WO2018059602A1 - 信号发送、接收发送、装置和计算机存储介质 - Google Patents

信号发送、接收发送、装置和计算机存储介质 Download PDF

Info

Publication number
WO2018059602A1
WO2018059602A1 PCT/CN2017/110288 CN2017110288W WO2018059602A1 WO 2018059602 A1 WO2018059602 A1 WO 2018059602A1 CN 2017110288 W CN2017110288 W CN 2017110288W WO 2018059602 A1 WO2018059602 A1 WO 2018059602A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
reference signal
priority
measurement result
measurement
Prior art date
Application number
PCT/CN2017/110288
Other languages
English (en)
French (fr)
Inventor
蒋创新
鲁照华
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018059602A1 publication Critical patent/WO2018059602A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient

Definitions

  • the present invention relates to the field of communications, and in particular, to a signal transmitting, receiving and transmitting device, and a computer storage medium.
  • LTE Long-Term Evolution
  • periodic reference signals such as synchronization signals, cell reference signals, channel measurement reference signals, and uplink sounding reference signals.
  • the user equipment can be configured according to high-level signaling. Periodically receive or transmit these periodic reference signals.
  • the periodic reference signal configuration is simple, and only the base station needs to be semi-statically configured with high-level signaling without additional dynamic signaling. However, the periodic reference signal transmission will bring a lot of overhead to the system.
  • some non-periodic reference signals are input into the LTE, such as a non-period uplink sounding reference signal, and the base station can configure one or more sounding reference signal configurations by using high layer signaling (for example, radio resource control signaling), where the configuration parameters include Sending bandwidth, time-frequency position, sequence cyclic shift and other parameters, and then the base station can decide whether to trigger the transmission of the uplink sounding reference signal on the physical layer control area according to requirements. This is the aperiodic sounding reference signal.
  • high layer signaling for example, radio resource control signaling
  • aperiodic reference signals is a trend in order to reduce the overhead, especially the overhead of sounding reference signals, due to the increased data demand of the user equipment.
  • a non-periodic channel sounding reference signal for example, a non-periodic channel sounding reference signal.
  • LTE does not require a beam reference signal. This is because the LTE base station or user equipment often uses a wide RF beam to transmit cell-level coverage when transmitting reference signals.
  • FIG. 1-a is a cell level coverage diagram of a radio frequency beam when a reference signal is transmitted in the related art.
  • the carrier frequency for LTE is basically 6 GHz or less
  • the multi-antenna array is used.
  • the wide RF beam can cover the entire cell.
  • 5G not only the carrier frequency band below 6 GHz but also the frequency band above 6 GHz, such as 60 GHz, is supported. Since the large-scale path loss is very large in the high frequency band, this poses a great challenge to wireless communication.
  • the base station can accommodate a large number of antennas and utilize multiple antennas to form a narrow beam to form a beamforming gain. Therefore, narrow RF beamforming has become an indispensable technology for enhancing cell coverage in high frequency bands.
  • FIG. 1-b is a schematic diagram of different beam directions corresponding to different reference signals in the related art.
  • the base station may trigger or periodically transmit a beam reference signal, where different reference signals correspond to different beam directions. After measuring the beam reference signal, the UE may feed back one or more optimal beam numbers to the base station, so that the base station may use the best beam to transmit data to a specific user equipment when subsequently transmitting data.
  • the introduction of a non-periodic transmit beam reference signal also saves the pilot overhead of the system.
  • dynamic activation may also be introduced into 5G.
  • the base station can use the physical layer dynamic signaling to activate the transmission of the beam reference signal. After activation, the base station will send periodic or multiple beam reference signals according to the high layer signaling configuration.
  • FIG. 2-a is a schematic diagram of triggering of a downlink reference signal in the related art. If the triggering of the downlink reference signal is triggered by the base station on the physical layer control area of the subframe n, the base station will transmit on the subframe n+m, and it is assumed that the subframe n+m is the downlink subframe. If the base station triggers a reference signal on the physical layer control area of the subframe n, the user equipment will send the subframe n+m, where the subframe n+m includes the uplink transmission area.
  • the candidate value of m may be multiple, such as 0, 1, 2, 3.
  • FIG. 2-b is a schematic diagram of the measurement result feedback in the related art. As shown in Figure 2-b, after the base station triggers a downlink measurement reference signal on the physical layer control area of the subframe n, the base station will be in the subframe n+m. The base station sends a measurement result to the base station in the subframe n+m+k.
  • the candidate value of k may be multiple, such as 0, 1, 2, .. 7.
  • Embodiments of the present invention provide a signal transmission, reception, transmission, device, and computer storage medium to at least solve the conflict problem of transmitting or receiving a reference signal or measurement result feedback or data transmission in the same time unit in the related art.
  • a method of signaling comprising: a first node transmitting or receiving a trigger signal s1 on a time unit n1+m1 in a time unit n1, and a trigger signal s2 on a time unit n2 Transmitting or receiving on time unit n2+m2, where
  • the signal s1 and the signal s2 are received according to the priority rule for identifying the priority of the received signal or the signal s1 and the signal are transmitted according to the priority rule for identifying the priority of the transmitted signal.
  • S2, m1 and m2 are time offsets of n1 and n2, respectively, wherein n1, m1, n2, and m2 are all non-negative integers.
  • a method of signal reception comprising: a second node receiving, in a time unit n1, trigger information for triggering transmission or reception of a signal s1 at a time unit n1+m1, and at time
  • the triggering information for triggering the transmission or reception of the signal s2 at the time unit n2+m2 is received in the unit n2, wherein when the resource positions where the signals s1 and s2 are located overlap, the priority rule for identifying the priority of the received signal is used.
  • the signal s1 and the signal s2 are received or transmitted in accordance with a priority rule for identifying the priority of the transmitted signal, wherein n1, m1, n2, m2 are all non-negative integers.
  • a signal transmitting apparatus applied to a first node, comprising: a triggering module, configured to send or receive a trigger signal s1 on a time unit n1+m1 in a time unit n1, And the triggering signal s2 is sent or received on the time unit n2+m2 on the time unit n2; the processing module is configured to use the priority for identifying the priority of the received signal when the resource positions where the signal s1 and the signal s2 are overlapped
  • the rule receives the signal s1 and the signal s2 or transmits the signal s1 and the signal s2 according to the priority rule for identifying the priority of the transmitted signal, m1 and m2 are time offsets of n1 and n2, respectively, where n1, m1, n2, m2 Both are non-negative integers.
  • a signal receiving apparatus applied to a second node, comprising: a receiving module configured to receive in a time unit n1 for triggering to be transmitted or received at a time unit n1+m1 Trigger information of signal s1, and receiving trigger information for triggering transmission or reception of signal s2 at time unit n2+m2 in time unit n2; processing module configured to overlap when resource locations where signals s1 and s2 are located, Receiving the signal s1 and the signal s2 according to a priority rule for identifying the priority of the received signal; or, according to the identifier for transmitting
  • the priority rule of the priority number transmits a signal s1 and a signal s2, wherein n1, m1, n2, and m2 are both non-negative integers.
  • a computer storage medium is also provided.
  • the storage medium is configured to store computer executable code; after the computer executable code is executed, the aforementioned signal transmitting method or signal receiving method can be implemented.
  • the first node transmits or receives the trigger signal s1 on the time unit n1+m1 in the time unit n1, and the trigger signal s2 transmits or receives on the time unit n2+m2 on the time unit n2, wherein
  • the signal s1 and the signal s2 are received according to the priority rule for identifying the priority of the received signal or the signal s1 is transmitted according to the priority rule for identifying the priority of the transmitted signal.
  • the signals s2, m1 and m2 are time offsets of n1 and n2, respectively, and the reference signals or data signals are transmitted or received in the same time unit in the related art by the scheme of prioritizing or then transmitting or receiving. The conflict of measurement results feedback.
  • FIG. 1 is a cell level coverage diagram of a radio frequency beam when a reference signal is transmitted in the related art
  • FIG. 1 b is a schematic diagram of different beam directions corresponding to different reference signals in the related art
  • FIG. 2-a is a schematic diagram of triggering of a downlink reference signal in the related art
  • FIG. 2-b is a schematic diagram of feedback of measurement results in the related art
  • FIG. 3 is a block diagram showing the hardware structure of a mobile terminal according to a signal transmission method according to an embodiment of the present invention
  • FIG. 4 is a flow chart of a method of signaling according to an embodiment of the present invention.
  • FIG. 5 is a hardware structural block diagram of a mobile terminal according to a signal receiving method according to an embodiment of the present invention.
  • FIG. 6 is a flow chart of a method of signal reception according to an embodiment of the present invention.
  • FIG. 7 is a structural block diagram of an apparatus for signaling according to an embodiment of the present invention.
  • FIG. 8 is a structural block diagram of another apparatus for receiving signals according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of multiplexing of a non-transmission area of the embodiment.
  • FIG. 11 is a schematic diagram of measurement feedback of a reference signal of a signal s1 on a subframe n1+m1 according to an embodiment
  • FIG. 12 is a schematic diagram of the base station in the embodiment of the present invention dynamically transmitting uplink data by DCI in subframe #n1.
  • FIG. 3 is a hardware structural block diagram of a mobile terminal according to a signal transmitting method according to an embodiment of the present invention.
  • the mobile terminal 30 may include one or more (only one shown) processor 302 (the processor 302 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA).
  • FIG. 3 is merely illustrative and does not limit the structure of the above electronic device.
  • the mobile terminal 30 may also include more than shown in FIG. Or fewer components, or have a different configuration than that shown in Figure 3.
  • the memory 304 can be configured as a software program and a module for storing application software, such as program instructions/modules corresponding to the signal transmission method in the embodiment of the present invention, and the processor 302 executes each of the software programs and modules stored in the memory 304.
  • a functional application and data processing, that is, the above method is implemented.
  • Memory 304 can include high speed random access memory and can also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • memory 304 can further include memory remotely located relative to processor 302, which can be connected to mobile terminal 30 over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Transmission device 306 is configured to receive or transmit data via a network.
  • the above-described network specific example may include a wireless network provided by a communication provider of the mobile terminal 30.
  • the transmission device 306 includes a Network Interface Controller (NIC) that can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 306 can be a Radio Frequency (RF) module for communicating with the Internet wirelessly.
  • NIC Network Interface Controller
  • RF Radio Frequency
  • FIG. 4 is a flowchart of a method for signaling according to an embodiment of the present invention. As shown in FIG. 4, the process includes the following steps. :
