WO2018061356A1 - Piezoelectric vibrator, manufacturing method for piezoelectric vibrator and adjustment device - Google Patents

Piezoelectric vibrator, manufacturing method for piezoelectric vibrator and adjustment device Download PDF

Info

Publication number
WO2018061356A1
WO2018061356A1 PCT/JP2017/023177 JP2017023177W WO2018061356A1 WO 2018061356 A1 WO2018061356 A1 WO 2018061356A1 JP 2017023177 W JP2017023177 W JP 2017023177W WO 2018061356 A1 WO2018061356 A1 WO 2018061356A1
Authority
WO
WIPO (PCT)
Prior art keywords
package
piezoelectric vibrator
resonance frequency
heating
crystal
Prior art date
Application number
PCT/JP2017/023177
Other languages
French (fr)
Japanese (ja)
Inventor
山本 裕之
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2018061356A1 publication Critical patent/WO2018061356A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details

Definitions

  • the present invention relates to a piezoelectric vibrator, a piezoelectric vibrator manufacturing method, and an adjusting device.
  • a crystal vibrator (Quartz Crystal Unit) described in Patent Document 1 As an invention related to a conventional piezoelectric vibrator, for example, a crystal vibrator (Quartz Crystal Unit) described in Patent Document 1 is known.
  • the crystal resonator described in Patent Document 1 includes a pair of excitation electrodes, a crystal piece (Quartz Crystal Blank), a container, a frequency adjusting material, and a transmission window.
  • the crystal piece is sandwiched between a pair of excitation electrodes.
  • the crystal piece and the pair of excitation electrodes are housed in a container.
  • the frequency adjusting material is provided on the inner wall of the container.
  • the transmission window is provided in the container and transmits heat rays to be described later.
  • Patent Document 1 In the crystal resonator described in Patent Document 1 as described above, after sealing the container, the frequency adjusting material is irradiated with heat rays from the outside of the container through the transmission window. As a result, the frequency adjusting material evaporates and adheres to the excitation electrode. As a result, the weight of the excitation electrode increases, and the resonance frequency of the crystal resonator decreases. As described above, in the crystal resonator disclosed in Patent Document 1, it is possible to adjust the resonance frequency of the crystal resonator after the container is sealed. Patent Document 2 and Patent Document 3 also describe adjusting the resonance frequency of a piezoelectric device or a piezoelectric vibrator by a method similar to the method described in Patent Document 1.
  • the frequency adjusting material is heated by irradiating heat rays. Therefore, a transmission window for transmitting heat rays is provided in the container.
  • the existence of such a transmission window may cause a problem as described below, for example.
  • Such a joint portion is closed by, for example, an adhesive.
  • the adhesive deteriorates over time, the hermeticity of the container may decrease.
  • the piezoelectric device described in Patent Document 2 and the piezoelectric vibrator described in Patent Document 3 also have the same problems as the crystal vibrator described in Patent Document 1.
  • an object of the present invention is to provide a piezoelectric vibrator, a piezoelectric vibrator manufacturing method, and an adjusting device that can adjust the resonance frequency of the piezoelectric vibrator after sealing the package without providing a transmission window in the package. It is.
  • a piezoelectric vibrator includes a substrate, a lid, and a bonding material that joins the substrate and the lid, and a package that is a sealed container; a piezoelectric piece that is provided in the package; and A piezoelectric vibration element including a first excitation electrode and a second excitation electrode; a piezoelectric vibration element that is provided in the package so as not to contact the piezoelectric vibration element; and the first excitation electrode and the first excitation electrode.
  • a metal member having a melting point lower than that of the excitation electrode material, and the inside of the package is shielded from light.
  • a method for manufacturing a piezoelectric vibrator is a method for manufacturing a piezoelectric vibrator including a piezoelectric vibration element, a metal member, and a package, and sealing the package containing the piezoelectric vibration element and the metal member.
  • An adjustment device is an adjustment device that adjusts a resonance frequency of a piezoelectric vibrator including a package that is a sealed container, a piezoelectric vibration element housed in the package, and a metal member. By heating the metal member by heat conduction from the package and depositing the metal member on the piezoelectric vibration element, so that the resonance frequency of the piezoelectric vibrator approaches the target resonance frequency. And a control unit for controlling the heating unit.
  • the resonance frequency of the piezoelectric vibrator can be adjusted after sealing the package without providing a transmission window in the package.
  • FIG. 1 is an external perspective view of the crystal unit 10.
  • FIG. 2 is an exploded perspective view of the crystal unit 10.
  • FIG. 3 is a cross-sectional structural view taken along line AA in FIG.
  • FIG. 4 is a block diagram of the adjustment device 300.
  • FIG. 5 is a flowchart showing a method for manufacturing the crystal unit 10.
  • FIG. 6 is a diagram showing the weight of the crystal resonator element in each step in the conventional method for manufacturing a crystal resonator.
  • FIG. 7 is a view showing the weight of the crystal resonator element 16 in the method for manufacturing the crystal unit 10.
  • FIG. 8 is a cross-sectional structure diagram of the crystal resonator 10a according to the first modification.
  • FIG. 9 is a cross-sectional structure diagram of a crystal resonator 10b according to a second modification.
  • FIG. 10 is a cross-sectional structure diagram of a crystal resonator 10c according to a third modification.
  • FIG. 11 is a block diagram of an adjusting device 300a used in the method for manufacturing the crystal resonator 10 according to the first modification.
  • FIG. 12 is a flowchart showing a method for manufacturing the crystal unit 10 according to the first modification.
  • FIG. 13 is a block diagram of an adjusting device 300b used in the method for manufacturing the crystal resonator 10 according to the second modification.
  • FIG. 14 is a flowchart showing a method for manufacturing the crystal unit 10 according to the second modification.
  • FIG. 1 is an external perspective view of the crystal unit 10.
  • FIG. 2 is an exploded perspective view of the crystal unit 10.
  • FIG. 3 is a cross-sectional structural view taken along line AA in FIG.
  • the normal direction to the main surface of the crystal unit 10 is defined as the vertical direction, and the direction in which the long side of the crystal unit 10 extends when viewed from above is the front-rear direction (or the long side direction).
  • the direction in which the short side of the crystal unit 10 extends is defined as the left-right direction (or the short side direction).
  • the crystal resonator 10 includes a package 11, a crystal resonator element 16, and a metal member 150, and is an example of a piezoelectric resonator.
  • the left-right width of the crystal unit 10 is, for example, 1.6 mm.
  • the length before and after the crystal unit 10 is, for example, 2.0 mm.
  • the package 11 is a sealed container having a rectangular parallelepiped shape including the substrate 12, the lid 14, and the bonding material 50.
  • the package 11 has a space Sp isolated from the outside.
  • the package 11 has an airtight structure and a liquidtight structure. Therefore, gas and liquid cannot go back and forth between the outside of the package 11 and the space Sp.
  • the package 11 may have a liquid-tight structure without an air-tight structure. That is, the liquid may not be able to travel between the outside of the package 11 and the space Sp, and the gas may be able to travel between the outside of the package 11 and the space Sp.
  • the package 11 is made of a non-transmissive member that does not transmit light, as will be described later. Therefore, light cannot be inserted from outside the package 11 into the space Sp. That is, the inside of the package 11 is shielded from light.
  • the substrate 12 includes a substrate body 21, external electrodes 22, 26, 40, 42, 44, 46, via-hole conductors 25, 28, 54, 56 and a metallized film 30.
  • the substrate body 21 has a plate-like structure and has a rectangular structure when viewed from above. Therefore, the substrate body 21 has a rectangular upper surface and lower surface.
  • a rectangle means a square.
  • the term “rectangular shape” means to include a shape slightly deformed from a rectangle in addition to the rectangle.
  • the substrate body 21 includes, for example, an aluminum oxide sintered body, a mullite sintered body, an aluminum nitride sintered body, a silicon carbide sintered body, a ceramic insulating material such as a glass ceramic sintered body, crystal, glass It is made of silicon or the like.
  • the substrate body 21 has a structure in which a plurality of insulator layers made of a ceramic material are stacked.
  • the external electrode 22 is a rectangular conductor layer provided near the left rear corner of the upper surface of the substrate body 21.
  • the external electrode 26 is a rectangular conductor layer provided near the right rear corner of the upper surface of the substrate body 21.
  • the external electrode 22 and the external electrode 26 are arranged in the left-right direction.
  • the external electrode 40 is a square-shaped conductor layer provided in the vicinity of the right rear corner of the lower surface of the substrate body 21 and overlaps the external electrode 26 when viewed from above.
  • the external electrode 42 is a square conductor layer provided in the vicinity of the left rear corner of the lower surface of the substrate body 21, and overlaps the external electrode 22 when viewed from above.
  • the external electrode 44 is a square conductor layer provided near the right front corner of the lower surface of the substrate body 21.
  • the external electrode 46 is a square conductor layer provided in the vicinity of the left front corner of the lower surface of the substrate body 21.
  • the via-hole conductor 25 penetrates the substrate body 21 in the vertical direction, and connects the external electrode 22 and the external electrode 42.
  • the via-hole conductor 28 penetrates the substrate body 21 in the vertical direction, and connects the external electrode 26 and the external electrode 40.
  • the metallized film 30 is a linear metal film provided on the upper surface of the substrate body 21 and has a rectangular annular structure when viewed from the upper side (normal direction to the upper surface).
  • the external electrodes 22 and 26 are provided in a region surrounded by the metallized film 30 when viewed from above.
  • the via-hole conductor 54 penetrates the substrate body 21 in the vertical direction, and connects the metallized film 30 and the external electrode 46.
  • the via-hole conductor 56 penetrates the substrate main body 21 in the vertical direction, and connects the metallized film 30 and the external electrode 44.
  • the external electrodes 22, 26, 40, 42, 44, 46 and the metallized film 30 have a three-layer structure. Specifically, a molybdenum layer, a nickel layer, and a gold layer are stacked from the lower layer side to the upper layer side. Is configured.
  • the via-hole conductors 25, 28, 54, and 56 are produced by burying a conductor such as molybdenum in a via hole formed in the substrate body 21.
  • the lid 14 is a casing having a rectangular opening and is also called a metal cap.
  • the lid 14 is produced, for example, by applying nickel plating and gold plating to a base material of an iron nickel alloy or a cobalt nickel alloy.
  • the lid 14 is a rectangular parallelepiped box having an opening on the lower side, and is produced by applying nickel plating and gold plating to the surface of the base material of the iron-nickel alloy.
  • the bonding material 50 bonds the lid 14 and the substrate 12 and is disposed on the metallized film 30.
  • the bonding material 50 has substantially the same shape as the metallized film 30 and has a rectangular annular structure.
  • the bonding material 50 has a melting point lower than that of the metallized film 30 and is made of, for example, a gold-tin alloy.
  • the bonding material 50 is formed on the metallized film 30 by printing or the like, for example. Then, the metallized film 30 is melted and solidified in a state where the outer edge of the opening of the lid 14 is in contact with the bonding material 50. Accordingly, the lid 14 is bonded to the metallized film 30 via the bonding material 50 over the entire length of the outer edge of the opening.
  • a space Sp is formed by the upper surface of the substrate body 21 and the lid 14. Further, the space Sp is kept in a vacuum state by the lid 14 being in close contact with the substrate body 21 through the metallized film 30 and the bonding material 50. However, the space Sp may be in an atmospheric state. Instead of the bonding material 50, for example, an adhesive such as low-melting glass or resin may be used. In this case, the metallized film 30 is not necessary.
  • a quartz resonator element 16 is provided in the package 11.
  • the crystal resonator element 16 includes a crystal piece 17, external electrodes 97 and 98, excitation electrodes 100 and 101, and lead conductors 102 and 103, and is an example of a piezoelectric resonator element.
  • the crystal piece 17 has a plate-like structure having an upper surface (an example of a first main surface) and a lower surface (an example of a second main surface), and has a rectangular structure when viewed from above. ing.
  • the crystal piece 17 is an example of a piezoelectric piece. Therefore, a piezoelectric ceramic piece may be used as the piezoelectric piece instead of the crystal piece 17.
  • the crystal piece 17 is, for example, an AT-cut type crystal piece cut out from a rough crystal or the like at a predetermined angle.
  • the size of the crystal piece 17 is a size that fits in a range where the length in the front-rear direction is 2.0 mm and the width in the left-right direction is 1.6 mm. Taking into account the package wall thickness, bleeding of the sealing material, device mounting accuracy, etc., the length of the crystal piece 17 in the front-rear direction is 1.500 mm or less, and the width of the crystal piece 17 in the left-right direction is 1.00 mm
  • the crystal piece 17 is designed to be as follows.
  • the external electrode 97 is a conductor layer provided at the left rear corner of the crystal piece 17 and in the vicinity thereof.
  • the external electrode 97 is formed across the upper surface, the lower surface, the rear surface, and the left surface.
  • the external electrode 98 is a conductor layer provided at the right rear corner of the crystal piece 17 and in the vicinity thereof.
  • the external electrode 98 is formed across the upper surface, the lower surface, the rear surface, and the right surface.
  • the external electrodes 97 and 98 are arranged along the short side of the crystal piece 17.
  • the excitation electrode 100 (an example of the first excitation electrode) is provided at the center of the upper surface of the crystal piece 17 and has a rectangular structure when viewed from above.
  • the excitation electrode 101 is provided at the center of the lower surface of the crystal piece 17 and has a rectangular structure when viewed from above.
  • the excitation electrode 100 and the excitation electrode 101 overlap with each other when viewed from above.
  • the lead conductor 102 (an example of the second excitation electrode) is provided on the upper surface of the crystal piece 17 and connects the external electrode 97 and the excitation electrode 100.
  • the lead conductor 103 is provided on the lower surface of the crystal piece 17 and connects the external electrode 98 and the excitation electrode 101.
  • the external electrodes 97 and 98, the excitation electrodes 100 and 101, and the lead conductors 102 and 103 have a two-layer structure. Specifically, a chromium layer and a gold layer are laminated from the lower layer side to the upper layer side. It is comprised by.
  • the crystal resonator element 16 is mounted on the upper surface of the substrate 12. Specifically, the external electrode 22 and the external electrode 97 are fixed in a state where they are electrically connected by the conductive adhesive 210, and the external electrode 26 and the external electrode 98 are electrically connected by the conductive adhesive 212. It is fixed in the state that was done.
  • the metal member 150 is provided in the package 11 so as not to contact the crystal resonator element 16. Furthermore, as shown in FIG. 3, the metal member 150 does not overlap the crystal piece 17 when viewed from the upper side (when viewed from the normal direction of the first main surface). In the present embodiment, the metal member 150 is provided on the upper surface of the substrate 12 and is located in a region adjacent to the front side with respect to the crystal resonator element 16 when viewed from above.
  • the metal member 150 has a lower melting point than the materials (chromium and gold) of the excitation electrodes 100 and 101, and is made of, for example, tin, an alloy containing tin, or an oxide containing tin. . Chromium has a melting point of 1903 ° C. and gold has a melting point of 1064 ° C. Therefore, the melting point of the metal member 150 should just be lower than 1064 degreeC, Preferably it is about 280 degreeC.
  • the metal member 150 must not melt when the crystal unit 10 is used. Therefore, the melting point of the metal member 150 needs to be higher than the temperature in the environment in which the crystal unit 10 is used (hereinafter, environmental temperature).
  • the environmental temperature varies depending on the use of the crystal unit 10. For example, when the crystal unit 10 is used in an automobile, the environmental temperature is 120 ° C. or higher and 125 ° C. or lower. Therefore, when the crystal unit 10 is used in an automobile, the melting point of the metal member 150 is higher than 125 ° C.
  • the metal member 150 is used to adjust the resonance frequency f of the crystal resonator 10 as will be described later. Specifically, when the resonance frequency f of the crystal resonator 10 is higher than the target resonance frequency ft, the metal member 150 is heated and vapor-deposited on the crystal resonator element 16 with the package 11 sealed. As a result, the weight of the crystal resonator element 16 increases and the resonance frequency f of the crystal resonator 10 decreases. Therefore, in the crystal resonator 10 in which the resonance frequency f is adjusted, a metal film (not shown) having the same composition as the metal member 150 is formed on the surface of the crystal resonator element 16. Further, since not all of the metal member 150 is deposited on the crystal resonator element 16, the metal member 150 remains on the upper surface of the substrate 12 even after the resonance frequency f is adjusted.
  • FIG. 4 is a block diagram of the adjustment device 300.
  • the adjustment device 300 is a device for adjusting the resonance frequency f of the crystal resonator 10.
  • the adjustment device 300 includes a heating device 302, a control unit 308, a storage unit 310, and a measurement unit 312.
  • the heating device 302 includes a heating unit 304 and a furnace 306.
  • the furnace 306 is a container that can accommodate a plurality of crystal resonators 10.
  • the furnace 306 serves to confine heat.
  • the heating unit 304 is provided in the furnace 306 and heats the package 11 of the crystal unit 10.
  • the heating unit 304 may heat the package 11 by heat radiation.
  • Thermal radiation is the transfer of heat via electromagnetic waves.
  • the heating unit 304 is a heater.
  • the heating unit 304 emits electromagnetic waves, and the package 11 absorbs the electromagnetic waves, whereby the package 11 is heated.
  • the heating unit 304 may heat the package 11 by heat conduction.
  • Thermal conduction is the transfer of heat through atomic vibrations. Examples of such a heating method include the following first and second examples.
  • the heating unit 304 is in contact with the package 11, and the heat generated by the heating unit 304 is directly transmitted to the package 11.
  • air around the heating unit 304 is heated by the heating unit 304, and air heated by a fan or the like is sent to the package 11, whereby heat of the air is transmitted to the package 11.
  • the metal member 150 is heated by heat conduction from the package 11. As a result, the metal member 150 adheres to the surface of the crystal resonator element 16 after being evaporated. In other words, the metal member 150 is deposited on the surface of the crystal resonator element 16.
  • the heating of the metal member 150 is mainly performed by heat conduction from the package 11.
  • part of the heating of the metal member 150 may be performed by heat radiation from the heating unit 304.
  • the amount of heat that the metal member 150 receives by heat conduction is much larger than the amount of heat that the metal member 150 receives by heat radiation.
  • “the metal member 150 is heated by heat conduction from the package 11” means that the amount of heat received by the metal member 150 by heat conduction is much larger than the amount of heat received by the metal member 150 by heat radiation.
  • the fact that the metal member 150 is heated by thermal radiation by irradiating the metal member 150 with the laser beam includes that “the metal member 150 is heated by heat conduction from the package 11”. Shall not.
  • the measuring unit 312 measures the resonance frequency f of the crystal unit 10 before being put into the furnace 306. Specifically, the measurement unit 312 applies a predetermined voltage or current, and measures the resonance frequency f of the crystal resonator 10. Then, the measurement unit 312 detects the signal output from the crystal unit 10 and determines the frequency at which the signal intensity is maximum as the resonance frequency f of the crystal unit 10.
  • the storage unit 310 stores the table shown in Table 1.
  • the table in Table 1 shows the relationship between the difference ⁇ f and the heating time T.
  • the difference ⁇ f is a value obtained by subtracting the target resonance frequency ft from the resonance frequency f of the crystal resonator 10.
  • the heating time T is set to increase as the difference ⁇ f increases. That is, as the difference ⁇ f increases, the amount of the metal member 150 attached to the crystal resonator element 16 increases.
