain becomes longer, the steric repulsion effect becomes higher and the dispersibility of the metal nitride-containing particles and the like is improved. On the other hand, if the graft chain is too long, the adsorptive power to the metal nitride-containing particles and the like is lowered, and the dispersibility of the metal nitride-containing particles and the like tends to be lowered. Therefore, the graft chain preferably has 40 to 10,000 atoms excluding hydrogen atoms, more preferably 50 to 2000, and still more preferably 60 to 500.
Here, the graft chain means from the base of the main chain of the copolymer (the atom bonded to the main chain in a group branched from the main chain) to the end of the group branched from the main chain.
 グラフト鎖は、ポリマー構造を含有することが好ましく、このようなポリマー構造としては、例えば、ポリ(メタ)アクリレート構造(例えば、ポリ(メタ)アクリル構造)、ポリエステル構造、ポリウレタン構造、ポリウレア構造、ポリアミド構造、及びポリエーテル構造等を挙げることができる。
 グラフト鎖と溶剤との相互作用性を向上させ、それにより金属窒化物含有粒子等の分散性を高めるために、グラフト鎖は、ポリエステル構造、ポリエーテル構造及びポリ(メタ)アクリレート構造からなる群から選ばれた少なくとも1種を含有するグラフト鎖であることが好ましく、ポリエステル構造及びポリエーテル構造の少なくともいずれかを含有するグラフト鎖であることがより好ましい。
The graft chain preferably contains a polymer structure. Examples of such a polymer structure include a poly (meth) acrylate structure (for example, a poly (meth) acrylic structure), a polyester structure, a polyurethane structure, a polyurea structure, and a polyamide. Examples thereof include a structure and a polyether structure.
In order to improve the interaction between the graft chain and the solvent and thereby increase the dispersibility of the metal nitride-containing particles, the graft chain is made of a group consisting of a polyester structure, a polyether structure and a poly (meth) acrylate structure. It is preferably a graft chain containing at least one selected, and more preferably a graft chain containing at least one of a polyester structure and a polyether structure.
 このようなグラフト鎖を含有するマクロモノマー(ポリマー構造を有し、共重合体の主鎖に結合してグラフト鎖を構成するモノマー)は、特に限定されないが、反応性二重結合性基を含有するマクロモノマーを好適に使用することができる。 A macromonomer containing such a graft chain (a monomer having a polymer structure and bound to the main chain of the copolymer to form a graft chain) is not particularly limited, but contains a reactive double bond group The macromonomer to be used can be preferably used.
 高分子化合物が含有するグラフト鎖を含有する構造単位に対応し、高分子化合物の合成に好適に用いられる市販のマクロモノマーとしては、AA-6(商品名、東亜合成社製)、AA-10(商品名、東亜合成社製)、AB-6(商品名、東亜合成社製)、AS-6(商品名、東亜合成社製)、AN-6(商品名、東亜合成社製)、AW-6(商品名、東亜合成社製)、AA-714(商品名、東亜合成社製)、AY-707(商品名、東亜合成社製)、AY-714(商品名、東亜合成社製)、AK-5(商品名、東亜合成社製)、AK-30(商品名、東亜合成社製)、AK-32(商品名、東亜合成社製)、ブレンマーPP-100(商品名、日油社製)、ブレンマーPP-500(商品名、日油社製)、ブレンマーPP-800(商品名、日油社製)、ブレンマーPP-1000(商品名、日油社製)、ブレンマー55-PET-800(商品名、日油社製)、ブレンマーPME-4000(商品名、日油社製)、ブレンマーPSE-400(商品名、日油社製)、ブレンマーPSE-1300(商品名、日油社製)、ブレンマー43PAPE-600B(商品名、日油社製)等が用いられる。このなかでも、好ましくは、AA-6(商品名、東亜合成社製)、AA-10(商品名、東亜合成社製)、AB-6(商品名、東亜合成社製)、AS-6(商品名、東亜合成社製)、AN-6(商品名、東亜合成社製)、及びブレンマーPME-4000(商品名、日油社製)等が用いられる。 Corresponding to the structural unit containing a graft chain contained in the polymer compound, commercially available macromonomers suitably used for the synthesis of the polymer compound include AA-6 (trade name, manufactured by Toagosei Co., Ltd.), AA-10. (Trade name, manufactured by Toa Gosei Co., Ltd.), AB-6 (trade name, manufactured by Toa Gosei Co., Ltd.), AS-6 (trade name, manufactured by Toa Gosei Co., Ltd.), AN-6 (trade name, manufactured by Toa Gosei Co., Ltd.), AW -6 (trade name, manufactured by Toa Gosei Co., Ltd.), AA-714 (trade name, manufactured by Toa Gosei Co., Ltd.), AY-707 (trade name, manufactured by Toa Gosei Co., Ltd.), AY-714 (trade name, manufactured by Toa Gosei Co., Ltd.) AK-5 (trade name, manufactured by Toa Gosei Co., Ltd.), AK-30 (trade name, manufactured by Toa Gosei Co., Ltd.), AK-32 (trade name, manufactured by Toa Gosei Co., Ltd.), Blemmer PP-100 (trade name, NOF Corporation) Blemmer PP-500 (trade name, manufactured by NOF Corporation), Blemmer PP-800 ( Product name, manufactured by NOF Corporation), BLEMMER PP-1000 (trade name, manufactured by NOF CORPORATION), BLEMMER 55-PET-800 (trade name, manufactured by NOF CORPORATION), BLEMMER PME-4000 (trade name, manufactured by NOF Corporation) ), BLEMMER PSE-400 (trade name, manufactured by NOF Corporation), BLEMMER PSE-1300 (trade name, manufactured by NOF Corporation), BLEMMER 43PAPE-600B (trade name, manufactured by NOF Corporation) and the like are used. Among these, AA-6 (trade name, manufactured by Toa Gosei Co., Ltd.), AA-10 (trade name, manufactured by Toa Gosei Co., Ltd.), AB-6 (trade name, manufactured by Toa Gosei Co., Ltd.), AS-6 ( Trade name, manufactured by Toa Gosei Co., Ltd.), AN-6 (trade name, manufactured by Toa Gosei Co., Ltd.), and Bremer PME-4000 (trade name, manufactured by NOF Corporation) are used.
 分散剤は、ポリアクリル酸メチル、ポリメタクリル酸メチル及び環状又は鎖状のポリエステルからなる群より選択される少なくとも1種の構造を含有することが好ましい。分散剤は、ポリアクリル酸メチル、ポリメタクリル酸メチル及び鎖状のポリエステルからなる群より選択される少なくとも1種の構造を含有することがより好ましい。分散剤は、ポリアクリル酸メチル構造、ポリメタクリル酸メチル構造、ポリカプロラクトン構造及びポリバレロラクトン構造からなる群より選択される少なくとも1種の構造を含有することが更に好ましい。分散剤は、一の分散剤中に上記構造を単独で含有するものであってもよいし、一の分散剤中にこれらの構造を複数含有するものであってもよい。
 ここで、ポリカプロラクトン構造とは、ε-カプロラクトンを開環した構造を繰り返し単位として含有するものをいう。ポリバレロラクトン構造とは、δ-バレロラクトンを開環した構造を繰り返し単位として含有するものをいう。
 ポリカプロラクトン構造を含有する分散剤の具体例としては、下記式(1)及び下記式(2)におけるj及びkが5であるものが挙げられる。ポリバレロラクトン構造を含有する分散剤の具体例としては、下記式(1)及び下記式(2)におけるj及びkが4であるものが挙げられる。
 ポリアクリル酸メチル構造を含有する分散剤の具体例としては、下記式(4)におけるXが水素原子であり、Rがメチル基であるものが挙げられる。ポリメタクリル酸メチル構造を含有する分散剤の具体例としては、下記式(4)におけるXがメチル基であり、Rがメチル基であるものが挙げられる。
The dispersant preferably contains at least one structure selected from the group consisting of polymethyl acrylate, polymethyl methacrylate, and cyclic or chain polyester. More preferably, the dispersant contains at least one structure selected from the group consisting of polymethyl acrylate, polymethyl methacrylate, and chain polyester. More preferably, the dispersant contains at least one structure selected from the group consisting of a polymethyl acrylate structure, a polymethyl methacrylate structure, a polycaprolactone structure, and a polyvalerolactone structure. The dispersing agent may contain the above structure alone in one dispersing agent, or may contain a plurality of these structures in one dispersing agent.
Here, the polycaprolactone structure means a structure containing a ring-opened structure of ε-caprolactone as a repeating unit. The polyvalerolactone structure means a structure containing a ring-opened structure of δ-valerolactone as a repeating unit.
Specific examples of the dispersant containing a polycaprolactone structure include those in which j and k are 5 in the following formula (1) and the following formula (2). Specific examples of the dispersant containing a polyvalerolactone structure include those in which j and k in the following formula (1) and the following formula (2) are 4.
Specific examples of the dispersant containing a polymethyl acrylate structure include those in which X 5 in the following formula (4) is a hydrogen atom and R 4 is a methyl group. Specific examples of the dispersant containing a polymethyl methacrylate structure include those in which X 5 in the following formula (4) is a methyl group and R 4 is a methyl group.
・グラフト鎖を含有する構造単位
 高分子化合物は、グラフト鎖を含有する構造単位として、下記式(1)~式(4)のいずれかで表される構造単位を含有することが好ましく、下記式(1A)、下記式(2A)、下記式(3A)、下記式(3B)、及び下記式(4)のいずれかで表される構造単位を含有することがより好ましい。
Structural unit containing a graft chain The polymer compound preferably contains a structural unit represented by any of the following formulas (1) to (4) as a structural unit containing a graft chain. It is more preferable to contain a structural unit represented by any one of (1A), the following formula (2A), the following formula (3A), the following formula (3B), and the following formula (4).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(1)~式(4)において、W、W、W、及びWはそれぞれ独立に酸素原子又はNHを表す。W、W、W、及びWは酸素原子であることが好ましい。
 式(1)~式(4)において、X、X、X、X、及びXは、それぞれ独立に、水素原子又は1価の有機基を表す。X、X、X、X、及びXは、合成上の制約の観点からは、それぞれ独立に、水素原子又は炭素数(炭素原子数)1~12のアルキル基であることが好ましく、それぞれ独立に、水素原子又はメチル基であることがより好ましく、メチル基が更に好ましい。
In the formulas (1) to (4), W 1 , W 2 , W 3 , and W 4 each independently represent an oxygen atom or NH. W 1 , W 2 , W 3 , and W 4 are preferably oxygen atoms.
In the formulas (1) to (4), X 1 , X 2 , X 3 , X 4 , and X 5 each independently represent a hydrogen atom or a monovalent organic group. X 1 , X 2 , X 3 , X 4 , and X 5 may each independently be a hydrogen atom or an alkyl group having 1 to 12 carbon atoms (the number of carbon atoms) from the viewpoint of synthesis constraints. Preferably, each independently, a hydrogen atom or a methyl group is more preferable, and a methyl group is still more preferable.
 式(1)~式(4)において、Y、Y、Y、及びYは、それぞれ独立に、2価の連結基を表し、連結基は特に構造上制約されない。Y、Y、Y、及びYで表される2価の連結基として、具体的には、下記の(Y-1)~(Y-21)の連結基等が挙げられる。下記に示した構造において、A、Bはそれぞれ結合部位を意味する。下記に示した構造のうち、合成の簡便性から、(Y-2)又は(Y-13)であることがより好ましい。 In the formulas (1) to (4), Y 1 , Y 2 , Y 3 , and Y 4 each independently represent a divalent linking group, and the linking group is not particularly limited in structure. Specific examples of the divalent linking group represented by Y 1 , Y 2 , Y 3 , and Y 4 include the following (Y-1) to (Y-21) linking groups. In the structure shown below, A and B each represent a binding site. Of the structures shown below, (Y-2) or (Y-13) is more preferable because of the ease of synthesis.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(1)~式(4)において、Z、Z、Z、及びZは、それぞれ独立に1価の有機基を表す。有機基の構造は、特に限定されないが、具体的には、アルキル基、水酸基、アルコキシ基、アリールオキシ基、ヘテロアリールオキシ基、アルキルチオエーテル基、アリールチオエーテル基、ヘテロアリールチオエーテル基、及びアミノ基等が挙げられる。これらのなかでも、Z、Z、Z、及びZで表される有機基は、特に分散性向上の観点から、立体反発効果を含有するものが好ましく、各々独立に炭素数5~24のアルキル基又はアルコキシ基がより好ましく、各々独立に炭素数5~24の分岐アルキル基、炭素数5~24の環状アルキル基、又は炭素数5~24のアルコキシ基が更に好ましい。なお、アルコキシ基中に含まれるアルキル基は、直鎖状、分岐鎖状、及び環状のいずれでもよい。 In the formulas (1) to (4), Z 1 , Z 2 , Z 3 , and Z 4 each independently represent a monovalent organic group. The structure of the organic group is not particularly limited. Specifically, an alkyl group, a hydroxyl group, an alkoxy group, an aryloxy group, a heteroaryloxy group, an alkylthioether group, an arylthioether group, a heteroarylthioether group, an amino group, and the like Is mentioned. Among these, the organic groups represented by Z 1 , Z 2 , Z 3 , and Z 4 are preferably those containing a steric repulsion effect, particularly from the viewpoint of improving dispersibility. More preferred are 24 alkyl groups or alkoxy groups, and each independently preferred is a branched alkyl group having 5 to 24 carbon atoms, a cyclic alkyl group having 5 to 24 carbon atoms, or an alkoxy group having 5 to 24 carbon atoms. The alkyl group contained in the alkoxy group may be linear, branched, or cyclic.
 式(1)~式(4)において、n、m、p、及びqは、それぞれ独立に、1~500の整数である。
 式(1)及び式(2)において、j及びkは、それぞれ独立に、2~8の整数を表す。式(1)及び式(2)におけるj及びkは、組成物の経時安定性及び現像性の観点から、4~6の整数がより好ましく、5が更に好ましい。
 また、式(1)及び式(2)において、n及びmは、10以上の整数が好ましく、20以上の整数がより好ましい。また、分散剤が、ポリカプロラクトン構造、及びポリバレロラクトン構造を含有する場合、ポリカプロラクトン構造の繰り返し数と、ポリバレロラクトンの繰返し数の和としては、10以上の整数が好ましく、20以上の整数がより好ましい。
In the formulas (1) to (4), n, m, p, and q are each independently an integer of 1 to 500.
In Formula (1) and Formula (2), j and k each independently represent an integer of 2 to 8. J and k in the formulas (1) and (2) are more preferably an integer of 4 to 6, and further preferably 5, from the viewpoint of the temporal stability and developability of the composition.
Moreover, in Formula (1) and Formula (2), n and m are preferably an integer of 10 or more, and more preferably an integer of 20 or more. When the dispersant contains a polycaprolactone structure and a polyvalerolactone structure, the sum of the number of repeats of the polycaprolactone structure and the number of repeats of polyvalerolactone is preferably an integer of 10 or more, and an integer of 20 or more Is more preferable.
 式(3)中、Rは分岐鎖状又は直鎖状のアルキレン基を表し、炭素数1~10のアルキレン基が好ましく、炭素数2又は3のアルキレン基がより好ましい。pが2~500のとき、複数存在するRは互いに同じであっても異なっていてもよい。
 式(4)中、Rは水素原子又は1価の有機基を表し、この1価の有機基は特に構造上限定はされない。Rとして好ましくは、水素原子、アルキル基、アリール基、又はヘテロアリール基が挙げられ、より好ましくは、水素原子、又はアルキル基である。Rがアルキル基である場合、炭素数1~20の直鎖状アルキル基、炭素数3~20の分岐鎖状アルキル基、又は炭素数5~20の環状アルキル基が好ましく、炭素数1~20の直鎖状アルキル基がより好ましく、炭素数1~6の直鎖状アルキル基が更に好ましい。式(4)において、qが2~500のとき、グラフト共重合体中に複数存在するX及びRは互いに同じであっても異なっていてもよい。
In the formula (3), R 3 represents a branched or straight chain alkylene group, preferably an alkylene group having 1 to 10 carbon atoms, and more preferably an alkylene group having 2 or 3 carbon atoms. When p is 2 to 500, a plurality of R 3 may be the same or different from each other.
In formula (4), R 4 represents a hydrogen atom or a monovalent organic group, and the monovalent organic group is not particularly limited in terms of structure. R 4 is preferably a hydrogen atom, an alkyl group, an aryl group, or a heteroaryl group, and more preferably a hydrogen atom or an alkyl group. When R 4 is an alkyl group, a linear alkyl group having 1 to 20 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, or a cyclic alkyl group having 5 to 20 carbon atoms is preferable, and 1 to A linear alkyl group having 20 is more preferable, and a linear alkyl group having 1 to 6 carbon atoms is still more preferable. In the formula (4), when q is 2 to 500, a plurality of X 5 and R 4 present in the graft copolymer may be the same or different from each other.
 また、高分子化合物は、2種以上の構造が異なる、グラフト鎖を含有する構造単位を含有することができる。即ち、高分子化合物の分子中に、互いに構造の異なる式(1)~式(4)で示される構造単位を含んでいてもよく、また、式(1)~式(4)においてn、m、p、及びqがそれぞれ2以上の整数を表す場合、式(1)及び式(2)においては、側鎖中にj及びkが互いに異なる構造を含んでいてもよく、式(3)及び式(4)においては、分子内に複数存在するR、R及びXは互いに同じであっても異なっていてもよい。 In addition, the polymer compound can contain structural units containing graft chains that differ in two or more structures. That is, the polymer compound molecule may contain structural units represented by formulas (1) to (4) having different structures, and n, m in formulas (1) to (4). , P, and q each represent an integer of 2 or more, in formula (1) and formula (2), j and k may contain structures different from each other in the side chain. In the formula (4), a plurality of R 3 , R 4 and X 5 present in the molecule may be the same or different from each other.
 式(1)で表される構造単位は、組成物の経時安定性及び現像性の観点から、下記式(1A)で表される構造単位であることがより好ましい。
 式(2)で表される構造単位は、組成物の経時安定性及び現像性の観点から、下記式(2A)で表される構造単位であることがより好ましい。
The structural unit represented by the formula (1) is more preferably a structural unit represented by the following formula (1A) from the viewpoint of temporal stability and developability of the composition.
The structural unit represented by the formula (2) is more preferably a structural unit represented by the following formula (2A) from the viewpoint of temporal stability and developability of the composition.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(1A)中、X、Y、Z及びnは、式(1)におけるX、Y、Z及びnと同義であり、好ましい範囲も同様である。式(2A)中、X、Y、Z及びmは、式(2)におけるX、Y、Z及びmと同義であり、好ましい範囲も同様である。 Wherein (1A), X 1, Y 1, Z 1 and n are as defined X 1, Y 1, Z 1 and n in Formula (1), and preferred ranges are also the same. Wherein (2A), X 2, Y 2, Z 2 and m are as defined X 2, Y 2, Z 2 and m in the formula (2), and preferred ranges are also the same.
 式(3)で表される構造単位は、組成物の経時安定性及び現像性の観点から、下記式(3A)又は式(3B)で表される構造単位であることがより好ましい。 The structural unit represented by the formula (3) is more preferably a structural unit represented by the following formula (3A) or formula (3B) from the viewpoint of the temporal stability and developability of the composition.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(3A)又は(3B)中、X、Y、Z及びpは、式(3)におけるX、Y、Z及びpと同義であり、好ましい範囲も同様である。 Wherein (3A) or (3B), X 3, Y 3, Z 3 and p are as defined X 3, Y 3, Z 3 and p in formula (3), and preferred ranges are also the same.
 高分子化合物は、グラフト鎖を含有する構造単位として、式(1A)で表される構造単位を含有することがより好ましい。 More preferably, the polymer compound contains a structural unit represented by the formula (1A) as a structural unit containing a graft chain.
 高分子化合物において、グラフト鎖を含有する構造単位(例えば、上記式(1)~式(4)で表される構造単位)は、質量換算で、高分子化合物の総質量に対し2~90%の範囲で含まれることが好ましく、5~30%の範囲で含まれることがより好ましい。グラフト鎖を含有する構造単位がこの範囲内で含まれると、金属窒化物含有粒子の分散性が高く、硬化膜を形成する際の現像性が良好である。 In the polymer compound, the structural unit containing a graft chain (for example, the structural unit represented by the above formulas (1) to (4)) is 2 to 90% in terms of mass with respect to the total mass of the polymer compound. Preferably, it is contained in the range of 5 to 30%. When the structural unit containing a graft chain is contained within this range, the dispersibility of the metal nitride-containing particles is high, and the developability when forming a cured film is good.
・疎水性構造単位
 また、高分子化合物は、グラフト鎖を含有する構造単位とは異なる(すなわち、グラフト鎖を含有する構造単位には相当しない)疎水性構造単位を含有することが好ましい。ただし、本明細書において、疎水性構造単位は、酸基(例えば、カルボン酸基、スルホン酸基、リン酸基、フェノール性水酸基等)を有さない構造単位である。
-Hydrophobic structural unit Moreover, it is preferable that a high molecular compound contains the hydrophobic structural unit different from the structural unit containing a graft chain (namely, it does not correspond to the structural unit containing a graft chain). However, in this specification, a hydrophobic structural unit is a structural unit which does not have an acid group (for example, a carboxylic acid group, a sulfonic acid group, a phosphoric acid group, a phenolic hydroxyl group, etc.).
 疎水性構造単位は、好ましくは、ClogP値が1.2以上の化合物(モノマー)に由来する(対応する)構造単位であり、より好ましくは、ClogP値が1.2~8の化合物に由来する構造単位である。これにより、本発明の効果をより確実に発現することができる。 The hydrophobic structural unit is preferably a structural unit derived from (corresponding to) a compound (monomer) having a ClogP value of 1.2 or more, more preferably derived from a compound having a ClogP value of 1.2 to 8. A structural unit. Thereby, the effect of this invention can be expressed more reliably.
 ClogP値は、Daylight Chemical Information System, Inc.から入手できるプログラム“CLOGP”で計算された値である。このプログラムは、Hansch, Leoのフラグメントアプローチ(下記文献参照)により算出される“計算logP”の値を提供する。フラグメントアプローチは化合物の化学構造に基づいており、化学構造を部分構造(フラグメント)に分割し、そのフラグメントに対して割り当てられたlogP寄与分を合計することにより化合物のlogP値を推算している。その詳細は以下の文献に記載されている。本明細書では、ClogP値はプログラムCLOGP v4.82により計算した値を意図する。
 A. J. Leo, Comprehensive Medicinal Chemistry, Vol.4, C. Hansch, P. G. Sammnens, J. B. Taylor and C. A. Ramsden, Eds., p.295, Pergamon Press, 1990 C. Hansch & A. J. Leo. SUbstituent Constants For Correlation Analysis in Chemistry and Biology. John Wiley & Sons. A.J. Leo. Calculating logPoct from structure. Chem. Rev., 93, 1281-1306, 1993.
ClogP values are available from Daylight Chemical Information System, Inc. It is a value calculated by the program “CLOGP” available from This program provides the value of “computation logP” calculated by Hansch, Leo's fragment approach (see below). The fragment approach is based on the chemical structure of a compound, which divides the chemical structure into substructures (fragments) and estimates the logP value of the compound by summing the logP contributions assigned to that fragment. Details thereof are described in the following documents. In this specification, the ClogP value is intended to be a value calculated by the program CLOGP v4.82.
A. J. et al. Leo, Comprehensive Medicinal Chemistry, Vol. 4, C.I. Hansch, P.A. G. Sammunens, J. et al. B. Taylor and C.M. A. Ramsden, Eds. , P. 295, Pergamon Press, 1990 C.I. Hansch & A. J. et al. Leo. Substituent Constants For Correlation Analysis in Chemistry and Biology. John Wiley & Sons. A. J. et al. Leo. Calculating logPoch from structure. Chem. Rev. , 93, 1281-1306, 1993.
 logPは、分配係数P(Partition Coefficient)の常用対数を意味し、ある有機化合物が油(一般的には1-オクタノール)と水の2相系の平衡でどのように分配されるかを定量的な数値として表す物性値であり、以下の式で示される。
  logP=log(Coil/Cwater)
 式中、Coilは油相中の化合物のモル濃度を、Cwaterは水相中の化合物のモル濃度を表す。
 logPの値が0をはさんでプラスに大きくなると油溶性が増し、マイナスで絶対値が大きくなると水溶性が増すことを意味し、有機化合物の水溶性と負の相関があり、有機化合物の親疎水性を見積るパラメータとして広く利用されている。
log P means the common logarithm of the partition coefficient P (Partition Coefficient), and quantitatively determines how an organic compound is distributed in the equilibrium of a two-phase system of oil (generally 1-octanol) and water. It is a physical property value expressed as a numerical value, and is represented by the following formula.
logP = log (Coil / Cwater)
In the formula, Coil represents the molar concentration of the compound in the oil phase, and Cwater represents the molar concentration of the compound in the aqueous phase.
When the logP value increases to a positive value across 0, the oil solubility increases. When the logP value increases to a negative value, the water solubility increases. There is a negative correlation with the water solubility of the organic compound. It is widely used as a parameter for estimating aqueous properties.
 高分子化合物は、疎水性構造単位として、下記式(i)~(iii)で表される単量体に由来の構造単位から選択された1種以上の構造単位を含有することが好ましい。 The polymer compound preferably contains one or more structural units selected from structural units derived from monomers represented by the following formulas (i) to (iii) as hydrophobic structural units.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上記式(i)~(iii)中、R、R、及びRは、それぞれ独立に、水素原子、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、又は炭素数が1~6のアルキル基(例えば、メチル基、エチル基、プロピル基等)を表す。
 R、R、及びRは、好ましくは水素原子、又は炭素数が1~3のアルキル基であり、より好ましくは水素原子又はメチル基である。R及びRは、水素原子であることが更に好ましい。
 Xは、酸素原子(-O-)又はイミノ基(-NH-)を表し、酸素原子であることが好ましい。
In the above formulas (i) to (iii), R 1 , R 2 , and R 3 each independently represent a hydrogen atom, a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, etc.), or a carbon number of 1 Represents an alkyl group of ˜6 (for example, methyl group, ethyl group, propyl group, etc.).
R 1 , R 2 , and R 3 are preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and more preferably a hydrogen atom or a methyl group. R 2 and R 3 are more preferably a hydrogen atom.
X represents an oxygen atom (—O—) or an imino group (—NH—), and is preferably an oxygen atom.
 Lは、単結合又は2価の連結基である。2価の連結基としては、2価の脂肪族基(例えば、アルキレン基、置換アルキレン基、アルケニレン基、置換アルケニレン基、アルキニレン基、置換アルキニレン基)、2価の芳香族基(例えば、アリーレン基、置換アリーレン基)、2価の複素環基、酸素原子(-O-)、硫黄原子(-S-)、イミノ基(-NH-)、置換イミノ基(-NR31-、ここでR31は脂肪族基、芳香族基又は複素環基)、カルボニル基(-CO-)、及びこれらの組合せ等が挙げられる。 L is a single bond or a divalent linking group. As the divalent linking group, a divalent aliphatic group (for example, alkylene group, substituted alkylene group, alkenylene group, substituted alkenylene group, alkynylene group, substituted alkynylene group), divalent aromatic group (for example, arylene group) , Substituted arylene group), divalent heterocyclic group, oxygen atom (—O—), sulfur atom (—S—), imino group (—NH—), substituted imino group (—NR 31 —, where R 31 Include aliphatic groups, aromatic groups or heterocyclic groups), carbonyl groups (—CO—), and combinations thereof.
 2価の脂肪族基は、環状構造又は分岐構造を有していてもよい。脂肪族基の炭素数は、1~20が好ましく、1~15がより好ましく、1~10が更に好ましい。脂肪族基は不飽和脂肪族基であっても飽和脂肪族基であってもよいが、飽和脂肪族基であることが好ましい。脂肪族基は、置換基を有していてもよい。置換基の例は、ハロゲン原子、芳香族基及び複素環基等が挙げられる。 The divalent aliphatic group may have a cyclic structure or a branched structure. The aliphatic group preferably has 1 to 20 carbon atoms, more preferably 1 to 15 carbon atoms, and still more preferably 1 to 10 carbon atoms. The aliphatic group may be an unsaturated aliphatic group or a saturated aliphatic group, but is preferably a saturated aliphatic group. The aliphatic group may have a substituent. Examples of the substituent include a halogen atom, an aromatic group and a heterocyclic group.
 2価の芳香族基の炭素数は、6~20が好ましく、6~15がより好ましく、6~10が更に好ましい。芳香族基は置換基を有していてもよい。置換基の例は、ハロゲン原子、脂肪族基、芳香族基及び複素環基等が挙げられる。 The carbon number of the divalent aromatic group is preferably 6 to 20, more preferably 6 to 15, and still more preferably 6 to 10. The aromatic group may have a substituent. Examples of the substituent include a halogen atom, an aliphatic group, an aromatic group, and a heterocyclic group.
 2価の複素環基は、複素環として5員環又は6員環を含有することが好ましい。複素環に他の複素環、脂肪族環又は芳香族環が縮合していてもよい。複素環基は置換基を有していてもよい。置換基の例としては、ハロゲン原子、水酸基、オキソ基(=O)、チオキソ基(=S)、イミノ基(=NH)、置換イミノ基(=N-R32、ここでR32は脂肪族基、芳香族基又は複素環基)、脂肪族基、芳香族基、又は複素環基が挙げられる。 The divalent heterocyclic group preferably contains a 5-membered ring or a 6-membered ring as the heterocyclic ring. Another heterocyclic ring, an aliphatic ring or an aromatic ring may be condensed with the heterocyclic ring. The heterocyclic group may have a substituent. Examples of substituents include halogen atoms, hydroxyl groups, oxo groups (═O), thioxo groups (═S), imino groups (═NH), substituted imino groups (═N—R 32 , where R 32 is aliphatic. Group, aromatic group or heterocyclic group), aliphatic group, aromatic group, or heterocyclic group.
 Lは、単結合、アルキレン基又はオキシアルキレン構造を含有する2価の連結基であることが好ましい。オキシアルキレン構造は、オキシエチレン構造又はオキシプロピレン構造であることがより好ましい。Lは、オキシアルキレン構造を2以上繰り返して含有するポリオキシアルキレン構造を含んでいてもよい。ポリオキシアルキレン構造としては、ポリオキシエチレン構造又はポリオキシプロピレン構造が好ましい。ポリオキシエチレン構造は、-(OCHCH)n-で表され、nは、2以上の整数が好ましく、2~10の整数であることがより好ましい。 L is preferably a single bond, an alkylene group or a divalent linking group containing an oxyalkylene structure. The oxyalkylene structure is more preferably an oxyethylene structure or an oxypropylene structure. L may contain a polyoxyalkylene structure containing two or more oxyalkylene structures. The polyoxyalkylene structure is preferably a polyoxyethylene structure or a polyoxypropylene structure. The polyoxyethylene structure is represented by — (OCH 2 CH 2 ) n—, where n is preferably an integer of 2 or more, and more preferably an integer of 2 to 10.
 Zとしては、脂肪族基(例えば、アルキル基、置換アルキル基、不飽和アルキル基、置換不飽和アルキル基、)、芳香族基(例えば、アリール基、置換アリール基、アリーレン基、置換アリーレン基)、複素環基、又はこれらの組み合わせが挙げられる。これらの基には、酸素原子(-O-)、硫黄原子(-S-)、イミノ基(-NH-)、置換イミノ基(-NR31-、ここでR31は脂肪族基、芳香族基又は複素環基)、又はカルボニル基(-CO-)が含まれていてもよい。 Z is an aliphatic group (eg, alkyl group, substituted alkyl group, unsaturated alkyl group, substituted unsaturated alkyl group), aromatic group (eg, aryl group, substituted aryl group, arylene group, substituted arylene group). , A heterocyclic group, or a combination thereof. These groups include an oxygen atom (—O—), a sulfur atom (—S—), an imino group (—NH—), a substituted imino group (—NR 31 —, wherein R 31 is an aliphatic group, an aromatic group Group or heterocyclic group), or a carbonyl group (—CO—) may be contained.
 脂肪族基は、環状構造又は分岐構造を有していてもよい。脂肪族基の炭素数は、1~20が好ましく、1~15がより好ましく、1~10が更に好ましい。脂肪族基には、更に環集合炭化水素基、架橋環式炭化水素基が含まれ、環集合炭化水素基の例としては、ビシクロヘキシル基、パーヒドロナフタレニル基、ビフェニル基、及び4-シクロヘキシルフェニル基等が含まれる。架橋環式炭化水素環として、例えば、ピナン、ボルナン、ノルピナン、ノルボルナン、ビシクロオクタン環(ビシクロ[2.2.2]オクタン環、及びビシクロ[3.2.1]オクタン環等)等の2環式炭化水素環、ホモブレダン、アダマンタン、トリシクロ[5.2.1.02,6]デカン、及びトリシクロ[4.3.1.12,5]ウンデカン環等の3環式炭化水素環、並びにテトラシクロ[4.4.0.12,5.17,10]ドデカン、及びパーヒドロ-1,4-メタノ-5,8-メタノナフタレン環等の4環式炭化水素環等が挙げられる。架橋環式炭化水素環には、縮合環式炭化水素環、例えば、パーヒドロナフタレン(デカリン)、パーヒドロアントラセン、パーヒドロフェナントレン、パーヒドロアセナフテン、パーヒドロフルオレン、パーヒドロインデン、及びパーヒドロフェナレン環等の5~8員シクロアルカン環が複数個縮合した縮合環も含まれる。
 脂肪族基は不飽和脂肪族基よりも飽和脂肪族基の方が好ましい。脂肪族基は、置換基を有していてもよい。置換基の例は、ハロゲン原子、芳香族基及び複素環基が挙げられる。ただし、脂肪族基は、置換基として酸基を有さない。
The aliphatic group may have a cyclic structure or a branched structure. The aliphatic group preferably has 1 to 20 carbon atoms, more preferably 1 to 15 carbon atoms, and still more preferably 1 to 10 carbon atoms. The aliphatic group further includes a ring assembly hydrocarbon group and a bridged cyclic hydrocarbon group. Examples of the ring assembly hydrocarbon group include a bicyclohexyl group, a perhydronaphthalenyl group, a biphenyl group, and 4- A cyclohexylphenyl group and the like are included. Examples of the bridged cyclic hydrocarbon ring include two rings such as pinane, bornane, norpinane, norbornane, bicyclooctane ring (bicyclo [2.2.2] octane ring, bicyclo [3.2.1] octane ring, etc.) Hydrocarbon rings, homobredan, adamantane, tricyclo [5.2.1.0 2,6 ] decane, and tricyclic hydrocarbon rings such as tricyclo [4.3.1.1 2,5 ] undecane ring, and Tetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodecane, and tetracyclic hydrocarbon rings such as perhydro-1,4-methano-5,8-methanonaphthalene ring. Bridged cyclic hydrocarbon rings include condensed cyclic hydrocarbon rings such as perhydronaphthalene (decalin), perhydroanthracene, perhydrophenanthrene, perhydroacenaphthene, perhydrofluorene, perhydroindene, and perhydrophenene. A condensed ring in which a plurality of 5- to 8-membered cycloalkane rings such as a len ring are condensed is also included.
The aliphatic group is preferably a saturated aliphatic group rather than an unsaturated aliphatic group. The aliphatic group may have a substituent. Examples of the substituent include a halogen atom, an aromatic group, and a heterocyclic group. However, the aliphatic group does not have an acid group as a substituent.
 芳香族基の炭素数は、6~20が好ましく、6~15がより好ましく、6~10が更に好ましい。芳香族基は置換基を有していてもよい。置換基の例は、ハロゲン原子、脂肪族基、芳香族基及び複素環基が挙げられる。ただし、芳香族基は、置換基として酸基を有さない。 The carbon number of the aromatic group is preferably 6-20, more preferably 6-15, and still more preferably 6-10. The aromatic group may have a substituent. Examples of the substituent include a halogen atom, an aliphatic group, an aromatic group, and a heterocyclic group. However, the aromatic group does not have an acid group as a substituent.
 複素環基は、複素環として5員環又は6員環を含有することが好ましい。複素環に他の複素環、脂肪族環又は芳香族環が縮合していてもよい。複素環基は置換基を有していてもよい。置換基の例としては、ハロゲン原子、水酸基、オキソ基(=O)、チオキソ基(=S)、イミノ基(=NH)、置換イミノ基(=N-R32、ここでR32は脂肪族基、芳香族基又は複素環基)、脂肪族基、芳香族基及び複素環基が挙げられる。ただし、複素環基は、置換基として酸基を有さない。 It is preferable that a heterocyclic group contains a 5-membered ring or a 6-membered ring as a heterocyclic ring. Another heterocyclic ring, an aliphatic ring or an aromatic ring may be condensed with the heterocyclic ring. The heterocyclic group may have a substituent. Examples of substituents include halogen atoms, hydroxyl groups, oxo groups (═O), thioxo groups (═S), imino groups (═NH), substituted imino groups (═N—R 32 , where R 32 is aliphatic. Group, aromatic group or heterocyclic group), aliphatic group, aromatic group and heterocyclic group. However, the heterocyclic group does not have an acid group as a substituent.
 上記式(iii)中、R、R、及びRは、それぞれ独立に、水素原子、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、炭素数が1~6のアルキル基(例えば、メチル基、エチル基、プロピル基等)、Z、又はL-Zを表す。ここでL及びZは、上記におけるものと同義である。R、R、及びRとしては、水素原子、又は炭素数が1~3のアルキル基が好ましく、水素原子がより好ましい。 In the above formula (iii), R 4 , R 5 , and R 6 are each independently a hydrogen atom, a halogen atom (eg, a fluorine atom, a chlorine atom, a bromine atom, etc.), or an alkyl group having 1 to 6 carbon atoms. (For example, a methyl group, an ethyl group, a propyl group, etc.), Z, or LZ. Here, L and Z are as defined above. R 4 , R 5 and R 6 are preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably a hydrogen atom.
 上記式(i)で表される単量体として、R、R、及びRが水素原子又はメチル基、Lが単結合又はアルキレン基もしくはオキシアルキレン構造を含有する2価の連結基、Xが酸素原子又はイミノ基、Zが脂肪族基、複素環基又は芳香族基である化合物が好ましい。
 上記式(ii)で表される単量体として、Rが水素原子又はメチル基、Lがアルキレン基、Zが脂肪族基、複素環基又は芳香族基である化合物が好ましい。上記式(iii)で表される単量体として、R、R、及びRが水素原子又はメチル基、Zが脂肪族基、複素環基又は芳香族基である化合物が好ましい。
As the monomer represented by the above formula (i), R 1 , R 2 , and R 3 are a hydrogen atom or a methyl group, L is a single bond or an alkylene group or a divalent linking group containing an oxyalkylene structure, A compound in which X is an oxygen atom or imino group, and Z is an aliphatic group, heterocyclic group or aromatic group is preferred.
