WO2018059563A1 - 一种实现在多天线系统中进行测量的装置和方法 - Google Patents

一种实现在多天线系统中进行测量的装置和方法 Download PDF

Info

Publication number
WO2018059563A1
WO2018059563A1 PCT/CN2017/104603 CN2017104603W WO2018059563A1 WO 2018059563 A1 WO2018059563 A1 WO 2018059563A1 CN 2017104603 W CN2017104603 W CN 2017104603W WO 2018059563 A1 WO2018059563 A1 WO 2018059563A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
information
measurement instruction
terminal
base station
Prior art date
Application number
PCT/CN2017/104603
Other languages
English (en)
French (fr)
Inventor
张冬英
李楠
黄河
胡留军
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018059563A1 publication Critical patent/WO2018059563A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present disclosure relates to the field of wireless communication technologies, and more particularly to an apparatus and method for implementing measurements in a multi-antenna system.
  • the C-RAN Centralized, Cooperative, Cloud & Clean-Radio Access Network
  • the C-RAN Centralized, Cooperative, Cloud & Clean-Radio Access Network
  • BBU Base Band Unit
  • Radio Remote Unit Radio Remote Unit
  • Physical layer, layer 2 including sub-layers such as MAC (Medium Access Control), RLC (Radio Link Control), PDCP (Packet Data Convergence Protocol), and Layer 3
  • RRC Radio Resource Control
  • the pre-transmission interface between the BBU and the RRU uses CPRI (Common Public Radio Interface). Since the CPRI interface transmits IQ signals processed by physical layer coding and modulation, the CPRI interface has different transmission delays and bandwidths. Big request.
  • CPRI Common Public Radio Interface
  • the functions of the BBU and the RRU need to be redefined, for example, the functional part of the user plane of the layer 2 is placed in the BBU, and the part is placed in the RRU.
  • the BBU and RRU after the re-planning function are named CU (Centralized Unit) and DU (Distributed Unit Distribution Unit).
  • the schematic is shown in Figure 1.
  • the distribution unit may also be referred to as a remote unit.
  • Future communication systems aiming at seamless wide-area coverage, large-capacity hotspots, low-power large-scale connections, and low-reliability and high-reliability will inevitably adopt high-band and large-bandwidth, and high-band due to its propagation characteristics.
  • the coverage is often small, so large-scale antenna array MM (massive MIMO) is often used to improve link gain and improve coverage.
  • Large-scale antenna arrays can greatly improve link performance by adopting beam forming technology, which naturally achieves the purpose of improving coverage and capacity, and is considered to be an effective way to improve the transmission rate of modern wireless communication systems.
  • the number of antenna elements of a large-scale antenna array can reach hundreds or even thousands, and the common channel and the dedicated channel may be based on beam coverage.
  • the measurement is very important for the mobility management of the communication system.
  • the traditional measurement often relies on the control signal of the control plane RRC (Radio Resource Control), taking the handover as an example, from the measurement configuration, the handover trigger, the target cell connection.
  • RRC Radio Resource Control
  • Incoming and ingress require control signaling to implement, and the time required for handover often reaches 100 milliseconds or even seconds.
  • the traditional method of completely relying on control plane signaling for measurement cannot necessarily meet the goals and requirements of large capacity or low delay and high reliability of future wireless communication systems.
  • An apparatus for performing measurement in a multi-antenna system comprising:
  • a measurement instruction generating module configured to generate a measurement instruction according to the beam identification information and the information to be tested
  • a measurement instruction sending module configured to send the measurement instruction to the terminal in a user plane signaling manner
  • the measurement result receiving module is set to receive the measurement quantity sent by the terminal.
  • An apparatus for performing measurement in a multi-antenna system comprising:
  • a measurement instruction receiving module configured to receive a measurement instruction
  • the processing module is configured to parse the beam identification information and the information to be tested included in the measurement instruction, and measure the beam according to the beam identification information and the information to be tested to obtain a measurement quantity;
  • the measurement quantity sending module is configured to send the obtained measurement quantity to the base station in a user plane signaling manner.
  • a base station comprising means for performing measurements in a multi-antenna system, the apparatus comprising:
  • a measurement instruction generating module configured to generate a measurement instruction according to the beam identification information and the information to be tested
  • a measurement instruction sending module configured to send the measurement instruction to the terminal in a user plane signaling manner
  • the measurement result receiving module is set to receive the measurement quantity sent by the terminal.
  • a terminal comprising means for performing measurements in a multi-antenna system, the apparatus comprising:
  • a measurement instruction receiving module configured to receive a measurement instruction
  • the processing module is configured to parse the beam identification information and the information to be tested included in the measurement instruction, and measure the beam according to the beam identification information and the information to be tested to obtain a measurement quantity;
  • the measurement quantity sending module is configured to send the obtained measurement quantity to the base station in a user plane signaling manner.
  • a wireless communication system comprising: a measurement instruction generation module, a measurement instruction transmission module, a measurement result receiving module, and a measurement instruction receiving module, a processing module, and a measurement quantity sending module, which are disposed at the base station;
  • the measurement instruction generating module is configured to generate a measurement instruction according to the beam identification information and the information to be tested;
  • the measurement instruction sending module is configured to send the measurement instruction to the terminal in a user plane signaling manner
  • a measurement result receiving module configured to receive a measurement quantity sent by the terminal
  • the measurement instruction receiving module is configured to receive a measurement instruction
  • the processing module is configured to parse the beam identification information and the information to be tested included in the measurement instruction, and measure the beam according to the beam identification information and the information to be tested to obtain a measurement quantity;
  • the measurement quantity sending module is configured to send the obtained measurement quantity to the base station in a user plane signaling manner.
  • a method of performing measurements in a multi-antenna system comprising:
  • the measurement instruction is sent to the terminal in a user plane signaling manner, and receives the measurement quantity sent by the terminal.
  • a method for performing measurement in a multi-antenna system comprising:
  • the obtained measurement quantity is sent to the base station in user plane signaling mode.
  • a method of performing measurements in a multi-antenna system, wherein the method is applied to a wireless communication system including:
  • the base station generates a measurement instruction according to the beam identification information and the information to be tested;
  • the base station sends the measurement instruction to the terminal in a user plane signaling manner
  • the terminal receives the measurement instruction, and parses out the beam identification information and the information to be tested included in the measurement instruction, and measures the beam according to the beam identification information and the information to be tested to obtain a measurement quantity;
  • the measurement quantity obtained by the terminal is sent to the base station by means of user plane signaling;
  • the base station receives the measurement amount sent by the terminal.
  • a storage medium arranged to store program code for performing the method of any of the above.
  • the foregoing solution provides a device and a method for performing measurement on a user plane in a wireless communication system. Since the related signaling indicating the measurement is indicated by a user plane signaling manner, a relatively large number of letters are saved compared with the traditional control plane mode. The overhead, which in turn reduces the delay in beam switching and mobility management, can meet the needs of future wireless communication systems.
  • FIG. 1 is a schematic diagram of a network architecture in a future communication system
  • FIG. 2 is a schematic structural diagram of an apparatus for performing measurement in a multi-antenna system according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a user plane of LTE according to an embodiment of the present disclosure.
  • FIG. 4 is a flowchart of a method for performing measurement in a multi-antenna system according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a user plane and a beam distribution of a CU-DU network architecture (the MAC is located in a CU) according to the application example 1 of the present disclosure;
  • FIG. 6 is a schematic diagram of a user plane and a beam distribution of a CU-DU network architecture (MAC is located in a DU) according to Application Example 2 of the present disclosure;