  • the control unit 308 controls the heating unit 304 based on the resonance frequency f measured by the measurement unit 312 so that the resonance frequency f of the crystal resonator 10 approaches the target resonance frequency ft. That is, the control unit 308 heats the package 11 using the heating unit 304 under the heating condition determined by the resonance frequency f. In the present embodiment, the control unit 308 subtracts the resonance frequency ft from the resonance frequency f to obtain the difference ⁇ f. The control unit 308 refers to the table in Table 1 and acquires the heating time T corresponding to the difference ⁇ f. Then, the control unit 308 causes the heating unit 304 to heat the crystal unit 10 over the heating time T. In the adjusting device 300 of the present embodiment, the heating temperature is constant regardless of the heating time T. The heating temperature is higher than the environmental temperature, and is 180 ° C., for example. However, the control unit 308 may change both the heating time T and the heating temperature according to the difference ⁇ f, or may change the heating temperature without changing the heating time T.
  • FIG. 5 is a flowchart showing a method for manufacturing the crystal unit 10.
  • the mother substrate in which a plurality of substrate bodies 21 are arranged in a matrix is prepared.
  • the mother substrate may be, for example, an aluminum oxide sintered body, a mullite sintered body, an aluminum nitride sintered body, a silicon carbide sintered body, a ceramic insulating material such as a glass ceramic sintered body, crystal, glass, It is made of silicon or the like.
  • a beam is irradiated to the position where the via-hole conductors 25, 28, 54, 56 of the substrate body 21 are formed to form a through hole. Further, the through hole is filled with a conductive material such as molybdenum and dried. Thereafter, the via-hole conductors 25, 28, 54, and 56 are formed by sintering the conductive material.
  • base electrodes of the external electrodes 40, 42, 44, 46 are formed on the lower surface of the mother substrate. Specifically, a molybdenum layer is printed on the lower surface of the mother substrate and dried. Thereafter, the molybdenum layer is sintered. As a result, the base electrodes of the external electrodes 40, 42, 44, 46 are formed.
  • the base electrodes of the external electrodes 22 and 26 and the metallized film 30 are formed on the upper surface of the mother substrate. Specifically, a molybdenum layer is printed on the upper surface of the mother substrate and dried. Thereafter, the molybdenum layer is sintered. Thereby, the base electrodes of the external electrodes 22 and 26 and the metallized film 30 are formed.
  • the filling of the conductive material into the through holes and the printing of the external electrodes and the like on the mother substrate can be simultaneously formed by using vacuum printing or the like. At this time, the conductive material and the external electrode are fired simultaneously.
  • the mother substrate is divided into a plurality of substrate bodies 21 by a dicer.
  • the mother substrate may be divided into a plurality of substrate bodies 21 after the laser beam is irradiated to form the division grooves in the mother substrate.
  • the substrate 12 is completed.
  • the crystal resonator element 16 is produced.
  • the quartz crystal ore is cut out by AT cut to obtain a rectangular plate-like crystal piece 17. Furthermore, if necessary, bevel processing is performed on the crystal piece 17 using a barrel processing apparatus. Thereby, the vicinity of the ridgeline of the crystal piece 17 is scraped off.
  • external electrodes 97 and 98, excitation electrodes 100 and 101, and lead conductors 102 and 103 are formed on the crystal piece 17. Note that the formation of the external electrodes 97 and 98, the excitation electrodes 100 and 101, and the lead conductors 102 and 103 is a general process and will not be described. Thereby, the crystal resonator element 16 is completed.
  • the crystal resonator element 16 is mounted on the upper surface of the substrate body 21 (step S1). Specifically, as shown in FIGS. 2 and 3, the external electrode 22 and the external electrode 97 are bonded by the conductive adhesive 210, and the external electrode 26 and the external electrode 98 are bonded by the conductive adhesive 212. To do.
  • the metal member 150 is attached on the upper surface of the substrate body 21 (step S2).
  • the metal member 150 is fixed to the upper surface of the substrate body 21 with, for example, an adhesive.
  • step S3 sealing process.
  • the lid 14 is disposed on the substrate 12 so that the outer edge of the opening of the lid 14 is positioned on the bonding material 50 in a vacuum state.
  • the bonding material 50 is melted by heating the lid 14 and the substrate 12 to 280 ° C., for example. Thereafter, the bonding material 50 is solidified by cooling the lid 14 and the substrate 12. Thereby, the package 11 is sealed.
  • the measurement unit 312 measures the resonance frequency f of the crystal unit 10 (step S4: first measurement step).
  • the measurement unit 312 measures the resonance frequency f of the crystal resonator 10 after the package 11 is sealed and before the package 11 is heated. Since the method for measuring the resonance frequency f has already been described, further description is omitted. Thereby, the control unit 308 acquires the resonance frequency f of the crystal resonator 10.
  • control unit 308 calculates the difference ⁇ f by subtracting the target resonance frequency ft from the resonance frequency f (step S5). Further, the control unit 308 refers to the table of Table 1 stored in the storage unit 310 and determines the heating time T corresponding to the difference ⁇ f (step S6).
  • the crystal unit 10 for which the measurement of the resonance frequency f has been completed is put into the furnace 306.
  • a plurality of crystal resonators 10 determined to have the same heating time T may be put together into the furnace 306.
  • the control unit 308 causes the heating unit 304 to heat the package 11 under a heating condition determined by the resonance frequency f (step S7: heating process).
  • the control unit 308 controls the heating unit 304 to heat the plurality of crystal units 10 over the heating time T.
  • the metal member 150 is deposited on the surface of the crystal resonator element 16, and the resonance frequency f of the crystal resonator 10 approaches the target resonance frequency ft. Since the details of heating have already been described, further description is omitted.
  • the measurement unit 312 measures the resonance frequency f of the crystal unit 10 (step S8: second measurement process).
  • step S8 it is confirmed whether or not the resonance frequency f of the crystal resonator 10 has reached the target resonance frequency ft.
  • the package 11 may be heated again or the crystal unit 10 may be discarded.
  • the resonance frequency f becoming the resonance frequency ft includes not only the case where the resonance frequency f coincides with the resonance frequency ft but also the case where the resonance frequency f falls within a certain range from the resonance frequency ft. The certain range is a tolerance of the crystal unit 10.
  • the resonance frequency f of the crystal unit 10 is adjusted after the package 11 is sealed without providing a transmission window in the package 11. can do. More specifically, in the crystal unit 10, the manufacturing method of the crystal unit 10, and the adjustment device 300, the metal member 150 is heated by heat conduction from the package 11 by heating the package 11, and the metal member 150 is crystallized. Vapor deposition is performed on the vibration element 16. Therefore, the metal member 150 is not heated by irradiating the metal member 150 with the laser beam. Therefore, a transmission window for transmitting the laser beam to the package 11 becomes unnecessary.
  • the package 11 can be manufactured by a non-transmissive member that does not transmit light. Therefore, the inside of the package 11 is shielded from light. As a result, the structure in the package 11 such as the crystal resonator element 16 and the conductive adhesives 210 and 212 is prevented from being deteriorated by light.
  • the package 11 may be made of a transmissive member that transmits light.
  • the crystal unit 10 is suppressed from being locally heated. More specifically, in the crystal resonator described in Patent Document 1, after sealing the container, the frequency adjusting material is irradiated with heat rays from the outside of the container through the transmission window. Therefore, the frequency adjusting material and the vicinity thereof are locally heated.
  • the metal member 150 is heated by heat conduction from the package 11 by heating the package 11, and the metal member 150 is deposited on the crystal resonator element 16. Therefore, the metal member 150 is heated by heat conduction from the package 11 after the entire package 11 is heated by heat conduction from the heating portion of the package 11. Thereby, it is suppressed that the crystal oscillator 10 is heated locally. As a result, the crystal resonator 10 is suppressed from being damaged by excessively heating a part of the crystal resonator 10.
  • the ion milling process is a process of irradiating the crystal piece with ions in order to adjust the shape of the crystal piece to an appropriate shape after the crystal piece is cut.
  • the crystal piece is cut slightly larger in advance than the target size. Then, the crystal piece is shaved in the ion milling process.
  • the crystal piece 17 is cut slightly smaller than the target size. Then, by heating the package 11 after sealing the package 11, the metal member 150 can be attached to the surface of the crystal resonator element 16 and the weight of the crystal resonator element 16 can be increased. Therefore, an ion milling process becomes unnecessary.
  • the crystal resonator 10, the method for manufacturing the crystal resonator 10, and the adjustment device 300 are useful for the following first reason and second reason.
  • the first reason will be described.
  • the crystal piece 17 is shaved excessively in the ion milling process. If the crystal piece 17 is shaved too much, the resonance frequency f of the crystal resonator 10 will be higher than the target resonance frequency ft. Therefore, by heating the package 11, the metal member 150 is attached to the surface of the crystal resonator element 16 and the weight of the crystal resonator element 16 is increased. Thereby, even if the crystal piece 17 is excessively cut in the ion milling process, the resonance frequency f of the crystal resonator 10 can be brought close to the target resonance frequency ft.
  • FIG. 6 is a diagram showing the weight of the crystal resonator element in each step in the conventional method for manufacturing a crystal resonator.
  • FIG. 7 is a view showing the weight of the crystal resonator element 16 in the method for manufacturing the crystal unit 10.
  • no excitation electrode or the like is formed in the cutting process and the ion milling process.
  • an excitation electrode or the like is formed in the heating process. Therefore, in order to make it easy to compare the weight in each process, in FIG. 6 and FIG. 7, the weight obtained by adding the weight of the excitation electrode or the like to the weight of the crystal piece in the cutting process and the ion milling process is shown as It was described as the weight of the quartz crystal vibration element.
  • the weight of the crystal piece after the cutting process there is variation in the weight of the crystal piece after the cutting process. Therefore, as shown in FIG. 6, in the ion milling process, the crystal piece is shaved so that the weight of the crystal piece becomes a target value. However, in the ion milling process, the weight of the crystal piece cannot be increased. Therefore, in the conventional method for manufacturing a crystal resonator, in the cutting step, the crystal piece is cut into a large size so that the lower limit of the weight of the crystal resonator element is larger than the target value. In this case, the amount of cutting the crystal piece in the ion milling process increases. As a result, the time required for the ion milling process becomes longer, and the damage to the crystal piece increases.
  • the weight of the crystal resonator element 16 can be increased by depositing the metal member 150 on the crystal resonator element 16 after the sealing step. Therefore, even if the lower limit of the crystal resonator element 16 becomes smaller than the target value in the cutting step, the weight of the crystal resonator element 16 can be adjusted to the target value in the heating step as shown in FIG. Therefore, in the cutting step, the crystal piece can be cut smaller. As a result, the upper limit of the weight of the crystal piece 17 shown in FIG. 7 is closer to the target value than the upper limit of the weight of the crystal piece shown in FIG.
  • the crystal resonator 10 manufacturing method requires less amount of the crystal piece 17 in the ion milling process than the conventional crystal resonator manufacturing method. As described above, the time required for the ion milling process is shortened, and the damage to the crystal piece is reduced.
  • the metal member 150 does not overlap the crystal piece 17 when viewed from above. Therefore, the distance between the crystal piece 17 and the substrate 12 can be reduced, and the vertical height of the crystal unit 10 can be reduced.
  • FIG. 8 is a cross-sectional structure diagram of the crystal resonator 10a according to the first modification.
  • FIG. 9 is a cross-sectional structure diagram of a crystal resonator 10b according to a second modification.
  • FIG. 10 is a cross-sectional structure diagram of a crystal resonator 10c according to a third modification. 8 to 10 correspond to cross-sectional structural views taken along the line AA of FIG.
  • the metal member 150 may overlap the crystal piece 17 when viewed from above.
  • the metal member 150 is provided above the crystal piece 17 and is disposed on the inner peripheral surface of the lid 14.
  • the metal member 150 is provided below the crystal piece 17 and is disposed on the upper surface of the substrate 12.
  • the same operational effects as the crystal resonator 10 can be obtained. Furthermore, according to the crystal resonators 10a and 10b, the metal member 150 overlaps the crystal piece 17 when viewed from above, so that the metal member 150 is efficiently deposited on the crystal resonator element 16.
  • the metal member 150 may be disposed on the inner peripheral surface of the lid 14 without overlapping with the crystal piece 17 when viewed from above. Thereby, the space
  • FIG. 11 is a block diagram of an adjusting device 300a used in the method for manufacturing the crystal resonator 10 according to the first modification.
  • the adjustment device 300a differs from the adjustment device 300 in that it includes a plurality of heating devices 302a to 302c and a distribution unit 314.
  • the adjustment device 300a will be described focusing on the difference.
  • the adjustment device 300a includes heating devices 302a to 302c, a control unit 308, a measurement unit 312 and a distribution unit 314.
  • the structure of the heating devices 302a to 302c is the same as that of the heating device 302, the description thereof is omitted.
  • the heating condition of the heating device 302a, the heating condition of the heating device 302b, and the heating condition of the heating device 302c are different from each other. Specifically, the heating temperatures of the heating devices 302a to 302c are equal to each other. However, the heating times T of the heating devices 302a to 302c are different from each other.
  • the heating time T of the heating device 302a is the heating time T1 (see Table 1).
  • the heating time T of the heating device 302b is the heating time T2 (see Table 1).
  • the heating time T of the heating device 302c is the heating time T3 (see Table 1).
  • the sorting unit 314 transports the crystal unit 10 for which the measurement unit 312 has finished measuring the resonance frequency f to one of the heating devices 302a to 302c according to the control of the control unit 308.
  • the control unit 308 controls the heating units 304a to 304c so that the resonance frequency f of the crystal unit 10 approaches the target resonance frequency ft based on the resonance frequency f measured by the measurement unit 312. More specifically, the control unit 308 subtracts the resonance frequency ft from the resonance frequency f to obtain the difference ⁇ f.
  • the control unit 308 causes the sorting unit 314 to transport the crystal unit 10 to the heating device 302a. Further, the control unit 308 causes the heating unit 304a to heat the package 11 over the heating time T1. Further, when ⁇ f2 ⁇ ⁇ f ⁇ f3, the control unit 308 causes the distribution unit 314 to transport the crystal unit 10 to the heating device 302b.
  • control unit 308 causes the heating unit 304b to heat the package 11 over the heating time T2. Further, when ⁇ f3 ⁇ ⁇ f ⁇ f4, the control unit 308 causes the sorting unit 314 to transport the crystal unit 10 to the heating device 302c. Further, the control unit 308 causes the heating unit 304c to heat the package 11 over the heating time T3.
  • FIG. 12 is a flowchart showing a method for manufacturing the crystal unit 10 according to the first modification.
  • steps S1 to S5 in FIG. 12 are the same as steps S1 to S5 in FIG. 12 are the same as steps S1 to S5 in FIG. 12
  • the control unit 308 determines, based on the difference ⁇ f, which heating device 302a to 302c the quartz resonator 10 is to be conveyed to the distribution unit 314 (step S16).
  • the sorting unit 314 transports the crystal unit 10 to any one of the heating devices 302a to 302c.
  • control unit 308 causes the heating unit 304a to 304c to heat the package 11 (step S17: heating step).
  • the metal member 150 is deposited on the surface of the crystal resonator element 16, and the resonance frequency f of the crystal resonator 10 approaches the target resonance frequency ft. Since the details of heating have already been described, further description is omitted. Since step S8 performed after this is the same as step S8 of FIG. 2, description is abbreviate
  • the same operational effects as those of the manufacturing method and adjustment device 300 of the crystal resonator 10 can be obtained.
  • FIG. 13 is a block diagram of an adjusting device 300b used in the method for manufacturing the crystal resonator 10 according to the second modification.
  • the adjustment device 300b is different from the adjustment device 300 in that the measurement unit 312 measures the resonance frequency f of the crystal resonator 10 in the furnace 306. That is, the measurement unit 312 measures the resonance frequency f of the crystal unit 10 while the heating device 302 is heating the package 11.
  • the control unit 308 causes the heating unit 304 to heat the package 11 until the resonance frequency f reaches the target resonance frequency ft.
  • FIG. 14 is a flowchart showing a method for manufacturing the crystal unit 10 according to the second modification.
  • steps S1 to S3 in FIG. 2 are the same as steps S1 to S3 in FIG. 2 and will not be described.
  • the control unit 308 causes the heating unit 304 to start heating the package 11 (step S24: heating start).
  • control unit 308 measures the resonance frequency f of the crystal unit 10 by the measurement unit 312 (step S25: first measurement process).
  • the resonance frequency f of the crystal resonator 10 is measured by the measurement unit 312 together with the heating process.
  • control unit 308 determines whether or not the resonance frequency f is equal to the target resonance frequency ft (step S26). When the resonance frequency f becomes equal to the target resonance frequency ft, the process proceeds to step S28. If the resonance frequency f is not equal to the target resonance frequency ft, the process proceeds to step S27.
  • Step S27 determines whether or not a predetermined time ⁇ t has elapsed after executing Step S26 (Step S27). If the predetermined time ⁇ t has elapsed, the process returns to step S25. If the predetermined time ⁇ t has not elapsed, the process returns to step S27.
  • the control unit 308 causes the heating unit 304 to finish heating the package 11 (step S28: heating end).
  • step S28 heating end
  • the same operational effects as those of the manufacturing method and adjustment device 300 of the quartz crystal resonator 10 can be obtained.
  • the piezoelectric vibrator, the piezoelectric vibrator manufacturing method, and the adjusting device according to the present invention are not limited to the crystal vibrators 10, 10a to 10c, the crystal vibrator 10 manufacturing method and the adjusting devices 300, 300a, 300b, and the gist thereof. It is possible to change within the range.
  • a crystal resonator element a crystal piece based on a crystal plate cut out at a predetermined angle with respect to the X axis, the Y axis, and the Z axis orthogonal to each other as crystal axes of the crystal
  • a tuning fork type crystal resonator element including a crystal piece having a base portion and at least one vibrating arm extending from the base portion and an excitation electrode provided on the vibrating arm so as to generate bending vibration can be used.
  • crystal resonators 10, 10a to 10c, the method for manufacturing the crystal resonator 10, and the configurations of the adjusting devices 300, 300a, 300b may be arbitrarily combined.
  • the purpose is to correct variations in the resonance frequency f of the crystal resonators 10, 10a to 10c. It was.
  • the crystal resonators 10 and 10a to 10c having plural kinds of resonance frequencies f may be manufactured by changing the heating condition of the package 11. For example, a plurality of crystal resonators 10 and 10a to 10c having a resonance frequency f of 28 MHz are manufactured. Then, the packages 11 of some of the crystal resonators 10 and 10a to 10c are heated.
  • the crystal resonators 10 and 10a to 10c having the resonance frequency f of 27 MHz and the crystal resonators 10 and 10a to 10c having the resonance frequency f of 28 MHz may be manufactured.
  • the bonding material 50 may be used as the metal member 150 in the crystal resonators 10 and 10a to 10c. That is, by heating the package 11, the bonding material 50 may be heated by heat conduction, and a part of the bonding material 50 may be deposited on the surface of the crystal resonator element 16.
  • the heating conditions include the heating temperature and the heating time, but other conditions may be included in the heating conditions.
  • the present invention is useful for a piezoelectric vibrator, a method for manufacturing a piezoelectric vibrator, and an adjustment device.
  • the resonance frequency of the piezoelectric vibrator is adjusted after sealing the package without providing a transmission window in the package. Excellent in that it can be done.