The monomer represented by the above formula (ii) is preferably a compound in which R 1 is a hydrogen atom or a methyl group, L is an alkylene group, and Z is an aliphatic group, a heterocyclic group or an aromatic group. As the monomer represented by the above formula (iii), a compound in which R 4 , R 5 , and R 6 are a hydrogen atom or a methyl group, and Z is an aliphatic group, a heterocyclic group, or an aromatic group is preferable.
 式(i)~(iii)で表される代表的な化合物の例としては、アクリル酸エステル類、メタクリル酸エステル類、及びスチレン類等から選ばれるラジカル重合性化合物が挙げられる。
 なお、式(i)~(iii)で表される代表的な化合物の例としては、特開2013-249417号公報の段落0089~0093に記載の化合物を参照でき、これらの内容は本明細書に組み込まれる。
Examples of typical compounds represented by the formulas (i) to (iii) include radical polymerizable compounds selected from acrylic acid esters, methacrylic acid esters, styrenes, and the like.
As examples of typical compounds represented by formulas (i) to (iii), compounds described in paragraphs 0089 to 0093 of JP2013-249417A can be referred to, and the contents thereof are described in the present specification. Incorporated into.
 高分子化合物において、疎水性構造単位は、質量換算で、高分子化合物の総質量に対し10~90%の範囲で含まれることが好ましく、20~80%の範囲で含まれることがより好ましい。含有量が上記範囲において十分なパターン形成が得られる。 In the polymer compound, the hydrophobic structural unit is preferably contained in a range of 10 to 90%, more preferably in a range of 20 to 80% with respect to the total mass of the polymer compound in terms of mass. When the content is in the above range, sufficient pattern formation can be obtained.
・金属窒化物含有粒子等と相互作用を形成しうる官能基
 高分子化合物は、金属窒化物含有粒子等と相互作用を形成しうる官能基を導入することができる。ここで、高分子化合物は、金属窒化物含有粒子等と相互作用を形成しうる官能基を含有する構造単位を更に含有することが好ましい。
 この金属窒化物含有粒子等と相互作用を形成しうる官能基としては、例えば、酸基、塩基性基、配位性基、及び反応性を有する官能基等が挙げられる。
 高分子化合物が、酸基、塩基性基、配位性基、又は反応性を有する官能基を含有する場合、それぞれ、酸基を含有する構造単位、塩基性基を含有する構造単位、配位性基を含有する構造単位、又は反応性を有する構造単位を含有することが好ましい。
 特に、高分子化合物が、更に、酸基として、カルボン酸基等のアルカリ可溶性基を含有することで、高分子化合物に、アルカリ現像によるパターン形成のための現像性を付与することができる。
 すなわち、高分子化合物にアルカリ可溶性基を導入することで、上記組成物は、金属窒化物含有粒子等の分散に寄与する分散剤としての高分子化合物がアルカリ可溶性を有することになる。このような高分子化合物を含有する組成物は、露光部の遮光性に優れたものとなり、且つ、未露光部のアルカリ現像性が向上される。
 また、高分子化合物が酸基を含有する構造単位を含有することにより、高分子化合物が溶剤となじみやすくなり、塗布性も向上する傾向となる。
 これは、酸基を含有する構造単位における酸基が金属窒化物含有粒子等と相互作用しやすく、高分子化合物が金属窒化物含有粒子等を安定的に分散すると共に、金属窒化物含有粒子等を分散する高分子化合物の粘度が低くなっており、高分子化合物自体も安定的に分散されやすいためであると推測される。
-Functional group capable of forming interaction with metal nitride-containing particles, etc. The polymer compound can introduce a functional group capable of forming interaction with metal nitride-containing particles. Here, the polymer compound preferably further contains a structural unit containing a functional group capable of forming an interaction with metal nitride-containing particles and the like.
Examples of the functional group that can form an interaction with the metal nitride-containing particles include an acid group, a basic group, a coordinating group, and a reactive functional group.
When the polymer compound contains an acid group, a basic group, a coordinating group, or a reactive functional group, the structural unit containing an acid group, the structural unit containing a basic group, and the coordination, respectively. It is preferable to contain a structural unit containing a functional group or a structural unit having reactivity.
In particular, when the polymer compound further contains an alkali-soluble group such as a carboxylic acid group as the acid group, developability for pattern formation by alkali development can be imparted to the polymer compound.
That is, by introducing an alkali-soluble group into the polymer compound, the polymer compound as a dispersant that contributes to the dispersion of metal nitride-containing particles and the like has alkali solubility in the composition. A composition containing such a polymer compound has excellent light-shielding properties in the exposed area, and the alkali developability in the unexposed area is improved.
Moreover, when a high molecular compound contains the structural unit containing an acid group, a high molecular compound becomes easy to become compatible with a solvent, and there exists a tendency for applicability | paintability to improve.
This is because the acid group in the structural unit containing an acid group easily interacts with the metal nitride-containing particles and the like, and the polymer compound stably disperses the metal nitride-containing particles and the like, and the metal nitride-containing particles and the like It is presumed that the viscosity of the polymer compound in which the polymer is dispersed is low, and the polymer compound itself is easily dispersed stably.
 ただし、酸基としてのアルカリ可溶性基を含有する構造単位は、上記のグラフト鎖を含有する構造単位と同一の構造単位であっても、異なる構造単位であってもよいが、酸基としてのアルカリ可溶性基を含有する構造単位は、上記の疎水性構造単位とは異なる構造単位である(すなわち、上記の疎水性構造単位には相当しない)。 However, the structural unit containing an alkali-soluble group as an acid group may be the same structural unit as the structural unit containing the graft chain or a different structural unit. The structural unit containing a soluble group is a structural unit different from the hydrophobic structural unit described above (that is, does not correspond to the hydrophobic structural unit described above).
 金属窒化物含有粒子等と相互作用を形成しうる官能基である酸基としては、例えば、カルボン酸基、スルホン酸基、リン酸基、又はフェノール性水酸基等があり、好ましくは、カルボン酸基、スルホン酸基、及びリン酸基のうち少なくとも1種であり、より好ましいものは、金属窒化物含有粒子等への吸着力が良好で、且つ、分散性が高い点で、カルボン酸基である。
 すなわち、高分子化合物は、カルボン酸基、スルホン酸基、及びリン酸基のうち少なくとも1種を含有する構造単位を更に含有することが好ましい。
Examples of the acid group that is a functional group capable of forming an interaction with metal nitride-containing particles include a carboxylic acid group, a sulfonic acid group, a phosphoric acid group, or a phenolic hydroxyl group, and preferably a carboxylic acid group. , A sulfonic acid group, and a phosphoric acid group, and more preferable is a carboxylic acid group in terms of good adsorptive power to metal nitride-containing particles and high dispersibility. .
That is, the polymer compound preferably further contains a structural unit containing at least one of a carboxylic acid group, a sulfonic acid group, and a phosphoric acid group.
 高分子化合物は、酸基を含有する構造単位を1種又は2種以上有してもよい。
 高分子化合物は、酸基を含有する構造単位を含有してもしなくてもよいが、含有する場合、酸基を含有する構造単位の含有量は、質量換算で、高分子化合物の総質量に対して、好ましくは5~80%であり、より好ましくは、アルカリ現像による画像強度のダメージ抑制という観点から、10~60%である。
The polymer compound may have one or more structural units containing an acid group.
The polymer compound may or may not contain a structural unit containing an acid group. However, when it is contained, the content of the structural unit containing an acid group is calculated by mass conversion to the total mass of the polymer compound. On the other hand, it is preferably 5 to 80%, and more preferably 10 to 60% from the viewpoint of suppressing damage of image strength due to alkali development.
 金属窒化物含有粒子等と相互作用を形成しうる官能基である塩基性基としては、例えば、第1級アミノ基、第2級アミノ基、第3級アミノ基、N原子を含有するヘテロ環、及びアミド基等があり、好ましいものは、金属窒化物含有粒子等への吸着力が良好で、且つ、分散性が高い点で、第3級アミノ基である。高分子化合物は、これらの塩基性基を1種或いは2種以上、含有することができる。
 高分子化合物は、塩基性基を含有する構造単位を含有してもしなくてもよいが、含有する場合、塩基性基を含有する構造単位の含有量は、質量換算で、高分子化合物の総質量に対して、好ましくは0.01%以上50%以下であり、より好ましくは、現像性阻害抑制という観点から、0.01%以上30%以下である。
Examples of the basic group that is a functional group capable of forming an interaction with metal nitride-containing particles include a primary amino group, a secondary amino group, a tertiary amino group, and a heterocyclic ring containing an N atom. And an amide group, and a preferable one is a tertiary amino group in that it has a good adsorptive power to metal nitride-containing particles and has a high dispersibility. The polymer compound can contain one or more of these basic groups.
The polymer compound may or may not contain a structural unit containing a basic group, but when it is contained, the content of the structural unit containing a basic group is the total amount of the polymer compound in terms of mass. Preferably it is 0.01% or more and 50% or less with respect to mass, More preferably, it is 0.01% or more and 30% or less from a viewpoint of developability inhibition suppression.
 金属窒化物含有粒子等と相互作用を形成しうる官能基である配位性基、及び反応性を有する官能基としては、例えば、アセチルアセトキシ基、トリアルコキシシリル基、イソシアネート基、酸無水物、及び酸塩化物等が挙げられる。好ましいものは、金属窒化物含有粒子等への吸着力が良好で、金属窒化物含有粒子等の分散性が高い点で、アセチルアセトキシ基である。高分子化合物は、これらの基を1種又は2種以上有してもよい。
 高分子化合物は、配位性基を含有する構造単位、又は反応性を有する官能基を含有する構造単位を含有してもしなくてもよいが、含有する場合、これらの構造単位の含有量は、質量換算で、高分子化合物の総質量に対して、好ましくは10%以上80%以下であり、より好ましくは、現像性阻害抑制という観点から、20%以上60%以下である。
Examples of the coordinating group which is a functional group capable of forming an interaction with metal nitride-containing particles and the functional group having reactivity include, for example, an acetylacetoxy group, a trialkoxysilyl group, an isocyanate group, an acid anhydride, And acid chlorides. Preferable one is an acetylacetoxy group in that the adsorbing power to the metal nitride-containing particles is good and the dispersibility of the metal nitride-containing particles is high. The polymer compound may have one or more of these groups.
The polymer compound may or may not contain a structural unit containing a coordinating group or a structural unit containing a reactive functional group, but when it is contained, the content of these structural units is In terms of mass, it is preferably 10% or more and 80% or less, and more preferably 20% or more and 60% or less from the viewpoint of inhibiting developability inhibition, with respect to the total mass of the polymer compound.
 上記高分子化合物が、グラフト鎖以外に、金属窒化物含有粒子等と相互作用を形成しうる官能基を含有する場合、上記の各種の金属窒化物含有粒子等と相互作用を形成しうる官能基を含有していればよく、これらの官能基がどのように導入されているかは特に限定はされないが、高分子化合物は、下記式(iv)~(vi)で表される単量体に由来の構造単位から選択された1種以上の構造単位を含有することが好ましい。 When the polymer compound contains a functional group capable of interacting with metal nitride-containing particles in addition to the graft chain, the functional group capable of interacting with the various metal nitride-containing particles described above. There is no particular limitation on how these functional groups are introduced, but the polymer compound is derived from the monomers represented by the following formulas (iv) to (vi) It is preferable to contain one or more structural units selected from these structural units.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(iv)~式(vi)中、R11、R12、及びR13は、それぞれ独立に、水素原子、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、又は炭素数が1~6のアルキル基(例えば、メチル基、エチル基、プロピル基等)を表す。
 式(iv)~式(vi)中、R11、R12、及びR13は、好ましくは、それぞれ独立に水素原子、又は炭素数が1~3のアルキル基であり、より好ましくは、それぞれ独立に水素原子又はメチル基である。一般式(iv)中、R12及びR13は、それぞれ水素原子であることが特に好ましい。
In formulas (iv) to (vi), R 11 , R 12 , and R 13 each independently represent a hydrogen atom, a halogen atom (eg, a fluorine atom, a chlorine atom, a bromine atom, etc.), or a carbon number of 1 Represents an alkyl group of ˜6 (for example, methyl group, ethyl group, propyl group, etc.).
In the formulas (iv) to (vi), R 11 , R 12 and R 13 are preferably each independently a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably each independently Are a hydrogen atom or a methyl group. In general formula (iv), R 12 and R 13 are each particularly preferably a hydrogen atom.
 式(iv)中のXは、酸素原子(-O-)又はイミノ基(-NH-)を表し、酸素原子であることが好ましい。
 式(v)中のYは、メチン基又は窒素原子を表す。
X 1 in the formula (iv) represents an oxygen atom (—O—) or an imino group (—NH—), and is preferably an oxygen atom.
Y in the formula (v) represents a methine group or a nitrogen atom.
 式(iv)~式(v)中のLは、単結合又は2価の連結基を表す。2価の連結基の定義は、上述した式(i)中のLで表される2価の連結基の定義と同じである。 L 1 in the formulas (iv) to (v) represents a single bond or a divalent linking group. The definition of the divalent linking group is the same as the definition of the divalent linking group represented by L in the above-described formula (i).
 Lは、単結合、アルキレン基又はオキシアルキレン構造を含有する2価の連結基であることが好ましい。オキシアルキレン構造は、オキシエチレン構造又はオキシプロピレン構造であることがより好ましい。Lは、オキシアルキレン構造を2以上繰り返して含有するポリオキシアルキレン構造を含んでいてもよい。ポリオキシアルキレン構造としては、ポリオキシエチレン構造又はポリオキシプロピレン構造が好ましい。ポリオキシエチレン構造は、-(OCHCH)n-で表され、nは、2以上の整数が好ましく、2~10の整数であることがより好ましい。 L 1 is preferably a single bond, an alkylene group or a divalent linking group containing an oxyalkylene structure. The oxyalkylene structure is more preferably an oxyethylene structure or an oxypropylene structure. L 1 may include a polyoxyalkylene structure containing two or more oxyalkylene structures. The polyoxyalkylene structure is preferably a polyoxyethylene structure or a polyoxypropylene structure. The polyoxyethylene structure is represented by — (OCH 2 CH 2 ) n—, where n is preferably an integer of 2 or more, and more preferably an integer of 2 to 10.
 式(iv)~式(vi)中、Zは、グラフト鎖以外に金属窒化物含有粒子等と相互作用を形成しうる官能基を表し、カルボン酸基、及び第三級アミノ基であることが好ましく、カルボン酸基であることがより好ましい。 In the formulas (iv) to (vi), Z 1 represents a functional group that can form an interaction with the metal nitride-containing particles in addition to the graft chain, and is a carboxylic acid group or a tertiary amino group. Are preferable, and a carboxylic acid group is more preferable.
 式(vi)中、R14、R15、及びR16は、それぞれ独立に、水素原子、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、炭素数が1~6のアルキル基(例えば、メチル基、エチル基、プロピル基等)、-Z、又はL-Zを表す。ここでL及びZは、上記におけるL及びZと同義であり、好ましい例も同様である。R14、R15、及びR16としては、それぞれ独立に水素原子、又は炭素数が1~3のアルキル基が好ましく、水素原子がより好ましい。 In the formula (vi), R 14 , R 15 , and R 16 are each independently a hydrogen atom, a halogen atom (eg, a fluorine atom, a chlorine atom, a bromine atom, etc.), an alkyl group having 1 to 6 carbon atoms ( for example, a methyl group, an ethyl group, a propyl group, etc.), - Z 1, or an L 1 -Z 1. Wherein L 1 and Z 1 are the same meaning as L 1 and Z 1 in the above, it is the preferable examples. R 14 , R 15 and R 16 are each independently preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably a hydrogen atom.
 式(iv)で表される単量体として、R11、R12、及びR13がそれぞれ独立に水素原子又はメチル基であって、Lがアルキレン基又はオキシアルキレン構造を含有する2価の連結基であって、Xが酸素原子又はイミノ基であって、Zがカルボン酸基である化合物が好ましい。
 式(v)で表される単量体として、R11が水素原子又はメチル基であって、Lがアルキレン基であって、Zがカルボン酸基であって、Yがメチン基である化合物が好ましい。
 式(vi)で表される単量体として、R14、R15、及びR16がそれぞれ独立に水素原子又はメチル基であって、Lが単結合又はアルキレン基であって、Zがカルボン酸基である化合物が好ましい。
As the monomer represented by the formula (iv), R 11 , R 12 and R 13 are each independently a hydrogen atom or a methyl group, and L 1 is an alkylene group or a divalent oxyalkylene structure. A compound in which X 1 is an oxygen atom or imino group and Z 1 is a carboxylic acid group is preferable.
As the monomer represented by the formula (v), R 11 is a hydrogen atom or a methyl group, L 1 is an alkylene group, Z 1 is a carboxylic acid group, and Y is a methine group. Compounds are preferred.
As the monomer represented by the formula (vi), R 14 , R 15 , and R 16 are each independently a hydrogen atom or a methyl group, L 1 is a single bond or an alkylene group, and Z 1 is Compounds that are carboxylic acid groups are preferred.
 以下に、式(iv)~式(vi)で表される単量体(化合物)の代表的な例を示す。
 単量体の例としては、メタクリル酸、クロトン酸、イソクロトン酸、分子内に付加重合性二重結合及び水酸基を含有する化合物(例えば、メタクリル酸2-ヒドロキシエチル)とコハク酸無水物との反応物、分子内に付加重合性二重結合及び水酸基を含有する化合物とフタル酸無水物との反応物、分子内に付加重合性二重結合及び水酸基を含有する化合物とテトラヒドロキシフタル酸無水物との反応物、分子内に付加重合性二重結合及び水酸基を含有する化合物と無水トリメリット酸との反応物、分子内に付加重合性二重結合及び水酸基を含有する化合物とピロメリット酸無水物との反応物、アクリル酸、アクリル酸ダイマー、アクリル酸オリゴマー、マレイン酸、イタコン酸、フマル酸、4-ビニル安息香酸、ビニルフェノール、及び4-ヒドロキシフェニルメタクリルアミド等が挙げられる。
The following are typical examples of monomers (compounds) represented by the formulas (iv) to (vi).
Examples of monomers include methacrylic acid, crotonic acid, isocrotonic acid, a reaction containing a compound having an addition polymerizable double bond and a hydroxyl group in the molecule (for example, 2-hydroxyethyl methacrylate) and succinic anhydride. Product, a reaction product of a compound containing an addition polymerizable double bond and a hydroxyl group in the molecule with phthalic anhydride, a compound containing an addition polymerizable double bond and a hydroxyl group in the molecule and tetrahydroxyphthalic anhydride Reaction product, a reaction product of a compound containing an addition polymerizable double bond and hydroxyl group in the molecule and trimellitic anhydride, a compound containing an addition polymerizable double bond and hydroxyl group in the molecule and pyromellitic anhydride Reaction products, acrylic acid, acrylic acid dimer, acrylic acid oligomer, maleic acid, itaconic acid, fumaric acid, 4-vinylbenzoic acid, vinylphenol, and 4- Hydroxyphenyl methacrylamide.
 金属窒化物含有粒子等と相互作用を形成しうる官能基を含有する構造単位の含有量は、金属窒化物含有粒子等との相互作用、経時安定性、及び現像液への浸透性の観点から、高分子化合物の全質量に対して、0.05質量%~90質量%が好ましく、1.0質量%~80質量%がより好ましく、10質量%~70質量%が更に好ましい。 The content of the structural unit containing a functional group capable of forming an interaction with metal nitride-containing particles, etc. is from the viewpoint of interaction with metal nitride-containing particles, etc., stability over time, and permeability to developer. The amount is preferably 0.05% by mass to 90% by mass, more preferably 1.0% by mass to 80% by mass, and still more preferably 10% by mass to 70% by mass with respect to the total mass of the polymer compound.
・その他の構造単位
 更に、高分子化合物は、画像強度等の諸性能を向上する目的で、本発明の効果を損なわない限りにおいて、グラフト鎖を含有する構造単位、疎水性構造単位、及び金属窒化物含有粒子等と相互作用を形成しうる官能基を含有する構造単位とは異なる、種々の機能を有する他の構造単位(例えば、分散組成物に用いられる溶剤との親和性を有する官能基等を含有する構造単位)を更に有していてもよい。
 このような、他の構造単位としては、例えば、アクリロニトリル類、及びメタクリロニトリル類等から選ばれるラジカル重合性化合物に由来の構造単位が挙げられる。
 高分子化合物は、これらの他の構造単位を1種或いは2種以上用いることができ、その含有量は、質量換算で、高分子化合物の総質量に対して、好ましくは0%~80%であり、より好ましくは、10%~60%である。含有量が上記範囲において、十分なパターン形成性が維持される。
-Other structural units Furthermore, for the purpose of improving various performances such as image strength, the polymer compound is a structural unit containing a graft chain, a hydrophobic structural unit, and metal nitriding, as long as the effects of the present invention are not impaired. Other structural units having various functions different from structural units containing functional groups capable of forming interactions with substance-containing particles, etc. (for example, functional groups having affinity with the solvent used in the dispersion composition, etc. May further have a structural unit containing
Examples of such other structural units include structural units derived from radically polymerizable compounds selected from acrylonitriles, methacrylonitriles, and the like.
In the polymer compound, one or more of these other structural units can be used, and the content thereof is preferably 0% to 80% in terms of mass with respect to the total mass of the polymer compound. More preferably, it is 10% to 60%. When the content is in the above range, sufficient pattern formability is maintained.
・高分子化合物の物性
 高分子化合物の酸価は、0mgKOH/g以上250mgKOH/g以下の範囲であることが好ましく、より好ましくは10mgKOH/g以上200mgKOH/g以下の範囲であり、更に好ましくは20mgKOH/g以上120mgKOH/g以下の範囲である。
 高分子化合物の酸価が250mgKOH/g以下であれば、硬化膜を形成する際の現像時におけるパターン剥離がより効果的に抑えられる。高分子化合物の酸価が10mgKOH/g以上であればアルカリ現像性がより良好となる。高分子化合物の酸価が20mgKOH/g以上であれば、金属窒化物含有粒子等の沈降をより抑制でき、粗大粒子数をより少なくすることができ、組成物の経時安定性をより向上できる。
-Physical properties of polymer compound The acid value of the polymer compound is preferably in the range of 0 mgKOH / g to 250 mgKOH / g, more preferably in the range of 10 mgKOH / g to 200 mgKOH / g, and even more preferably 20 mgKOH. / G or more and 120 mgKOH / g or less.
When the acid value of the polymer compound is 250 mgKOH / g or less, pattern peeling during development when forming a cured film is more effectively suppressed. When the acid value of the polymer compound is 10 mgKOH / g or more, the alkali developability becomes better. If the acid value of the polymer compound is 20 mgKOH / g or more, sedimentation of metal nitride-containing particles and the like can be further suppressed, the number of coarse particles can be reduced, and the temporal stability of the composition can be further improved.
 高分子化合物の酸価は、例えば、高分子化合物中における酸基の平均含有量から算出することができる。高分子化合物の構成成分である酸基を含有する構造単位の含有量を変化させることで所望の酸価を有する樹脂を得ることができる。 The acid value of the polymer compound can be calculated, for example, from the average content of acid groups in the polymer compound. A resin having a desired acid value can be obtained by changing the content of the structural unit containing an acid group which is a constituent component of the polymer compound.
 高分子化合物の重量平均分子量は、硬化膜を形成する際において、現像時のパターン剥離抑制と現像性の観点から、GPC(Gel Permeation Chromatography:ゲル浸透クロマトグラフィー)法によるポリスチレン換算値として、4,000以上300,000以下であることが好ましく、5,000以上200,000以下であることがより好ましく、6,000以上100,000以下であることが更に好ましく、10,000以上50,000以下であることが特に好ましい。
 GPC法は、HLC-8020GPC(東ソー製)を用い、カラムとしてTSKgel SuperHZM-H、TSKgel SuperHZ4000、TSKgel SuperHZ2000(東ソー製、4.6mmID×15cm)を、溶離液としてTHF(テトラヒドロフラン)を用いる方法に基づく。
 高分子化合物は、公知の方法に基づいて合成できる。
The weight average molecular weight of the polymer compound is 4 in terms of polystyrene conversion by GPC (Gel Permeation Chromatography) method from the viewpoint of pattern peeling inhibition during development and developability when forming a cured film. It is preferably 000 or more and 300,000 or less, more preferably 5,000 or more and 200,000 or less, further preferably 6,000 or more and 100,000 or less, and 10,000 or more and 50,000 or less. It is particularly preferred that
The GPC method is based on a method using HLC-8020GPC (manufactured by Tosoh), TSKgel SuperHZM-H, TSKgel SuperHZ4000, TSKgel SuperHZ2000 (manufactured by Tosoh, 4.6 mm ID × 15 cm) as a column and THF (tetrahydrofuran) as an eluent. .
The polymer compound can be synthesized based on a known method.
 高分子化合物の具体例としては、楠本化成社製「DA-7301」、BYKChemie社製「Disperbyk-101(ポリアミドアミン燐酸塩)、107(カルボン酸エステル)、110(酸基を含有する共重合体)、111(リン酸系分散剤)、130(ポリアミド)、161、162、163、164、165、166、170、190(高分子共重合体)」、「BYK-P104、P105(高分子量不飽和ポリカルボン酸)」、EFKA社製「EFKA4047、4050~4010~4165(ポリウレタン系)、EFKA4330~4340(ブロック共重合体)、4400~4402(変性ポリアクリレート)、5010(ポリエステルアミド)、5765(高分子量ポリカルボン酸塩)、6220(脂肪酸ポリエステル)、6745(フタロシアニン誘導体)、6750(アゾ顔料誘導体)」、味の素ファインテクノ社製「アジスパーPB821、PB822、PB880、PB881」、共栄社化学社製「フローレンTG-710(ウレタンオリゴマー)」、「ポリフローNo.50E、No.300(アクリル系共重合体)」、楠本化成社製「ディスパロンKS-860、873SN、874、#2150(脂肪族多価カルボン酸)、#7004(ポリエーテルエステル)、DA-703-50、DA-705、DA-725」、花王社製「デモールRN、N(ナフタレンスルホン酸ホルマリン重縮合物)、MS、C、SN-B(芳香族スルホン酸ホルマリン重縮合物)」、「ホモゲノールL-18(高分子ポリカルボン酸)」、「エマルゲン920、930、935、985(ポリオキシエチレンノニルフェニルエーテル)」、「アセタミン86(ステアリルアミンアセテート)」、日本ルーブリゾール製「ソルスパース5000(フタロシアニン誘導体)、22000(アゾ顔料誘導体)、13240(ポリエステルアミン)、3000、12000、17000、20000、27000(末端部に機能部を含有する高分子)、24000、28000、32000、38500(グラフト共重合体)」、日光ケミカルズ社製「ニッコールT106(ポリオキシエチレンソルビタンモノオレアート)、MYS-IEX(ポリオキシエチレンモノステアレート)」、川研ファインケミカル製 ヒノアクトT-8000E等、信越化学工業製、オルガノシロキサンポリマーKP341、裕商「W001:カチオン系界面活性剤」、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート、ソルビタン脂肪酸エステル等のノニオン系界面活性剤、「W004、W005、W017」等のアニオン系界面活性剤、森下産業製「EFKA-46、EFKA-47、EFKA-47EA、EFKAポリマー100、EFKAポリマー400、EFKAポリマー401、EFKAポリマー450」、サンノプコ製「ディスパースエイド6、ディスパースエイド8、ディスパースエイド15、ディスパースエイド9100」等の高分子分散剤、ADEKA製「アデカプルロニックL31、F38、L42、L44、L61、L64、F68、L72、P95、F77、P84、F87、P94、L101、P103、F108、L121、P-123」、及び三洋化成製「イオネット(商品名)S-20」等が挙げられる。また、アクリベースFFS-6752、アクリベースFFS-187、アクリキュア-RD-F8、及びサイクロマーPを用いることもできる。
 両性樹脂の市販品としては、例えば、ビックケミー社製のDISPERBYK-130、DISPERBYK-140、DISPERBYK-142、DISPERBYK-145、DISPERBYK-180、DISPERBYK-187、DISPERBYK-191、DISPERBYK-2001、DISPERBYK-2010、DISPERBYK-2012、DISPERBYK-2025、BYK-9076、味の素ファインテクノ社製のアジスパーPB821、アジスパーPB822、及びアジスパーPB881等が挙げられる。
 これらの高分子化合物は、1種を単独で用いても、2種以上を併用してもよい。
Specific examples of the polymer compound include “DA-7301” manufactured by Enomoto Kasei Co., Ltd., “Disperbyk-101 (polyamidoamine phosphate)” manufactured by BYK Chemie, 107 (carboxylic acid ester), and 110 (copolymer containing acid group). ), 111 (phosphate dispersant), 130 (polyamide), 161, 162, 163, 164, 165, 166, 170, 190 (polymer copolymer) ”,“ BYK-P104, P105 (non-high molecular weight) Saturated polycarboxylic acid) ”,“ EFKA 4047, 4050 to 4010 to 4165 (polyurethane) ”, EFKA 4330 to 4340 (block copolymer), 4400 to 4402 (modified polyacrylate), 5010 (polyesteramide), 5765 (polyester), manufactured by EFKA High molecular weight polycarboxylate), 6220 (fatty acid polyester) ), 6745 (phthalocyanine derivative), 6750 (azo pigment derivative), “Ajisper PB821, PB822, PB880, PB881” manufactured by Ajinomoto Fine Techno Co., Ltd., “Floren TG-710 (urethane oligomer)” manufactured by Kyoeisha Chemical Co., Ltd., “Polyflow” No. 50E, No. 300 (acrylic copolymer) ”,“ Disparon KS-860, 873SN, 874, # 2150 (aliphatic polycarboxylic acid), # 7004 (polyether ester), DA, manufactured by Enomoto Kasei Co., Ltd. -703-50, DA-705, DA-725 "," Demol RN, N (Naphthalenesulfonic acid formalin polycondensate), MS, C, SN-B (aromatic sulfonic acid formalin polycondensate) "manufactured by Kao Corporation "Homogenol L-18 (polymeric polycarboxylic acid)", "Emulgen 920" 930, 935, 985 (polyoxyethylene nonylphenyl ether) ”,“ acetamine 86 (stearylamine acetate) ”,“ Solsperse 5000 (phthalocyanine derivative), 22000 (azo pigment derivative), 13240 (polyesteramine), manufactured by Nippon Lubrizol, 3000, 12000, 17000, 20000, 27000 (polymers containing a functional part at the end), 24000, 28000, 32000, 38500 (graft copolymer) ”,“ Nikkor T106 (polyoxyethylene sorbitan mono) manufactured by Nikko Chemicals Oleart), MYS-IEX (polyoxyethylene monostearate), Kawano Fine Chemical's Hinoact T-8000E, Shin-Etsu Chemical Co., Ltd., organosiloxane polymer KP341, Yusho W001: Cationic surfactant ", polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol distearate Nonionic surfactants such as sorbitan fatty acid esters, anionic surfactants such as “W004, W005, W017”, “EFKA-46, EFKA-47, EFKA-47EA, EFKA polymer 100, EFKA polymer 400 manufactured by Morishita Sangyo , EFKA Polymer 401, EFKA Polymer 450 ", Sannopco" Disperse Aid 6, Disperse Aid 8, Disperse Aid 15, Disper Polymer dispersants such as Suede 9100, manufactured by ADEKA "Adeka Pluronic L31, F38, L42, L44, L61, L64, F68, L72, P95, F77, P84, F87, P94, L101, P103, F108, L121, P -123 ", Sanyo Kasei" Ionet (trade name) S-20 ", and the like. Alternatively, Acrybase FFS-6752, Acrybase FFS-187, Acrycure-RD-F8, and Cyclomer P can be used.
Examples of commercially available amphoteric resins include DISPERBYK-130, DISPERBYK-140, DISPERBYK-142, DISPERBYK-145, DISPERBYK-180, DISPERBYK-187, DISPERBYK-191, DISPERBYK-2001, DISPER10K, 2001-DISPERBY, manufactured by BYK Chemie. DISPERBYK-2012, DISPERBYK-2025, BYK-9076, Ajisper PB821, Azisper PB822, Azisper PB881 manufactured by Ajinomoto Fine Techno Co., etc.
These polymer compounds may be used alone or in combination of two or more.
 なお、高分子化合物の具体例としては、特開2013-249417号公報の段落0127~0129に記載の高分子化合物を参照でき、これらの内容は本明細書に組み込まれる。 As specific examples of the polymer compound, reference can be made to the polymer compounds described in paragraphs 0127 to 0129 of JP2013-249417A, the contents of which are incorporated herein.
 分散剤としては、上記の高分子化合物以外に、特開2010-106268号公報の段落0037~0115(対応するUS2011/0124824の段落0075~0133欄)のグラフト共重合体が使用でき、これらの内容は援用でき、本明細書に組み込まれる。
 上記以外にも、特開2011-153283号公報の段落0028~0084(対応するUS2011/0279759の段落0075~0133欄)の酸性基が連結基を介して結合してなる側鎖構造を含有する構成成分を含有する高分子化合物が使用でき、これらの内容は援用でき、本明細書に組み込まれる。
As the dispersant, in addition to the above-described polymer compound, a graft copolymer described in JP-A 2010-106268, paragraphs 0037 to 0115 (corresponding to paragraphs 0075 to 0133 in US2011 / 0124824) can be used. Can be incorporated and incorporated herein by reference.
In addition to the above, a structure containing a side chain structure in which acidic groups in paragraphs 0028 to 0084 of JP 2011-153283 A (corresponding to columns 0075 to 0133 of US2011 / 0279759) are bonded via a linking group Polymeric compounds containing components can be used, the contents of which can be incorporated and incorporated herein.
 分散剤としては、特開2016-109763号公報の0033~0049段落に記載された樹脂を用いることもでき、この内容は本明細書に組み込まれる。 As the dispersant, resins described in paragraphs 0033 to 0049 of JP-A-2016-109763 can also be used, the contents of which are incorporated herein.
<アルカリ可溶性樹脂>
 分散組成物は、アルカリ可溶性樹脂(樹脂に該当する)を含有することが好ましい。本明細書において、アルカリ可溶性樹脂とは、アルカリ可溶性を促進する基(アルカリ可溶性基)を含有する樹脂を意図し、既に説明した分散剤とは異なる樹脂を意図する。
 分散組成物中におけるアルカリ可溶性樹脂の含有量は特に制限されないが、一般に分散組成物の全固形分に対して、1~30質量%が好ましく、分散組成物がより優れた本発明の効果を有する点で、1~15質量%がより好ましい。
 アルカリ可溶性樹脂は1種を単独で用いても、2種以上を併用してもよい。2種以上のアルカリ可溶性樹脂を併用する場合には、合計含有量が上記範囲内であることが好ましい。
<Alkali-soluble resin>
The dispersion composition preferably contains an alkali-soluble resin (corresponding to a resin). In the present specification, the alkali-soluble resin means a resin containing a group that promotes alkali solubility (alkali-soluble group), and a resin different from the dispersant already described.
The content of the alkali-soluble resin in the dispersion composition is not particularly limited, but generally 1 to 30% by mass is preferable with respect to the total solid content of the dispersion composition, and the dispersion composition has more excellent effects of the present invention. In this respect, 1 to 15% by mass is more preferable.
Alkali-soluble resin may be used individually by 1 type, or may use 2 or more types together. When using 2 or more types of alkali-soluble resin together, it is preferable that total content is in the said range.
 アルカリ可溶性樹脂としては、分子中に少なくとも1つのアルカリ可溶性基を含有する樹脂が挙げられ、例えば、ポリヒドロキシスチレン樹脂、ポリシロキサン樹脂、(メタ)アクリル樹脂、(メタ)アクリルアミド樹脂、(メタ)アクリル/(メタ)アクリルアミド共重合樹脂、エポキシ系樹脂、及びポリイミド樹脂等が挙げられる。 Examples of the alkali-soluble resin include resins containing at least one alkali-soluble group in the molecule, such as polyhydroxystyrene resin, polysiloxane resin, (meth) acrylic resin, (meth) acrylamide resin, and (meth) acrylic. / (Meth) acrylamide copolymer resin, epoxy resin, polyimide resin, and the like.
 アルカリ可溶性樹脂の具体例としては、不飽和カルボン酸とエチレン性不飽和化合物の共重合体が挙げられる。
 不飽和カルボン酸は特に制限されないが、(メタ)アクリル酸、クロトン酸、及びビニル酢酸等のモノカルボン酸類;イタコン酸、マレイン酸、及びフマル酸等のジカルボン酸、又はその酸無水物;フタル酸モノ(2-(メタ)アクリロイロキシエチル)等の多価カルボン酸モノエステル類;等が挙げられる。
Specific examples of the alkali-soluble resin include a copolymer of an unsaturated carboxylic acid and an ethylenically unsaturated compound.
Unsaturated carboxylic acids are not particularly limited, but monocarboxylic acids such as (meth) acrylic acid, crotonic acid, and vinyl acetic acid; dicarboxylic acids such as itaconic acid, maleic acid, and fumaric acid, or acid anhydrides thereof; phthalic acid And polycarboxylic acid monoesters such as mono (2- (meth) acryloyloxyethyl).
 共重合可能なエチレン性不飽和化合物としては、(メタ)アクリル酸メチル等が挙げられる。また、特開2010-97210号公報の0027段落、及び特開2015-68893号公報の0036~0037段落に記載の化合物を用いることもでき、上記の内容は本明細書に組み込まれる。 Examples of the copolymerizable ethylenically unsaturated compound include methyl (meth) acrylate. In addition, the compounds described in paragraph 0027 of JP2010-97210A and paragraphs 0036 to 0037 of JP2015-68893A can also be used, and the above contents are incorporated herein.