  • FIG. 7 is a schematic diagram of user plane and beam distribution in an integrated base station network architecture according to Application Example 3 of the present disclosure
  • FIG. 8 is a logical channel identifier LCID value included in measurement signaling in an application example of the present disclosure.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • FIG. 2 a schematic structural diagram of an apparatus for performing measurement in a multi-antenna system according to an embodiment of the present disclosure, where the apparatus is disposed at a base station, includes:
  • a measurement instruction generating module configured to generate a measurement instruction according to the beam identification information and the information to be tested
  • a measurement instruction sending module configured to send the measurement instruction to the terminal in a user plane signaling manner
  • the measurement result receiving module is set to receive the measurement quantity sent by the terminal.
  • the measurement instruction generating module generating, by the measurement instruction generating module, the measurement instruction according to the beam identification information, comprising: generating a measurement instruction according to link information between at least a pair of beams on the base station side and the terminal side.
  • the measurement instruction generating module generates the measurement instruction according to the beam identification information, including: according to the link between the plurality of beams on the corresponding base station side and one beam on the terminal side, and/or multiple beams and base stations on the corresponding terminal side.
  • the link information between one beam on the side generates a measurement instruction.
  • the measurement instruction generating module generates a measurement instruction according to the information to be measured, including: generating a measurement instruction according to the measurement quantity to be measured, and/or the measurement dynamic requirement of the quantity to be measured.
  • the measurement result receiving module receives the measurement quantity sent by the terminal, and includes: one of channel quality information of the receiving link, power information of the beam of the base station side, power information of the beam of the terminal side, and beam direction information. Combination of two or more.
  • the measurement quantity in the actual application may also be other content, which is not limited in this embodiment.
  • the embodiment further provides an apparatus for performing measurement in a multi-antenna system, the apparatus being disposed at the terminal, including:
  • a measurement instruction receiving module configured to receive a measurement instruction
  • the processing module is configured to parse the beam identification information and the information to be tested included in the measurement instruction, and measure the beam according to the beam identification information and the information to be tested to obtain a measurement quantity;
  • the measurement quantity sending module is configured to send the obtained measurement quantity to the base station in a user plane signaling manner.
  • the processing module performs measurement on the beam according to the information to be tested, including: measuring, according to the to-be-measured quantity included in the information to be tested, or according to the information included in the information to be tested.
  • the dynamics of the amount to be measured and the amount to be measured require that the beam be measured to obtain a measured amount.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • This embodiment provides a base station, which implements measurements in a multi-antenna system, including:
  • a measurement instruction generating module configured to generate a measurement instruction according to the beam identification information and the information to be tested
  • a measurement instruction sending module configured to send the measurement instruction to the terminal in a user plane signaling manner
  • the measurement result receiving module is set to receive the measurement quantity sent by the terminal.
  • the measurement instruction generating module generating, by the measurement instruction generating module, the measurement instruction according to the beam identification information, comprising: generating a measurement instruction according to link information between at least a pair of beams on the base station side and the terminal side.
  • the measurement instruction generating module generates the measurement instruction according to the beam identification information, including: according to the link between the plurality of beams on the corresponding base station side and one beam on the terminal side, and/or multiple beams and base stations on the corresponding terminal side.
  • the link information between one beam on the side generates a measurement instruction.
  • the measurement instruction generating module generates a measurement instruction according to the information to be measured, including: generating a measurement instruction according to the measurement quantity to be measured, and/or the measurement dynamic requirement of the quantity to be measured.
  • the measurement result receiving module receives the measurement quantity sent by the terminal, including: channel quality of the receiving link.
  • the measurement object is a downlink between the base station side and the terminal side
  • the beam identification information should include at least link information between the pair of beams on the base station side and the terminal side; and may correspond to multiple beams on the base station side and one beam on the terminal side.
  • the measurement quantity includes: channel quality information of the link; power information of the base station side and/or the terminal side beam, directionality information, etc., of course, the measurement quantity may also be other content, and the exemplary may be set according to actual needs. .
  • the embodiment further provides a terminal for performing measurement in a multi-antenna system, including:
  • a measurement instruction receiving module configured to receive a measurement instruction
  • the processing module is configured to parse the beam identification information and the information to be tested included in the measurement instruction, and measure the beam according to the beam identification information and the information to be tested to obtain a measurement quantity;
  • the measurement quantity sending module is configured to send the obtained measurement quantity to the base station in a user plane signaling manner.
  • the processing module performs measurement on the beam according to the information to be tested, including: measuring, according to the to-be-measured quantity included in the information to be tested, or according to the information included in the information to be tested.
  • the dynamics of the amount to be measured and the amount to be measured require that the beam be measured to obtain a measured amount.
  • the embodiment further provides a wireless communication system, where the wireless communication system includes: a measurement instruction generation module, a measurement instruction transmission module, a measurement result receiving module, and a measurement instruction receiving module and a processing module disposed in the terminal. Measuring quantity transmitting module;
  • the measurement instruction generating module is configured to generate a measurement instruction according to the beam identification information and the information to be tested;
  • the measurement instruction sending module is configured to send the measurement instruction to the terminal in a user plane signaling manner
  • a measurement result receiving module configured to receive a measurement quantity sent by the terminal
  • the measurement instruction receiving module is configured to receive a measurement instruction
  • the processing module is configured to parse the beam identification information and the information to be tested included in the measurement instruction, and measure the beam according to the beam identification information and the information to be tested to obtain a measurement quantity;
  • the measurement quantity sending module is configured to send the obtained measurement quantity to the base station in a user plane signaling manner.
  • the measurement instruction generating module generates the measurement instruction according to the beam identification information, including: generating a measurement instruction according to the link information between the pair of beams on the base station side and the terminal side.
  • the measurement instruction generating module generates the measurement instruction according to the beam identification information, including: according to the link between the plurality of beams on the corresponding base station side and one beam on the terminal side, and/or multiple beams and base stations on the corresponding terminal side.
  • the link information between one beam on the side generates a measurement instruction.
  • the measurement instruction generating module generates a measurement instruction according to the information to be tested, including: generating a measurement instruction according to the measurement quantity to be measured, and/or the measurement dynamic requirement of the quantity to be measured; correspondingly,
  • the processing module performs measurement on the beam according to the information to be tested, including: measuring the beam according to the to-be-measured quantity included in the information to be tested, or according to the to-be-measured quantity included in the information to be tested and
  • the dynamics of the amount to be measured requires measurement of the beam to obtain a measured amount.