  • Step S402 the first node transmits or receives the trigger signal s1 on the time unit n1+m1 in the time unit n1, and the trigger signal s2 transmits or receives on the time unit n2+m2 in the time unit n2, wherein the signal s1
  • the signal s1 and the signal s2 are received according to a priority rule for identifying the priority of the received signal; or the signal s1 and the signal s2 are transmitted according to a priority rule for identifying the priority of the transmitted signal.
  • m1 and m2 are time offsets of n1 and n2, respectively, wherein n1, m1, n2, and m2 are all non-negative integers.
  • the first node transmits or receives the trigger signal s1 on the time unit n1+m1 in the time unit n1, and the trigger signal s2 transmits or receives on the time unit n2+m2 on the time unit n2, wherein the signal
  • the signal s1 and the signal s2 are received according to the priority rule for identifying the priority of the received signal or the signal s1 and the signal s2 are transmitted according to the priority rule for identifying the priority of the transmitted signal.
  • M1 and m2 are time offsets of n1 and n2, respectively, and solve the related art in transmitting or receiving reference signals or data signals or measurement feedbacks in the same time unit by prioritizing or then transmitting or receiving. Conflict issue.
  • the communication resource may be included in accordance with the priority rule transmission signal s1 and the signal s2.
  • the domain resource and the frequency domain resource for example, the time domain resource locations of the signal s1 and the signal s2 partially or completely overlap, and for example, the frequency domain resource locations of the signal s1 and the signal s2 partially or completely overlap.
  • the communication resource may further include other resources such as a sequence code in a code domain, and is not limited to a time-frequency domain resource.
  • the time unit in this embodiment may be a time slot, a subframe, or other schedulable minimum time unit or the like.
  • This embodiment is described by taking two signals (signal s1 and signal s2) as an example. Those skilled in the art should understand that in the scenario of more than two signals, when the resource positions of multiple signals transmitted or received overlap. It can also be solved by prioritizing and then transmitting or receiving by the embodiment.
  • whether the resource positions of the signal s1 and the signal s2 overlap may be determined by determining, or may be determined by matching and comparing, where the resource location may be a location on a resource such as a time domain, a frequency domain, a code domain, or an airspace.
  • the first node of the execution entity of the foregoing step may be a sending end, such as a base station, a terminal, a system, etc., but is not limited thereto.
  • the signal s1 and the signal s2 respectively comprise one or more of the following signals: uplink scheduled data, channel measurement reference signal, beam reference signal, sounding reference signal, precoding measurement reference signal, and channel measurement reference signal corresponding measurement result Feedback, feedback of the measurement result corresponding to the beam reference signal, feedback of the measurement result corresponding to the precoding measurement reference signal, and acknowledgment/non-acknowledgement ACK (Negative Acknowledgement) feedback corresponding to the downlink scheduling.
  • uplink scheduled data channel measurement reference signal, beam reference signal, sounding reference signal, precoding measurement reference signal, and channel measurement reference signal corresponding measurement result Feedback
  • feedback of the measurement result corresponding to the beam reference signal feedback of the measurement result corresponding to the precoding measurement reference signal
  • acknowledgment/non-acknowledgement ACK Negative Acknowledgement
  • the priority rule includes: sorting according to the sizes of n1 and n2 corresponding to the signal s1 and the signal s2.
  • the priority is sorted according to the type, OR, density, or bandwidth length of the signals s1 and s2, or the number of ports: channel measurement reference signal , beam reference signal, sounding reference signal, precoding measurement reference signal.
  • the priority is first sorted according to the types of the signals s1 and s2; and the priority is sorted according to one of the following signals s1 and s2: density, bandwidth length, number of ports, corresponding size of n1 and n2 .
  • the priority is first sorted according to one of the signal s1 and the signal s2: density of the signal s1 and the signal s2, bandwidth length, number of ports, corresponding size of n1 and n2; and then according to the signal s1 and the signal s2
  • the type is prioritized.
  • the priority ranking methods corresponding to different terminals and/or different transmission structures are different, wherein different transmission structure regions correspond to different subcarrier spacings.
  • the signal s1 and the signal s2 include one or more of the following signals, the transmission time of the reference signal corresponding to the signal s1 and the signal s2, or the type, or the density, or the bandwidth length, or the number of ports How to prioritize: feedback of measurement results corresponding to channel measurement reference signals, feedback of measurement results corresponding to beam reference signals, precoding measurement reference Feedback of the measurement results corresponding to the signal.
  • the signals s1 and s2 include one or more of the following signals, prioritize according to the content included in the signal s1 and the signal s2: uplink scheduled data, measurement result feedback corresponding to the channel measurement reference signal, and beam reference signal Corresponding measurement result feedback, pre-coding measurement reference signal corresponding to the measurement result feedback, downlink scheduling corresponding ACK/NACK feedback.
  • the signal s1 and the signal s2 comprise one or more of the following signals
  • all or part of the information of the s1 and the s2 are simultaneously received: uplink scheduled data, measurement result feedback corresponding to the channel measurement reference signal, and corresponding to the beam reference signal
  • the candidate values of m1 and m2 in this embodiment may be configured by higher layer signaling.
  • the candidate values of m1 and m2 are different.
  • the candidate values of m1 and m2 are different, and the subcarrier spacing corresponding to different transmission structure regions is different.
  • the high layer signaling may include: any non-physical layer signaling, for example, may include RRC layer signaling; media access control (MAC) signaling, or access layer (NAS) layer signaling, and the like.
  • FIG. 5 is a block diagram showing the hardware structure of a mobile terminal according to a signal receiving method according to an embodiment of the present invention.
  • mobile terminal 50 may include one or more (only one shown) processor 502 (processor 502 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA)
  • a memory 504 for storing data, and a transmission device 506 for communication functions may be understood by those skilled in the art that the structure shown in FIG. 5 is merely illustrative, and does not limit the structure of the above electronic device.
  • mobile terminal 50 may also include more or fewer components than shown in FIG. 5, or have a different configuration than that shown in FIG.
  • the memory 504 can be configured as a software program and a module for storing application software, such as a signal receiving corresponding program instruction/module in the embodiment of the present invention, and the processor 502 is stored in the storage by running.
  • the software program and modules within the device 504 perform various functional applications and data processing, i.e., implement the methods described above.
  • Memory 504 can include high speed random access memory and can also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • memory 504 can further include memory remotely located relative to processor 502, which can be connected to mobile terminal 50 over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Transmission device 506 is configured to receive or transmit data via a network.
  • the above-described network specific example may include a wireless network provided by a communication provider of the mobile terminal 50.
  • the transmission device 506 includes a Network Interface Controller (NIC) that can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 506 can be a Radio Frequency (RF) module for communicating with the Internet wirelessly.
  • NIC Network Interface Controller
  • RF Radio Frequency
  • FIG. 6 is a flowchart of a method for receiving signals according to an embodiment of the present invention. As shown in FIG. 6, the process includes the following steps. :
  • Step S602 the second node receives, in the time unit n1, trigger information for triggering the transmission or reception of the signal s1 at the time unit n1+m1, and receiving in the time unit n2 for triggering to be transmitted at the time unit n2+m2 or Receiving trigger information of the signal s2, wherein when the resource positions where the signal s1 and the signal s2 are overlapped, the signal s1 and the signal s2 are received according to a priority rule for identifying the priority of the received signal or according to the priority for identifying the transmitted signal.
  • the priority rule sends a signal s1 and a signal s2, where n1, m1, n2, m2 are all non-negative integers.
  • the communication resource may be included according to the priority rule for receiving the signal s1 and the signal s2.
  • the domain resource and the frequency domain resource for example, the time domain resource locations of the signal s1 and the signal s2 partially or completely overlap, and for example, the frequency domain resources of the signal s1 and the signal s2 The locations overlap partially or completely.
  • the communication resource may further include other resources such as a sequence code in a code domain, and is not limited to a time-frequency domain resource.
  • the second node of the execution entity of the foregoing step may be a receiving end, such as a base station, a terminal, a system, etc., but is not limited thereto.
  • the signal s1 and the signal s2 of the embodiment include one or more of the following signals: uplink scheduled data, channel measurement reference signal, beam reference signal, sounding reference signal, precoding measurement reference signal, channel measurement reference signal corresponding Feedback of the measurement result, feedback of the measurement result corresponding to the beam reference signal, feedback of the measurement result corresponding to the precoding measurement reference signal, and acknowledgement/non-acknowledgment ACK/NACK feedback corresponding to the downlink scheduling.
  • the priority rule includes: sorting according to the sizes of n1 and n2 corresponding to the signals s1 and s2.
  • the prioritization manners in this embodiment include multiple types. The following examples are given:
  • the priority is sorted according to the type, or density, or bandwidth length, or the number of ports of the signals s1 and s2: the channel measurement reference signal , beam reference signal, sounding reference signal, precoding measurement reference signal.
  • priority is performed according to the types of the signals s1 and s2; and the priorities are according to the density of the signals s1 and s2, or the bandwidth length, or the number of ports, or the corresponding sizes of n1 and n2. Sort.
  • priority is performed according to the density of the signal s1 and the s2, or the bandwidth length, or the number of ports, or the corresponding sizes of n1 and n2; and then prioritizing according to the types of signals s1 and s2 .
  • the priority ranking methods corresponding to different terminals and/or different transmission structures are different, wherein different transmission structure regions correspond to different subcarrier spacings.
  • the signal s1 and the signal s2 comprise one or more of the following signals
  • the receiving time of the reference signal corresponding to s1 and s2, or the type, or density, or the bandwidth length, or the number of ports is prioritized: the measurement result feedback corresponding to the channel measurement reference signal, and the measurement result corresponding to the beam reference signal Feedback, the pre-coded measurement reference signal corresponding to the measurement result feedback.
  • the priority is sorted according to the content included in the signal s1 and the signal s2: uplink scheduled data, measurement result feedback corresponding to the channel measurement reference signal, and beam reference
  • the measurement result corresponding to the signal is fed back, the measurement result corresponding to the precoding measurement reference signal is fed back, and the ACK/NACK feedback corresponding to the downlink scheduling is performed.