 また、共重合可能なエチレン性不飽和化合物であって、側鎖にエチレン性不飽和基を含有する化合物を組み合わせて用いてもよい。エチレン性不飽和基としては、(メタ)アクリル酸基が好ましい。側鎖にエチレン性不飽和基を有するアクリル樹脂は、例えば、カルボン酸基を含有するアクリル樹脂のカルボン酸基に、グリシジル基又は脂環式エポキシ基を含有するエチレン性不飽和化合物を付加反応させて得ることができる。 Also, a copolymerizable ethylenically unsaturated compound that contains an ethylenically unsaturated group in the side chain may be used in combination. As the ethylenically unsaturated group, a (meth) acrylic acid group is preferable. An acrylic resin having an ethylenically unsaturated group in the side chain is obtained by, for example, adding an ethylenically unsaturated compound containing a glycidyl group or an alicyclic epoxy group to a carboxylic acid group of an acrylic resin containing a carboxylic acid group. Can be obtained.
 アルカリ可溶性樹脂としては、例えば、特開昭59-44615号、特公昭54-34327号、特公昭58-12577号、特公昭54-25957号、特開昭54-92723号、特開昭59-53836号、及び特開昭59-71048号に記載されている側鎖にカルボン酸基を含有するラジカル重合体;欧州特許第993966号、欧州特許第1204000号、及び特開2001-318463号等の各公報に記載されているアルカリ可溶性基を含有するアセタール変性ポリビニルアルコール系バインダー樹脂;ポリビニルピロリドン;ポリエチレンオキサイド;アルコール可溶性ナイロン、及び2,2-ビス-(4-ヒドロキシフェニル)-プロパンとエピクロロヒドリンとの反応物であるポリエーテル等;国際公開第2008/123097号に記載のポリイミド樹脂;等を用いることができる。 Examples of the alkali-soluble resin include JP-A-59-44615, JP-B-54-34327, JP-B-58-12777, JP-B-54-25957, JP-A-54-92723, JP-A-59-. Radical polymers containing a carboxylic acid group in the side chain described in JP-A-53836 and JP-A-59-71048; European Patent No. 993966, European Patent No. 1204000, JP-A-2001-318463, etc. Acetal-modified polyvinyl alcohol binder resin containing alkali-soluble groups described in each publication; polyvinyl pyrrolidone; polyethylene oxide; alcohol-soluble nylon, and 2,2-bis- (4-hydroxyphenyl) -propane and epichlorohydride Polyether which is a reaction product with phosphorus; International Publication No. 200 And the like can be used; polyimide resin described in JP / 123097.
 アルカリ可溶性樹脂としては、例えば、特開2016-75845号公報の0225~0245段落に記載の化合物を用いることもでき、上記内容は本明細書に組み込まれる。 As the alkali-soluble resin, for example, compounds described in paragraphs 0225 to 0245 of JP-A-2016-75845 can be used, and the above contents are incorporated in the present specification.
 アルカリ可溶性樹脂としては、ポリイミド前駆体を用いることもできる。ポリイミド前駆体は、酸無水物基を含有する化合物とジアミン化合物とを40~100℃下において付加重合反応することにより得られる樹脂を意図する。
 ポリイミド前駆体としては、例えば、下記式(1)で表される繰り返し単位を含有する樹脂が挙げられる。ポリイミド前駆体の構造としては、例えば、下記式(2)で示されるアミック酸構造と、アミック酸構造が一部イミド閉環してなる下記式(3)、及び/又は全てイミド閉環した下記式(4)で示されるイミド構造を含有するものが挙げられる。
 なお、本明細書において、アミック酸構造を有するポリイミド前駆体をポリアミック酸ということがある。
A polyimide precursor can also be used as the alkali-soluble resin. The polyimide precursor intends a resin obtained by subjecting a compound containing an acid anhydride group and a diamine compound to an addition polymerization reaction at 40 to 100 ° C.
As a polyimide precursor, resin containing the repeating unit represented by following formula (1) is mentioned, for example. Examples of the structure of the polyimide precursor include an amic acid structure represented by the following formula (2), the following formula (3) in which the amic acid structure is partially imide ring-closed, and / or the following formula ( What contains the imide structure shown by 4) is mentioned.
In this specification, a polyimide precursor having an amic acid structure may be referred to as a polyamic acid.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 上記式(1)~(4)において、Rは炭素数2~22の4価の有機基を表し、Rは炭素数1~22の2価の有機基を表し、nは1又は2を表す。 In the above formulas (1) to (4), R 1 represents a tetravalent organic group having 2 to 22 carbon atoms, R 2 represents a divalent organic group having 1 to 22 carbon atoms, and n is 1 or 2 Represents.
 上記ポリイミド前駆体の具体例としては、特開2008-106250号公報の0011~0031段落に記載の化合物、特開2016-122101号公報の0022~0039段落に記載の化合物、及び特開2016-68401号公報の0061~0092段落に記載の化合物等が挙げられ、上記の内容は本明細書に組み込まれる。 Specific examples of the polyimide precursor include compounds described in paragraphs 0011 to 0031 of JP 2008-106250 A, compounds described in paragraphs 0022 to 0039 of JP 2016-122101 A, and JP 2016-68401 A. The compounds described in paragraphs 0061 to 0092 of the publication are listed, and the above contents are incorporated in the present specification.
 アルカリ可溶性樹脂は、分散組成物を用いて得られるパターン状の硬化膜のパターン形状がより優れる点で、ポリイミド樹脂、及びポリイミド前駆体からなる群から選択される少なくとも1種を含有することが好ましい。
 アルカリ可溶性基を含有するポリイミド樹脂は、特に制限されず、公知のアルカリ可溶性基を含有するポリイミド樹脂を用いることができる。上記ポリイミド樹脂としては、例えば、特開2014-137523号公報の0050段落に記載された樹脂、特開2015-187676号公報の0058段落に記載された樹脂、及び特開2014-106326号公報の0012~0013段落に記載された樹脂等が挙げられ、上記の内容は本明細書に組み込まれる。
The alkali-soluble resin preferably contains at least one selected from the group consisting of polyimide resins and polyimide precursors in that the pattern shape of the patterned cured film obtained using the dispersion composition is more excellent. .
The polyimide resin containing an alkali-soluble group is not particularly limited, and a known polyimide resin containing an alkali-soluble group can be used. Examples of the polyimide resin include resins described in paragraph 0050 of JP2014-137523, resins described in paragraph 0058 of JP2015-187676, and 0012 of JP2014-106326A. The resins described in paragraphs -0013 are listed, and the above contents are incorporated in the present specification.
〔任意成分〕
 上記分散組成物は、本発明の効果を奏する範囲内において、他の成分を含有してもよい。他の成分としては、例えば、重合禁止剤、溶剤、着色剤、及び後述する硬化性組成物の任意成分として説明しているもの等が挙げられる。以下では、分散組成物中に含有される任意成分について詳述する。
[Optional ingredients]
The said dispersion composition may contain another component in the range with the effect of this invention. Examples of other components include polymerization inhibitors, solvents, colorants, and those described as optional components of the curable composition described below. Below, the arbitrary component contained in a dispersion composition is explained in full detail.
<重合禁止剤>
 重合禁止剤は特に制限されず、公知の重合禁止剤を用いることができる。重合禁止剤としては、例えば、フェノール系重合禁止剤(例えば、p-メトキシフェノール、2,5-ジ-tert-ブチル-4-メチルフェノール、2,6-ジtert-ブチル-4-メチルフェノール、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、及び4-メトキシナフトール等);ハイドロキノン系重合禁止剤(例えば、ハイドロキノン、及び2,6-ジ-tert-ブチルハイロドロキノン等);キノン系重合禁止剤(例えば、ベンゾキノン等);フリーラジカル系重合禁止剤(例えば、2,2,6,6-テトラメチルピペリジン1-オキシルフリーラジカル、及び4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン1-オキシルフリーラジカル等);ニトロベンゼン系重合禁止剤(例えば、ニトロベンゼン、及び4-ニトロトルエン等);フェノチアジン系重合禁止剤(例えば、フェノチアジン、及び2-メトキシフェノチアジン等);等が挙げられる。
 なかでも、硬化性組成物がより優れた本発明の効果を有する点で、フェノール系重合禁止剤、又はフリーラジカル系重合禁止剤が好ましい。
 なお、重合禁止剤は、分散組成物の調製時に他の成分とともに混合されてもよいし、上記樹脂の合成等に用いられたものが、上記樹脂とともに分散組成物に混合されてもよい。
<Polymerization inhibitor>
The polymerization inhibitor is not particularly limited, and a known polymerization inhibitor can be used. Examples of the polymerization inhibitor include phenol-based polymerization inhibitors (for example, p-methoxyphenol, 2,5-di-tert-butyl-4-methylphenol, 2,6-ditert-butyl-4-methylphenol, 4,4′-thiobis (3-methyl-6-tert-butylphenol), 2,2′-methylenebis (4-methyl-6-tert-butylphenol), 4-methoxynaphthol, etc.); hydroquinone polymerization inhibitor ( For example, hydroquinone and 2,6-di-tert-butylhydroquinone, etc.); quinone polymerization inhibitors (eg, benzoquinone, etc.); free radical polymerization inhibitors (eg, 2,2,6,6-tetra) Methylpiperidine 1-oxyl free radical and 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxylfu Over radicals and the like); nitrobenzene-based polymerization inhibitor (e.g., nitrobenzene, and 4-nitrotoluene and the like); phenothiazine-based polymerization inhibitor (e.g., phenothiazine and 2-methoxy phenothiazine, etc.), and the like.
Among these, a phenol polymerization inhibitor or a free radical polymerization inhibitor is preferable in that the curable composition has the more excellent effects of the present invention.
In addition, a polymerization inhibitor may be mixed with other components at the time of preparation of a dispersion composition, and what was used for the synthesis | combination etc. of the said resin may be mixed with a dispersion composition with the said resin.
 分散組成物中における重合禁止剤の含有量は特に制限されないが、分散組成物がより優れた経時安定性を有する点、及び後述する硬化性組成物がより優れた硬化性を有する点で、分散組成物の全固形分に対して、0.0001~1質量%が好ましい。
 重合禁止剤は1種を単独で用いても、2種以上を併用してもよい。2種以上の重合禁止剤を併用する場合には、合計含有量が上記範囲内であることが好ましい。
 重合禁止剤は、硬化性基を含有する樹脂と共に用いる場合にその効果が顕著である。例えば、分散組成物の作製中;分散組成物の作製後;後述する硬化性組成物の作製中;硬化性組成物作製後;等、分散組成物、及び/又は硬化性組成物が高温となったり、長期保管されたり等して、硬化性基を含有する樹脂の重合が進む懸念がある場合であっても、問題なく用いることができる。
The content of the polymerization inhibitor in the dispersion composition is not particularly limited, but it is dispersed in that the dispersion composition has better aging stability and the curable composition described below has better curability. The content is preferably 0.0001 to 1% by mass relative to the total solid content of the composition.
A polymerization inhibitor may be used individually by 1 type, or may use 2 or more types together. When two or more polymerization inhibitors are used in combination, the total content is preferably within the above range.
The effect of the polymerization inhibitor is remarkable when used together with a resin containing a curable group. For example, during the preparation of the dispersion composition; after the preparation of the dispersion composition; during the preparation of the curable composition to be described later; after the preparation of the curable composition; and the like, the dispersion composition and / or the curable composition is at a high temperature. Even if there is a concern that polymerization of a resin containing a curable group proceeds due to storage for a long period of time or the like, it can be used without any problem.
<溶剤>
 分散組成物は、溶剤を含有してもよい。
 溶剤は特に制限されず公知の溶剤を用いることができる。
 分散組成物中における溶剤の含有量は特に制限されないが、一般に、分散組成物の固形分が10~90質量%となるよう調整されることが好ましく、20~90質量%となるよう調整されることがより好ましい。
 溶剤は1種を単独で用いても、2種以上を併用してもよい。2種以上の溶剤を併用する場合には、組成物の全固形分が上記範囲内となるよう調整されることが好ましい。
<Solvent>
The dispersion composition may contain a solvent.
A solvent in particular is not restrict | limited, A well-known solvent can be used.
The content of the solvent in the dispersion composition is not particularly limited, but in general, the solid content of the dispersion composition is preferably adjusted to be 10 to 90% by mass, and adjusted to be 20 to 90% by mass. It is more preferable.
A solvent may be used individually by 1 type, or may use 2 or more types together. When using 2 or more types of solvent together, it is preferable to adjust so that the total solid content of a composition may become in the said range.
 溶剤としては、例えば、水、又は有機溶剤が挙げられる。
 有機溶剤としては、例えば、アセトン、メチルエチルケトン、シクロヘキサン、酢酸エチル、エチレンジクロライド、テトラヒドロフラン、トルエン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、アセチルアセトン、シクロヘキサノン、シクロペンタノン、ジアセトンアルコール、エチレングリコールモノメチルエーテルアセテート、エチレングリコールエチルエーテルアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテルアセテート、3-メトキシプロパノール、メトキシメトキシエタノール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、3-メトキシプロピルアセテート、N,N-ジメチルホルムアミド、ジメチルスルホキシド、γ-ブチロラクトン、酢酸エチル、酢酸ブチル、乳酸メチル、N-メチル-2-ピロリドン、及び乳酸エチル等が挙げられるが、これらに限定されない。
As a solvent, water or an organic solvent is mentioned, for example.
Examples of the organic solvent include acetone, methyl ethyl ketone, cyclohexane, ethyl acetate, ethylene dichloride, tetrahydrofuran, toluene, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, acetylacetone. , Cyclohexanone, cyclopentanone, diacetone alcohol, ethylene glycol monomethyl ether acetate, ethylene glycol ethyl ether acetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether acetate, 3-methoxypropanol, methoxymethoxyethanol, diethylene glycol mono Chill ether, diethylene glycol monoethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, 3-methoxypropyl acetate, N, N-dimethylformamide, dimethyl sulfoxide, γ-butyrolactone, ethyl acetate, Examples include but are not limited to butyl acetate, methyl lactate, N-methyl-2-pyrrolidone, and ethyl lactate.
<着色剤>
 分散組成物は、着色剤を含有してもよい。本明細書において、着色剤とは金属窒化物含有粒子とは異なる化合物を意図する。
<Colorant>
The dispersion composition may contain a colorant. In this specification, the colorant intends a compound different from the metal nitride-containing particles.
 着色剤としては、各種公知の顔料(着色顔料)、及び染料(着色染料)を用いることができる、顔料としては、無機顔料及び有機顔料が挙げられる。
 着色剤を含有する場合、その含有量は、硬化して得られる遮光膜の光学特性に応じて決定することができる。着色剤は1種を単独で用いても、2種以上を併用してもよい。
Various known pigments (colored pigments) and dyes (colored dyes) can be used as the colorant. Examples of pigments include inorganic pigments and organic pigments.
When it contains a colorant, its content can be determined according to the optical properties of the light-shielding film obtained by curing. A coloring agent may be used individually by 1 type, or may use 2 or more types together.
(無機顔料)
 無機顔料は、特に制限されず、公知の無機顔料を用いることができる。
 無機顔料としては、例えば、カーボンブラック、シリカ、亜鉛華、鉛白、リトポン、酸化チタン、酸化クロム、酸化鉄、沈降性硫酸バリウム及びバライト粉、鉛丹、酸化鉄赤、黄鉛、亜鉛黄(亜鉛黄1種、亜鉛黄2種)、ウルトラマリン青、プロシア青(フェロシアン化鉄カリ)ジルコングレー、プラセオジムイエロー、クロムチタンイエロー、クロムグリーン、ピーコック、ビクトリアグリーン、紺青(プルシアンブルーとは無関係)、バナジウムジルコニウム青、クロム錫ピンク、陶試紅、サーモンピンク等が挙げられる。また、黒色の無機顔料であることが好ましく、無機顔料としては、含有量が少なくとも、高い光学濃度を有する硬化膜を形成することができる組成物が得られる点で、カーボンブラック、及び金属顔料等(以下、「黒色顔料」ともいう。)が好ましい。金属顔料としては、例えば、Nb、V、Co、Cr、Cu、Mn、Ru、Fe、Ni、Sn、Ti、及びAgからなる群より選ばれる1種又は2種以上の金属元素を含む金属酸化物、及び金属炭化物(例えばTiC等)等が挙げられる。
 無機顔料としては、銀を含有する金属顔料、錫を含有する金属顔料、並びに銀及び錫を含有する金属顔料からなる群から選択される少なくとも1種を含有することが好ましい。無機顔料は1種を単独で用いても、2種以上を併用してもよい。
(Inorganic pigment)
The inorganic pigment is not particularly limited, and a known inorganic pigment can be used.
Examples of inorganic pigments include carbon black, silica, zinc white, lead white, lithopone, titanium oxide, chromium oxide, iron oxide, precipitated barium sulfate and barite powder, red lead, iron oxide red, yellow lead, zinc yellow ( Zinc yellow 1 type, zinc yellow 2 type), ultramarine blue, prussian blue (potassium ferrocyanide) zircon gray, praseodymium yellow, chrome titanium yellow, chrome green, peacock, Victoria green, bituminous blue (unrelated to Prussian blue) , Vanadium zirconium blue, chrome tin pink, ceramic red, salmon pink and the like. Further, it is preferably a black inorganic pigment, and as the inorganic pigment, carbon black, a metal pigment, and the like in that a composition capable of forming a cured film having at least a high optical density can be obtained. (Hereinafter also referred to as “black pigment”) is preferred. Examples of the metal pigment include a metal oxide containing one or more metal elements selected from the group consisting of Nb, V, Co, Cr, Cu, Mn, Ru, Fe, Ni, Sn, Ti, and Ag. And metal carbides (for example, TiC, etc.).
The inorganic pigment preferably contains at least one selected from the group consisting of metal pigments containing silver, metal pigments containing tin, and metal pigments containing silver and tin. An inorganic pigment may be used individually by 1 type, or may use 2 or more types together.
 着色剤としては、例えば、特開2014-42375号公報の0027~0200段落、特開2008-260927号公報の0031段落、及び特開2015-68893号公報の0015~0025段落に記載された着色剤を用いることもでき、上記の内容は本明細書に組み込まれる。 Examples of the colorant include those described in JP-A-2014-42375, paragraphs 0027 to 0200, JP-A-2008-260927, paragraph 0031, and JP-A-2015-68893, paragraphs 0015 to 0025. And the above contents are incorporated herein.
 着色剤としては、赤外線吸収性を有する顔料を用いることもできる。
 赤外線吸収性を有する顔料としては、タングステン化合物、及び金属ホウ化物等が好ましく、なかでも、赤外領域の波長における遮光性に優れる点から、タングステン化合物が好ましい。特に露光による硬化効率に関わるオキシム系重合開始剤の光吸収波長領域と、可視光領域の透光性に優れる観点からタングステン化合物が好ましい。
As the colorant, a pigment having infrared absorptivity can also be used.
As the pigment having infrared absorptivity, a tungsten compound, a metal boride, and the like are preferable, and among them, a tungsten compound is preferable from the viewpoint of excellent light-shielding properties at wavelengths in the infrared region. In particular, a tungsten compound is preferable from the viewpoint of excellent light absorption wavelength region of an oxime polymerization initiator related to curing efficiency by exposure and transparency of visible light region.
 これらの顔料は、2種以上併用してもよく、また、後述する染料と併用してもよい。色味を調整するため、及び所望の波長領域の遮光性を高めるため、例えば、黒色、又は赤外線遮光性を有する顔料に、赤色、緑色、黄色、オレンジ色、紫色、及びブルーなどの有彩色顔料若しくは後述する染料を混ぜる形態が挙げられる。黒色、又は赤外線遮光性を有する顔料に、赤色顔料若しくは染料、又は紫色顔料若しくは染料を混合することが好ましく、黒色、又は赤外線遮光性を有する顔料に赤色顔料を混合することがより好ましい。
 更に、後述する近赤外線吸収剤、赤外線吸収剤を加えてもよい。
Two or more of these pigments may be used in combination, or may be used in combination with a dye described later. In order to adjust the color tone and enhance the light-shielding property in a desired wavelength region, for example, chromatic pigments such as red, green, yellow, orange, purple, and blue are added to black or infrared light-shielding pigments. Or the form which mixes the dye mentioned later is mentioned. It is preferable to mix a red pigment or dye, or a purple pigment or dye with a black or infrared pigment, and it is more preferable to mix a red pigment with a black pigment or infrared pigment.
Furthermore, you may add the near-infrared absorber and infrared absorber which are mentioned later.
・有機顔料
 有機顔料としては、例えば、カラーインデックス(C.I.)ピグメントイエロー1,2,3,4,5,6,10,11,12,13,14,15,16,17,18,20,24,31,32,34,35,35:1,36,36:1,37,37:1,40,42,43,53,55,60,61,62,63,65,73,74,77,81,83,86,93,94,95,97,98,100,101,104,106,108,109,110,113,114,115,116,117,118,119,120,123,125,126,127,128,129,137,138,139,147,148,150,151,152,153,154,155,156,161,162,164,166,167,168,169,170,171,172,173,174,175,176,177,179,180,181,182,185,187,188,193,194,199,213,214等、
 C.I.ピグメントオレンジ 2,5,13,16,17:1,31,34,36,38,43,46,48,49,51,52,55,59,60,61,62,64,71,73等、
 C.I.ピグメントレッド 1,2,3,4,5,6,7,9,10,14,17,22,23,31,38,41,48:1,48:2,48:3,48:4,49,49:1,49:2,52:1,52:2,53:1,57:1,60:1,63:1,66,67,81:1,81:2,81:3,83,88,90,105,112,119,122,123,144,146,149,150,155,166,168,169,170,171,172,175,176,177,178,179,184,185,187,188,190,200,202,206,207,208,209,210,216,220,224,226,242,246,254,255,264,270,272,279等;
 C.I.ピグメントグリーン 7,10,36,37,58,59等;
 C.I.ピグメントバイオレット 1,19,23,27,32,37,42等;及び
 C.I.ピグメントブルー 1,2,15,15:1,15:2,15:3,15:4,15:6,16,22,60,64,66,79,80等;
が挙げられる。顔料は1種を単独で用いても、2種以上を併用してもよい。
Organic pigment Examples of the organic pigment include, for example, Color Index (CI) Pigment Yellow 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 24, 31, 32, 34, 35, 35: 1, 36, 36: 1, 37, 37: 1, 40, 42, 43, 53, 55, 60, 61, 62, 63, 65, 73, 74, 77, 81, 83, 86, 93, 94, 95, 97, 98, 100, 101, 104, 106, 108, 109, 110, 113, 114, 115, 116, 117, 118, 119, 120, 123, 125, 126, 127, 128, 129, 137, 138, 139, 147, 148, 150, 151, 152, 153, 154, 155, 156, 161, 162, 164, 166, 16 7,168,169,170,171,172,173,174,175,176,177,179,180,181,182,185,187,188,193,194,199,213,214, etc.
C. I. Pigment Orange 2, 5, 13, 16, 17: 1, 31, 34, 36, 38, 43, 46, 48, 49, 51, 52, 55, 59, 60, 61, 62, 64, 71, 73, etc. ,
C. I. Pigment Red 1, 2, 3, 4, 5, 6, 7, 9, 10, 14, 17, 22, 23, 31, 38, 41, 48: 1, 48: 2, 48: 3, 48: 4 49, 49: 1, 49: 2, 52: 1, 52: 2, 53: 1, 57: 1, 60: 1, 63: 1, 66, 67, 81: 1, 81: 2, 81: 3 83, 88, 90, 105, 112, 119, 122, 123, 144, 146, 149, 150, 155, 166, 168, 169, 170, 171, 172, 175, 176, 177, 178, 179, 184 185, 187, 188, 190, 200, 202, 206, 207, 208, 209, 210, 216, 220, 224, 226, 242, 246, 254, 255, 264, 270, 272, 279, etc .;
C. I. Pigment green 7, 10, 36, 37, 58, 59, etc .;
C. I. Pigment violet 1, 19, 23, 27, 32, 37, 42, etc .; and C.I. I. Pigment Blue 1, 2, 15, 15: 1, 15: 2, 15: 3, 15: 4, 15: 6, 16, 22, 60, 64, 66, 79, 80, etc .;
Is mentioned. A pigment may be used individually by 1 type, or may use 2 or more types together.
(染料)
 染料としては、例えば特開昭64-90403号公報、特開昭64-91102号公報、特開平1-94301号公報、特開平6-11614号公報、特登2592207号、米国特許4808501号明細書、米国特許5667920号明細書、米国特許505950号明細書、特開平5-333207号公報、特開平6-35183号公報、特開平6-51115号公報、及び特開平6-194828号公報等に開示されている色素を使用できる。化学構造として区分すると、ピラゾールアゾ化合物、ピロメテン化合物、アニリノアゾ化合物、トリフェニルメタン化合物、アントラキノン化合物、ベンジリデン化合物、オキソノール化合物、ピラゾロトリアゾールアゾ化合物、ピリドンアゾ化合物、シアニン化合物、フェノチアジン化合物、及びピロロピラゾールアゾメチン化合物等を使用できる。染料としては色素多量体を用いてもよい。色素多量体としては、特開2011-213925号公報、特開2013-041097号公報に記載されている化合物が挙げられる。分子内に重合性基を有する重合性染料を用いてもよく、市販品としては、例えば、和光純薬株式会社製RDWシリーズが挙げられる。
(dye)
Examples of the dye include, for example, JP-A No. 64-90403, JP-A No. 64-91102, JP-A No. 1-94301, JP-A No. 6-11614, No. 2592207, and US Pat. No. 4,808,501. Disclosed in U.S. Pat. No. 5,667,920, U.S. Pat. No. 505950, JP-A-5-333207, JP-A-6-35183, JP-A-6-51115, and JP-A-6-194828. Can be used. When classified as chemical structures, pyrazole azo compounds, pyromethene compounds, anilinoazo compounds, triphenylmethane compounds, anthraquinone compounds, benzylidene compounds, oxonol compounds, pyrazolotriazole azo compounds, pyridone azo compounds, cyanine compounds, phenothiazine compounds, and pyrrolopyrazole azomethine compounds Etc. can be used. A dye multimer may be used as the dye. Examples of the dye multimer include compounds described in JP2011-213925A and JP2013-041097A. A polymerizable dye having a polymerizable group in the molecule may be used, and examples of commercially available products include RDW series manufactured by Wako Pure Chemical Industries, Ltd.
(赤外線吸収剤)
 上記着色剤は、更に赤外線吸収剤を含有してもよい。
 赤外線吸収剤は、赤外領域(好ましくは、波長650~1300nm)の波長領域に吸収を有する化合物を意味する。赤外線吸収剤としては、波長675~900nmの波長領域に極大吸収波長を有する化合物が好ましい。
 このような分光特性を有する着色剤としては、例えば、ピロロピロール化合物、銅化合物、シアニン化合物、フタロシアニン化合物、イミニウム化合物、チオール錯体系化合物、遷移金属酸化物系化合物、スクアリリウム化合物、ナフタロシアニン化合物、クオテリレン化合物、ジチオール金属錯体系化合物、及びクロコニウム化合物等が挙げられる。
 フタロシアニン化合物、ナフタロシアニン化合物、イミニウム化合物、シアニン化合物、スクアリリウム化合物及びクロコニウム化合物は、特開2010-111750号公報の段落0010~0081に開示の化合物を使用してもよく、この内容は本明細書に組み込まれる。シアニン化合物は、例えば、「機能性色素、大河原信/松岡賢/北尾悌次郎/平嶋恒亮・著、講談社サイエンティフィック」を参酌することができ、この内容は本明細書に組み込まれる。
(Infrared absorber)
The colorant may further contain an infrared absorber.
The infrared absorber means a compound having absorption in the wavelength region in the infrared region (preferably, a wavelength of 650 to 1300 nm). As the infrared absorber, a compound having a maximum absorption wavelength in a wavelength region of 675 to 900 nm is preferable.
Examples of colorants having such spectral characteristics include pyrrolopyrrole compounds, copper compounds, cyanine compounds, phthalocyanine compounds, iminium compounds, thiol complex compounds, transition metal oxide compounds, squarylium compounds, naphthalocyanine compounds, quaterylenes. Examples include compounds, dithiol metal complex compounds, and croconium compounds.
As the phthalocyanine compound, naphthalocyanine compound, iminium compound, cyanine compound, squarylium compound, and croconium compound, the compounds disclosed in paragraphs 0010 to 0081 of JP 2010-1111750 A may be used. Incorporated. As the cyanine compound, for example, “functional pigment, Shin Okawara / Ken Matsuoka / Keijiro Kitao / Kensuke Hirashima, written by Kodansha Scientific”, the contents of which are incorporated herein.
 上記分光特性を有する着色剤として、特開平07-164729号公報の段落0004~0016に開示の化合物及び/又は特開2002-146254号公報の段落0027~0062に開示の化合物、特開2011-164583号公報の段落0034~0067に開示のCu及び/又はPを含む酸化物の結晶子からなり数平均凝集粒子径が5~200nmである近赤外線吸収粒子を使用することもできる。 As the colorant having the above-mentioned spectral characteristics, compounds disclosed in paragraphs 0004 to 0016 of JP-A-07-164729 and / or compounds disclosed in paragraphs 0027 to 0062 of JP-A-2002-146254, JP-A-2011-16483 It is also possible to use near-infrared absorbing particles comprising a crystallite of an oxide containing Cu and / or P disclosed in paragraphs 0034 to 0067 of the publication and having a number average aggregate particle diameter of 5 to 200 nm.
 波長675~900nmの波長領域に極大吸収波長を有する化合物としては、シアニン化合物、ピロロピロール化合物、スクアリリウム化合物、フタロシアニン化合物、及びナフタロシアニン化合物からなる群から選択される少なくとも1種が好ましい。
 また、赤外線吸収剤は、25℃の水に1質量%以上溶解する化合物であることが好ましく、25℃の水に10質量%以上溶解する化合物がより好ましい。このような化合物を用いることで、耐溶剤性が良化する。
 ピロロピロール化合物は、特開2010-222557号公報の0049~0062段落を参酌でき、この内容は本明細書に組み込まれる。シアニン化合物及びスクアリリウム化合物は、国際公開2014/088063号公報の0022~0063段落、国際公開2014/030628号公報の0053~0118段落、特開2014-59550号公報の0028~0074段落、国際公開2012/169447号公報の0013~0091段落、特開2015-176046号公報の0019~0033段落、特開2014-63144号公報の0053~0099段落、特開2014-52431号公報の0085~0150段落、特開2014-44301号公報の0076~0124段落、特開2012-8532号公報の0045~0078段落、特開2015-172102号公報の0027~0067段落、特開2015-172004号公報の0029~0067段落、特開2015-40895号公報の0029~0085段落、特開2014-126642号公報の0022~0036段落、特開2014-148567号公報の0011~0017段落、特開2015-157893号公報の0010~0025段落、特開2014-095007号公報の0013~0026段落、特開2014-80487号公報の0013~0047段落、及び特開2013-227403号公報の0007~0028段落等を参酌でき、この内容は本明細書に組み込まれる。
The compound having a maximum absorption wavelength in the wavelength region of 675 to 900 nm is preferably at least one selected from the group consisting of a cyanine compound, a pyrrolopyrrole compound, a squarylium compound, a phthalocyanine compound, and a naphthalocyanine compound.
Further, the infrared absorber is preferably a compound that dissolves 1% by mass or more in 25 ° C. water, and more preferably a compound that dissolves 10% by mass or more in 25 ° C. water. By using such a compound, the solvent resistance is improved.
The pyrrolopyrrole compound can be referred to paragraphs 0049 to 0062 of JP 2010-222557 A, the contents of which are incorporated herein. Cyanine compounds and squarylium compounds are disclosed in WO 2014/088063 paragraphs 0022 to 0063, WO 2014/030628, paragraphs 0053 to 0118, JP 2014-59550 A, paragraphs 0028 to 0074, international publication 2012 / No. 169447, paragraphs 0013 to 0091, JP-A-2015-176046, paragraphs 0019 to 0033, JP-A-2014-63144, paragraphs 0053 to 00099, JP-A-2014-52431, paragraphs 0085 to 0150, JP-A Paragraphs 0076 to 0124 of Japanese Patent Application Laid-Open No. 2014-44301, paragraphs 0045 to 0078 of Japanese Patent Application Laid-Open No. 2012-8532, paragraphs 0027 to 0067 of Japanese Patent Application Laid-Open No. 2015-172102, and 0029 to Japanese Patent Application Laid-Open No. 2015-172004. Paragraph 067, paragraphs 0029 to 0085 of JP-A-2015-40895, paragraphs 0022 to 0036 of JP-A-2014-126642, paragraphs 0011 to 0017 of JP-A-2014-148567, and JP-A-2015-157893. Paragraphs 0010 to 0025, paragraphs 0013 to 0026 of JP 2014-095007 A, paragraphs 0013 to 0047 of JP 2014-80487 A, paragraphs 0007 to 0028 of JP 2013-227403 A, etc. The contents are incorporated herein.
[分散組成物の製造方法]
 分散組成物は、上記の各成分を公知の混合方法(例えば、攪拌機、ホモジナイザー、高圧乳化装置、湿式粉砕機、及び湿式分散機等を用いた混合方法)により混合して調製することができる。
[Method for producing dispersion composition]
The dispersion composition can be prepared by mixing the above components by a known mixing method (for example, a mixing method using a stirrer, a homogenizer, a high-pressure emulsifier, a wet pulverizer, a wet disperser, or the like).
 分散組成物の製造方法は、以下の工程を含むことが好ましい。
・窒素原子を含有する原材料A、並びに遷移金属原子及び原子Tを含有する原材料Bを準備する、又は窒素原子を含有する原材料A、遷移金属原子を含有する原材料C、及び原子Tを含有する原材料Dを準備する工程(原材料準備工程)
・2種以上の原材料を気相状態で混合して、混合物を得る工程(混合工程)
・気相状態の混合物を凝縮して、金属窒化物含有粒子を得る工程(凝縮工程)
・金属窒化物含有粒子、及び樹脂を混合し、分散組成物を得る工程(分散工程)
The method for producing a dispersion composition preferably includes the following steps.
Prepare raw material A containing nitrogen atom and raw material B containing transition metal atom and atom T, or raw material A containing nitrogen atom, raw material C containing transition metal atom, and raw material containing atom T Process for preparing D (raw material preparation process)
・ A step of mixing two or more raw materials in a gas phase to obtain a mixture (mixing step)
・ Condensation of gas phase mixture to obtain metal nitride-containing particles (condensation process)
-Mixing metal nitride-containing particles and resin to obtain a dispersion composition (dispersion step)
 上記において、原材料準備工程、混合工程、及び凝縮工程については、金属窒化物含有粒子の製造方法において既に説明したとおりである。 In the above, the raw material preparation step, the mixing step, and the condensation step are as already described in the method for producing metal nitride-containing particles.
(分散工程)
 分散工程は、金属窒化物含有粒子と樹脂とを混合して、分散組成物を得る工程である。金属窒化物含有粒子と樹脂とを混合する方法としては既に説明したとおりである。なお、分散工程においては、上記以外の任意成分をあわせて混合してもよい。
(Dispersion process)
The dispersion step is a step of obtaining a dispersion composition by mixing metal nitride-containing particles and a resin. The method of mixing the metal nitride-containing particles and the resin is as described above. In the dispersion step, optional components other than the above may be mixed together.
[硬化性組成物]
 本発明の実施形態に係る硬化性組成物は、金属窒化物含有粒子と、樹脂と、重合性化合物と、重合開始剤とを含有する。以下では上記各成分について詳述する。
[Curable composition]
The curable composition which concerns on embodiment of this invention contains metal nitride containing particle | grains, resin, a polymeric compound, and a polymerization initiator. Below, each said component is explained in full detail.
〔金属窒化物含有粒子〕
 硬化性組成物が含有する金属窒化物含有粒子の形態としては、金属窒化物含有粒子の形態として既に説明したとおりである。硬化性組成物中における金属窒化物含有粒子の含有量は特に制限されないが、一般に、硬化性組成物の全固形分に対して、30~80質量%が好ましい。金属窒化物含有粒子は、1種を単独で用いても、2種以上を併用してもよい。2種以上の金属窒化物含有粒子を併用する場合には、合計含有量が上記範囲内であることが好ましい。
[Metal nitride-containing particles]
The form of the metal nitride-containing particles contained in the curable composition is as already described as the form of the metal nitride-containing particles. The content of the metal nitride-containing particles in the curable composition is not particularly limited, but is generally preferably 30 to 80% by mass with respect to the total solid content of the curable composition. The metal nitride-containing particles may be used alone or in combination of two or more. When two or more kinds of metal nitride-containing particles are used in combination, the total content is preferably within the above range.
〔樹脂〕
 硬化性組成物が含有する樹脂の形態としては、分散組成物が含有する樹脂の形態として既に説明したとおりである。
 硬化性組成物中における樹脂の含有量は特に制限されないが、一般に、硬化性組成物の全固形分に対して、3~60質量%が好ましく、5~40質量%がより好ましい。樹脂は、1種を単独で用いても、2種以上を併用してもよい。2種以上の樹脂を併用する場合には、合計含有量が上記範囲内であることが好ましい。
〔resin〕
The form of the resin contained in the curable composition is as already described as the form of the resin contained in the dispersion composition.
The content of the resin in the curable composition is not particularly limited, but is generally preferably 3 to 60% by mass and more preferably 5 to 40% by mass with respect to the total solid content of the curable composition. Resin may be used individually by 1 type, or may use 2 or more types together. When using 2 or more types of resin together, it is preferable that total content is in the said range.
 硬化性組成物は、樹脂として分散剤と、アルカリ可溶性樹脂とを含有することが好ましい。分散剤、及びアルカリ可溶性樹脂の形態としては、分散組成物が含有する分散剤、及びアルカリ可溶性樹脂の形態として既に説明したとおりである。
 硬化性組成物中における分散剤の含有量は特に制限されないが、一般に、硬化性組成物の全固形分に対して、2~40質量%が好ましく、5~30質量%がより好ましい。分散剤は、1種を単独で用いても、2種以上を併用してもよい。2種以上の分散剤を併用する場合には、合計含有量が上記範囲内であることが好ましい。
 硬化性組成物中におけるアルカリ可溶性樹脂の含有量は特に制限されないが、一般に、硬化性組成物の全固形分に対して、1~30質量%が好ましい。アルカリ可溶性樹脂は、1種を単独で用いても、2種以上を併用してもよい。2種以上のアルカリ可溶性樹脂を併用する場合には、合計含有量が上記範囲内であることが好ましい。
It is preferable that a curable composition contains a dispersing agent and alkali-soluble resin as resin. The form of the dispersant and the alkali-soluble resin is as already described as the form of the dispersant and the alkali-soluble resin contained in the dispersion composition.
The content of the dispersant in the curable composition is not particularly limited, but is generally preferably 2 to 40% by mass, more preferably 5 to 30% by mass, based on the total solid content of the curable composition. A dispersing agent may be used individually by 1 type, or may use 2 or more types together. When two or more dispersants are used in combination, the total content is preferably within the above range.
The content of the alkali-soluble resin in the curable composition is not particularly limited, but is generally preferably 1 to 30% by mass with respect to the total solid content of the curable composition. Alkali-soluble resin may be used individually by 1 type, or may use 2 or more types together. When using 2 or more types of alkali-soluble resin together, it is preferable that total content is in the said range.