  • the measurement result receiving module receives the measurement quantity sent by the terminal, and includes: one of channel quality information of the receiving link, power information of the beam of the base station side, power information of the beam of the terminal side, and beam direction information. Combination of two or more.
  • the measurement instruction of the embodiment of the present disclosure is sent by using a user plane signaling manner, and the terminal is instructed to measure the downlink between the base station and the terminal;
  • the user plane signaling mode refers to a control indication information, and the control information is used by the user.
  • the plane signaling mode is transmitted on the transmitting end and the receiving end, and may be layer 2 signaling or physical layer control signaling; the user plane signaling is sent by the base station, and the terminal performs reception; as can be seen, the embodiment of the present disclosure implements The user plane function of the related LTE is enhanced, and the user plane structure diagram of the exemplary LTE is as shown in FIG. 3. Referring to FIG.
  • the measurement instruction provided by the embodiment of the present disclosure may be transmitted at each layer of the user plane protocol, that is, may be transmitted at the MAC (Medium Access Control) layer of the user plane, or may be in the RLC (The Radio Link Control (radio link control) layer performs transmission, and may also be transmitted at the PDCP (Packet Data Convergence Protocol) layer, or may also be transmitted at the PHY (physical layer).
  • the Radio Link Control (radio link control) layer performs transmission, and may also be transmitted at the PDCP (Packet Data Convergence Protocol) layer, or may also be transmitted at the PHY (physical layer).
  • PDCP Packet Data Convergence Protocol
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • a flowchart of a method for performing measurement in a multi-antenna system includes the following steps:
  • Step 401 Generate a measurement instruction according to the beam identification information and the information to be tested.
  • Step 402 Send the measurement instruction to the terminal in a user plane signaling manner, and receive the measurement quantity sent by the terminal.
  • the generating the measurement instruction according to the beam identification information includes: generating a measurement instruction according to link information between at least a pair of beams on the base station side and the terminal side.
  • the generating the measurement instruction according to the beam identification information includes: connecting, according to the multiple beam of the corresponding base station side, a link between one beam of the terminal side, and/or a plurality of beams on the terminal side and a beam of the base station side The link information between the two generates measurement instructions.
  • the generating the measurement instruction according to the information to be tested includes: generating a measurement instruction according to the measurement dynamic quantity requirement to be measured, and/or the measurement quantity to be measured.
  • the measurement quantity sent by the receiving terminal includes one or more types of channel quality information of the receiving link, power information of the beam of the base station side, power information of the beam of the terminal side, and beam directivity information. combination.
  • the measurement object is a downlink between the base station side and the terminal side
  • the beam identification information should include at least link information between the pair of beams on the base station side and the terminal side; and may correspond to multiple beams on the base station side and one beam on the terminal side.
  • the measurement quantity includes: channel quality information of the link; power information of the base station side and/or the terminal side beam, directionality information, etc., of course, the measurement quantity may also be other content, and may be set according to actual needs.
  • the embodiment further provides a method for implementing measurement in a multi-antenna system, the method being applied to a terminal, and a package Including the following steps:
  • Step 501 Receive a measurement instruction, parse the beam identification information and the information to be tested included in the measurement instruction, and measure the beam according to the beam identification information and the information to be tested to obtain a measurement quantity;
  • Step 502 The obtained measurement quantity is sent to the base station in a user plane signaling manner.
  • the measuring the beam according to the beam identification information and the information to be tested, and obtaining the measurement quantity comprising: measuring the beam according to the to-be-measured quantity included in the information to be tested, or according to The amount of the to-be-measured included in the information to be measured and the dynamics of the amount to be measured require measurement of the beam to obtain a measurement amount.
  • the embodiment further provides a method for implementing measurement in a multi-antenna system, the method being applied to a wireless communication system, including:
  • the base station generates a measurement instruction according to the beam identification information and the information to be tested;
  • the base station sends the measurement instruction to the terminal in a user plane signaling manner
  • the terminal receives the measurement instruction, and parses out the beam identification information and the information to be tested included in the measurement instruction, and measures the beam according to the beam identification information and the information to be tested to obtain a measurement quantity;
  • the measurement quantity obtained by the terminal is sent to the base station by means of user plane signaling;
  • the base station receives the measurement amount sent by the terminal.
  • the base station generates a measurement instruction according to the information to be tested, including: the base station generates a measurement instruction according to the measurement quantity to be measured, and/or the measurement dynamic requirement of the quantity to be measured;
  • the measuring, by the terminal, the beam according to the information to be tested includes: the terminal measuring the beam according to the to-be-measured quantity included in the information to be tested, or according to the to-be-measured quantity included in the information to be tested and
  • the dynamics of the amount to be measured requires measurement of the beam to obtain a measured amount.
  • the embodiment of the present disclosure enhances the function of the user plane of the LTE system, and the base station uses the user plane signaling manner to instruct the terminal to perform measurement, and the terminal performs measurement and reporting according to the indication, and the base station receives the measurement report result of the terminal, compared to the control signal.
  • Application examples of the present disclosure can be used in a variety of network architectures, such as an integrated base station architecture, a CU-DU separate network architecture (suitable for various partitioning schemes).
  • the apparatus and method of the embodiments of the present disclosure are applied to a network architecture in which a MAC layer is located in a CU, and measurement instructions are transmitted at the MAC layer.
  • This example takes the network architecture of the CU-DU as an example.
  • the protocol architecture diagram of the exemplary user plane is as shown in FIG. 5, in which the MAC (Medium Access Control) layer of the user plane and the above protocol layer are located in the CU, and the physical layer and The radio related function is located in the DU (also known as TRP, Transmission and reception Point), where the CU belongs to one or more DUs, and each DU may have one or more beams for data transmission.
  • the DU also known as TRP, Transmission and reception Point
  • Step 001 Add a control indication information to the MAC layer of the LTE system in the user plane of the base station side. It may also be referred to as a measurement instruction.
  • the measurement instruction is sent in the manner of MAC CE (Control Element) signaling, and is used to indicate (terminal) to measure the downlink between the base station and the terminal, and the measurement instruction
  • MAC CE Control Element
  • the measurement instruction is sent in the manner of MAC CE (Control Element) signaling, and is used to indicate (terminal) to measure the downlink between the base station and the terminal, and the measurement instruction
  • At least the link between the pair of beams on the base station side and the terminal side may correspond to a link between multiple beams on the base station side and one beam on the terminal side, or may correspond to multiple beams on the terminal side and one beam on the base station side. link;
  • the exemplary MAC CE signaling includes at least one of the following information: 1) beam identification information, such as a measurement reference signal, including a CSI-RS (Channel State Measurement Information Pilot) reference signal; 2) a quantity to be measured, to be measured The measured quantity may be a CQI (Channel Quality Indicator), a RSRP (Reference Signal Receiving Power), a direction information of a base station side beam, a direction information of a terminal side beam, and the like; the amount to be measured may also be Make other settings; 3) Measurement dynamic requirements of the quantity to be measured, such as cycle, non-period, etc.
  • beam identification information such as a measurement reference signal, including a CSI-RS (Channel State Measurement Information Pilot) reference signal