Abstract

The purpose of the present invention is to provide a piezoelectric vibrator, a manufacturing method for a piezoelectric vibrator and an adjustment device which enable the resonance frequency of a piezoelectric vibrator to be adjusted after a package is sealed without providing a transmissive window in the package. A piezoelectric vibrator according to the present invention is provided with: a package that includes a substrate, a lid, and a joining material for joining the substrate and the lid, and is a sealed container; a piezoelectric vibration element that is provided in the package and includes a piezoelectric piece, a first excitation electrode and a second excitation electrode; and a metallic member that is provided in the package so as not to be in contact with the piezoelectric vibration element, and has a lower melting point than the material of the first excitation electrode and the second excitation electrode, wherein the interior of the package is shielded against light.

Description

圧電振動子、圧電振動子の製造方法及び調整装置Piezoelectric vibrator, method for manufacturing piezoelectric vibrator, and adjusting device
 本発明は、圧電振動子、圧電振動子の製造方法及び調整装置に関する。 The present invention relates to a piezoelectric vibrator, a piezoelectric vibrator manufacturing method, and an adjusting device.
 従来の圧電振動子に関する発明としては、例えば、特許文献1に記載の水晶振動子(Quartz Crystal Unit)が知られている。特許文献1に記載の水晶振動子は、1対の励振電極、水晶片(Quartz Crystal Blank)、容器、周波数調整材料及び透過窓を備えている。水晶片は1対の励振電極により挟まれている。水晶片及び1対の励振電極は容器内に収容されている。周波数調整材料は容器の内壁上に設けられている。透過窓は、容器に設けられており、後述する熱線を透過させる。 As an invention related to a conventional piezoelectric vibrator, for example, a crystal vibrator (Quartz Crystal Unit) described in Patent Document 1 is known. The crystal resonator described in Patent Document 1 includes a pair of excitation electrodes, a crystal piece (Quartz Crystal Blank), a container, a frequency adjusting material, and a transmission window. The crystal piece is sandwiched between a pair of excitation electrodes. The crystal piece and the pair of excitation electrodes are housed in a container. The frequency adjusting material is provided on the inner wall of the container. The transmission window is provided in the container and transmits heat rays to be described later.
 以上のような特許文献1に記載の水晶振動子では、容器を封止した後に、容器外部から透過窓を介して周波数調整材料に熱線を照射する。これにより、周波数調整材料が蒸発し励振電極に付着する。その結果、励振電極の重量が大きくなり、水晶振動子の共振周波数が低下する。このように、特許文献1に記載の水晶振動子では、容器を封止した後に、水晶振動子の共振周波数を調整することが可能である。また、特許文献2及び特許文献3にも、特許文献1に記載の手法と同様の手法により圧電デバイス又は圧電振動子の共振周波数を調整することが記載されている。 In the crystal resonator described in Patent Document 1 as described above, after sealing the container, the frequency adjusting material is irradiated with heat rays from the outside of the container through the transmission window. As a result, the frequency adjusting material evaporates and adheres to the excitation electrode. As a result, the weight of the excitation electrode increases, and the resonance frequency of the crystal resonator decreases. As described above, in the crystal resonator disclosed in Patent Document 1, it is possible to adjust the resonance frequency of the crystal resonator after the container is sealed. Patent Document 2 and Patent Document 3 also describe adjusting the resonance frequency of a piezoelectric device or a piezoelectric vibrator by a method similar to the method described in Patent Document 1.
特開平09-172348号公報JP 09-172348 A 特開2007-251239号公報JP 2007-251239 A 特開2012-231233号公報JP 2012-231233 A
 ところで、特許文献1に記載の水晶振動子では、熱線を照射することで周波数調整材料を加熱している。そのため、熱線を透過させるための透過窓が容器に設けられる。このような透過窓の存在は、例えば、以下に説明するような問題の原因となるおそれがある。容器に透過窓を設けるためには、容器に対して孔を設け、透明部材により孔を塞ぐ必要がある。そのため、容器と透明部材との間に接合部分が生じる。このような接合部分は、例えば、接着剤等により塞がれる。ただし、接着剤に経年劣化が発生すると、容器の気密性が低下するおそれがある。なお、特許文献2に記載の圧電デバイス及び特許文献3に記載の圧電振動子も、特許文献1に記載の水晶振動子と同様の問題を有している。 Incidentally, in the crystal resonator described in Patent Document 1, the frequency adjusting material is heated by irradiating heat rays. Therefore, a transmission window for transmitting heat rays is provided in the container. The existence of such a transmission window may cause a problem as described below, for example. In order to provide a transmission window in a container, it is necessary to provide a hole in the container and close the hole with a transparent member. Therefore, a joining part arises between a container and a transparent member. Such a joint portion is closed by, for example, an adhesive. However, when the adhesive deteriorates over time, the hermeticity of the container may decrease. Note that the piezoelectric device described in Patent Document 2 and the piezoelectric vibrator described in Patent Document 3 also have the same problems as the crystal vibrator described in Patent Document 1.
 そこで、本発明の目的は、パッケージに透過窓を設けることなく、パッケージの密封後に圧電振動子の共振周波数を調整することができる圧電振動子、圧電振動子の製造方法及び調整装置を提供することである。 Accordingly, an object of the present invention is to provide a piezoelectric vibrator, a piezoelectric vibrator manufacturing method, and an adjusting device that can adjust the resonance frequency of the piezoelectric vibrator after sealing the package without providing a transmission window in the package. It is.
 本発明の一形態である圧電振動子は、基板、蓋及び前記基板と前記蓋とを接合する接合材を含み、かつ、密封容器であるパッケージと、前記パッケージ内に設けられ、かつ、圧電片、第1の励振電極及び第2の励振電極を含む圧電振動素子(Piezoelectric Resonator)と、前記圧電振動素子に接触しないように前記パッケージ内に設けられ、かつ、前記第1の励振電極及び前記第2の励振電極の材料よりも低い融点を有する金属部材と、を備えており、前記パッケージ内は遮光されている。 A piezoelectric vibrator according to one embodiment of the present invention includes a substrate, a lid, and a bonding material that joins the substrate and the lid, and a package that is a sealed container; a piezoelectric piece that is provided in the package; and A piezoelectric vibration element including a first excitation electrode and a second excitation electrode; a piezoelectric vibration element that is provided in the package so as not to contact the piezoelectric vibration element; and the first excitation electrode and the first excitation electrode. And a metal member having a melting point lower than that of the excitation electrode material, and the inside of the package is shielded from light.
 本発明の一形態である圧電振動子の製造方法は、圧電振動素子、金属部材及びパッケージを備える圧電振動子の製造方法であって、前記圧電振動素子及び前記金属部材を収容する前記パッケージを密封する密封工程と、前記パッケージを加熱することによって、前記パッケージからの熱伝導により前記金属部材を加熱し、前記金属部材を前記圧電振動素子に蒸着させて、前記圧電振動子の共振周波数を目標の共振周波数に近づける加熱工程と、を備える。 A method for manufacturing a piezoelectric vibrator according to one aspect of the present invention is a method for manufacturing a piezoelectric vibrator including a piezoelectric vibration element, a metal member, and a package, and sealing the package containing the piezoelectric vibration element and the metal member. A sealing step, and heating the package to heat the metal member by heat conduction from the package, deposit the metal member on the piezoelectric vibration element, and set a resonance frequency of the piezoelectric vibrator to a target A heating step of bringing the resonance frequency close to the resonance frequency.
 本発明の一形態である調整装置は、密封容器であるパッケージと前記パッケージに収容された圧電振動素子及び金属部材とを備えた圧電振動子の共振周波数を調整する調整装置であって、前記パッケージを加熱することによって、前記パッケージからの熱伝導により前記金属部材を加熱し、前記金属部材を前記圧電振動素子に蒸着させる加熱部と、前記圧電振動子の共振周波数が目標の共振周波数に近づくように前記加熱部を制御する制御部と、を備える。 An adjustment device according to one aspect of the present invention is an adjustment device that adjusts a resonance frequency of a piezoelectric vibrator including a package that is a sealed container, a piezoelectric vibration element housed in the package, and a metal member. By heating the metal member by heat conduction from the package and depositing the metal member on the piezoelectric vibration element, so that the resonance frequency of the piezoelectric vibrator approaches the target resonance frequency. And a control unit for controlling the heating unit.
 本発明によれば、パッケージに透過窓を設けることなく、パッケージの密封後に圧電振動子の共振周波数を調整することができる。 According to the present invention, the resonance frequency of the piezoelectric vibrator can be adjusted after sealing the package without providing a transmission window in the package.
図1は、水晶振動子10の外観斜視図である。FIG. 1 is an external perspective view of the crystal unit 10. 図2は、水晶振動子10の分解斜視図である。FIG. 2 is an exploded perspective view of the crystal unit 10. 図3は、図1のA-Aにおける断面構造図である。FIG. 3 is a cross-sectional structural view taken along line AA in FIG. 図4は、調整装置300のブロック図である。FIG. 4 is a block diagram of the adjustment device 300. 図5は、水晶振動子10の製造方法を示すフローチャートである。FIG. 5 is a flowchart showing a method for manufacturing the crystal unit 10. 図6は、従来の水晶振動子の製造方法における各工程での水晶振動素子の重量を示した図である。FIG. 6 is a diagram showing the weight of the crystal resonator element in each step in the conventional method for manufacturing a crystal resonator. 図7は、水晶振動子10の製造方法における水晶振動素子16の重量を示した図である。FIG. 7 is a view showing the weight of the crystal resonator element 16 in the method for manufacturing the crystal unit 10. 図8は、第1の変形例に係る水晶振動子10aの断面構造図である。FIG. 8 is a cross-sectional structure diagram of the crystal resonator 10a according to the first modification. 図9は、第2の変形例に係る水晶振動子10bの断面構造図である。FIG. 9 is a cross-sectional structure diagram of a crystal resonator 10b according to a second modification. 図10は、第3の変形例に係る水晶振動子10cの断面構造図である。FIG. 10 is a cross-sectional structure diagram of a crystal resonator 10c according to a third modification. 図11は、第1の変形例に係る水晶振動子10の製造方法において用いられる調整装置300aのブロック図である。FIG. 11 is a block diagram of an adjusting device 300a used in the method for manufacturing the crystal resonator 10 according to the first modification. 図12は、第1の変形例に係る水晶振動子10の製造方法を示すフローチャートである。FIG. 12 is a flowchart showing a method for manufacturing the crystal unit 10 according to the first modification. 図13は、第2の変形例に係る水晶振動子10の製造方法において用いられる調整装置300bのブロック図である。FIG. 13 is a block diagram of an adjusting device 300b used in the method for manufacturing the crystal resonator 10 according to the second modification. 図14は、第2の変形例に係る水晶振動子10の製造方法を示すフローチャートである。FIG. 14 is a flowchart showing a method for manufacturing the crystal unit 10 according to the second modification.
(水晶振動子の構造)
 以下に、本発明の一実施形態に係る水晶振動子について図面を参照しながら説明する。図1は、水晶振動子10の外観斜視図である。図2は、水晶振動子10の分解斜視図である。図3は、図1のA-Aにおける断面構造図である。
(Structure of crystal unit)
Hereinafter, a crystal resonator according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an external perspective view of the crystal unit 10. FIG. 2 is an exploded perspective view of the crystal unit 10. FIG. 3 is a cross-sectional structural view taken along line AA in FIG.
 以下では、水晶振動子10の主面に対する法線方向を上下方向と定義し、上側から見たときに、水晶振動子10の長辺が延在する方向を前後方向(又は長辺方向)と定義し、水晶振動子10の短辺が延在する方向を左右方向(又は短辺方向)と定義する。 In the following, the normal direction to the main surface of the crystal unit 10 is defined as the vertical direction, and the direction in which the long side of the crystal unit 10 extends when viewed from above is the front-rear direction (or the long side direction). The direction in which the short side of the crystal unit 10 extends is defined as the left-right direction (or the short side direction).
 水晶振動子10は、図1ないし図3に示すように、パッケージ11、水晶振動素子16及び金属部材150を備えており、圧電振動子の一例である。水晶振動子10の左右の幅は例えば1.6mmである。水晶振動子10の前後の長さは例えば2.0mmである。 As shown in FIGS. 1 to 3, the crystal resonator 10 includes a package 11, a crystal resonator element 16, and a metal member 150, and is an example of a piezoelectric resonator. The left-right width of the crystal unit 10 is, for example, 1.6 mm. The length before and after the crystal unit 10 is, for example, 2.0 mm.
 パッケージ11は、基板12、蓋14及び接合材50を含み、直方体形状を有する密封容器である。パッケージ11は、その内部に外部から隔離された空間Spを有している。パッケージ11は気密構造及び液密構造を有している。そのため、パッケージ11外と空間Spとの間で気体及び液体が行き来できない。ただし、パッケージ11は、気密構造を有さず液密構造を有していてもよい。すなわち、パッケージ11外と空間Spとの間で液体が行き来できず、パッケージ11外と空間Spとの間で気体が行き来できてもよい。また、パッケージ11は、後述するように、光を透過しない非透過部材により作製されている。そのため、パッケージ11外から空間Sp内に光が差し込むことができない。すなわち、パッケージ11内は遮光されている。 The package 11 is a sealed container having a rectangular parallelepiped shape including the substrate 12, the lid 14, and the bonding material 50. The package 11 has a space Sp isolated from the outside. The package 11 has an airtight structure and a liquidtight structure. Therefore, gas and liquid cannot go back and forth between the outside of the package 11 and the space Sp. However, the package 11 may have a liquid-tight structure without an air-tight structure. That is, the liquid may not be able to travel between the outside of the package 11 and the space Sp, and the gas may be able to travel between the outside of the package 11 and the space Sp. The package 11 is made of a non-transmissive member that does not transmit light, as will be described later. Therefore, light cannot be inserted from outside the package 11 into the space Sp. That is, the inside of the package 11 is shielded from light.
 基板12は、基板本体21、外部電極22,26,40,42,44,46、ビアホール導体25,28,54,56及びメタライズ膜30を含んでいる。 The substrate 12 includes a substrate body 21, external electrodes 22, 26, 40, 42, 44, 46, via- hole conductors 25, 28, 54, 56 and a metallized film 30.
 基板本体21は、板状構造を有しており、上側から見たときに、長方形状構造を有している。そのため、基板本体21は、長方形状の上面及び下面を有している。長方形は正方形も含む意味である。長方形状とは、長方形の他に長方形から僅かに変形した形状も含む意味である。基板本体21は、例えば、酸化アルミニウム質焼結体、ムライト質焼結体、窒化アルミニウム質焼結体、炭化ケイ素質焼結体、ガラスセラミックス焼結体等のセラミックス系絶縁性材料、水晶、ガラス、シリコン等により作製されている。本実施形態では、基板本体21は、セラミック材料により作製された複数の絶縁体層が積層された構造を有している。 The substrate body 21 has a plate-like structure and has a rectangular structure when viewed from above. Therefore, the substrate body 21 has a rectangular upper surface and lower surface. A rectangle means a square. The term “rectangular shape” means to include a shape slightly deformed from a rectangle in addition to the rectangle. The substrate body 21 includes, for example, an aluminum oxide sintered body, a mullite sintered body, an aluminum nitride sintered body, a silicon carbide sintered body, a ceramic insulating material such as a glass ceramic sintered body, crystal, glass It is made of silicon or the like. In the present embodiment, the substrate body 21 has a structure in which a plurality of insulator layers made of a ceramic material are stacked.
 外部電極22は、基板本体21の上面の左後ろの角近傍に設けられている長方形状の導体層である。外部電極26は、基板本体21の上面の右後ろの角近傍に設けられている長方形状の導体層である。外部電極22と外部電極26とは、左右方向に並んでいる。 The external electrode 22 is a rectangular conductor layer provided near the left rear corner of the upper surface of the substrate body 21. The external electrode 26 is a rectangular conductor layer provided near the right rear corner of the upper surface of the substrate body 21. The external electrode 22 and the external electrode 26 are arranged in the left-right direction.