〔重合性化合物〕
 硬化性組成物は重合性化合物を含有する。本明細書において重合性化合物とは、重合性基を含有する化合物を意図し、分散剤、及びアルカリ可溶性樹脂とは異なる成分を意図する。
(Polymerizable compound)
The curable composition contains a polymerizable compound. In the present specification, the polymerizable compound means a compound containing a polymerizable group and a component different from the dispersant and the alkali-soluble resin.
 硬化性組成物中における重合性化合物の含有量は特に制限されないが、一般に、硬化性組成物の全固形分に対して、5~30質量%が好ましい。重合性化合物は、1種を単独で用いても、2種以上を併用してもよい。2種以上の重合性化合物を併用する場合には、合計含有量が上記範囲内であることが好ましい。 The content of the polymerizable compound in the curable composition is not particularly limited, but is generally preferably 5 to 30% by mass with respect to the total solid content of the curable composition. A polymeric compound may be used individually by 1 type, or may use 2 or more types together. When using 2 or more types of polymeric compounds together, it is preferable that total content is in the said range.
 重合性化合物は、エチレン性不飽和結合を含有する基を1個以上含有する化合物が好ましく、2個以上含有する化合物がより好ましく、3個以上含有することが更に好ましく、5個以上含有することが特に好ましい。上限は、例えば、15個以下である。エチレン性不飽和結合を含有する基としては、例えば、ビニル基、(メタ)アリル基、及び(メタ)アクリロイル基等が挙げられる。 The polymerizable compound is preferably a compound containing at least one group containing an ethylenically unsaturated bond, more preferably a compound containing 2 or more, further preferably containing 3 or more, and containing 5 or more. Is particularly preferred. The upper limit is 15 or less, for example. Examples of the group containing an ethylenically unsaturated bond include a vinyl group, a (meth) allyl group, and a (meth) acryloyl group.
 重合性化合物としては、例えば、特開2008-260927号公報の0050段落、及び特開2015-68893号公報の0040段落に記載されている化合物を用いることができ、上記の内容は本明細書に組み込まれる。 As the polymerizable compound, for example, compounds described in paragraph 0050 of JP-A-2008-260927 and paragraph 0040 of JP-A-2015-68893 can be used, and the above contents are described in this specification. Incorporated.
 重合性化合物は、例えば、モノマー、プレポリマー、オリゴマー、及びこれらの混合物、並びにこれらの多量体等の化学的形態のいずれであってもよい。
 重合性化合物は、3~15官能の(メタ)アクリレート化合物であることが好ましく、3~6官能の(メタ)アクリレート化合物であることがより好ましい。
The polymerizable compound may be in any of chemical forms such as monomers, prepolymers, oligomers, mixtures thereof, and multimers thereof.
The polymerizable compound is preferably a 3 to 15 functional (meth) acrylate compound, more preferably a 3 to 6 functional (meth) acrylate compound.
 重合性化合物は、エチレン性不飽和結合を含有する基を1個以上含有する、常圧下で100℃以上の沸点を持つ化合物も好ましい。例えば、特開2013-29760号公報の段落0227、特開2008-292970号公報の段落0254~0257に記載の化合物を参酌でき、この内容は本明細書に組み込まれる。 The polymerizable compound is also preferably a compound having one or more groups containing an ethylenically unsaturated bond and having a boiling point of 100 ° C. or higher under normal pressure. For example, compounds described in JP-A-2013-29760, paragraph 0227, and JP-A-2008-292970, paragraphs 0254 to 0257 can be referred to, the contents of which are incorporated herein.
 重合性化合物は、ジペンタエリスリトールトリアクリレート(市販品としてはKAYARAD D-330;日本化薬社製)、ジペンタエリスリトールテトラアクリレート(市販品としてはKAYARAD D-320;日本化薬社製)、ジペンタエリスリトールペンタ(メタ)アクリレート(市販品としてはKAYARAD D-310;日本化薬社製)、ジペンタエリスリトールヘキサ(メタ)アクリレート(市販品としてはKAYARAD DPHA;日本化薬社製、A-DPH-12E;新中村化学社製)、及びこれらの(メタ)アクリロイル基がエチレングリコール残基又はプロピレングリコール残基を介している構造(例えば、サートマー社から市販されている、SR454、SR499)が好ましい。これらのオリゴマータイプも使用できる。また、NKエステルA-TMMT(ペンタエリスリトールテトラアクリレート、新中村化学社製)、及びKAYARAD RP-1040(日本化薬社製)等を使用することもできる。
 以下に好ましい重合性化合物の態様を示す。
Polymerizable compounds are dipentaerythritol triacrylate (KAYARAD D-330 as a commercial product; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol tetraacrylate (KAYARAD D-320 as a commercial product; manufactured by Nippon Kayaku), di Pentaerythritol penta (meth) acrylate (KAYARAD D-310 as a commercial product; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol hexa (meth) acrylate (KAYARAD DPHA as a commercial product; manufactured by Nippon Kayaku Co., Ltd., A-DPH- 12E; manufactured by Shin-Nakamura Chemical Co., Ltd.) and a structure in which these (meth) acryloyl groups are mediated by an ethylene glycol residue or a propylene glycol residue (for example, SR454, SR499, commercially available from Sartomer). These oligomer types can also be used. NK ester A-TMMT (pentaerythritol tetraacrylate, manufactured by Shin-Nakamura Chemical Co., Ltd.), KAYARAD RP-1040 (manufactured by Nippon Kayaku Co., Ltd.), and the like can also be used.
Preferred embodiments of the polymerizable compound are shown below.
 重合性化合物は、カルボン酸基、スルホン酸基、及びリン酸基等の酸基を有していてもよい。酸基を含有する重合性化合物としては、脂肪族ポリヒドロキシ化合物と不飽和カルボン酸とのエステルが好ましく、脂肪族ポリヒドロキシ化合物の未反応の水酸基に非芳香族カルボン酸無水物を反応させて酸基を持たせた重合性化合物がより好ましく、更に好ましくは、このエステルにおいて、脂肪族ポリヒドロキシ化合物がペンタエリスリトール及び/又はジペンタエリスリトールであるものである。市販品としては、例えば、東亜合成社製の、アロニックスTO-2349、M-305、M-510、及びM-520等が挙げられる。 The polymerizable compound may have an acid group such as a carboxylic acid group, a sulfonic acid group, and a phosphoric acid group. As the polymerizable compound containing an acid group, an ester of an aliphatic polyhydroxy compound and an unsaturated carboxylic acid is preferable, and a non-aromatic carboxylic acid anhydride is reacted with an unreacted hydroxyl group of the aliphatic polyhydroxy compound. A polymerizable compound having a group is more preferable, and in this ester, the aliphatic polyhydroxy compound is pentaerythritol and / or dipentaerythritol. Examples of commercially available products include Aronix TO-2349, M-305, M-510, and M-520 manufactured by Toa Gosei Co., Ltd.
 酸基を含有する重合性化合物の好ましい酸価は、0.1~40mgKOH/gであり、より好ましくは5~30mgKOH/gである。重合性化合物の酸価が0.1mgKOH/g以上であれば、現像溶解特性が良好であり、40mgKOH/g以下であれば、製造及び/又は取扱い上有利である。更には、光重合性能が良好で、硬化性に優れる。 The preferred acid value of the polymerizable compound containing an acid group is 0.1 to 40 mgKOH / g, more preferably 5 to 30 mgKOH / g. When the acid value of the polymerizable compound is 0.1 mgKOH / g or more, the development dissolution properties are good, and when it is 40 mgKOH / g or less, it is advantageous in production and / or handling. Furthermore, the photopolymerization performance is good and the curability is excellent.
 重合性化合物は、カプロラクトン構造を含有する化合物も好ましい態様である。
 カプロラクトン構造を含有する化合物としては、分子内にカプロラクトン構造を含有する限り特に限定されるものではないが、例えば、トリメチロールエタン、ジトリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、グリセリン、ジグリセロール、トリメチロールメラミン等の多価アルコールと、(メタ)アクリル酸及びε-カプロラクトンとをエステル化することにより得られる、ε-カプロラクトン変性多官能(メタ)アクリレートを挙げることができる。なかでも下記式(Z-1)で表されるカプロラクトン構造を含有する化合物が好ましい。
The polymerizable compound is also preferably a compound containing a caprolactone structure.
The compound containing a caprolactone structure is not particularly limited as long as it contains a caprolactone structure in the molecule. For example, trimethylolethane, ditrimethylolethane, trimethylolpropane, ditrimethylolpropane, pentaerythritol, dipenta Ε-caprolactone-modified polyfunctional (meth) acrylate obtained by esterifying polyhydric alcohol such as erythritol, tripentaerythritol, glycerin, diglycerol, trimethylolmelamine, (meth) acrylic acid and ε-caprolactone Can be mentioned. Of these, compounds containing a caprolactone structure represented by the following formula (Z-1) are preferred.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式(Z-1)中、6個のRは全てが下記式(Z-2)で表される基であるか、又は6個のRのうち1~5個が下記式(Z-2)で表される基であり、残余が下記式(Z-3)で表される基である。 In the formula (Z-1), all six R are groups represented by the following formula (Z-2), or 1 to 5 of the six R are represented by the following formula (Z-2) And the remainder is a group represented by the following formula (Z-3).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(Z-2)中、Rは水素原子又はメチル基を示し、mは1又は2の数を示し、「*」は結合手であることを示す。 In formula (Z-2), R 1 represents a hydrogen atom or a methyl group, m represents a number of 1 or 2, and “*” represents a bond.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式(Z-3)中、Rは水素原子又はメチル基を示し、「*」は結合手であることを示す。) In formula (Z-3), R 1 represents a hydrogen atom or a methyl group, and “*” represents a bond. )
 カプロラクトン構造を含有する重合性化合物は、例えば、日本化薬からKAYARAD DPCAシリーズとして市販されており、DPCA-20(上記式(Z-1)~(Z-3)においてm=1、式(Z-2)で表される基の数=2、Rが全て水素原子である化合物)、DPCA-30(同式、m=1、式(Z-2)で表される基の数=3、Rが全て水素原子である化合物)、DPCA-60(同式、m=1、式(Z-2)で表される基の数=6、Rが全て水素原子である化合物)、DPCA-120(同式においてm=2、式(Z-2)で表される基の数=6、Rが全て水素原子である化合物)等が挙げられる。 Polymerizable compounds containing a caprolactone structure are commercially available, for example, from Nippon Kayaku as the KAYARAD DPCA series, and DPCA-20 (m = 1 in the above formulas (Z-1) to (Z-3), -2) = the number of groups represented by 2 and R 1 is all hydrogen atoms), DPCA-30 (formula, m = 1, the number of groups represented by formula (Z-2) = 3) , Compounds in which R 1 is all hydrogen atoms), DPCA-60 (same formula, m = 1, number of groups represented by formula (Z-2) = 6, compounds in which R 1 is all hydrogen atoms), DPCA-120 (a compound in which m = 2 in the formula, the number of groups represented by formula (Z-2) = 6, and all R 1 are hydrogen atoms).
 重合性化合物は、下記式(Z-4)又は(Z-5)で表される化合物を用いることもできる。 As the polymerizable compound, a compound represented by the following formula (Z-4) or (Z-5) can also be used.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式(Z-4)及び(Z-5)中、Eは、各々独立に、-((CHCHO)-、又は((CHCH(CH)O)-を表し、yは、各々独立に0~10の整数を表し、Xは、各々独立に、(メタ)アクリロイル基、水素原子、又はカルボン酸基を表す。
 式(Z-4)中、(メタ)アクリロイル基の合計は3個又は4個であり、mは各々独立に0~10の整数を表し、各mの合計は0~40の整数である。
 式(Z-5)中、(メタ)アクリロイル基の合計は5個又は6個であり、nは各々独立に0~10の整数を表し、各nの合計は0~60の整数である。
In formulas (Z-4) and (Z-5), each E independently represents — ((CH 2 ) y CH 2 O) — or ((CH 2 ) y CH (CH 3 ) O) —. Y represents an integer of 0 to 10, and X independently represents a (meth) acryloyl group, a hydrogen atom, or a carboxylic acid group.
In the formula (Z-4), the total number of (meth) acryloyl groups is 3 or 4, each m independently represents an integer of 0 to 10, and the total of each m is an integer of 0 to 40.
In formula (Z-5), the total number of (meth) acryloyl groups is 5 or 6, each n independently represents an integer of 0 to 10, and the total of each n is an integer of 0 to 60.
 式(Z-4)中、mは、0~6の整数が好ましく、0~4の整数がより好ましい。各mの合計は、2~40の整数が好ましく、2~16の整数がより好ましく、4~8の整数が更に好ましい。
 式(Z-5)中、nは、0~6の整数が好ましく、0~4の整数がより好ましい。各nの合計は、3~60の整数が好ましく、3~24の整数がより好ましく、6~12の整数が更に好ましい。
 式(Z-4)又は式(Z-5)中の-((CHCHO)-又は((CHCH(CH)O)-は、酸素原子側の末端がXに結合する形態が好ましい。
In the formula (Z-4), m is preferably an integer of 0 to 6, and more preferably an integer of 0 to 4. The total of each m is preferably an integer of 2 to 40, more preferably an integer of 2 to 16, and still more preferably an integer of 4 to 8.
In the formula (Z-5), n is preferably an integer of 0 to 6, and more preferably an integer of 0 to 4. The total of each n is preferably an integer of 3 to 60, more preferably an integer of 3 to 24, and still more preferably an integer of 6 to 12.
In formula (Z-4) or (Z-5), — ((CH 2 ) y CH 2 O) — or ((CH 2 ) y CH (CH 3 ) O) — has a terminal on the oxygen atom side. A form bonded to X is preferred.
 式(Z-4)又は式(Z-5)で表される化合物は1種単独で用いてもよいし、2種以上併用してもよい。特に、式(Z-5)において、6個のX全てがアクリロイル基である形態、式(Z-5)において、6個のX全てがアクリロイル基である化合物と、6個のXのうち、少なくとも1個が水素原子ある化合物との混合物である態様が好ましい。このような構成とすることにより、現像性をより向上できる。 The compounds represented by formula (Z-4) or formula (Z-5) may be used alone or in combination of two or more. In particular, in formula (Z-5), all six Xs are acryloyl groups, in formula (Z-5), all six Xs are acryloyl groups, and among six Xs, An embodiment which is a mixture with a compound having at least one hydrogen atom is preferred. With such a configuration, the developability can be further improved.
 式(Z-4)又は式(Z-5)で表される化合物の重合性化合物中における全含有量は、20質量%以上が好ましく、50質量%以上がより好ましい。
 式(Z-4)又は式(Z-5)で表される化合物のなかでも、ペンタエリスリトール誘導体及び/又はジペンタエリスリトール誘導体がより好ましい。
The total content of the compound represented by formula (Z-4) or formula (Z-5) in the polymerizable compound is preferably 20% by mass or more, and more preferably 50% by mass or more.
Of the compounds represented by the formula (Z-4) or the formula (Z-5), a pentaerythritol derivative and / or a dipentaerythritol derivative are more preferable.
 重合性化合物は、カルド骨格を含有してもよい。
 カルド骨格を含有する重合性化合物としては、9,9-ビスアリールフルオレン骨格を含有する重合性化合物が好ましい。
 カルド骨格を含有する重合性化合物としては、限定されないが、例えば、オンコートEXシリーズ(長瀬産業社製)及びオグソール(大阪ガスケミカル社製)等が挙げられる。
The polymerizable compound may contain a cardo skeleton.
As the polymerizable compound containing a cardo skeleton, a polymerizable compound containing a 9,9-bisarylfluorene skeleton is preferable.
Examples of the polymerizable compound containing a cardo skeleton include, but are not limited to, oncoat EX series (manufactured by Nagase Sangyo Co., Ltd.) and Ogsol (manufactured by Osaka Gas Chemical Co., Ltd.).
〔重合開始剤〕
 硬化性組成物は、重合開始剤を含有する。
 重合開始剤は、特に制限されず、公知の重合開始剤を用いることができる。重合開始剤としては、例えば、光重合開始剤、及び熱重合開始剤等が挙げられ、光重合開始剤が好ましい。なお、重合開始剤としては、いわゆるラジカル重合開始剤が好ましい。
 硬化性組成物中における重合開始剤の含有量は特に制限されないが、一般に、硬化性組成物の全固形分に対して0.5~20質量%が好ましい。重合開始剤は、1種を単独で用いても、2種以上を併用してもよい。2種以上の重合開始剤を併用する場合には、合計含有量が上記範囲内であることが好ましい。
(Polymerization initiator)
The curable composition contains a polymerization initiator.
The polymerization initiator is not particularly limited, and a known polymerization initiator can be used. As a polymerization initiator, a photoinitiator, a thermal polymerization initiator, etc. are mentioned, for example, A photoinitiator is preferable. The polymerization initiator is preferably a so-called radical polymerization initiator.
The content of the polymerization initiator in the curable composition is not particularly limited, but is generally preferably 0.5 to 20% by mass with respect to the total solid content of the curable composition. A polymerization initiator may be used individually by 1 type, or may use 2 or more types together. When two or more polymerization initiators are used in combination, the total content is preferably within the above range.
 熱重合開始剤としては、例えば、2,2’-アゾビスイソブチロニトリル(AIBN)、3-カルボキシプロピオニトリル、アゾビスマレノニトリル、及びジメチル-(2,2’)-アゾビス(2-メチルプロピオネート)[V-601]等のアゾ化合物、並びに過酸化ベンゾイル、過酸化ラウロイル、及び過硫酸カリウム等の有機過酸化物が挙げられる。
 重合開始剤の具体例としては、例えば、加藤清視著「紫外線硬化システム」(株式会社総合技術センター発行:平成元年)の第65~148頁に記載されている重合開始剤などを挙げることができる。
Examples of the thermal polymerization initiator include 2,2′-azobisisobutyronitrile (AIBN), 3-carboxypropionitrile, azobismaleonitrile, and dimethyl- (2,2 ′)-azobis (2- Azo compounds such as methyl propionate) [V-601], and organic peroxides such as benzoyl peroxide, lauroyl peroxide, and potassium persulfate.
Specific examples of the polymerization initiator include, for example, polymerization initiators described on pages 65 to 148 of “Ultraviolet curing system” written by Kiyoto Kato (published by General Technology Center Co., Ltd .: 1989). Can do.
<光重合開始剤>
 上記硬化性組成物は光重合開始剤を含有することが好ましい。
 光重合開始剤としては、重合性化合物の重合を開始することができれば特に制限されず、公知の光重合開始剤を用いることができる。光重合開始剤としては、例えば、紫外線領域から可視光領域に対して感光性を有するものが好ましい。また、光励起された増感剤と何らかの作用を生じ、活性ラジカルを生成する活性剤であってもよく、重合性化合物の種類に応じてカチオン重合を開始させるような開始剤であってもよい。
 また、光重合開始剤は、約300nm~800nm(330nm~500nmがより好ましい。)の範囲内に少なくとも約50のモル吸光係数を有する化合物を、少なくとも1種含有していることが好ましい。
<Photopolymerization initiator>
The curable composition preferably contains a photopolymerization initiator.
As a photoinitiator, if a polymerization of a polymeric compound can be started, it will not restrict | limit, A well-known photoinitiator can be used. As the photopolymerization initiator, for example, those having photosensitivity from the ultraviolet region to the visible light region are preferable. Further, it may be an activator that generates an active radical by generating some action with a photoexcited sensitizer, and may be an initiator that initiates cationic polymerization according to the type of the polymerizable compound.
The photopolymerization initiator preferably contains at least one compound having a molar extinction coefficient of at least about 50 within a range of about 300 nm to 800 nm (more preferably 330 nm to 500 nm).
 硬化性組成物中における光重合開始剤の含有量は特に制限されないが、一般に、硬化性組成物の全固形分に対して、0.5~20質量%が好ましい。光重合開始剤は、1種を単独で用いても、2種以上を併用してもよい。2種以上の光重合開始剤を併用する場合には、合計含有量が上記範囲内であることが好ましい。 The content of the photopolymerization initiator in the curable composition is not particularly limited, but is generally preferably 0.5 to 20% by mass with respect to the total solid content of the curable composition. A photoinitiator may be used individually by 1 type, or may use 2 or more types together. When using 2 or more types of photoinitiators together, it is preferable that total content is in the said range.
 光重合開始剤としては、例えば、ハロゲン化炭化水素誘導体(例えば、トリアジン骨格を含有するもの、オキサジアゾール骨格を含有するもの、等)、アシルホスフィンオキサイド等のアシルホスフィン化合物、ヘキサアリールビイミダゾール、オキシム誘導体等のオキシム化合物、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、アミノアセトフェノン化合物、及びヒドロキシアセトフェノン等が挙げられる。
 光重合開始剤の具体例としては、特開2013-29760号公報の段落0265~0268を参酌することができ、この内容は本明細書に組み込まれる。
Examples of the photopolymerization initiator include halogenated hydrocarbon derivatives (for example, those containing a triazine skeleton, those containing an oxadiazole skeleton, etc.), acylphosphine compounds such as acylphosphine oxide, hexaarylbiimidazole, Examples include oxime compounds such as oxime derivatives, organic peroxides, thio compounds, ketone compounds, aromatic onium salts, aminoacetophenone compounds, and hydroxyacetophenones.
As specific examples of the photopolymerization initiator, paragraphs 0265 to 0268 of JP2013-29760A can be referred to, the contents of which are incorporated herein.
 光重合開始剤としては、より具体的には、例えば、特開平10-291969号公報に記載のアミノアセトフェノン系開始剤、及び特許第4225898号公報に記載のアシルホスフィン系開始剤も用いることができる。
 ヒドロキシアセトフェノン化合物としては、IRGACURE-184、DAROCUR-1173、IRGACURE-500、IRGACURE-2959、及びIRGACURE-127(商品名:いずれもBASF社製)を用いることができる。
 アミノアセトフェノン化合物としては、市販品であるIRGACURE-907、IRGACURE-369、又はIRGACURE-379EG(商品名:いずれもBASF社製)を用いることができる。アミノアセトフェノン化合物としては、365nm又は405nm等の長波光源に吸収波長がマッチングされた特開2009-191179公報に記載の化合物も用いることができる。
 アシルホスフィン化合物としては、市販品であるIRGACURE-819、又はIRGACURE-TPO(商品名:いずれもBASF社製)を用いることができる。
More specifically, as the photopolymerization initiator, for example, an aminoacetophenone-based initiator described in JP-A-10-291969 and an acylphosphine-based initiator described in Japanese Patent No. 4225898 can also be used. .
As the hydroxyacetophenone compound, IRGACURE-184, DAROCUR-1173, IRGACURE-500, IRGACURE-2959, and IRGACURE-127 (trade names: all manufactured by BASF) can be used.
As the aminoacetophenone compound, commercially available products IRGACURE-907, IRGACURE-369, or IRGACURE-379EG (trade names: all manufactured by BASF) can be used. As the aminoacetophenone compound, a compound described in JP-A-2009-191179 in which an absorption wavelength is matched with a long wave light source such as 365 nm or 405 nm can also be used.
As the acylphosphine compound, commercially available IRGACURE-819 or IRGACURE-TPO (trade name: all manufactured by BASF) can be used.
(オキシム化合物)
 光重合開始剤として、より好ましくはオキシムエステル系重合開始剤(オキシム化合物)が挙げられる。特にオキシム化合物は高感度で重合効率が高く、硬化性組成物中における金属窒化物含有粒子の含有量濃度によらず硬化性組成物層を硬化でき、金属窒化物含有粒子の含有量を高く設計しやすいため好ましい。
 オキシム化合物の具体例としては、特開2001-233842号公報記載の化合物、特開2000-80068号公報記載の化合物、又は特開2006-342166号公報記載の化合物を用いることができる。
 オキシム化合物としては、例えば、3-ベンゾイロキシイミノブタン-2-オン、3-アセトキシイミノブタン-2-オン、3-プロピオニルオキシイミノブタン-2-オン、2-アセトキシイミノペンタン-3-オン、2-アセトキシイミノ-1-フェニルプロパン-1-オン、2-ベンゾイロキシイミノ-1-フェニルプロパン-1-オン、3-(4-トルエンスルホニルオキシ)イミノブタン-2-オン、及び2-エトキシカルボニルオキシイミノ-1-フェニルプロパン-1-オン等が挙げられる。
 また、J.C.S.Perkin II(1979年)pp.1653-1660)、J.C.S.Perkin II(1979年)pp.156-162、Journal of Photopolymer Science and Technology(1995年)pp.202-232、特開2000-66385号公報記載の化合物、特開2000-80068号公報、特表2004-534797号公報、及び特開2006-342166号公報の各公報に記載の化合物等も挙げられる。
 市販品ではIRGACURE-OXE01(BASF社製)、IRGACURE-OXE02(BASF社製)、IRGACURE-OXE03(BASF社製)、又はIRGACURE-OXE04(BASF社製)も好適に用いられる。また、TR-PBG-304(常州強力電子新材料有限公司製)、アデカアークルズNCI-831及びアデカアークルズNCI-930(ADEKA社製)、又はN-1919(カルバゾール・オキシムエステル骨格含有光開始剤(ADEKA社製)も用いることができる。
(Oxime compounds)
More preferred examples of the photopolymerization initiator include oxime ester polymerization initiators (oxime compounds). In particular, oxime compounds have high sensitivity and high polymerization efficiency, can cure the curable composition layer regardless of the content concentration of metal nitride-containing particles in the curable composition, and design a high content of metal nitride-containing particles It is preferable because it is easy to do.
As specific examples of the oxime compound, a compound described in JP-A No. 2001-233842, a compound described in JP-A No. 2000-80068, or a compound described in JP-A No. 2006-342166 can be used.
Examples of the oxime compound include 3-benzoyloxyiminobutan-2-one, 3-acetoxyiminobutan-2-one, 3-propionyloxyiminobutan-2-one, 2-acetoxyiminopentan-3-one, 2-acetoxyimino-1-phenylpropan-1-one, 2-benzoyloxyimino-1-phenylpropan-1-one, 3- (4-toluenesulfonyloxy) iminobutan-2-one, and 2-ethoxycarbonyl And oxyimino-1-phenylpropan-1-one.
In addition, J.H. C. S. Perkin II (1979) pp. 1653-1660), J.M. C. S. Perkin II (1979) pp. 156-162, Journal of Photopolymer Science and Technology (1995), pp. 156-162. Examples thereof include compounds described in 202-232, JP-A No. 2000-66385, JP-A No. 2000-80068, JP-T 2004-534797, and JP-A No. 2006-342166. .
IRGACURE-OXE01 (manufactured by BASF), IRGACURE-OXE02 (manufactured by BASF), IRGACURE-OXE03 (manufactured by BASF), or IRGACURE-OXE04 (manufactured by BASF) are also suitably used as commercial products. Also, TR-PBG-304 (manufactured by Changzhou Powerful Electronic New Materials Co., Ltd.), Adeka Arcles NCI-831 and Adeka Arcles NCI-930 (manufactured by ADEKA), or N-1919 (carbazole oxime ester skeleton containing photoinitiator An agent (manufactured by ADEKA) can also be used.
 上記以外のオキシム化合物として、カルバゾールN位にオキシムが連結した特表2009-519904号公報に記載の化合物;ベンゾフェノン部位にヘテロ置換基が導入された米国特許第7626957号公報に記載の化合物;色素部位にニトロ基が導入された特開2010-15025号公報及び米国特許公開2009-292039号記載の化合物;国際公開特許2009-131189号公報に記載のケトオキシム化合物;トリアジン骨格とオキシム骨格を同一分子内に含有する米国特許7556910号公報に記載の化合物;405nmに吸収極大を有しg線光源に対して良好な感度を有する特開2009-221114号公報記載の化合物;等を用いてもよい。
 好ましくは、例えば、特開2013-29760号公報の段落0274~0275を参酌することができ、この内容は本明細書に組み込まれる。
 具体的には、オキシム化合物としては、下記式(OX-1)で表される化合物が好ましい。なお、オキシム化合物のN-O結合が(E)体のオキシム化合物であっても、(Z)体のオキシム化合物であっても、(E)体と(Z)体との混合物であってもよい。
As other oxime compounds, compounds described in JP-T-2009-519904 in which an oxime is linked to the carbazole N-position; compounds described in US Pat. No. 7,626,957 in which a hetero substituent is introduced into a benzophenone moiety; a dye moiety Japanese Patent Application Laid-Open No. 2010-15025 and US Patent Publication No. 2009-292209; a ketoxime compound described in International Publication No. 2009-131189; a triazine skeleton and an oxime skeleton in the same molecule A compound described in U.S. Pat. No. 7,556,910 and a compound described in JP-A-2009-221114 having an absorption maximum at 405 nm and good sensitivity to a g-line light source may be used.
Preferably, for example, paragraphs 0274 to 0275 of JP 2013-29760 A can be referred to, the contents of which are incorporated herein.
Specifically, the oxime compound is preferably a compound represented by the following formula (OX-1). The N—O bond of the oxime compound may be an (E) oxime compound, a (Z) oxime compound, a mixture of (E) isomer and (Z) isomer. Good.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式(OX-1)中、R及びBは各々独立に一価の置換基を表し、Aは二価の有機基を表し、Arはアリール基を表す。
 式(OX-1)中、Rで表される一価の置換基としては、一価の非金属原子団であることが好ましい。
 一価の非金属原子団としては、アルキル基、アリール基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、複素環基、アルキルチオカルボニル基、及びアリールチオカルボニル基等が挙げられる。また、これらの基は、1以上の置換基を有していてもよい。また、前述した置換基は、更に他の置換基で置換されていてもよい。
 置換基としてはハロゲン原子、アリールオキシ基、アルコキシカルボニル基又はアリールオキシカルボニル基、アシルオキシ基、アシル基、アルキル基、及びアリール基等が挙げられる。
 式(OX-1)中、Bで表される一価の置換基としては、アリール基、複素環基、アリールカルボニル基、又は複素環カルボニル基が好ましく、アリール基、又は複素環基が好ましい。これらの基は1以上の置換基を有していてもよい。置換基としては、前述した置換基が挙げられる。
 式(OX-1)中、Aで表される二価の有機基としては、炭素数1~12のアルキレン基、シクロアルキレン基、又はアルキニレン基が好ましい。これらの基は1以上の置換基を有していてもよい。置換基としては、前述した置換基が挙げられる。
In formula (OX-1), R and B each independently represent a monovalent substituent, A represents a divalent organic group, and Ar represents an aryl group.
In the formula (OX-1), the monovalent substituent represented by R is preferably a monovalent nonmetallic atomic group.
Examples of the monovalent nonmetallic atomic group include an alkyl group, an aryl group, an acyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, a heterocyclic group, an alkylthiocarbonyl group, and an arylthiocarbonyl group. Moreover, these groups may have one or more substituents. Moreover, the substituent mentioned above may be further substituted by another substituent.
Examples of the substituent include a halogen atom, an aryloxy group, an alkoxycarbonyl group or an aryloxycarbonyl group, an acyloxy group, an acyl group, an alkyl group, and an aryl group.
In the formula (OX-1), the monovalent substituent represented by B is preferably an aryl group, a heterocyclic group, an arylcarbonyl group, or a heterocyclic carbonyl group, and preferably an aryl group or a heterocyclic group. These groups may have one or more substituents. Examples of the substituent include the substituents described above.
In the formula (OX-1), the divalent organic group represented by A is preferably an alkylene group having 1 to 12 carbon atoms, a cycloalkylene group, or an alkynylene group. These groups may have one or more substituents. Examples of the substituent include the substituents described above.
 光重合開始剤として、フッ素原子を含有するオキシム化合物を用いることもできる。フッ素原子を含有するオキシム化合物の具体例としては、特開2010-262028号公報記載の化合物;特表2014-500852号公報記載の化合物24、36~40;特開2013-164471号公報記載の化合物(C-3);等が挙げられる。この内容は本明細書に組み込まれる。 An oxime compound containing a fluorine atom can also be used as a photopolymerization initiator. Specific examples of the oxime compound containing a fluorine atom include compounds described in JP2010-262028; compounds 24 and 36 to 40 described in JP2014-500852; compounds described in JP2013-164471A (C-3); and the like. This content is incorporated herein.
 光重合開始剤として、下記一般式(1)~(4)で表される化合物を用いることもできる。 As the photopolymerization initiator, compounds represented by the following general formulas (1) to (4) can also be used.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式(1)において、R及びRは、それぞれ独立に、炭素数1~20のアルキル基、炭素数4~20の脂環式炭化水素基、炭素数6~30のアリール基、又は炭素数7~30のアリールアルキル基を表し、R及びRがフェニル基の場合、フェニル基同士が結合してフルオレン基を形成してもよく、R及びRは、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基又は炭素数4~20の複素環基を表し、Xは、直接結合又はカルボニル基を示す。 In the formula (1), R 1 and R 2 each independently represents an alkyl group having 1 to 20 carbon atoms, an alicyclic hydrocarbon group having 4 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, or carbon And when R 1 and R 2 are phenyl groups, the phenyl groups may be bonded to each other to form a fluorene group, and R 3 and R 4 are each independently hydrogen Represents an atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms or a heterocyclic group having 4 to 20 carbon atoms, and X is a direct bond or a carbonyl group Indicates.
 式(2)において、R、R、R及びRは、式(1)におけるR、R、R及びRと同義であり、Rは、-R、-OR、-SR、-COR、-CONR、-NRCOR、-OCOR、-COOR、-SCOR、-OCSR、-COSR、-CSOR、-CN、ハロゲン原子又は水酸基を表し、Rは、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基又は炭素数4~20の複素環基を表し、Xは、直接結合又はカルボニル基を表し、aは0~4の整数を表す。 In the formula (2), R 1, R 2, R 3 and R 4 have the same meanings as R 1, R 2, R 3 and R 4 in Formula (1), R 5 is -R 6, -OR 6 , —SR 6 , —COR 6 , —CONR 6 R 6 , —NR 6 COR 6 , —OCOR 6 , —COOR 6 , —SCOR 6 , —OCSR 6 , —COSR 6 , —CSOR 6 , —CN, halogen R 6 represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms or a heterocyclic group having 4 to 20 carbon atoms; X represents a direct bond or a carbonyl group, and a represents an integer of 0 to 4.
 式(3)において、Rは、炭素数1~20のアルキル基、炭素数4~20の脂環式炭化水素基、炭素数6~30のアリール基、又は炭素数7~30のアリールアルキル基を表し、R及びRは、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基又は炭素数4~20の複素環基を表し、Xは、直接結合又はカルボニル基を示す。 In Formula (3), R 1 represents an alkyl group having 1 to 20 carbon atoms, an alicyclic hydrocarbon group having 4 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an arylalkyl having 7 to 30 carbon atoms. Each of R 3 and R 4 independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, or 4 to 4 carbon atoms; 20 represents a heterocyclic group, and X represents a direct bond or a carbonyl group.
 式(4)において、R、R及びRは、式(3)におけるR、R及びRと同義であり、Rは、-R、-OR、-SR、-COR、-CONR、-NRCOR、-OCOR、-COOR、-SCOR、-OCSR、-COSR、-CSOR、-CN、ハロゲン原子又は水酸基を表し、Rは、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基又は炭素数4~20の複素環基を表し、Xは、直接結合又はカルボニル基を表し、aは0~4の整数を表す。 In the formula (4), R 1, R 3 and R 4 have the same meanings as R 1, R 3 and R 4 in the formula (3), R 5 is, -R 6, -OR 6, -SR 6, Represents —COR 6 , —CONR 6 R 6 , —NR 6 COR 6 , —OCOR 6 , —COOR 6 , —SCOR 6 , —OCSR 6 , —COSR 6 , —CSOR 6 , —CN, a halogen atom or a hydroxyl group; R 6 represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms or a heterocyclic group having 4 to 20 carbon atoms, and X is a direct bond or Represents a carbonyl group, and a represents an integer of 0 to 4.
 上記式(1)及び式(2)において、R及びRは、それぞれ独立に、メチル基、エチル基、n-プロピル基、i-プロピル基、シクロヘキシル基又はフェニル基が好ましい。Rはメチル基、エチル基、フェニル基、トリル基又はキシリル基が好ましい。Rは炭素数1~6のアルキル基又はフェニル基が好ましい。Rはメチル基、エチル基、フェニル基、トリル基又はナフチル基が好ましい。Xは直接結合が好ましい。
 上記式(3)及び(4)において、Rは、それぞれ独立に、メチル基、エチル基、n-プロピル基、i-プロピル基、シクロヘキシル基又はフェニル基が好ましい。Rはメチル基、エチル基、フェニル基、トリル基又はキシリル基が好ましい。Rは炭素数1~6のアルキル基又はフェニル基が好ましい。Rはメチル基、エチル基、フェニル基、トリル基又はナフチル基が好ましい。Xは直接結合が好ましい。
 式(1)及び式(2)で表される化合物の具体例としては、特開2014-137466号公報の0076~0079段落に記載された化合物が挙げられる。この内容は本明細書に組み込まれる。
In the above formulas (1) and (2), R 1 and R 2 are preferably each independently a methyl group, ethyl group, n-propyl group, i-propyl group, cyclohexyl group or phenyl group. R 3 is preferably a methyl group, an ethyl group, a phenyl group, a tolyl group or a xylyl group. R 4 is preferably an alkyl group having 1 to 6 carbon atoms or a phenyl group. R 5 is preferably a methyl group, an ethyl group, a phenyl group, a tolyl group or a naphthyl group. X is preferably a direct bond.
In the above formulas (3) and (4), R 1 is preferably each independently a methyl group, ethyl group, n-propyl group, i-propyl group, cyclohexyl group or phenyl group. R 3 is preferably a methyl group, an ethyl group, a phenyl group, a tolyl group or a xylyl group. R 4 is preferably an alkyl group having 1 to 6 carbon atoms or a phenyl group. R 5 is preferably a methyl group, an ethyl group, a phenyl group, a tolyl group or a naphthyl group. X is preferably a direct bond.
Specific examples of the compounds represented by formula (1) and formula (2) include the compounds described in paragraphs 0076 to 0079 of JP-A No. 2014-137466. This content is incorporated herein.
 硬化性組成物に好ましく使用されるオキシム化合物の具体例を以下に示す。また、オキシム化合物としては、国際公開第2015-036910号のTable1に記載の化合物を用いることもでき、上記の内容は本明細書に組み込まれる。 Specific examples of oxime compounds preferably used in the curable composition are shown below. In addition, as the oxime compound, a compound described in Table 1 of International Publication No. 2015-036910 can also be used, and the above contents are incorporated herein.
Figure JPOXMLDOC01-appb-C000018