  • the measured quantity may be a CQI (Channel Quality Indicator), a RSRP (Reference Signal Receiving Power), a direction information of a base station side beam, a direction information of a terminal side beam, and the like; the amount to be
  • the header/subheader of the added MAC CE signaling may use the portion of the currently reserved LCID (logical channel identify) bit (bit) as the Beam measurement command.
  • LCID logical channel identify
  • additional extended LCID bit to Beam measurement Command MAC CE signaling an example is shown in the table in Figure 8, in Figure 8, 01011-10110 is the reserved LCID (Reserved LCID), Xxxxx is newly added LCID, Xxxxx digits can not be limited to the current 5 digits.
  • Step 002 The terminal side performs related measurement according to the received measurement signaling, and reports according to the measurement signaling.
  • Step 003 The base station receives the beam related measurement result reported by the terminal side.
  • the apparatus and method of the embodiments of the present disclosure are applied to a network architecture in which a MAC layer is located in a DU, and measurement instructions are transmitted at the MAC layer.
  • the protocol architecture diagram of the exemplary user plane is as shown in FIG. 6, where the RLC (Radio Link Control) layer of the user plane and the above protocol layer are located in the CU, and the MAC layer is processed below.
  • the function is located in the DU (also known as TRP, Transmission and reception Point), where the CU belongs to one or more DUs, and each DU can have one or more beams for data transmission.
  • Step 001 In the user plane of the base station side, for example, in a MAC layer similar to the LTE system, adding a control information, that is, measurement signaling, the measurement signaling is sent in a manner similar to MAC CE signaling, and is used to indicate the terminal to the base station. And measuring the downlink between the terminal and the terminal.
  • the measurement signaling corresponds to at least a link between the pair of beams on the base station side and the terminal side, and may correspond to a link between multiple beams on the base station side and a beam on the terminal side, or may correspond to A link between a plurality of beams on the terminal side and a beam on the base station side.
  • the exemplary MAC CE signaling includes at least one of the following information: 1) beam identification information, such as a measurement reference signal, including a CSI-RS (Channel State Measurement Information Pilot) reference signal; 2) a quantity to be measured, to be measured
  • the measured quantity may be a CQI (Channel Quality Indicator), a RSRP (Reference Signal Receiving Power), a direction information of a base station side beam, a direction information of a terminal side beam, and the like; the amount to be measured may also be Make other settings; 3) measurement dynamic requirements of the quantity to be measured, such as period, aperiodic Wait.
  • the header/subheader of the added MAC CE signaling may use the portion of the currently reserved LCID (logical channel identify) bit as the LCID of the Beam Measurement Command; or The additional LCID bit is extended to the Beam measurement Command MAC CE signaling, an example of which is shown in the table in Figure 8.
  • Step 002 The terminal side performs related measurement according to the received measurement signaling, and reports according to the measurement signaling.
  • Step 003 The base station receives the beam related measurement result reported by the terminal side.
  • the apparatus and method of the embodiments of the present disclosure are applied to a network architecture of an integrated base station, and measurement instructions are transmitted at the MAC layer.
  • the protocol architecture diagram of the exemplary user plane is as shown in FIG. 7.
  • a control information that is, measurement signaling
  • the measurement signaling is sent in a MAC CE-like manner to indicate the terminal to the base station.
  • the measurement signaling corresponds to at least a link between the pair of beams on the base station side and the terminal side, and may correspond to a link between multiple beams on the base station side and a beam on the terminal side, or may correspond to a link between a plurality of beams on the terminal side and a beam on the base station side;
  • the exemplary MAC CE signaling includes at least one of the following information: 1) beam identification information, such as a measurement reference signal, including a CSI-RS (Channel State Measurement Information Pilot) reference signal; 2) a quantity to be measured, to be measured The measured quantity may be a CQI (Channel Quality Indicator), a RSRP (Reference Signal Receiving Power), a direction information of a base station side beam, a direction information of a terminal side beam, and the like; the amount to be measured may also be Make other settings; 3) Measurement dynamic requirements of the quantity to be measured, such as cycle, non-period, etc.
  • beam identification information such as a measurement reference signal, including a CSI-RS (Channel State Measurement Information Pilot) reference signal
  • the measured quantity may be a CQI (Channel Quality Indicator), a RSRP (Reference Signal Receiving Power), a direction information of a base station side beam, a direction information of a terminal side beam, and the like; the amount to be
  • the header/subheader of the added MAC CE signaling may use the portion of the currently reserved LCID (logical channel identify) bit as the LCID of the Beam Measurement Command; or Additional extended LCID bit to Beam measurement Command MAC CE signaling, an example is shown in Figure 8.
  • Step 002 The terminal side performs related measurement according to the received measurement signaling, and reports according to the measurement signaling.
  • Step 003 The base station receives the beam related measurement result reported by the terminal side.
  • the apparatus and method of the embodiments of the present disclosure are applied to a network architecture in which a MAC layer is located in a CU, and measurement instructions are transmitted at a physical layer.
  • the protocol architecture diagram of the exemplary user plane is still as shown in FIG. 5, wherein the MAC (Medium Access Control) layer of the user plane and the above protocol layer are located in the CU, and the physical layer and the radio frequency.
  • Related functions are located in the DU (also known as TRP, Transmission and reception Point), where the CU belongs to a subordinate Or multiple DUs, each of which may have one or more beams for data transmission.
  • Step 001 In the user plane of the base station side, in the PHY layer of the LTE system, adding a control indication information, which may also be referred to as a measurement instruction, is set to instruct the terminal to measure the downlink between the base station and the terminal, where
  • the measurement command corresponds to at least a link between the pair of beams on the base station side and the terminal side, and may correspond to a link between a plurality of beams on the base station side and a beam on the terminal side, or may correspond to multiple beams on the terminal side and one beam on the base station side.
  • the link between corresponds to at least a link between the pair of beams on the base station side and the terminal side, and may correspond to a link between a plurality of beams on the base station side and a beam on the terminal side, or may correspond to multiple beams on the terminal side and one beam on the base station side.
  • the measurement instruction of the exemplary physical layer transmission includes at least one of the following information: 1) beam identification information, such as a measurement reference signal, including a CSI-RS (Channel State Measurement Information Pilot) reference signal; 2) a quantity to be measured The amount to be measured may be CQI (Channel Quality Indicator), RSRP (Reference Signal Receiving Power), direction information of the base station side beam, direction information of the terminal side beam, and the like; Other settings can also be made; 3) Dynamic measurement requirements of the quantity to be measured, such as period, aperiodic, etc.
  • beam identification information such as a measurement reference signal, including a CSI-RS (Channel State Measurement Information Pilot) reference signal
  • CSI-RS Channel State Measurement Information Pilot
  • the amount to be measured may be CQI (Channel Quality Indicator), RSRP (Reference Signal Receiving Power), direction information of the base station side beam, direction information of the terminal side beam, and the like; Other settings can also be made; 3) Dynamic measurement requirements of the
  • Step 002 The terminal side performs related measurement according to the received measurement instruction, and performs reporting according to the measurement instruction;
  • Step 003 The base station receives the beam related measurement result reported by the terminal side.
  • the apparatus and method for performing measurement in a multi-antenna system provided by the embodiments of the present disclosure, since the related signaling indicating the measurement is indicated by the user plane signaling manner, a lot of signaling is saved compared with the traditional control plane mode.
  • the overhead which in turn reduces the delay in beam switching and mobility management, can meet the needs of future wireless communication systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种实现在多天线系统中进行测量的装置和方法,所述装置设置于基站,包括:测量指令生成模块,设置为根据beam识别信息及待测信息生成测量指令;测量指令发送模块,设置为将所述测量指令以用户面信令方式发送给终端;测量结果接收模块,设置为接收终端发送的测量量。或者所述装置设置于终端,包括:测量指令接收模块,设置为接收测量指令;处理模块,设置为解析出所述测量指令包括的beam识别信息及待测信息,根据所述beam识别信息及待测信息对所述beam进行测量,获得测量量;测量量发送模块,设置为将获得的测量量以用户面信令方式发送给基站。本公开测量指令通过用户面信令方式发送,相对传统的通过控制面方式,节省了很多信令开销。

