WO2018059582A1 - 一种无线通信系统中实现用户面功能增强的方法和装置 - Google Patents

一种无线通信系统中实现用户面功能增强的方法和装置 Download PDF

Info

Publication number
WO2018059582A1
WO2018059582A1 PCT/CN2017/104831 CN2017104831W WO2018059582A1 WO 2018059582 A1 WO2018059582 A1 WO 2018059582A1 CN 2017104831 W CN2017104831 W CN 2017104831W WO 2018059582 A1 WO2018059582 A1 WO 2018059582A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
beam management
instruction
base station
user plane
Prior art date
Application number
PCT/CN2017/104831
Other languages
English (en)
French (fr)
Inventor
张冬英
李楠
黄河
高音
胡留军
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018059582A1 publication Critical patent/WO2018059582A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present disclosure relates to the field of wireless communication technologies, and in particular, to a method and apparatus for implementing user plane function enhancement in a wireless communication system.
  • the C-RAN Centralized, Cooperative, Cloud & Clean-Radio Access Network
  • the C-RAN Centralized, Cooperative, Cloud & Clean-Radio Access Network
  • BBU Base Band Unit
  • Radio Remote Unit Radio Remote Unit
  • Physical layer, layer 2 including sub-layers such as MAC (Medium Access Control), RLC (Radio Link Control), PDCP (Packet Data Convergence Protocol), and Layer 3
  • RRC Radio Resource Control
  • the pre-transmission interface between the BBU and the RRU uses CPRI (Common Public Radio Interface). Since the CPRI interface transmits IQ (Inphase and Quadrature) signals processed by physical layer coding and modulation, the CPRI interface delays transmission. And bandwidth has greater requirements. If the air interface rate increases to tens of Gbps in the future, the traffic demand of the CPRI interface will rise to the Tbps level, which puts tremendous pressure on the network deployment cost and deployment difficulty.
  • the functions of the BBU and the RRU need to be redefined, for example, the functional part of the user plane of the second layer is placed in the BBU and the part is placed in the RRU.
  • the BBU and RRU after the re-planning function are named CU (Centralized Unit) and DU (Distributed Unit Distribution Unit).
  • the distribution unit can also be referred to as a remote unit.
  • This architecture is also a popular architecture that may be adopted in future communication systems, as shown in Figure 1.
  • Future communication systems aiming at seamless wide-area coverage, large-capacity hotspots, low-power large-scale connections, and low-reliability and high-reliability will inevitably adopt high-band and large-bandwidth, and high-band due to its propagation characteristics.
  • the coverage is often small, so large-scale antenna array MM (massive MIMO) is often used to improve link gain and improve coverage.
  • Large-scale antenna arrays can greatly improve link performance by adopting beam forming technology, which naturally achieves the purpose of improving coverage and capacity, and is considered to be an effective way to improve the transmission rate of modern wireless communication systems.
  • the number of antenna elements of a large-scale antenna array can reach hundreds or even thousands.
  • the common channel and the dedicated channel may be covered by a beam (beam, referred to herein as beam), so the function of the user plane is proposed. With higher requirements, the current user-side functions are no longer sufficient for future communication systems.
  • a device for implementing user plane function enhancement in a wireless communication system where the device is disposed at a base station, including:
  • the first beam management module includes a parameter acquisition unit, a control unit, and First processing unit:
  • the parameter obtaining unit is configured to acquire a network parameter
  • the control unit is configured to send a control instruction to the first processing unit according to the acquired network parameter, and/or to send a beam management instruction to the terminal according to the acquired network parameter;
  • the first processing unit is configured to perform a corresponding beam operation according to the control instruction.
  • a device for implementing user plane function enhancement in a wireless communication system the device being disposed in a terminal, comprising a second beam management module, corresponding to a first beam management module disposed in the base station, where the second beam management module includes:
  • a receiving unit configured to receive a beam management instruction sent by the first beam management module
  • the second processing unit is configured to perform a corresponding operation according to the beam management instruction.
  • a base station comprising:
  • the first beam management module includes a parameter acquisition unit, a control unit, and a first processing unit:
  • the parameter obtaining unit is configured to acquire a network parameter
  • the control unit is configured to send a control instruction to the first processing unit according to the acquired network parameter, and/or to send a beam management instruction to the terminal according to the acquired network parameter;
  • the first processing unit is configured to perform a corresponding beam operation according to the control instruction.
  • a terminal including a second beam management module, is configured corresponding to a first beam management module, and the second beam management module includes:
  • a receiving unit configured to receive a beam management instruction sent by the first beam management module
  • the second processing unit is configured to perform a corresponding operation according to the beam management instruction.
  • a wireless communication system comprising:
  • the base station including the first beam management module, is configured to acquire network parameters, perform beam related operations according to the acquired network parameters, and/or send beam management instructions to the terminal according to the acquired network parameters;
  • the terminal including the second beam management module, is configured corresponding to the first beam management module, and is configured to perform a corresponding operation according to the beam management instruction sent by the first beam management module.
  • a method for implementing user plane function enhancement in a wireless communication system comprising:
  • a method for implementing user plane function enhancement in a wireless communication system comprising:
  • a corresponding operation is performed according to the beam management instruction.
  • a storage medium arranged to store program code for performing the method of any of the above.
  • the above solution realizes adding a beam management module in the user plane, so that the function of the user plane can satisfy the future communication.
  • the beam management module may include one or more sub-modules, and the sub-modules perform different functions, so that the beam management module can be set according to actual network conditions and application requirements, and has full-featured features.
  • the Beam management module proposed in the embodiment is located in the user plane, and does not limit the specific location on the user plane, and the layout is flexible.
  • FIG. 1 is a schematic diagram of a network architecture in a future communication system
  • FIG. 2 is a schematic structural diagram of an apparatus for implementing user plane function enhancement according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a base station and a terminal according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a submodule included in a first beam management module according to an embodiment of the present disclosure
  • FIG. 5 is a flowchart of a method for implementing user plane function enhancement in a wireless communication system according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of a centralized unit and a distribution unit in an application example of the present disclosure.
  • FIG. 7 is a schematic diagram of a bearer partitioning architecture of an LTE dual connectivity.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the apparatus for implementing user plane function enhancement is disposed at a base station, including a first beam management module, and the first beam management module.
  • the method includes: a parameter acquisition unit, a control unit, and a first processing unit:
  • the parameter obtaining unit is configured to acquire a network parameter
  • the control unit is configured to send a control instruction to the first processing unit according to the acquired network parameter, and/or to send a beam management instruction to the terminal according to the acquired network parameter;
  • the first processing unit is configured to perform a corresponding beam operation according to the control instruction.
  • the parameter obtaining unit acquires network parameters, including: acquiring pre-stored network parameters, and/or acquiring network parameters measured in real time.
  • the control unit includes one of the following submodules or any combination of more than one submodule: a beam measurement submodule, a beam scheduling submodule, a beam monitoring and switching submodule, a beam cooperation submodule, and a Beam power control submodule;
  • the beam measurement submodule is configured to send signaling that measures channel quality to the terminal;
  • the beam scheduling sub-module is configured to send a first beam scheduling instruction to the first processing unit according to the network parameter acquired by the parameter obtaining module, and/or send a second beam scheduling instruction to the terminal;
  • the beam monitoring and switching sub-module is configured to send a beam switching instruction to the terminal according to the network parameter acquired by the parameter obtaining module and the channel quality measurement measured by the beam measuring sub-module;
  • the beam cooperation sub-module is configured to send a beam cooperation instruction to the first processing unit according to the network parameter acquired by the parameter acquisition module, and set to send a beam interference coordination instruction to the first according to the parameter between the beams acquired by the beam measurement sub-module Processing unit
  • the Beam power control sub-module is configured to allocate power over the full bandwidth between more than one beam, transmit power allocation commands to the first processing unit, and/or transmit power control signaling to the terminal.
  • the first beam management module is separately set on the user plane, or the first beam management module is configured on a MAC (Medium Access Control) module of the user plane, and RLC (Radio Link Control, wireless) Link control module, PDCP (Packet Data Convergence Protocol) module, physical layer (PHY) module.
  • MAC Medium Access Control
  • RLC Radio Link Control, wireless
  • PDCP Packet Data Convergence Protocol
  • PHY physical layer
  • the embodiment further provides a device for implementing user plane function enhancement, which is disposed in the terminal, and includes a second beam management module, which is corresponding to the first beam management module, and the second beam management module includes:
  • a receiving unit configured to receive a beam management instruction sent by the first beam management module
  • the second processing unit is configured to perform a corresponding operation according to the beam management instruction.
  • the receiving unit receives the beam management command sent by the first beam management module, and includes:
  • the second processing unit performs a corresponding operation according to the beam management instruction, including:
  • the channel indicated in the measurement channel quality signaling is measured, and the obtained measurement quantity is sent to the base station.
  • the receiving unit receives the beam management command sent by the first beam management module, and includes:
  • the second processing unit performs a corresponding operation according to the beam management instruction, including:
  • the terminal is switched to the target beam according to the identification information of the target beam.
  • the receiving unit receives the beam management command sent by the first beam management module, including:
  • the second processing unit performs a corresponding operation according to the second beam scheduling instruction, including:
  • the terminal is scheduled to the target beam according to the identification information of the target beam.
  • the receiving unit receives a beam management instruction sent by the first beam management module, and includes:
  • the second processing unit performs the corresponding operation according to the beam management instruction, including:
  • the receiving unit receives the beam management command sent by the first beam management module, and may be one or more of the above instructions, or may perform other settings according to actual conditions, and the embodiment of the present disclosure does not limit.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • FIG. 3 it is a schematic structural diagram of a base station and a terminal in an embodiment of the present disclosure.
  • the embodiment provides a base station, including a first beam management module, where the first beam management module includes:
  • the parameter obtaining unit is configured to acquire a network parameter
  • the control unit is configured to send a control instruction to the first processing unit according to the acquired network parameter, and/or to send a beam management instruction to the terminal according to the acquired network parameter;
  • the first processing unit is configured to perform a corresponding beam operation according to the control instruction.
  • the first beam management module is separately configured on the user plane, or the first beam management module is disposed on a MAC (Medium Access Control) module of the user plane, and RLC (Radio Link Control) Module, PDCP (Packet Data Convergence Protocol) module, physical layer (PHY) module.
  • MAC Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • PHY physical layer
  • first beam management module The various aspects of the respective units included in the first beam management module have been described in detail in the embodiment. For an example, refer to the content of the first embodiment, and details are not described herein again.
  • the embodiment further provides a terminal, including a second beam management function module, corresponding to the first beam management function module disposed in the base station, where the second beam management module includes:
  • a receiving unit configured to receive a beam management instruction sent by the first beam management module
  • the second processing unit is configured to perform a corresponding operation according to the beam management instruction.
  • the second beam management module is separately configured on the user plane, or the second beam management module is disposed on a MAC (Medium Access Control) module of the user plane, and RLC (Radio Link Control) Module, PDCP (Packet Data Convergence Protocol) module, physical layer (PHY) module.
  • MAC Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • PHY physical layer
  • the embodiment further provides a wireless communication system, including:
  • the base station including the first beam management module, is configured to acquire network parameters, perform beam related operations according to the acquired network parameters, and/or send beam management instructions to the terminal according to the acquired network parameters;
  • the terminal including the second beam management module, is configured corresponding to the first beam management module, and is configured to perform a corresponding operation according to the beam management instruction sent by the first beam management module.
  • the first beam management module is separately disposed on the user plane, or the first beam management module is disposed on any one of a MAC module, an RLC module, a PDCP module, and a PHY module of the user plane; and/or the second The beam management module is separately set on the user plane, or the second beam management module is disposed on any one of the MAC module, the RLC module, the PDCP module, and the PHY module of the user plane.
  • the sub-module included in the first Beam management module of the embodiment of the present disclosure is described in detail below with reference to FIG. 4 .
  • the parameter obtaining unit is configured to acquire a network parameter
  • the control unit includes: a beam measurement sub-module, a beam scheduling sub-module, a beam monitoring and switching sub-module, a beam cooperation sub-module, and a beam power control sub-module;
  • the beam measurement submodule is configured to send signaling that measures channel quality to the terminal.
  • the beam measurement sub-module may not directly transmit the measured value, and may perform some processing on the result, such as filtering the result of a period of time.
  • the beam scheduling sub-module is configured to send the first beam scheduling instruction to the first processing unit according to the network parameter acquired by the parameter obtaining module, and/or send the second beam scheduling instruction to the terminal.
  • the exemplary beam scheduling sub-module sends a first beam scheduling instruction to the first processing unit according to a pre-stored network parameter according to a certain scheduling algorithm (policy), and/or sends a second beam scheduling instruction to the terminal.
  • Beam scheduling is divided into two aspects: one is the scheduling of beam (mainly for the base station side) transmission time, frequency, packet and other information, the base station makes its own decision; the other is the priority of the base station scheduling beam (and the scheduling of the terminal often Need to be combined). Since the base station transmit beam is determined by the base station, when the transmitted beam is used for scheduling the terminal, it is required to signal the terminal to identify the scheduled beam.
  • the beam monitoring and switching sub-module is configured to send a beam switching instruction to the terminal according to the network parameter acquired by the parameter obtaining module and the channel quality measurement measured by the beam measuring sub-module;
  • the reason for the triggering is as follows: 1.
  • the beam of the current serving base station of the terminal is found to be problematic (the terminal may find the problem and report it to the base station, or the base station may find the problem by itself); 2.
  • the original beam is caused by the terminal moving or the like.
  • the signal quality is not optimal and needs to be switched to the best beam to continue the service.
  • the switching of the beam is generally directed to the switching of the beam on the base station side, and may be a network parameter obtained according to the parameter acquisition module, such as a signal quality of a beam, or a message fed back by the terminal (link problem discovery, signal quality reporting, etc.). Trigger a switch.
  • the beam switching related command is initiated by the source base station, and the identification information of the target beam is sent to the terminal.
  • the beam monitoring and switching sub-module also needs to acquire the target included in the network parameter acquired by the parameter obtaining module.
  • Beam information In this embodiment, it relates to information interaction with a base station to which the target beam belongs (and the source base station is not necessarily the same base station).
  • the beam cooperation sub-module is configured to send a beam cooperation instruction to the first processing unit according to the network parameter acquired by the parameter acquisition module, and set to send a beam interference coordination instruction to the first according to the parameter between the beams acquired by the beam measurement sub-module Processing unit.
  • the beam cooperation sub-module is mainly used for coordination between the base station side beams, because the coordination between the beams under different cells of different eNBs may be involved.
  • the network parameters obtained by the parameter acquisition module include: power information and directional information of the relevant beam.
  • the Beam power control sub-module is configured to allocate power over the full bandwidth between more than one beam, transmit power allocation commands to the first processing unit, and/or transmit power control signaling to the terminal.
  • the base station decision needs to use the measurement information to estimate the link loss (the measurement information is generally the RSRP reported by the terminal measurement, such as a cell level, a beam level or At the UE level, the accuracy of different levels is different.
  • the measurement information is generally the RSRP reported by the terminal measurement, such as a cell level, a beam level or At the UE level, the accuracy of different levels is different.
  • This embodiment does not limit, and may of course be other information.
  • the base station determines the power of the terminal side by issuing the control signaling. (It is necessary to use the measurement information to reverse the uplink path loss by using the downlink measurement information similar to RSRP reported by the terminal, or to directly estimate the uplink path loss by the base station side through the uplink signal of the terminal).
  • the Beam power control sub-module allocates power over the entire bandwidth between more than one beam, according to the network parameter acquired by the parameter acquisition module, or the channel measured by the beam measurement sub-module.
  • the mass measurement quantity distributes the power over the full bandwidth between more than one beam.
  • the sub-module included in the control unit may be any combination of the above sub-modules, depending on actual use requirements, and the disclosure is not limited.