 外部電極40は、基板本体21の下面の右後ろの角近傍に設けられている正方形状の導体層であり、上側から見たときに、外部電極26と重なっている。外部電極42は、基板本体21の下面の左後ろの角近傍に設けられている正方形状の導体層であり、上側から見たときに、外部電極22と重なっている。外部電極44は、基板本体21の下面の右前の角近傍に設けられている正方形状の導体層である。外部電極46は、基板本体21の下面の左前の角近傍に設けられている正方形状の導体層である。 The external electrode 40 is a square-shaped conductor layer provided in the vicinity of the right rear corner of the lower surface of the substrate body 21 and overlaps the external electrode 26 when viewed from above. The external electrode 42 is a square conductor layer provided in the vicinity of the left rear corner of the lower surface of the substrate body 21, and overlaps the external electrode 22 when viewed from above. The external electrode 44 is a square conductor layer provided near the right front corner of the lower surface of the substrate body 21. The external electrode 46 is a square conductor layer provided in the vicinity of the left front corner of the lower surface of the substrate body 21.
 ビアホール導体25は、基板本体21を上下方向に貫通しており、外部電極22と外部電極42とを接続している。ビアホール導体28は、基板本体21を上下方向に貫通しており、外部電極26と外部電極40とを接続している。 The via-hole conductor 25 penetrates the substrate body 21 in the vertical direction, and connects the external electrode 22 and the external electrode 42. The via-hole conductor 28 penetrates the substrate body 21 in the vertical direction, and connects the external electrode 26 and the external electrode 40.
 メタライズ膜30は、基板本体21の上面上に設けられている線状の金属膜であり、上側(上面に対する法線方向)から見たときに、長方形状の環状構造を有している。外部電極22,26は、上側から見たときに、メタライズ膜30に囲まれた領域内に設けられている。 The metallized film 30 is a linear metal film provided on the upper surface of the substrate body 21 and has a rectangular annular structure when viewed from the upper side (normal direction to the upper surface). The external electrodes 22 and 26 are provided in a region surrounded by the metallized film 30 when viewed from above.
 ビアホール導体54は、基板本体21を上下方向に貫通しており、メタライズ膜30と外部電極46とを接続している。ビアホール導体56は、基板本体21を上下方向に貫通しており、メタライズ膜30と外部電極44とを接続している。 The via-hole conductor 54 penetrates the substrate body 21 in the vertical direction, and connects the metallized film 30 and the external electrode 46. The via-hole conductor 56 penetrates the substrate main body 21 in the vertical direction, and connects the metallized film 30 and the external electrode 44.
 外部電極22,26,40,42,44,46及びメタライズ膜30は、3層構造を有しており、具体的には、下層側から上層側へとモリブデン層、ニッケル層及び金層が積層されることにより構成されている。ビアホール導体25,28,54,56は、基板本体21に形成されたビアホールに対してモリブデン等の導体が埋め込まれて作製されている。 The external electrodes 22, 26, 40, 42, 44, 46 and the metallized film 30 have a three-layer structure. Specifically, a molybdenum layer, a nickel layer, and a gold layer are stacked from the lower layer side to the upper layer side. Is configured. The via- hole conductors 25, 28, 54, and 56 are produced by burying a conductor such as molybdenum in a via hole formed in the substrate body 21.
 蓋14は、長方形状の開口を有する筺体であり、金属キャップとも呼ばれる。蓋14は、例えば、鉄ニッケル合金又はコバルトニッケル合金の母材にニッケルめっき及び金めっきが施されることにより作製されている。本実施形態では、蓋14は、下側が開口した直方体状の箱であり、鉄ニッケル合金の母材の表面にニッケルめっき及び金めっきが施されることにより作製されている。 The lid 14 is a casing having a rectangular opening and is also called a metal cap. The lid 14 is produced, for example, by applying nickel plating and gold plating to a base material of an iron nickel alloy or a cobalt nickel alloy. In the present embodiment, the lid 14 is a rectangular parallelepiped box having an opening on the lower side, and is produced by applying nickel plating and gold plating to the surface of the base material of the iron-nickel alloy.
 接合材50は、蓋14と基板12とを接合し、メタライズ膜30上に配置される。接合材50は、メタライズ膜30と実質的に同じ形状を有しており、長方形状の環状構造を有している。接合材50は、メタライズ膜30よりも低い融点を有しており、例えば、金-すず合金により作製されている。接合材50は、例えば、印刷等によりメタライズ膜30上に形成される。そして、蓋14の開口の外縁が接合材50に接触した状態で、メタライズ膜30が溶融及び固化させられる。これにより、蓋14は、開口の外縁の全長においてメタライズ膜30に接合材50を介して接合する。その結果、基板本体21の上面及び蓋14により、空間Spが形成されている。また、空間Spは、蓋14がメタライズ膜30及び接合材50を介して基板本体21に密着することによって、真空状態に保たれている。ただし、空間Spは、大気状態でもよい。なお、接合材50の代わりに、例えば、低融点ガラス、樹脂等の接着剤が用いられてもよい。この場合には、メタライズ膜30は必要ではない。 The bonding material 50 bonds the lid 14 and the substrate 12 and is disposed on the metallized film 30. The bonding material 50 has substantially the same shape as the metallized film 30 and has a rectangular annular structure. The bonding material 50 has a melting point lower than that of the metallized film 30 and is made of, for example, a gold-tin alloy. The bonding material 50 is formed on the metallized film 30 by printing or the like, for example. Then, the metallized film 30 is melted and solidified in a state where the outer edge of the opening of the lid 14 is in contact with the bonding material 50. Accordingly, the lid 14 is bonded to the metallized film 30 via the bonding material 50 over the entire length of the outer edge of the opening. As a result, a space Sp is formed by the upper surface of the substrate body 21 and the lid 14. Further, the space Sp is kept in a vacuum state by the lid 14 being in close contact with the substrate body 21 through the metallized film 30 and the bonding material 50. However, the space Sp may be in an atmospheric state. Instead of the bonding material 50, for example, an adhesive such as low-melting glass or resin may be used. In this case, the metallized film 30 is not necessary.
 水晶振動素子(Quartz Crystal Resonator)16は、パッケージ11内に設けられている。水晶振動素子16は、水晶片17、外部電極97,98、励振電極100,101及び引き出し導体102,103を含み、圧電振動素子の一例である。水晶片17は、上面(第1の主面の一例)及び下面(第2の主面の一例)を有する板状構造を有しており、上側から見たときに、長方形状構造を有している。水晶片17は、圧電片の一例である。よって、水晶片17の代わりに、圧電片として、圧電セラミック片が用いられてもよい。 A quartz resonator element 16 is provided in the package 11. The crystal resonator element 16 includes a crystal piece 17, external electrodes 97 and 98, excitation electrodes 100 and 101, and lead conductors 102 and 103, and is an example of a piezoelectric resonator element. The crystal piece 17 has a plate-like structure having an upper surface (an example of a first main surface) and a lower surface (an example of a second main surface), and has a rectangular structure when viewed from above. ing. The crystal piece 17 is an example of a piezoelectric piece. Therefore, a piezoelectric ceramic piece may be used as the piezoelectric piece instead of the crystal piece 17.
 水晶片17は、例えば、水晶の原石などから所定の角度で切り出されたATカット型の水晶片である。水晶片17のサイズは、前後方向の長さが2.0mm、左右方向の幅が1.6mmの範囲に収まるサイズである。パッケージの壁厚さ、封止材のにじみ、素子のマウント精度等を考慮して、水晶片17の前後方向の長さが1.500mm以下となり、水晶片17の左右方向の幅が1.00mm以下となるように水晶片17が設計される。 The crystal piece 17 is, for example, an AT-cut type crystal piece cut out from a rough crystal or the like at a predetermined angle. The size of the crystal piece 17 is a size that fits in a range where the length in the front-rear direction is 2.0 mm and the width in the left-right direction is 1.6 mm. Taking into account the package wall thickness, bleeding of the sealing material, device mounting accuracy, etc., the length of the crystal piece 17 in the front-rear direction is 1.500 mm or less, and the width of the crystal piece 17 in the left-right direction is 1.00 mm The crystal piece 17 is designed to be as follows.
 外部電極97は、水晶片17の左後ろの角及びその近傍に設けられている導体層である。外部電極97は、上面、下面、後面及び左面に跨って形成されている。外部電極98は、水晶片17の右後ろの角及びその近傍に設けられている導体層である。外部電極98は、上面、下面、後面及び右面に跨って形成されている。これにより、外部電極97,98は、水晶片17の短辺に沿って並んでいる。 The external electrode 97 is a conductor layer provided at the left rear corner of the crystal piece 17 and in the vicinity thereof. The external electrode 97 is formed across the upper surface, the lower surface, the rear surface, and the left surface. The external electrode 98 is a conductor layer provided at the right rear corner of the crystal piece 17 and in the vicinity thereof. The external electrode 98 is formed across the upper surface, the lower surface, the rear surface, and the right surface. Thus, the external electrodes 97 and 98 are arranged along the short side of the crystal piece 17.
 励振電極100(第1の励振電極の一例)は、水晶片17の上面の中央に設けられており、上側から見たときに長方形状構造を有している。励振電極101は、水晶片17の下面の中央に設けられており、上側から見たときに長方形状構造を有している。励振電極100と励振電極101とは、上側から見たときに、一致した状態で重なっている。 The excitation electrode 100 (an example of the first excitation electrode) is provided at the center of the upper surface of the crystal piece 17 and has a rectangular structure when viewed from above. The excitation electrode 101 is provided at the center of the lower surface of the crystal piece 17 and has a rectangular structure when viewed from above. The excitation electrode 100 and the excitation electrode 101 overlap with each other when viewed from above.
 引き出し導体102(第2の励振電極の一例)は、水晶片17の上面に設けられており、外部電極97と励振電極100とを接続している。引き出し導体103は、水晶片17の下面に設けられており、外部電極98と励振電極101とを接続している。外部電極97,98、励振電極100,101及び引き出し導体102,103は、2層構造を有しており、具体的には、下層側から上層側へとクロム層及び金層が積層されることにより構成されている。 The lead conductor 102 (an example of the second excitation electrode) is provided on the upper surface of the crystal piece 17 and connects the external electrode 97 and the excitation electrode 100. The lead conductor 103 is provided on the lower surface of the crystal piece 17 and connects the external electrode 98 and the excitation electrode 101. The external electrodes 97 and 98, the excitation electrodes 100 and 101, and the lead conductors 102 and 103 have a two-layer structure. Specifically, a chromium layer and a gold layer are laminated from the lower layer side to the upper layer side. It is comprised by.
 水晶振動素子16は、基板12の上面に実装される。具体的には、外部電極22と外部電極97とが導電性接着剤210により電気的に接続された状態で固定され、外部電極26と外部電極98とが導電性接着剤212により電気的に接続された状態で固定される。 The crystal resonator element 16 is mounted on the upper surface of the substrate 12. Specifically, the external electrode 22 and the external electrode 97 are fixed in a state where they are electrically connected by the conductive adhesive 210, and the external electrode 26 and the external electrode 98 are electrically connected by the conductive adhesive 212. It is fixed in the state that was done.
 金属部材150は、水晶振動素子16に接触しないようにパッケージ11内に設けられている。更に、金属部材150は、図3に示すように、上側から見たときに(第1の主面の法線方向から見たときに)、水晶片17と重なっていない。本実施形態では、金属部材150は、基板12の上面上に設けられており、上側から見たときに、水晶振動素子16に対して前側に隣接する領域に位置している。 The metal member 150 is provided in the package 11 so as not to contact the crystal resonator element 16. Furthermore, as shown in FIG. 3, the metal member 150 does not overlap the crystal piece 17 when viewed from the upper side (when viewed from the normal direction of the first main surface). In the present embodiment, the metal member 150 is provided on the upper surface of the substrate 12 and is located in a region adjacent to the front side with respect to the crystal resonator element 16 when viewed from above.
 また、金属部材150は、励振電極100,101の材料(クロム及び金)よりも低い融点を有しており、例えば、すず、すずを含有する合金又はすずを含有する酸化物により作製されている。クロムの融点は1903℃であり、金の融点は1064℃である。よって、金属部材150の融点は、1064℃よりも低ければよく、好ましくは、280℃程度である。 The metal member 150 has a lower melting point than the materials (chromium and gold) of the excitation electrodes 100 and 101, and is made of, for example, tin, an alloy containing tin, or an oxide containing tin. . Chromium has a melting point of 1903 ° C. and gold has a melting point of 1064 ° C. Therefore, the melting point of the metal member 150 should just be lower than 1064 degreeC, Preferably it is about 280 degreeC.
 ただし、金属部材150は、水晶振動子10の使用時に溶融してはいけない。よって、金属部材150の融点は、水晶振動子10が使用される環境での温度(以下、環境温度)よりも高い必要がある。環境温度は、水晶振動子10の用途によって異なる。例えば、水晶振動子10が自動車に用いられた場合には、環境温度は120℃以上125℃以下である。よって、水晶振動子10が自動車に用いられた場合には、金属部材150の融点は125℃より高い。 However, the metal member 150 must not melt when the crystal unit 10 is used. Therefore, the melting point of the metal member 150 needs to be higher than the temperature in the environment in which the crystal unit 10 is used (hereinafter, environmental temperature). The environmental temperature varies depending on the use of the crystal unit 10. For example, when the crystal unit 10 is used in an automobile, the environmental temperature is 120 ° C. or higher and 125 ° C. or lower. Therefore, when the crystal unit 10 is used in an automobile, the melting point of the metal member 150 is higher than 125 ° C.
 ところで、金属部材150は、後述するように、水晶振動子10の共振周波数fの調整に用いられる。具体的には、水晶振動子10の共振周波数fが目標の共振周波数ftよりも高い場合には、パッケージ11が密封された状態で、金属部材150を加熱して水晶振動素子16に蒸着させる。これにより、水晶振動素子16の重量が大きくなり、水晶振動子10の共振周波数fが低下する。よって、共振周波数fの調整が行われた水晶振動子10では、金属部材150と同じ組成の金属膜(図示せず)が水晶振動素子16の表面上に形成されている。また、金属部材150の全てが水晶振動素子16に蒸着するわけではないので、共振周波数fの調整後においても金属部材150は基板12の上面上に残留している。 Incidentally, the metal member 150 is used to adjust the resonance frequency f of the crystal resonator 10 as will be described later. Specifically, when the resonance frequency f of the crystal resonator 10 is higher than the target resonance frequency ft, the metal member 150 is heated and vapor-deposited on the crystal resonator element 16 with the package 11 sealed. As a result, the weight of the crystal resonator element 16 increases and the resonance frequency f of the crystal resonator 10 decreases. Therefore, in the crystal resonator 10 in which the resonance frequency f is adjusted, a metal film (not shown) having the same composition as the metal member 150 is formed on the surface of the crystal resonator element 16. Further, since not all of the metal member 150 is deposited on the crystal resonator element 16, the metal member 150 remains on the upper surface of the substrate 12 even after the resonance frequency f is adjusted.
(水晶振動子の製造方法)
 以下に、水晶振動子10の製造方法について図面を参照しながら説明する。図4は、調整装置300のブロック図である。
(Quartz crystal manufacturing method)
Hereinafter, a method for manufacturing the crystal unit 10 will be described with reference to the drawings. FIG. 4 is a block diagram of the adjustment device 300.
 まず、水晶振動子10の製造時に用いられる調整装置300について説明する。調整装置300は、水晶振動子10の共振周波数fを調整するための装置である。調整装置300は、加熱装置302、制御部308、記憶部310及び測定部312を備えている。 First, the adjustment device 300 used when manufacturing the crystal unit 10 will be described. The adjustment device 300 is a device for adjusting the resonance frequency f of the crystal resonator 10. The adjustment device 300 includes a heating device 302, a control unit 308, a storage unit 310, and a measurement unit 312.