Description

一种实现在多天线系统中进行测量的装置和方法 技术领域
本公开涉及无线通信技术领域,更具体地,涉及一种实现在多天线系统中进行测量的装置和方法。
背景技术
4G中,C-RAN(Centralized,Cooperative,Cloud&Clean-Radio Access Network)架构一般由集中BBU(Base Band Unit,基带单元)、拉远RRU(Radio Remote Unit,射频拉远单元)组成,而前者又由物理层,层二,包括MAC(Medium Access Control,媒体接入控制),RLC(Radio Link Control,无线链路控制),PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)等子层,以及层三,如RRC(Radio Resource Control,无线资源控制)等协议功能层构成。BBU、RRU间的前传接口采用CPRI(Common Public Radio Interface,通用公共无线电接口),由于CPRI接口传输的是经过物理层编码调制等处理后的IQ信号,CPRI接口对传输时延和带宽都有较大的要求。若未来空口速率提升到数十Gbps后,CPRI接口的流量需求将上升到Tbps级别,对网络部署成本和部署难度都带来了巨大的压力。因此,需要重新定义BBU和RRU的功能,比如将层二的用户面部分功能部分放在BBU、部分放在RRU。本文中对重新规划功能后的BBU和RRU分别命名为CU(Centralized Unit,集中单元)和DU(Distributed Unit分布单元)。示意图如附图1所示。其中分布单元也可以称为远端单元。
未来通信系统朝着无缝广域覆盖,大容量热点,低功耗的大量连接和低延迟的高可靠性等目标发展,必然会采用高频段、大带宽,而高频段由于其传播特性的原因,覆盖范围往往很小,因此大规模天线阵列MM(massive MIMO)往往被用来提升链路增益进而提升覆盖。大规模天线阵通过采用波束赋形(beam forming)技术,可以大大提升链路性能,自然达到提升覆盖和容量的目的,被认为是提高现代无线通信系统传输速率的一种有效方式。未来通信系统中大规模天线阵的天线单元数可达数百甚至上千根,公共信道及专用信道都可能是基于波束(beam)覆盖的。
测量对于通信系统移动性管理是非常重要的,传统的测量往往要借助控制面RRC(Radio Resource control,无线资源控制)的控制信令,以切换为例,从测量配置、切换触发、目标小区接入等都需要控制信令来实现,切换需要的时间往往达到百毫秒级甚至秒级。而对于未来的无线通信系统,传统的完全依靠控制面信令进行测量的方法必然不能达到未来无线通信系统大容量或者低时延高可靠的目标和要求。
发明内容
有鉴于此,本公开提供了以下方案。
一种实现在多天线系统中进行测量的装置,所述装置设置于基站,包括:
测量指令生成模块,设置为根据beam识别信息及待测信息生成测量指令;
测量指令发送模块,设置为将所述测量指令以用户面信令方式发送给终端;
测量结果接收模块,设置为接收终端发送的测量量。
一种实现在多天线系统中进行测量的装置,所述装置设置于终端,包括:
测量指令接收模块,设置为接收测量指令;
处理模块,设置为解析出所述测量指令包括的beam识别信息及待测信息,根据所述beam识别信息及待测信息对所述beam进行测量,获得测量量;
测量量发送模块,设置为将获得的测量量以用户面信令方式发送给基站。
一种基站,包括实现在多天线系统中进行测量的装置,所述装置包括:
测量指令生成模块,设置为根据beam识别信息及待测信息生成测量指令;
测量指令发送模块,设置为将所述测量指令以用户面信令方式发送给终端;
测量结果接收模块,设置为接收终端发送的测量量。
一种终端,包括实现在多天线系统中进行测量的装置,所述装置包括:
测量指令接收模块,设置为接收测量指令;
处理模块,设置为解析出所述测量指令包括的beam识别信息及待测信息,根据所述beam识别信息及待测信息对所述beam进行测量,获得测量量;
测量量发送模块,设置为将获得的测量量以用户面信令方式发送给基站。
一种无线通信系统,所述无线通信系统包括:设置于基站的测量指令生成模块、测量指令发送模块、测量结果接收模块,以及设置于终端的测量指令接收模块、处理模块、测量量发送模块;
所述测量指令生成模块,设置为根据beam识别信息及待测信息生成测量指令;
所述测量指令发送模块,设置为将所述测量指令以用户面信令方式发送给终端;
测量结果接收模块,设置为接收终端发送的测量量;
所述测量指令接收模块,设置为接收测量指令;
所述处理模块,设置为解析出所述测量指令包括的beam识别信息及待测信息,根据所述beam识别信息及待测信息对所述beam进行测量,获得测量量;
所述测量量发送模块,设置为将获得的测量量以用户面信令方式发送给基站。
一种实现在多天线系统中进行测量的方法,所述方法应用于基站,包括:
根据beam识别信息及待测信息生成测量指令;
将所述测量指令以用户面信令方式发送给终端,并接收终端发送的测量量。
一种实现在多天线系统中进行测量的方法,所述方法应用于终端,包括:
接收测量指令,解析出所述测量指令包括的beam识别信息及待测信息,根据所述beam识别信息及待测信息对所述beam进行测量,获得测量量;
将获得的测量量以用户面信令方式发送给基站。
一种实现在多天线系统中进行测量的方法,其中,所述方法应用于无线通信系统,包括:
基站根据beam识别信息及待测信息生成测量指令;
基站将所述测量指令以用户面信令方式发送给终端;
终端接收测量指令,并解析出所述测量指令包括的beam识别信息及待测信息,根据所述beam识别信息及待测信息对所述beam进行测量,获得测量量;
终端将获得的测量量以用户面信令方式发送给基站;
基站接收终端发送的测量量。
一种存储介质,设置为存储程序代码,所述程序代码用于执行上述任一项所述的方法。
上述方案提供了一种无线通信系统中在用户面进行测量的装置及方法,由于指示测量的相关信令是通过用户面信令方式进行指示的,相对传统的通过控制面方式,节省了很多信令开销,进而降低了beam切换和移动性管理过程中的时延,从而可以满足未来无线通信系统的需求。
附图说明
图1为未来通信系统中网络架构示意图;
图2为本公开实施例的实现在多天线系统中进行测量的装置结构示意图;
图3为本公开实施例中的LTE的用户面结构示意图;
图4为本公开实施例的实现在多天线系统中进行测量的方法流程图;
图5为本公开应用实例1的CU-DU网络架构下(MAC位于CU中)的用户面及beam分布示意图;
图6为本公开应用实例2的CU-DU网络架构下(MAC位于DU中)的用户面及beam分布示意图;
图7为本公开应用实例3的一体化基站网络架构下的用户面及beam分布示意图;
图8为本公开应用实例中测量信令所包括的逻辑信道标识LCID值。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,下文中将结合附图对本公开的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
为了方便描述,下面以LTE系统为例进行描述,但是本公开实施例不限于LTE系统。
实施例一:
参照图2所示,为本公开实施例的实现在多天线系统中进行测量的装置结构示意图,所述装置设置于基站,包括:
测量指令生成模块,设置为根据beam识别信息及待测信息生成测量指令;
测量指令发送模块,设置为将所述测量指令以用户面信令方式发送给终端;
测量结果接收模块,设置为接收终端发送的测量量。
所述测量指令生成模块根据beam识别信息生成测量指令,包括:根据至少基站侧和终端侧一对beam间的链路信息生成测量指令。
可选的,所述测量指令生成模块根据beam识别信息生成测量指令,包括:根据对应基站侧多个beam和终端侧的一个beam间的链路,和/或对应终端侧的多个beam和基站侧的一个beam间的链路信息生成测量指令。
可选的,所述测量指令生成模块根据待测信息生成测量指令,包括:根据待测量量,和/或待测量量的测量动态性要求生成测量指令。
可选的,所述测量结果接收模块接收终端发送的测量量,包括:接收链路的信道质量信息、基站侧beam的功率信息、终端侧beam的功率信息、beam方向性信息中的一种或者两种以上的组合。当然,实际应用中所述测量量也可以为其他的内容,本实施例对此不加以限定。
本实施例还提供了一种实现在多天线系统中进行测量的装置,所述装置设置在终端,包括:
测量指令接收模块,设置为接收测量指令;
处理模块,设置为解析出所述测量指令包括的beam识别信息及待测信息,根据所述beam识别信息及待测信息对所述beam进行测量,获得测量量;
测量量发送模块,设置为将获得的测量量以用户面信令方式发送给基站。
可选的,所述处理模块根据所述待测信息对beam进行测量,包括:根据所述待测信息中包括的待测量量对所述beam进行测量,或者根据所述待测信息中包括的待测量量及待测量量的动态性要求对所述beam进行测量,获得测量量。
实施例二:
本实施例提供了一种基站,实现在多天线系统中进行测量,包括:
测量指令生成模块,设置为根据beam识别信息及待测信息生成测量指令;
测量指令发送模块,设置为将所述测量指令以用户面信令方式发送给终端;
测量结果接收模块,设置为接收终端发送的测量量。
所述测量指令生成模块根据beam识别信息生成测量指令,包括:根据至少基站侧和终端侧一对beam间的链路信息生成测量指令。
可选的,所述测量指令生成模块根据beam识别信息生成测量指令,包括:根据对应基站侧多个beam和终端侧的一个beam间的链路,和/或对应终端侧的多个beam和基站侧的一个beam间的链路信息生成测量指令。
可选的,所述测量指令生成模块根据待测信息生成测量指令,包括:根据待测量量,和/或待测量量的测量动态性要求生成测量指令。
可选的,所述测量结果接收模块接收终端发送的测量量,包括:接收链路的信道质量 信息、基站侧beam的功率信息、终端侧beam的功率信息、beam方向性信息中的一种或者两种以上的组合。
测量对象为基站侧和终端侧间的下行链路,所述beam识别信息,应至少包括基站侧和终端侧一对beam间的链路信息;可以对应基站侧多个beam和终端侧的一个beam间的链路,也可以对应终端侧的多个beam和基站侧的一个beam间的链路;
所述测量量包括,链路的信道质量信息;基站侧和/或终端侧beam的功率信息,方向性信息等,当然所述测量量也可以为其他的内容,示例性可以根据实际需求进行设置。
本实施例还提供了一种终端,实现在多天线系统中进行测量,包括:
测量指令接收模块,设置为接收测量指令;
处理模块,设置为解析出所述测量指令包括的beam识别信息及待测信息,根据所述beam识别信息及待测信息对所述beam进行测量,获得测量量;
测量量发送模块,设置为将获得的测量量以用户面信令方式发送给基站。
可选的,所述处理模块根据所述待测信息对beam进行测量,包括:根据所述待测信息中包括的待测量量对所述beam进行测量,或者根据所述待测信息中包括的待测量量及待测量量的动态性要求对所述beam进行测量,获得测量量。
本实施例还提供了一种无线通信系统,所述无线通信系统包括:设置于基站的测量指令生成模块、测量指令发送模块、测量结果接收模块,以及设置于终端的测量指令接收模块、处理模块、测量量发送模块;
所述测量指令生成模块,设置为根据beam识别信息及待测信息生成测量指令;
所述测量指令发送模块,设置为将所述测量指令以用户面信令方式发送给终端;
测量结果接收模块,设置为接收终端发送的测量量;
所述测量指令接收模块,设置为接收测量指令;
所述处理模块,设置为解析出所述测量指令包括的beam识别信息及待测信息,根据所述beam识别信息及待测信息对所述beam进行测量,获得测量量;
所述测量量发送模块,设置为将获得的测量量以用户面信令方式发送给基站。
可选的,所述测量指令生成模块根据beam识别信息生成测量指令,包括:根据至少基站侧和终端侧一对beam间的链路信息生成测量指令。
可选的,所述测量指令生成模块根据beam识别信息生成测量指令,包括:根据对应基站侧多个beam和终端侧的一个beam间的链路,和/或对应终端侧的多个beam和基站侧的一个beam间的链路信息生成测量指令。
可选的,所述测量指令生成模块根据待测信息生成测量指令,包括:根据待测量量,和/或待测量量的测量动态性要求生成测量指令;相应的,
所述处理模块根据所述待测信息对beam进行测量,包括:根据所述待测信息中包括的待测量量对所述beam进行测量,或者根据所述待测信息中包括的待测量量及待测量量的动态性要求对所述beam进行测量,获得测量量。
可选的,所述测量结果接收模块接收终端发送的测量量,包括:接收链路的信道质量信息、基站侧beam的功率信息、终端侧beam的功率信息、beam方向性信息中的一种或者两种以上的组合。
本公开实施例的测量指令采用用户面信令方式进行发送,指示终端对基站和终端间的下行链路进行测量;用户面信令方式指的是一种控制指示信息,这种控制信息以用户面信令方式在发送端和接收端进行传输,可以是层二信令,也可以是物理层控制信令;该用户面信令由基站发送,终端进行接收;可见,本公开实施例实现了对相关LTE的用户面功能进行增强,示例性LTE的用户面结构图如附图3所示。参照图3所示,本公开实施例提供的测量指令可以在用户面协议各层进行传输,即可以在用户面的MAC(Medium Access Control,媒体接入控制)层进行传输,也可以在RLC(Radio Link Control,无线链路控制)层进行传输,也可以在PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)层进行传输,或者也可以在PHY(物理层)进行传输。
在本实施例中,由于指示测量的相关信令是通过用户面信令方式进行指示的,相对传统的通过控制面方式,节省了很多信令开销,进而降低了beam切换和移动性管理过程中的时延。可以满足未来无线通信系统的需求。
实施例三:
参照图4所示,为本公开实施例的实现在多天线系统中进行测量的方法流程图,所述方法包括以下步骤:
步骤401,根据beam识别信息及待测信息生成测量指令;
步骤402,将所述测量指令以用户面信令方式发送给终端,并接收终端发送的测量量。
可选的,所述根据beam识别信息生成测量指令,包括:根据至少基站侧和终端侧一对beam间的链路信息生成测量指令。
可选的,所述根据beam识别信息生成测量指令,包括:根据对应基站侧多个beam和终端侧的一个beam间的链路,和/或对应终端侧的多个beam和基站侧的一个beam间的链路信息生成测量指令。
可选的,所述根据待测信息生成测量指令,包括:根据待测量量,和/或待测量量的测量动态性要求生成测量指令。
可选的,所述接收终端发送的测量量,包括:接收链路的信道质量信息、基站侧beam的功率信息、终端侧beam的功率信息、beam方向性信息中的一种或者两种以上的组合。
测量对象为基站侧和终端侧间的下行链路,所述beam识别信息,应至少包括基站侧和终端侧一对beam间的链路信息;可以对应基站侧多个beam和终端侧的一个beam间的链路,也可以对应终端侧的多个beam和基站侧的一个beam间的链路;
所述测量量包括,链路的信道质量信息;基站侧和/或终端侧beam的功率信息,方向性信息等,当然所述测量量也可以为其他的内容,可以根据实际需求进行设置。
本实施例还提供一种实现在多天线系统中进行测量的方法,所述方法应用于终端,包 括以下步骤:
步骤501,接收测量指令,解析出所述测量指令包括的beam识别信息及待测信息,根据所述beam识别信息及待测信息对所述beam进行测量,获得测量量;
步骤502,将获得的测量量以用户面信令方式发送给基站。
可选的,所述根据所述beam识别信息及待测信息对所述beam进行测量,获得测量量,包括:根据所述待测信息中包括的待测量量对所述beam进行测量,或者根据所述待测信息中包括的待测量量及待测量量的动态性要求对所述beam进行测量,获得测量量。
本实施例还提供了一种实现在多天线系统中进行测量的方法,所述方法应用于无线通信系统,包括:
基站根据beam识别信息及待测信息生成测量指令;
基站将所述测量指令以用户面信令方式发送给终端;
终端接收测量指令,并解析出所述测量指令包括的beam识别信息及待测信息,根据所述beam识别信息及待测信息对所述beam进行测量,获得测量量;
终端将获得的测量量以用户面信令方式发送给基站;
基站接收终端发送的测量量。
可选的,所述基站根据待测信息生成测量指令,包括:基站根据待测量量,和/或待测量量的测量动态性要求生成测量指令;相应的,
所述终端根据所述待测信息对beam进行测量,包括:终端根据所述待测信息中包括的待测量量对所述beam进行测量,或者根据所述待测信息中包括的待测量量及待测量量的动态性要求对所述beam进行测量,获得测量量。
本公开实施例对LTE系统的用户面的功能进行增强,通过基站采用用户面信令方式指示终端进行测量,终端根据指示进行测量并上报,基站接收终端的测量上报结果,相比于采用控制信令的方式,可以节约系统开销,降低系统负担。
下面通过示例性应用中的实例进行示例性说明。
本公开的应用实例可以在多种网络架构下使用,如一体化基站架构,CU-DU分离的网络架构(适用于各种划分方案)。
实例1:
在本实例中,本公开实施例的装置及方法应用于MAC层位于CU中的网络架构,测量指令在MAC层传输。
本实例以CU-DU分离的网络架构为例,示例性用户面的协议架构图如附图5所示,其中用户面的MAC(Medium Access Control)层及以上协议层位于CU,而物理层和射频相关功能位于DU(也可以称为TRP,Transmission and reception Point,传输接入点),其中CU下属一个或者多个DU,每个DU下可以有一个或者多个beam用于数据传输。
采用本公开实施例所述的方案,可以采用以下步骤进行相关测量:
步骤001,在基站侧的用户面中,在LTE系统的MAC层中,增加一个控制指示信息, 也可以称之为测量指令,在本实例中,该测量指令以MAC CE(Control Element)信令的方式发送,用于指示(终端)对基站和终端间的下行链路进行测量,该测量指令至少对应基站侧和终端侧一对beam间的链路,可以对应基站侧多个beam和终端侧的一个beam间的链路,也可以对应终端侧的多个beam和基站侧的一个beam间的链路;
其中,示例性的MAC CE信令包含以下信息的至少一种:1)beam识别信息,比如测量参考信号,包括CSI-RS(信道状态测量信息导频)参考信号;2)待测量量,待测量量可以是CQI(Channel Quality Indicator,信道质量指示)、RSRP(Reference Signal Receiving Power,参考信号接收功率)、基站侧beam的方向信息,终端侧beam的方向信息等;所述待测量量也可以进行其他的设定;3)待测量量的测量动态性要求,比如周期、非周期等。
其中,增加的MAC CE信令的header/subheader可以采用目前Reserved(预留的)的LCID(逻辑信道标识,logical channel identify)bit(位)的部分,作为Beam measurement Command(波束测量信令)的LCID;或者额外扩展LCID bit给Beam measurement Command MAC CE信令,示例参见附图8中的表格所示,在附图8中,01011-10110为保留的LCID(Reserved LCID),Xxxxx是新增加的LCID,Xxxxx的位数可以不限制为现在的5位。
步骤002,终端侧根据接收到的测量信令执行相关测量并按照该测量信令进行上报;
步骤003,基站接收终端侧上报的beam相关测量结果。
实例2
在本实例中,本公开实施例的装置及方法应用于MAC层位于DU中的网络架构,测量指令在MAC层传输。
以CU-DU分离的网络架构为例,示例性用户面的协议架构图如附图6所示,其中用户面的RLC(无线链路控制)层及以上协议层位于CU,而MAC层以下处理功能位于DU(也可以称为TRP,Transmission and reception Point),其中CU下属一个或者多个DU,每个DU下可以有一个或者多个beam用于数据传输。
采用本公开实施例所述的方案,可以采用以下步骤进行相关测量:
步骤001,在基站侧的用户面中,比如在类似LTE系统的MAC层中,增加一个控制信息,即测量信令,该测量信令以类似MAC CE信令方式发送,用于指示终端对基站和终端间的下行链路进行测量,该测量信令至少对应基站侧和终端侧一对beam间的链路,可以对应基站侧多个beam和终端侧的一个beam间的链路,也可以对应终端侧的多个beam和基站侧的一个beam间的链路。
其中,示例性的MAC CE信令包含以下信息的至少一种:1)beam识别信息,比如测量参考信号,包括CSI-RS(信道状态测量信息导频)参考信号;2)待测量量,待测量量可以是CQI(Channel Quality Indicator,信道质量指示)、RSRP(Reference Signal Receiving Power,参考信号接收功率)、基站侧beam的方向信息,终端侧beam的方向信息等;所述待测量量也可以进行其他的设定;3)待测量量的测量动态性要求,比如周期、非周期 等。
其中,增加的MAC CE信令的header/subheader可以采用目前Reserved(预留的)的LCID(逻辑信道标识,logical channel identify)bit的部分,作为Beam measurement Command(波束测量信令)的LCID;或者额外扩展LCID bit给Beam measurement Command MAC CE信令,示例参见附图8中的表格所示。
步骤002,终端侧根据接收到的测量信令执行相关测量并按照该测量信令进行上报;
步骤003,基站接收终端侧上报的beam相关测量结果。
实例3:
在本实例中,本公开实施例的装置及方法应用于一体化基站的网络架构,测量指令在MAC层传输。以LTE系统一体化基站的网络架构为例,示例性用户面的协议架构图如附图7所示。
采用本公开实施例所述的方案,可以采用以下步骤进行相关测量:
步骤001,在基站侧的用户面中,比如在类似LTE系统的MAC层中,增加一个控制信息,即测量信令,该测量信令以类似MAC CE方式信令发送,用于指示终端对基站和终端间的下行链路进行测量,该测量信令至少对应基站侧和终端侧一对beam间的链路,可以对应基站侧多个beam和终端侧的一个beam间的链路,也可以对应终端侧的多个beam和基站侧的一个beam间的链路;
其中,示例性的MAC CE信令包含以下信息的至少一种:1)beam识别信息,比如测量参考信号,包括CSI-RS(信道状态测量信息导频)参考信号;2)待测量量,待测量量可以是CQI(Channel Quality Indicator,信道质量指示)、RSRP(Reference Signal Receiving Power,参考信号接收功率)、基站侧beam的方向信息,终端侧beam的方向信息等;所述待测量量也可以进行其他的设定;3)待测量量的测量动态性要求,比如周期、非周期等。
其中,增加的MAC CE信令的header/subheader可以采用目前Reserved(预留的)的LCID(逻辑信道标识,logical channel identify)bit的部分,作为Beam measurement Command(波束测量信令)的LCID;或者额外扩展LCID bit给Beam measurement Command MAC CE信令,示例如附图8所示。
步骤002,终端侧根据接收到的测量信令执行相关测量并按照该测量信令进行上报;
步骤003,基站接收终端侧上报的beam相关测量结果。
实例4
在本实例中,本公开实施例的装置及方法应用于MAC层位于CU中的网络架构,测量指令在物理层传输。
以CU-DU分离的网络架构为例,示例性用户面的协议架构图仍然如附图5所示,其中用户面的MAC(Medium Access Control)层及以上协议层位于CU,而物理层和射频相关功能位于DU(也可以称为TRP,Transmission and reception Point),其中CU下属一个 或者多个DU,每个DU下可以有一个或者多个beam用于数据传输。
采用本公开实施例所述的方案,可以采用以下步骤进行相关测量:
步骤001,在基站侧的用户面中,在LTE系统的PHY层中,增加一个控制指示信息,也可以称之为测量指令,设置为指示终端对基站和终端间的下行链路进行测量,该测量指令至少对应基站侧和终端侧一对beam间的链路,可以对应基站侧多个beam和终端侧的一个beam间的链路,也可以对应终端侧的多个beam和基站侧的一个beam间的链路。
其中,示例性的物理层传输的测量指令包括以下信息的至少一种:1)beam识别信息,比如测量参考信号,包括CSI-RS(信道状态测量信息导频)参考信号;2)待测量量,待测量量可以是CQI(Channel Quality Indicator,信道质量指示)、RSRP(Reference Signal Receiving Power,参考信号接收功率)、基站侧beam的方向信息,终端侧beam的方向信息等;所述待测量量也可以进行其他的设定;3)待测量量的测量动态性要求,比如周期、非周期等。
步骤002,终端侧根据接收到的测量指令执行相关测量并按照该测量指令进行上报;
步骤003,基站接收终端侧上报的beam相关测量结果。
上述本公开实施例序号仅仅为了描述,不代表实施例的优劣。通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开实施例的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开各个实施例所述的方法。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
本公开实施例提供的实现在多天线系统中进行测量的装置及方法,由于指示测量的相关信令是通过用户面信令方式进行指示的,相对传统的通过控制面方式,节省了很多信令开销,进而降低了beam切换和移动性管理过程中的时延,从而可以满足未来无线通信系统的需求。

Claims (24)

  1. 一种实现在多天线系统中进行测量的装置,其中,所述装置设置于基站,包括:
    测量指令生成模块,设置为根据beam识别信息及待测信息生成测量指令;
    测量指令发送模块,设置为将所述测量指令以用户面信令方式发送给终端;
    测量结果接收模块,设置为接收终端发送的测量量。
  2. 如权利要求1所述的装置,其中,所述测量指令生成模块根据beam识别信息生成测量指令,包括:根据至少基站侧和终端侧一对beam间的链路信息生成测量指令。
  3. 如权利要求2所述的装置,其中,所述测量指令生成模块根据beam识别信息生成测量指令,包括:根据对应基站侧多个beam和终端侧的一个beam间的链路,和/或对应终端侧的多个beam和基站侧的一个beam间的链路信息生成测量指令。
  4. 如权利要求1所述的装置,其中,所述测量指令生成模块根据待测信息生成测量指令,包括:根据待测量量,和/或待测量量的测量动态性要求生成测量指令。
  5. 如权利要求1所述的装置,其中,所述测量结果接收模块接收终端发送的测量量,包括:接收链路的信道质量信息、基站侧beam的功率信息、终端侧beam的功率信息、基站侧beam的方向信息、终端侧beam的方向信息中的一种或者两种以上的组合。
  6. 一种实现在多天线系统中进行测量的装置,其中,所述装置设置于终端,包括:
    测量指令接收模块,设置为接收测量指令;
    处理模块,设置为解析出所述测量指令包括的beam识别信息及待测信息,根据所述beam识别信息及待测信息对所述beam进行测量,获得测量量;
    测量量发送模块,设置为将获得的测量量以用户面信令方式发送给基站。
  7. 如权利要求6所述的装置,其中,所述处理模块根据所述待测信息对beam进行测量,包括:根据所述待测信息中包括的待测量量对所述beam进行测量,或者根据所述待测信息中包括的待测量量及待测量量的动态性要求对所述beam进行测量,获得测量量。
  8. 一种基站,其中,包括权利要求1~5任意一项所述的装置。
  9. 一种终端,其中,包括权利要求6~7任意一项所述的装置。
  10. 一种无线通信系统,其中,所述无线通信系统包括:设置于基站的测量指令生成模块、测量指令发送模块、测量结果接收模块,以及设置于终端的测量指令接收模块、处理模块、测量量发送模块;
    所述测量指令生成模块,设置为根据beam识别信息及待测信息生成测量指令;
    所述测量指令发送模块,设置为将所述测量指令以用户面信令方式发送给终端;
    测量结果接收模块,设置为接收终端发送的测量量;
    所述测量指令接收模块,设置为接收测量指令;
    所述处理模块,设置为解析出所述测量指令包括的beam识别信息及待测信息,根据所述beam识别信息及待测信息对所述beam进行测量,获得测量量;
    所述测量量发送模块,设置为将获得的测量量以用户面信令方式发送给基站。
  11. 如权利要求10所述的系统,其中,所述测量指令生成模块根据beam识别信息生成测量指令,包括:根据至少基站侧和终端侧一对beam间的链路信息生成测量指令。
  12. 如权利要求11所述的系统,其中,所述测量指令生成模块根据beam识别信息生成测量指令,包括:根据对应基站侧多个beam和终端侧的一个beam间的链路,和/或对应终端侧的多个beam和基站侧的一个beam间的链路信息生成测量指令。
  13. 如权利要求10所述的系统,其中,所述测量指令生成模块根据待测信息生成测量指令,包括:根据待测量量,和/或待测量量的测量动态性要求生成测量指令;相应的,
    所述处理模块根据所述待测信息对beam进行测量,包括:根据所述待测信息中包括的待测量量对所述beam进行测量,或者根据所述待测信息中包括的待测量量及待测量量的动态性要求对所述beam进行测量,获得测量量。
  14. 如权利要求10所述的系统,其中,所述测量结果接收模块接收终端发送的测量量,包括:接收链路的信道质量信息、基站侧beam的功率信息、终端侧beam的功率信息、基站侧beam的方向信息、终端侧beam的方向信息中的一种或者两种以上的组合。
  15. 一种实现在多天线系统中进行测量的方法,其中,所述方法应用于基站,包括:
    根据beam识别信息及待测信息生成测量指令;
    将所述测量指令以用户面信令方式发送给终端,并接收终端发送的测量量。
  16. 如权利要求15所述的方法,其中,所述根据beam识别信息生成测量指令,包括:根据至少基站侧和终端侧一对beam间的链路信息生成测量指令。
  17. 如权利要求16所述的方法,其中,所述根据beam识别信息生成测量指令,包括:根据对应基站侧多个beam和终端侧的一个beam间的链路,和/或对应终端侧的多个beam和基站侧的一个beam间的链路信息生成测量指令。
  18. 如权利要求15所述的方法,其中,所述根据待测信息生成测量指令,包括:根据待测量量,和/或待测量量的测量动态性要求生成测量指令。
  19. 如权利要求15所述的方法,其中,所述接收终端发送的测量量,包括:接收链路的信道质量信息、基站侧beam的功率信息、终端侧beam的功率信息、基站侧beam的方向信息、终端侧beam的方向信息中的一种或者两种以上的组合。
  20. 一种实现在多天线系统中进行测量的方法,其中,所述方法应用于终端,包括:
    接收测量指令,解析出所述测量指令包括的beam识别信息及待测信息,根据所述beam识别信息及待测信息对所述beam进行测量,获得测量量;
    将获得的测量量以用户面信令方式发送给基站。
  21. 如权利要求20所述的方法,其中,所述根据所述beam识别信息及待测信息对所述beam进行测量,获得测量量,包括:根据所述待测信息中包括的待测量量对所述beam进行测量,或者根据所述待测信息中包括的待测量量及待测量量的动态性要求对所述beam进行测量,获得测量量。
  22. 一种实现在多天线系统中进行测量的方法,其中,所述方法应用于无线通信系统,包括:
    基站根据beam识别信息及待测信息生成测量指令;
    基站将所述测量指令以用户面信令方式发送给终端;
    终端接收测量指令,并解析出所述测量指令包括的beam识别信息及待测信息,根据所述beam识别信息及待测信息对所述beam进行测量,获得测量量;
    终端将获得的测量量以用户面信令方式发送给基站;
    基站接收终端发送的测量量。
  23. 如权利要求22所述的方法,其中,所述基站根据待测信息生成测量指令,包括:基站根据待测量量,和/或待测量量的测量动态性要求生成测量指令;相应的,
    所述终端根据所述待测信息对beam进行测量,包括:终端根据所述待测信息中包括的待测量量对所述beam进行测量,或者根据所述待测信息中包括的待测量量及待测量量的动态性要求对所述beam进行测量,获得测量量。
  24. 一种存储介质,设置为存储程序代码,所述程序代码用于执行权利要求15至23中任一项所述的方法。
PCT/CN2017/104603 2016-09-30 2017-09-29 一种实现在多天线系统中进行测量的装置和方法 WO2018059563A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610875504.7 2016-09-30
CN201610875504.7A CN107889137A (zh) 2016-09-30 2016-09-30 一种实现在多天线系统中进行测量的装置和方法

Publications (1)

Publication Number Publication Date
WO2018059563A1 true WO2018059563A1 (zh) 2018-04-05

Family

ID=61762493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104603 WO2018059563A1 (zh) 2016-09-30 2017-09-29 一种实现在多天线系统中进行测量的装置和方法

Country Status (2)

Country Link
CN (1) CN107889137A (zh)
WO (1) WO2018059563A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101111039A (zh) * 2006-07-18 2008-01-23 中兴通讯股份有限公司 用于高速下行分组接入系统中的业务量测量控制方法
CN102740379A (zh) * 2011-04-02 2012-10-17 中兴通讯股份有限公司 服务质量的优化方法及系统、网络侧网元
CN103716078A (zh) * 2012-09-29 2014-04-09 中兴通讯股份有限公司 一种信道状态信息的处理方法及装置
CN103825663A (zh) * 2014-02-21 2014-05-28 电信科学技术研究院 信道状态信息测量方法以及装置
CN105790913A (zh) * 2014-12-26 2016-07-20 上海无线通信研究中心 FDD模式massive-MIMO系统中上行导频的选择与分配方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101111039A (zh) * 2006-07-18 2008-01-23 中兴通讯股份有限公司 用于高速下行分组接入系统中的业务量测量控制方法
CN102740379A (zh) * 2011-04-02 2012-10-17 中兴通讯股份有限公司 服务质量的优化方法及系统、网络侧网元
CN103716078A (zh) * 2012-09-29 2014-04-09 中兴通讯股份有限公司 一种信道状态信息的处理方法及装置
CN103825663A (zh) * 2014-02-21 2014-05-28 电信科学技术研究院 信道状态信息测量方法以及装置
CN105790913A (zh) * 2014-12-26 2016-07-20 上海无线通信研究中心 FDD模式massive-MIMO系统中上行导频的选择与分配方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Discussion on Multi-Beam Based Operation and Related Terminology", 3GPP TSG-RAN WG2 MEETING #95 R2-165173, 26 August 2016 (2016-08-26), XP051126781 *

Also Published As

Publication number Publication date
CN107889137A (zh) 2018-04-06

Similar Documents

Publication Publication Date Title
TWI702811B (zh) 上行鏈路波束指示方法及使用者設備
CN110546929B (zh) 传输信道状态信息参考信号(csi-rs)的方法和装置及计算机可读存储介质
US10785805B2 (en) Communication method and communications apparatus
US11438081B2 (en) Signal transmission method, related apparatus, and system
EP3627875B1 (en) Communication method and device
US11265921B2 (en) Method and apparatus for non-contention based random access
EP3515107B1 (en) Measurement and reporting method, and terminal and base station
JP2022000956A (ja) 次世代無線ネットワークにおける二次ノード変更の測定シグナリング
JP6658891B2 (ja) ビームフォーミングに関連する装置、方法、システム、プログラム及び記録媒体
US20170086080A1 (en) System and Method for Fast Beamforming Setup
WO2018059517A1 (zh) 测量和上报方法、终端及基站
WO2018137409A1 (zh) 一种上行移动性下的寻呼传输方法、通信站点及通信节点
US20200396664A1 (en) Method of performing beam failure recovery procedure and user equipment
WO2018081977A1 (zh) 上行传输方法、终端设备和网络设备
WO2013097560A1 (zh) 一种室内定位方法、设备及系统
US11399325B2 (en) High-gain beam handover
CN113632385B (zh) 下行链路参考信号的波束成形接收
WO2021134682A1 (zh) 一种定向测量方法及设备
WO2018059563A1 (zh) 一种实现在多天线系统中进行测量的装置和方法
US20230007927A1 (en) Doppler spread based beam measurement and reporting for high speed mobility
WO2018059582A1 (zh) 一种无线通信系统中实现用户面功能增强的方法和装置
JP7309719B2 (ja) 電気通信ネットワークのための試験装置及び電気通信ネットワークを試験する方法
WO2022239362A1 (ja) 基地局、通信装置及び通信方法
KR20140083692A (ko) 무선 백홀 형성 장치와 무선 백홀 형성 시스템, 및 무선 백홀 형성 방법
WO2024001717A1 (zh) 通信方法以及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855013

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17855013

Country of ref document: EP

Kind code of ref document: A1