  • the signals s1 and s2 include one or more of the following signals
  • all or part of the information of s1 and s2 are simultaneously received: uplink scheduled data, measurement result feedback corresponding to the channel measurement reference signal, and measurement corresponding to the beam reference signal Result feedback, the measurement result feedback corresponding to the precoding measurement reference signal, and the corresponding ACK/NACK feedback of the downlink scheduling.
  • the candidate values of m1 and m2 in this embodiment are configured by higher layer signaling, and the candidate values of m1 and m2 are different for different terminals.
  • the candidate values of m1 and m2 are different, and the subcarrier spacing corresponding to different transmission structure regions is different.
  • the signal s1 and the signal s2 may be received or transmitted on the overlapping resource locations according to the indicated priority rule.
  • the user equipment does not wish to receive or transmit s1 and s2 on overlapping resource locations.
  • the scheduling of the base station is relied on by default to avoid overlapping of the resource positions of the signals s1 and s2.
  • the base station does not trigger the corresponding signals s1 and s2 to transmit.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention may be soft in nature or in part contributing to the prior art.
  • the form of the product is stored in a storage medium (such as ROM / RAM, disk, CD), including a number of instructions to make a terminal device (can be a mobile phone, computer, server, or network) A device or the like) performs the methods of various embodiments of the present invention.
  • a device for processing signals is provided, which is used to implement the above-mentioned embodiments and preferred embodiments, and has not been described again.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 7 is a structural block diagram of an apparatus for signaling according to an embodiment of the present invention. As shown in FIG. 7, the apparatus includes:
  • the triggering module 70 is configured to transmit or receive the trigger signal s1 on the time unit n1+m1 in the time unit n1, and send or receive the trigger signal s2 on the time unit n2+m2 on the time unit n2; the trigger module 70 is specific Can be a source, trigger, etc. in the device;
  • the processing module 72 is configured to receive the signal s1 and the signal s2 according to the priority rule for identifying the priority of the received signal or according to the priority for identifying the priority of the transmitted signal when there is overlap between the resource locations where the signal s1 and the signal s2 are located.
  • the rule transmission signal s1 and the signals s2, m1 and m2 are time offsets of n1 and n2, respectively, wherein n1, m1, n2, and m2 are non-negative integers; the processing module 72 may specifically be a processor or the like in the device.
  • the receiving module 70 can correspond to an antenna with a data transceiving function of the communication device.
  • the processing module 72 coupled to the receiving module, may correspond to a processor of a communication device, and the processor may include: a central processing unit, a microprocessor, a digital signal processor, an application processor, a programmable array, or ASICs, etc.
  • the signal s1 and the signal s2 in this embodiment respectively include one or more of the following signals: Scheduled data, channel measurement reference signal, beam reference signal, sounding reference signal, precoding measurement reference signal, measurement result feedback corresponding to channel measurement reference signal, measurement result feedback corresponding to beam reference signal, measurement corresponding to precoding measurement reference signal Result feedback, acknowledgement/non-acknowledgment ACK/NACK feedback corresponding to downlink scheduling.
  • sorting according to the sizes of n1 and n2 corresponding to the signal s1 and the signal s2 is determined as a priority rule.
  • FIG. 8 is a structural block diagram of an apparatus for receiving a signal according to an embodiment of the present invention. As shown in FIG. 8, the apparatus includes:
  • the receiving module 80 is configured to receive, in the time unit n1, trigger information for triggering the transmission or reception of the signal s1 at the time unit n1+m1, and receiving in the time unit n2 for triggering to be transmitted at the time unit n2+m2 or Receiving the trigger information of the signal s2, the receiving module 80 may be a receiver, an antenna, or the like in the device;
  • the processing module 82 is configured to receive the signal s1 and the signal s2 according to the priority rule for identifying the priority of the received signal or according to the priority rule for identifying the priority of the transmitted signal when the resource locations where the signals s1 and s2 are overlapped
  • the signal s1 and the signal s2 are transmitted.
  • the processing module 82 may be a processor or the like in the device, wherein n1, m1, n2, and m2 are all non-negative integers.
  • the receiving module 80 can correspond to a receiving antenna of a communication device.
  • the processing module 82 can correspond to a processor of a communication device, which can include a central processing unit, a microprocessor, a digital signal processor, an application processor, a programmable array, or an application specific integrated circuit.
  • the signal s1 and the signal s2 in this embodiment respectively include one or more of the following signals: uplink scheduled data, channel measurement reference signal, beam reference signal, sounding reference signal, precoding measurement reference signal, and channel measurement reference signal corresponding measurement Result feedback, feedback of the measurement result corresponding to the beam reference signal, feedback of the measurement result corresponding to the precoding measurement reference signal, and acknowledgement/non-acknowledgment ACK/NACK feedback corresponding to the downlink scheduling.
  • sorting according to the sizes of n1 and n2 corresponding to the signal s1 and the signal s2 is determined as a priority rule.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • This embodiment is an optional embodiment according to the present invention, and is used to describe the present application in detail with reference to specific examples:
  • This embodiment provides a reference signal triggering method and a feedback priority ordering method thereof, including:
  • the transmitting end transmits or receives the trigger signal s1 on the time unit n1+m1 in the time unit n1, and
  • the transmitting end transmits or receives the trigger signal s2 on the time unit n2+m2 on the time unit n2. If the resource locations where the signals s1 and s2 are located overlap, the signals s1 and s2 are received or transmitted according to a certain priority rule.
  • the signals s1 and s2 are reference signals, including channel measurement reference signals, beam reference signals, uplink sounding reference signals, precoded channel measurement reference signals, and the like.
  • the above one time unit may be 1 subframe, or a time slot, or a minimum scheduled time domain unit.
  • the actual time unit of the signal corresponding to the signal s1 and the signal s2 may be different.
  • the signal s1 is transmitted on a standard time slot
  • the signal s2 is transmitted on a mini slot
  • the duration of the short time slot is shorter than the duration of the short time slot.
  • the standard time slot includes more transmission symbols (eg, OMFD) than the number of transmission symbols included in the short time slot.
  • the short time slot includes at least one transmission symbol.
  • the downlink transmitting end refers to the base station, and the receiving end refers to the user equipment terminal, and the uplink transmitting end refers to the user equipment, and the receiving end refers to the base station. Regardless of whether it is uplink or downlink, it is triggered by the base station.
  • the base station can use the high-level signaling to configure the resource position of the reference signal in one subframe, and the instantaneous frequency position, such as which time-domain orthogonal frequency division multiplexing (OFDM) in one subframe.
  • OFDM time-domain orthogonal frequency division multiplexing
  • the symbol there is also the length of the bandwidth, such as the reference symbol is a fraction of the system bandwidth, and the density of the reference symbol, such as each physical resource block (Physical Resource Block, PRB) is sent, or every two PRB is sent once and so on.
  • the base station can use Downlink Control Information (DCI) bits to trigger whether to transmit the reference signal and which subframe to transmit in the next subframe.
  • DCI Downlink Control Information
  • the base station can configure multiple reference signal configuration parameters to the user equipment by using RRC signaling, and then the base station can trigger one of the bit information of the DCI.
  • the information contained in the DCI of the base station has whether to trigger a certain reference signal and whether the reference signal is transmitted in which subframe, time slot or short time slot.
  • the base station triggers the downlink measurement reference signal by DCI, and then the DCI contains some information bits to inform the user of the value of the device m.
  • the base station The measurement reference signal will be sent.
  • the time-frequency position, bandwidth, density and other parameters of the measurement reference signal need to be known according to the high-level signaling indication.
  • FIG. 9 is a schematic diagram of prioritization of the present embodiment.
  • the transmission time unit n1 is the subframe n
  • the base station triggers the measurement reference signal s1 on subframe n1 and the measurement reference signal s2 on subframe n2.
  • S1 and s2 can be the same type of measurement reference signals, such as Channel State Information-Reference Signals (CSI-RS), high-level signaling configuration for time-frequency positions of s1 and s2, bandwidth, density, etc.
  • CSI-RS Channel State Information-Reference Signals
  • the parameters can be the same or different.
  • s1 and s2 are the same type of reference signal, but the higher layer signaling configuration can be different.
  • high-level signaling is configured with multiple configurations. In subframe n1, DCI triggers a configuration parameter, and in subframe n2, DCI triggers another configuration parameter, but if two configurations are used, If the time-frequency positions of the reference signals indicated by the parameters overlap, it is also necessary to discard the reference signals with low priority.
  • s1 and s2 are different types of reference signals, for example, s1 is a beam reference signal, and s2 is a channel measurement reference signal. If the time-frequency positions of the two reference signals of the upper layer are overlapped, only the priority needs to be sent in priority order. A high reference signal discards the reference signal with a low priority.
  • the pre-defined reference signal sorting method may be sorted according to the subframe sequence in which the DCI trigger is located. For example, the reference signal triggered after the DCI has a high priority, as shown in FIG. 9 , because the DCI corresponding to the s2 triggers in the subframe n2, and the sub-frame Frame n2 is back, so s2 has a high priority. Therefore, the base station transmits only the measurement reference signal s2 at the time of the subframe n2+m2 or n1+m1.
  • the ordering according to this method may not prioritize the type of the reference signal, and the priority is arranged in the time unit of the time unit such as the subframe, the time slot or the short time slot in which the DCI is located.
  • the resource positions of the reference signals overlap, which means that in the same transmission time unit, the time domain symbols and the frequency domain resource locations where the reference signals are located all overlap or partially overlap, as shown in FIG. 9.
  • the predefined reference signal ordering method may be prioritized according to the density of s1 and s2, or the length of the bandwidth, or the number of ports. For example, if the bandwidth of the s1 signal is greater than s2, the priority of s1 is high. If their time-frequency positions overlap, the trigger of the actual s2 is invalid. That is to say, there is actually no s2 signal transmission at the time of the subframe n2+m2.
  • each measurement reference signal triggers overlapping priority ordering methods multiple times
  • the types of signals s1 and s2 may be followed first. Prioritize, and then prioritize according to the order of n1 and n2. For example, the priority of the beam reference signal is higher than the priority of the channel measurement reference signal. If s1 is the beam measurement reference signal and s2 is the CSI-RS, the priority of s1 is still higher than s2 even if n2 is later.