 加熱装置302は、加熱部304及び炉306を含んでいる。炉306は、複数の水晶振動子10を収容できる容器である。炉306は、熱を閉じ込める役割を果たす。加熱部304は、炉306内に設けられており、水晶振動子10のパッケージ11を加熱する。加熱部304がパッケージ11を加熱する方式は種々存在する。例えば、加熱部304は、熱放射によりパッケージ11を加熱してもよい。熱放射とは、電磁波を介して熱が伝達されることである。この場合、加熱部304はヒーターである。そして、加熱部304が電磁波を放射し、パッケージ11が電磁波を吸収することにより、パッケージ11が加熱される。 The heating device 302 includes a heating unit 304 and a furnace 306. The furnace 306 is a container that can accommodate a plurality of crystal resonators 10. The furnace 306 serves to confine heat. The heating unit 304 is provided in the furnace 306 and heats the package 11 of the crystal unit 10. There are various ways in which the heating unit 304 heats the package 11. For example, the heating unit 304 may heat the package 11 by heat radiation. Thermal radiation is the transfer of heat via electromagnetic waves. In this case, the heating unit 304 is a heater. The heating unit 304 emits electromagnetic waves, and the package 11 absorbs the electromagnetic waves, whereby the package 11 is heated.
 また、加熱部304は、熱伝導によりパッケージ11を加熱してもよい。熱伝導とは、原子の振動を介して熱が伝達されることである。このような加熱方式としては以下の第1の例及び第2の例が挙げられる。第1の例では、加熱部304がパッケージ11に接触しており、加熱部304が発生した熱が直接にパッケージ11に伝達される。第2の例では、加熱部304の周囲の空気を加熱部304により加熱し、ファン等により加熱された空気をパッケージ11に送ることにより、空気の熱がパッケージ11に伝達される。 Further, the heating unit 304 may heat the package 11 by heat conduction. Thermal conduction is the transfer of heat through atomic vibrations. Examples of such a heating method include the following first and second examples. In the first example, the heating unit 304 is in contact with the package 11, and the heat generated by the heating unit 304 is directly transmitted to the package 11. In the second example, air around the heating unit 304 is heated by the heating unit 304, and air heated by a fan or the like is sent to the package 11, whereby heat of the air is transmitted to the package 11.
 以上のように、加熱部304によりパッケージ11が加熱されると、金属部材150は、パッケージ11からの熱伝導により加熱される。これにより、金属部材150は、蒸発した後、水晶振動素子16の表面に付着する。すなわち、金属部材150は、水晶振動素子16の表面に蒸着する。 As described above, when the package 11 is heated by the heating unit 304, the metal member 150 is heated by heat conduction from the package 11. As a result, the metal member 150 adheres to the surface of the crystal resonator element 16 after being evaporated. In other words, the metal member 150 is deposited on the surface of the crystal resonator element 16.
 ところで、前記の通り、金属部材150の加熱は、主として、パッケージ11からの熱伝導により行われる。ただし、金属部材150の加熱の一部が、加熱部304からの熱放射によって行われている場合もある。この場合であっても、金属部材150が熱伝導により受け取る熱量は、金属部材150が熱放射により受け取る熱量よりもはるかに多い。本実施形態では、「金属部材150がパッケージ11からの熱伝導により加熱される」とは、金属部材150が熱伝導により受け取る熱量が、金属部材150が熱放射により受け取る熱量よりもはるかに多いことを意味する。換言すれば、レーザビームが金属部材150に照射されることによって、金属部材150が熱放射により加熱されることは、「金属部材150がパッケージ11からの熱伝導により加熱される」ことには含まれないものとする。 Incidentally, as described above, the heating of the metal member 150 is mainly performed by heat conduction from the package 11. However, part of the heating of the metal member 150 may be performed by heat radiation from the heating unit 304. Even in this case, the amount of heat that the metal member 150 receives by heat conduction is much larger than the amount of heat that the metal member 150 receives by heat radiation. In this embodiment, “the metal member 150 is heated by heat conduction from the package 11” means that the amount of heat received by the metal member 150 by heat conduction is much larger than the amount of heat received by the metal member 150 by heat radiation. Means. In other words, the fact that the metal member 150 is heated by thermal radiation by irradiating the metal member 150 with the laser beam includes that “the metal member 150 is heated by heat conduction from the package 11”. Shall not.
 測定部312は、炉306に投入される前の水晶振動子10の共振周波数fを測定する。具体的には、測定部312は、所定の電圧又は電流を印加し、水晶振動子10の共振周波数fを測定する。そして、測定部312は、水晶振動子10から出力されてくる信号を検知し、信号強度が最大となる時の周波数を、水晶振動子10の共振周波数fと決定する。 The measuring unit 312 measures the resonance frequency f of the crystal unit 10 before being put into the furnace 306. Specifically, the measurement unit 312 applies a predetermined voltage or current, and measures the resonance frequency f of the crystal resonator 10. Then, the measurement unit 312 detects the signal output from the crystal unit 10 and determines the frequency at which the signal intensity is maximum as the resonance frequency f of the crystal unit 10.
 記憶部310は、表1に示すテーブルを記憶している。表1のテーブルは、差Δfと加熱時間Tとの関係を示している。差Δfとは、水晶振動子10の共振周波数fから目標の共振周波数ftを引いて得られる値である。表1のテーブルでは、差Δfが大きくなるにしたがって、加熱時間Tが長くなるように設定されている。すなわち、差Δfが大きくなるにしたがって、水晶振動素子16への金属部材150の付着量が多くなる。 The storage unit 310 stores the table shown in Table 1. The table in Table 1 shows the relationship between the difference Δf and the heating time T. The difference Δf is a value obtained by subtracting the target resonance frequency ft from the resonance frequency f of the crystal resonator 10. In the table of Table 1, the heating time T is set to increase as the difference Δf increases. That is, as the difference Δf increases, the amount of the metal member 150 attached to the crystal resonator element 16 increases.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 制御部308は、測定部312が測定した共振周波数fに基づいて、水晶振動子10の共振周波数fが目標の共振周波数ftに近づくように加熱部304を制御する。つまり、制御部308は、共振周波数fにより定まる加熱条件により加熱部304を用いてパッケージ11を加熱する。本実施形態では、制御部308は、共振周波数fから共振周波数ftを引き算して、差Δfを得る。制御部308は、表1のテーブルを参照して、差Δfに対応する加熱時間Tを取得する。そして、制御部308は、加熱時間Tにわたって、加熱部304に水晶振動子10を加熱させる。本実施形態の調整装置300では、加熱温度は加熱時間Tに関わらず一定である。加熱温度は、環境温度よりも高い温度であり、例えば、180℃である。ただし、制御部308は、差Δfに応じて、加熱時間T及び加熱温度の両方を変化させてもよいし、加熱時間Tを変化させずに加熱温度を変化させてもよい。 The control unit 308 controls the heating unit 304 based on the resonance frequency f measured by the measurement unit 312 so that the resonance frequency f of the crystal resonator 10 approaches the target resonance frequency ft. That is, the control unit 308 heats the package 11 using the heating unit 304 under the heating condition determined by the resonance frequency f. In the present embodiment, the control unit 308 subtracts the resonance frequency ft from the resonance frequency f to obtain the difference Δf. The control unit 308 refers to the table in Table 1 and acquires the heating time T corresponding to the difference Δf. Then, the control unit 308 causes the heating unit 304 to heat the crystal unit 10 over the heating time T. In the adjusting device 300 of the present embodiment, the heating temperature is constant regardless of the heating time T. The heating temperature is higher than the environmental temperature, and is 180 ° C., for example. However, the control unit 308 may change both the heating time T and the heating temperature according to the difference Δf, or may change the heating temperature without changing the heating time T.
 次に、水晶振動子10の製造方法について説明する。図5は、水晶振動子10の製造方法を示すフローチャートである。 Next, a method for manufacturing the crystal unit 10 will be described. FIG. 5 is a flowchart showing a method for manufacturing the crystal unit 10.
 まず、基板12を作製する。複数の基板本体21がマトリクス状に配列されたマザー基板を準備する。マザー基板は、例えば、酸化アルミニウム質焼結体、ムライト質焼結体、窒化アルミニウム質焼結体、炭化ケイ素質焼結体、ガラスセラミックス焼結体等のセラミックス系絶縁性材料、水晶、ガラス、シリコン等により作製されている。 First, the substrate 12 is produced. A mother substrate in which a plurality of substrate bodies 21 are arranged in a matrix is prepared. The mother substrate may be, for example, an aluminum oxide sintered body, a mullite sintered body, an aluminum nitride sintered body, a silicon carbide sintered body, a ceramic insulating material such as a glass ceramic sintered body, crystal, glass, It is made of silicon or the like.
 次に、マザー基板において、基板本体21のビアホール導体25,28,54,56が形成される位置にビームを照射して、貫通孔を形成する。更に、貫通孔にモリブデン等の導電性材料を充填し、乾燥させる。その後、導電性材料を焼結することにより、ビアホール導体25,28,54,56を形成する。 Next, in the mother substrate, a beam is irradiated to the position where the via- hole conductors 25, 28, 54, 56 of the substrate body 21 are formed to form a through hole. Further, the through hole is filled with a conductive material such as molybdenum and dried. Thereafter, the via- hole conductors 25, 28, 54, and 56 are formed by sintering the conductive material.
 次に、外部電極40,42,44,46の下地電極をマザー基板の下面に形成する。具体的には、モリブデン層をマザー基板の下面上に印刷し、乾燥させる。その後、モリブデン層を焼結する。これにより、外部電極40,42,44,46の下地電極が形成される。 Next, base electrodes of the external electrodes 40, 42, 44, 46 are formed on the lower surface of the mother substrate. Specifically, a molybdenum layer is printed on the lower surface of the mother substrate and dried. Thereafter, the molybdenum layer is sintered. As a result, the base electrodes of the external electrodes 40, 42, 44, 46 are formed.
 次に、外部電極22,26及びメタライズ膜30の下地電極をマザー基板の上面に形成する。具体的には、モリブデン層をマザー基板の上面上に印刷し、乾燥させる。その後、モリブデン層を焼結する。これにより、外部電極22,26及びメタライズ膜30の下地電極が形成される。 Next, the base electrodes of the external electrodes 22 and 26 and the metallized film 30 are formed on the upper surface of the mother substrate. Specifically, a molybdenum layer is printed on the upper surface of the mother substrate and dried. Thereafter, the molybdenum layer is sintered. Thereby, the base electrodes of the external electrodes 22 and 26 and the metallized film 30 are formed.
 次に、外部電極22,26,40,42,44,46及びメタライズ膜30の下地電極に、ニッケルめっき及び金めっきをこの順に施す。これにより、外部電極22,26,40,42,44,46及びメタライズ膜30が形成される。 Next, nickel plating and gold plating are applied to the base electrodes of the external electrodes 22, 26, 40, 42, 44, 46 and the metallized film 30 in this order. Thereby, the external electrodes 22, 26, 40, 42, 44, 46 and the metallized film 30 are formed.
 ここで、貫通孔への導電性材料の充填とマザー基板への外部電極等の印刷は真空印刷などを用いることで、同時に形成することができる。このとき、導電性材料と外部電極等を同時に焼成する。 Here, the filling of the conductive material into the through holes and the printing of the external electrodes and the like on the mother substrate can be simultaneously formed by using vacuum printing or the like. At this time, the conductive material and the external electrode are fired simultaneously.
 次に、ダイサーにより、マザー基板を複数の基板本体21に分割する。なお、レーザビームを照射してマザー基板に分割溝を形成した後、マザー基板を複数の基板本体21に分割してもよい。これにより、基板12が完成する。 Next, the mother substrate is divided into a plurality of substrate bodies 21 by a dicer. Note that the mother substrate may be divided into a plurality of substrate bodies 21 after the laser beam is irradiated to form the division grooves in the mother substrate. Thereby, the substrate 12 is completed.
 次に、水晶振動素子16を作製する。水晶の原石をATカットにより切り出して、長方形状の板状の水晶片17を得る。更に、必要に応じて、水晶片17に対してバレル加工装置を用いてべベル加工を施す。これにより、水晶片17の稜線付近が削り取られる。 Next, the crystal resonator element 16 is produced. The quartz crystal ore is cut out by AT cut to obtain a rectangular plate-like crystal piece 17. Furthermore, if necessary, bevel processing is performed on the crystal piece 17 using a barrel processing apparatus. Thereby, the vicinity of the ridgeline of the crystal piece 17 is scraped off.
 次に、水晶片17に外部電極97,98、励振電極100,101及び引き出し導体102,103を形成する。なお、外部電極97,98、励振電極100,101及び引き出し導体102,103の形成については、一般的な工程であるので説明を省略する。これにより、水晶振動素子16が完成する。 Next, external electrodes 97 and 98, excitation electrodes 100 and 101, and lead conductors 102 and 103 are formed on the crystal piece 17. Note that the formation of the external electrodes 97 and 98, the excitation electrodes 100 and 101, and the lead conductors 102 and 103 is a general process and will not be described. Thereby, the crystal resonator element 16 is completed.
 次に、基板本体21の上面に水晶振動素子16を実装する(ステップS1)。具体的には、図2及び図3に示すように、外部電極22と外部電極97とを導電性接着剤210により接着すると共に、外部電極26と外部電極98とを導電性接着剤212により接着する。 Next, the crystal resonator element 16 is mounted on the upper surface of the substrate body 21 (step S1). Specifically, as shown in FIGS. 2 and 3, the external electrode 22 and the external electrode 97 are bonded by the conductive adhesive 210, and the external electrode 26 and the external electrode 98 are bonded by the conductive adhesive 212. To do.
 次に、基板本体21の上面上に金属部材150を取り付ける(ステップS2)。金属部材150は、例えば、接着剤等により基板本体21の上面に固定される。 Next, the metal member 150 is attached on the upper surface of the substrate body 21 (step S2). The metal member 150 is fixed to the upper surface of the substrate body 21 with, for example, an adhesive.
 次に、パッケージ11を密封する(ステップS3:密封工程)。真空状態において、蓋14の開口の外縁が接合材50上に位置するように、蓋14を基板12上に配置する。そして、蓋14及び基板12を例えば280℃まで加熱することにより、接合材50を溶融させる。この後、蓋14及び基板12を冷却することにより、接合材50を固化させる。これにより、パッケージ11が密封される。 Next, the package 11 is sealed (step S3: sealing process). The lid 14 is disposed on the substrate 12 so that the outer edge of the opening of the lid 14 is positioned on the bonding material 50 in a vacuum state. Then, the bonding material 50 is melted by heating the lid 14 and the substrate 12 to 280 ° C., for example. Thereafter, the bonding material 50 is solidified by cooling the lid 14 and the substrate 12. Thereby, the package 11 is sealed.
 パッケージ11の密封後に、測定部312により水晶振動子10の共振周波数fを測定する(ステップS4:第1の測定工程)。本実施形態では、パッケージ11の密封工程後であってパッケージ11の加熱工程前に水晶振動子10の共振周波数fを測定部312により測定する。なお、共振周波数fの測定方法は既に説明を行ったので、これ以上の説明を省略する。これにより、制御部308は、水晶振動子10の共振周波数fを取得する。 After the package 11 is sealed, the measurement unit 312 measures the resonance frequency f of the crystal unit 10 (step S4: first measurement step). In the present embodiment, the measurement unit 312 measures the resonance frequency f of the crystal resonator 10 after the package 11 is sealed and before the package 11 is heated. Since the method for measuring the resonance frequency f has already been described, further description is omitted. Thereby, the control unit 308 acquires the resonance frequency f of the crystal resonator 10.
 次に、制御部308は、共振周波数fから目標の共振周波数ftを引くことにより、差Δfを算出する(ステップS5)。更に、制御部308は、記憶部310が記憶している表1のテーブルを参照して、差Δfに対応する加熱時間Tを決定する(ステップS6)。 Next, the control unit 308 calculates the difference Δf by subtracting the target resonance frequency ft from the resonance frequency f (step S5). Further, the control unit 308 refers to the table of Table 1 stored in the storage unit 310 and determines the heating time T corresponding to the difference Δf (step S6).
 次に、共振周波数fの測定が終了した水晶振動子10を炉306に投入する。この際、同じ加熱時間Tと決定された複数の水晶振動子10をまとめて炉306に投入すればよい。そして、制御部308は、共振周波数fにより定まる加熱条件でパッケージ11を加熱部304に加熱させる(ステップS7:加熱工程)。本実施形態では、制御部308は、加熱時間Tに渡って複数の水晶振動子10を加熱するように加熱部304を制御する。これにより、金属部材150が水晶振動素子16の表面に蒸着し、水晶振動子10の共振周波数fが目標の共振周波数ftに近づく。加熱の詳細についてはすでに説明を行ったので、これ以上の説明を省略する。 Next, the crystal unit 10 for which the measurement of the resonance frequency f has been completed is put into the furnace 306. At this time, a plurality of crystal resonators 10 determined to have the same heating time T may be put together into the furnace 306. Then, the control unit 308 causes the heating unit 304 to heat the package 11 under a heating condition determined by the resonance frequency f (step S7: heating process). In the present embodiment, the control unit 308 controls the heating unit 304 to heat the plurality of crystal units 10 over the heating time T. As a result, the metal member 150 is deposited on the surface of the crystal resonator element 16, and the resonance frequency f of the crystal resonator 10 approaches the target resonance frequency ft. Since the details of heating have already been described, further description is omitted.