 
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000018

 
Figure JPOXMLDOC01-appb-C000019
 オキシム化合物は、350nm~500nmの波長領域に極大吸収波長を有するものが好ましく、360nm~480nmの波長領域に極大吸収波長を有するものがより好ましく、365nm及び405nmの吸光度が高いものが更に好ましい。
 オキシム化合物の365nm又は405nmにおけるモル吸光係数は、感度の観点から、1,000~300,000であることが好ましく、2,000~300,000であることがより好ましく、5,000~200,000であることが更に好ましい。
 化合物のモル吸光係数は、公知の方法を用いることができるが、例えば、紫外可視分光光度計(Varian社製Cary-5 spctrophotometer)にて、酢酸エチル溶媒を用い、0.01g/Lの濃度で測定することが好ましい。
 光重合開始剤は、必要に応じて2種以上を組み合わせて使用してもよい。
The oxime compound preferably has a maximum absorption wavelength in the wavelength region of 350 nm to 500 nm, more preferably has a maximum absorption wavelength in the wavelength region of 360 nm to 480 nm, and more preferably has a high absorbance at 365 nm and 405 nm.
The molar extinction coefficient at 365 nm or 405 nm of the oxime compound is preferably 1,000 to 300,000, more preferably 2,000 to 300,000, more preferably 5,000 to 200,000 from the viewpoint of sensitivity. More preferably, it is 000.
For the molar extinction coefficient of the compound, a known method can be used. It is preferable to measure.
You may use a photoinitiator in combination of 2 or more type as needed.
 また、光重合開始剤としては、特開第2008-260927号公報の0052段落、特開第201097210号公報の0033~0037段落、特開第2015-68893号公報の0044段落に記載の化合物を用いることもでき、上記の内容は本明細書に組み込まれる。 As the photopolymerization initiator, compounds described in JP-A-2008-260927, paragraph 0052, JP-A-201097210, paragraphs 0033 to 0037, and JP-A-2015-68893, paragraph 0044 are used. The above content is also incorporated herein.
〔任意成分〕
 硬化性組成物は、本発明の効果を奏する範囲内において、上記以外の成分を含有していてもよい。上記以外の成分としては、例えば、重合禁止剤、溶剤、着色剤、界面活性剤、紫外線吸収剤、シランカップリング剤、及び密着性改良剤等が挙げられる。以下では、硬化性組成物中に含有される任意成分について詳述する。
[Optional ingredients]
The curable composition may contain components other than those described above within the scope of the effects of the present invention. Examples of components other than the above include polymerization inhibitors, solvents, colorants, surfactants, ultraviolet absorbers, silane coupling agents, and adhesion improvers. Below, the arbitrary component contained in a curable composition is explained in full detail.
<重合禁止剤>
 硬化性組成物は、重合禁止剤を含有することが好ましい。
 硬化性組成物中における重合禁止剤の含有量は特に制限されないが、一般に、硬化性組成物の全固形分に対して、0.0001~0.5質量%が好ましく、0.001~0.2質量%がより好ましい。重合禁止剤は、1種を単独で用いても、2種以上を併用してもよい。2種以上の重合禁止剤を併用する場合には、合計含有量が上記範囲内であることが好ましい。
 重合禁止剤としては、分散組成物が含有し得る重合禁止剤として既に説明したとおりである。
<Polymerization inhibitor>
The curable composition preferably contains a polymerization inhibitor.
The content of the polymerization inhibitor in the curable composition is not particularly limited. 2 mass% is more preferable. A polymerization inhibitor may be used individually by 1 type, or may use 2 or more types together. When two or more polymerization inhibitors are used in combination, the total content is preferably within the above range.
As a polymerization inhibitor, it is as having already demonstrated as a polymerization inhibitor which a dispersion composition can contain.
<溶剤>
 硬化性組成物は、溶剤を含有することが好ましい。
 硬化性組成物中における溶剤の含有量は特に制限されないが、一般に、硬化性組成物の固形分が20~90質量%となるよう調整されるのが好ましく、30~90質量%となるよう調整されるのがより好ましい。溶剤は、1種を単独で用いても、2種以上を併用してもよい。2種以上の溶剤を併用する場合には、硬化性組成物の固形分が、合計含有量が上記範囲内であることが好ましい。
 溶剤としては、分散組成物が含有し得る溶剤として既に説明したとおりである。
<Solvent>
The curable composition preferably contains a solvent.
The content of the solvent in the curable composition is not particularly limited, but in general, the solid content of the curable composition is preferably adjusted to 20 to 90% by mass, and adjusted to be 30 to 90% by mass. More preferably. A solvent may be used individually by 1 type, or may use 2 or more types together. When using 2 or more types of solvent together, it is preferable that solid content of a curable composition is in the said range.
As a solvent, it is as having already demonstrated as a solvent which a dispersion composition can contain.
<着色剤>
 硬化性組成物は、着色剤を含有してもよい。
 硬化性組成物中における着色剤の含有量は特に制限されないが、一般に、硬化性組成物の全固形分に対して、0.0001~70質量%が好ましい。着色剤は、1種を単独で用いても、2種以上を併用してもよい。2種以上の着色剤を併用する場合には、合計含有量が上記範囲内であることが好ましい。
 着色剤としては、分散組成物が含有し得る溶剤として既に説明したとおりである。
<Colorant>
The curable composition may contain a colorant.
The content of the colorant in the curable composition is not particularly limited, but is generally preferably 0.0001 to 70% by mass with respect to the total solid content of the curable composition. A coloring agent may be used individually by 1 type, or may use 2 or more types together. When two or more colorants are used in combination, the total content is preferably within the above range.
As a coloring agent, it is as having already demonstrated as a solvent which a dispersion composition can contain.
<界面活性剤>
 硬化性組成物は、界面活性剤を含有してよい。界面活性剤は、硬化性組成物の塗布性向上に寄与する。
 上記硬化性組成物が、界面活性剤を含有する場合、界面活性剤の含有量は、硬化性組成物の全固形分に対して、0.001~2.0質量%が好ましい。
 界面活性剤は、1種を単独で用いても、2種以上を併用してもよい。界面活性剤を2種以上併用する場合は、合計量が上記範囲内であることが好ましい。
<Surfactant>
The curable composition may contain a surfactant. Surfactant contributes to the applicability | paintability improvement of a curable composition.
When the curable composition contains a surfactant, the content of the surfactant is preferably 0.001 to 2.0% by mass with respect to the total solid content of the curable composition.
Surfactant may be used individually by 1 type, or may use 2 or more types together. When two or more surfactants are used in combination, the total amount is preferably within the above range.
 界面活性剤としては、例えば、フッ素系界面活性剤、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、及びシリコーン系界面活性剤等が挙げられる。 Examples of the surfactant include fluorine surfactants, nonionic surfactants, cationic surfactants, anionic surfactants, and silicone surfactants.
 例えば、硬化性組成物がフッ素系界面活性剤を含有することで、硬化性組成物の液特性(特に、流動性)がより向上する。即ち、フッ素系界面活性剤を含有する硬化性組成物を用いて膜形成する場合、被塗布面と塗布液との界面張力を低下させることにより、被塗布面への濡れ性が改善され、被塗布面への塗布性が向上する。このため、少量の液量で数μm程度の薄膜を形成した場合であっても、厚さムラの少ない均一厚の膜形成をより好適に行える点で有効である。 For example, when the curable composition contains a fluorosurfactant, the liquid properties (particularly fluidity) of the curable composition are further improved. That is, when a film is formed using a curable composition containing a fluorosurfactant, wettability to the surface to be coated is improved by reducing the interfacial tension between the surface to be coated and the coating liquid. The coating property to the coated surface is improved. For this reason, even when a thin film of about several μm is formed with a small amount of liquid, it is effective in that a film having a uniform thickness with little thickness unevenness can be more suitably formed.
 フッ素系界面活性剤中のフッ素含有率は、3~40質量%が好適であり、より好ましくは5~30質量%であり、更に好ましくは7~25質量%である。フッ素含有率がこの範囲内であるフッ素系界面活性剤は、塗布膜の厚さの均一性及び/又は省液性の点で効果的であり、硬化性組成物中における溶解性も良好である。 The fluorine content in the fluorosurfactant is preferably 3 to 40% by mass, more preferably 5 to 30% by mass, and still more preferably 7 to 25% by mass. A fluorosurfactant having a fluorine content within this range is effective in terms of uniformity in the thickness of the coating film and / or liquid-saving properties, and has good solubility in the curable composition. .
 フッ素系界面活性剤としては、例えば、メガファックF171、同F172、同F173、同F176、同F177、同F141、同F142、同F143、同F144、同R30、同F437、同F475、同F479、同F482、同F554、同F780(以上、DIC(株)製)、フロラードFC430、同FC431、同FC171(以上、住友スリーエム(株)製)、サーフロンS-382、同SC-101、同SC-103、同SC-104、同SC-105、同SC-1068、同SC-381、同SC-383、同S-393、同KH-40(以上、旭硝子(株)製)、PF636、PF656、PF6320、PF6520、PF7002(OMNOVA社製)等が挙げられる。
 フッ素系界面活性剤としてブロックポリマーを用いることもでき、具体例としては、特開第2011-89090号公報に記載の化合物が挙げられる。
Examples of the fluorosurfactant include Megafac F171, F172, F173, F176, F176, F177, F141, F142, F143, F144, R30, F437, F475, F479, F482, F554, F780 (above DIC Corporation), Florad FC430, FC431, FC171 (Sumitomo 3M Limited), Surflon S-382, SC-101, SC- 103, SC-104, SC-105, SC-1068, SC-381, SC-383, S-393, K-H-40 (above, manufactured by Asahi Glass Co., Ltd.), PF636, PF656, PF6320, PF6520, PF7002 (made by OMNOVA) etc. are mentioned.
A block polymer can also be used as the fluorosurfactant, and specific examples thereof include compounds described in JP-A No. 2011-89090.
<紫外線吸収剤>
 硬化性組成物は、紫外線吸収剤を含有してもよい。これにより、硬化膜のパターンの形状をより優れた(精細な)ものにすることができる。
 紫外線吸収剤としては、サリシレート系、ベンゾフェノン系、ベンゾトリアゾール系、置換アクリロニトリル系、及びトリアジン系の紫外線吸収剤を使用することができる。これらの具体例としては、特開2012-068418号公報の段落0137~0142(対応するUS2012/0068292の段落0251~0254)の化合物が使用でき、これらの内容は本明細書に組み込まれる。
 他にジエチルアミノ-フェニルスルホニル系紫外線吸収剤(大東化学社製、商品名:UV-503)なども好適に用いられる。
 紫外線吸収剤としては、特開2012-32556号公報の段落0134~0148に例示される化合物が挙げられる。
 紫外線吸収剤の含有量は、硬化性組成物の全固形分に対して、0.001~15質量%が好ましく、0.01~10質量%がより好ましく、0.1~5質量%が更に好ましい。
<Ultraviolet absorber>
The curable composition may contain an ultraviolet absorber. Thereby, the shape of the pattern of a cured film can be made more excellent (fine).
As the ultraviolet absorber, salicylate, benzophenone, benzotriazole, substituted acrylonitrile, and triazine ultraviolet absorbers can be used. As specific examples thereof, compounds of paragraphs 0137 to 0142 (corresponding paragraphs 0251 to 0254 of US2012 / 0068292) of JP2012-068418A can be used, the contents of which are incorporated herein.
In addition, a diethylamino-phenylsulfonyl-based ultraviolet absorber (manufactured by Daito Chemical Co., Ltd., trade name: UV-503) is also preferably used.
Examples of the ultraviolet absorber include compounds exemplified in paragraphs 0134 to 0148 of JP2012-32556A.
The content of the ultraviolet absorber is preferably 0.001 to 15% by mass, more preferably 0.01 to 10% by mass, and further preferably 0.1 to 5% by mass with respect to the total solid content of the curable composition. preferable.
<シランカップリング剤>
 硬化性組成物はシランカップリング剤を含有してもよい。
 シランカップリング剤とは、分子中に加水分解性基とそれ以外の官能基とを含有する化合物である。なお、アルコキシ基等の加水分解性基は、珪素原子に結合している。
 加水分解性基とは、珪素原子に直結し、加水分解反応及び/又は縮合反応によってシロキサン結合を生じ得る置換基をいう。加水分解性基としては、例えば、ハロゲン原子、アルコキシ基、アシルオキシ基、及びアルケニルオキシ基が挙げられる。加水分解性基が炭素原子を含有する場合、その炭素数は6以下であることが好ましく、4以下であることがより好ましい。特に、炭素数4以下のアルコキシ基又は炭素数4以下のアルケニルオキシ基が好ましい。
 また、基板上に硬化膜を形成する場合、シランカップリング剤は基板と硬化膜間の密着性を向上させるため、フッ素原子及び珪素原子(ただし、加水分解性基が結合した珪素原子は除く)を含まないことが好ましく、フッ素原子、珪素原子(ただし、加水分解性基が結合した珪素原子は除く)、珪素原子で置換されたアルキレン基、炭素数8以上の直鎖状アルキル基、及び炭素数3以上の分岐鎖状アルキル基は含まないことが望ましい。
<Silane coupling agent>
The curable composition may contain a silane coupling agent.
A silane coupling agent is a compound containing a hydrolyzable group and other functional groups in the molecule. Note that a hydrolyzable group such as an alkoxy group is bonded to a silicon atom.
The hydrolyzable group refers to a substituent that is directly bonded to a silicon atom and can form a siloxane bond by a hydrolysis reaction and / or a condensation reaction. Examples of the hydrolyzable group include a halogen atom, an alkoxy group, an acyloxy group, and an alkenyloxy group. When the hydrolyzable group contains a carbon atom, the number of carbon atoms is preferably 6 or less, and more preferably 4 or less. In particular, an alkoxy group having 4 or less carbon atoms or an alkenyloxy group having 4 or less carbon atoms is preferable.
In addition, when forming a cured film on the substrate, the silane coupling agent improves the adhesion between the substrate and the cured film, so fluorine atoms and silicon atoms (however, excluding silicon atoms to which hydrolyzable groups are bonded) Is not contained, and is a fluorine atom, a silicon atom (excluding a silicon atom to which a hydrolyzable group is bonded), an alkylene group substituted with a silicon atom, a linear alkyl group having 8 or more carbon atoms, and carbon It is desirable not to include a branched alkyl group of several or more.
 硬化性組成物中におけるシランカップリング剤の含有量は、硬化性組成物中の全固形分に対して、0.1~10質量%が好ましく、0.5~8質量%がより好ましく、1.0~6質量%が更に好ましい。
 硬化性組成物は、シランカップリング剤を1種単独で含んでいてもよく、2種以上を含んでいてもよい。硬化性組成物がシランカップリング剤を2種以上含有する場合は、その合計が上記範囲内であればよい。
The content of the silane coupling agent in the curable composition is preferably 0.1 to 10% by mass, more preferably 0.5 to 8% by mass with respect to the total solid content in the curable composition. More preferably, the content is 0.0 to 6% by mass.
The curable composition may contain one silane coupling agent or two or more silane coupling agents. When a curable composition contains 2 or more types of silane coupling agents, the sum should just be in the said range.
<密着性改良剤>
 硬化性組成物は、密着性改良剤として、シランカップリング剤を含有してもよい。シランカップリング剤としては、例えば、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、ビニルトリメトキシシラン、及びビニルトリエトキシシラン等が挙げられる。
 密着性改良剤の含有量は、特に制限されないが、硬化性組成物の全固形分に対して0.02~20質量%が好ましい。
<Adhesion improver>
The curable composition may contain a silane coupling agent as an adhesion improver. Examples of the silane coupling agent include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, and 3-glycidoxypropylmethyldiethoxysilane. , Vinyltrimethoxysilane, vinyltriethoxysilane, and the like.
The content of the adhesion improver is not particularly limited, but is preferably 0.02 to 20% by mass with respect to the total solid content of the curable composition.
〔硬化性組成物の別の形態〕
 本発明の実施形態に係る硬化性組成物の別の形態としては、既に説明した分散組成物と、重合性化合物と、重合開始剤とを含有する硬化性組成物である。
 分散組成物、重合性化合物、及び重合開始剤については既に説明したとおりである。
 硬化性組成物中における各成分の含有量等についてはすでに説明したとおりである。
[Another form of curable composition]
Another form of the curable composition according to the embodiment of the present invention is a curable composition containing the dispersion composition described above, a polymerizable compound, and a polymerization initiator.
The dispersion composition, the polymerizable compound, and the polymerization initiator are as already described.
The content of each component in the curable composition is as already described.
〔硬化性組成物中における金属窒化物含有粒子の体積平均粒子径〕
 硬化性組成物中における金属窒化物含有粒子の体積平均粒子径は特に制限されないが、動的光散乱法を測定原理とする粒度分布計を用いて測定した、体積換算の累積90%粒子径(D90)が0.5μm未満が好ましく、0.2μm未満がより好ましい。
 硬化性組成物中における金属窒化物含有粒子の体積平均粒子径が0.5μm未満だと、硬化性組成物はより優れた本発明の効果を有する。
 D90の下限値は特に制限されないが、一般に0.01μm以上が好ましい。
[Volume average particle diameter of metal nitride-containing particles in curable composition]
The volume average particle size of the metal nitride-containing particles in the curable composition is not particularly limited, but a cumulative 90% particle size in terms of volume (measured using a particle size distribution meter based on the dynamic light scattering method) D90) is preferably less than 0.5 μm, and more preferably less than 0.2 μm.
When the volume average particle diameter of the metal nitride-containing particles in the curable composition is less than 0.5 μm, the curable composition has a more excellent effect of the present invention.
The lower limit of D90 is not particularly limited, but is generally preferably 0.01 μm or more.
[硬化性組成物の製造方法]
 硬化性組成物は、上記の各成分を公知の混合方法(例えば、攪拌機、ホモジナイザー、高圧乳化装置、湿式粉砕機、及び湿式分散機等を用いた混合方法)により混合して調製することができる。硬化性組成物は、既に説明した分散組成物と、上記各成分を混合して調製してもよい。また、硬化性組成物の製造方法は、既に説明した分散組成物の製造方法を含んでいてもよい。
 硬化性組成物の調製に際しては、各成分を一括配合してもよいし、各成分をそれぞれ、溶剤に溶解又は分散した後に逐次配合してもよい。配合する際の投入順序及び作業条件は特に制限されない。
[Method for producing curable composition]
The curable composition can be prepared by mixing the above components by a known mixing method (for example, a mixing method using a stirrer, a homogenizer, a high-pressure emulsifier, a wet pulverizer, a wet disperser, or the like). . The curable composition may be prepared by mixing the above-described dispersion composition and the above-described components. Moreover, the manufacturing method of a curable composition may include the manufacturing method of the dispersion composition already demonstrated.
In preparing the curable composition, each component may be blended at once, or each component may be blended sequentially after being dissolved or dispersed in a solvent. There are no particular restrictions on the order of introduction and working conditions when blending.
 硬化性組成物は、異物の除去又は欠陥の低減などの目的で、フィルタで濾過することが好ましい。フィルタとしては、従来からろ過用途等に用いられているものであれば特に限定されることなく用いることができる。例えば、PTFE(ポリテトラフルオロエチレン)等のフッ素樹脂、ナイロン等のポリアミド系樹脂、及びポリエチレン、ポリプロピレン(PP)等のポリオレフィン系樹脂(高密度、超高分子量を含む)等によるフィルタが挙げられる。これら素材の中でもポリプロピレン(高密度ポリプロピレンを含む)、ナイロンが好ましい。
 フィルタの孔径は、0.1~7.0μm程度が適しており、好ましくは0.2~2.5μm程度、より好ましくは0.2~1.5μm程度、更に好ましくは0.3~0.7μmである。この範囲とすることにより、顔料のろ過詰まりを抑えつつ、顔料に含まれる不純物及び凝集物など、微細な異物を確実に除去することが可能となる。
 フィルタを使用する際、異なるフィルタ(例えば第1のフィルタと第2のフィルタなど)を組み合わせてもよい。その際、第1のフィルタでのフィルタリングは、1回のみでもよいし、2回以上行ってもよい。異なるフィルタを組み合わせて2回以上フィルタリングを行う場合は1回目のフィルタリングの孔径より2回目以降の孔径が同じ、又は大きい方が好ましい。上述した範囲内で異なる孔径の第1のフィルタを組み合わせてもよい。ここでの孔径は、フィルタメーカーの公称値を参照することができる。市販のフィルタとしては、例えば、日本ポール株式会社、アドバンテック東洋株式会社、日本インテグリス株式会社(旧日本マイクロリス株式会社)又は株式会社キッツマイクロフィルタ等が提供する各種フィルタの中から選択することができる。
 第2のフィルタは、上述した第1のフィルタと同様の材料等で形成されたものを使用することができる。第2のフィルタの孔径は、0.2~10.0μm程度が適しており、好ましくは0.2~7.0μm程度、より好ましくは0.3~6.0μm程度である。
 硬化性組成物は、金属、ハロゲンを含む金属塩、酸、アルカリ等の不純物を含まないことが好ましい。これら材料に含まれる不純物の含有量は、1ppm以下が好ましく、1ppb以下がより好ましく、100ppt以下が更に好ましく、10ppt以下が特に好ましく、実質的に含まないこと(測定装置の検出限界以下であること)が最も好ましい。
 なお、上記不純物は、誘導結合プラズマ質量分析装置(横河アナリティカルシステムズ製、Agilent 7500cs型)により測定することができる。
The curable composition is preferably filtered with a filter for the purpose of removing foreign substances or reducing defects. Any filter can be used without particular limitation as long as it has been conventionally used for filtration. Examples thereof include a filter made of a fluororesin such as PTFE (polytetrafluoroethylene), a polyamide resin such as nylon, and a polyolefin resin (including high density and ultra high molecular weight) such as polyethylene and polypropylene (PP). Among these materials, polypropylene (including high density polypropylene) and nylon are preferable.
The filter has a pore diameter of about 0.1 to 7.0 μm, preferably about 0.2 to 2.5 μm, more preferably about 0.2 to 1.5 μm, and still more preferably 0.3 to 0.0 μm. 7 μm. By setting this range, it is possible to reliably remove fine foreign matters such as impurities and aggregates contained in the pigment while suppressing filtration clogging of the pigment.
When using filters, different filters (for example, a first filter and a second filter) may be combined. At that time, the filtering by the first filter may be performed only once or may be performed twice or more. When filtering two or more times by combining different filters, it is preferable that the second and subsequent pore diameters are the same or larger than the pore diameter of the first filtering. You may combine the 1st filter of a different hole diameter within the range mentioned above. The pore diameter here can refer to the nominal value of the filter manufacturer. As a commercially available filter, for example, it can be selected from various filters provided by Nippon Pole Co., Ltd., Advantech Toyo Co., Ltd., Japan Entegris Co., Ltd. (formerly Japan Microlith Co., Ltd.) or KITZ Micro Filter Co., Ltd. .
As the second filter, a filter formed of the same material as the first filter described above can be used. The pore size of the second filter is suitably about 0.2 to 10.0 μm, preferably about 0.2 to 7.0 μm, more preferably about 0.3 to 6.0 μm.
It is preferable that a curable composition does not contain impurities, such as a metal, the metal salt containing a halogen, an acid, and an alkali. The content of impurities contained in these materials is preferably 1 ppm or less, more preferably 1 ppb or less, still more preferably 100 ppt or less, particularly preferably 10 ppt or less, and substantially free (below the detection limit of the measuring device). ) Is most preferred.
The impurities can be measured by an inductively coupled plasma mass spectrometer (manufactured by Yokogawa Analytical Systems, Agilent 7500cs type).
[硬化膜、及び硬化膜の製造方法]
 本発明の実施形態に係る硬化膜は、上記硬化性組成物を硬化して得られた硬化膜である。硬化膜の厚みは特に制限されないが、一般に0.2~7μmが好ましく、0.4~5μmがより好ましい。
 上記厚みは平均厚みであり、硬化膜の任意の5点以上の厚みを測定し、それらを算術平均した値である。
[Curing film and method for producing cured film]
The cured film which concerns on embodiment of this invention is a cured film obtained by hardening | curing the said curable composition. The thickness of the cured film is not particularly limited, but is generally preferably 0.2 to 7 μm, more preferably 0.4 to 5 μm.
The above thickness is an average thickness, and is a value obtained by measuring the thicknesses of five or more arbitrary points of the cured film and arithmetically averaging them.
 硬化膜の製造方法は特に制限されないが、上述した硬化性組成物を基板上に塗布して塗膜を形成して、塗膜に対して硬化処理を施し、硬化膜を製造する方法が挙げられる。
 硬化処理の方法は特に制限されず、光硬化処理又は熱硬化処理が挙げられ、パターン形成が容易である点から、光硬化処理(特に、活性光線又は放射線を照射することによる硬化処理)が好ましい。
Although the manufacturing method in particular of a cured film is not restrict | limited, The method of apply | coating the curable composition mentioned above on a board | substrate, forming a coating film, performing a hardening process with respect to a coating film, and manufacturing a cured film is mentioned. .
The method of the curing treatment is not particularly limited, and examples thereof include a photocuring treatment or a thermosetting treatment, and a photocuring treatment (particularly a curing treatment by irradiation with actinic rays or radiation) is preferable from the viewpoint of easy pattern formation. .
 本発明の実施形態に係る硬化膜は、上記硬化性組成物を用いて形成された硬化性組成物層を硬化して得られた硬化膜である。
 硬化膜の製造方法は特に制限されないが、以下の工程を含むことが好ましい。
・硬化性組成物層形成工程
・露光工程
・現像工程
 以下、各工程について説明する。
The cured film which concerns on embodiment of this invention is a cured film obtained by hardening | curing the curable composition layer formed using the said curable composition.
Although the manufacturing method in particular of a cured film is not restrict | limited, It is preferable that the following processes are included.
-Curable composition layer formation process-Exposure process-Development process Hereinafter, each process is demonstrated.
<硬化性組成物層形成工程>
 硬化性組成物層形成工程は、上記硬化性組成物を用いて、硬化性組成物層を形成する工程である。硬化性組成物を用いて、硬化性組成物層を形成する工程としては、例えば、基板上に、硬化性組成物を塗布して、硬化性組成物層を形成する工程が挙げられる。
 基板の種類は特に制限されないが、固体撮像素子として用いる場合は、例えば、ケイ素基板が挙げられ、カラーフィルタ(固体撮像素子用カラーフィルタを含む)として用いる場合には、ガラス基板(ガラスウェハ)等が挙げられる。
 基板上への硬化性組成物の塗布方法としては、スピンコート、スリット塗布、インクジェット法、スプレー塗布、回転塗布、流延塗布、ロール塗布、及びスクリーン印刷法等の各種の塗布方法を適用することができる。
 基板上に塗布された硬化性組成物は、通常、70~150℃で1~4分程度の条件下で乾燥され、硬化性組成物層が形成される。
<Curable composition layer forming step>
A curable composition layer formation process is a process of forming a curable composition layer using the said curable composition. As a process of forming a curable composition layer using a curable composition, the process of apply | coating a curable composition on a board | substrate and forming a curable composition layer is mentioned, for example.
The type of substrate is not particularly limited, but when used as a solid-state imaging device, for example, a silicon substrate is used. When used as a color filter (including a color filter for a solid-state imaging device), a glass substrate (glass wafer) or the like Is mentioned.
As a coating method of the curable composition on the substrate, various coating methods such as spin coating, slit coating, ink jet method, spray coating, spin coating, cast coating, roll coating, and screen printing are applied. Can do.
The curable composition applied on the substrate is usually dried at 70 to 150 ° C. for about 1 to 4 minutes to form a curable composition layer.
<露光工程>
 露光工程では、硬化性組成物層形成工程において形成された硬化性組成物層に、パターン状の開口部を備えるフォトマスクを介して、活性光線又は放射線を照射して露光し、光照射された硬化性組成物層だけを硬化させる。
 露光は放射線の照射により行うことが好ましく、露光に際して用いることができる放射線としては、特に、g線、h線、及びi線等の紫外線が好ましく用いられ、光源としては高圧水銀灯が好まれる。照射強度は5~1500mJ/cmが好ましく、10~1000mJ/cmがより好ましい。
<Exposure process>
In the exposure step, the curable composition layer formed in the curable composition layer forming step was exposed to light by irradiating actinic rays or radiation through a photomask having a pattern-shaped opening, and was irradiated with light. Only the curable composition layer is cured.
The exposure is preferably performed by irradiation of radiation. As radiation that can be used for exposure, ultraviolet rays such as g-line, h-line, and i-line are preferably used, and a high-pressure mercury lamp is preferable as a light source. The irradiation intensity is preferably 5 ~ 1500mJ / cm 2, more preferably 10 ~ 1000mJ / cm 2.
<現像工程>
 露光工程に次いで、現像処理(現像工程)を行い、露光工程における光未照射部分を現像液に溶出させる。これにより、光硬化した部分だけが残る。
 現像液としては、アルカリ現像液を用いてもよい。無機アルカリ現像液又は有機アルカリ現像液を用いることができるが、有機アルカリ現像液を用いることが好ましい。現像温度は通常20~40℃が好ましく、現像時間は20~180秒が好ましい。
 無機アルカリ現像液としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム、硅酸ナトリウム、及びメタ硅酸ナトリウム等のアルカリ性化合物を、濃度が0.001~10質量%、好ましくは0.005~0.5質量%となるように溶解したアルカリ水溶液が挙げられる。
 有機アルカリ現像液としては、アンモニア水、エチルアミン、ジエチルアミン、ジメチルエタノールアミン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド、コリン、ピロール、ピペリジン、及び1,8-ジアザビシクロ-[5,4,0]-7-ウンデセン等のアルカリ性化合物を、濃度が0.001~10質量%、好ましくは0.005~0.5質量%となるように溶解したアルカリ水溶液が挙げられる。
 アルカリ水溶液には、例えば、メタノール、エタノール等の水溶性有機溶剤、及び/又は界面活性剤等を適量添加することもできる。なお、このようなアルカリ水溶液からなる現像液を使用した場合には、一般に現像後に硬化膜を純水で洗浄(リンス)する。
<Development process>
Subsequent to the exposure step, development processing (development step) is performed to elute the light non-irradiated portion in the exposure step into the developer. Thereby, only the photocured part remains.
An alkaline developer may be used as the developer. An inorganic alkali developer or an organic alkali developer can be used, but an organic alkali developer is preferably used. The development temperature is usually preferably 20 to 40 ° C., and the development time is preferably 20 to 180 seconds.
As the inorganic alkaline developer, for example, an alkaline compound such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium hydrogen carbonate, sodium oxalate, and sodium metasuccinate, the concentration is preferably 0.001 to 10% by mass, preferably Is an alkaline aqueous solution dissolved so as to be 0.005 to 0.5% by mass.
Organic alkali developers include ammonia water, ethylamine, diethylamine, dimethylethanolamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethylammonium hydroxide, choline, pyrrole , Piperidine, and alkaline compounds such as 1,8-diazabicyclo- [5,4,0] -7-undecene have a concentration of 0.001 to 10% by mass, preferably 0.005 to 0.5% by mass. An aqueous alkali solution dissolved in this manner can be mentioned.
For example, an appropriate amount of a water-soluble organic solvent such as methanol and ethanol, and / or a surfactant can be added to the alkaline aqueous solution. When a developer composed of such an alkaline aqueous solution is used, the cured film is generally washed (rinsed) with pure water after development.
 なお、硬化膜の製造方法は、その他の工程を含有してもよい。
 その他の工程としては、特に制限はなく、目的に応じて適宜選択することができる。
 その他の工程としては、例えば、基材の表面処理工程、前加熱工程(プリベーク工程)、後加熱工程(ポストベーク工程)等が挙げられる。
 前加熱工程、及び後加熱工程における加熱温度は、80~300℃が好ましい。上限は、220℃以下がより好ましい。下限は90℃以上がより好ましい。
 前加熱工程及び後加熱工程における加熱時間は、30~300秒が好ましい。
In addition, the manufacturing method of a cured film may contain another process.
There is no restriction | limiting in particular as another process, According to the objective, it can select suitably.
Examples of the other steps include a substrate surface treatment step, a preheating step (pre-baking step), and a post-heating step (post-baking step).
The heating temperature in the preheating step and the postheating step is preferably 80 to 300 ° C. The upper limit is more preferably 220 ° C. or lower. The lower limit is more preferably 90 ° C. or higher.
The heating time in the preheating step and the postheating step is preferably 30 to 300 seconds.
〔硬化膜の物性〕
・OD(Optical Density)
 硬化膜は、より優れた遮光性を有する点で、400~1200nmの波長領域における膜厚1.0μmあたりの光学濃度(OD:Optical Density)が、2.0超が好ましく、3.0超がより好ましい。なお、上限値は特に制限されないが、一般に10以下が好ましい。硬化膜は、遮光膜として好ましく用いることができる。
 なお、本明細書において、光学濃度とは、実施例に記載された方法により測定した光学濃度を意図する。本明細書において、400~1200nmの波長領域における膜厚1.0μmあたりの光学濃度が、3.0超とは、波長400~1200nmの全域において、膜厚1.0μmあたりの光学濃度が3.0超であることを意図する。
[Physical properties of cured film]
・ OD (Optical Density)
The cured film has an excellent light-shielding property, and the optical density (OD: Optical Density) per film thickness of 1.0 μm in the wavelength region of 400 to 1200 nm is preferably more than 2.0, more than 3.0. More preferred. The upper limit is not particularly limited, but is generally preferably 10 or less. The cured film can be preferably used as a light shielding film.
In addition, in this specification, an optical density intends the optical density measured by the method described in the Example. In this specification, the optical density per film thickness of 1.0 μm in the wavelength region of 400 to 1200 nm is more than 3.0. The optical density per 1.0 μm of film thickness in the entire wavelength range of 400 to 1200 nm is 3. Intended to be greater than zero.
 硬化膜は、表面凹凸構造を有することが好ましい。そうすることで、遮光層の反射率を低減することができる。遮光層そのものの表面に凹凸構造を有するものであっても、遮光層上に別の層を設けて凹凸構造を付与しても良い。表面凹凸構造の形状は特に限定されないが、表面粗さが0.55μm以上1.5μm以下の範囲であることが好ましい。
 遮光層の反射率は、5%以下であることが好ましく、3%以下であることがより好ましく、2%以下であることが更に好ましい。
 表面凹凸構造を作製する方法は特に限定されないが、遮光層又はそれ以外の層に、有機フィラーや無機フィラーを含有させる方法や、露光現像を利用したリソグラフィー法や、エッチングやスパッタ、ナノインプリント法などで遮光層又はそれ以外の層の表面を粗面化する方法であっても良い。
 また、硬化膜の反射率を低減させる方法としては、上記以外に、遮光層上に低屈折率層を設ける方法や、更に屈折率の異なる層(例えば、高屈折率層)を複数設ける方法や、例えば特開2015-1654号公報に記載の、低光学濃度層と高光学濃度層とを形成する方法が挙げられる(この場合、黒色顔料として、本発明の3~11族の遷移金属の窒化物を含有する、金属窒化物含有粒子を用いても良い)。
The cured film preferably has a surface uneven structure. By doing so, the reflectance of a light shielding layer can be reduced. Even if the surface of the light shielding layer itself has a concavo-convex structure, another layer may be provided on the light shielding layer to provide the concavo-convex structure. The shape of the surface concavo-convex structure is not particularly limited, but the surface roughness is preferably in the range of 0.55 μm to 1.5 μm.
The reflectance of the light shielding layer is preferably 5% or less, more preferably 3% or less, and still more preferably 2% or less.
The method for producing the surface concavo-convex structure is not particularly limited, but includes a method of adding an organic filler or an inorganic filler to the light-shielding layer or other layers, a lithography method using exposure and development, etching, sputtering, nanoimprint method, etc. A method of roughening the surface of the light shielding layer or other layers may also be used.
Moreover, as a method for reducing the reflectance of the cured film, in addition to the above, a method of providing a low refractive index layer on the light shielding layer, a method of providing a plurality of layers having different refractive indexes (for example, a high refractive index layer), For example, there is a method for forming a low optical density layer and a high optical density layer described in JP-A-2015-1654 (in this case, as a black pigment, nitriding a transition metal of Group 3 to 11 of the present invention) Metal nitride-containing particles containing the product may be used).
 硬化膜は、パーソナルコンピュータ、タブレット、携帯電話、スマートフォン、及びデジタルカメラ等のポータブル機器;プリンタ複合機、及びスキャナ等のOA(Office Automation)機器;監視カメラ、バーコードリーダ、現金自動預け払い機(ATM:automated teller machine)、ハイスピードカメラ、及び顔画像認証を使用した本人認証機能を有する機器等の産業用機器;車載用カメラ機器;内視鏡、カプセル内視鏡、及びカテーテル等の医療用カメラ機器;生体センサ、バイオセンサー、軍事偵察用カメラ、立体地図用カメラ、気象及び海洋観測カメラ、陸地資源探査カメラ、並びに宇宙の天文及び深宇宙ターゲット用の探査カメラ等の宇宙用機器;等に使用される光学フィルタ及びモジュールの遮光部材及び遮光膜、更には反射防止部材及び反射防止膜に好適である。 Hardened films are portable devices such as personal computers, tablets, mobile phones, smart phones, and digital cameras; OA (Office Automation) devices such as printer multifunction devices and scanners; surveillance cameras, barcode readers, automatic teller machines ( ATM (automated teller machine), high-speed camera, and industrial equipment such as equipment with identity authentication function using facial image authentication; in-vehicle camera equipment; medical equipment such as endoscope, capsule endoscope, and catheter Camera equipment; Space sensors such as biosensors, biosensors, military reconnaissance cameras, 3D map cameras, weather and ocean observation cameras, land resource exploration cameras, and exploration cameras for space astronomy and deep space targets; Light filter member and light shield for optical filter and module used And further is suitable for anti-reflection member and the antireflection film.
 硬化膜は、マイクロLED(Light Emitting Diode)及びマイクロOLED(Organic Light Emitting Diode)などの用途にも用いることができる。上記硬化膜は、マイクロLED及びマイクロOLEDに使用される光学フィルタ及び光学フィルムのほか、遮光機能又は反射防止機能を付与する部材に対して好適である。
 マイクロLED及びマイクロOLEDの例としては、特表2015-500562号及び特表2014-533890に記載されたものが挙げられる。
The cured film can also be used for applications such as micro LED (Light Emitting Diode) and micro OLED (Organic Light Emitting Diode). The cured film is suitable for members that provide a light shielding function or an antireflection function, in addition to optical filters and optical films used in micro LEDs and micro OLEDs.
Examples of the micro LED and the micro OLED include those described in JP-T-2015-500562 and JP-T-2014-533890.
 硬化膜は、量子ドットディスプレイに使用される光学フィルタ及び光学フィルムとして好適である。また、遮光機能及び反射防止機能を付与する部材として好適である。
 量子ドットディスプレイの例としては、米国特許出願公開第2013/0335677号、米国特許出願公開第2014/0036536号、米国特許出願公開第2014/0036203号、及び米国特許出願公開第2014/0035960号に記載されたものが挙げられる。
The cured film is suitable as an optical filter and an optical film used for a quantum dot display. Moreover, it is suitable as a member which provides a light shielding function and an antireflection function.
Examples of quantum dot displays are described in US Patent Application Publication No. 2013/0335677, US Patent Application Publication No. 2014/0036536, US Patent Application Publication No. 2014/0036203, and US Patent Application Publication No. 2014/0035960. The thing which was done is mentioned.
[固体撮像装置、及び固体撮像素子]
 本発明の実施形態に係る固体撮像装置、及び固体撮像素子は、上記硬化膜を含有する。固体撮像素子が硬化膜を含有する形態は特に制限されず、例えば、基板上に、固体撮像素子(CCDイメージセンサ、CMOSイメージセンサ等)の受光エリアを構成する複数のフォトダイオード及びポリシリコン等からなる受光素子を有し、支持体の受光素子形成面側(例えば、受光部以外の部分及び/又は色調整用画素等)又は該形成面の反対側に本発明の硬化膜を備えて構成したものが挙げられる。
 固体撮像装置は、上記固体撮像素子を含有する。
[Solid-state imaging device and solid-state imaging device]
A solid-state imaging device and a solid-state imaging device according to an embodiment of the present invention contain the cured film. The form in which the solid-state imaging device contains a cured film is not particularly limited. For example, the solid-state imaging device includes a plurality of photodiodes and polysilicon constituting a light receiving area of a solid-state imaging device (CCD image sensor, CMOS image sensor, etc.) on a substrate. And having the cured film of the present invention on the light receiving element forming surface side of the support (for example, the portion other than the light receiving portion and / or the color adjustment pixel) or the opposite side of the forming surface. Things.
The solid-state imaging device contains the solid-state imaging element.
 固体撮像装置、及び固体撮像素子の構成例を図1~図2を参照して説明する。なお、図1~図2では、各部を明確にするため、相互の厚み及び/又は幅の比率は無視して一部誇張して表示している。
 図1に示すように、固体撮像装置100は、矩形状の固体撮像素子101と、固体撮像素子101の上方に保持され、この固体撮像素子101を封止する透明なカバーガラス103とを備えている。更に、このカバーガラス103上には、スペーサー104を介してレンズ層111が重ねて設けられている。レンズ層111は、支持体113とレンズ材112とで構成されている。レンズ層111は、支持体113とレンズ材112とが一体成形された構成でもよい。レンズ層111の周縁領域に迷光が入射すると光の拡散によりレンズ材112での集光の効果が弱くなり、撮像部102に届く光が低減する。また、迷光によるノイズの発生も生じる。そのため、このレンズ層111の周縁領域は、遮光膜114が設けられて遮光されている。本発明の実施形態に係る硬化膜は上記遮光膜114としても用いることができる。
Configuration examples of the solid-state imaging device and the solid-state imaging device will be described with reference to FIGS. In FIG. 1 and FIG. 2, in order to clarify each part, the ratio of the thickness and / or width is disregarded and partly exaggerated.
As shown in FIG. 1, the solid-state imaging device 100 includes a rectangular solid-state imaging element 101 and a transparent cover glass 103 that is held above the solid-state imaging element 101 and seals the solid-state imaging element 101. Yes. Further, a lens layer 111 is provided on the cover glass 103 with a spacer 104 interposed therebetween. The lens layer 111 includes a support body 113 and a lens material 112. The lens layer 111 may have a configuration in which the support 113 and the lens material 112 are integrally formed. When stray light is incident on the peripheral region of the lens layer 111, the effect of condensing light on the lens material 112 is weakened due to light diffusion, and light reaching the imaging unit 102 is reduced. In addition, noise is generated due to stray light. Therefore, the peripheral region of the lens layer 111 is shielded from light by providing a light shielding film 114. The cured film according to the embodiment of the present invention can also be used as the light shielding film 114.
 固体撮像素子101は、その受光面となる撮像部102で結像した光学像を光電変換して、画像信号として出力する。この固体撮像素子101は、2枚の基板を積層した積層基板105を備えている。積層基板105は、同サイズの矩形状のチップ基板106及び回路基板107からなり、チップ基板106の裏面に回路基板107が積層されている。 The solid-state imaging device 101 photoelectrically converts an optical image formed by the imaging unit 102 serving as a light receiving surface thereof and outputs it as an image signal. The solid-state imaging device 101 includes a laminated substrate 105 in which two substrates are laminated. The laminated substrate 105 includes a rectangular chip substrate 106 and a circuit substrate 107 having the same size, and the circuit substrate 107 is laminated on the back surface of the chip substrate 106.
 チップ基板106として用いられる基板の材料は特に制限されず、公知の材料を用いることができる。 The material of the substrate used as the chip substrate 106 is not particularly limited, and a known material can be used.
 チップ基板106の表面中央部には、撮像部102が設けられている。また、撮像部102の周縁領域に迷光が入射すると、この周縁領域内の回路から暗電流(ノイズ)が発生するため、この周縁領域は、遮光膜115が設けられて遮光されている。本発明の実施形態に係る硬化膜は遮光膜115として用いることもできる。 An imaging unit 102 is provided at the center of the surface of the chip substrate 106. Further, when stray light is incident on the peripheral area of the imaging unit 102, dark current (noise) is generated from a circuit in the peripheral area. Therefore, the peripheral area is shielded from light by providing a light shielding film 115. The cured film according to the embodiment of the present invention can also be used as the light shielding film 115.
 チップ基板106の表面縁部には、複数の電極パッド108が設けられている。電極パッド108は、チップ基板106の表面に設けられた図示しない信号線(ボンディングワイヤでも可)を介して、撮像部102に電気的に接続されている。 A plurality of electrode pads 108 are provided on the surface edge of the chip substrate 106. The electrode pad 108 is electrically connected to the imaging unit 102 via a signal line (not shown) provided on the surface of the chip substrate 106 (which may be a bonding wire).
 回路基板107の裏面には、各電極パッド108の略下方位置にそれぞれ外部接続端子109が設けられている。各外部接続端子109は、積層基板105を垂直に貫通する貫通電極110を介して、それぞれ電極パッド108に接続されている。各外部接続端子109は、図示しない配線を介して、固体撮像素子101の駆動を制御する制御回路、及び固体撮像素子101から出力される撮像信号に画像処理を施す画像処理回路等に接続されている。 External connection terminals 109 are provided on the back surface of the circuit board 107 at positions substantially below the electrode pads 108, respectively. Each external connection terminal 109 is connected to an electrode pad 108 via a through electrode 110 that vertically penetrates the multilayer substrate 105. Each external connection terminal 109 is connected to a control circuit that controls driving of the solid-state imaging device 101 and an image processing circuit that performs image processing on an imaging signal output from the solid-state imaging device 101 via a wiring (not shown). Yes.
 図2に示すように、撮像部102は、受光素子201、カラーフィルタ202、マイクロレンズ203等の基板204上に設けられた各部から構成される。カラーフィルタ202は、青色画素205b、赤色画素205r、緑色画素205g、及びブラックマトリクス205bmを有している。本発明の実施形態に係る硬化膜は、ブラックマトリクス205bmとして用いることもできる。 As shown in FIG. 2, the imaging unit 102 is configured by each unit provided on a substrate 204 such as a light receiving element 201, a color filter 202, and a microlens 203. The color filter 202 includes a blue pixel 205b, a red pixel 205r, a green pixel 205g, and a black matrix 205bm. The cured film according to the embodiment of the present invention can also be used as the black matrix 205bm.
 基板204の材料としては、前述のチップ基板106と同様の材料を用いることができる。基板204の表層にはpウェル層206が形成されている。このpウェル層26内には、n型層からなり光電変換により信号電荷を生成して蓄積する受光素子201が正方格子状に配列形成されている。 As the material of the substrate 204, the same material as that of the above-described chip substrate 106 can be used. A p-well layer 206 is formed on the surface layer of the substrate 204. In the p-well layer 26, light receiving elements 201, which are n-type layers and generate and store signal charges by photoelectric conversion, are arranged in a square lattice pattern.
 受光素子201の一方の側方には、pウェル層206の表層の読み出しゲート部207を介して、n型層からなる垂直転送路208が形成されている。受光素子201の他方の側方には、p型層からなる素子分離領域209を介して、隣接画素に属する垂直転送路208が形成されている。読み出しゲート部207は、受光素子201に蓄積された信号電荷を垂直転送路208に読み出すためのチャネル領域である。 On one side of the light receiving element 201, a vertical transfer path 208 made of an n-type layer is formed via a readout gate portion 207 on the surface layer of the p-well layer 206. On the other side of the light receiving element 201, a vertical transfer path 208 belonging to an adjacent pixel is formed via an element isolation region 209 made of a p-type layer. The read gate unit 207 is a channel region for reading signal charges accumulated in the light receiving element 201 to the vertical transfer path 208.
 基板204の表面上には、ONO(Oxide-Nitride-Oxide)膜からなるゲート絶縁膜210が形成されている。このゲート絶縁膜210上には、垂直転送路208、読み出しゲート部207、及び素子分離領域209の略直上を覆うように、ポリシリコン又はアモルファスシリコンからなる垂直転送電極211が形成されている。垂直転送電極211は、垂直転送路208を駆動して電荷転送を行わせる駆動電極と、読み出しゲート部207を駆動して信号電荷読み出しを行わせる読み出し電極として機能する。信号電荷は、垂直転送路208から図示しない水平転送路及び出力部(フローティングディフュージョンアンプ)に順に転送された後、電圧信号として出力される。 A gate insulating film 210 made of an ONO (Oxide-Nitride-Oxide) film is formed on the surface of the substrate 204. A vertical transfer electrode 211 made of polysilicon or amorphous silicon is formed on the gate insulating film 210 so as to cover the vertical transfer path 208, the read gate portion 207, and the element isolation region 209. The vertical transfer electrode 211 functions as a drive electrode that drives the vertical transfer path 208 to perform charge transfer, and a read electrode that drives the read gate unit 207 to read signal charges. The signal charges are sequentially transferred from the vertical transfer path 208 to a horizontal transfer path (not shown) and an output unit (floating diffusion amplifier), and then output as a voltage signal.
 垂直転送電極211上には、その表面を覆うように遮光膜212が形成されている。遮光膜212は、受光素子201の直上位置に開口部を有し、それ以外の領域を遮光している。本発明の実施形態に係る硬化膜は、遮光膜212として用いることもできる。