  • s1 and s2 are different types of reference signals, first prioritize according to the density of the signals s1 and s2, or the bandwidth length, or the number of ports, or the corresponding n1 and n2. The priority is then sorted according to the types of signals s1 and s2.
  • the rules for prioritization may be different for each user equipment, and the base station is required to be configured for each user equipment through high layer signaling.
  • the user equipment 1 is sorted according to the DCI trigger timing, and does not distinguish the reference signal type.
  • the user equipment 2 has a high priority of the beam reference signal, and the CSI-RS has a low priority, and is first sorted according to the reference signal type and then sequenced according to the DCI trigger timing.
  • FIG. 10 is a schematic diagram of multiplexing of the non-transmission area of this embodiment.
  • two transmission areas are frequency domain multiplexed on the system bandwidth, and the subcarrier spacings of the transmission area 1 and the transmission area 2 are different. Therefore, the length of each time domain OFDM symbol is also different, resulting in different subframe lengths.
  • the base station can separately configure the priority rules of the two transmission areas through high layer signaling.
  • the candidate values of m1, m2 are configured by higher layer signaling, and the candidate values for different user equipments m may be different.
  • m indicates that the measurement reference signal is transmitted after m subframes at the DCI trigger time. For example, for user equipment 1, the candidate values for m are 0, 1, 2, 3. For user equipment 2, the value of m is 0, 1. Since different user equipments have different processing capabilities and different processing delays are required, different candidate values of m can bring flexibility. In addition, for user equipments with high delay requirements, the candidate values of m can be configured to be smaller, and for user equipments with low delay requirements, the candidate values of m can be Configure more to increase flexibility.
  • the base station separately configures different m candidate values through higher layer signaling. It is worth noting that flexible m candidates are worthy of this method without being limited to the reference signal ordering method. That is to say, even if the system does not sort these reference signals, the flexible m candidate scheme can bring benefits to the system.
  • the signal s1 and the signal s2 include feedback of the channel measurement reference signal measurement result, feedback of the beam reference signal measurement result, feedback of the precoding channel measurement reference signal measurement result, and the like.
  • the feedback of these measurement results may be transmitted on the uplink data channel or on the uplink control channel, and the corresponding resource location overlap or collision is the collision of the uplink data channel and the collision of the uplink control channel, respectively.
  • the base station After the base station triggers the measurement reference signal at the time of the subframe n, and notifies the user equipment that the measurement reference signal is sent at the time of the subframe n+m, the user equipment feeds back the measurement result to the base station at the time of the subframe n+m+k.
  • the value of k is generally also that the base station informs the user equipment through DCI at the time of subframe n. Therefore, for the feedback signal s, the base station also needs to trigger in the DCI, and the time at which the signal s is transmitted is n+m+k.
  • the candidate value of k may be configured by higher layer signaling. Similar to m, the candidate values of different user equipments may be different. For example, the base station notifies the user equipment 1k that the candidate values are 0, 1...7 through high layer signaling, and the user equipment 2 The candidate values are 0, 1, .... Of course, even for the same user equipment, different transmission areas can separately configure different candidate values of k with higher layer signaling.
  • FIG. 11 is a schematic diagram of measurement feedback of a reference signal of the signal s1 on the subframe n1+m1 of the embodiment.
  • the signal s1 represents measurement feedback for the reference signal on the subframe n1+m1, that is, the base station is in the sub-frame.
  • the feedback signal s1 is triggered on the control region of the frame n1
  • s1 is the feedback of the measurement result of the reference signal on the subframe n1+m1, which is transmitted by the user equipment in the subframe n1+m1+k1, and the base station receives.
  • s2 represents the measurement feedback of the user equipment for the reference signal transmitted on the subframe n2+m2.
  • the base station triggers the feedback signal s2 on the control region of the subframe n2, and s2 is the pair in the subframe.
  • the resource overlap may only be a time unit overlap, and the frequency domain positions may not overlap.
  • the overlap of the uplink data channels may mean that only the time units are the same. That is to say, the overlap or conflict of resource locations may be the time domain, the frequency domain, and one or more of the code domains overlap.
  • the user equipment can simultaneously feed both s1 and s2 to the base station even if the time-frequency resources of s1 and s2 are in one subframe. At this point, the base station will receive s1 and s2 in the same subframe. Of course, it is also possible to feed back only the measurement results with higher priority in the order of priority.
  • the order of priority may also be sorted according to the chronological order of the subframe, the time slot, and the short time slot in which the triggered DCI is located. For example, as shown in FIG. 11, the signal s2 has a higher priority than s1 because n2 is later than n1.
  • the priority may also be determined according to the sequence of subframes transmitted by the reference signals corresponding to s1 and s2. That is to say, the priority is determined according to the order of the subframes n1+m1 and n2+m2. For example, the feedback signal corresponding to the latter RS has a high priority.
  • the priority of the measurement result feedback signal may also be determined according to the type, density, bandwidth length, number of ports, etc. of the corresponding reference signal. For example, for the feedback of the uplink channel control, if the transmission resource corresponding to the measurement result of the beam reference signal conflicts with the resource of the channel measurement reference signal measurement result, then The measurement result of the beam measurement reference signal can be defined with a high priority. Then, the user equipment discards the feedback of the channel measurement result with low priority when transmitting.
  • the user equipment can determine the priority according to the order of n1 and n2.
  • the user equipment can only send uplink data with high priority in the corresponding subframe.
  • the user equipment does not wish to receive multiple triggers, and this multiple triggers the transmission or reception of the reference signals that overlap in the same subframe and the resource locations.
  • this multiple triggers the transmission or reception of the reference signals that overlap in the same subframe and the resource locations.
  • the priority is sorted according to the content included in the signals s1 and s2: data of the uplink scheduling, feedback of the measurement result corresponding to the channel measurement reference signal, and feedback of the measurement result corresponding to the beam reference signal And precoding the measurement result corresponding to the reference signal, and downlinking the corresponding ACK/NACK feedback.
  • the priority of the uplink data can be distinguished according to the content contained. For example, if the uplink data signal s1 contains CSI feedback and s2 does not include, then the order of n1 and n2 may be ignored, and the priority of s1 may be determined to be high. That is to say, the uplink data transmission with CSI feedback has a high priority.
  • signals s1 and s2 include one or more of the following signals, all of s1 and s2 are received simultaneously or
  • FIG. 12 is a schematic diagram of the base station in the embodiment of the present invention dynamically triggering uplink data transmission by using DCI in subframe #n1.
  • the base station dynamically triggers uplink data transmission by using DCI in subframe #n1, and the user equipment is in the sub-frame #n1.
  • the uplink data s1 is transmitted in the subframe #n1+m1.
  • the value of the specific m1 can be detected in the DCI.
  • the sorting may be performed according to the sizes of n1 and n2, that is, the uplink data transmission priority of the time domain unit in which the DCI is located is high. Therefore, the user equipment only sends uplink data s2 at the time of subframe #n1+m1.
  • the priority may be determined according to the content included in s1 and s2. For example, if the base station triggers the uplink data at the time of the subframe #n1, the feedback of the reference signal measurement result is triggered at the same time, and the scheduling user equipment transmits at the time of the subframe #n1+m1, and then is scheduled in the subframe #n2. When the uplink data is not triggered to report the measurement result, the priority of s1 is higher than s2.
  • the base station can receive all or part of the information of s1 and s2 at the same time.
  • the base station schedules uplink data scheduled on subframe #n1 and subframe #n2
  • the measurement result feedback of a certain reference signal is included.
  • the priority ranking may be performed according to the content, that is, the measurement result triggered by the subframe #n1 and the subframe #n2 has higher priority than the data transmission, and then the data is sorted according to the size of n1, n2, that is, the subframe #
  • the uplink data content triggered by the trigger on n2 has higher priority than the child.
  • the scheduled uplink data content is triggered on the frame #n1, so finally, the user equipment can transmit the feedback of the measurement result triggered on the subframe #n1 and the subframe #n2 in the uplink data area of the subframe #n2 and trigger on the subframe #n2.
  • Upstream data Therefore, in the prioritization, the content may be sorted according to the content of the signal, for example, whether the channel measurement result feedback is included, and then sorted according to the subframe in which the DCI trigger is located.
  • the user equipment does not want to receive uplink data scheduling in the same subframe triggered by multiple DCIs.
  • Embodiments of the present invention also provide a computer storage medium.
  • Computer-executable instructions are stored in the computer storage medium, the computer-executable instructions being used in a signal transmitting method provided by one or more of the foregoing technical solutions, or performing a signal receiving method provided by one or more technical solutions.
  • the computer storage medium can be various types of storage media, and can be a random storage device, a read-only storage medium, a flash memory, a mobile hard disk, or an optical disk.
  • the computer storage medium can be a non-transitory storage medium or a non-volatile storage medium.
  • the above computer storage medium may be configured to store program code for performing the following steps:
  • the trigger signal s1 is transmitted or received on the time unit n1+m1, and on the time unit n2 the trigger signal s2 is transmitted or received on the time unit n2+m2, where the signal s1 and the signal s2 are located
  • the signal s1 and the signal s2 are received according to the priority rule for identifying the priority of the received signal or the signal s1 and the signal s2 are transmitted according to the priority rule for identifying the priority of the transmitted signal, respectively
  • m1 and m2 are The time offset of n1 and n2.
  • the foregoing storage medium may include, but is not limited to, a USB flash drive, a Read-Only Memory (ROM), and a random access memory (RAM, Random).
  • ROM Read-Only Memory
  • RAM random access memory
  • the processor implements the trigger signal s1 to be transmitted or received on the time unit n1+m1 in the time unit n1 according to computer executable code such as the stored program code in the storage medium, and in time
  • the trigger signal s2 on the unit n2 is transmitted or received on the time unit n2+m2, wherein when the resource positions where the signal s1 and the signal s2 are overlapped, the signal s1 and the signal are received according to the priority rule for identifying the priority of the received signal.
  • S2 or the signal s1 and the signal s2 are transmitted according to a priority rule for identifying the priority of the transmission signal, and m1 and m2 are time offsets of n1 and n2, respectively.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种信号发送、接收发送及装置,包括:第一节点在时间单元n1里触发信号s1在时间单元n1+m1上发送或者接收,以及在时间单元n2上触发信号s2在时间单元n2+m2上发送或者接收,其中,在信号s1和信号s2所在的资源位置有重叠时,按照用于标识接收信号优先级的优先级规则接收信号s1和信号s2,或者,按照用于标识发送信号优先级的优先级规则发送信号s1和信号s2,m1和m2分别为n1和n2的时间偏移量。本发明实施例还提供一种计算机存储介质。