 パッケージ11の加熱工程後に、測定部312により水晶振動子10の共振周波数fを測定する(ステップS8:第2の測定工程)。ステップS8では、水晶振動子10の共振周波数fが目標の共振周波数ftとなったか否かを確認している。水晶振動子10の共振周波数fが目標の共振周波数ftとなっていない場合には、パッケージ11を再度加熱してもよいし、水晶振動子10を破棄してもよい。なお、共振周波数fが共振周波数ftとなるとは、共振周波数fが共振周波数ftと一致する場合のほか、共振周波数ftから一定の範囲内に収まることも含む。一定の範囲とは、水晶振動子10の公差である。以上の工程を経て、水晶振動子10が完成する。 After the heating process of the package 11, the measurement unit 312 measures the resonance frequency f of the crystal unit 10 (step S8: second measurement process). In step S8, it is confirmed whether or not the resonance frequency f of the crystal resonator 10 has reached the target resonance frequency ft. When the resonance frequency f of the crystal unit 10 is not the target resonance frequency ft, the package 11 may be heated again or the crystal unit 10 may be discarded. The resonance frequency f becoming the resonance frequency ft includes not only the case where the resonance frequency f coincides with the resonance frequency ft but also the case where the resonance frequency f falls within a certain range from the resonance frequency ft. The certain range is a tolerance of the crystal unit 10. Through the above steps, the crystal resonator 10 is completed.
(効果)
 本実施形態に係る水晶振動子10、水晶振動子10の製造方法及び調整装置300によれば、パッケージ11に透過窓を設けることなく、パッケージ11の密封後に水晶振動子10の共振周波数fを調整することができる。より詳細には、水晶振動子10、水晶振動子10の製造方法及び調整装置300では、パッケージ11を加熱することによって、パッケージ11からの熱伝導により金属部材150を加熱し、金属部材150を水晶振動素子16に蒸着させている。したがって、レーザビームを金属部材150に照射して金属部材150を加熱しているのではない。故に、パッケージ11にレーザビームを透過させるための透過窓が不要となる。
(effect)
According to the crystal unit 10, the method for manufacturing the crystal unit 10, and the adjustment device 300 according to the present embodiment, the resonance frequency f of the crystal unit 10 is adjusted after the package 11 is sealed without providing a transmission window in the package 11. can do. More specifically, in the crystal unit 10, the manufacturing method of the crystal unit 10, and the adjustment device 300, the metal member 150 is heated by heat conduction from the package 11 by heating the package 11, and the metal member 150 is crystallized. Vapor deposition is performed on the vibration element 16. Therefore, the metal member 150 is not heated by irradiating the metal member 150 with the laser beam. Therefore, a transmission window for transmitting the laser beam to the package 11 becomes unnecessary.
 以上のように、パッケージ11に透過窓が不要になると、例えば、パッケージ11の気密性の低下が抑制される。また、光を透過しない非透過部材によりパッケージ11を作製できる。そのため、パッケージ11内が遮光されるようになる。その結果、水晶振動素子16や導電性接着剤210,212等のパッケージ11内の構成が光によって劣化することが抑制される。ただし、水晶振動素子16や導電性接着剤210,212等のパッケージ11内の構成の光による劣化が問題とならない場合には、パッケージ11が光を透過する透過部材により作製されていてもよい。 As described above, when the transmission window is not necessary for the package 11, for example, a decrease in the airtightness of the package 11 is suppressed. Further, the package 11 can be manufactured by a non-transmissive member that does not transmit light. Therefore, the inside of the package 11 is shielded from light. As a result, the structure in the package 11 such as the crystal resonator element 16 and the conductive adhesives 210 and 212 is prevented from being deteriorated by light. However, in the case where deterioration of the components in the package 11 such as the crystal resonator element 16 and the conductive adhesives 210 and 212 due to light is not a problem, the package 11 may be made of a transmissive member that transmits light.
 また、水晶振動子10の製造方法では、水晶振動子10が局所的に加熱されることが抑制される。より詳細には、特許文献1に記載の水晶振動子では、容器を封止した後に、容器外部から透過窓を介して周波数調整材料に熱線を照射する。そのため、周波数調整材料及びその近傍が局所的に加熱されるようになる。 Further, in the method for manufacturing the crystal unit 10, the crystal unit 10 is suppressed from being locally heated. More specifically, in the crystal resonator described in Patent Document 1, after sealing the container, the frequency adjusting material is irradiated with heat rays from the outside of the container through the transmission window. Therefore, the frequency adjusting material and the vicinity thereof are locally heated.
 一方、水晶振動子10の製造方法では、パッケージ11を加熱することによって、パッケージ11からの熱伝導により金属部材150を加熱し、金属部材150を水晶振動素子16に蒸着させている。そのため、パッケージ11の加熱部位から熱伝導によりパッケージ11の全体が加熱された後に、パッケージ11からの熱伝導により金属部材150が加熱される。これにより、水晶振動子10が局所的に加熱されることが抑制される。その結果、水晶振動子10の一部が過度に加熱されることによって、水晶振動子10に破損が生じることが抑制される。 On the other hand, in the manufacturing method of the crystal unit 10, the metal member 150 is heated by heat conduction from the package 11 by heating the package 11, and the metal member 150 is deposited on the crystal resonator element 16. Therefore, the metal member 150 is heated by heat conduction from the package 11 after the entire package 11 is heated by heat conduction from the heating portion of the package 11. Thereby, it is suppressed that the crystal oscillator 10 is heated locally. As a result, the crystal resonator 10 is suppressed from being damaged by excessively heating a part of the crystal resonator 10.
 また、水晶振動子10、水晶振動子10の製造方法及び調整装置300によれば、イオンミリング工程を省略することが可能である。イオンミリング工程とは、水晶片のカット後に水晶片の形状を適切な形状に調整するために、水晶片にイオンを照射する工程である。イオンミリング工程を行う場合には、水晶片を目標のサイズよりも予め僅かに大きくカットする。そして、イオンミリング工程において水晶片を削る。 Further, according to the crystal resonator 10, the manufacturing method of the crystal resonator 10, and the adjusting device 300, the ion milling process can be omitted. The ion milling process is a process of irradiating the crystal piece with ions in order to adjust the shape of the crystal piece to an appropriate shape after the crystal piece is cut. When the ion milling process is performed, the crystal piece is cut slightly larger in advance than the target size. Then, the crystal piece is shaved in the ion milling process.
 一方、水晶振動子10、水晶振動子10の製造方法及び調整装置300では、水晶片17を目標のサイズよりも僅かに小さくカットする。そして、パッケージ11の密封後にパッケージ11を加熱することで、水晶振動素子16の表面に金属部材150を付着させて、水晶振動素子16の重量を大きくすることができる。よって、イオンミリング工程が不要となる。 On the other hand, in the crystal unit 10, the manufacturing method of the crystal unit 10, and the adjustment device 300, the crystal piece 17 is cut slightly smaller than the target size. Then, by heating the package 11 after sealing the package 11, the metal member 150 can be attached to the surface of the crystal resonator element 16 and the weight of the crystal resonator element 16 can be increased. Therefore, an ion milling process becomes unnecessary.
 なお、イオンミリング工程を省略しない場合であっても、水晶振動子10、水晶振動子10の製造方法及び調整装置300は、以下の第1の理由及び第2の理由により有用である。第1の理由について説明する。イオンミリング工程において水晶片17を削り過ぎる場合がある。水晶片17を削り過ぎると、水晶振動子10の共振周波数fが目標の共振周波数ftよりも高くなってしまう。そこで、パッケージ11を加熱することで、水晶振動素子16の表面に金属部材150を付着させて、水晶振動素子16の重量を大きくする。これにより、イオンミリング工程において水晶片17を削り過ぎたとしても、水晶振動子10の共振周波数fを目標の共振周波数ftに近づけることができる。 Even when the ion milling process is not omitted, the crystal resonator 10, the method for manufacturing the crystal resonator 10, and the adjustment device 300 are useful for the following first reason and second reason. The first reason will be described. In some cases, the crystal piece 17 is shaved excessively in the ion milling process. If the crystal piece 17 is shaved too much, the resonance frequency f of the crystal resonator 10 will be higher than the target resonance frequency ft. Therefore, by heating the package 11, the metal member 150 is attached to the surface of the crystal resonator element 16 and the weight of the crystal resonator element 16 is increased. Thereby, even if the crystal piece 17 is excessively cut in the ion milling process, the resonance frequency f of the crystal resonator 10 can be brought close to the target resonance frequency ft.
 次に、第2の理由について説明する。図6は、従来の水晶振動子の製造方法における各工程での水晶振動素子の重量を示した図である。図7は、水晶振動子10の製造方法における水晶振動素子16の重量を示した図である。カット工程及びイオンミリング工程では、励振電極等が形成されていない。一方、加熱工程では、励振電極等が形成されている。そこで、各工程における重量を比較しやすくするために、図6及び図7では、カット工程及びイオンミリング工程における水晶片の重量に励振電極等の重量を付加した重量を、カット工程及びイオンミリング工程における水晶振動素子の重量として記載した。 Next, the second reason will be described. FIG. 6 is a diagram showing the weight of the crystal resonator element in each step in the conventional method for manufacturing a crystal resonator. FIG. 7 is a view showing the weight of the crystal resonator element 16 in the method for manufacturing the crystal unit 10. In the cutting process and the ion milling process, no excitation electrode or the like is formed. On the other hand, an excitation electrode or the like is formed in the heating process. Therefore, in order to make it easy to compare the weight in each process, in FIG. 6 and FIG. 7, the weight obtained by adding the weight of the excitation electrode or the like to the weight of the crystal piece in the cutting process and the ion milling process is shown as It was described as the weight of the quartz crystal vibration element.
 カット工程後の水晶片の重量にはばらつきが存在する。そのため、図6に示すように、イオンミリング工程において、水晶片の重量が目標値となるように水晶片を削る。ただし、イオンミリング工程では、水晶片の重量を増加させることはできない。そこで、従来の水晶振動子の製造方法では、カット工程において、水晶振動素子の重量の下限が目標値よりも大きくなるように、水晶片を大きめにカットする。この場合、イオンミリング工程において水晶片を削る量が多くなる。その結果、イオンミリング工程に必要な時間が長くなり、水晶片が受けるダメージが大きくなってしまう。 There is variation in the weight of the crystal piece after the cutting process. Therefore, as shown in FIG. 6, in the ion milling process, the crystal piece is shaved so that the weight of the crystal piece becomes a target value. However, in the ion milling process, the weight of the crystal piece cannot be increased. Therefore, in the conventional method for manufacturing a crystal resonator, in the cutting step, the crystal piece is cut into a large size so that the lower limit of the weight of the crystal resonator element is larger than the target value. In this case, the amount of cutting the crystal piece in the ion milling process increases. As a result, the time required for the ion milling process becomes longer, and the damage to the crystal piece increases.
 一方、水晶振動子10の製造方法では、密封工程後に水晶振動素子16に金属部材150を蒸着することによって、水晶振動素子16の重量を増加させることができる。そのため、カット工程において、水晶振動素子16の下限が目標値よりも小さくなったとしても、図7に示すように、加熱工程において、水晶振動素子16の重量を目標値に調整することができる。したがって、カット工程において、水晶片を小さめにカットすることができる。その結果、図7に示す水晶片17の重量の上限は、図6に示す水晶片の重量の上限よりも目標値に近くなる。よって、水晶振動子10の製造方法の方が、従来の水晶振動子の製造方法よりも、イオンミリング工程において水晶片17を削る量が少なくて済む。以上より、イオンミリング工程に必要な時間が短くなり、水晶片が受けるダメージが低減される。 On the other hand, in the method for manufacturing the crystal resonator 10, the weight of the crystal resonator element 16 can be increased by depositing the metal member 150 on the crystal resonator element 16 after the sealing step. Therefore, even if the lower limit of the crystal resonator element 16 becomes smaller than the target value in the cutting step, the weight of the crystal resonator element 16 can be adjusted to the target value in the heating step as shown in FIG. Therefore, in the cutting step, the crystal piece can be cut smaller. As a result, the upper limit of the weight of the crystal piece 17 shown in FIG. 7 is closer to the target value than the upper limit of the weight of the crystal piece shown in FIG. Therefore, the crystal resonator 10 manufacturing method requires less amount of the crystal piece 17 in the ion milling process than the conventional crystal resonator manufacturing method. As described above, the time required for the ion milling process is shortened, and the damage to the crystal piece is reduced.
 また、水晶振動子10では、金属部材150が上側から見たときに水晶片17と重なっていない。そのため、水晶片17と基板12との間隔を小さくすることができ、水晶振動子10の上下方向の高さを低くすることができる。 Further, in the crystal resonator 10, the metal member 150 does not overlap the crystal piece 17 when viewed from above. Therefore, the distance between the crystal piece 17 and the substrate 12 can be reduced, and the vertical height of the crystal unit 10 can be reduced.
(第1の変形例ないし第3の変形例に係る水晶振動子)
 以下に、第1の変形例ないし第3の変形例に係る水晶振動子10a~10cについて図面を参照しながら説明する。図8は、第1の変形例に係る水晶振動子10aの断面構造図である。図9は、第2の変形例に係る水晶振動子10bの断面構造図である。図10は、第3の変形例に係る水晶振動子10cの断面構造図である。図8ないし図10は、図1のA-Aにおける断面構造図に相当する。
(Crystal resonator according to first to third modifications)
Hereinafter, crystal resonators 10a to 10c according to first to third modifications will be described with reference to the drawings. FIG. 8 is a cross-sectional structure diagram of the crystal resonator 10a according to the first modification. FIG. 9 is a cross-sectional structure diagram of a crystal resonator 10b according to a second modification. FIG. 10 is a cross-sectional structure diagram of a crystal resonator 10c according to a third modification. 8 to 10 correspond to cross-sectional structural views taken along the line AA of FIG.
 図8及び図9の水晶振動子10a,10bに示すように、金属部材150は、上側から見たときに、水晶片17と重なっていてもよい。水晶振動子10aでは、金属部材150は、水晶片17よりも上側に設けられており、蓋14の内周面上に配置されている。また、水晶振動子10bでは、金属部材150は、水晶片17よりも下側に設けられており、基板12の上面上に配置されている。 As shown in the crystal resonators 10a and 10b in FIGS. 8 and 9, the metal member 150 may overlap the crystal piece 17 when viewed from above. In the crystal unit 10 a, the metal member 150 is provided above the crystal piece 17 and is disposed on the inner peripheral surface of the lid 14. In the crystal unit 10 b, the metal member 150 is provided below the crystal piece 17 and is disposed on the upper surface of the substrate 12.
 以上のような水晶振動子10a,10bによれば、水晶振動子10と同じ作用効果を奏することができる。更に、水晶振動子10a,10bによれば、金属部材150が上側から見たときに水晶片17と重なっているので、金属部材150が水晶振動素子16に効率よく蒸着するようになる。 According to the crystal resonators 10a and 10b as described above, the same operational effects as the crystal resonator 10 can be obtained. Furthermore, according to the crystal resonators 10a and 10b, the metal member 150 overlaps the crystal piece 17 when viewed from above, so that the metal member 150 is efficiently deposited on the crystal resonator element 16.
 図10の水晶振動子10cに示すように、金属部材150は、上側から見たときに、水晶片17と重ならず、かつ、蓋14の内周面上に配置されていてもよい。これにより、水晶片17と基板12との間隔を小さくすることができ、水晶振動子10cの上下方向の高さを低くすることができる。 10, the metal member 150 may be disposed on the inner peripheral surface of the lid 14 without overlapping with the crystal piece 17 when viewed from above. Thereby, the space | interval of the crystal piece 17 and the board | substrate 12 can be made small, and the height of the up-down direction of the crystal oscillator 10c can be made low.