 遮光膜212上には、BPSG(borophospho silicate glass)からなる絶縁膜213、P-SiNからなる絶縁膜(パシベーション膜)214、透明樹脂等からなる平坦化膜215からなる透明な中間層が設けられている。カラーフィルタ202は、中間層上に形成されている。
A light shielding film 212 is formed on the vertical transfer electrode 211 so as to cover the surface thereof. The light shielding film 212 has an opening at a position directly above the light receiving element 201 and shields light from other areas. The cured film according to the embodiment of the present invention can also be used as the light shielding film 212.
On the light shielding film 212, an insulating film 213 made of BPSG (borophosphosilicate glass), an insulating film (passivation film) 214 made of P-SiN, and a transparent intermediate layer made of a planarizing film 215 made of transparent resin or the like are provided. ing. The color filter 202 is formed on the intermediate layer.
[ブラックマトリクス]
 ブラックマトリクスは、本発明の実施形態に係る硬化膜を含有する。ブラックマトリクスは、カラーフィルタ、固体撮像素子、及び液晶表示装置に含有されることがある。
 ブラックマトリクスとしては、上記で既に説明したもの;液晶表示装置等の表示装置の周縁部に設けられた黒色の縁;赤、青、及び緑の画素間の格子状、及び/又はストライプ状の黒色の部分;TFT(thin film transistor)遮光のためのドット状、及び/又は線状の黒色パターン;等が挙げられる。このブラックマトリクスの定義については、例えば、菅野泰平著、「液晶ディスプレイ製造装置用語辞典」、第2版、日刊工業新聞社、1996年、p.64に記載がある。
 ブラックマトリクスは表示コントラストを向上させるため、また薄膜トランジスタ(TFT)を用いたアクティブマトリックス駆動方式の液晶表示装置の場合には光の電流リークによる画質低下を防止するため、高い遮光性(光学濃度ODで3以上)を有することが好ましい。
[Black matrix]
A black matrix contains the cured film which concerns on embodiment of this invention. The black matrix may be contained in a color filter, a solid-state image sensor, and a liquid crystal display device.
As the black matrix, those already described above; black edges provided at the peripheral edge of a display device such as a liquid crystal display device; grids between red, blue, and green pixels, and / or striped blacks A dot-like and / or linear black pattern for light shielding a TFT (thin film transistor). For the definition of this black matrix, see Taihei Kanno, “Liquid Crystal Display Manufacturing Dictionary”, 2nd edition, Nikkan Kogyo Shimbun, 1996, p. 64.
The black matrix improves the display contrast, and in the case of an active matrix liquid crystal display device using a thin film transistor (TFT), in order to prevent deterioration in image quality due to light current leakage, it has a high light shielding property (with an optical density OD). 3 or more).
 ブラックマトリクスの製造方法は特に制限されないが、上記の硬化膜の製造方法と同様の方法により製造することができる。具体的には、基板に硬化性組成物を塗布して、硬化性組成物層を形成し、露光、及び現像してパターン状の硬化膜(ブラックマトリクス)を製造することができる。なお、ブラックマトリクスとして用いられる硬化膜の膜厚としては、0.1~4.0μmが好ましい。 The manufacturing method of the black matrix is not particularly limited, but can be manufactured by the same method as the manufacturing method of the cured film. Specifically, a curable composition is applied to a substrate to form a curable composition layer, and exposure and development can be performed to produce a patterned cured film (black matrix). The thickness of the cured film used as the black matrix is preferably 0.1 to 4.0 μm.
 基板の材料としては、特に制限されないが、可視光(波長:400~800nm)に対して80%以上の透過率を有することが好ましい。このような材料としては、具体的には、例えば、ソーダライムガラス、無アルカリガラス、石英ガラス、及びホウケイ酸ガラス等のガラス;ポリエステル系樹脂、及びポリオレフィン系樹脂などのプラスチック;等が挙げられ、耐薬品性、及び耐熱性の観点から、無アルカリガラス、又は石英ガラス等が好ましい。 The material of the substrate is not particularly limited, but preferably has a transmittance of 80% or more with respect to visible light (wavelength: 400 to 800 nm). Specific examples of such materials include glass such as soda lime glass, alkali-free glass, quartz glass, and borosilicate glass; plastics such as polyester resins and polyolefin resins; From the viewpoint of chemical resistance and heat resistance, alkali-free glass or quartz glass is preferred.
[カラーフィルタ]
 本発明の実施形態に係るカラーフィルタは、硬化膜を含有する。
 カラーフィルタが硬化膜を含有する形態としては、特に制限されないが、基板と、上記ブラックマトリクスとを備えるカラーフィルタが挙げられる。すなわち、基板上に形成された上記ブラックマトリクスの開口部に形成された赤色、緑色、及び青色の着色画素とを備えるカラーフィルタが例示できる。
[Color filter]
The color filter according to the embodiment of the present invention contains a cured film.
The form in which the color filter contains a cured film is not particularly limited, and examples thereof include a color filter including a substrate and the black matrix. That is, a color filter including red, green, and blue colored pixels formed in the openings of the black matrix formed on the substrate can be exemplified.
 ブラックマトリクス(硬化膜)を含有するカラーフィルタは、例えば、以下の方法により製造することができる。
 まず、基板上に形成されたパターン状のブラックマトリクスの開口部に、カラーフィルタの各着色画素に対応する顔料を含有した樹脂組成物の塗膜(樹脂組成物層)を形成する。なお、各色用樹脂組成物は特に制限されず、公知の樹脂組成物を用いることができるが、本発明の実施形態に係る硬化性組成物において、金属窒化物含有粒子を、各画素に対応した着色剤に置き換えたものを用いることが好ましい。
 次に、樹脂組成物層に対して、ブラックマトリクスの開口部に対応したパターンを有するフォトマスクを介して露光する。次いで、現像処理により未露光部を除去した後、ベークすることでブラックマトリクスの開口部に着色画素を形成することができる。一連の操作を、例えば、赤色、緑色、及び青色顔料を含有した各色用樹脂組成物を用いて行うことにより、赤色、緑色、及び青色画素を有するカラーフィルタを製造することができる。
A color filter containing a black matrix (cured film) can be produced, for example, by the following method.
First, a coating film (resin composition layer) of a resin composition containing a pigment corresponding to each colored pixel of a color filter is formed in an opening of a patterned black matrix formed on a substrate. In addition, the resin composition for each color is not particularly limited, and a known resin composition can be used. In the curable composition according to the embodiment of the present invention, the metal nitride-containing particles correspond to each pixel. It is preferable to use a colorant replaced.
Next, it exposes with respect to the resin composition layer through the photomask which has a pattern corresponding to the opening part of a black matrix. Next, after removing the unexposed portions by development processing, the colored pixels can be formed in the openings of the black matrix by baking. For example, a color filter having red, green, and blue pixels can be manufactured by performing a series of operations using a resin composition for each color containing red, green, and blue pigments, for example.
[液晶表示装置]
 本発明の実施形態に係る液晶表示装置は、硬化膜を含有する。液晶表示装置が硬化膜を含有する形態は特に制限されないが、すでに説明したブラックマトリクス(硬化膜)を含有するカラーフィルタを含有する形態が挙げられる。
[Liquid Crystal Display]
The liquid crystal display device according to the embodiment of the present invention contains a cured film. Although the form in which a liquid crystal display device contains a cured film is not restrict | limited, The form containing the color filter containing the black matrix (cured film) already demonstrated is mentioned.
 本実施形態に係る液晶表示装置としては、例えば、対向して配置された一対の基板と、それらの基板の間に封入されている液晶化合物とを備える形態が挙げられる。上記基板としては、ブラックマトリクス用の基板として既に説明したとおりである。 As the liquid crystal display device according to the present embodiment, for example, a mode provided with a pair of substrates arranged opposite to each other and a liquid crystal compound sealed between the substrates can be mentioned. The substrate is as already described as the substrate for the black matrix.
 上記液晶表示装置の具体的な形態としては、例えば、使用者側から、偏光板/基板/カラーフィルタ/透明電極層/配向膜/液晶層/配向膜/透明電極層/TFT(Thin Film Transistor)素子/基板/偏光板/バックライトユニットをこの順に含有する積層体が挙げられる。 As a specific form of the liquid crystal display device, for example, from the user side, a polarizing plate / substrate / color filter / transparent electrode layer / alignment film / liquid crystal layer / alignment film / transparent electrode layer / TFT (Thin Film Transistor) The laminated body which contains an element / board | substrate / polarizing plate / backlight unit in this order is mentioned.
 なお、本発明の実施形態に係る液晶表示装置としては、上記に制限されず、例えば「電子ディスプレイデバイス(佐々木 昭夫著、(株)工業調査会 1990年発行)」、「ディスプレイデバイス(伊吹 順章著、産業図書(株)平成元年発行)」などに記載されている液晶表示装置が挙げられる。また、例えば「次世代液晶ディスプレイ技術(内田 龍男編集、(株)工業調査会 1994年発行)」に記載されている液晶表示装置が挙げられる。 The liquid crystal display device according to the embodiment of the present invention is not limited to the above. For example, “Electronic display device (Akio Sasaki, published by Industrial Research Co., Ltd., 1990)”, “Display device (Junsho Ibuki) The liquid crystal display device described in the book "Industry Books Co., Ltd." issued in 1989). Further, for example, there is a liquid crystal display device described in “Next-generation liquid crystal display technology (Uchida, edited by Tatsuo, Kogyo Kenkyukai, published in 1994)”.
[赤外線センサ]
 本発明の実施形態に係る赤外線センサは、上記硬化膜を含有する。
 上記実施態様に係る赤外線センサについて、図3を用いて説明する。図3に示す赤外線センサ300において、符号310は、固体撮像素子である。
 固体撮像素子310上に設けられている撮像領域は、赤外線吸収フィルタ311と本発明の実施形態に係るカラーフィルタ312とを組み合せて構成されている。
 赤外線吸収フィルタ311は、可視光領域の光(例えば、波長400~700nmの光)を透過し、赤外領域の光(例えば、波長800~1300nmの光、好ましくは波長900~1200nmの光、より好ましくは波長900~1000nmの光)を遮蔽する膜であり、着色剤として赤外線吸収剤(赤外線吸収剤の形態としては既に説明したとおりである。)を含有する硬化膜を用いることができる。
 カラーフィルタ312は、可視光領域における特定波長の光を透過及び吸収する画素が形成されたカラーフィルタであって、例えば、赤色(R)、緑色(G)、青色(B)の画素が形成されたカラーフィルタ等が用いられ、その形態は既に説明したとおりである。
 赤外線透過フィルタ313と固体撮像素子310との間には、赤外線透過フィルタ313を透過した波長の光を透過させることができる樹脂膜314(例えば、透明樹脂膜など)が配置されている。
 赤外線透過フィルタ313は、可視光遮蔽性を有し、かつ、特定波長の赤外線を透過させるフィルタであって、可視光領域の光を吸収する着色剤(例えば、ペリレン化合物、及び/又はビスベンゾフラノン化合物等)と、赤外線吸収剤(例えば、ピロロピロール化合物、フタロシアニン化合物、ナフタロシアニン化合物、及びポリメチン化合物等)とを含有する、本発明の実施形態に係る硬化膜を用いることができる。赤外線透過フィルタ313は、例えば、波長400~830nmの光を遮光し、波長900~1300nmの光を透過させることが好ましい。
 カラーフィルタ312及び赤外線透過フィルタ313の入射光hν側には、マイクロレンズ315が配置されている。マイクロレンズ315を覆うように平坦化膜316が形成されている。
 図3に示す実施形態では、樹脂膜314が配置されているが、樹脂膜314に代えて赤外線透過フィルタ313を形成してもよい。すなわち、固体撮像素子310上に、赤外線透過フィルタ313を形成してもよい。
 図3に示す実施形態では、カラーフィルタ312の膜厚と、赤外線透過フィルタ313の膜厚が同一であるが、両者の膜厚は異なっていてもよい。
 図3に示す実施形態では、カラーフィルタ312が、赤外線吸収フィルタ311よりも入射光hν側に設けられているが、赤外線吸収フィルタ311と、カラーフィルタ312との順序を入れ替えて、赤外線吸収フィルタ311を、カラーフィルタ312よりも入射光hν側に設けてもよい。
 図3に示す実施形態では、赤外線吸収フィルタ311とカラーフィルタ312は隣接して積層しているが、両フィルタは必ずしも隣接している必要はなく、間に他の層が設けられていてもよい。本発明の実施形態に係る硬化膜は、赤外線吸収フィルタ311の表面の端部や側面などの遮光膜として用いることができるほか、赤外線センサの装置内壁に用いることで、内部反射や、受光部への意図しない光の入射を防ぎ、感度を向上させることができる。
 この赤外線センサによれば、画像情報を同時に取り込むことができるため、動きを検知する対象を認識したモーションセンシングなどが可能である。更には、距離情報を取得できるため、3D情報を含んだ画像の撮影等も可能である。
[Infrared sensor]
The infrared sensor which concerns on embodiment of this invention contains the said cured film.
The infrared sensor which concerns on the said embodiment is demonstrated using FIG. In the infrared sensor 300 shown in FIG. 3, reference numeral 310 denotes a solid-state image sensor.
The imaging region provided on the solid-state imaging device 310 is configured by combining the infrared absorption filter 311 and the color filter 312 according to the embodiment of the present invention.
The infrared absorption filter 311 transmits light in the visible light region (for example, light having a wavelength of 400 to 700 nm), and transmits light in the infrared region (for example, light having a wavelength of 800 to 1300 nm, preferably light having a wavelength of 900 to 1200 nm). Preferably, it is a film that shields light having a wavelength of 900 to 1000 nm, and a cured film containing an infrared absorber (as already described in the form of the infrared absorber) as a colorant can be used.
The color filter 312 is a color filter in which pixels that transmit and absorb light of a specific wavelength in the visible light region are formed. For example, red (R), green (G), and blue (B) pixels are formed. A color filter or the like is used, and its form is as described above.
Between the infrared transmission filter 313 and the solid-state imaging device 310, a resin film 314 (for example, a transparent resin film or the like) that can transmit light having a wavelength transmitted through the infrared transmission filter 313 is disposed.
The infrared transmission filter 313 is a filter that has visible light shielding properties and transmits infrared light having a specific wavelength, and is a colorant that absorbs light in the visible light region (for example, a perylene compound and / or bisbenzofuranone). Compound) and an infrared absorber (for example, a pyrrolopyrrole compound, a phthalocyanine compound, a naphthalocyanine compound, a polymethine compound, and the like) according to an embodiment of the present invention can be used. For example, the infrared transmission filter 313 preferably blocks light having a wavelength of 400 to 830 nm and transmits light having a wavelength of 900 to 1300 nm.
A micro lens 315 is disposed on the incident light hν side of the color filter 312 and the infrared transmission filter 313. A planarization film 316 is formed so as to cover the microlens 315.
In the embodiment shown in FIG. 3, the resin film 314 is disposed, but an infrared transmission filter 313 may be formed instead of the resin film 314. That is, the infrared transmission filter 313 may be formed on the solid-state image sensor 310.
In the embodiment shown in FIG. 3, the film thickness of the color filter 312 and the film thickness of the infrared transmission filter 313 are the same, but the film thickness of both may be different.
In the embodiment shown in FIG. 3, the color filter 312 is provided on the incident light hν side with respect to the infrared absorption filter 311, but the order of the infrared absorption filter 311 and the color filter 312 is changed to change the infrared absorption filter 311. May be provided closer to the incident light hν than the color filter 312.
In the embodiment shown in FIG. 3, the infrared absorption filter 311 and the color filter 312 are stacked adjacent to each other. However, both filters do not necessarily have to be adjacent to each other, and other layers may be provided therebetween. . The cured film according to the embodiment of the present invention can be used as a light-shielding film such as an end or side surface of the surface of the infrared absorption filter 311, or can be used for an inner wall of the infrared sensor device to cause internal reflection or light reception. It is possible to prevent the incident of unintended light and improve the sensitivity.
According to this infrared sensor, since image information can be captured simultaneously, motion sensing or the like that recognizes a target whose motion is to be detected is possible. Furthermore, since distance information can be acquired, an image including 3D information can be taken.
 次に、上記赤外線センサを適用した固体撮像装置について説明する。
 上記固体撮像装置は、レンズ光学系と、固体撮像素子と、赤外発光ダイオード等を含有する。なお、固体撮像装置の各構成については、特開2011-233983号公報の段落0032~0036を参酌することができ、この内容は本明細書に組み込まれる。
Next, a solid-state imaging device to which the infrared sensor is applied will be described.
The solid-state imaging device includes a lens optical system, a solid-state imaging device, an infrared light emitting diode, and the like. As for each configuration of the solid-state imaging device, paragraphs 0032 to 0036 of JP 2011-233983 A can be referred to, and the contents thereof are incorporated in this specification.
 以下に実施例に基づいて本発明を更に詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。 Hereinafter, the present invention will be described in more detail based on examples. The materials, amounts used, ratios, processing contents, processing procedures, and the like shown in the following examples can be appropriately changed without departing from the gist of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the following examples.
[金属窒化物含有粒子P-1の作製]
 以下の方法により、金属窒化物含有粒子P-1を作製した。
 作製には、特開2005-343784号公報の0042段落、及び図1に記載された装置を用いた。具体的には、上記公報の図1における、放電容器1をステンレス製の真空チャンバ(福伸工業株式会社製)とした装置(以下、「ナノ粒子製造装置」という。)を用いて金属窒化物含有粒子を作製した。まず、排気ポンプにより真空チャンバ内の空気を排気した。次に、真空チャンバに、ヘリウム(He)ガス(純度99.99%)、及びアルゴンガスの混合ガス(標準状態での混合比50/50体積%)を600Torr(79.99kPa)の圧力となるまで供給した。
[Preparation of metal nitride-containing particles P-1]
Metal nitride-containing particles P-1 were produced by the following method.
The apparatus described in paragraph 0042 of JP-A-2005-343784 and FIG. 1 was used for the production. Specifically, in FIG. 1 of the above publication, a metal nitride is used using an apparatus (hereinafter referred to as “nanoparticle manufacturing apparatus”) in which the discharge vessel 1 is a stainless steel vacuum chamber (Fukushin Kogyo Co., Ltd.). Containing particles were produced. First, the air in the vacuum chamber was exhausted by an exhaust pump. Next, a mixed gas of helium (He) gas (purity 99.99%) and argon gas (mixing ratio 50/50% by volume in the standard state) is brought to a pressure of 600 Torr (79.99 kPa) in the vacuum chamber. Until supplied.
 ナノ粒子製造装置の放電電極としては、タングステンを長さ500mm、直径12mm、及び中空口径6mmの中空構造の棒状に成形加工したものを使用した。放電電極の配置は、特開2005-343784号公報の図1と同様にした。具体的には、12個の放電電極を6個ずつ2段に配置した。なお、上段と下段との間の距離は約160mmとした。
 中空構造の放電電極は、原材料供給装置と接続されており、放電電極の中空部分から原料ガスを真空チャンバ内へと供給できるようにした。
As the discharge electrode of the nanoparticle production apparatus, a tungsten electrode formed into a hollow rod having a length of 500 mm, a diameter of 12 mm, and a hollow diameter of 6 mm was used. The arrangement of the discharge electrodes was the same as that shown in FIG. 1 of JP-A-2005-343784. Specifically, 12 discharge electrodes were arranged in two stages of 6 each. The distance between the upper stage and the lower stage was about 160 mm.
The discharge electrode having a hollow structure is connected to a raw material supply device so that the source gas can be supplied from the hollow portion of the discharge electrode into the vacuum chamber.
 放電は、各放電電極に位相差のある交流(電圧20~40V、電流70~100A)を印加しながら、各放電電極の先端を接触させた状態で開始する。アーク放電が発生した後各放電電極の先端を離間させるように外方に向かって移動させ、隣接する放電電極の先端の間の距離が5~10mmとなる位置にセットしてアーク放電を続行する。 The discharge starts with the tip of each discharge electrode in contact with each discharge electrode while applying an alternating current (voltage 20 to 40 V, current 70 to 100 A) having a phase difference to each discharge electrode. After the arc discharge occurs, the tip of each discharge electrode is moved outward so as to be separated, and the arc discharge is continued by setting the distance between the tips of adjacent discharge electrodes to be 5 to 10 mm. .
 アーク放電を15分行った後、原材料供給装置の供給タンクを加温して、原料ガスを真空チャンバ内へと導入した。まず、NHガス(液化アンモニウムECOAN、昭和電工社製)を0.5気圧、Hガス(水素ガス、昭和電工ガスプロダクツ)を0.1気圧、Arガス(アルゴンガス、大陽日酸)を0.4気圧で導入した。続いて、供給タンクを210℃に加温し、TiClガス(TLT-1、東邦チタニウム社)製を、放電電極から600気圧で導入した。TiClガスの導入と同時に、粉末供給装置TP-99010FDR(日本電子製)を用いて硫黄微粉末(微粉硫黄325mesh、鶴見化学工業製、原子Tに該当する。)を窒素ガスにより供給した。供給量は、得られる金属窒化物含有粒子中におけるT/Tが表2-1~2-9に記載したとおりとなるように調整した。真空チャンバ内にTiClガス、及び硫黄微粉末を混合した窒素ガスの導入を1時間行った後、交流電源からの電圧印加を停止し、上記ガスの供給を停止した。次に、真空チャンバの内壁に付着した粒子を回収した。 After performing arc discharge for 15 minutes, the supply tank of the raw material supply apparatus was heated, and the source gas was introduced into the vacuum chamber. First, NH 3 gas (liquefied ammonium ECOAN, Showa Denko KK) 0.5 atm, H 2 gas (hydrogen gas, Showa Denko Gas Products) 0.1 atm, Ar gas (argon gas, Taiyo Nippon Sanso) Was introduced at 0.4 atm. Subsequently, the supply tank was heated to 210 ° C., and TiCl 4 gas (TLT-1, Toho Titanium Co., Ltd.) was introduced from the discharge electrode at 600 atm. Simultaneously with the introduction of the TiCl 4 gas, a fine sulfur powder (fine powder sulfur 325 mesh, manufactured by Tsurumi Chemical Co., Ltd., corresponding to atom T) was supplied with nitrogen gas using a powder supply device TP-99010FDR (manufactured by JEOL). The supply amount was adjusted so that T E / T X in the obtained metal nitride-containing particles was as shown in Tables 2-1 to 2-9. After introducing nitrogen gas mixed with TiCl 4 gas and fine sulfur powder into the vacuum chamber for 1 hour, voltage application from the AC power supply was stopped and supply of the gas was stopped. Next, the particles adhering to the inner wall of the vacuum chamber were collected.
 次に、得られた粒子を、O含有量、及び水分含有量をそれぞれ100ppm以下に制御した窒素(N)ガスを導入した密閉容器内に入れ、24時間静置した。 Next, the obtained particles, O 2 content, and water content was controlled to 100ppm or less each nitrogen (N 2) placed in a sealed container in which the gas is introduced and allowed to stand 24 hours.
<加熱工程>
 上記で得られた粒子を、減圧オーブンVAC-101P(エスペック製)を用いて200℃で加熱して、金属窒化物含有粒子P-1を得た。なお、加熱中の減圧オーブンの内圧は1.0×10Paとした。
<Heating process>
The particles obtained above were heated at 200 ° C. using a vacuum oven VAC-101P (manufactured by ESPEC) to obtain metal nitride-containing particles P-1. The internal pressure of the vacuum oven during heating was 1.0 × 10 3 Pa.
(金属窒化物含有粒子P-1中の、Ti、S(原子T)、O、及びNの含有量の測定)
 得られた金属窒化物含有粒子P-1中のチタン原子(Ti)、硫黄原子(S)、酸素原子(O)、及び窒素原子(N)の含有量を、蛍光X線分析装置を用いて測定した。試料として金属窒化物含有粒子P-1をプレス機を用いてペレット状に成形したものを準備した。上記試料について、蛍光X線分析装置を用いて、以下の条件で測定した。
・装置 Rigaku製ZSM PrimusII型XRF
・X線 Rh 30-50 kV, 48-80 mA
・測定領域 10μmφ
・測定時間 10-240 deg/min
(Measurement of content of Ti, S (atom T), O, and N in metal nitride-containing particle P-1)
The content of titanium atom (Ti), sulfur atom (S), oxygen atom (O), and nitrogen atom (N) in the obtained metal nitride-containing particle P-1 was measured using a fluorescent X-ray analyzer. It was measured. As a sample, a metal nitride-containing particle P-1 formed into a pellet shape using a press was prepared. About the said sample, it measured on condition of the following using the fluorescent X ray analyzer.
・ Rigaku ZSM Primus II type XRF
・ X-ray Rh 30-50 kV, 48-80 mA
・ Measurement area 10μmφ
・ Measurement time: 10-240 deg / min
[金属窒化物含有粒子P-2~P-63の作製]
 遷移金属として、Tiに代えて以下に記載の各金属を、原子Tとして、硫黄に代えて表1に記載の各原子を用いたことを除いては、金属窒化物含有粒子P-1と同様にして、金属窒化物含有粒子P-2~P~63を作製した。
 なお、各原材料を上記真空チャンバに導入する際には、各原材料が粉末であれば上記粉末供給装置を使用し、液体、又は昇華性固体であれば供給容器をリボンヒーターにより加熱し、原材料を揮発させたガスを供給した。
 なお、各金属窒化物含有粒子中に含有される、遷移金属の含有量は蛍光X線分析装置を用いて測定した。なお、測定条件は上述のとおりである。
[Preparation of metal nitride-containing particles P-2 to P-63]
Similar to the metal nitride-containing particle P-1, except that each metal described below was used as the transition metal instead of Ti, and each atom described in Table 1 was used as the atom T instead of sulfur. Thus, metal nitride-containing particles P-2 to P to 63 were produced.
When each raw material is introduced into the vacuum chamber, the powder supply device is used if the raw material is powder, and the supply container is heated by a ribbon heater if the raw material is liquid or sublimable solid. Volatilized gas was supplied.
The transition metal content contained in each metal nitride-containing particle was measured using a fluorescent X-ray analyzer. The measurement conditions are as described above.
・Nb粉 :三津和化学薬品製ニオブ(粉末)<100-325mesh>
・V粉  :太陽鉱工製金属バナジウム粉末VHO
・Zr粉 :和光純薬工業製ジルコニウム粉末
・タンタル Nodular :Global Advanced Metal製タンタルNodular
・Hf粉 :フルウチ化学製ハフニウム粉末
・Y粉  :日本イットリウム製イットリウム粉末
・Cr粉 :光成製脱ガス電解金属クロム粉
・Re粉 :Rhenium Alloys社製レニウム粉末
・W粉  :Eurotungsten製タングステン粉末AW3110
・Ag粉 :Ag粉三井金属製 SPQ03R
Nb powder: Niobium (powder) <100-325 mesh> manufactured by Mitsuwa Chemicals
・ V powder: Metal vanadium powder VHO made by Taiyo Mining
-Zr powder: Zirconium powder made by Wako Pure Chemical Industries-Tantalum Nodal: Tantalum Nodal made by Global Advanced Metal
・ Hf powder: Hafnium powder made by Furuuchi Chemical ・ Y powder: Yttrium powder made in Japan yttrium ・ Cr powder: Degassed electrolytic metal chrome powder made by Kosei ・ Re powder: Rhenium powder made by Rhenium Alloys ・ W powder: Tungsten powder AW3110 made by Eurotungsten
・ Ag powder: Ag powder made by Mitsui Kinzoku SPQ03R
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
[金属窒化物含有粒子P-C1の作製]
 金属窒化物含有粒子P-1の作製において、硫黄微粉末を用いなかったこと以外は同様にして、金属窒化物含有粒子P-C1を作製した。
[Production of metal nitride-containing particles P-C1]
Metal nitride-containing particles P-C1 were produced in the same manner except that the fine sulfur powder was not used in the production of metal nitride-containing particles P-1.
[金属窒化物含有粒子P-C2の作製]
 硫黄微粉末に代えて、Ag粉(三井金属社製「SPQ03R」)を用いたことを除いては、金属窒化物含有粒子P-1と同様にして、金属窒化物含有粒子P-C2を得た。
[Preparation of metal nitride-containing particles PC2]
Metal nitride-containing particles P-C2 were obtained in the same manner as the metal nitride-containing particles P-1, except that Ag powder (“SPQ03R” manufactured by Mitsui Kinzoku Co., Ltd.) was used instead of the fine sulfur powder. It was.
[金属窒化物含有粒子P-C3の作製]
 金属窒化物含有粒子P-C3は、日清エンジニアリング社製、TiNナノ粉末を用いた。なお、後述する分散組成物の作製の際、Hefei Kai’er社製、TiCナノ粉末を着色剤として加えた。
 なお、分散組成物中における、TiNナノ粉末とTiCナノ粉末との比率を以下のとおり調整した。
・日清エンジニアリング社製、TiNナノ粉末:9.43質量部
・Hefei Kai’er社製、TiCナノ粉末:2.35質量部
[Production of metal nitride-containing particles PC3]
TiN nanopowders manufactured by Nisshin Engineering Co., Ltd. were used as the metal nitride-containing particles PC3. In the preparation of the dispersion composition described later, TiC nanopowder manufactured by Hefei Kai'er was added as a colorant.
In addition, the ratio of TiN nanopowder and TiC nanopowder in the dispersion composition was adjusted as follows.
-Nissin Engineering Co., Ltd., TiN nano powder: 9.43 mass parts-Hefei Kai'er Co., TiC nano powder: 2.35 mass parts
[金属窒化物含有粒子P-C4の作製]
 金属窒化物含有粒子P-C4は以下の方法により作製した。
 平均粒径15nmの酸化チタンMT-150A(商品名:テイカ(株)製)を100g、BET(Brunauer,Emmett,Teller)表面積300m/gのシリカ粒子AEROPERL(登録商標)300/30(エボニック製)を25g、及び分散剤Disperbyk190(商品名:ビックケミー社製)を100g秤量し、イオン電気交換水71gを加えて遊星式撹拌機(KURABO製MAZERUSTAR KK-400W)を使用して、公転回転数1360rpm(rotation per minute)、自転回転数1047rpmにて20分間撹拌し、均一な混合物を得た。
 この混合物を石英容器に充填し、小型ロータリーキルン(株式会社モトヤマ製)を用いて酸素雰囲気中で920℃に加熱した後、窒素で雰囲気を置換し、同温度でアンモニアガスを100mL/minで5時間流すことにより、窒化還元処理した。その後、石英容器から回収した粉末を乳鉢で粉砕し、Si原子を含有し、粉末状の比表面積73m/gのチタンブラック〔チタンブラック粒子及びSi原子を含有する被分散体〕を得た。
[Production of Metal Nitride-Containing Particles P-C4]
Metal nitride-containing particles PC4 were prepared by the following method.
100 g of titanium oxide MT-150A having an average particle size of 15 nm (trade name: manufactured by Teika Co., Ltd.) and silica particles having a BET (Brunauer, Emmett, Teller) surface area of 300 m 2 / g AEROPERL (registered trademark) 300/30 (manufactured by Evonik) ) And a dispersant Disperbyk190 (trade name: manufactured by Big Chemie) were weighed, 71 g of ion-exchanged water was added, and a planetary stirrer (MURASUSTAR KK-400W manufactured by KURABO) was used, and the revolution speed was 1360 rpm. (Rotation per minute) and stirred at a rotation speed of 1047 rpm for 20 minutes to obtain a uniform mixture.
This mixture was filled in a quartz container, heated to 920 ° C. in an oxygen atmosphere using a small rotary kiln (manufactured by Motoyama Co., Ltd.), then the atmosphere was replaced with nitrogen, and ammonia gas at 100 mL / min for 5 hours at the same temperature. The nitriding reduction treatment was performed by flowing. Thereafter, the powder recovered from the quartz container was pulverized in a mortar to obtain titanium black [dispersed material containing titanium black particles and Si atoms] containing Si atoms and having a powdery specific surface area of 73 m 2 / g.
[金属窒化物含有粒子P-C5の作製]
 特開2006-209102号公報の0189~0190段落に記載されている<製造例1>を参考に、金属窒化物含有粒子P-C5を作製した。具体的な作製方法は以下のとおりである。
 まず、含水二酸化チタンをTiO換算で300gを水1リットルに懸濁させスラリーを得た。次に、水酸化ナトリウム水溶液でスラリーのpHを10に調整し、次いでスラリー温度を70℃に加温した。加温後のスラリーに、ケイ酸ナトリウム水溶液を2時間かけて滴下した。次に、スラリー温度を90℃に加温した。加温後のスラリーに、希硫酸を2時間かけて滴下して、スラリーのpHを5に中和した。中和後のスラリーを、30分保持した。次に、スラリーを脱水し、固形分を得た。次に、固形分を洗浄して、洗浄後の固形分を空気中で850℃に加温し、5時間焼成した。上記により、酸化ケイ素(SiOとして0.3質量%)を被覆した二酸化チタンを得た。得られた二酸化チタンはアナタ-ゼ型であった。
 次に、この酸化ケイ素を被覆した二酸化チタンを内径7.5cmの石英管に入れた。次に、石英管にアンモニアガスを10L/minの流速で通気しながら、石英管を980℃の温度で6時間加熱して、生成物を得た。次に、得られた生成物を同雰囲気下で100℃まで冷却し、更に、大気中で常温まで放冷して、組成式がTiN0.950.20・0.01SiOで表される金属窒化物含有粒子P-C5を得た。
[Preparation of metal nitride-containing particles PC5]
With reference to <Production Example 1> described in paragraphs 0189 to 0190 of JP-A-2006-209102, metal nitride-containing particles P-C5 were produced. A specific manufacturing method is as follows.
First, 300 g of hydrous titanium dioxide was suspended in 1 liter of water in terms of TiO 2 to obtain a slurry. Next, the pH of the slurry was adjusted to 10 with an aqueous sodium hydroxide solution, and then the slurry temperature was heated to 70 ° C. A sodium silicate aqueous solution was dropped into the heated slurry over 2 hours. Next, the slurry temperature was heated to 90 ° C. Diluted sulfuric acid was added dropwise to the heated slurry over 2 hours to neutralize the pH of the slurry to 5. The neutralized slurry was held for 30 minutes. Next, the slurry was dehydrated to obtain a solid content. Next, the solid content was washed, and the washed solid content was heated to 850 ° C. in air and baked for 5 hours. As described above, titanium dioxide coated with silicon oxide (0.3% by mass as SiO 2 ) was obtained. The obtained titanium dioxide was anatase type.
Next, the titanium dioxide coated with silicon oxide was put in a quartz tube having an inner diameter of 7.5 cm. Next, the quartz tube was heated at a temperature of 980 ° C. for 6 hours while ammonia gas was passed through the quartz tube at a flow rate of 10 L / min to obtain a product. Next, the obtained product was cooled to 100 ° C. under the same atmosphere, and further allowed to cool to room temperature in the atmosphere. The composition formula was expressed as TiN 0.95 O 0.20 · 0.01SiO 2. Metal nitride-containing particles PC5 were obtained.
[金属窒化物含有粒子P-C6の作製]
 国際公開2007/102490号の0040段落に記載されている方法を参考に、金属窒化物含有粒子P-C6を作製した。具体的な作製方法は以下のとおりである。
 金属窒化物含有粒子P-1Cに脱イオン水を加え、金属窒化物含有粒子P-1Cの含有量が100g/Lの懸濁液を得た。次に、この懸濁液1リットルを70℃に加熱した。加熱後の懸濁液に、50%塩化スズ水溶液23.5g、塩化アンチモン1.3gを35%塩酸水溶液59gに溶解した溶液、及び17%の水酸化ナトリウム水溶液を並行して添加した。なお、添加に際しては、懸濁液のpHを2~3に維持し、添加時間は60分間とした。次に、懸濁液をろ過し、ろ液の比抵抗が50μS/cmになるまで洗浄して、固形分を得た。次に、固形分を120℃で一昼夜乾燥し、乾燥後の固形分を、電気炉を用いて600℃で1時間焼成して、アンチモン固溶酸化スズの導電層で被覆された金属窒化物含有粒子P-1Cを得て、これを、金属窒化物含有粒子P-C6とした。
[Production of Metal Nitride-Containing Particles PC6]
With reference to the method described in paragraph 0040 of WO 2007/102490, metal nitride-containing particles P-C6 were produced. A specific manufacturing method is as follows.
Deionized water was added to the metal nitride-containing particles P-1C to obtain a suspension having a metal nitride-containing particle P-1C content of 100 g / L. Next, 1 liter of this suspension was heated to 70 ° C. A solution obtained by dissolving 23.5 g of 50% tin chloride aqueous solution, 1.3 g of antimony chloride in 59 g of 35% hydrochloric acid aqueous solution and 17% sodium hydroxide aqueous solution was added in parallel to the heated suspension. During the addition, the pH of the suspension was maintained at 2 to 3, and the addition time was 60 minutes. Next, the suspension was filtered and washed until the specific resistance of the filtrate reached 50 μS / cm to obtain a solid content. Next, the solid content is dried at 120 ° C. for a whole day and night, and the solid content after drying is fired at 600 ° C. for 1 hour using an electric furnace to contain a metal nitride coated with a conductive layer of antimony solid solution tin oxide Particles P-1C were obtained and designated as metal nitride-containing particles PC6.
 なお、金属窒化物含有粒子P-1~P-63、及びP-C1~P-C6の組成については、表2-1~2-9にまとめて示した。 The compositions of the metal nitride-containing particles P-1 to P-63 and P-C1 to P-C6 are summarized in Tables 2-1 to 2-9.
[金属窒化物含有粒子のT/Tの測定]
 金属窒化物含有粒子のT/Tは以下の方法により測定した。
 各金属窒化物含有粒子をプレス機を用いてペレット状に成形して試料とした。上記試料について、X線光電子分光分析装置、及び蛍光X線分析装置を用いて、以下測定条件で、金属窒化物含有粒子のT/Tを測定した。結果は以下の基準により評価し、表2-1~2-9に示した。
A:T/Tが1.1未満だった。
B:T/Tが1.1以上2.0未満だった。
C:T/Tが2.0以上だった、又はT/Tの値が計算できなかった。
[Measurement of T E / T X of Metal Nitride-Containing Particles]
T E / T X of the metal nitride-containing particles was measured by the following method.
Each metal nitride containing particle | grain was shape | molded into the pellet form using the press, and it was set as the sample. For the sample, X-ray photoelectron spectrometer, and using a fluorescent X-ray analyzer, the following measurement conditions, was measured T E / T X of the metal nitride-containing particles. The results were evaluated according to the following criteria and are shown in Tables 2-1 to 2-9.
A: T E / T X was less than 1.1.
B: T E / T X was 1.1 or more and less than 2.0.
C: T E / T X was 2.0 or more, or the value of T E / T X could not be calculated.
X線光電子分光分析(Tの測定)
・装置:PHI社製Quantera-SXM(商品名)装置
・X線源:単色化Al Kα線(1486.6ev、25W、15kV、ビーム径200μmφ)
・測定領域:200μmφ
・測定条件:Pass Energy=140eV、step=0.1eV、積算回数4~8回
・測定方法:試料を装置にセットし、光電子取り出し角を10度として測定した。
X-ray photoelectron spectroscopy (measurement of T E)
・ Device: Quantera-SXM (trade name) device manufactured by PHI ・ X-ray source: Monochromatic Al Kα ray (1486.6 ev, 25 W, 15 kV, beam diameter 200 μmφ)
・ Measurement area: 200μmφ
Measurement conditions: Pass Energy = 140 eV, step = 0.1 eV, number of integrations 4 to 8 Measurement method: A sample was set in the apparatus, and the photoelectron take-off angle was 10 degrees.
蛍光X線分析(Tの測定)
・装置 Rigaku製ZSM PrimusII型XRF
・X線 Rh 30-50 kV, 48-80 mA
・測定領域 10μmφ
・測定時間 10-240 deg/min
X-ray fluorescence analysis (Measurement of T X)
・ Rigaku ZSM Primus II type XRF
・ X-ray Rh 30-50 kV, 48-80 mA
・ Measurement area 10μmφ
・ Measurement time: 10-240 deg / min
[実施例1~85、及び比較例1~6の硬化性組成物の調製]
 実施例1~85の各硬化性組成物の調製に際して、以下の方法により、表2-1~2-9に記載した各成分を以下の比率で混合し、金属窒化物含有粒子を表中に記載した各分散剤中に分散させ、分散組成物を調製した。なお、攪拌機(IKA社製EUROSTAR)を使用して、15分間混合して、混合物を得た。
[Preparation of Curable Compositions of Examples 1 to 85 and Comparative Examples 1 to 6]
In preparing the curable compositions of Examples 1 to 85, the components described in Tables 2-1 to 2-9 were mixed in the following ratios by the following method, and the metal nitride-containing particles were listed in the table. A dispersion composition was prepared by dispersing in each of the described dispersants. In addition, it mixed for 15 minutes using the stirrer (EUROSTAR made by IKA), and obtained the mixture.
〔分散剤Aの合成〕
 まず、分散剤Aを以下の方法により合成した。
[Synthesis of Dispersant A]
First, Dispersant A was synthesized by the following method.
<合成例A1:マクロモノマーA-1の合成>
 容量3000mLの三口フラスコに、ε-カプロラクトン(1044.2g)、δ-バレロラクトン(184.3g)、及び2-エチル-1-ヘキサノール(71.6g)を導入し、混合物を得た。次に、窒素を吹き込みながら、上記混合物を攪拌した。次に、混合物にDisperbyk111(12.5g、ビックケミー社製、リン酸樹脂)を加え、得られた混合物を90℃に加熱した。6時間後、H-NMR(nuclear magnetic resonance)を用いて、混合物中における2-エチル-1-ヘキサノールに由来するシグナルが消失したのを確認後、混合物を110℃に加熱した。窒素下にて110℃で12時間重合反応を続けた後、H-NMRでε-カプロラクトン及びδ-バレロラクトンに由来するシグナルの消失を確認し、得られた化合物について、GPC法(Gel permeation chromatography、後述する測定条件による。)により分子量測定を行った。化合物の分子量が所望の値に到達したことを確認した後、上記化合物を含有する混合物に2,6-ジt-ブチル-4-メチルフェノール(0.35g)を添加した後、更に、得られた混合物に対して、2-メタクリロイロキシエチルイソシアネート(87.0g)を30分かけて滴下した。滴下終了から6時間後、H-NMRにて2-メタクリロイロキシエチルイソシアネート(MOI)に由来するシグナルが消失したのを確認後、プロピレングリコールモノメチルエーテルアセテート(PGMEA)(1387.0g)を混合物に添加し、濃度が50質量%のマクロモノマーA-1溶液(2770g)を得た。得られたマクロモノマーA-1の重量平均分子量は6,000であった。
<Synthesis Example A1: Synthesis of Macromonomer A-1>
Ε-caprolactone (1044.2 g), δ-valerolactone (184.3 g), and 2-ethyl-1-hexanol (71.6 g) were introduced into a 3000 mL three-necked flask to obtain a mixture. Next, the above mixture was stirred while blowing nitrogen. Next, Disperbyk111 (12.5 g, manufactured by Big Chemie, phosphoric acid resin) was added to the mixture, and the resulting mixture was heated to 90 ° C. After 6 hours, the mixture was heated to 110 ° C. after confirming the disappearance of the signal derived from 2-ethyl-1-hexanol in the mixture by using 1 H-NMR (nuclear magnetic resonance). After the polymerization reaction was continued at 110 ° C. for 12 hours under nitrogen, disappearance of signals derived from ε-caprolactone and δ-valerolactone was confirmed by 1 H-NMR, and the obtained compound was subjected to GPC method (Gel permeation). The molecular weight was measured by means of chromatography (depending on the measurement conditions described later). After confirming that the molecular weight of the compound reached the desired value, 2,6-di-t-butyl-4-methylphenol (0.35 g) was added to the mixture containing the above compound, and further obtained. To the mixture, 2-methacryloyloxyethyl isocyanate (87.0 g) was added dropwise over 30 minutes. Six hours after the completion of dropping, 1 H-NMR confirmed that the signal derived from 2-methacryloyloxyethyl isocyanate (MOI) had disappeared, and then mixed propylene glycol monomethyl ether acetate (PGMEA) (1387.0 g). To give a macromonomer A-1 solution (2770 g) having a concentration of 50% by mass. The resulting macromonomer A-1 had a weight average molecular weight of 6,000.
<合成例P-1:分散剤Aの合成>
 容量1000mLの三口フラスコに、マクロモノマーA-1(200.0g)、メタクリル酸(以下「MAA」ともいう、60.0g、構造単位Bを得るための重合性モノマーに該当する。)、ベンジルメタクリレート(以下「BzMA」ともいう、40.0g、構造単位Cを得るための化合物に該当する。)、PGMEA(プロピレングリコール1-モノメチルエーテル2-アセタート、366.7g)を導入し、混合物を得た。窒素を吹き込みながら、上記混合物を攪拌した。次に、窒素をフラスコ内に流しながら、混合物を75℃まで昇温した。次に、混合物に、ドデシルメルカプタン(5.85g)、次いで、2,2’-アゾビス(2-メチルプロピオン酸メチル)(1.48g、以下「V-601」ともいう。)を添加し、重合反応を開始した。混合物を75℃で2時間加熱した後、更にV-601(1.48g)を混合物に追加した。2時間後、更にV-601(1.48g)を混合物に追加した。更に2時間反応後、混合物を90℃に昇温し、3時間攪拌した。上記操作により、重合反応は終了し、分散剤Aを得た。
<Synthesis Example P-1: Synthesis of Dispersant A>
In a three-necked flask with a capacity of 1000 mL, macromonomer A-1 (200.0 g), methacrylic acid (hereinafter also referred to as “MAA”, 60.0 g, corresponding to a polymerizable monomer for obtaining structural unit B), benzyl methacrylate (Hereinafter also referred to as “BzMA”, 40.0 g, corresponding to a compound for obtaining the structural unit C), PGMEA (propylene glycol 1-monomethyl ether 2-acetate, 366.7 g) was introduced to obtain a mixture. . The mixture was stirred while blowing nitrogen. Next, the temperature of the mixture was raised to 75 ° C. while flowing nitrogen into the flask. Next, dodecyl mercaptan (5.85 g) and then 2,2′-azobis (methyl 2-methylpropionate) (1.48 g, hereinafter also referred to as “V-601”) are added to the mixture, and polymerization is performed. The reaction was started. After the mixture was heated at 75 ° C. for 2 hours, additional V-601 (1.48 g) was added to the mixture. After 2 hours, additional V-601 (1.48 g) was added to the mixture. After further reaction for 2 hours, the mixture was heated to 90 ° C. and stirred for 3 hours. By the above operation, the polymerization reaction was completed, and Dispersant A was obtained.
〔分散組成物の組成〕
 ・(表2-1~2-9に記載した)各金属窒化物含有粒子:11.79質量部
 ・分散剤Aのプロピレングリコールモノメチルエーテルアセテート30質量%溶液:11.79質量部
 ・プロピレングリコールモノメチルエーテルアセテート:23.58質量部
 上記成分を混合し、次に、得られた混合物を、(株)シンマルエンタープライゼス製のNPM-Pilotを使用して下記条件にて分散させ、分散組成物を得た。
[Composition of dispersion composition]
-Each metal nitride-containing particle (described in Tables 2-1 to 2-9): 11.79 parts by mass-30% by mass of propylene glycol monomethyl ether acetate in Dispersant A: 11.79 parts by mass-Propylene glycol monomethyl Ether acetate: 23.58 parts by mass The above components were mixed, and then the resulting mixture was dispersed under the following conditions using NPM-Pilot manufactured by Shinmaru Enterprises Co., Ltd. Obtained.
(分散条件)
・ビーズ径:φ0.05mm、(ニッカトー製ジルコニアビーズ、YTZ)
・ビーズ充填率:65体積%
・ミル周速:10m/sec
・セパレータ周速:13m/s
・分散処理する混合液量:15kg
・循環流量(ポンプ供給量):90kg/hour
・処理液温度:19~21℃
・冷却水:水
・処理時間:22時間
(Distribution condition)
・ Bead diameter: 0.05mm, (Nikkato zirconia beads, YTZ)
・ Bead filling rate: 65% by volume
・ Mill peripheral speed: 10m / sec
・ Separator peripheral speed: 13m / s
・ Amount of liquid mixture to be dispersed: 15kg
・ Circulating flow rate (pump supply amount): 90 kg / hour
・ Processing liquid temperature: 19-21 ℃
・ Cooling water: Water ・ Processing time: 22 hours
〔硬化性組成物の組成〕
 次に、上記分散組成物、アルカリ可溶性樹脂、重合開始剤、重合性化合物、界面活性剤、重合禁止剤、及び有機溶剤を混合して、各実施例に係る硬化性組成物を得た。
 各硬化性組成物に含有される成分の含有量(質量%)を以下に示す。
[Composition of curable composition]
Next, the dispersion composition, alkali-soluble resin, polymerization initiator, polymerizable compound, surfactant, polymerization inhibitor, and organic solvent were mixed to obtain a curable composition according to each example.
Content (mass%) of the component contained in each curable composition is shown below.
・上記で調製した分散組成物:73.00質量部 -Dispersion composition prepared above: 73.00 parts by mass
・アルカリ可溶性樹脂A-1(「アクリキュアRD-F8」、日本触媒社製、固形分40%、溶剤:プロピレングリコールモノメチルエーテル):8.32質量部 Alkali-soluble resin A-1 (“Acryl RD-F8” manufactured by Nippon Shokubai Co., Ltd., solid content 40%, solvent: propylene glycol monomethyl ether): 8.32 parts by mass
・重合開始剤:下記の、式(I-1)で表される化合物:1.96質量部 Polymerization initiator: Compound represented by formula (I-1) below: 1.96 parts by mass
・重合性化合物M1(「KAYARAD DPHA」、日本化薬社製、6官能重合性化合物(エチレン性不飽和基の量:10.4mmol/g)、及び5官能重合性化合物(エチレン性不飽和基の量:9.5mmol/g)の混合物):6.82質量部 Polymerizable compound M1 (“KAYARAD DPHA”, manufactured by Nippon Kayaku Co., Ltd., hexafunctional polymerizable compound (amount of ethylenically unsaturated group: 10.4 mmol / g), and pentafunctional polymerizable compound (ethylenically unsaturated group) Amount of 9.5 mmol / g)): 6.82 parts by mass
・界面活性剤1:下記式により表される界面活性剤(重量平均分子量(Mw)=15311)
 ただし、下記式において、式中(A)及び(B)で表される構造単位はそれぞれ62モル%、38モル%である。式(B)で表される構造単位中、aは、b、cは、それぞれ、a+c=14、b=17の関係を満たす。
Surfactant 1: Surfactant represented by the following formula (weight average molecular weight (Mw) = 15311)
However, in the following formula, the structural units represented by the formulas (A) and (B) are 62 mol% and 38 mol%, respectively. In the structural unit represented by the formula (B), a, b, and c satisfy the relationships of a + c = 14 and b = 17, respectively.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
・重合禁止剤(p-メトキシフェノール)(PI-1):0.00025質量部 Polymerization inhibitor (p-methoxyphenol) (PI-1): 0.00025 parts by mass
・溶剤(プロピレングリコールモノメチルエーテルアセテート):7.82質量部 Solvent (propylene glycol monomethyl ether acetate): 7.82 parts by mass
 なお、実施例64で用いた分散剤Bは以下の方法により合成した。 The dispersant B used in Example 64 was synthesized by the following method.
〔分散剤Bの合成〕
 分散剤Aに対し、空気下でテトラブチルアンモニウムブロミド(TBAB、7.5g)とp-メトキシフェノール(MEHQ,0.13g)を加えた後、メタクリル酸グリシジル(以下、「GMA」ともいう、66.1g)を滴下した。滴下終了後、空気下で、7時間反応を続けた後、酸価測定により反応終了を確認した。得られた混合物にPGMEA(643.6g)を追加することで分散剤Bの20質量%溶液を得た。得られた分散剤Bの重量平均分子量は35000、酸価は50mgKOH/mgであった。
[Synthesis of Dispersant B]
After adding tetrabutylammonium bromide (TBAB, 7.5 g) and p-methoxyphenol (MEHQ, 0.13 g) to dispersant A under air, glycidyl methacrylate (hereinafter also referred to as “GMA”) 66 0.1 g) was added dropwise. After completion of the dropwise addition, the reaction was continued for 7 hours under air, and the completion of the reaction was confirmed by acid value measurement. By adding PGMEA (643.6 g) to the obtained mixture, a 20% by mass solution of Dispersant B was obtained. The obtained Dispersant B had a weight average molecular weight of 35,000 and an acid value of 50 mgKOH / mg.
 上記以外の表2-1~2-9中の各成分は以下の化合物を表す。
・分散剤C~I
Figure JPOXMLDOC01-appb-C000022