Description

信号发送、接收发送、装置和计算机存储介质 技术领域
本发明涉及通信领域,尤其涉及一种信号发送、接收发送、装置和计算机存储介质。
背景技术
在长期演进(Long-Term Evolution,简称为LTE)中,有很多周期的参考信号,比如同步信号,小区参考信号,信道测量参考信号,上行探测参考信号等,用户设备可根据高层信令配置的周期来接收或者发送这些周期参考信号。周期的参考信号配置简单,只需要基站用高层信令半静态配置,而不需要额外的动态信令通知。然而,周期的参考信号发送会给系统带来很大的开销。所以LTE中同时进入了一些非周期的参考信号,比如非周期的上行探测参考信号,基站可用高层信令(例如,无线资源控制信令)配置一个或者多个探测参考信号配置,其中配置参数包括发送带宽,时频位置,序列循环移位等参数,进而基站可根据需求来决定是否在物理层控制区域上触发上行探测参考信号的发送。这就是非周期的探测参考信号。
在5G新无线(new radio)中,由于用户设备的数据量需求增加,为了减少开销,尤其是探测参考信号的开销,引入非周期的参考信号是一种趋势。比如,非周期的信道探测参考信号。
另外,LTE是不需要波束参考信号的。这是由于LTE基站或者用户设备在发送参考信号时往往用的是一个很宽的射频波束来达到小区级覆盖。
图1-a是相关技术中发送参考信号时的射频波束的小区级覆盖图。
因为LTE用的载波频率基本上是6GHz以下,所以利用多天线阵子形 成的宽射频波束能够覆盖整个小区。而在5G中,不仅要支持6GHz以下的载波频段,还要支持6GHz以上的频段,例如60GHz。由于在高频段大尺度路径损耗非常大,这给无线通信带来了很大的挑战。但是由于在高频段中心频率高,波长短,基站可容纳的天线数量很多并且利用多个天线来形成很窄的波束来形成波束赋型增益。所以窄射频波束赋型几乎成了高频段增强小区覆盖的必不可少的技术。而到底给用户设备配置那个波束,就有可能需要基站发送波束参考信号以用于用户设备测量最佳的波束。图1-b是相关技术中不同的参考信号对应不同的波束方向示意图。
基站可触发或者周期的发送波束参考信号,其中不同的参考信号对应不同的波束方向。UE在测量波束参考信号后可反馈一个或者多个最佳波束序号给基站,这样基站在后续发送数据时可利用最佳波束来发送数据给特定的用户设备。
如向前面所说的,非周期的送波束参考信号的引入也会节省系统的导频开销。
此外,对于波束测量参考信号以及其他类似的参考信号,动态激活的方式也可能引入5G中。比如基站可利用物理层动态信令激活波束参考信号的发送,激活后基站将会按照高层信令配置而发送周期的或者多个波束参考信号。
图2-a是相关技术中下行参考信号的触发示意图。如果是下行参考信号的触发,基站在子帧n的物理层控制区域上触发某参考信号后,基站将会在子帧n+m上发送,此时假定子帧n+m是下行子帧。而如果是上行参考信号的触发,基站在子帧n的物理层控制区域上触发某参考信号后,用户设备将会在子帧n+m上发送,其中子帧n+m包含上行发送区域。
为了支持灵活的子帧配置,一般的,m的候选值可以是多个,比如0,1,2,3。基站在触发参考信号时会动态通知m具体的值。如果m=0,那 么触发参考信号的DCI和发送的参考信号就在一个子帧中。
UE是否需要将测量结果反馈,以及在哪个子帧中反馈测量结果可能也需要在动态信令中包含。一般的,基站可利用动态信令通知用户设备在测量参考信号后的k个子帧将测量结果反馈给基站。图2-b是相关技术中测量结果反馈示意图,如图2-b所示,基站在子帧n的物理层控制区域上触发某下行测量参考信号后,基站将会在子帧n+m上发送,同时基站在子帧n中触发了测量结果反馈的,这样用户设备会在子帧n+m+k上发送测量结果给基站。
为了支持灵活的子帧配置,一般的,k的候选值可以是多个,比如0,1,2,..7。比如如果k=0时是下行子帧,那么基站就不能配置k=0,因为此时用户设备不可能利用下行子帧来发送上行的数据。
这种动态的触发参考信号以及反馈给系统带来了很大的灵活性,同时也给系统带来了一定的困扰。如图2-a所示,基站在子帧n中触发了参考信号1在子帧n+3上发送,此时m=3,而基站又在子帧n+1中触发了参考信号2在子帧n+3上发送,此时m=2。这样,如果参考信号1和参考信号2资源位置重叠的话,会对用户设备的测量以及反馈带来困扰。
针对相关技术中存在的上述问题,目前尚未发现有效的解决方案。
发明内容
本发明实施例提供了一种信号发送、接收发送、装置和计算机存储介质,以至少解决了相关技术中在同一个时间单元发送或者接收参考信号或者测量结果反馈或者数据传输的冲突问题。
根据本发明的一个实施例,提供了一种信号发送的方法,包括:第一节点在时间单元n1里触发信号s1在时间单元n1+m1上发送或者接收,以及在时间单元n2上触发信号s2在时间单元n2+m2上发送或者接收,其中, 在信号s1和信号s2所在的资源位置有重叠时,按照用于标识接收信号优先级的优先级规则接收信号s1和信号s2或者按照用于标识发送信号优先级的优先级规则发送信号s1和信号s2,m1和m2分别为n1和n2的时间偏移量,其中,n1、m1、n2、m2均是非负整数。
根据本发明的一个实施例,提供了一种信号接收的方法,包括:第二节点在时间单元n1里接收用于触发将在时间单元n1+m1发送或接收信号s1的触发信息,并且在时间单元n2里接收用于触发将在时间单元n2+m2发送或接收信号s2的触发信息,其中,在信号s1和s2所在的资源位置有重叠时,按照用于标识接收信号优先级的优先级规则接收信号s1和信号s2或者按照用于标识发送信号优先级的优先级规则发送信号s1和信号s2,其中,n1、m1、n2、m2均是非负整数。
根据本发明的另一个实施例,提供了一种信号发送的装置,应用在第一节点,包括:触发模块,用于在时间单元n1里触发信号s1在时间单元n1+m1上发送或者接收,以及在时间单元n2上触发信号s2在时间单元n2+m2上发送或者接收;处理模块,用于在信号s1和信号s2所在的资源位置有重叠时,按照用于标识接收信号优先级的优先级规则接收信号s1和信号s2或者按照用于标识发送信号优先级的优先级规则发送信号s1和信号s2,m1和m2分别为n1和n2的时间偏移量,其中,n1、m1、n2、m2均是非负整数。
根据本发明的另一个实施例,提供了一种信号接收的装置,应用在第二节点,包括:接收模块,配置为在时间单元n1里接收用于触发将在时间单元n1+m1发送或接收信号s1的触发信息,并且在时间单元n2里接收用于触发将在时间单元n2+m2发送或接收信号s2的触发信息;处理模块,配置为在信号s1和s2所在的资源位置有重叠时,按照用于标识接收信号优先级的优先级规则接收信号s1和信号s2;或者,按照用于标识发送信 号优先级的优先级规则发送信号s1和信号s2,其中,n1、m1、n2、m2均是非负整数。
根据本发明的又一个实施例,还提供了一种计算机存储介质。该存储介质设置为存储计算机可执行代码;所述计算机可执行代码被执行后,能够实现前述的信号发送方法或信号接收方法。
在本发明实施例中,第一节点在时间单元n1里触发信号s1在时间单元n1+m1上发送或者接收,以及在时间单元n2上触发信号s2在时间单元n2+m2上发送或者接收,其中,在信号s1和信号s2所在的资源位置有重叠时,按照用于标识接收信号优先级的优先级规则接收信号s1和信号s2或者按照用于标识发送信号优先级的优先级规则发送信号s1和信号s2,m1和m2分别为n1和n2的时间偏移量,通过按照优先级排序或然后进行发送或接收的方案,解决了相关技术中在同一个时间单元发送或者接收参考信号或者数据信号或者测量结果反馈的冲突问题。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1-a是相关技术中发送参考信号时的射频波束的小区级覆盖图,图1-b是相关技术中不同的参考信号对应不同的波束方向示意图;
图2-a是相关技术中下行参考信号的触发示意图,图2-b是相关技术中测量结果反馈示意图;
图3是本发明实施例的一种信号发送方法的移动终端的硬件结构框图;
图4是根据本发明实施例的一种信号发送的方法的流程图;
图5是本发明实施例的一种信号接收方法的移动终端的硬件结构框 图;
图6是根据本发明实施例的一种信号接收的方法的流程图;
图7是根据本发明实施例的一种信号发送的装置的结构框图;
图8是根据本发明实施例的另一种信号接收的装置的结构框图;
图9是本实施例的优先级排序示意图;
图10是本实施例的不用传输区域的复用示意图;
图11是实施例的信号s1在子帧n1+m1上的参考信号的测量反馈示意图;
图12是本实施例的基站在子帧#n1中用DCI动态触发上行数据的发送示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
本申请实施例1所提供的方法实施例可以在移动终端、基站、计算机终端或者类似的装置中执行。以运行在移动终端上为例,图3是本发明实施例的一种信号发送方法的移动终端的硬件结构框图。如图3所示,移动终端30可以包括一个或多个(图中仅示出一个)处理器302(处理器302可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)、用于存储数据的存储器304、以及用于通信功能的传输装置306。本领域普通技术人员可以理解,图3所示的结构仅为示意,其并不对上述电子装置的结构造成限定。例如,移动终端30还可包括比图3中所示更多 或者更少的组件,或者具有与图3所示不同的配置。
存储器304可配置为存储应用软件的软件程序以及模块,如本发明实施例中的信号发送方法对应的程序指令/模块,处理器302通过运行存储在存储器304内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器304可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器304可进一步包括相对于处理器302远程设置的存储器,这些远程存储器可以通过网络连接至移动终端30。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置306配置为经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端30的通信供应商提供的无线网络。在一个实例中,传输装置306包括一个网络适配器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置306可以为射频(Radio Frequency,简称为RF)模块,其用于通过无线方式与互联网进行通讯。
在本实施例中提供了一种运行于上述移动终端的信号发送的方法,图4是根据本发明实施例的一种信号发送的方法的流程图,如图4所示,该流程包括如下步骤:
步骤S402,第一节点在时间单元n1里触发信号s1在时间单元n1+m1上发送或者接收,以及在时间单元n2里触发信号s2在时间单元n2+m2上发送或者接收,其中,在信号s1和信号s2所在的资源位置有重叠时,按照用于标识接收信号优先级的优先级规则接收信号s1和信号s2;或者,按照用于标识发送信号优先级的优先级规则发送信号s1和信号s2,m1和m2分别为n1和n2的时间偏移量,其中,n1、m1、n2、m2均是非负整数。
通过上述步骤,第一节点在时间单元n1里触发信号s1在时间单元n1+m1上发送或者接收,以及在时间单元n2上触发信号s2在时间单元n2+m2上发送或者接收,其中,在信号s1和信号s2所在的资源位置有重叠时,按照用于标识接收信号优先级的优先级规则接收信号s1和信号s2或者按照用于标识发送信号优先级的优先级规则发送信号s1和信号s2,m1和m2分别为n1和n2的时间偏移量,通过按照优先级排序或然后进行发送或接收的方案,解决了相关技术中在同一个时间单元发送或者接收参考信号或者数据信号或者测量结果反馈的冲突问题。
在步骤S42中,在发送信号s1和信号s2时,若发送信号s1和信号s2使用的通信资源出现了重叠,则按照用于优先级规则发送信号s1和信号s2.所述通信资源可包括时域资源和频域资源,例如,信号s1和信号s2的时域资源位置部分或全部重叠,又例如,信号s1和信号s2的频域资源位置部分或全部重叠。在另一些实施例中,所述通信资源还可包括:码域内序列码等其他资源,不局限于时频域资源。
本实施例中的时间单元可以是时隙、子帧、或其他可调度的最小时间单位等。
本实施例以两个信号(信号s1和信号s2)为例进行说明,本领域的技术人员应当理解,在多于两个信号的场景中,在发送或接收的多个信号的资源位置重叠时,也能通过本实施例的通过优先级排序然后发送或接收进行解决。
可选的,信号s1和信号s2的资源位置是否重叠可以通过判断来确定,也可以通过匹配和比较来确定,资源位置可以是时域、频域、码域、空域等资源上的位置。
可选地,上述步骤的执行主体第一节点可以为发送端,如基站、终端、系统等,但不限于此。
可选的,信号s1和信号s2分别包括以下一个或多个信号:上行调度的数据,信道测量参考信号,波束参考信号,探测参考信号,预编码测量参考信号,信道测量参考信号对应的测量结果反馈,波束参考信号对应的测量结果反馈,预编码测量参考信号对应的测量结果反馈,下行调度对应的确认/非确认ACK(Acknowledgement)/NACK(Negative Acknowledgement)反馈。
可选的,优先级规则包括:按照信号s1和信号s2对应的n1和n2的大小进行排序。
在具体进行优先级排序时,包括多种方式,下面进行具体说明:
可选的,在信号s1和信号s2包括以下一个或多个信号时,按照信号s1和s2的类型、或、密度、或、带宽长度,或、端口数多少进行优先级排序:信道测量参考信号,波束参考信号,探测参考信号,预编码测量参考信号。
可选的,先按照信号s1和信号s2的类型进行优先级排序;再按照信号s1和信号s2的以下之一进行优先级排序:密度,带宽长度,端口数多少,对应的n1和n2的大小。
可选的,先按照信号s1和信号s2的以下之一进行优先级排序:信号s1及信号s2的密度,带宽长度,端口数多少,对应的n1和n2的大小;再按照信号s1和信号s2的类型进行优先级排序。
可选的,不同终端和/或不同传输结构对应的优先级排序方法不同,其中,不同的传输结构区域对应的子载波间隔不同。
可选的,在信号s1和信号s2包括以下一个或多个信号时,按照信号s1和信号s2对应的参考信号的发送时间,或者,类型,或者,密度,或者,带宽长度,或者,端口数多少进行优先级排序:信道测量参考信号对应的测量结果反馈,波束参考信号对应的测量结果反馈,预编码测量参考 信号对应的测量结果反馈。
可选的,在信号s1和s2包括以下一个或多个信号时,按照信号s1和信号s2包含的内容进行优先级排序:上行调度的数据,信道测量参考信号对应的测量结果反馈,波束参考信号对应的测量结果反馈,预编码测量参考信号对应的测量结果反馈,下行调度对应的ACK/NACK反馈。
可选的,在信号s1和信号s2包括以下一个或多个信号时,同时接收s1和s2的全部或者部分信息:上行调度的数据,信道测量参考信号对应的测量结果反馈,波束参考信号对应的测量结果反馈,预编码测量参考信号对应的测量结果反馈,下行调度对应的ACK/NACK反馈。
本实施例中的m1和m2的候选值可以是通过高层信令配置的。对于不同终端或用户设备,m1和m2的候选值不同,对于不同的传输结构区域,m1和m2的候选值不同,其中,不同的传输结构区域对应的子载波间隔不同。所述高层信令可包括:任意的非物理层信令,例如,可包括RRC层信令;媒体访问控制(MAC)信令,或者,接入层(NAS)层信令等。
本申请实施例1所提供的方法实施例可以在移动终端、基站、计算机终端或者类似的装置中执行。以运行在移动终端上为例,图5是本发明实施例的一种信号接收方法的移动终端的硬件结构框图。如图5所示,移动终端50可以包括一个或多个(图中仅示出一个)处理器502(处理器502可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)、用于存储数据的存储器504、以及用于通信功能的传输装置506。本领域普通技术人员可以理解,图5所示的结构仅为示意,其并不对上述电子装置的结构造成限定。例如,移动终端50还可包括比图5中所示更多或者更少的组件,或者具有与图5所示不同的配置。
存储器504可配置为存储应用软件的软件程序以及模块,如本发明实施例中的信号接收对应的程序指令/模块,处理器502通过运行存储在存储 器504内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器504可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器504可进一步包括相对于处理器502远程设置的存储器,这些远程存储器可以通过网络连接至移动终端50。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置506配置为经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端50的通信供应商提供的无线网络。在一个实例中,传输装置506包括一个网络适配器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置506可以为射频(Radio Frequency,简称为RF)模块,其用于通过无线方式与互联网进行通讯。
在本实施例中提供了一种运行于上述移动终端的信号接收的方法,图6是根据本发明实施例的一种信号接收的方法的流程图,如图6所示,该流程包括如下步骤:
步骤S602,第二节点在时间单元n1里接收用于触发将在时间单元n1+m1发送或接收信号s1的触发信息,并且在时间单元n2里接收用于触发将在时间单元n2+m2发送或接收信号s2的触发信息,其中,在信号s1和信号s2所在的资源位置有重叠时,按照用于标识接收信号优先级的优先级规则接收信号s1和信号s2或者按照用于标识发送信号优先级的优先级规则发送信号s1和信号s2,其中,n1、m1、n2、m2均是非负整数。
在步骤S602中,在接收信号s1和信号s2的时候,若信号s1和信号s2使用的通信资源出现了重叠,则按照用于优先级规则接收信号s1和信号s2.所述通信资源可包括时域资源和频域资源,例如,信号s1和信号s2的时域资源位置部分或全部重叠,又例如,信号s1和信号s2的频域资源 位置部分或全部重叠。在另一些实施例中,所述通信资源还可包括:码域内序列码等其他资源,不局限于时频域资源。
可选地,上述步骤的执行主体第二节点可以为接收端,如基站、终端、系统等,但不限于此。
可选的,本实施例的信号s1和信号s2包括以下一个或多个信号:上行调度的数据,信道测量参考信号,波束参考信号,探测参考信号,预编码测量参考信号,信道测量参考信号对应的测量结果反馈,波束参考信号对应的测量结果反馈,预编码测量参考信号对应的测量结果反馈,下行调度对应的确认/非确认ACK/NACK反馈。
可选的,优先级规则包括:按照信号s1和s2对应的n1和n2的大小进行排序。
本实施例中的优先级排序方式包括多种,下面进行举例说明:
可选的,在信号s1和信号s2包括以下一个或多个信号时,按照信号s1和s2的类型、或者、密度、或者、带宽长度、或者、端口数多少进行优先级排序:信道测量参考信号,波束参考信号,探测参考信号,预编码测量参考信号。
可选的,先按照信号s1和信s2的类型进行优先级排序;再按照信号s1和信号s2的密度,或者,带宽长度,或者、端口数多少,或者、对应的n1和n2的大小进行优先级排序。
可选的,先按照信号s1和信s2的密度,或者,带宽长度,或者,端口数多少,或者,对应的n1和n2的大小进行优先级排序;再按照信号s1和s2的类型进行优先级排序。
可选的,不同终端和/或不同传输结构对应的优先级排序方法不同,其中,不同的传输结构区域对应的子载波间隔不同。
可选的,在信号s1和信号s2包括以下一个或多个信号时,按照信号 s1和s2对应的参考信号的接收时间,或者,类型,或者,密度,或者,带宽长度,或者端口数多少进行优先级排序:信道测量参考信号对应的测量结果反馈,波束参考信号对应的测量结果反馈,预编码测量参考信号对应的测量结果反馈。
可选的,在信号s1和信号s2包括以下一个或多个信号时,按照信号s1和信号s2包含的内容进行优先级排序:上行调度的数据,信道测量参考信号对应的测量结果反馈,波束参考信号对应的测量结果反馈,预编码测量参考信号对应的测量结果反馈,下行调度对应的ACK/NACK反馈。
可选的,在信号s1和s2包括以下一个或多个信号时,同时接收s1和s2的全部或者部分信息:上行调度的数据,信道测量参考信号对应的测量结果反馈,波束参考信号对应的测量结果反馈,预编码测量参考信号对应的测量结果反馈,下行调度对应的ACK/NACK反馈。
本实施例的m1和m2的候选值是通过高层信令配置的,对于不同终端,m1和m2的候选值不同。对于不同的传输结构区域,m1和m2的候选值不同,其中,不同的传输结构区域对应的子载波间隔不同。
可选的,可以根据指示的优先级规则在重叠的资源位置上接收或者发送信号s1和信号s2。
可选的,用户设备不希望在重叠的资源位置上接收或者发送s1和s2。此时,就默认依赖基站的调度来避免信号s1和s2的资源位置重叠,基站在时间单元n1、n2在资源位置上重叠时,不触发对应的信号s1、s2进行发送。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软 件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例的方法。
实施例2
在本实施例中还提供了一种处理信号的装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图7是根据本发明实施例的一种信号发送的装置的结构框图,如图7所示,该装置包括:
触发模块70,配置为在时间单元n1里触发信号s1在时间单元n1+m1上发送或者接收,以及在时间单元n2上触发信号s2在时间单元n2+m2上发送或者接收;该触发模块70具体可以是设备中的信源、触发器等;
处理模块72,配置为在信号s1和信号s2所在的资源位置有重叠时,按照用于标识接收信号优先级的优先级规则接收信号s1和信号s2或者按照用于标识发送信号优先级的优先级规则发送信号s1和信号s2,m1和m2分别为n1和n2的时间偏移量,其中,n1、m1、n2、m2均是非负整数;该处理模块72具体可以是设备中的处理器等。
所述接收模块70可对应于通信设备的具有数据收发功能的天线,
所述处理模块72,与所述接收模块连接,可对应于通信设备的处理器,所述处理器可包括:中央处理器、微处理器、数字信号处理器、应用处理器、可编程阵列或专用集成电路等。
本实施例中的信号s1和信号s2分别包括以下一个或多个信号:上行 调度的数据,信道测量参考信号,波束参考信号,探测参考信号,预编码测量参考信号,信道测量参考信号对应的测量结果反馈,波束参考信号对应的测量结果反馈,预编码测量参考信号对应的测量结果反馈,下行调度对应的确认/非确认ACK/NACK反馈。
可选的,按照信号s1和信号s2对应的n1和n2的大小进行排序确定为优先级规则。
图8是根据本发明实施例的一种信号接收的装置的结构框图,如图8所示,该装置包括:
接收模块80,配置为在时间单元n1里接收用于触发将在时间单元n1+m1发送或接收信号s1的触发信息,并且在时间单元n2里接收用于触发将在时间单元n2+m2发送或接收信号s2的触发信息,该接收模块80可以是设备中的接收机、天线等;
处理模块82,配置为在信号s1和s2所在的资源位置有重叠时,按照用于标识接收信号优先级的优先级规则接收信号s1和信号s2或者按照用于标识发送信号优先级的优先级规则发送信号s1和信号s2,该处理模块82可以是设备中的处理器等,其中,n1、m1、n2、m2均是非负整数。
所述接收模块80可对应于通信设备的接收天线。
所述处理模块82可对应于通信设备的处理器,所述处理器可包括:中央处理器、微处理器、数字信号处理器、应用处理器、可编程阵列或专用集成电路等。
本实施例中的信号s1和信号s2分别包括以下一个或多个信号:上行调度的数据,信道测量参考信号,波束参考信号,探测参考信号,预编码测量参考信号,信道测量参考信号对应的测量结果反馈,波束参考信号对应的测量结果反馈,预编码测量参考信号对应的测量结果反馈,下行调度对应的确认/非确认ACK/NACK反馈。
可选的,按照信号s1和信号s2对应的n1和n2的大小进行排序确定为优先级规则。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例3
本实施例是根据本发明的可选实施例,用于结合具体的实例对本申请进行详细说明:
本实施例提出了一种参考信号触发及其反馈优先级排序的方法,包括:
发送端在时间单元n1里触发信号s1在时间单元n1+m1上发送或者接收,并
且发送端在时间单元n2上触发信号s2在时间单元n2+m2上发送或者接收。如果信号s1和s2所在的资源位置有重叠时,按照一定的优先级规则接收或者发送信号s1和s2。
信号s1和s2如果是参考信号,包括信道测量参考信号,波束参考信号,上行探测参考信号,预编码的信道测量参考信号等。
上述一个时间单元可以是1个子帧,,或者一个时隙,或者一个最小调度时域单元。且信号s1,信号s2对应的发送的实际时间单元可以不一样。比如信号s1在标准时隙上发送,而信号s2在一个短时隙(mini slot)上发送;所述短时隙的时长短于所述短时隙的时长。例如,所述标准时隙包括的传输符号(例如,OMFD)的个数多于短时隙包括的传输符号的个数。通常,所述短时隙最少包括一个传输符号。下行发送端指的是基站,而接收端指的就是用户设备终端,而上行发送端指的是用户设备,而接收端指的是基站。不管上行还是下行,都是由基站来做触发的。对于这些参 考信号,基站可利用高层信令配置参考信号在一个子帧中的资源位置,即时频位置,比如在一个子帧中的哪些时域正交频分复用(Orthogonal Frequency Division Multiplexing,简称为OFDM)符号上,还有带宽长度,比如参考符号是系统带宽的几分之几,还有参考符号的密度,比如每个物理资源块(Physical Resource Block,简称为PRB)都发送,还是每两个PRB发送一次等。再高层信令配置好这些参数后,基站可利用下行控制信息(Downlink Control Information,DCI)比特(bit)来触发是否发送参考信号,以及在后面哪个子帧中发送。当然,基站可通过RRC信令配置给用户设备多个参考信号配置参数,然后基站可通过DCI的bit信息触发其中一个。
也就是说,基站在DCI中包含的信息有是否触发某参考信号以及参考信号在后面哪个子帧、时隙或短时隙中发送。如图2-a所示,在子帧n中,基站用DCI触发了下行测量参考信号,然后同时DCI中包含了一些信息位来告诉用户设备m的值,在子帧n+m时,基站会发送该测量参考信号。该测量参考信号的时频位置,带宽,密度等参数需要根据高层信令指示来得知。
图9是本实施例的优先级排序示意图,如图9所示,发送时间单元n1就是子帧n,而发送单元n2就是子帧n+1,m1=3,m2=2。基站在子帧n1上触发了测量参考信号s1,而在子帧n2上触发了测量参考信号s2。s1和s2可以是同一类型的测量参考信号,比如都是下行信道测量参考信号(Channel State Information-Reference Signals,CSI-RS),高层信令配置给s1和s2的时频位置,带宽,密度等参数可以相同,也可以不同。如果s1和s2的时频位置有重叠,那么根据优先级规则,优先级低的参考信号可以被舍弃。也就是说,此时n1+m1=n2+m2,并且基站只发送优先级最高的参考信号,而舍弃优先级低的参考信号。
当然,s1和s2是同一类型的参考信号,但是高层信令配置可以不同。比如对于CSI-RS,高层信令配置了多种配置,在子帧n1中,DCI触发了一种配置参数,而在子帧n2中,DCI触发了另外一种配置参数,但是如果两种配置参数所指示的参考信号时频位置重叠的话,也需要舍弃优先级低的参考信号。
如果s1和s2是不同类型的参考信号,比如s1是波束参考信号,而s2是信道测量参考信号,如果高层配置的两种参考信号时频位置有重叠,还是需要按照优先级顺序只发送优先级高的参考信号而舍弃优先级低的参考信号。
需要说明的是,本实施例不止适用于两个参考信号发送冲突。
预定义的参考信号排序方法可以是按照DCI触发所在的子帧先后来排序,比如DCI后触发的参考信号优先级高,如图9所示,由于s2对应的DCI触发在子帧n2,而子帧n2靠后,所以s2优先级高。所以,基站在子帧n2+m2或者n1+m1时刻只发送测量参考信号s2。按照这种方法的排序可以不考虑参考信号的类型,完全按照DCI所在的子帧、时隙或短时隙等时间单元时间顺序来排列优先级。
可选择的,用户设备不希望基站触发的参考信号在同一个时间单元上发送或者接收。比如,对于上述的下行信道测量参考信号以及波束参考信号,如果s1和s2的资源位置有重叠时,用户设备不希望n2+m2=n1+m1。
参考信号的资源位置有重叠,指的是在同一个发送时间单元,参考信号所在的时域符号以及频域资源位置全部重叠或者部分重叠,如图9。
可选择的,预定义的参考信号排序方法可以是按照s1和s2的密度,或者带宽长度,或者端口数多少进行优先级排序。比如s1信号如果带宽长度大于s2,那么s1的优先级就高,如果它们的时频位置有重叠时,实际s2的触发就失效了。也就是说实际在子帧n2+m2时刻没有s2信号发送。
对于多种类型的测量参考信号触发,以及每种测量参考信号多次触发重叠的优先级排序方法,可选择的,如果s1和s2是不同类型的参考信号,可先按照信号s1和s2的类型进行优先级排序,再按照n1和n2的先后进行优先级排序。比如波束参考信号的优先级高于信道测量参考信号的优先级,如果s1是波束测量参考信号,而s2是CSI-RS,那么即使n2靠后,s1的优先级仍然高于s2。可选择的,如果s1和s2是不同类型的参考信号,先按照信号s1和s2的密度,或者带宽长度,或者端口数多少,或者对应的n1和n2的先后进行优先级排序。再按照信号s1和s2的类型进行优先级排序。
对于优先级排序的规则,可以每个用户设备不同,这时需要基站通过高层信令来配置给每个用户设备。比如用户设备1是按照DCI触发时刻先后来排序的,且不分参考信号种类。而用户设备2是波束参考信号优先级高,而CSI-RS优先级低,且先按照参考信号种类排序再按照DCI触发时刻先后顺序排序。
对于不同的传输区域,图10是本实施例的不用传输区域的复用示意图,比如图10,两个传输区域频域复用在系统带宽上,传输区域1和传输区域2的子载波间隔不同,所以每个时域OFDM符号长度也不同,而导致子帧长度不同。这样基站可通过高层信令来单独配置两个传输区域的优先级规则。
m1,m2的候选值是通过高层信令配置的,且对于不同用户设备m的候选值可以不同。m表示在DCI触发时刻m个子帧后发送测量参考信号。例如对于用户设备1,m的候选值是0,1,2,3.而对于用户设备2,m的值是0,1。由于不同用户设备处理能力不同,所需要的处理时延不同,所以m的候选值不同可以带来灵活性。另外,对于时延要求高的用户设备,m的候选值可以配置小些,而对时延要求低的用户设备,m的候选值可以 多配置一些以增加灵活性。当然即使对于同一个用户设备,对于不同的传输区域,基站的通过高层信令单独配置不同的m候选值。值得注意的是,灵活的m候选值得这种方法可以不受限于参考信号排序方法。也就是说,即使系统不对这些参考信号进行排序,灵活的m候选值方案也可以给系统带来好处。
信号s1和信号s2包括信道测量参考信号测量结果的反馈,波束参考信号测量结果的反馈,预编码信道测量参考信号测量结果的反馈等。这些测量结果的反馈可以在上行数据信道上传输,也可以在上行控制信道上传输,所对应的资源位置重叠或者冲突分别就是上行数据信道的冲突和上行控制信道的冲突。
基站在子帧n时刻触发了测量参考信号后,并且通知用户设备在子帧n+m时刻会发送测量参考信号,那么在子帧n+m+k时刻用户设备会将测量结果反馈给基站。而k的值一般也是基站在子帧n时刻通过DCI告诉用户设备的。所以对于反馈信号s,基站也需要在DCI中触发,而信号s发送的时刻为n+m+k。
k的候选值可以是高层信令配置的,类似于m,不同用户设备k的候选值可以不同,例如基站通过高层信令通知用户设备1k的候选值是0,1…7,而用户设备2的候选值是0,1,…3。当然即使对于同一个用户设备,不同传输区域可以用高层信令单独配置不同的k的候选值。
图11是实施例的信号s1在子帧n1+m1上的参考信号的测量反馈示意图,如图11所示,信号s1表示对于在子帧n1+m1上参考信号的测量反馈,即基站在子帧n1的控制区域上触发反馈信号s1,而s1是对在子帧n1+m1上的参考信号的测量结果的反馈,由用户设备在子帧n1+m1+k1发送,基站接收。而s2表示用户设备对于在子帧n2+m2上发送的参考信号的测量反馈。即基站在子帧n2的控制区域上触发反馈信号s2,而s2是对在子帧 n2+m2上的参考信号的测量结果的反馈,由用户设备在子帧n2+m2+k2发送,基站接收。如果n1+m1+k1=n2+m2+k2,且反馈的资源有重叠时,可能需要合并或者优先级排序。
这些测量结果的反馈可能利用上行数据信道反馈,也可能利用上行控制信道进行反馈。资源重叠可能仅仅是时间单元重叠,而频域位置不重叠也行,比如对于上行数据信道的重叠可以指的是仅时间单元相同。也就是说,资源位置的重叠或者冲突可能是时域,频域,码域中的一个或者多个有重叠。
如果用户设备是在物理层数据信道上反馈测量结果,那么即使s1和s2的时频资源在一个子帧,用户设备可同时将s1和s2都反馈给基站。此时基站会在同一个子帧收到s1和s2。当然,也可以按照优先级顺序只反馈优先级高的测量结果。
如果用户设备是在物理层上行控制信道反馈测量结果,而s1和s2所用的控制信道资源位置重叠或者完全冲突,那么需要按照优先级顺序只反馈优先级高的测量结果。
优先级的顺序同样可以按照所触发的DCI所在的子帧、时隙、短时隙的时间顺序排序。比如图11所示,信号s2的优先级高于s1因为n2相对于n1靠后。
当然,也可也按照s1和s2所对应的参考信号发送的子帧顺序来决定优先级。也就是说根据子帧n1+m1和n2+m2的顺序来决定优先级。比如靠后的RS对应的反馈信号优先级高。
可选择的,类似于参考信号的优先级排序,测量结果反馈信号的优先级也可以按照对应的参考信号的类型,密度,带宽长度,端口数多少等决定优先级顺序。比如,对于上行信道控制的反馈,如果波束参考信号对应测量结果的发送资源与信道测量参考信号测量结果的资源有冲突,那么 可以定义波束测量参考信号的测量结果优先级高。那么用户设备在发送时就会舍弃优先级低的信道测量结果的反馈。
类似的,如果信号s1和s2是上行数据信道,那么用户设备可以根据n1和n2的先后顺序来判断优先级。用户设备可在相应的子帧只发送优先级高的上行数据。
对于上行数据的发送,可选择的,用户设备不希望接收到多次触发,而这多次触发的是同一个上行子帧的上行数据发送。类似的,对于测量结果的反馈,可选择的,用户设备不希望接收到多次触发,而这多次触发的是同一个上行子帧的测量结果反馈。尤其是对于同一种参考信号的测量结果反馈。比如,对于信道测量结果反馈,用户设备不希望接收到在同一个上行子帧反馈的多次触发(这多次触发的DCI可以在不同子帧),也即是说,用户设备不希望n1+m1=n2+m2。类似的,对于参考信号的发送或者接收,用户设备不希望接收到多次触发,而这多次触发的是在同一个子帧上且资源位置有重叠的参考信号的发送或者接收。此时,也就不需要优先级排序,可以依赖基站的实现来避免s1和s2的资源位置冲突。
如果信号s1和s2包括以下一个或多个信号时,按照信号s1和s2包含的内容进行优先级排序:上行调度的数据,信道测量参考信号对应的测量结果反馈,波束参考信号对应的测量结果反馈,预编码测量参考信号对应的测量结果反馈,下行调度对应的ACK/NACK反馈。比如,上行数据的优先级可以根据包含的内容来区分。比如,上行数据信号s1包含了CSI反馈,而s2没有包含,那么可以不考虑n1和n2的先后,可以判断s1的优先级高。也就是说包含CSI反馈的上行数据发送优先级高。
如果信号s1和s2包括以下一个或多个信号时,同时接收s1和s2的全部或
者部分信息:上行调度的数据,信道测量参考信号对应的测量结果反 馈,波束参考信号对应的测量结果反馈,预编码测量参考信号对应的测量结果反馈,下行调度对应的ACK/NACK反馈。例如,在上行数据信道上发送时,即使n1+m1=n2+m2,用户设备也可同时发送这些信号。
可选地,下面以具体实施例具体说明本本实施例的方法:
上行数据的触发调度。
图12是本实施例的基站在子帧#n1中用DCI动态触发上行数据的发送示意图,如图12所示,基站在子帧#n1中用DCI动态触发上行数据的发送,用户设备在子帧#n1中检测到该DCI后会在子帧#n1+m1发送上行数据s1。具体m1的值可在DCI中检测得到。而同时,用户设备又在子帧#n2的DCI检测到上行数据s2的调度,且发送数据的时刻也是#n1+m1,即n1+m1=n2+m2。即s1和s2的资源位置有重叠。由于一个用户设备可能不支持在同一个时刻发送两次独立调度的上行数据,所以只要时域单元重叠就满足本发明所说的资源位置重叠。
根据本发明的优先级排序方法,可以根据n1和n2的大小进行排序,即DCI所在的时域单元靠后的上行数据发送优先级高。所以用户设备在子帧#n1+m1时刻只会发送上行数据s2。
可选的,可以根据s1和s2所包含的内容来判断优先级。比如,如果基站在子帧#n1时刻触发的上行数据时,同时触发了参考信号测量结果的反馈,并且调度用户设备在子帧#n1+m1时刻发送,而后来在子帧#n2中调度的上行数据时没有触发测量结果上报,那么s1的优先级高于s2。
可选择的,基站可同时接收s1和s2的全部或者部分信息。如图12所示,如果基站在子帧#n1和子帧#n2上调度的上行数据中都包含了某参考信号的测量结果反馈。那么此时可先根据内容进行优先级排序,即子帧#n1和子帧#n2上触发的测量结果反馈的优先级高于数据发送,其次再根据n1,n2的大小进行排序,即子帧#n2上触发调度的上行数据内容优先级高于子 帧#n1上触发调度的上行数据内容,所以最终,用户设备可在子帧#n2的上行数据区域发送子帧#n1和子帧#n2上触发的测量结果的反馈和在子帧#n2上触发的上行数据。所以在优先级排序上,可以先根据信号包含的内容进行排序,例如是否包含信道测量结果反馈,然后再根据DCI触发所在的子帧先后来排序。
可选择的,用户设备不希望收到多个DCI触发的在同一个子帧的上行数据调度。
实施例4
本发明的实施例还提供了一种计算机存储介质。所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于前述一个或多个技术方案提供的信号发送方法,或执行一个或多个技术方案提供的信号接收方法。
所述计算机存储介质可为各种类型的存储介质,可为随机存储接孩子、只读存储介质、闪存、移动硬盘或光盘等。所述计算机存储介质可为非瞬间存储介质或非易失性存储介质。
可选地,在本实施例中,上述计算机存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,在时间单元n1里触发信号s1在时间单元n1+m1上发送或者接收,以及在时间单元n2上触发信号s2在时间单元n2+m2上发送或者接收,其中,在信号s1和信号s2所在的资源位置有重叠时,按照用于标识接收信号优先级的优先级规则接收信号s1和信号s2或者按照用于标识发送信号优先级的优先级规则发送信号s1和信号s2,m1和m2分别为n1和n2的时间偏移量。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random  Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码等计算机可执行代码,实现在时间单元n1里触发信号s1在时间单元n1+m1上发送或者接收,以及在时间单元n2上触发信号s2在时间单元n2+m2上发送或者接收,其中,在信号s1和信号s2所在的资源位置有重叠时,按照用于标识接收信号优先级的优先级规则接收信号s1和信号s2或者按照用于标识发送信号优先级的优先级规则发送信号s1和信号s2,m1和m2分别为n1和n2的时间偏移量。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
本发明实施例中在收发多个信号时,若发现出现了不同信号使用的通信资源重叠,则按照优先级规则收发对应的信号,从而解决了现有技术中需要收发多个参考信号导致的冲突问题,从而具有积极的工业效果,并且 可以通过收发节点的信息收发简便的实现,具有实现简便的特点。

Claims (27)

  1. 一种信号发送的方法,包括:
    第一节点在时间单元n1里触发信号s1在时间单元n1+m1上发送或者接收,以及在时间单元n2里触发信号s2在时间单元n2+m2上发送或者接收,其中,在信号s1和信号s2所在的资源位置有重叠时,按照用于标识接收信号优先级的优先级规则接收信号s1和信号s2;或者,按照用于标识发送信号优先级的优先级规则发送信号s1和信号s2,m1和m2分别为n1和n2的时间偏移量,其中,n1、m1、n2、m2均是非负整数。
  2. 根据权利要求1的方法,其中,所述信号s1和所述信号s2分别包括以下一个或多个信号:
    上行调度的数据;
    信道测量参考信号;
    波束参考信号,探测参考信号;
    预编码测量参考信号;
    信道测量参考信号对应的测量结果反馈;
    波束参考信号对应的测量结果反馈;
    预编码测量参考信号对应的测量结果反馈;
    下行调度对应的确认/非确认ACK/NACK反馈。
  3. 根据权利要求1的方法,其中,所述优先级规则包括:按照所述信号s1和所述信号s2对应的n1和n2的大小进行排序。
  4. 根据权利要求2的方法,其中,在所述信号s1和所述信号s2包括以信道测量参考信号,波束参考信号,探测参考信号及预编码测量参考信号中的一个或多个时,按照所述信号s1和所信号s2的类型、密度、带宽长度及端口数的至少其中之一进行优先级排序。
  5. 根据权利要求1的方法,其中,不同终端和/或不同传输结构对应的 优先级排序方法不同,其中,不同的传输结构区域对应的子载波间隔不同。
  6. 根据权利要求1或2的方法,其中,在所述信号s1和所述信号s2包括信道测量参考信号对应的测量结果反馈、波束参考信号对应的测量结果反馈及预编码测量参考信号对应的测量结果反馈中的一个或多个时,按照信号s1和信号s2对应的参考信号的发送时间、类型、密度、带宽长度、端口数的至少其中之一进行优先级排序。
  7. 根据权利要求1或2的方法,其中,在信号s1和s2包括上行调度的数据、信道测量参考信号对应的测量结果反馈、波束参考信号对应的测量结果反馈、预编码测量参考信号对应的测量结果反馈及下行调度对应的ACK/NACK反馈中的一个或多个时,按照信号s1和信号s2包含的内容进行优先级排序。
  8. 根据权利要求1或2的方法,其中,在所述信号s1和所述信号s2包括上行调度的数据、信道测量参考信号对应的测量结果反馈、波束参考信号对应的测量结果反馈、预编码测量参考信号对应的测量结果反馈及下行调度对应的ACK/NACK反馈中的一个或多个时,同时接收所述信号s1和所述信号s2的全部或者部分信息。
  9. 根据权利要求1的方法,其中,m1和m2的候选值是通过高层信令配置的;
    其中,对于不同终端,m1和m2的候选值不同;
    和/或,
    对于不同的传输结构区域,m1和m2的候选值不同,其中,不同的传输结构区域对应的子载波间隔不同。
  10. 一种信号接收的方法,包括:
    第二节点在时间单元n1里接收用于触发将在时间单元n1+m1发送或接收信号s1的触发信息,并且在时间单元n2里接收用于触发将在时间单 元n2+m2发送或接收信号s2的触发信息,其中,在信号s1和s2所在的资源位置有重叠时,按照用于标识接收信号优先级的优先级规则接收信号s1和信号s2;或者,按照用于标识发送信号优先级的优先级规则发送信号s1和信号s2,其中,n1、m1、n2、m2均是非负整数。
  11. 根据权利要求10的方法,其中,所述信号s1和所述信号s2包括以下一个或多个信号:
    上行调度的数据;
    信道测量参考信号;
    波束参考信号;
    探测参考信号;
    预编码测量参考信号;
    信道测量参考信号对应的测量结果反馈;
    波束参考信号对应的测量结果反馈;
    预编码测量参考信号对应的测量结果反馈;
    下行调度对应的确认/非确认ACK/NACK反馈。
  12. 根据权利要求10的方法,其中,所述优先级规则包括:按照所述信号s1和信号s2对应的n1和n2的大小进行排序。
  13. 根据权利要求10的方法,其中,在所述信号s1和所述信号s2包括信道测量参考信号、波束参考信号、探测参考信号及预编码测量参考信号中的一个或多个时,按照所述信号s1和所述信号s2的类型、密度、带宽长度、端口数的至少其中之一进行优先级排序。
  14. 根据权利要求10的方法,其中,不同终端和/或不同传输结构对应的优先级排序方法不同,其中不同的传输结构区域对应的子载波间隔不同。
  15. 根据权利要求10或11的方法,其中,在信号s1和信号s2包括 信道测量参考信号对应的测量结果反馈、波束参考信号对应的测量结果反馈及预编码测量参考信号对应的测量结果反馈中的一个或多个时,按照所述信号s1和所述信号s2对应的参考信号的接收时间、类型、密度、带宽长度及端口数的至少其中之一进行优先级排序:。
  16. 根据权利要求10或11的方法,其中,在所述信号s1和所述信号s2包括上行调度的数据、信道测量参考信号对应的测量结果反馈、波束参考信号对应的测量结果反馈、预编码测量参考信号对应的测量结果反馈及下行调度对应的ACK/NACK反馈中的一个或多个时,按照所述信号s1和所述信号s2包含的内容进行优先级排序。
  17. 根据权利要求10或11的方法,其中,在所述信号s1和所述信号s2包括上行调度的数据、信道测量参考信号对应的测量结果反馈、波束参考信号对应的测量结果反馈及预编码测量参考信号对应的测量结果反馈,下行调度对应的ACK/NACK反馈中的一个或多个时,同时接收s1和s2的全部或者部分信息。
  18. 根据权利要求10的方法,其中,m1和m2的候选值是通过高层信令配置的;
    对于不同终端,m1和m2的候选值不同;
    和/或,
    对于不同的传输结构区域,m1和m2的候选值不同,其中,不同的传输结构区域对应的子载波间隔不同。
  19. 根据权利要求10的方法,其中,根据指示的优先级规则在重叠的资源位置上接收或者发送信号s1和信号s2。
  20. 根据权利要求10的方法,其中,第二节点接收资源位置不重叠的信号s1和信号s2。
  21. 一种信号发送的装置,应用在第一节点,包括:
    触发模块,配置为在时间单元n1里触发信号s1在时间单元n1+m1上发送或者接收,以及在时间单元n2上触发信号s2在时间单元n2+m2上发送或者接收;
    处理模块,配置为在信号s1和信号s2所在的资源位置有重叠时,按照用于标识接收信号优先级的优先级规则接收信号s1和信号s2;或者,按照用于标识发送信号优先级的优先级规则发送信号s1和信号s2,m1和m2分别为n1和n2的时间偏移量;
    其中,n1、m1、n2、m2均是非负整数。
  22. 根据权利要求21的装置,其中,
    所述信号s1和所述信号s2分别包括以下一个或多个信号:上行调度的数据,信道测量参考信号,波束参考信号,探测参考信号,预编码测量参考信号,信道测量参考信号对应的测量结果反馈,波束参考信号对应的测量结果反馈,预编码测量参考信号对应的测量结果反馈,下行调度对应的确认/非确认ACK/NACK反馈。
  23. 根据权利要求21的装置,其中,所述优先级规则包括:按照所述信号s1和信号s2对应的n1和n2的大小进行排序。
  24. 一种信号接收的装置,应用在第二节点,包括:
    接收模块,配置为在时间单元n1里接收用于触发将在时间单元n1+m1发送或接收信号s1的触发信息,并且在时间单元n2里接收用于触发将在时间单元n2+m2发送或接收信号s2的触发信息;
    处理模块,配置为在信号s1和信号s2所在的资源位置有重叠时,按照用于标识接收信号优先级的优先级规则接收信号s1和信号s2;或者,按照用于标识发送信号优先级的优先级规则发送信号s1和信号s2;
    其中,n1、m1、n2、m2均是非负整数。
  25. 根据权利要求24的装置,其中,所述信号s1和所述信号s2包 括以下一个或多个信号:上行调度的数据,信道测量参考信号,波束参考信号,探测参考信号,预编码测量参考信号,信道测量参考信号对应的测量结果反馈,波束参考信号对应的测量结果反馈,预编码测量参考信号对应的测量结果反馈,下行调度对应的确认/非确认ACK/NACK反馈。
  26. 根据权利要求24的装置,其中,所述优先级规则包括:按照所述信号s1和所述信号s2对应的n1和n2的大小进行排序。
  27. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1至9或10至20任一项所述的方法。
PCT/CN2017/110288 2016-09-29 2017-11-09 信号发送、接收发送、装置和计算机存储介质 WO2018059602A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610870468.5A CN107889230B (zh) 2016-09-29 2016-09-29 信号发送、接收发送及装置
CN201610870468.5 2016-09-29

Publications (1)

Publication Number Publication Date
WO2018059602A1 true WO2018059602A1 (zh) 2018-04-05

Family

ID=61763331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110288 WO2018059602A1 (zh) 2016-09-29 2017-11-09 信号发送、接收发送、装置和计算机存储介质

Country Status (2)

Country Link
CN (1) CN107889230B (zh)
WO (1) WO2018059602A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2935351T3 (es) * 2018-05-08 2023-03-06 Guangdong Oppo Mobile Telecommunications Corp Ltd Método y dispositivo de comunicación inalámbrica, chip y sistema
CN110635828B (zh) * 2018-06-22 2022-03-25 中兴通讯股份有限公司 一种信道质量信息处理方法及装置
CN110535583B (zh) * 2018-08-10 2022-05-10 中兴通讯股份有限公司 传输确定方法、装置、基站、终端及计算机可读存储介质
CN111385763A (zh) * 2018-12-29 2020-07-07 华为技术有限公司 一种信号发送、配置优先级的方法及设备
CN111757350B (zh) * 2019-03-29 2022-05-06 华为技术有限公司 信息传输方法及相关装置
CN111756508B (zh) * 2019-03-29 2023-04-18 华为技术有限公司 一种通信方法及装置
CN109996265B (zh) * 2019-04-02 2021-08-03 华为技术有限公司 波束测量方法、装置、系统、网络设备和终端设备
WO2022151442A1 (zh) * 2021-01-15 2022-07-21 华为技术有限公司 一种资源冲突处理方法及装置
WO2023184260A1 (zh) * 2022-03-30 2023-10-05 北京小米移动软件有限公司 一种信号传输方法/装置/设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101411236A (zh) * 2003-04-03 2009-04-15 摩托罗拉公司(在特拉华州注册的公司) 用于调度异步传输的方法与装置
CN102918896A (zh) * 2010-04-01 2013-02-06 松下电器产业株式会社 用于物理随机访问信道的发送功率控制
CN103220070A (zh) * 2012-01-20 2013-07-24 中兴通讯股份有限公司 一种上行信号的发送方法及用户设备
CN103546249A (zh) * 2012-07-09 2014-01-29 电信科学技术研究院 一种周期csi上报方法及终端
US20150358137A1 (en) * 2013-01-09 2015-12-10 Lg Electronics Inc. Method and apparatus for transmitting receipt confirmation reply in wireless communication system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101425839B (zh) * 2007-10-31 2011-09-14 电信科学技术研究院 一种确定数据发送偏移量的方法、系统和装置
US9848434B2 (en) * 2013-07-29 2017-12-19 Telefonaktiebolaget L M Ericsson (Publ) Methods and devices for contention based random access
CN103442426B (zh) * 2013-08-27 2016-04-06 京信通信系统(中国)有限公司 一种基站及基站间空口同步的方法和系统
CN112564875A (zh) * 2014-01-28 2021-03-26 索尼公司 在无线通信系统中进行无线通信的方法、基站和用户设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101411236A (zh) * 2003-04-03 2009-04-15 摩托罗拉公司(在特拉华州注册的公司) 用于调度异步传输的方法与装置
CN102918896A (zh) * 2010-04-01 2013-02-06 松下电器产业株式会社 用于物理随机访问信道的发送功率控制
CN103220070A (zh) * 2012-01-20 2013-07-24 中兴通讯股份有限公司 一种上行信号的发送方法及用户设备
CN103546249A (zh) * 2012-07-09 2014-01-29 电信科学技术研究院 一种周期csi上报方法及终端
US20150358137A1 (en) * 2013-01-09 2015-12-10 Lg Electronics Inc. Method and apparatus for transmitting receipt confirmation reply in wireless communication system

Also Published As

Publication number Publication date
CN107889230A (zh) 2018-04-06
CN107889230B (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
WO2018059602A1 (zh) 信号发送、接收发送、装置和计算机存储介质
US11025374B2 (en) Methods and apparatus for resource allocation and feedback in vehicle to vehicle communication
JP2023510448A (ja) 伝送方法、装置、第1の通信ノード、第2の通信ノード、および媒体
JP5987231B2 (ja) 拡張物理ダウンリンク制御チャネル(ePDCCH)における改善
US20180324786A1 (en) Resource determination for uplink control channel for wireless networks
JP2022538386A (ja) 複数のtrpを介したpdsch送信のためのジョイントharqフィードバックのシステムおよび方法
CN111771341A (zh) 用于高级无线通信系统中的基于资源的csi获取的方法和装置
US20180103468A1 (en) Tti bundling for urllc ul/dl transmissions
CN110800242B (zh) 多个无线电接入技术共存场景中的共享信道重映射
WO2013145787A1 (en) Devices for selecting a channel state information report
WO2018126913A1 (zh) 上行参考信号信息的指示方法及装置和存储介质
JP2015512571A (ja) Ltefddネットワークにおける半二重fdd動作のための方法
CN112514516B (zh) 通过集中式控制器促进多节点对话前监听功能
JP2019092210A (ja) チャネル推定拡張
US11510080B2 (en) Method and apparatus for triggering multi-beam reporting
US20160021642A1 (en) Method for applying physical resource block (prb) bundling in wireless communications system and apparatus therefor
CN110710175A (zh) 用于nr-mimo中的类型ii csi反馈的pmi反馈
US11496236B2 (en) Method and apparatus for link budget enhancements in communication systems
WO2020007312A1 (en) Methods and apparatus for ultra-reliable low latency communication (urllc) during measurement gap
US20230179354A1 (en) Receiving time overlapping downlink reference signals and channels
CN111373810A (zh) 用于无线电接入网络中的控制信令的资源选择
US20200404686A1 (en) Resource mapping based on bandwidth part
US20230292301A1 (en) Method and apparatus for event-based uplink transmit beam switch
CN115702554A (zh) 用于信道状态信息参考信号(csi-rs)资源的端口分组
US20230179339A1 (en) Flexible semi-static harq-ack codebook overhead

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855052

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17855052

Country of ref document: EP

Kind code of ref document: A1