(第1の変形例に係る製造方法)
 以下に、第1の変形例に係る水晶振動子10の製造方法について図面を参照しながら説明する。図11は、第1の変形例に係る水晶振動子10の製造方法において用いられる調整装置300aのブロック図である。
(Manufacturing method according to first modification)
Hereinafter, a method for manufacturing the crystal resonator 10 according to the first modification will be described with reference to the drawings. FIG. 11 is a block diagram of an adjusting device 300a used in the method for manufacturing the crystal resonator 10 according to the first modification.
 まず、調整装置300aについて説明する。調整装置300aは、複数の加熱装置302a~302cを備えている点、及び、振り分け部314を備えている点において、調整装置300と相違する。以下に、かかる相違点を中心に調整装置300aについて説明する。 First, the adjustment device 300a will be described. The adjustment device 300a differs from the adjustment device 300 in that it includes a plurality of heating devices 302a to 302c and a distribution unit 314. Hereinafter, the adjustment device 300a will be described focusing on the difference.
 調整装置300aは、加熱装置302a~302c、制御部308、測定部312及び振り分け部314を備えている。 The adjustment device 300a includes heating devices 302a to 302c, a control unit 308, a measurement unit 312 and a distribution unit 314.
 加熱装置302a~302cの構造は、加熱装置302と同じであるので説明を省略する。加熱装置302aの加熱条件、加熱装置302bの加熱条件及び加熱装置302cの加熱条件は互いに異なっている。具体的には、加熱装置302a~302cの加熱温度は互いに等しい。ただし、加熱装置302a~302cの加熱時間Tは互いに異なる。具体的には、加熱装置302aの加熱時間Tは加熱時間T1(表1参照)である。加熱装置302bの加熱時間Tは加熱時間T2(表1参照)である。加熱装置302cの加熱時間Tは加熱時間T3(表1参照)である。 Since the structure of the heating devices 302a to 302c is the same as that of the heating device 302, the description thereof is omitted. The heating condition of the heating device 302a, the heating condition of the heating device 302b, and the heating condition of the heating device 302c are different from each other. Specifically, the heating temperatures of the heating devices 302a to 302c are equal to each other. However, the heating times T of the heating devices 302a to 302c are different from each other. Specifically, the heating time T of the heating device 302a is the heating time T1 (see Table 1). The heating time T of the heating device 302b is the heating time T2 (see Table 1). The heating time T of the heating device 302c is the heating time T3 (see Table 1).
 調整装置300aの測定部312は、調整装置300の測定部312と同じであるので説明を省略する。振り分け部314は、測定部312が共振周波数fの測定を終了した水晶振動子10を加熱装置302a~302cのいずれかに制御部308の制御にしたがって搬送する。 Since the measuring unit 312 of the adjusting device 300a is the same as the measuring unit 312 of the adjusting device 300, the description thereof is omitted. The sorting unit 314 transports the crystal unit 10 for which the measurement unit 312 has finished measuring the resonance frequency f to one of the heating devices 302a to 302c according to the control of the control unit 308.
 制御部308は、測定部312が測定した共振周波数fに基づいて、水晶振動子10の共振周波数fが目標の共振周波数ftに近づくように加熱部304a~304cを制御する。より詳細には、制御部308は、共振周波数fから共振周波数ftを引き算して、差Δfを得る。制御部308は、Δf1≦Δf<Δf2である場合には、振り分け部314に加熱装置302aへと水晶振動子10を搬送させる。更に、制御部308は、加熱時間T1にわたって、加熱部304aにパッケージ11を加熱させる。また、制御部308は、Δf2≦Δf<Δf3である場合には、振り分け部314に加熱装置302bへと水晶振動子10を搬送させる。更に、制御部308は、加熱時間T2にわたって、加熱部304bにパッケージ11を加熱させる。また、制御部308は、Δf3≦Δf<Δf4である場合には、振り分け部314に加熱装置302cへと水晶振動子10を搬送させる。更に、制御部308は、加熱時間T3にわたって、加熱部304cにパッケージ11を加熱させる。 The control unit 308 controls the heating units 304a to 304c so that the resonance frequency f of the crystal unit 10 approaches the target resonance frequency ft based on the resonance frequency f measured by the measurement unit 312. More specifically, the control unit 308 subtracts the resonance frequency ft from the resonance frequency f to obtain the difference Δf. When Δf1 ≦ Δf <Δf2, the control unit 308 causes the sorting unit 314 to transport the crystal unit 10 to the heating device 302a. Further, the control unit 308 causes the heating unit 304a to heat the package 11 over the heating time T1. Further, when Δf2 ≦ Δf <Δf3, the control unit 308 causes the distribution unit 314 to transport the crystal unit 10 to the heating device 302b. Furthermore, the control unit 308 causes the heating unit 304b to heat the package 11 over the heating time T2. Further, when Δf3 ≦ Δf <Δf4, the control unit 308 causes the sorting unit 314 to transport the crystal unit 10 to the heating device 302c. Further, the control unit 308 causes the heating unit 304c to heat the package 11 over the heating time T3.
 次に、第1の変形例に係る水晶振動子10の製造方法について説明する。図12は、第1の変形例に係る水晶振動子10の製造方法を示すフローチャートである。 Next, a method for manufacturing the crystal resonator 10 according to the first modification will be described. FIG. 12 is a flowchart showing a method for manufacturing the crystal unit 10 according to the first modification.
 図12のステップS1~S5は、図2のステップS1~S5と同じであるので説明を省略する。 Since steps S1 to S5 in FIG. 12 are the same as steps S1 to S5 in FIG.
 制御部308は、差Δfに基づいて、水晶振動子10をいずれの加熱装置302a~302cに振り分け部314に搬送させるかを決定する(ステップS16)。振り分け部314は、水晶振動子10を加熱装置302a~302cのいずれかに搬送する。 The control unit 308 determines, based on the difference Δf, which heating device 302a to 302c the quartz resonator 10 is to be conveyed to the distribution unit 314 (step S16). The sorting unit 314 transports the crystal unit 10 to any one of the heating devices 302a to 302c.
 次に、制御部308は、パッケージ11を加熱部304a~304cのいずれかに加熱させる(ステップS17:加熱工程)。これにより、金属部材150が水晶振動素子16の表面に蒸着し、水晶振動子10の共振周波数fが目標の共振周波数ftに近づく。加熱の詳細についてはすでに説明を行ったので、これ以上の説明を省略する。この後に行われるステップS8は、図2のステップS8と同じであるので説明を省略する。 Next, the control unit 308 causes the heating unit 304a to 304c to heat the package 11 (step S17: heating step). As a result, the metal member 150 is deposited on the surface of the crystal resonator element 16, and the resonance frequency f of the crystal resonator 10 approaches the target resonance frequency ft. Since the details of heating have already been described, further description is omitted. Since step S8 performed after this is the same as step S8 of FIG. 2, description is abbreviate | omitted.
 以上のような第1の変形例に係る水晶振動子10の製造方法及び調整装置300aによれば、前記水晶振動子10の製造方法及び調整装置300と同じ作用効果を奏することができる。 According to the manufacturing method and adjustment device 300a of the crystal resonator 10 according to the first modification as described above, the same operational effects as those of the manufacturing method and adjustment device 300 of the crystal resonator 10 can be obtained.
(第2の変形例に係る製造方法)
 以下に、第2の変形例に係る水晶振動子10の製造方法について図面を参照しながら説明する。図13は、第2の変形例に係る水晶振動子10の製造方法において用いられる調整装置300bのブロック図である。
(Manufacturing method according to second modification)
Hereinafter, a method for manufacturing the crystal resonator 10 according to the second modification will be described with reference to the drawings. FIG. 13 is a block diagram of an adjusting device 300b used in the method for manufacturing the crystal resonator 10 according to the second modification.
 まず、調整装置300bについて説明する。調整装置300bは、測定部312が炉306内の水晶振動子10の共振周波数fを測定する点において調整装置300と相違する。すなわち、測定部312は、加熱装置302がパッケージ11を加熱している間に、水晶振動子10の共振周波数fを測定する。制御部308は、共振周波数fが目標の共振周波数ftとなるまで、加熱部304にパッケージ11を加熱させる。 First, the adjustment device 300b will be described. The adjustment device 300 b is different from the adjustment device 300 in that the measurement unit 312 measures the resonance frequency f of the crystal resonator 10 in the furnace 306. That is, the measurement unit 312 measures the resonance frequency f of the crystal unit 10 while the heating device 302 is heating the package 11. The control unit 308 causes the heating unit 304 to heat the package 11 until the resonance frequency f reaches the target resonance frequency ft.
 次に、第2の変形例に係る水晶振動子10の製造方法について説明する。図14は、第2の変形例に係る水晶振動子10の製造方法を示すフローチャートである。 Next, a method for manufacturing the crystal resonator 10 according to the second modification will be described. FIG. 14 is a flowchart showing a method for manufacturing the crystal unit 10 according to the second modification.
 図14のステップS1~S3は、図2のステップS1~S3と同じであるので説明を省略する。 14 are the same as steps S1 to S3 in FIG. 2 and will not be described.
 制御部308は、加熱部304にパッケージ11の加熱を開始させる(ステップS24:加熱開始)。 The control unit 308 causes the heating unit 304 to start heating the package 11 (step S24: heating start).
 次に、制御部308は、測定部312により水晶振動子10の共振周波数fを測定する(ステップS25:第1の測定工程)。本実施形態では、加熱工程と共に、水晶振動子10の共振周波数fを測定部312により測定する。 Next, the control unit 308 measures the resonance frequency f of the crystal unit 10 by the measurement unit 312 (step S25: first measurement process). In the present embodiment, the resonance frequency f of the crystal resonator 10 is measured by the measurement unit 312 together with the heating process.
 次に、制御部308は、共振周波数fが目標の共振周波数ftと等しくなったか否かを判定する(ステップS26)。共振周波数fが目標の共振周波数ftと等しくなった場合には、本処理はステップS28に進む。共振周波数fが目標の共振周波数ftと等しくなっていない場合には、本処理はステップS27に進む。 Next, the control unit 308 determines whether or not the resonance frequency f is equal to the target resonance frequency ft (step S26). When the resonance frequency f becomes equal to the target resonance frequency ft, the process proceeds to step S28. If the resonance frequency f is not equal to the target resonance frequency ft, the process proceeds to step S27.
 共振周波数fが目標の共振周波数ftと等しくなっていない場合、制御部308は、ステップS26を実行してから所定時間Δtが経過したか否かを判定する(ステップS27)。所定時間Δtが経過した場合には、本処理はステップS25に戻る。所定時間Δtが経過していない場合には、本処理はステップS27に戻る。 When the resonance frequency f is not equal to the target resonance frequency ft, the control unit 308 determines whether or not a predetermined time Δt has elapsed after executing Step S26 (Step S27). If the predetermined time Δt has elapsed, the process returns to step S25. If the predetermined time Δt has not elapsed, the process returns to step S27.
 共振周波数fが目標の共振周波数ftと等しくなった場合、制御部308は、加熱部304にパッケージ11の加熱を終了させる(ステップS28:加熱終了)。以上の工程を経て、水晶振動子10が完成する。 When the resonance frequency f becomes equal to the target resonance frequency ft, the control unit 308 causes the heating unit 304 to finish heating the package 11 (step S28: heating end). Through the above steps, the crystal resonator 10 is completed.
 以上のような第2の変形例に係る水晶振動子10の製造方法及び調整装置300bによれば、前記水晶振動子10の製造方法及び調整装置300と同じ作用効果を奏することができる。 According to the manufacturing method and adjustment device 300b of the quartz crystal resonator 10 according to the second modification as described above, the same operational effects as those of the manufacturing method and adjustment device 300 of the quartz crystal resonator 10 can be obtained.
(その他の実施形態)
 本発明に係る圧電振動子、圧電振動子の製造方法及び調整装置は、前記水晶振動子10,10a~10c、水晶振動子10の製造方法及び調整装置300,300a,300bに限らず、その要旨の範囲内において変更可能である。例えば、水晶振動素子の実施形態として、水晶の結晶軸として互いに直交するX軸、Y軸、およびZ軸に対して所定の角度で切り出された水晶板を基材とした水晶片であって、基部と、基部から延びている少なくとも1本の振動腕とを有する水晶片と、屈曲振動を発生させるように振動腕に設けられた励振電極とを備える音叉型水晶振動素子を用いることができる。
(Other embodiments)
The piezoelectric vibrator, the piezoelectric vibrator manufacturing method, and the adjusting device according to the present invention are not limited to the crystal vibrators 10, 10a to 10c, the crystal vibrator 10 manufacturing method and the adjusting devices 300, 300a, 300b, and the gist thereof. It is possible to change within the range. For example, as an embodiment of a crystal resonator element, a crystal piece based on a crystal plate cut out at a predetermined angle with respect to the X axis, the Y axis, and the Z axis orthogonal to each other as crystal axes of the crystal, A tuning fork type crystal resonator element including a crystal piece having a base portion and at least one vibrating arm extending from the base portion and an excitation electrode provided on the vibrating arm so as to generate bending vibration can be used.
 なお、水晶振動子10,10a~10c、水晶振動子10の製造方法及び調整装置300,300a,300bの各構成を任意に組み合わせてもよい。 It should be noted that the crystal resonators 10, 10a to 10c, the method for manufacturing the crystal resonator 10, and the configurations of the adjusting devices 300, 300a, 300b may be arbitrarily combined.
 なお、前記水晶振動子10,10a~10c、水晶振動子10の製造方法及び調整装置300,300a,300bでは、水晶振動子10,10a~10cの共振周波数fのばらつきを是正することを目的としていた。しかしながら、例えば、パッケージ11の加熱条件を変化させることで、複数種類の共振周波数fを有する水晶振動子10,10a~10cを製造してもよい。例えば、28MHzの共振周波数fを有する複数の水晶振動子10,10a~10cを製造する。そして、複数の水晶振動子10,10a~10cの内の一部の水晶振動子10,10a~10cのパッケージ11を加熱する。これにより、27MHzの共振周波数fを有する水晶振動子10,10a~10c、及び、28MHzの共振周波数fを有する水晶振動子10,10a~10cを製造してもよい。 In the crystal resonators 10, 10a to 10c, the method for manufacturing the crystal resonator 10, and the adjusting devices 300, 300a, 300b, the purpose is to correct variations in the resonance frequency f of the crystal resonators 10, 10a to 10c. It was. However, for example, the crystal resonators 10 and 10a to 10c having plural kinds of resonance frequencies f may be manufactured by changing the heating condition of the package 11. For example, a plurality of crystal resonators 10 and 10a to 10c having a resonance frequency f of 28 MHz are manufactured. Then, the packages 11 of some of the crystal resonators 10 and 10a to 10c are heated. Thus, the crystal resonators 10 and 10a to 10c having the resonance frequency f of 27 MHz and the crystal resonators 10 and 10a to 10c having the resonance frequency f of 28 MHz may be manufactured.
 なお、水晶振動子10,10a~10cにおいて、接合材50が金属部材150として用いられてもよい。すなわち、パッケージ11が加熱されることにより、熱伝導により接合材50が加熱されて、接合材50の一部が水晶振動素子16の表面に蒸着してもよい。 It should be noted that the bonding material 50 may be used as the metal member 150 in the crystal resonators 10 and 10a to 10c. That is, by heating the package 11, the bonding material 50 may be heated by heat conduction, and a part of the bonding material 50 may be deposited on the surface of the crystal resonator element 16.
 なお、加熱条件は加熱温度及び加熱時間を含んでいるが、その他の条件が加熱条件に含まれていてもよい。 The heating conditions include the heating temperature and the heating time, but other conditions may be included in the heating conditions.
 以上のように、本発明は、圧電振動子、圧電振動子の製造方法及び調整装置に有用であり、特に、パッケージに透過窓を設けることなく、パッケージの密封後に圧電振動子の共振周波数を調整することができる点で優れている。 As described above, the present invention is useful for a piezoelectric vibrator, a method for manufacturing a piezoelectric vibrator, and an adjustment device. In particular, the resonance frequency of the piezoelectric vibrator is adjusted after sealing the package without providing a transmission window in the package. Excellent in that it can be done.
10,10a~10c:水晶振動子
11:パッケージ
12:基板
14:蓋
16:水晶振動素子
17:水晶片
21:基板本体
22,26,40,42,44,46,97,98:外部電極
25,28,54,56:ビアホール導体
30:メタライズ膜
50:接合材
100,101:励振電極
102,103:引き出し導体
150:金属部材
210,212:導電性接着剤
300,300a,300b:調整装置
302,302a~302c:加熱装置
304,304a~304c:加熱部
306:炉
308:制御部
310:記憶部
312:測定部
314:振り分け部
 