 
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-I000024
Each component in Tables 2-1 to 2-9 other than the above represents the following compounds.
・ Dispersants C to I
Figure JPOXMLDOC01-appb-C000022


Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-I000024
・分散剤J:
 4、4′-ジアミノベンズアニリド161.3g、N-メチル-2-ピロリドン527gと共に仕込み混合液を得た。上記混合液に3,3′,4,4′-ビフェニルテトラカルボン酸二無水物439.1gを添加し、70℃で3時間反応させた後、無水フタル酸2.2gを添加し、更に70℃で2時間反応させ、20質量%の分散剤J溶液(分散剤Jはポリアミック酸に該当する)を得た。
-Dispersant J:
A mixture was prepared together with 161.3 g of 4,4'-diaminobenzanilide and 527 g of N-methyl-2-pyrrolidone. 439.1 g of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride was added to the above mixture and reacted at 70 ° C. for 3 hours, and then 2.2 g of phthalic anhydride was added. It was made to react at 2 degreeC for 2 hours, and obtained the 20 mass% dispersing agent J solution (dispersing agent J corresponds to polyamic acid).
・分散剤K:
 3′-ジアミノジフェニルスルホン176.7g、及びビス(3-アミノプロピル)テトラメチルジシロキサン18.6gをγ-ブチロラクトン2667g、N-メチル-2-ピロリドン527gと共に仕込み混合液を得た。上記混合液に3,3′,4,4′-ビフェニルテトラカルボン酸二無水物439.1gを添加し、70℃で3時間反応させた後、無水フタル酸2.2gを添加し、更に70℃で2時間反応させ、20質量%の分散剤K溶液(分散剤Kはポリアミック酸に該当する。)を得た。
-Dispersant K:
176.7 g of 3′-diaminodiphenylsulfone and 18.6 g of bis (3-aminopropyl) tetramethyldisiloxane were charged together with 2667 g of γ-butyrolactone and 527 g of N-methyl-2-pyrrolidone to obtain a mixed solution. 439.1 g of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride was added to the above mixture and reacted at 70 ° C. for 3 hours, and then 2.2 g of phthalic anhydride was added. The mixture was reacted at 0 ° C. for 2 hours to obtain a 20 mass% dispersant K solution (dispersant K corresponds to polyamic acid).
・アルカリ可溶性樹脂A-2
 4,4′-ジアミノジフェニルエーテル95.1g、及びビス(3-アミノプロピル)テトラメチルジシロキサン6.2gをγ-ブチロラクトン525g、N-メチル-2-ピロリドン220gと共に仕込み混合液を得た。上記混合液に、3,3′,4,4′-ビフェニルテトラカルボン酸二無水物144.1gを添加し、70℃で3時間反応させた後、無水フタル酸3.0gを添加し、更に70℃で2時間反応させ、25質量%の樹脂A-2溶液(樹脂A-2はポリアミック酸に該当する。)を得た。
・ Alkali-soluble resin A-2
A mixed solution was obtained by charging 95.1 g of 4,4'-diaminodiphenyl ether and 6.2 g of bis (3-aminopropyl) tetramethyldisiloxane together with 525 g of γ-butyrolactone and 220 g of N-methyl-2-pyrrolidone. To the above mixed solution, 144.1 g of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride was added and reacted at 70 ° C. for 3 hours, and then 3.0 g of phthalic anhydride was added. The mixture was reacted at 70 ° C. for 2 hours to obtain a 25 mass% resin A-2 solution (resin A-2 corresponds to polyamic acid).
・重合性化合物M2:新中村化学社製、商品名「U-15HA」
・重合性化合物M3:日本化薬社製、商品名「KAYARAD RP-1040」
Figure JPOXMLDOC01-appb-C000025
Polymerizable compound M2: Shin-Nakamura Chemical Co., Ltd., trade name “U-15HA”
Polymerizable compound M3: Nippon Kayaku Co., Ltd., trade name “KAYARAD RP-1040”
Figure JPOXMLDOC01-appb-C000025
・重合性化合物M4:
 下記式で表される化合物(特開2009-169049号公報を参照して合成した。)
Figure JPOXMLDOC01-appb-C000026
Polymerizable compound M4:
A compound represented by the following formula (synthesized with reference to JP2009-169049)
Figure JPOXMLDOC01-appb-C000026
・重合開始剤I-1:下記式(I-1)の重合開始剤
・重合開始剤I-2:Irgacure OXE01(商品名、BASFジャパン社製、上記式(C-7)の重合開始剤)
・重合開始剤I-3:Irgacure OXE02(商品名、BASFジャパン社製、上記式(C-11)の重合開始剤)
・重合開始剤I-4:下記式(I-4)の重合開始剤
・重合開始剤I-5:下記式(I-5)の重合開始剤
・重合開始剤I-6:下記式(I-6)の重合開始剤
・重合開始剤I-7:アデカアークルズ NCI-831(商品名、アデカ社製)
・重合開始剤I-8:N-1919(商品名、アデカ社製)
-Polymerization initiator I-1: Polymerization initiator of the following formula (I-1)-Polymerization initiator I-2: Irgacure OXE01 (trade name, manufactured by BASF Japan Ltd., polymerization initiator of the above formula (C-7))
Polymerization initiator I-3: Irgacure OXE02 (trade name, manufactured by BASF Japan, polymerization initiator of the above formula (C-11))
-Polymerization initiator I-4: Polymerization initiator of the following formula (I-4)-Polymerization initiator I-5: Polymerization initiator of the following formula (I-5)-Polymerization initiator I-6: The following formula (I -6) polymerization initiator / polymerization initiator I-7: Adeka Arcles NCI-831 (trade name, manufactured by Adeka)
Polymerization initiator I-8: N-1919 (trade name, manufactured by Adeka)
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
[評価]
〔金属窒化物含有粒子の複素誘電率の実数部〕
 各硬化性組成物に含有される金属窒化物含有粒子の複素誘電率の実数部は以下の方法により測定した。
 8インチのシリコンウェハ上に、膜厚0.3μmとなる回転数にてスピンコートにより硬化性組成物を塗布して硬化性組成物層を得た。硬化性組成物層付きシリコンウェハを、シリコンウェハ面を下にして、ホットプレート上に載置し、100℃で2分間加熱して、硬化性組成物層を乾燥させた。次に、i線ステッパー露光装置FPA-3000i5+(Canon社製)を用いて、365nmの波長で2cm×2cmの領域が露光されるレチクル(フォトマスク)を通して、500mJ/cmの露光量で硬化性組成物層を露光した。次に、露光後の硬化性組成物層が形成されたシリコンウェハを、スピンシャワー現像機(DW-30型、ケミトロニクス社製)の水平回転テーブル上に載置し、CD-2000(富士フイルムエレクトロニクスマテリアルズ社製、有機アルカリ現像液)を用いて、23℃で60秒間パドル現像した。次に、パドル現像後のシリコンウェハを真空チャック方式で上記水平回転テーブルに固定し、回転装置によってシリコンウェハを回転数50rpmで回転させつつ、その回転中心の上方より純水を噴出ノズルからシャワー状に供給してリンス処理し、2cm×2cmのパターン状の硬化膜を備えるシリコンウェハを得た。得られたシリコンウェハをクリーンオーブン(ハイテンプクリーンオーブンCLH-300S、光洋サーモシステム社製)を用いて220℃で1時間熱処理した。なお、使用した硬化性組成物は厚み0.3μmの膜を得るために適宜PGMEA(propyleneglycol monomethyl ether acetate)により希釈した。
 得られた硬化膜に対し、分光エリプソメトリー(M-2000XI-210:J.A.Woollam社製分光エリプソメトリー)により波長400~1200 nmにおけるp偏光(平行)とs偏光(垂直)の位相差Δと振幅比Ψのスペクトルを得た。得られた(Δ,Ψ)スペクトルに対し、Bruggemanの有効媒質近似(EMA;Effective medium approximation)モデルを用いてFitting解析を行い、膜中に含有される真の金属窒化物含有粒子の誘電率を求めた。(EMAモデルで用いた金属窒化物含有粒子の含有量は、処方値を用いたが、下記の方法により、硬化膜中の金属窒化物含有粒子を分離し、硬化膜中の金属窒化物含有粒子の含有量を実測してもよい。)得られた複素誘電率から、以下の基準により複素誘電率の実数部を評価した。結果は表2-1~2-9に示した。
 硬化性組成物から金属窒化物含有粒子を分離する方法:
 まず、硬化性組成物にクロロホルムを含有する有機溶剤を添加し、金属窒化物含有粒子以外の成分を溶解させて、溶解液を得る。上記溶解液を遠心分離して沈殿物を得る。次に、上記沈殿物を加熱して濃縮し、金属窒化物含有粒子を得る。
A:複素誘電率の実数部の最小値が0未満だった。
B:複素誘電率の実数部の最小値が0以上だった。
[Evaluation]
[Real part of complex dielectric constant of metal nitride-containing particles]
The real part of the complex dielectric constant of the metal nitride-containing particles contained in each curable composition was measured by the following method.
A curable composition layer was obtained by applying a curable composition on an 8-inch silicon wafer by spin coating at a rotational speed of 0.3 μm. The silicon wafer with the curable composition layer was placed on a hot plate with the silicon wafer side down, and heated at 100 ° C. for 2 minutes to dry the curable composition layer. Next, using an i-line stepper exposure apparatus FPA-3000i5 + (manufactured by Canon Inc.), it is curable at an exposure amount of 500 mJ / cm 2 through a reticle (photomask) in which a 2 cm × 2 cm region is exposed at a wavelength of 365 nm. The composition layer was exposed. Next, the silicon wafer on which the curable composition layer after exposure was formed was placed on a horizontal rotary table of a spin shower developing machine (DW-30 type, manufactured by Chemitronics), and CD-2000 (Fuji Film). Paddle development was performed at 23 ° C. for 60 seconds using an organic alkali developer (manufactured by Electronics Materials). Next, the silicon wafer after the paddle development is fixed to the horizontal rotary table by a vacuum chuck method, and the silicon wafer is rotated at a rotation speed of 50 rpm by a rotating device, and pure water is sprayed from the nozzle above the rotation center. To obtain a silicon wafer provided with a 2 cm × 2 cm patterned cured film. The obtained silicon wafer was heat-treated at 220 ° C. for 1 hour using a clean oven (High Temp Clean Oven CLH-300S, manufactured by Koyo Thermo Systems Co., Ltd.). The curable composition used was appropriately diluted with PGMEA (propyleneglycol monomethyl ether acetate) to obtain a film having a thickness of 0.3 μm.
The obtained cured film was subjected to spectroscopic ellipsometry (M-2000XI-210: spectroscopic ellipsometry manufactured by JA Woollam), and the phase difference between p-polarized light (parallel) and s-polarized light (vertical) at a wavelength of 400 to 1200 nm. A spectrum of Δ and amplitude ratio Ψ was obtained. Fitting analysis is performed on the obtained (Δ, Ψ) spectrum using a Bruggeman effective medium approximation (EMA) model, and the dielectric constant of the true metal nitride-containing particles contained in the film is determined. Asked. (The prescription value was used for the content of the metal nitride-containing particles used in the EMA model. The metal nitride-containing particles in the cured film were separated by separating the metal nitride-containing particles in the cured film by the following method. The real part of the complex dielectric constant was evaluated from the obtained complex dielectric constant according to the following criteria. The results are shown in Tables 2-1 to 2-9.
Method for separating metal nitride-containing particles from a curable composition:
First, an organic solvent containing chloroform is added to the curable composition, and components other than the metal nitride-containing particles are dissolved to obtain a solution. The lysate is centrifuged to obtain a precipitate. Next, the precipitate is heated and concentrated to obtain metal nitride-containing particles.
A: The minimum value of the real part of the complex dielectric constant was less than 0.
B: The minimum value of the real part of the complex dielectric constant was 0 or more.
〔金属窒化物含有粒子の平均一次粒子径〕
 各硬化性組成物に含有される金属窒化物含有粒子の平均一次粒子径は以下の方法により測定した。
 試料:各硬化性組成物をPGMEA(propyleneglycol monomethyl ether acetate)で100倍希釈して、希釈液を得た。次に、希釈液をカーボン箔上に滴下し、乾燥させたものを試料とした。
 上記試料を、透過型電子顕微鏡(TEM:Transmission Electron Microscope)を用いて倍率2万倍で観察して像を得た。次に、得られた像の中の金属窒化物含有粒子の面積を画像処理により算出した。次に、得られた面積を円に換算した場合の直径を算出し、粒子400個について評価した円換算の直径を算術平均して求めた。結果は以下の基準により評価し、表2-1~2-9に示した。なお、各実施例、及び比較例に係る金属窒化物含有粒子の平均一次粒子径は、すべて1nm以上であった。
A:金属窒化物含有粒子の平均一次粒子径が、80nm未満だった。
B:金属窒化物含有粒子の平均一次粒子径が、80nm以上200nm以下だった
C:金属窒化物含有粒子の平均一次粒子径が、200nmを超えた。
[Average primary particle diameter of metal nitride-containing particles]
The average primary particle diameter of the metal nitride-containing particles contained in each curable composition was measured by the following method.
Sample: Each curable composition was diluted 100 times with PGMEA (propyleneglycol monomethyl ether acetate) to obtain a diluted solution. Next, the diluted solution was dropped on the carbon foil and dried to obtain a sample.
The sample was observed with a transmission electron microscope (TEM) at a magnification of 20,000 to obtain an image. Next, the area of the metal nitride-containing particles in the obtained image was calculated by image processing. Next, the diameter when the obtained area was converted into a circle was calculated, and the diameter in terms of a circle evaluated for 400 particles was obtained by arithmetic averaging. The results were evaluated according to the following criteria and are shown in Tables 2-1 to 2-9. In addition, all the average primary particle diameters of the metal nitride containing particle which concerns on each Example and a comparative example were 1 nm or more.
A: The average primary particle diameter of the metal nitride-containing particles was less than 80 nm.
B: The average primary particle size of the metal nitride-containing particles was 80 nm or more and 200 nm or less. C: The average primary particle size of the metal nitride-containing particles exceeded 200 nm.
〔金属窒化物含有粒子の体積平均粒子径のD90〕
 各硬化性組成物に含有される金属窒化物含有粒子の体積平均粒子径のD90は以下の方法により測定した。
 試料:各硬化性組成物を、プロピレングリコールモノメチルエーテルアセテートで80倍に希釈し、得られた希釈液を試料とした。
 上記試料について、動的光散乱法を測定原理とする日機装社製ナノトラックUPA-EX150を用いて測定し、金属窒化物含有粒子の体積平均粒子径のD90を算出した。結果は以下の基準により評価し、表2-1~2-9に示した。
A:金属窒化物含有粒子の体積平均粒子径のD90が0.2μm未満だった。
B:金属窒化物含有粒子の体積平均粒子径のD90が0.2μm以上0.5μm未満だった。
C:金属窒化物含有粒子の体積平均粒子径のD90が0.5μm以上だった。
[D90 of volume average particle diameter of metal nitride-containing particles]
The volume average particle diameter D90 of the metal nitride-containing particles contained in each curable composition was measured by the following method.
Sample: Each curable composition was diluted 80 times with propylene glycol monomethyl ether acetate, and the resulting diluted solution was used as a sample.
The above sample was measured using a nanotrack UPA-EX150 manufactured by Nikkiso Co., Ltd. with the dynamic light scattering method as a measurement principle, and the volume average particle diameter D90 of the metal nitride-containing particles was calculated. The results were evaluated according to the following criteria and are shown in Tables 2-1 to 2-9.
A: The volume average particle diameter D90 of the metal nitride-containing particles was less than 0.2 μm.
B: D90 of the volume average particle diameter of the metal nitride-containing particles was 0.2 μm or more and less than 0.5 μm.
C: The volume average particle diameter D90 of the metal nitride-containing particles was 0.5 μm or more.
〔沈降防止性〕
 各硬化性組成物の沈降防止性は、以下の方法により評価した。
 まず、硬化性組成物をプロピレングリコールモノメチルエーテルアセテートで2倍に希釈し希釈液を得た。次に、希釈液を20mL採取し、採取した希釈液を50mLの樹脂製容器に入れて、23℃の環境に6ヶ月間静置した。静置後、樹脂製容器中の希釈液の液面から深さ1cmまでの上澄み液5gを採取し、固形分含有量を測定した。
 上記上澄み液の固形分含有量と、調製直後の各硬化性組成物の固形分含有量とを比較し固形分含有量の変化量を算出した。結果は以下の基準により評価し、表2-1~2-9に示した。この固形分含有量の変化量が小さいほど、硬化性組成物中において金属窒化物含有粒子が沈降しにくい。
 なお、固形分含有量は、以下の方法で算出した。すなわち、硬化性組成物を1g秤量し、165℃のオーブンで60分加熱し固形分を得た。この固形分の質量を測定し、固形分含有量[質量%]=(固形分の質量/硬化性組成物の質量(1g))×100を算出した。
A:固形分濃度の変化量が1%未満であった。
B:固形分濃度の変化量が1%以上2%未満であった。
C:固形分濃度の変化量が2%以上3%未満であった。
D:固形分濃度の変化量が3%以上だった。
[Precipitation prevention]
The anti-settling property of each curable composition was evaluated by the following method.
First, the curable composition was diluted twice with propylene glycol monomethyl ether acetate to obtain a diluted solution. Next, 20 mL of the diluted solution was collected, and the collected diluted solution was placed in a 50 mL resin container and allowed to stand in an environment at 23 ° C. for 6 months. After standing, 5 g of the supernatant liquid from the liquid level of the diluted liquid in the resin container to a depth of 1 cm was collected, and the solid content was measured.
The amount of change in the solid content was calculated by comparing the solid content of the supernatant with the solid content of each curable composition immediately after preparation. The results were evaluated according to the following criteria and are shown in Tables 2-1 to 2-9. The smaller the amount of change in the solid content, the more difficult the metal nitride-containing particles settle in the curable composition.
The solid content was calculated by the following method. That is, 1 g of the curable composition was weighed and heated in an oven at 165 ° C. for 60 minutes to obtain a solid content. The mass of this solid content was measured, and the solid content [mass%] = (mass of solid content / mass of curable composition (1 g)) × 100 was calculated.
A: The amount of change in the solid content concentration was less than 1%.
B: The change amount of the solid content concentration was 1% or more and less than 2%.
C: The amount of change in solid content concentration was 2% or more and less than 3%.
D: The amount of change in the solid content concentration was 3% or more.
〔経時安定性〕
 硬化性組成物の経時安定性は、以下の方法により評価した。
 まず、各硬化性組成物50gをガラス製の100mL容器に封入した。次に、上記容器を45℃に保持して、7日静置した後、-20℃に保持して、10日静置した。静置後、容器の底から深さ1cmまでの硬化性組成物を採取した。採取した硬化性組成物をスピンコート法でガラス基板上に塗布して硬化性組成物層を得た。次に、上記ガラス基板を、ガラス基板面を下にしてホットプレート上に載置して、100℃で2分間加熱した。次に、加熱後の硬化性組成物層を常温で3日間放置した。次に、放置後の硬化性組成物層の面状を光学顕微鏡MT-3600LW(FLOVEL製)を用いて観察した。硬化性組成物の経時安定性は、放置後の硬化性組成物内の異物の発生状況により評価した。異物が少ないほど硬化性組成物の経時安定性が良好であると言える。実用上、「C」以上が好ましい。
[Stability over time]
The temporal stability of the curable composition was evaluated by the following method.
First, 50 g of each curable composition was sealed in a 100 mL glass container. Next, the container was held at 45 ° C. and allowed to stand for 7 days, then held at −20 ° C. and left to stand for 10 days. After standing, a curable composition having a depth of 1 cm from the bottom of the container was collected. The collected curable composition was applied onto a glass substrate by a spin coating method to obtain a curable composition layer. Next, the glass substrate was placed on a hot plate with the glass substrate surface facing down, and heated at 100 ° C. for 2 minutes. Next, the curable composition layer after heating was allowed to stand at room temperature for 3 days. Next, the planar shape of the curable composition layer after standing was observed using an optical microscope MT-3600LW (manufactured by FLOVEL). The temporal stability of the curable composition was evaluated by the occurrence of foreign matter in the curable composition after being left. It can be said that the smaller the foreign matter, the better the temporal stability of the curable composition. Practically, “C” or more is preferable.
 (評価基準)
AA:硬化性組成物層内に、異物が観察されなかった。
A:硬化性組成物層内に、異物が数個観察された。
B:硬化性組成物層内に、異物が数十個観察された。
C:硬化性組成物層内に、異物が数百個観察されたが、硬化性組成物層の面内において、異物の発生が少ない箇所があった。
D:異物が硬化性組成物層内全面に観察された。
(Evaluation criteria)
AA: No foreign matter was observed in the curable composition layer.
A: Several foreign substances were observed in the curable composition layer.
B: Dozens of foreign matters were observed in the curable composition layer.
C: Hundreds of foreign matters were observed in the curable composition layer, but there were places where the generation of foreign matters was small in the plane of the curable composition layer.
D: Foreign matter was observed on the entire surface of the curable composition layer.
〔遮光性〕
 硬化膜の遮光性は以下の方法により評価した。
 まず、厚み0.7mm、大きさ10cm角のガラス基板(EagleXG、Corning社製)上に、各硬化性組成物を、スピンコート法で塗布して、硬化性組成物層を得た。なお、このとき乾燥後の硬化性組成物層の厚みが1.0μmとなるよう、スピンコータの回転数を調整した。
 次に、上記ガラス基板を、ガラス基板面を下にして、ホットプレート上に載置して、100℃で、2分間熱処理して、硬化性組成物層を乾燥させた。
 次に、i線ステッパー露光装置FPA-3000i5+(Canon社製)を用いて、365nmの波長、500mJ/cmの露光量で硬化性組成物層を露光した。次に、露光後の硬化性組成物層が形成されたガラス基板を、スピンシャワー現像機(DW-30型、ケミトロニクス社製)の水平回転テーブル上に載置し、CD-2000(富士フイルムエレクトロニクスマテリアルズ社製、有機アルカリ現像液)を用いて、23℃で60秒間パドル現像した。次に、パドル現像後のシリコンウェハを真空チャック方式で上記水平回転テーブルに固定し、回転装置によってシリコンウェハを回転数50rpmで回転させつつ、その回転中心の上方より純水を噴出ノズルからシャワー状に供給してリンス処理し、硬化膜を得た。
 得られた硬化膜について、透過濃度計(X-rite 361T(visual)densitometer)を用いて、OD(optical density:光学濃度)を測定した。結果は以下の基準により評価し、表2-1~2-9に示した。なお、表-1~2-9中のOD値は、波長400~1200nmにおける最小値である。すなわち、各実施例の硬化膜(膜厚1.0μm)は、波長400~1200nmの全域において表中に示したOD値以上のOD値を有する。
A:ODが3.0超だった。
B:ODが2.0超3.0以下だった。
C:ODが2.0以下だった。
[Light shielding]
The light shielding property of the cured film was evaluated by the following method.
First, each curable composition was applied by spin coating on a glass substrate (Eagle XG, manufactured by Corning) having a thickness of 0.7 mm and a size of 10 cm square to obtain a curable composition layer. At this time, the rotational speed of the spin coater was adjusted so that the thickness of the curable composition layer after drying was 1.0 μm.
Next, the glass substrate was placed on a hot plate with the glass substrate surface down, and heat-treated at 100 ° C. for 2 minutes to dry the curable composition layer.
Next, the curable composition layer was exposed with a wavelength of 365 nm and an exposure amount of 500 mJ / cm 2 using an i-line stepper exposure apparatus FPA-3000i5 + (manufactured by Canon). Next, the glass substrate on which the curable composition layer after exposure was formed was placed on a horizontal rotary table of a spin shower developing machine (DW-30 type, manufactured by Chemtronics), and CD-2000 (Fuji Film). Paddle development was performed at 23 ° C. for 60 seconds using an organic alkali developer (manufactured by Electronics Materials). Next, the silicon wafer after the paddle development is fixed to the horizontal rotary table by a vacuum chuck method, and the silicon wafer is rotated at a rotation speed of 50 rpm by a rotating device, and pure water is sprayed from the nozzle above the rotation center. And then rinsed to obtain a cured film.
About the obtained cured film, OD (optical density: optical density) was measured using the transmission densitometer (X-rite 361T (visual) densitometer). The results were evaluated according to the following criteria and are shown in Tables 2-1 to 2-9. The OD values in Tables 1 to 2-9 are the minimum values at wavelengths of 400 to 1200 nm. That is, the cured film (film thickness: 1.0 μm) of each example has an OD value equal to or greater than the OD value shown in the table over the entire wavelength range of 400 to 1200 nm.
A: The OD was over 3.0.
B: The OD was more than 2.0 and 3.0 or less.
C: The OD was 2.0 or less.
Figure JPOXMLDOC01-appb-T000028

 なお、表2-1~2-9中、「/」とは、併用したことを示す。
Figure JPOXMLDOC01-appb-T000029

 
Figure JPOXMLDOC01-appb-T000030

 
Figure JPOXMLDOC01-appb-T000031

 
Figure JPOXMLDOC01-appb-T000032

 
Figure JPOXMLDOC01-appb-T000033

Figure JPOXMLDOC01-appb-T000034

 
Figure JPOXMLDOC01-appb-T000035

Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000028

In Tables 2-1 to 2-9, “/” indicates that they are used together.
Figure JPOXMLDOC01-appb-T000029


Figure JPOXMLDOC01-appb-T000030


Figure JPOXMLDOC01-appb-T000031


Figure JPOXMLDOC01-appb-T000032


Figure JPOXMLDOC01-appb-T000033

Figure JPOXMLDOC01-appb-T000034


Figure JPOXMLDOC01-appb-T000035

Figure JPOXMLDOC01-appb-T000036
 表2-1~2-9に示した結果から、実施例1~85の硬化性組成物は、本発明の効果を有していた。一方、比較例1~6の硬化性組成物は、本発明の効果を有していなかった。
 X、Y、及びZがそれぞれ0を超え2未満である、実施例1の硬化性組成物は、実施例61の硬化性組成物と比較して、より優れた沈降防止性、及びより優れた経時安定性を有していた。
 X、Y、及びZの和が0.4を超え1.6未満である実施例1の硬化性組成物は、実施例50の硬化性組成物と比較して、より優れた沈降防止性、及びより優れた経時安定性を有していた。また、実施例1の硬化性組成物は、実施例55の硬化性組成物と比較して、より優れた経時安定性を有しており、上記硬化性組成物により得られる硬化膜はより優れた遮光性を有していた。
 波長400~1200nmにおける、金属窒化物含有粒子の複素誘電率の虚数部ε’の最小値が0未満である実施例1の硬化性組成物は、実施例63の硬化性組成物と比較してより優れた遮光性を有していた。
 原子Tが、第2~6周期の元素のうち、アルミニウム、ガリウム、インジウム、スズ、タリウム、鉛、及びビスマス以外の元素から選択される実施例1の硬化性組成物は、実施例9~12の硬化性組成物と比較して、より優れた沈降防止性、及び経時安定性を有していた。
 原子Tが、13~16族元素から選択される、実施例1の硬化性組成物は、実施例6~8の硬化性組成物と比較して、より優れた沈降防止性、及びより優れた経時安定性を有していた。
 原子Tが、ホウ素原子、炭素原子、硫黄原子、及びリン原子からなる群から選択されるいずれかの原子である、実施例1の硬化性組成物によれば、実施例5の硬化性組成物と比較して、より優れた経時安定性を有していた。
 原子Tが、ホウ素原子、硫黄原子、及びリン原子からなる群から選択されるいずれかの原子である、実施例1の硬化性組成物は、実施例3の硬化性組成物と比較して、より優れた経時安定性を有していた。
 ポリカプロラクトン構造、及び/又はポリバレロラクトン構造を有し、ポリカプロラクトン構造とポリバレロラクトン構造の繰り返し数の和が10以上である、分散剤Aを含有する実施例1の硬化性組成物、分散剤Bを含有する実施例64の硬化性組成物、分散剤Eを含有する実施例67の硬化性組成物、及び分散剤Fを含有する実施例68の硬化性組成物は、実施例65、及び実施例66の硬化性組成物と比較して、より優れた沈降防止性を有していた。
 また、式(OX-1)において、Bが表す一価の置換基がアリール基又は複素環基である、重合開始剤I-1を含有する実施例1の硬化性組成物、重合開始剤I-3を含有する実施例80の硬化性組成物、重合開始剤I-6を含有する実施例83の硬化性組成物、重合開始剤I-7を含有する実施例84の硬化性組成物、及び重合開始剤I-8を含有する実施例85の硬化性組成物は、実施例79、実施例81、及び実施例82の硬化性組成物と比較してより優れた経時安定性を有していた。
From the results shown in Tables 2-1 to 2-9, the curable compositions of Examples 1 to 85 had the effects of the present invention. On the other hand, the curable compositions of Comparative Examples 1 to 6 did not have the effects of the present invention.
The curable composition of Example 1 in which X, Y, and Z are each greater than 0 and less than 2 is superior to the curable composition of Example 61 in terms of anti-settling property and superior It was stable over time.
The curable composition of Example 1 in which the sum of X, Y, and Z is more than 0.4 and less than 1.6 is superior to the curable composition of Example 50 in terms of anti-settling property, And better stability over time. Moreover, the curable composition of Example 1 has more excellent temporal stability compared with the curable composition of Example 55, and the cured film obtained by the said curable composition is more excellent. It had a light-shielding property.
The curable composition of Example 1 in which the minimum value of the imaginary part ε ′ of the complex dielectric constant of the metal nitride-containing particles at a wavelength of 400 to 1200 nm is less than 0 is compared with the curable composition of Example 63. It had a better light-shielding property.
The curable composition of Example 1 in which the atom T is selected from elements other than aluminum, gallium, indium, tin, thallium, lead, and bismuth among the elements of the second to sixth periods is the examples 9-12. Compared with the curable composition, it had better anti-settling property and stability over time.
The curable composition of Example 1 in which the atom T is selected from Group 13 to 16 elements is superior to the curable compositions of Examples 6 to 8 in terms of anti-settling property and superior It was stable over time.
According to the curable composition of Example 1, wherein the atom T is any atom selected from the group consisting of a boron atom, a carbon atom, a sulfur atom, and a phosphorus atom, the curable composition of Example 5 Compared to the above, it had better temporal stability.
The curable composition of Example 1 in which the atom T is any atom selected from the group consisting of a boron atom, a sulfur atom, and a phosphorus atom is compared with the curable composition of Example 3, It had better aging stability.
The curable composition of Example 1 containing a dispersant A, having a polycaprolactone structure and / or a polyvalerolactone structure, wherein the sum of the number of repetitions of the polycaprolactone structure and the polyvalerolactone structure is 10 or more, dispersion The curable composition of Example 64 containing Agent B, the curable composition of Example 67 containing Dispersant E, and the curable composition of Example 68 containing Dispersant F were Example 65, As compared with the curable composition of Example 66, the anti-settling property was more excellent.
Further, in the formula (OX-1), the curable composition of Example 1 containing the polymerization initiator I-1 in which the monovalent substituent represented by B is an aryl group or a heterocyclic group, the polymerization initiator I The curable composition of Example 80 containing -3, the curable composition of Example 83 containing polymerization initiator I-6, the curable composition of Example 84 containing polymerization initiator I-7, And the curable composition of Example 85 containing the polymerization initiator I-8 has superior temporal stability compared to the curable compositions of Example 79, Example 81, and Example 82. It was.
[実施例1-WL:ウェハレベルレンズ用硬化膜の作製及び評価]
 以下の方法により、実施例1の硬化性組成物を硬化して得られた硬化膜を遮光膜として備えるウェハレベルレンズを作製し、その性能を評価した。
[Example 1-WL: Production and evaluation of cured film for wafer level lens]
By the following method, a wafer level lens provided with a cured film obtained by curing the curable composition of Example 1 as a light-shielding film was produced, and its performance was evaluated.
 まず、以下の操作により、レンズ膜を形成した。
〔熱硬化性硬化膜の形成〕
 レンズ用硬化性組成物(脂環式エポキシ樹脂(ダイセル化学社製EHPE-3150)にアリールスルホニウム塩誘導体(ADEKA社製SP-172)を1質量%添加した組成物)(2mL)を5×5cmのガラス基板(厚さ1mm、Schott社製、BK7)上に塗布し、塗膜を200℃で1分間加熱して硬化させ、レンズ上の残渣が評価できる膜を形成した。
First, a lens film was formed by the following operation.
[Formation of thermosetting cured film]
5 × 5 cm of a curable composition for lenses (a composition obtained by adding 1% by mass of an arylsulfonium salt derivative (SP-172 manufactured by ADEKA) to an alicyclic epoxy resin (EHPE-3150 manufactured by Daicel Chemical Industries) The film was coated on a glass substrate (thickness 1 mm, manufactured by Schott, BK7), and the coating film was cured by heating at 200 ° C. for 1 minute to form a film on which the residue on the lens could be evaluated.
 上記レンズ膜を形成したガラスウェハ上に、実施例1の硬化性組成物を塗布し硬化性組成物層を得た。次に、上記ガラスウェハをホットプレート上に載置し、120℃で、120秒間加熱した。加熱後の硬化性組成物層の膜みは2.0μmだった。(硬化性組成物層形成工程)
 次に、加熱後の硬化性組成物層を、高圧水銀灯を用いて露光した。10mmのホールパターンを有するフォトマスクを介して露光し、露光量は500mJ/cmだった。(露光工程)
 次に、露光後の硬化性組成物層に対し、テトラメチルアンモニウムハイドロオキサイド0.3%水溶液を用い、23℃の温度で60秒間パドル現像して、パターン状の硬化膜(遮光膜)を得た。次に、遮光膜を、スピンシャワーを用いてリンスし、更に、遮光膜を、純水を用いて洗浄した。(現像工程)
On the glass wafer in which the said lens film was formed, the curable composition of Example 1 was apply | coated and the curable composition layer was obtained. Next, the glass wafer was placed on a hot plate and heated at 120 ° C. for 120 seconds. The film thickness of the curable composition layer after heating was 2.0 μm. (Curable composition layer forming step)
Next, the curable composition layer after heating was exposed using a high-pressure mercury lamp. It exposed through the photomask which has a 10 mm hole pattern, and the exposure amount was 500 mJ / cm < 2 >. (Exposure process)
Next, the curable composition layer after exposure is subjected to paddle development for 60 seconds at a temperature of 23 ° C. using a 0.3% aqueous solution of tetramethylammonium hydroxide to obtain a patterned cured film (light-shielding film). It was. Next, the light shielding film was rinsed using a spin shower, and further, the light shielding film was washed with pure water. (Development process)
〔固体撮像装置の作製及び評価〕
 上記で作製した遮光膜を形成したガラスウェハの上に、レンズ用硬化性組成物(脂環式エポキシ樹脂(ダイセル化学社製EHPE-3150)にアリールスルホニウム塩誘導体(ADEKA社製SP-172)を1質量%添加した組成物)を用いて、硬化性樹脂層を形成し、レンズ形状を持つ石英モールドで形状を転写して高圧水銀ランプにより400mJ/cmの露光量で硬化させることにより、ウェハレベルレンズを複数有するウェハレベルレンズアレイを作製した。
 作製されたウェハレベルレンズアレイを切断し、得られたウェハレベルレンズを用いてレンズモジュールを作製した後に、撮像素子及びセンサ基板を取り付け、撮像ユニット(固体撮像装置)を作製した。
 得られたウェハレベルレンズは、レンズ開口部に残渣物が無く良好な透過性を有し、かつ、遮光層についても塗布面の均一性が高く、遮光性が高いものであった。
[Production and evaluation of solid-state imaging device]
On the glass wafer formed with the light-shielding film prepared above, a curable composition for lenses (alicyclic epoxy resin (EHPE-3150 manufactured by Daicel Chemical Industries) and arylsulfonium salt derivative (SP-172 manufactured by ADEKA)). 1% by weight of the composition), a curable resin layer is formed, the shape is transferred with a quartz mold having a lens shape, and cured by a high-pressure mercury lamp at an exposure amount of 400 mJ / cm 2 , thereby producing a wafer. A wafer level lens array having a plurality of level lenses was produced.
The produced wafer level lens array was cut and a lens module was produced using the obtained wafer level lens, and then an imaging device and a sensor substrate were attached to produce an imaging unit (solid-state imaging device).
The obtained wafer level lens had no residue at the lens opening and had good transparency, and the light shielding layer also had high uniformity of the coated surface and high light shielding properties.
[実施例1-BL:ブラックマトリクスを備えるカラーフィルタの作製及び評価]
〔ブラックマトリクスの形成〕
 実施例1の硬化性組成物をガラスウェハにスピンコート法で塗布し硬化性組成物層を得た。次に、ガラスウェハをホットプレート上に載置して、120℃で2分加熱した。加熱後の硬化性組成物層の膜みは2.0μmであった。
 次いで、i線ステッパーを用い、パターンが0.1mmのIslandパターンを有するフォトマスクを通して500mJ/cmの露光量で、硬化性組成物層を露光した。
 次に、露光後の硬化性組成物層を、テトラメチルアンモニウムハイドロオキサイド0.3%水溶液を用い、23℃で60秒間パドル現像し、硬化膜を得た。次に、スピンシャワーを用いて、硬化膜をリンスし、更に、硬化膜を、純水にて洗浄した。上記により、パターン状の遮光膜(ブラックマトリクス)を得た。上記ブラックマトリクスを用いてカラーフィルタを作製したところ、良好な性能を有していた。
[Example 1-BL: Production and evaluation of a color filter including a black matrix]
[Formation of black matrix]
The curable composition of Example 1 was applied to a glass wafer by a spin coat method to obtain a curable composition layer. Next, the glass wafer was placed on a hot plate and heated at 120 ° C. for 2 minutes. The film thickness of the curable composition layer after heating was 2.0 μm.
Next, using an i-line stepper, the curable composition layer was exposed at a dose of 500 mJ / cm 2 through a photomask having an Island pattern with a pattern of 0.1 mm.
Next, the curable composition layer after exposure was subjected to paddle development at 23 ° C. for 60 seconds using a 0.3% aqueous solution of tetramethylammonium hydroxide to obtain a cured film. Next, the cured film was rinsed using a spin shower, and the cured film was washed with pure water. Thus, a patterned light-shielding film (black matrix) was obtained. When a color filter was produced using the above black matrix, it had good performance.
 界面活性剤を用いなかったことを除いては実施例1と同様にして、硬化性組成物を作製し、評価を行ったところ、実施例1と同様の結果が得られた。 When a curable composition was prepared and evaluated in the same manner as in Example 1 except that the surfactant was not used, the same result as in Example 1 was obtained.
 重合禁止剤を用いなかったことを除いては実施例1と同様にして、硬化性組成物を作製し、評価を行ったところ、経時安定性がBになった以外は実施例1と同様の結果が得られた。 A curable composition was prepared and evaluated in the same manner as in Example 1 except that the polymerization inhibitor was not used. The evaluation was the same as in Example 1 except that the temporal stability was B. Results were obtained.
 実施例1の硬化性組成物において、金属窒化物含有粒子P-1に代えて、金属窒化物含有粒子P-1と着色剤(カーボンブラック、商品名「カラーブラック S170」、デグサ社製、平均一次粒子径17nm、BET比表面積200m/g、ガスブラック方式により製造されたカーボンブラック)との混合物を用いて、硬化性組成物を調製した。硬化性組成物中における金属窒化物含有粒子P-1と、着色剤との含有質量比(着色剤/金属窒化物含有粒子P-1)は2/8となるよう調製した。上記硬化性組成物を評価したところ、実施例1と同等の性能を有することが分かった。 In the curable composition of Example 1, instead of the metal nitride-containing particles P-1, the metal nitride-containing particles P-1 and a colorant (carbon black, trade name “Color Black S170”, manufactured by Degussa, average A curable composition was prepared using a mixture of a primary particle diameter of 17 nm, a BET specific surface area of 200 m 2 / g, and carbon black produced by a gas black method. The mass ratio of the metal nitride-containing particles P-1 and the colorant in the curable composition (colorant / metal nitride-containing particles P-1) was adjusted to 2/8. When the said curable composition was evaluated, it turned out that it has a performance equivalent to Example 1. FIG.
 実施例1の硬化性組成物において、金属窒化物含有粒子P-1に代えて、金属窒化物含有粒子P-1と着色剤(ピグメントイエロー150、Hangzhou Star-up Pigment Co., Ltd.製、商品名6150顔料黄5GN)との混合物を用いて、硬化性組成物を調製した。硬化性組成物中における金属窒化物含有粒子P-1と、着色剤との含有質量比(着色剤/金属窒化物含有粒子P-1)は2/8となるよう調製した。上記硬化性組成物を評価したところ、実施例1と同等の性能を有することが分かった他、更に黒味の濃い遮光膜が得られることが分かった。この結果から、着色剤(有機顔料、又は有彩色染料)と併用しても本発明の効果が得られることが分かった。 In the curable composition of Example 1, instead of the metal nitride-containing particles P-1, the metal nitride-containing particles P-1 and a colorant (Pigment Yellow 150, manufactured by Hangzhou Star-up Pigment Co., Ltd., A curable composition was prepared using a mixture with trade name 6150 Pigment Yellow 5GN). The mass ratio of the metal nitride-containing particles P-1 and the colorant in the curable composition (colorant / metal nitride-containing particles P-1) was adjusted to 2/8. When the said curable composition was evaluated, it turned out that it has the performance equivalent to Example 1, and also it turned out that a darker light-shielding film is obtained. From this result, it was found that the effect of the present invention can be obtained even when used in combination with a colorant (organic pigment or chromatic dye).
100・・・固体撮像装置
101・・・固体撮像素子
102・・・撮像部
103・・・カバーガラス
104・・・スペーサー
105・・・積層基板
106・・・チップ基板
107・・・回路基板
108・・・電極パッド
109・・・外部接続端子
110・・・貫通電極
111・・・レンズ層
112・・・レンズ材
113・・・支持体
114、115・・・硬化膜
201・・・受光素子
202・・・カラーフィルタ
201・・・受光素子
202・・・カラーフィルタ
203・・・マイクロレンズ
204・・・基板
205b・・・青色画素
205r・・・赤色画素
205g・・・緑色画素
205bm・・・ブラックマトリクス
206・・・pウェル層
207・・・読み出しゲート部
208・・・垂直転送路
209・・・素子分離領域
210・・・ゲート絶縁膜
211・・・垂直転送電極
212・・・硬化膜
213、214・・・絶縁膜
215・・・平坦化膜
300・・・赤外線センサ
310・・・固体撮像素子
311・・・赤外線吸収フィルタ
312・・・カラーフィルタ
313・・・赤外線透過フィルタ
314・・・樹脂膜
315・・・マイクロレンズ
316・・・平坦化膜
 
DESCRIPTION OF SYMBOLS 100 ... Solid-state imaging device 101 ... Solid-state image sensor 102 ... Imaging part 103 ... Cover glass 104 ... Spacer 105 ... Laminated substrate 106 ... Chip substrate 107 ... Circuit board 108 ... Electrode pad 109 ... External connection terminal 110 ... Penetration electrode 111 ... Lens layer 112 ... Lens material 113 ... Supports 114, 115 ... Curing film 201 ... Light receiving element 202 ... Color filter 201 ... Light receiving element 202 ... Color filter 203 ... Micro lens 204 ... Substrate 205b ... Blue pixel 205r ... Red pixel 205g ... Green pixel 205bm ... Black matrix 206... P well layer 207... Readout gate portion 208... Vertical transfer path 209. Insulating film 211... Vertical transfer electrode 212... Cured film 213, 214... Insulating film 215. Absorption filter 312 ... Color filter 313 ... Infrared transmission filter 314 ... Resin film 315 ... Micro lens 316 ... Flattening film

Claims (22)

  1.  3~11族の遷移金属の窒化物を含有する、金属窒化物含有粒子であって、
     平均一次粒子径が200nm以下であり、
     窒素原子と、原子Tとを含有し、
     前記原子Tは、酸素原子、塩素原子、及び窒素原子のいずれでもなく、13~17族元素から選択され、
     X線光電子分光分析により検出される、前記金属窒化物含有粒子の表面における、前記原子Tの質量基準の含有量をT
     蛍光X線分析により検出される、前記金属窒化物含有粒子における、前記原子Tの質量基準の含有量をTとしたとき、下記式(1)で表される関係を満たす、金属窒化物含有粒子。なお、TとTの単位は質量%である。
    式(1) T/T<2.0
    Metal nitride-containing particles containing a nitride of a transition metal of group 3-11,
    The average primary particle size is 200 nm or less,
    Containing a nitrogen atom and an atom T;
    The atom T is not an oxygen atom, a chlorine atom, or a nitrogen atom, and is selected from Group 13-17 elements;
    The mass-based content of the atom T on the surface of the metal nitride-containing particle detected by X-ray photoelectron spectroscopy is calculated as T E ,
    The metal nitride-containing particles satisfying the relationship represented by the following formula (1), where T X is the mass-based content of the atoms T in the metal nitride-containing particles detected by fluorescent X-ray analysis particle. The unit of T E and T X is the mass%.
    Formula (1) T E / T X <2.0
  2.  更に酸素原子を含有する、請求項1に記載の金属窒化物含有粒子。 The metal nitride-containing particle according to claim 1, further comprising an oxygen atom.
  3.  前記窒化物が含有する遷移金属原子の含有量に対する前記窒素原子の含有量の含有原子数比X、
     前記窒化物が含有する遷移金属原子の含有量に対する前記酸素原子の含有量の含有原子数比Y、及び
     前記窒化物が含有する遷移金属原子の含有量に対する前記原子Tの含有量の含有原子数比Zが、それぞれ0を超え2未満である、請求項2に記載の金属窒化物含有粒子。
    The atomic ratio X of the content of the nitrogen atom to the content of the transition metal atom contained in the nitride,
    The content atom number ratio Y of the oxygen atom content to the content of transition metal atoms contained in the nitride, and the number of atoms contained in the content of the atoms T relative to the content of transition metal atoms contained in the nitride The metal nitride-containing particles according to claim 2, wherein the ratio Z is more than 0 and less than 2.
  4.  前記X、前記Y、及び前記Zの和が、0.4を超え1.6未満である、請求項3に記載の金属窒化物含有粒子。 The metal nitride-containing particles according to claim 3, wherein the sum of X, Y, and Z is more than 0.4 and less than 1.6.
  5.  波長400~1200nmにおける、前記金属窒化物含有粒子の複素誘電率εを下記式(2)で表すとき、ε’の最小値が0未満である、請求項1~4のいずれか一項に記載の金属窒化物含有粒子。
     式(2) ε=ε’+ε”j
     なお、上記式(2)中、ε’は複素誘電率εの実数部、ε”は複素誘電率εの虚数部、jは虚数単位を表す。
    The minimum value of ε 'is less than 0 when the complex dielectric constant ε of the metal nitride-containing particles at a wavelength of 400 to 1200 nm is expressed by the following formula (2). Metal nitride-containing particles.
    Expression (2) ε = ε ′ + ε ″ j
    In the above formula (2), ε ′ represents a real part of the complex dielectric constant ε, ε ″ represents an imaginary part of the complex dielectric constant ε, and j represents an imaginary unit.
  6.  前記原子Tが、第2~6周期の元素のうち、
     アルミニウム、ガリウム、インジウム、スズ、タリウム、鉛、及びビスマス以外の元素から選択される、請求項1~5のいずれか一項に記載の金属窒化物含有粒子。
    Among the elements of the second to sixth periods, the atom T is
    The metal nitride-containing particles according to any one of claims 1 to 5, which are selected from elements other than aluminum, gallium, indium, tin, thallium, lead, and bismuth.
  7.  前記原子Tが、13~16族元素から選択される、請求項6に記載の金属窒化物含有粒子。 The metal nitride-containing particle according to claim 6, wherein the atom T is selected from group 13 to group 16 elements.
  8.  前記原子Tが、ホウ素原子、炭素原子、硫黄原子、及びリン原子からなる群から選択されるいずれかの原子である、請求項1~7のいずれか一項に記載の金属窒化物含有粒子。 The metal nitride-containing particle according to any one of claims 1 to 7, wherein the atom T is any atom selected from the group consisting of a boron atom, a carbon atom, a sulfur atom, and a phosphorus atom.
  9.  前記原子Tが、ホウ素原子、硫黄原子、及びリン原子からなる群から選択されるいずれかの原子である、請求項1~8のいずれか一項に記載の金属窒化物含有粒子。 The metal nitride-containing particle according to any one of claims 1 to 8, wherein the atom T is any atom selected from the group consisting of a boron atom, a sulfur atom, and a phosphorus atom.
  10.  請求項1~9のいずれか一項に記載の金属窒化物含有粒子と、樹脂とを含有する分散組成物。 A dispersion composition comprising the metal nitride-containing particles according to any one of claims 1 to 9 and a resin.
  11.  請求項10に記載の分散組成物と、重合性化合物と、重合開始剤とを含有する硬化性組成物。 A curable composition comprising the dispersion composition according to claim 10, a polymerizable compound, and a polymerization initiator.
  12.  請求項1~9のいずれか一項に記載の金属窒化物含有粒子と、樹脂と、重合性化合物と、重合開始剤とを含有する硬化性組成物。 A curable composition containing the metal nitride-containing particles according to any one of claims 1 to 9, a resin, a polymerizable compound, and a polymerization initiator.
  13.  更に、溶剤を含有する、請求項11又は12に記載の硬化性組成物。 Furthermore, the curable composition of Claim 11 or 12 containing a solvent.
  14.  請求項11~13のいずれか一項に記載の硬化性組成物を硬化して得られる硬化膜。 A cured film obtained by curing the curable composition according to any one of claims 11 to 13.
  15.  請求項14に記載の硬化膜を含有する、カラーフィルタ。 A color filter comprising the cured film according to claim 14.
  16.  請求項14に記載の硬化膜を含有する、固体撮像素子。 A solid-state imaging device containing the cured film according to claim 14.
  17.  請求項14に記載の硬化膜を含有する、固体撮像装置。 A solid-state imaging device containing the cured film according to claim 14.
  18.  請求項14に記載の硬化膜を含有する、赤外線センサ。 An infrared sensor containing the cured film according to claim 14.
  19.  請求項1~9のいずれか一項に記載の金属窒化物含有粒子の製造方法であって、
     窒素原子を含有する原材料A、並びに遷移金属原子及び原子Tを含有する原材料Bを準備する、又は
     窒素原子を含有する原材料A、遷移金属原子を含有する原材料C、及び原子Tを含有する原材料Dを準備する、原材料準備工程と、
     2種以上の原材料を気相状態で混合して、混合物を得る工程と、
     気相状態の前記混合物を凝縮して、金属窒化物含有粒子を得る工程とを含む、金属窒化物含有粒子の製造方法。
    A method for producing metal nitride-containing particles according to any one of claims 1 to 9,
    Prepare a raw material A containing a nitrogen atom and a raw material B containing a transition metal atom and an atom T, or a raw material A containing a nitrogen atom, a raw material C containing a transition metal atom, and a raw material D containing an atom T The raw material preparation process,
    Mixing two or more raw materials in a gas phase to obtain a mixture;
    A step of condensing the mixture in a gas phase to obtain metal nitride-containing particles.
  20.  請求項10に記載の分散組成物の製造方法であって、
     窒素原子を含有する原材料A、並びに遷移金属原子及び原子Tを含有する原材料Bを準備する、又は
     窒素原子を含有する原材料A、遷移金属原子を含有する原材料C、及び原子Tを含有する原材料Dを準備する、原材料準備工程と、
     2種以上の原材料を気相状態で混合して、混合物を得る工程と、
     気相状態の前記混合物を凝縮して、金属窒化物含有粒子を得る工程と、
     前記金属窒化物含有粒子、及び前記樹脂を混合し、分散組成物を得る工程とを含む、分散組成物の製造方法。
    A method for producing the dispersion composition according to claim 10,
    Prepare a raw material A containing a nitrogen atom and a raw material B containing a transition metal atom and an atom T, or a raw material A containing a nitrogen atom, a raw material C containing a transition metal atom, and a raw material D containing an atom T The raw material preparation process,
    Mixing two or more raw materials in a gas phase to obtain a mixture;
    Condensing the mixture in a gas phase to obtain metal nitride-containing particles;
    And a step of mixing the metal nitride-containing particles and the resin to obtain a dispersion composition.
  21.  分散組成物と、重合性化合物と、重合開始剤とを含有する硬化性組成物の製造方法であって、請求項20に記載の分散組成物の製造方法を含む、硬化性組成物の製造方法。 A method for producing a curable composition comprising a dispersion composition, a polymerizable compound, and a polymerization initiator, comprising the method for producing a dispersion composition according to claim 20. .
  22.  請求項11~13のいずれか一項に記載の硬化性組成物を用いて硬化性組成物層を形成する、硬化性組成物層形成工程と、
     前記硬化性組成物層に、パターン状の開口部を備えるフォトマスクを介して、活性光線又は放射線を照射して露光する、露光工程と、
     前記露光後の前記硬化性組成物層を現像して、硬化膜を形成する、現像工程とを含む、硬化膜の製造方法。
    A curable composition layer forming step of forming a curable composition layer using the curable composition according to any one of claims 11 to 13;
    An exposure step of exposing the curable composition layer by irradiating actinic rays or radiation through a photomask having a pattern-shaped opening; and
    A development method of a cured film including the development process of developing the curable composition layer after the exposure, and forming a cured film.
PCT/JP2017/031852 2016-09-30 2017-09-05 Metal nitride-containing particles, dispersion composition, curable composition, cured film, production method for these, color filter, solid-state imaging element, solid-state imaging device, and infrared sensor WO2018061644A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018542042A JPWO2018061644A1 (en) 2016-09-30 2017-09-05 Metal nitride-containing particles, dispersion composition, curable composition, cured film, and production method thereof, color filter, solid-state imaging device, solid-state imaging device, infrared sensor
KR1020197007594A KR102294518B1 (en) 2016-09-30 2017-09-05 Metal nitride-containing particles, dispersion composition, curable composition, cured film, and their manufacturing method and color filter, solid-state imaging device, solid-state imaging device, infrared sensor
JP2022039454A JP7373000B2 (en) 2016-09-30 2022-03-14 Metal nitride-containing particles, dispersion compositions, curable compositions, cured films, and methods for producing them, color filters, solid-state imaging devices, solid-state imaging devices, infrared sensors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016193263 2016-09-30
JP2016-193263 2016-09-30

Publications (1)

Publication Number Publication Date
WO2018061644A1 true WO2018061644A1 (en) 2018-04-05

Family

ID=61763448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031852 WO2018061644A1 (en) 2016-09-30 2017-09-05 Metal nitride-containing particles, dispersion composition, curable composition, cured film, production method for these, color filter, solid-state imaging element, solid-state imaging device, and infrared sensor

Country Status (4)

Country Link
JP (2) JPWO2018061644A1 (en)
KR (1) KR102294518B1 (en)
TW (1) TWI751196B (en)
WO (1) WO2018061644A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054261A1 (en) * 2018-09-11 2020-03-19 富士フイルム株式会社 Light-blocking composition, cured film, color filter, light-blocking film, solid-state imaging element, and image display device
JP2020200376A (en) * 2019-06-07 2020-12-17 三菱ケミカル株式会社 Resin composition, laminate film, method for producing laminate film, and use of laminate film

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019124713A1 (en) 2018-11-27 2020-05-28 Samsung Electronics Co., Ltd. Devices and methods for controlling exposure to wireless communication
CN113104822A (en) * 2021-03-31 2021-07-13 攀枝花学院 Method for reducing and nitriding titanium oxide

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222110A (en) * 1988-04-23 1990-01-25 Tioxide Group Plc Nitrogen compound
JP2006206891A (en) * 2004-12-28 2006-08-10 Ishihara Sangyo Kaisha Ltd Black titanium oxynitride
JP2007029859A (en) * 2005-07-27 2007-02-08 Nisshin Seifun Group Inc Production method of fine particles and apparatus
WO2010041658A1 (en) * 2008-10-06 2010-04-15 昭和電工株式会社 Method for producing carbonitride mixture particle or oxycarbonitride mixture particle, and use thereof
JP2012096971A (en) * 2010-11-04 2012-05-24 Japan Fine Ceramics Center Method for manufacturing superfine and homogeneous titanium-based carbonitride solid solution powder
JP2015227282A (en) * 2009-06-15 2015-12-17 東レ株式会社 Black color composite fine particle, black color resin composition, color filter substrate and liquid crystal display device

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3744188B2 (en) * 1998-03-16 2006-02-08 住友金属鉱山株式会社 Heat ray shielding film forming coating solution and heat ray shielding film
JP4058850B2 (en) * 1999-08-11 2008-03-12 住友金属鉱山株式会社 Coating solution for solar filter film formation
CN101090866B (en) * 2004-12-28 2011-08-17 石原产业株式会社 Black titanium oxynitride
JP5035720B2 (en) * 2007-04-17 2012-09-26 三菱マテリアル株式会社 Method for producing conductive black powder and conductive black film
JP5264350B2 (en) * 2008-07-29 2013-08-14 三菱マテリアル株式会社 Black titanium oxynitride powder and production method and use thereof
JP5424591B2 (en) * 2008-07-29 2014-02-26 三菱マテリアル株式会社 Black pigment dispersion, its production method and use
JP5099094B2 (en) 2008-09-18 2012-12-12 東レ株式会社 Black resin composition, resin black matrix, color filter, and liquid crystal display device
US8278657B2 (en) * 2009-02-13 2012-10-02 Semiconductor Energy Laboratory Co., Ltd. Transistor, semiconductor device including the transistor, and manufacturing method of the transistor and the semiconductor device
JP5747475B2 (en) * 2010-10-29 2015-07-15 三菱マテリアル電子化成株式会社 Blue shielding black powder and its production method and use
JP5723699B2 (en) * 2011-02-25 2015-05-27 富士フイルム株式会社 Light-shielding composition, method for producing light-shielding composition, solder resist, pattern forming method, and solid-state imaging device
JP5623958B2 (en) * 2011-03-30 2014-11-12 富士フイルム株式会社 Radiation-sensitive composition, pattern forming method, color filter and method for producing the same, and solid-state imaging device
EP2723680A1 (en) * 2011-06-27 2014-04-30 Sixpoint Materials Inc. Synthesis method of transition metal nitride and transition metal nitride
JP5798978B2 (en) * 2012-05-17 2015-10-21 富士フイルム株式会社 Colored radiation-sensitive composition and color filter using the same
JP5986157B2 (en) * 2013-08-27 2016-09-06 太陽インキ製造株式会社 Curable resin composition, dry film, cured product and printed wiring board
JP6639827B2 (en) * 2014-08-08 2020-02-05 太陽インキ製造株式会社 Curable resin composition, dry film, cured product and printed wiring board
JP5941180B1 (en) * 2015-03-20 2016-06-29 太陽インキ製造株式会社 Curable resin composition, dry film, cured product and printed wiring board

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222110A (en) * 1988-04-23 1990-01-25 Tioxide Group Plc Nitrogen compound
JP2006206891A (en) * 2004-12-28 2006-08-10 Ishihara Sangyo Kaisha Ltd Black titanium oxynitride
JP2007029859A (en) * 2005-07-27 2007-02-08 Nisshin Seifun Group Inc Production method of fine particles and apparatus
WO2010041658A1 (en) * 2008-10-06 2010-04-15 昭和電工株式会社 Method for producing carbonitride mixture particle or oxycarbonitride mixture particle, and use thereof
JP2015227282A (en) * 2009-06-15 2015-12-17 東レ株式会社 Black color composite fine particle, black color resin composition, color filter substrate and liquid crystal display device
JP2012096971A (en) * 2010-11-04 2012-05-24 Japan Fine Ceramics Center Method for manufacturing superfine and homogeneous titanium-based carbonitride solid solution powder

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054261A1 (en) * 2018-09-11 2020-03-19 富士フイルム株式会社 Light-blocking composition, cured film, color filter, light-blocking film, solid-state imaging element, and image display device
CN112400124A (en) * 2018-09-11 2021-02-23 富士胶片株式会社 Light-shielding composition, cured film, color filter, light-shielding film, solid-state imaging element, and image display device
JPWO2020054261A1 (en) * 2018-09-11 2021-10-07 富士フイルム株式会社 Light-shielding composition, cured film, color filter, light-shielding film, solid-state image sensor, image display device
JP7029546B2 (en) 2018-09-11 2022-03-03 富士フイルム株式会社 Light-shielding composition, cured film, color filter, light-shielding film, solid-state image sensor, image display device
CN112400124B (en) * 2018-09-11 2022-08-12 富士胶片株式会社 Light-shielding composition, cured film, color filter, light-shielding film, solid-state imaging element, and image display device
US11624001B2 (en) 2018-09-11 2023-04-11 Fujifilm Corporation Light-shielding composition, cured film, color filter, light-shielding film, solid-state imaging element, and image display device
JP2020200376A (en) * 2019-06-07 2020-12-17 三菱ケミカル株式会社 Resin composition, laminate film, method for producing laminate film, and use of laminate film

Also Published As

Publication number Publication date
TW201815682A (en) 2018-05-01
JPWO2018061644A1 (en) 2019-09-05
KR20190041493A (en) 2019-04-22
TWI751196B (en) 2022-01-01
KR102294518B1 (en) 2021-08-27
JP2022079500A (en) 2022-05-26
JP7373000B2 (en) 2023-11-01

Similar Documents

Publication Publication Date Title
JP7373000B2 (en) Metal nitride-containing particles, dispersion compositions, curable compositions, cured films, and methods for producing them, color filters, solid-state imaging devices, solid-state imaging devices, infrared sensors
WO2017203979A1 (en) Curable composition, cured film, color filter, light blocking film, solid-state imaging element, image display device, and method for producing cured film
KR102202906B1 (en) Composition, cured film, color filter, solid-state image sensor, infrared sensor, near infrared sensor, and proximity sensor
WO2019176409A1 (en) Method for manufacturing cured film, and method for manufacturing solid-state imaging element
TWI798453B (en) Light-shielding resin composition, cured film, color filter, light-shielding film, solid-state imaging device, image display device
JP6818751B2 (en) Curable composition, cured film, color filter, light-shielding film, solid-state image sensor, image display device, method for producing cured film, and polyfunctional thiol compound.
WO2020066420A1 (en) Light-shielding composition, cured film, light-shielding film, and solid-state imaging element
JP6680907B2 (en) Curable composition, cured film, color filter, light shielding film, solid-state imaging device, image display device, and method for producing cured film
JP6994044B2 (en) Manufacturing method of cured film, manufacturing method of solid-state image sensor, manufacturing method of image display device
KR102160018B1 (en) Composition, cured film, color filter, light shielding film, solid-state image sensor and image display device
JP6727344B2 (en) Curable composition, compound, cured film, method for producing cured film, method for producing color filter, solid-state imaging device, infrared sensor
WO2017208771A1 (en) Composition, cured film, color filter, light blocking film, solid-state imaging device and image display device
WO2018173692A1 (en) Curable composition, cured film, light shielding film, solid state imaging element, solid state imaging device and method for manufacturing cured film
WO2017175550A1 (en) Composition, method for producing composition, cured film, color filter, light-blocking film, solid-state imaging element, and image display device
WO2019065456A1 (en) Curable composition, cured film, solid-state imaging device, and method for manufacturing cured film
WO2019171902A1 (en) Curable composition, cured film, optical element, solid-state imaging element and color filter
JP2018165780A (en) Housing body, housing body manufacturing method, and cured film manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855602

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018542042

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197007594

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17855602

Country of ref document: EP

Kind code of ref document: A1