  • some operations such as beam addition/release/update may be required, so that the sub-module included in the control unit may be added to include other sub-modules, which is not limited by the embodiment of the present disclosure.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • a flowchart of a method for implementing user plane function enhancement in a wireless communication system is applied to a base station, and the method includes the following steps:
  • Step 501 Obtain network parameters.
  • Step 502 Perform a corresponding beam related operation according to the acquired network parameter, and/or send a beam management instruction to the terminal according to the acquired network parameter.
  • Obtaining the network parameters in step 501 includes obtaining pre-stored network parameters, and/or acquiring real-time measured network parameters.
  • Performing the corresponding beam related operations in step 502 includes: performing one or a combination of two or more of the following operations:
  • the embodiment further provides a method for implementing user plane function enhancement in a wireless communication system, which is applied to a terminal, and the method includes:
  • a corresponding operation is performed according to the beam management instruction.
  • the receiving, by the terminal, the beam management command sent by the base station includes: receiving measurement channel quality signaling sent by the base station; and correspondingly, performing corresponding operations according to the beam management instruction, including:
  • the channel indicated in the measurement channel quality signaling is measured, and the obtained measurement quantity is sent to the base station.
  • the beam management command sent by the receiving base station includes:
  • the terminal is switched to the target beam according to the identification information of the target beam.
  • the beam management command sent by the receiving base station includes:
  • performing corresponding operations according to the beam management instruction includes:
  • the beam management command sent by the receiving base station includes:
  • the terminal is scheduled to the target beam according to the identification information of the target beam.
  • the embodiment of the present disclosure provides a beam management module in a user interface for a beam management requirement in a future communication system.
  • the beam management module may exist in the user plane alone or in the user plane.
  • the other functional modules of the face are merged together.
  • the network architecture is a two-level architecture of a centralized unit (CU) and a distributed unit (DU), where the MAC function is located in the CU, and all functions of the physical layer are located in the distribution unit.
  • the beam management function mentioned in this application example is located in the layer 2: MAC layer of the user plane protocol architecture, that is, the beam management function is located in the central unit CU.
  • the first beam management module is located in the MAC layer, and can be used as a functional module of a MAC, or can be integrated with other functions of the MAC layer, for example, with a scheduling function, that is, beam management is used as a part of the scheduling function.
  • the beam measurement sub-module is configured to obtain a beam measurement associated with channel quality.
  • the beam measurement related to the channel quality includes any combination of one or more of the following measurement types: CQI (Channel Quality Indicator), PMI (Precoding Matrix Indicator), RI (Rank Indication), RSRP (Reference Signal Received Power), and the like.
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • RI Rank Indication
  • RSRP Reference Signal Received Power
  • the measurement quantity may also be other related content, and may be selected and configured according to actual conditions, and the embodiment of the present disclosure is not limited herein.
  • the signaling related to the measurement may be sent by the control plane signaling.
  • the measurement related signaling of the LTE is sent by the RRC (Radio Resource Control) signaling configuration (RRC signaling is controlled). Face signaling).
  • RRC Radio Resource Control
  • the user planes on the base station side and the terminal side can support the function.
  • the exemplary implementation is as follows: the base station sends a beam measurement command to the terminal, and the terminal performs the channel quality measurement, and reports the obtained measurement quantity to the base station.
  • the measurement configuration can be delivered through the MAC CE signaling, and the signaling of the beam measurement report is added to the user plane of the terminal side.
  • the signaling indicating the beam measurement is added to the user plane, and the function is supported by the base station side and the terminal side.
  • the exemplary implementation is as follows: the base station sends a beam measurement command to the terminal, and the terminal performs channel quality measurement. The reported measurement amount is reported to the base station.
  • the beam scheduling sub-module is configured to send a beam scheduling instruction to the transmitting unit according to the pre-stored network parameter acquired by the parameter obtaining module and the beam measurement quantity related to the channel quality acquired by the beam measurement sub-module.
  • each RAN Radio Access
  • the processing capability on the RAN side cannot guarantee that the beam can be transmitted in all directions at one time (360 degrees, there may be dozens of beams, and the processing capability is limited. It can be sent once, for example, 8). This involves the issue of which 8 are transmitted each time, how to group, and which packet is scheduled each time. This is an aspect that scheduling may involve.
  • Scheduling the user is equivalent to scheduling the beam. Therefore, the priority of the beam involved in the scheduling may also be considered in the scheduling coordination (the beam in some directions needs to be staggered and cannot be collided).
  • the base station side may send multiple beams, and the terminal side may have multiple beams aligned with them.
  • the beam becomes an airspace resource, so how to select the beam and how to schedule the beam (scheduling the transmission time) And the transmission frequency) becomes one of the necessary contents of beam management.
  • the beam monitoring and switching sub-module is configured to acquire the signal quality of the monitored beam, and according to the channel quality measurement measured by the beam measurement sub-module, when the signal suddenly fading, sending a switching instruction to the transmitting unit, signal fading occurs.
  • the terminal corresponding to the beam switches to another beam.
  • the high frequency band causes the signal to suddenly fading due to its wireless channel environment. Therefore, the signal quality of the beam needs to be monitored in time, so that when a sudden deep fading occurs, Timely beam switching or other processing to ensure performance is not lost.
  • the high frequency band causes frequent fading of the signal due to its wireless channel environment, so for the terminal, it may be ready to switch to other beams at any time to counter this sudden Deep fading, so the user plane needs to increase the auxiliary signaling and related processing functions related to beam switching (including handover decision, handover preparation, handover implementation, etc.).
  • One exemplary handover method may be a bear split mode.
  • FIG. 7 a schematic diagram of a bear split architecture for LTE dual connectivity.
  • An exemplary method of switching is to switch to another link that has not failed when a link fails.
  • the bear split is: the PDCP is divided into two branches, one branch is taken by the MeNB (Master eNB, the primary base station), and one branch is taken by the SeNB (Secondary eNB, the secondary base station). Backup.
  • the anchor point is the PDCP in the MeNB, that is, there is no PDCP layer in the SeNB.
  • S1 is an interface between a RAN (Radio Acess Network) and a CN (Core Network).
  • the beam cooperation sub-module is configured to send a beam collaboration instruction to the transmitting unit according to the pre-stored network parameter acquired by the parameter acquisition module, and set to send a beam interference coordination instruction to the transmitting unit according to the interference parameter between the beams acquired by the beam measurement sub-module .
  • the collaboration and interference coordination between Beams can vary according to the architecture. For example, the following two situations can be included:
  • the first case CoMP technology similar to LTE can be adopted, and several cooperative beams transmit the same data to enhance the reliability of data reception.
  • the second case: CS/CB can be used in the interference avoidance mode.
  • a strong interference beam When a UE on a beam is scheduled (occupying part of the resources), if the UE of the beam has strong interference (called a strong interference beam), then the Some/all resources of the beam are prohibited from being used (reduced power, etc.) in a similar manner.
  • a similar "Xn" interface can be defined between the DUs to facilitate cooperative information transmission.
  • X2 In the LTE system, there is an "X2" interface between the base stations for exchanging some information between the base stations.
  • This application example defines an X2 interface for information communication between the DUs, which can be named Xn.
  • multiple beams may be generated on the base station side and the terminal side.
  • the site planning is relatively dense, and one link may be interfered by many beams from the local area and the neighboring area. Therefore, interference coordination between beams becomes inevitable.
  • the Beam power control sub-module is configured to allocate power over the full bandwidth between more than one beam.
  • the Beam management function proposed in the embodiment of the present disclosure is located in the user plane, and does not limit the specific location on the user plane.
  • the beam management function is not limited to being located in the centralized unit and Distribution unit.
  • the embodiment of the present disclosure adds a beam management function to the user plane, so that the function of the user plane can meet the requirements of beam management in the future communication system.
  • the apparatus, system and method for implementing user plane function enhancement in a wireless communication system provided by an embodiment of the present disclosure enable a user plane function to meet the requirements of beam management in a future communication system by adding a beam management module to the user plane.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种无线通信系统中实现用户面功能增强的装置及方法,所述装置设置于基站,包括:第一波束beam管理模块,所述第一beam管理模块包括参数获取单元、控制单元及第一处理单元:所述参数获取单元,设置为获取网络参数;所述控制单元,设置为根据所述获取的网络参数,发送控制指令到第一处理单元,和/或设置为根据所述获取的网络参数,发送beam管理指令到终端;所述第一处理单元,设置为根据所述控制指令执行相应beam操作。本公开实现了在用户面中增加beam管理模块,使得用户面的功能可以满足未来通信系统中beam管理的需求。本公开实施例提出的Beam管理模块位于用户面中,并不限制位于用户面的具体位置,布局灵活。

Description

一种无线通信系统中实现用户面功能增强的方法和装置 技术领域
本公开涉及无线通信技术领域,更具体地,涉及一种无线通信系统中实现用户面功能增强的方法和装置。
背景技术
4G中,C-RAN(Centralized,Cooperative,Cloud&Clean-Radio Access Network)架构一般由集中BBU(Base Band Unit,基带单元)、拉远RRU(Radio Remote Unit,射频拉远单元)组成,而前者又由物理层,层二,包括MAC(Medium Access Control,媒体接入控制),RLC(Radio Link Control,无线链路控制),PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)等子层,以及层三,如RRC(Radio Resource Control,无线资源控制)等协议功能层构成。BBU、RRU间的前传接口采用CPRI(Common Public Radio Interface,通用公共无线电接口),由于CPRI接口传输的是经过物理层编码调制等处理后的IQ(Inphase and quadrature)信号,CPRI接口对传输时延迟和带宽都有较大的要求。若未来空口速率提升到数十Gbps后,CPRI接口的流量需求将上升到Tbps级别,对网络部署成本和部署难度都带来了巨大的压力。
因此,需要重新定义BBU和RRU的功能,比如将上述第二层的用户面部分功能部分放在BBU、部分放在RRU。本文中对重新规划功能后的BBU和RRU分别命名为CU(Centralized Unit,集中单元)和DU(Distributed Unit分布单元)。所述分布单元也可以称之为远端单元。这种架构也是未来通信系统中可能采用的热门架构,示意图如附图1所示。
未来通信系统朝着无缝广域覆盖,大容量热点,低功耗的大量连接和低延迟的高可靠性等目标发展,必然会采用高频段、大带宽,而高频段由于其传播特性的原因,覆盖范围往往很小,因此大规模天线阵列MM(massive MIMO)往往被用来提升链路增益进而提升覆盖。大规模天线阵通过采用波束赋形(beam forming)技术,可以大大提升链路性能,自然达到提升覆盖和容量的目的,被认为是提高现代无线通信系统传输速率的一种有效方式。未来通信系统中大规模天线阵的天线单元数可达数百甚至上千根,公共信道及专用信道都可能是基于波束(beam,本文简称为beam)覆盖的,因此对于用户面的功能提出了更高的要求,当前的用户面的功能已经不能满足未来通信系统的需求。
发明内容
有鉴于此,本公开提供了以下方案。
一种无线通信系统中实现用户面功能增强的装置,所述装置设置于基站,包括:
第一波束beam管理模块,所述第一beam管理模块包括参数获取单元、控制单元及 第一处理单元:
所述参数获取单元,设置为获取网络参数;
所述控制单元,设置为根据所述获取的网络参数,发送控制指令到第一处理单元,和/或设置为根据所述获取的网络参数,发送beam管理指令到终端;
所述第一处理单元,设置为根据所述控制指令执行相应beam操作。
一种无线通信系统中实现用户面功能增强的装置,所述装置设置于终端,包括第二beam管理模块,与设置于基站的第一beam管理模块对应设置,所述第二beam管理模块包括:
接收单元,设置为接收所述第一beam管理模块发送的beam管理指令;
第二处理单元,设置为根据所述beam管理指令执行对应操作。
一种基站,包括:
第一波束beam管理模块,所述第一beam管理模块包括参数获取单元、控制单元及第一处理单元:
所述参数获取单元,设置为获取网络参数;
所述控制单元,设置为根据所述获取的网络参数,发送控制指令到第一处理单元,和/或设置为根据所述获取的网络参数,发送beam管理指令到终端;
所述第一处理单元,设置为根据所述控制指令执行相应beam操作。
一种终端,包括第二beam管理模块,与设置于基站的第一beam管理模块对应设置,所述第二beam管理模块包括:
接收单元,设置为接收所述第一beam管理模块发送的beam管理指令;
第二处理单元,设置为根据所述beam管理指令执行对应操作。
一种无线通信系统,包括:
基站,包括第一beam管理模块,设置为获取网络参数,并根据所述获取的网络参数执行beam相关操作,和/或根据所述获取的网络参数发送beam管理指令到终端;
终端,包括第二beam管理模块,与第一beam管理模块对应设置,设置为根据所述第一beam管理模块发送的beam管理指令执行对应操作。
一种无线通信系统中实现用户面功能增强的方法,包括:
获取网络参数;
根据所述获取的网络参数,执行对应的beam相关操作,和/或,根据所述获取的网络参数,发送beam管理指令到终端。
一种无线通信系统中实现用户面功能增强的方法,所述方法包括:
接收基站发送的beam管理指令;
根据所述beam管理指令执行对应操作。
一种存储介质,设置为存储程序代码,所述程序代码用于执行上述任一项所述的方法。
上述方案实现了在用户面中增加beam管理模块,使得用户面的功能可以满足未来通 信系统中beam管理的需求。并且所述beam管理模块可以包括一个或者多个子模块,所述各个子模块完成不同的功能,从而所述beam管理模块可以根据实际的网络情况和应用需求进行设置,具有功能全面的特点,本公开实施例提出的Beam管理模块位于用户面中,并不限制位于用户面的具体位置,布局灵活。
附图说明
图1为未来通信系统中网络架构示意图;
图2为本公开实施例的实现用户面功能增强的装置结构示意图;
图3为本公开实施例中的基站及终端结构示意图;
图4为本公开实施例的第一beam管理模块所包括的子模块结构示意图;
图5为本公开实施例的无线通信系统中实现用户面功能增强的方法流程图;
图6为本公开应用实例中的集中单元和分布单元示意图。
图7为LTE双连接的承载分割方式架构示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,下文中将结合附图对本公开的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
为了方便描述,下面以LTE系统为例进行描述,但是本公开实施例不限于LTE系统。
实施例一:
参照图2所示,为本公开实施例的实现用户面功能增强的装置结构示意图,所述实现用户面功能增强的装置,设置在基站,包括第一beam管理模块,所述第一beam管理模块包括:参数获取单元、控制单元及第一处理单元:
所述参数获取单元,设置为获取网络参数;
所述控制单元,设置为根据所述获取的网络参数,发送控制指令到第一处理单元,和/或设置为根据所述获取的网络参数,发送beam管理指令到终端;
所述第一处理单元,设置为根据所述控制指令执行相应beam操作。
可选地,所述参数获取单元获取网络参数,包括:获取预存的网络参数,和/或获取实时测量的网络参数。
所述控制单元包括以下一种子模块或者一种以上子模块的任意组合:beam测量子模块,beam调度子模块,beam监测及切换子模块,beam协作子模块,Beam功率控制子模块;
所述beam测量子模块,设置为发送测量信道质量的信令到终端;
所述beam调度子模块,设置为根据所述参数获取模块获取的网络参数发送第一beam调度指令到第一处理单元,和/或发送第二beam调度指令到终端;
所述beam监测及切换子模块,设置为根据所述参数获取模块获取的网络参数及beam测量子模块测量的信道质量测量量,当信号出现突然衰落时,发送beam切换指令到终端;
所述beam协作子模块,设置为根据参数获取模块获取的网络参数发送beam协作指令到第一处理单元,并设置为根据beam测量子模块获取的beam间的参数,发送beam干扰协调指令到第一处理单元;
所述Beam功率控制子模块,设置为将全带宽上的功率在一个以上的beam间进行分配,发送功率分配指令到第一处理单元,和/或发送功率控制信令到终端。
可选的,所述第一beam管理模块在用户面单独设置,或者所述第一beam管理模块设置于用户面的MAC(Medium Access Control,媒体接入控制)模块,RLC(Radio Link Control,无线链路控制)模块,PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)模块,物理层(PHY)模块中的任意一个。
本实施例还提供了一种实现用户面功能增强的装置,设置在终端,包括第二beam管理模块,与设置于基站的第一beam管理模块对应设置,所述第二beam管理模块包括:
接收单元,设置为接收所述第一beam管理模块发送的beam管理指令;
第二处理单元,设置为根据所述beam管理指令执行对应操作。
可选的,所述接收单元接收所述第一beam管理模块发送的beam管理指令;包括:
接收基站发送的测量信道质量信令;相应的,所述第二处理单元根据所述beam管理指令执行对应操作,包括:
对所述测量信道质量信令中指示的信道进行测量,并将获得的测量量发送给所述基站。
可选的,所述接收单元接收所述第一beam管理模块发送的beam管理指令;包括:
接收基站发送的beam切换指令,所述beam切换指令包括目标beam的识别信息;相应的,所述第二处理单元根据所述beam管理指令执行对应操作,包括:
根据所述目标beam的识别信息,将终端切换到目标beam。
可选的,所述接收单元接收所述第一beam管理模块发送的beam管理指令,包括:
接收基站发送的第二beam调度指令,所述第二beam调度指令包括目标beam的识别信息;相应的,所述第二处理单元根据所述第二beam调度指令执行对应操作,包括:
根据所述目标beam的识别信息,将终端调度到目标beam。
或者,作为另外一种实施方式,所述接收单元接收所述第一beam管理模块发送的beam管理指令;包括:
接收基站发送的功率控制信令;相应的,所述第二处理单元根据所述beam管理指令执行对应操作,包括:
根据所述功率控制信令调整终端的beam功率。
需要说明的是,接收单元接收所述第一beam管理模块发送的beam管理指令,可以为以上指令的一种或者多种,也可以根据实际情况进行其他的设置,本公开实施例对此不加以限制。
实施例二:
参照图3所示,为本公开实施例中的基站及终端结构示意图。本实施例提供了一种基站,包括第一beam管理模块,所述第一beam管理模块包括:
所述参数获取单元,设置为获取网络参数;
所述控制单元,设置为根据所述获取的网络参数,发送控制指令到第一处理单元,和/或设置为根据所述获取的网络参数,发送beam管理指令到终端;
所述第一处理单元,设置为根据所述控制指令执行相应beam操作。
所述第一beam管理模块在用户面单独设置,或者所述第一beam管理模块设置于用户面的MAC(Medium Access Control,媒体接入控制)模块,RLC(Radio Link Control,无线链路控制)模块,PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)模块,物理层(PHY)模块中的任意一个。
其中,关于第一beam管理模块所包括的各个单元的各个方面已经在实施例一种进行了详细描述,示例参见实施例一内容,本公开实施例在此不再赘述。
本实施例还提供了一种终端,包括第二beam管理功能模块,与设置于基站的第一beam管理功能模块对应设置,所述第二beam管理模块包括:
接收单元,设置为接收所述第一beam管理模块发送的beam管理指令;
第二处理单元,设置为根据所述beam管理指令执行对应操作。
所述第二beam管理模块在用户面单独设置,或者所述第二beam管理模块设置于用户面的MAC(Medium Access Control,媒体接入控制)模块,RLC(Radio Link Control,无线链路控制)模块,PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)模块,物理层(PHY)模块中的任意一个。
其中,关于第二beam管理模块所包括的各个单元的各个方面已经在实施例一种进行了详细描述,示例参见实施例一内容,本公开实施例在此不再赘述。
本实施例还提供了一种无线通信系统,包括:
基站,包括第一beam管理模块,设置为获取网络参数,并根据所述获取的网络参数执行beam相关操作,和/或根据所述获取的网络参数发送beam管理指令到终端;
终端,包括第二beam管理模块,与第一beam管理模块对应设置,设置为根据所述第一beam管理模块发送的beam管理指令执行对应操作。
所述第一beam管理模块在用户面单独设置,或者所述第一beam管理模块设置于用户面的MAC模块、RLC模块、PDCP模块、PHY模块中的任意一个;和/或,所述第二beam管理模块在用户面单独设置,或者所述第二beam管理模块设置于用户面的MAC模块、RLC模块、PDCP模块、PHY模块中的任意一个。
下面结合图4,对本公开实施例的第一Beam管理模块包括的子模块详细进行说明。
在本实施例中,所述参数获取单元,设置为获取网络参数;
包括:获取预存的网络参数,和/或获取实时测量的网络参数。
所述控制单元,包括:beam测量子模块,beam调度子模块,beam监测及切换子模块,beam协作子模块,beam功率控制子模块;
所述beam测量子模块,设置为发送测量信道质量的信令到终端。
作为本实施例的另外一种实施方式,beam测量子模块可能并不是把测量到的值直接发送,可能对结果进行一些处理,比如把一段时间的结果进行滤波。
beam调度子模块,设置为根据所述参数获取模块获取的网络参数发送第一beam调度指令到第一处理单元,和/或发送第二beam调度指令到终端。
示例性的beam调度子模块,根据预存网络参数按照一定的调度算法(策略),发送第一beam调度指令到第一处理单元,和/或发送第二beam调度指令到终端。Beam的调度分为两个方面:一个是对beam(主要针对基站侧)发射时间、频率、分组等信息的调度,基站自己决策;另一个是基站调度beam的优先级(和对终端的调度往往需要进行结合)。因为基站发射beam由基站决策,但当发射的beam是用于调度终端的,需要信令告知终端使其对调度的beam进行识别。
所述beam监测及切换子模块,设置为根据所述参数获取模块获取的网络参数及beam测量子模块测量的信道质量测量量,当信号出现突然衰落时,发送beam切换指令到终端;
切换触发原因,包括:1、发现终端目前的服务基站的beam有问题(可以由终端发现问题并上报给基站,也可能由基站自己发现问题);2、由于终端移动等原因,导致原来的beam的信号质量不是最佳的了,需要切换到最佳的beam上继续进行服务。
Beam的切换一般针对的是基站侧beam的切换,可以为根据所述参数获取模块获取的网络参数,比如beam的信号质量,或者根据终端反馈的信息(链路问题发现,信号质量上报等),触发切换。
Beam切换相关指令由源基站发起,会将目标beam的识别信息发送给终端,在此种实施方式中,beam监测及切换子模块,还需要获取所述参数获取模块获取的网络参数中包括的目标beam信息。在本实施方式中,涉及到与目标beam所属基站(和源基站不一定是同一个基站)的信息交互。
所述beam协作子模块,设置为根据参数获取模块获取的网络参数发送beam协作指令到第一处理单元,并设置为根据beam测量子模块获取的beam间的参数,发送beam干扰协调指令到第一处理单元。
beam协作子模块主要用于基站侧beam间的协调,因为可能会涉及到不同eNB的不同cell下的beam间的协调。参数获取模块获取的网络参数,包括:相关beam的功率信息和方向性信息等。
所述Beam功率控制子模块,设置为将全带宽上的功率在一个以上的beam间进行分配,发送功率分配指令到第一处理单元,和/或发送功率控制信令到终端。
对于下行功率控制,即调整基站侧的功率分配,基站决策,需要借助测量信息以估计链路损耗(测量信息一般是终端测量上报的RSRP等,比如可能是小区级,beam级或者 UE级的,不同级别精度不同,本实施例不进行限制,当然也可能是其他信息)。
对于上行功率控制,即调整终端侧的功率,基站决策,通过下发控制信令对终端侧功率进行调整。(需要借助测量信息,可以是通过终端上报的类似RSRP的下行测量信息反推上行路损,也可能是基站侧通过终端的上行信号对上行路损直接进行估计等方法)。
可见,在一种实施方式中,所述Beam功率控制子模块将全带宽上的功率在一个以上的beam间进行分配,为:根据参数获取模块获取的网络参数,或者beam测量子模块测量的信道质量测量量,将全带宽上的功率在一个以上的beam间进行分配。
当然,在另外的实施方式中,所述控制单元包括的子模块可以为以上子模块的任意组合,具体视实际使用需求而定,本公开不做限定。当然,在实际应用中也可能会需要进行beam添加/释放/更新等一些操作,这样控制单元包括的子模块也可以增加为包括其他的子模块,本公开实施例对此不加以限定。
实施例三:
参照图5所示,为本公开实施例的无线通信系统中实现用户面功能增强的方法流程图,应用于基站,所述方法包括以下步骤:
步骤501,获取网络参数;
步骤502,根据所述获取的网络参数,执行对应的beam相关操作,和/或,根据所述获取的网络参数,发送beam管理指令到终端。
步骤501中所述获取网络参数,包括获取预存的网络参数,和/或获取实时测量的网络参数。
步骤502中所述执行对应的beam相关操作,包括:执行以下操作的一种或者两种以上的任意组合:
beam调度、beam协作、beam干扰协调、beam功率分配。
本实施例还提供了一种无线通信系统中实现用户面功能增强的方法,应用于终端,所述方法包括:
接收基站发送的beam管理指令;
根据所述beam管理指令执行对应操作。
可选的,所述终端接收基站发送的beam管理指令,包括:接收基站发送的测量信道质量信令;相应的,根据所述beam管理指令执行对应操作,包括:
对所述测量信道质量信令中指示的信道进行测量,并将获得的测量量发送给所述基站。
可选的,所述接收基站发送的beam管理指令,包括:
接收基站发送的beam切换指令,所述beam切换指令包括目标beam的识别信息;相应的,根据所述beam管理指令执行对应操作,包括:
根据所述目标beam的识别信息,将终端切换到目标beam。
可选的,所述接收基站发送的beam管理指令,包括:
接收基站发送的功率控制信令。
相应的,根据所述beam管理指令执行对应操作,包括:
根据所述功率控制信令调整终端的beam功率。
可选的,所述接收基站发送的beam管理指令,包括:
接收基站发送的第二beam调度指令,所述第二beam调度指令包括目标beam的识别信息;相应的,根据所述beam管理指令执行对应操作,包括:
根据所述目标beam的识别信息,将终端调度到目标beam。
本公开实施例提供一种未来通信系统中,针对未来通信系统中的beam管理需求,在用户面中增加beam管理模块,示例性地,beam管理模块可以单独存在于用户面中,也可以和用户面的其他功能模块融合在一起。
下面通过示例性应用中的实例进行示例性说明。
本应用实例以LTE系统为例进行说明,如附图6所示。网络架构为集中单元(CU)和分布单元(DU)两级架构,其中MAC功能位于CU中,而物理层的所有功能位于分布单元中。本应用实例中所提到的beam管理功能位于用户面协议架构的层2:MAC层中,也即beam管理功能位于集中单元CU中。
本实施例中,第一beam管理模块位于MAC层中,可以单独作为一个MAC的一个功能模块,也可以和MAC层的其他功能融合,比如和调度功能融合,即将beam管理作为调度功能的一部分。
所述beam测量子模块,设置为获得与信道质量相关的beam测量量。
所述与信道质量相关的beam测量量,包括以下的一种或者两种以上测量量的任意组合:CQI(信道质量指示,Channel Quality Indicator)、PMI(Precoding Matrix Indicator,预编码矩阵指示)、RI(Rank Indication,秩指示)、RSRP(Reference Signal Received Power,参考信号接收功率)等。当然,所述测量量也可以为其他的相关内容,具体可以根据实际情况进行选择配置,本公开实施例在此不加以限定。
其中,执行测量的相关信令可以由控制面信令配置下发,目前LTE的测量相关信令都是由RRC(Radio Resource Control,无线资源控制)信令配置下发的(RRC信令为控制面信令)。
基站侧和终端侧的用户面都可以支持该功能,示例性实现为:由基站下发beam测量指令到终端,终端进行信道质量测量后,将获得的测量量上报给基站。比如可以通过MACCE信令下发测量配置,同时终端侧用户面中增加beam测量上报的信令。
作为另外一种实施方式,在用户面中增加指示beam测量的信令,基站侧和终端侧均支持该功能,示例性实现为:由基站下发beam测量指令到终端,终端进行信道质量测量后,将获得的测量量上报给基站。
所述beam调度子模块,设置为根据所述参数获取模块获取的预存网络参数及beam测量子模块获取的与信道质量相关的beam测量量发送beam调度指令到发射单元。
所述对多个beam进行调度,一种情况是,未来NR系统中,每个RAN(Radio Access  Network,无线接入网)侧和UE侧都可能存在多个beam,比如RAN侧的处理能力不能保证一次能够发射所有方向的beam(360度,可能共有几十个beam,而处理能力受限只能一次发比如8个),这就会涉及每次发射哪8个,如何分组,每次调度哪个分组的问题,这是调度可能涉及的一个方面。
另一种情况是,一个beam下可能只有一个用户,也可能有多个用户,对用户进行调度等于也是对beam进行调度。因此调度中涉及的beam的优先级问题、也可能在调度时考虑干扰协调(有些方向的beam需要错开,不能对撞)等。
在本公开实施例中,基站侧有多个beam,从几个到上百个beam都有可能;终端侧也可能有多个beam,但数量一般比基站侧要少的多。可见,未来通信系统中,基站侧可能发送多个beam,而终端侧也可能会有多个beam对准他们,beam成为一种空域资源,因此如何选择beam以及如何对beam进行调度(调度发射时刻和发射频率)成为beam管理的必要内容之一。
所述beam监测及切换子模块,设置为获取监测到beam的信号质量,并根据beam测量子模块测量的信道质量测量量,当信号出现突然衰落时,发送切换指令到发射单元,将出现信号衰落的beam所对应的终端切换到其他beam。
关于beam监测,未来通信系统中,高频段由于其无线信道环境的原因的使得信号出现突然衰落的情况比较频繁,因此需要对beam的信号质量进行及时的监控,使得突然的深衰落发生时,可以及时进行beam的切换或者其他处理而保证性能不受损失。
关于beam切换,未来通信系统中,高频段由于其无线信道环境的原因的使得信号出现突然衰落的情况比较频繁,因此对于终端来说,可能随时准备好切换至其他的beam来对抗这种突然的深衰落,因此用户面需要增加beam切换相关的辅助信令及相关处理功能(包括切换决策,切换准备,切换实施等)。
其中一种示例性的切换的方法可以是bear split(承载分割)方式。参照图7所示,为LTE双连接的bear split架构示意图。示例性切换的方法是:当某一链路发生故障时,可以切换到未发生故障的另一条链路上。
如图7所示,所谓bear split,即为:PDCP分为两个分支,一个分支走MeNB(Master eNB,主基站),一个分支走SeNB(Secondary eNB,次级基站),两个分支互为备份。锚点就是MeNB中的PDCP,也就是说SeNB中没有PDCP层。图中S1为RAN(Radio Acess Network,无线接入网)和CN(Core Network,核心网)间的接口。
所述beam协作子模块,设置为根据参数获取模块获取的预存网络参数发送beam协作指令到发射单元,并设置为根据beam测量子模块获取的beam间的干扰参数,发送beam干扰协调指令到发射单元。
Beam间的协作及干扰协调根据架构的不同可以不同,比如可以包括以下两种情况:
第一种情况:可以采用类似LTE中的CoMP技术,几个协作beam发送相同的数据,增强数据接收的可靠性。
第二种情况:可以采用CS/CB即干扰规避的方式,当一个beam上UE被调度(占用部分资源),如果该beam的UE存在强干扰(称之为强干扰beam),那么可以设置该beam的部分/全部资源禁止使用(降低功率等)类似方式。
Beam间进行协作,尤其是如附图7所示的DU之间存在beam协作时,可以在DU之间定义类似“Xn”接口便于协作信息传输。
LTE系统中,基站之间存在“X2”接口用于基站间交流一些信息,本应用实例定义类似X2接口用于DU间进行信息沟通,可以命名为Xn。
当然在实际应用中,还存在其他协调手段,本公开在此不再一一赘述。
未来通信系统中,基站侧和终端侧都可能会产生多个beam,加上站点规划比较密集,一条链路可能受到来自本区和邻区的很多beam的干扰,因此beam间的干扰协调成为必然;此外,为满足系统大容量或者可靠性的需求,需要考虑beam间的协作传输。
所述Beam功率控制子模块,设置为将全带宽上的功率在一个以上的beam间进行分配。
一般会对全带宽上的功率有一定限制,特别当采用数字或者混合波束赋形的时候,全带宽上可能不止一个beam。这就要求对一个以上的beam的功率进行分配。
本公开实施例提出的Beam管理功能位于用户面中,并不限制位于用户面的具体位置,此外,对于所述的集中单元-分布单元网络架构中,beam管理功能也不限定于位于集中单元和分布单元。本公开实施例在用户面中增加beam管理功能,使得用户面的功能可以满足未来通信系统中beam管理的需求。
上述本公开实施例序号仅仅为了描述,不代表实施例的优劣。通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开实施例的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开各个实施例所述的方法。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
本公开实施例提供的无线通信系统中实现用户面功能增强的装置、系统与方法,通过在用户面中增加beam管理模块,使得用户面的功能可以满足未来通信系统中beam管理的需求。

Claims (24)

  1. 一种无线通信系统中实现用户面功能增强的装置,其中,所述装置设置于基站,包括:
    第一波束beam管理模块,所述第一beam管理模块包括参数获取单元、控制单元及第一处理单元:
    所述参数获取单元,设置为获取网络参数;
    所述控制单元,设置为根据所述获取的网络参数,发送控制指令到第一处理单元,和/或设置为根据所述获取的网络参数,发送beam管理指令到终端;
    所述第一处理单元,设置为根据所述控制指令执行相应beam操作。
  2. 如权利要求1所述的装置,其中,所述参数获取单元获取网络参数,包括:获取预存的网络参数,和/或获取实时测量的网络参数。
  3. 如权利要求1所述的装置,其中,所述控制单元包括以下一种子模块或者一种以上子模块的任意组合:beam测量子模块,beam调度子模块,beam监测及切换子模块,beam协作子模块,Beam功率控制子模块;
    所述beam测量子模块,设置为发送测量信道质量的信令到终端;
    所述beam调度子模块,设置为根据所述参数获取模块获取网络参数发送第一beam调度指令到第一处理单元,和/或发送第二beam调度指令到终端;
    所述beam监测及切换子模块,设置为根据所述参数获取模块获取的网络参数及beam测量子模块测量的信道质量测量量,当信号出现突然衰落时,发送beam切换指令到终端;
    所述beam协作子模块,设置为根据参数获取模块获取的网络参数发送beam协作指令到第一处理单元,并设置为根据beam测量子模块获取的beam间的参数,发送beam干扰协调指令到第一处理单元;
    所述Beam功率控制子模块,设置为将全带宽上的功率在一个以上的beam间进行分配,发送功率分配指令到第一处理单元,和/或发送功率控制信令到终端。
  4. 如权利要求1所述的装置,其中,所述第一beam管理模块在用户面单独设置,或者所述第一beam管理模块设置于用户面的媒体接入控制MAC模块,无线链路控制RLC模块,分组数据汇聚协议PDCP模块,物理层PHY模块中的任意一个。
  5. 一种无线通信系统中实现用户面功能增强的装置,其中,所述装置设置于终端,包括第二beam管理模块,与设置于基站的第一beam管理模块对应设置,所述第二beam管理模块包括:
    接收单元,设置为接收所述第一beam管理模块发送的beam管理指令;
    第二处理单元,设置为根据所述beam管理指令执行对应操作。
  6. 如权利要求5所述的装置,其中,所述接收单元接收所述第一beam管理模块发送的beam管理指令;包括:
    接收基站发送的测量信道质量信令;相应的,所述第二处理单元根据所述beam管理指令执行对应操作,包括:
    对所述测量信道质量信令中指示的信道进行测量,并将获得的测量量发送给所述基站。
  7. 如权利要求5所述的装置,其中,所述接收单元接收所述第一beam管理模块发送的beam管理指令;包括:
    接收基站发送的beam切换指令,所述beam切换指令包括目标beam的识别信息;相应的,所述第二处理单元根据所述beam管理指令执行对应操作,包括:
    根据所述目标beam的识别信息,将终端切换到目标beam。
  8. 如权利要求5所述的装置,其中,所述接收单元接收所述第一beam管理模块发送的beam管理指令;包括:
    接收基站发送的功率控制信令;相应的,所述第二处理单元根据所述beam管理指令执行对应操作,包括:
    根据所述功率控制信令调整终端的beam功率。
  9. 如权利要求5所述的装置,其中,所述接收单元接收所述第一beam管理模块发送的beam管理指令,包括:
    接收基站发送的第二beam调度指令,所述第二beam调度指令包括目标beam的识别信息;相应的,所述第二处理单元根据所述第二beam调度指令执行对应操作,包括:
    根据所述目标beam的识别信息,将终端调度到目标beam。
  10. 如权利要求5所述的装置,其中,所述第二beam管理模块在用户面单独设置,或者所述第二beam管理模块设置于用户面的MAC模块、RLC模块、PDCP模块、PHY模块中的任意一个。
  11. 一种基站,其中,包括如权利要求1~4中任意一项所述的无线通信系统中实现用户面功能增强的装置。
  12. 一种终端,其中,包括如权利要求5~10中任意一项所述的无线通信系统中实现用户面功能增强的装置。
  13. 一种无线通信系统,其中,包括:
    基站,包括第一beam管理模块,设置为获取网络参数,并根据所述获取的网络参数执行beam相关操作,和/或根据所述获取的网络参数发送beam管理指令到终端;
    终端,包括第二beam管理模块,与第一beam管理模块对应设置,设置为根据所述第一beam管理模块发送的beam管理指令执行对应操作。
  14. 如权利要求13所述的无线通信系统,其中,所述第一beam管理模块在用户面单独设置,或者所述第一beam管理模块设置于用户面的MAC模块、RLC模块、PDCP模块、PHY模块中的任意一个。
  15. 如权利要求13所述的无线通信系统,其中,所述第二beam管理模块在用户面单独设置,或者所述第二beam管理模块设置于用户面的MAC模块、RLC模块、PDCP 模块、PHY模块中的任意一个。
  16. 一种无线通信系统中实现用户面功能增强的方法,其中,所述方法包括:
    获取网络参数;
    根据所述获取的网络参数,执行对应的beam相关操作,和/或,根据所述获取的网络参数,发送beam管理指令到终端。
  17. 如权利要求16所述的方法,其中,所述获取网络参数,包括:获取预存的网络参数,和/或获取实时测量的网络参数。
  18. 如权利要求16所述的方法,其中,所述执行对应的beam相关操作,包括:执行以下操作的一种或者两种以上的任意组合:
    beam调度、beam协作、beam干扰协调、beam功率分配。
  19. 一种无线通信系统中实现用户面功能增强的方法,其中,所述方法包括:
    接收基站发送的beam管理指令;
    根据所述beam管理指令执行对应操作。
  20. 如权利要求19所述的方法,其中,所述接收基站发送的beam管理指令,包括:接收基站发送的测量信道质量信令;相应的,根据所述beam管理指令执行对应操作,包括:
    对所述测量信道质量信令中指示的信道进行测量,并将获得的测量量发送给所述基站。
  21. 如权利要求19所述的方法,其中,所述接收基站发送的beam管理指令,包括:
    接收基站发送的beam切换指令,所述beam切换指令包括目标beam的识别信息;相应的,根据所述beam管理指令执行对应操作,包括:
    根据所述目标beam的识别信息,将终端切换到目标beam。
  22. 如权利要求19所述的方法,其中,所述接收基站发送的beam管理指令,包括:
    接收基站发送的功率控制信令;相应的,根据所述beam管理指令执行对应操作,包括:
    根据所述功率控制信令调整终端的beam功率。
  23. 如权利要求19所述的方法,其中,所述接收基站发送的beam管理指令,包括:
    接收基站发送的第二beam调度指令,所述第二beam调度指令包括目标beam的识别信息;相应的,根据所述beam管理指令执行对应操作,包括:
    根据所述目标beam的识别信息,将终端调度到目标beam。
  24. 一种存储介质,设置为存储程序代码,所述程序代码用于执行权利要求16至23中任一项所述的方法。
PCT/CN2017/104831 2016-09-30 2017-09-30 一种无线通信系统中实现用户面功能增强的方法和装置 WO2018059582A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610875557.9A CN107888244B (zh) 2016-09-30 2016-09-30 一种无线通信系统中实现用户面功能增强的方法和装置
CN201610875557.9 2016-09-30

Publications (1)

Publication Number Publication Date
WO2018059582A1 true WO2018059582A1 (zh) 2018-04-05

Family

ID=61763747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104831 WO2018059582A1 (zh) 2016-09-30 2017-09-30 一种无线通信系统中实现用户面功能增强的方法和装置

Country Status (2)

Country Link
CN (1) CN107888244B (zh)
WO (1) WO2018059582A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110677874B (zh) * 2019-09-16 2021-08-24 Oppo广东移动通信有限公司 传输速率控制方法及终端、计算机存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102255649A (zh) * 2011-07-25 2011-11-23 成都林海电子有限责任公司 一种卫星移动通信地面站系统
CN103733540A (zh) * 2011-08-16 2014-04-16 三星电子株式会社 用于在波束成形的无线通信系统中支持多天线传输的装置和方法
CN104620551A (zh) * 2012-04-30 2015-05-13 三星电子株式会社 用于具有大量天线的无线系统中的控制信道波束管理的装置和方法
WO2015130132A1 (ko) * 2014-02-28 2015-09-03 삼성전자주식회사 무선 통신 시스템에서 빔 영역을 확장하기 위한 방법 및 장치
US20160080060A1 (en) * 2014-09-16 2016-03-17 Mediatek Inc. Channel State Information Collection for Wireless Communication System with Beamforming
WO2016055003A1 (en) * 2014-10-07 2016-04-14 Mediatek Inc. Beam administration methods for cellualr or wireless networks

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101155392B (zh) * 2006-09-28 2010-09-08 大唐移动通信设备有限公司 高速分组接入中获取调度控制信息的方法、基站和用户终端
JP2009232256A (ja) * 2008-03-24 2009-10-08 Toshiba Corp 基地局、無線通信方法および通信プログラム
WO2010127026A1 (en) * 2009-04-28 2010-11-04 Futurewei Technologies, Inc. System and method for coordinating electronic devices in a wireless communications system
WO2010148536A1 (zh) * 2009-06-23 2010-12-29 上海贝尔股份有限公司 协同多点传输系统中的传输方案确定方法和设备
CN102651910A (zh) * 2011-02-24 2012-08-29 华为技术有限公司 一种管理用户设备的方法及装置
CN102917463B (zh) * 2011-08-02 2015-04-08 华为技术有限公司 传输调度信息的方法、基站和用户设备
US8953478B2 (en) * 2012-01-27 2015-02-10 Intel Corporation Evolved node B and method for coherent coordinated multipoint transmission with per CSI-RS feedback
WO2013184613A2 (en) * 2012-06-04 2013-12-12 Interdigital Patent Holdings, Inc. Communicating channel state information (csi) of multiple transmission points
US9935699B2 (en) * 2012-06-22 2018-04-03 Samsung Electronics Co., Ltd. Communication method and apparatus using beamforming in a wireless communication system
JP6121118B2 (ja) * 2012-09-07 2017-04-26 株式会社Nttドコモ 無線通信方法、ユーザ端末、無線基地局及び無線通信システム
JP2014131201A (ja) * 2012-12-28 2014-07-10 Ntt Docomo Inc 無線基地局、ユーザ端末、無線通信方法、及び無線通信システム
WO2015032101A1 (zh) * 2013-09-09 2015-03-12 华为技术有限公司 一种波束追踪的方法、装置和系统
WO2016044994A1 (zh) * 2014-09-23 2016-03-31 华为技术有限公司 波束配置方法、基站及用户设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102255649A (zh) * 2011-07-25 2011-11-23 成都林海电子有限责任公司 一种卫星移动通信地面站系统
CN103733540A (zh) * 2011-08-16 2014-04-16 三星电子株式会社 用于在波束成形的无线通信系统中支持多天线传输的装置和方法
CN104620551A (zh) * 2012-04-30 2015-05-13 三星电子株式会社 用于具有大量天线的无线系统中的控制信道波束管理的装置和方法
WO2015130132A1 (ko) * 2014-02-28 2015-09-03 삼성전자주식회사 무선 통신 시스템에서 빔 영역을 확장하기 위한 방법 및 장치
US20160080060A1 (en) * 2014-09-16 2016-03-17 Mediatek Inc. Channel State Information Collection for Wireless Communication System with Beamforming
WO2016055003A1 (en) * 2014-10-07 2016-04-14 Mediatek Inc. Beam administration methods for cellualr or wireless networks

Also Published As

Publication number Publication date
CN107888244A (zh) 2018-04-06
CN107888244B (zh) 2021-08-20

Similar Documents

Publication Publication Date Title
US11425576B2 (en) System and method for millimeter wave communications
US10135512B2 (en) System and method for millimeter wave communications
JP6174110B2 (ja) 移動通信システム、通信装置、及びd2d端末
US10980031B2 (en) Collaborative sidelink interference management with beam selection technique
EP2326119B1 (en) Method, device and user equipment for transmitting multi-cell scheduling information
WO2016143238A1 (ja) カバレッジ制御方法、基地局装置、無線通信システムおよび基地局制御プログラムを格納した非一時的なコンピュータ可読媒体
CN110087332A (zh) 基站、用户设备及其通信方法
US11337124B2 (en) First base station, second base station, terminal apparatus, method, program, and recording medium
EP2464159B1 (en) Method, system and device for reporting uplink pilot interference
CN105191401A (zh) 通信系统中确定具有双连接的用户设备的移动性的方法
US20220039133A1 (en) Centralized intercell interference coordination
WO2020145008A1 (ja) 通信装置、通信制御装置、通信方法、及び通信制御方法
WO2018059582A1 (zh) 一种无线通信系统中实现用户面功能增强的方法和装置
WO2022249820A1 (ja) 通信制御方法、無線端末、基地局、及びris装置
KR20210091637A (ko) 무선 통신 시스템에서 링크 실패를 처리하기 위한 장치 및 방법
WO2022239362A1 (ja) 基地局、通信装置及び通信方法
WO2022080059A1 (ja) 基地局装置、端末装置、通信システム及び通信方法
WO2022249821A1 (ja) 通信制御方法、無線端末、及び基地局
WO2024029517A1 (ja) 中継装置
US20230354090A1 (en) Systems and methods for dynamic carrier aggregation cell relationship management
WO2022244373A1 (ja) 基地局、通信制御装置、通信方法及び通信制御方法
WO2018059563A1 (zh) 一种实现在多天线系统中进行测量的装置和方法
KR101361200B1 (ko) 이동 통신 시스템 및 그 시스템에서의 전력 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855032

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17855032

Country of ref document: EP

Kind code of ref document: A1