10, 10a to 10c: Crystal resonator 11: Package 12: Substrate 14: Cover 16: Crystal resonator element 17: Crystal piece 21: Substrate body 22, 26, 40, 42, 44, 46, 97, 98: External electrode 25 28, 54, 56: Via-hole conductor 30: Metallized film 50: Bonding material 100, 101: Excitation electrode 102, 103: Lead conductor 150: Metal member 210, 212: Conductive adhesive 300, 300a, 300b: Adjustment device 302 , 302a to 302c: heating device 304, 304a to 304c: heating unit 306: furnace 308: control unit 310: storage unit 312: measurement unit 314: distribution unit

Claims (17)

  1.  基板、蓋及び前記基板と前記蓋とを接合する接合材を含み、かつ、密封容器であるパッケージと、
     前記パッケージ内に設けられ、かつ、圧電片、第1の励振電極及び第2の励振電極を含む圧電振動素子と、
     前記圧電振動素子に接触しないように前記パッケージ内に設けられ、かつ、前記第1の励振電極及び前記第2の励振電極の材料よりも低い融点を有する金属部材と、
     を備えており、
     前記パッケージ内は遮光されている、
     圧電振動子。
    A package that includes a substrate, a lid, and a bonding material that joins the substrate and the lid, and is a sealed container;
    A piezoelectric vibration element provided in the package and including a piezoelectric piece, a first excitation electrode, and a second excitation electrode;
    A metal member provided in the package so as not to contact the piezoelectric vibration element and having a melting point lower than the material of the first excitation electrode and the second excitation electrode;
    With
    The package is shielded from light,
    Piezoelectric vibrator.
  2.  前記圧電片は、第1の主面及び第2の主面を有する板状構造を有しており、
     前記金属部材は、前記第1の主面の法線方向から見たときに、前記圧電片と重なっている、
     請求項1に記載の圧電振動子。
    The piezoelectric piece has a plate-like structure having a first main surface and a second main surface,
    The metal member overlaps the piezoelectric piece when viewed from the normal direction of the first main surface.
    The piezoelectric vibrator according to claim 1.
  3.  前記圧電片は、第1の主面及び第2の主面を有する板状構造を有しており、
     前記金属部材は、前記第1の主面の法線方向から見たときに、前記圧電片と重なっていない、
     請求項1に記載の圧電振動子。
    The piezoelectric piece has a plate-like structure having a first main surface and a second main surface,
    The metal member does not overlap the piezoelectric piece when viewed from the normal direction of the first main surface;
    The piezoelectric vibrator according to claim 1.
  4.  前記圧電振動素子の表面上には、前記金属部材と実質的に同じ組成の金属膜が形成されている、
     請求項1ないし請求項3のいずれかに記載の圧電振動子。
    A metal film having substantially the same composition as the metal member is formed on the surface of the piezoelectric vibration element.
    The piezoelectric vibrator according to any one of claims 1 to 3.
  5.  圧電振動素子、金属部材及びパッケージを備える圧電振動子の製造方法であって、
     前記圧電振動素子及び前記金属部材を収容する前記パッケージを密封する密封工程と、
     前記パッケージを加熱することによって、前記パッケージからの熱伝導により前記金属部材を加熱し、前記金属部材を前記圧電振動素子に蒸着させて、前記圧電振動子の共振周波数を目標の共振周波数に近づける加熱工程と、
     を備える、
     圧電振動子の製造方法。
    A method of manufacturing a piezoelectric vibrator including a piezoelectric vibration element, a metal member, and a package,
    A sealing step for sealing the package containing the piezoelectric vibration element and the metal member;
    By heating the package, the metal member is heated by heat conduction from the package, the metal member is deposited on the piezoelectric vibration element, and the resonance frequency of the piezoelectric vibrator is brought close to the target resonance frequency. Process,
    Comprising
    A method of manufacturing a piezoelectric vibrator.
  6.  前記密封工程後において、前記圧電振動子の共振周波数を測定する第1の測定工程を、
     更に備える、
     請求項5に記載の圧電振動子の製造方法。
    After the sealing step, a first measurement step for measuring a resonance frequency of the piezoelectric vibrator is performed.
    In addition,
    The method for manufacturing a piezoelectric vibrator according to claim 5.
  7.  前記密封工程後であって前記加熱工程前に前記第1の測定工程を行う、
     請求項6に記載の圧電振動子の製造方法。
    Performing the first measuring step after the sealing step and before the heating step;
    The method for manufacturing a piezoelectric vibrator according to claim 6.
  8.  前記加熱工程では、前記第1の測定工程により測定した前記圧電振動子の共振周波数により定まる加熱条件で前記パッケージを加熱する、
     請求項7に記載の圧電振動子の製造方法。
    In the heating step, the package is heated under a heating condition determined by a resonance frequency of the piezoelectric vibrator measured in the first measurement step.
    The method for manufacturing a piezoelectric vibrator according to claim 7.
  9.  前記加熱工程と共に前記第1の測定工程を行う、
     請求項6に記載の圧電振動子の製造方法。
    Performing the first measuring step together with the heating step;
    The method for manufacturing a piezoelectric vibrator according to claim 6.
  10.  前記加熱工程後において、前記圧電振動子の共振周波数を測定する第2の測定工程を、
     更に備える、
     請求項5ないし請求項9のいずれかに記載の圧電振動子の製造方法。
    After the heating step, a second measurement step of measuring the resonance frequency of the piezoelectric vibrator,
    In addition,
    The method for manufacturing a piezoelectric vibrator according to claim 5.
  11.  前記パッケージ内は遮光されている、
     請求項5ないし請求項10のいずれかに記載の圧電振動子の製造方法。
    The package is shielded from light,
    The method for manufacturing a piezoelectric vibrator according to claim 5.
  12.  前記パッケージは、基板、蓋及び接合材を含んでおり、
     前記密封工程では、前記基板と前記蓋とを前記接合材で接合することにより、前記パッケージを密封する、
     請求項5ないし請求項11のいずれかに記載の圧電振動子の製造方法。
    The package includes a substrate, a lid and a bonding material,
    In the sealing step, the package is sealed by bonding the substrate and the lid with the bonding material.
    The method for manufacturing a piezoelectric vibrator according to claim 5.
  13.  密封容器であるパッケージと前記パッケージに収容された圧電振動素子及び金属部材とを備えた圧電振動子の共振周波数を調整する調整装置であって、
     前記パッケージを加熱することによって、前記パッケージからの熱伝導により前記金属部材を加熱し、前記金属部材を前記圧電振動素子に蒸着させる加熱部と、
     前記圧電振動子の共振周波数が目標の共振周波数に近づくように前記加熱部を制御する制御部と、
     を備える、
     調整装置。
    An adjustment device for adjusting a resonance frequency of a piezoelectric vibrator comprising a package that is a sealed container and a piezoelectric vibration element and a metal member housed in the package,
    Heating the package to heat the metal member by heat conduction from the package and deposit the metal member on the piezoelectric vibration element;
    A control unit that controls the heating unit so that the resonance frequency of the piezoelectric vibrator approaches a target resonance frequency;
    Comprising
    Adjustment device.
  14.  前記圧電振動子の共振周波数を測定する測定部を、
     更に備える、
     請求項13に記載の調整装置。
    A measurement unit for measuring the resonance frequency of the piezoelectric vibrator,
    In addition,
    The adjusting device according to claim 13.
  15.  前記測定部は、前記加熱部が前記パッケージを加熱する前に、前記圧電振動子の共振周波数を測定し、
     前記制御部は、前記測定部が測定した前記圧電振動子の共振周波数により定まる加熱条件で前記パッケージを前記加熱部に加熱させる、
     請求項14に記載の調整装置。
    The measurement unit measures the resonance frequency of the piezoelectric vibrator before the heating unit heats the package,
    The control unit causes the heating unit to heat the package under a heating condition determined by a resonance frequency of the piezoelectric vibrator measured by the measurement unit.
    The adjusting device according to claim 14.
  16.  前記測定部は、前記加熱部が前記パッケージを加熱している間に、前記圧電振動子の共振周波数を測定する、
     請求項14に記載の調整装置。
    The measurement unit measures a resonance frequency of the piezoelectric vibrator while the heating unit is heating the package.
    The adjusting device according to claim 14.
  17.  前記測定部は、前記加熱部の前記パッケージの加熱が終了した後において、前記圧電振動子の共振周波数を測定する、
     請求項14ないし請求項16のいずれかに記載の調整装置。
    The measurement unit measures the resonance frequency of the piezoelectric vibrator after the heating of the package of the heating unit is completed.
    The adjusting device according to any one of claims 14 to 16.
PCT/JP2017/023177 2016-09-30 2017-06-23 Piezoelectric vibrator, manufacturing method for piezoelectric vibrator and adjustment device WO2018061356A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-194108 2016-09-30
JP2016194108 2016-09-30

Publications (1)

Publication Number Publication Date
WO2018061356A1 true WO2018061356A1 (en) 2018-04-05

Family

ID=61759463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023177 WO2018061356A1 (en) 2016-09-30 2017-06-23 Piezoelectric vibrator, manufacturing method for piezoelectric vibrator and adjustment device

Country Status (1)

Country Link
WO (1) WO2018061356A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081697A (en) * 2005-09-13 2007-03-29 Daishinku Corp Piezoelectric oscillation device and method of manufacturing same
WO2009101733A1 (en) * 2008-02-16 2009-08-20 Seiko Instruments Inc. Piezoelectric vibrator, manufacturing method of the piezoelectric vibrator, oscillator, electronic instrument and atomic clock
JP2011211441A (en) * 2010-03-29 2011-10-20 Seiko Instruments Inc Manufacturing method of piezoelectric oscillator, piezoelectric oscillator, oscillator, electronic device, and electric wave clock
JP2014160877A (en) * 2009-02-19 2014-09-04 Nec Corp Vacuum sealed package, printed circuit board with vacuum sealed package, electronic apparatus and manufacturing method of vacuum sealed package

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081697A (en) * 2005-09-13 2007-03-29 Daishinku Corp Piezoelectric oscillation device and method of manufacturing same
WO2009101733A1 (en) * 2008-02-16 2009-08-20 Seiko Instruments Inc. Piezoelectric vibrator, manufacturing method of the piezoelectric vibrator, oscillator, electronic instrument and atomic clock
JP2014160877A (en) * 2009-02-19 2014-09-04 Nec Corp Vacuum sealed package, printed circuit board with vacuum sealed package, electronic apparatus and manufacturing method of vacuum sealed package
JP2011211441A (en) * 2010-03-29 2011-10-20 Seiko Instruments Inc Manufacturing method of piezoelectric oscillator, piezoelectric oscillator, oscillator, electronic device, and electric wave clock

Similar Documents

Publication Publication Date Title
US10749467B2 (en) Piezoelectric resonator unit and temperature control method therefor, and piezoelectric oscillator
US11342899B2 (en) Crystal resonator device
JP2008153485A (en) Manufacturing method of electronic component
JP6233621B2 (en) Crystal piece and crystal unit
US10600953B2 (en) Piezoelectric resonator device
JP6168264B2 (en) Crystal piece and crystal unit
JP2007251239A (en) Piezoelectric device and manufacturing method thereof
JP6090687B1 (en) Crystal piece and crystal unit
JP2010035078A (en) Piezoelectric oscillator
EP2244385B1 (en) Temperature compensated crystal oscillator, printed-circuit board, and electronic device
WO2018061356A1 (en) Piezoelectric vibrator, manufacturing method for piezoelectric vibrator and adjustment device
JP6218004B2 (en) Crystal piece and crystal unit
JP2013021079A (en) Sealing method of package
JP2018074012A (en) Package for electronic device, electronic device, electronic apparatus, and movable body
JP3997526B2 (en) Quartz crystal resonator element, processing method thereof, crystal device, mobile phone device using crystal device, and electronic device using crystal device
JP2009303097A (en) Piezoelectric device and manufacturing method thereof
CN109845103B (en) Piezoelectric vibrator
JP2010109881A (en) Piezoelectric oscillator
JP6245489B2 (en) Crystal piece and crystal unit
US11152908B2 (en) Method for manufacturing piezoelectric vibration element and method for manufacturing piezoelectric vibrator
US11152912B2 (en) Piezoelectric resonator unit
WO2017061478A1 (en) Crystal piece and crystal oscillator
JP2013024828A (en) Physical quantity detector, physical quantity detection device, electronic apparatus and manufacturing method of physical quantity detector
JP2011082736A (en) Method for manufacturing piezoelectric device
JP6150092B1 (en) Crystal piece and crystal unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17855315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP