WO2018059532A1 - 观测时滞系统的组合导航数据解算方法、装置及导航设备 - Google Patents

观测时滞系统的组合导航数据解算方法、装置及导航设备 Download PDF

Info

Publication number
WO2018059532A1
WO2018059532A1 PCT/CN2017/104219 CN2017104219W WO2018059532A1 WO 2018059532 A1 WO2018059532 A1 WO 2018059532A1 CN 2017104219 W CN2017104219 W CN 2017104219W WO 2018059532 A1 WO2018059532 A1 WO 2018059532A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
state
matrix
state parameter
predicted state
Prior art date
Application number
PCT/CN2017/104219
Other languages
English (en)
French (fr)
Inventor
张全
牛小骥
付立鼎
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2018059532A1 publication Critical patent/WO2018059532A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • G01S19/49Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an inertial position system, e.g. loosely-coupled
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/183Compensation of inertial measurements, e.g. for temperature effects
    • G01C21/188Compensation of inertial measurements, e.g. for temperature effects for accumulated errors, e.g. by coupling inertial systems with absolute positioning systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations

Definitions

  • the present application relates to the field of navigation technologies, and in particular, to a method, device and navigation device for solving combined navigation data for observing a time-delay system.
  • GNSS/INS global navigation satellite system/inertial navigation system
  • the GNSS/INS integrated navigation system has observed time lag.
  • the INS data does not have a transmission delay, which results in a large difference in the reception time of the GNSS data and the INS data collected at the same time, so that when the navigation data combination is solved, GNSS data and INS data cannot be time synchronized, which seriously affects the navigation accuracy of integrated navigation.
  • the present application provides a combined navigation data solving method, device and navigation for observing a time-delay system. device.
  • the technical solution is as follows:
  • a combined navigation data solving method for observing a time-delay system for use in a GNSS/INS integrated navigation system, the method comprising:
  • the combined update solution result includes a state parameter estimated value and a state error covariance matrix at the k time;
  • the k - time is a GNSS sampling time before the k time;
  • the INS error at the j-th time is corrected based on the corrected predicted state parameter estimated value at time j and the predicted state error covariance matrix at the j-th time.
  • the navigation device stores the INS data solved by the INS at the GNSS data collection time, and combines the two to perform the combined update solution when receiving the GNSS data collected by the GNSS, thereby converting the combined update solution result to At the completion of the solution, the time synchronization of the GNSS data and the INS data is realized. Meanwhile, when the k - time combination update solution occurs between the k time and the k' time, that is, the transmission delay of the GNSS data is greater than the unit sampling interval of the GNSS.
  • the navigation device considers the influence of the k - time combination update solution result on the state parameter estimation value, and corrects the prediction state parameter estimation value at the solution completion time, thereby improving the accuracy of the prediction state parameter estimation value at the completion time of the calculation calculation, Thereby improving the navigation precision of the integrated navigation.
  • the basis of the k - parameter predicted state estimate update resolver j time the result of a combination of the time is corrected comprising:
  • the correcting the predicted state parameter estimation value of the j time according to the first predicted state parameter estimated value and the second predicted state parameter estimated value includes:
  • the second navigation data, the first navigation data, and the prediction error covariance matrix calculated according to the GNSS data are combined and updated, including:
  • K k is a Kalman filter gain matrix, a sequence of innovations, z k is the difference between the first navigation data and the second navigation data, and H k is an observation matrix;
  • the calculating a predicted state parameter estimated value and a predicted state error covariance matrix at time j according to the cumulative state transition matrix and the combined update solution result including:
  • Q j-1 is the system noise covariance matrix after discretization at j-1
  • ⁇ j/j-1 is the state transition matrix from j-1 to j
  • M k+1 is the cumulative state noise matrix from time k+1 to the time j-1.
  • an integrated navigation data solving apparatus for observing a time-delay system, the apparatus comprising at least one unit for implementing any of the above-mentioned first aspect or any one of the possible implementations of the first aspect
  • a combined navigation data solving method for providing an observed time-delay system comprising at least one unit for implementing any of the above-mentioned first aspect or any one of the possible implementations of the first aspect
  • an embodiment of the present application provides a navigation device, where the navigation device includes a GNSS/INS integrated navigation system, a processor, and a memory, where the memory is used to store one or more instructions, and the instructions are indicated by The processor is configured to implement the combined navigation data solving method of the observed time-delay system provided by any one of the foregoing first aspect or the first aspect.
  • the embodiment of the present application provides a computer readable storage medium, where the observed time lag provided by the implementation of any of the foregoing first aspect or the first aspect is implemented.
  • An executable program for the system's combined navigation data solving method is implemented.
  • FIG. 1 is a schematic diagram showing the principle of a combined navigation data solving method for observing a time-delay system provided by various embodiments of the present application;
  • 2A is a flowchart of a method for solving combined navigation data of an observation time-delay system provided by an embodiment of the present application
  • FIG. 2B is a schematic diagram of an implementation of the combined navigation data solving method shown in FIG. 2A;
  • FIG. 3A is a flowchart of a method for solving combined navigation data of an observed time-delay system according to another embodiment of the present application.
  • FIG. 3B is a schematic diagram of an implementation of the combined navigation data solving method shown in FIG. 3A; FIG.
  • FIG. 4 is a structural block diagram of a navigation device provided by an embodiment of the present application.
  • FIG. 5 is a block diagram of an integrated navigation data solving apparatus for an observation time lag system provided by an embodiment of the present application.
  • the INS is a navigation system that uses an angular velocity sensor and an acceleration sensor to navigate.
  • the INS integrates the acceleration data collected by the acceleration sensor to determine the current traveling speed of the object; integrates the angular velocity data collected by the angular velocity sensor to determine the current posture of the object, thereby drawing according to the real-time traveling speed and posture.
  • the travel trajectory of the object and navigate according to the travel trajectory.
  • INS collects data at a higher frequency (usually 100Hz or 200Hz), and the collected data is comprehensive and autonomous; however, in the case of long-time navigation, the cumulative error caused by continuous integration Will affect the navigation accuracy of the INS. However, there is no cumulative error when GNSS uses satellite to navigate.
  • combining GNSS and INS, and using the GNSS data collected by GNSS to correct the INS data of the INS at the same time can eliminate the INS length.
  • the GNSS needs to receive the GNSS base station differential signal (ie, receive GNSS data) through the radio or network, and the GNSS base station differential signal has a transmission delay during transmission, and the transmission delay is related to the transmission distance of the differential signal of the GNSS base station. .
  • the transmission delay will be greater than the unit sampling time interval of the GNSS (that is, the transmission delay exceeds 1 s), resulting in serious time asynchronous problem when the INS data is corrected by using the GNSS data, affecting the combined navigation. Navigation accuracy.
  • the IMU data collected by the INS 111 through the Inertial Measurement Unit (IMU) is stored by the IMU data and stored.
  • memory 120 usually a register.
  • the processor performs a combined update solution on the INS data (the IMU data is obtained after the solution) and the GNSS data (obtained by the GNSS data) in the memory 120, and implements the GNSS data. Synchronization with INS data.
  • the processor After the combined update solution is completed, the processor performs state transition on the combined update solution result, and in the case that the transmission delay of the GNSS data is long, the result of the state transition is corrected by using the last combined update solution result, and finally Output optimal GNSS/INS real-time combined navigation results.
  • the processor corrects the INS 111 by using the predicted state parameter estimation value at the completion time of the solution, thereby eliminating the cumulative error and sensor error of the INS 111 during the long-time navigation process.
  • GNSS/INS integrated navigation system which may be a mobile terminal having a navigation function or an in-vehicle navigation device installed in a vehicle.
  • the GNSS in the GNSS/INS may be a Global Positioning System (GPS), a GLONASS system, a Galileo navigation system or a Beidou navigation system, and the INS is composed of a plurality of IMUs. Including acceleration sensors and angular velocity sensors. The following description is made using the illustrative embodiments.
  • FIG. 2A is a flowchart of a method for solving combined navigation data of an observation time lag system provided by an embodiment of the present application. This embodiment is illustrated by using the combined navigation data solving method for a navigation device installed with a GNSS/INS integrated navigation system, and the method includes:
  • Step 201 Store the prediction state error covariance matrix at time k and the first navigation data at time k obtained by the INS solution, and k time is the GNSS sampling time.
  • the INS solves the INS data collected at the time k, and stores the first navigation data obtained by the solution.
  • the solution method is mechanical programming
  • the first navigation data is used to indicate the traveling speed, the traveling posture, and the traveling trajectory at time k.
  • the navigation device While storing the first navigation data, the navigation device stores the prediction error covariance matrix corresponding to the time k, and the prediction state error covariance matrix is iteratively calculated according to the state error covariance matrix measured by the INS last sampling time. Used to indicate the error of the predicted state parameter estimate at time k.
  • the sampling interval of the GNSS is larger than the sampling interval of the INS.
  • the navigation device stores the INS samples and solutions at times t 0 , t 1 , and t 2 . Calculated first navigation data.
  • Step 202 When receiving the GNSS data collected at time k at time k', the second navigation data, the first navigation data and the prediction error covariance matrix solved according to the GNSS data are combined and updated.
  • the navigation device Since the GNSS data has a transmission delay during transmission, it takes a period of time for the navigation device to acquire the GNSS data acquired at time k.
  • the navigation device t 0 'acquire GNSS time at time t 0 GNSS data collected at t 1' acquire GNSS time at time t 1 GNSS data collected.
  • the navigation device After acquiring the GNSS data, the navigation device solves the GNSS data to obtain corresponding second navigation data, and further performs the first navigation data, the predicted state error covariance matrix, and the second navigation data according to the stored k-time.
  • the combination update solves the problem by using the GNSS data at time k for correction.
  • the combined update solution result includes a state parameter estimate at time k and a state error covariance matrix.
  • Step 203 Calculate a predicted state parameter estimated value and a predicted state error covariance matrix at time j according to the cumulative state transition matrix and the combined update solution result, where time j is the time at which the combined update solution is completed.
  • the navigation device completes the combined update solution for time k, and iteratively calculates the cumulative state transition matrix from time k to time j according to the state transition matrix at each acquisition time between time k and time j.
  • the navigation device uses the cumulative state transition matrix to perform state transition on the combined update solution result at time k, thereby obtaining a predicted state parameter estimated value and a predicted state error covariance matrix at time j.
  • Combination time update occurs between the resolver time k and k 'time, according to k - - step 204, if k correct combination results in time to update the resolver parameter predicted state estimate of the time j, k - is the time GNSS sampling time before k time.
  • the transmission delay of GNSS data When the transmission delay of GNSS data is short, the reception of GNSS data and the combined update solution process are completed within one GNSS sampling interval; however, when the transmission delay of GNSS data is long, the reception of GNSS data and the process of combining update and decoding may be Multiple GNSS sampling intervals are spanned.
  • the navigation apparatus after time t 1 t 0 'the time of receiving the GNSS data acquisition time t 0, the navigation apparatus after time t 2 t 1' the time of receiving the collected GNSS time t 1 data.
  • the navigation device When a combined update solution (k - time combined update solution) occurs between the sampling time (k time) of the GNSS and the GNSS data receiving time (k' time), the navigation device needs to consider during the state transition process.
  • the effect of the combined update solution on the predicted state parameter estimation value at time j is further corrected, and the predicted state parameter estimation value at time j is further corrected, thereby improving the accuracy of the predicted state parameter estimation value at time j.
  • the navigation apparatus using a combination of time t 0 resolver update result of the prediction state t 1 'time correction parameter estimates.
  • Step 205 according to the corrected state parameter estimation value at time j and the prediction state error covariance at time j
  • the matrix corrects the INS error at time j.
  • the navigation device After the state transition of the GNSS acquisition time to the current time (ie, j time) is completed by the above steps 201 to 204, the navigation device further corrects the INS error of the j time according to the predicted state parameter estimation value of the current time and the prediction state error covariance matrix, thereby Eliminate accumulated errors and sensor errors during long-term navigation.
  • the navigation device stores the INS data solved by the INS at the GNSS data collection time, and combines and updates the GNSS data collected by the GNSS to update the combination.
  • the solution result is converted to the solution completion time to realize the time synchronization of the GNSS data and the INS data.
  • the k - time combination update solution occurs between the k time and the k' time, the transmission delay of the GNSS data is greater than the GNSS.
  • the navigation device considers the influence of the combined update solution result of k - time on the state parameter estimation value, and corrects the predicted state parameter estimation value at the completion time of the solution to improve the prediction state parameter estimation at the completion time of the calculation.
  • the accuracy of the value which in turn improves the navigation accuracy of the integrated navigation.
  • FIG. 3A is a flowchart of a method for solving combined navigation data of an observation time lag system provided by another embodiment of the present application. This embodiment is illustrated by using the combined navigation data solving method for a navigation device installed with a GNSS/INS integrated navigation system, and the method includes:
  • Step 301 Store the prediction state error covariance matrix at time k and the first navigation data at time k obtained by the INS solution, and k time is the GNSS sampling time.
  • the state of the current sampling time is related to the state of the previous sampling time, and the state of the current sampling time can be calculated according to the state of the last sampling time and the state transition matrix.
  • the formula for calculating the state of the current sampling time according to the state of the last sampling time and the state transition matrix is as follows.
  • ⁇ k,k-1 is the state transition matrix from k-1 to k.
  • the updated state parameter estimate is measured for time k-1.
  • the k-1 time and the k time are adjacent INS acquisition times.
  • the navigation device can calculate and store the predicted state error covariance matrix at time k according to the state error covariance matrix at time k-1.
  • the formula based on the prediction state error covariance matrix for calculating k time is as follows:
  • ⁇ k,k-1 is the state transition matrix from k-1 to k.
  • Q k-1 is the system noise covariance matrix discretized at k-1.
  • the navigation device while storing the first navigation data and the prediction state error covariance matrix, the navigation device accumulates the state transition matrix and the system noise covariance matrix from time k for subsequent state transition.
  • Step 302 When the GNSS data acquired at time k is received at time k', the second navigation data, the first navigation data and the prediction error covariance matrix solved according to the GNSS data are combined and updated.
  • the navigation device solves the received GNSS data by GNSS, and obtains second navigation data indicating the traveling direction and the traveling speed at time k.
  • the navigation device acquires the first navigation data and the prediction state error covariance matrix at time k stored in the above step 301, and corrects the second navigation data obtained by the solution, that is, according to the second
  • the navigation data, the first navigation data and the prediction error covariance matrix are combined and updated (the Kalman measurement update process), and the state parameter estimation value after the k-time measurement update and the state error covariance matrix after the measurement update are obtained. .
  • this step may include the following steps.
  • K k is the Kalman filter gain matrix
  • z k is a constructed observation information vector for indicating the difference between the first navigation data and the second navigation data (specifically including the difference between the position and the speed)
  • H k is the observation matrix.
  • the navigation device calculates the Kalman filter gain matrix according to the stored state error covariance matrix and the observation matrix stored at time k.
  • Kalman filter gain matrix For the predicted state error covariance matrix at time k, Rk is the observed noise variance matrix, and the Kalman filter gain matrix is used to indicate the weights to be corrected according to the GNSS data.
  • the navigation device calculates the state parameter estimation value at the time k after the update by the first formula.
  • the navigation device calculates the state error covariance matrix at time k by the second formula based on the prediction state error covariance matrix at time k.
  • is the identity matrix
  • ( ⁇ -K k H k ) T is the transposed matrix of ⁇ -K k H k
  • R k is the observed noise variance matrix at time k
  • state error covariance matrix calculated according to the second formula It is expressed in the form of Joseph, so as to avoid the loss of positive definiteness or even symmetry of the matrix due to the accumulation of computational errors, which is beneficial to the subsequent matrix calculation.
  • the state parameter estimation value at time k and the corresponding state error covariance matrix are obtained.
  • Step 303 Calculate a predicted state parameter estimated value and a predicted state error covariance matrix at time j according to the cumulative state transition matrix and the combined update solution result, where time j is the time at which the combined update solution is completed.
  • the state parameter estimation value at time k and the corresponding state error covariance matrix can be obtained.
  • the navigation device needs to further according to k.
  • the state transition matrix between the time and the j time performs a state transition on the state at time k.
  • the navigation device Before the state transition of the navigation device, it is necessary to calculate the cumulative state transition matrix from time k to time j. In a possible implementation manner, the navigation device iterates the state transition matrix between time k and time j to calculate the cumulative state transition matrix ⁇ j / k from time k to time j .
  • the navigation device can be iterated from the k time to the j time according to the cumulative state transition matrix.
  • G is the system noise drive matrix
  • ⁇ j/k is a cumulative state transition matrix
  • M k+1,j is the state noise matrix accumulated from time k+1 to j.
  • the navigation device can calculate the predicted state parameter estimation value at time j according to the state parameter estimation value at time k and the cumulative state transition matrix from time k to time j;
  • the navigation device can calculate the prediction state error covariance matrix at time j according to the state error covariance matrix at time k and the cumulative state transition matrix from time k to time j.
  • Step 304 according to the state k at time k is calculated parameter estimates - 'a first predicted state estimate time parameter, k -' - a time instant acquired GNSS data acquisition time for the k.
  • the reception of the GNSS data and the combined update solving process may span multiple GNSS sampling intervals.
  • the combined update solution of the k - time occurs between the k time and the k' time.
  • the navigation apparatus after time t 2 t 1 'time received GNSS data acquisition time t 1 (i.e., the reception time t 1, and combinations resolver update process GNSS data samples across the calendar two GNSS Interval), and the combined update solution at time t 0 occurs between time t 1 and time t 1 ' .
  • the navigation device needs to correct the prediction state parameter estimation value of j time according to the k - time combination update solution, thereby improving the j-time prediction state parameter estimation.
  • the accuracy of the value Considering the influence of the k - time combination update solution on the j-time, the navigation device needs to correct the prediction state parameter estimation value of j time according to the k - time combination update solution, thereby improving the j-time prediction state parameter estimation. The accuracy of the value.
  • the navigation device may determine the influence of the combined update solution at time t 0 according to the transition condition of the state parameter estimation value in the transition interval T1 and the transition interval T2.
  • the first predicted state parameter estimate among them a state transition matrix for the time t 1 to t 0' , The estimated value of the state parameter at time t 1 .
  • Step 305 according to k - 'second predicted state estimate time parameter - a combination of the time k is calculated Solution Operator status update the parameter estimates included in a result.
  • the navigation device to be t 0 'state transition matrix is calculated the time t 0' of the second predicted state parameter according to the state estimation value at time parameter estimates time t 0 and time t 0.
  • the second predicted state parameter estimate among them a state transition matrix from time t 0 to time t 0' , The estimated value of the state parameter at time t 0 .
  • Step 306 Correct the predicted state parameter estimation value at time j according to the first predicted state parameter estimated value and the second predicted state parameter estimated value.
  • the navigation device obtains two prediction results at the same time (k - 'time) according to the state parameter estimation value at time k and the state parameter estimation value at k - time; further, by analyzing two prediction results The difference between the navigation device and the estimated state parameter estimate at time j can be corrected.
  • the navigation device may use the difference between the first predicted state parameter estimated value and the second predicted state parameter estimated value as the corrected value at time j, and is corrected by using the modified value.
  • this step may include the following steps.
  • the navigation device calculates the calculated
  • the estimated state parameter estimation value at time j is corrected.
  • the navigation device may perform state parameter correction according to the correction value calculated by the above steps and the state transition matrix from time t 0' to time t 1 ' .
  • the navigation device can correct the predicted state parameter estimation value at time j by the following formula:
  • the state transition matrix is the time from t 0' to t 1 ' .
  • Step 307 the INS error at the time j is corrected according to the predicted state parameter estimated value at the corrected j time and the predicted state error covariance matrix at the j time.
  • the navigation device After the state transition of the GNSS acquisition time to the current time (ie, j time) and the state parameter correction are completed through the above steps 301 to 306, the navigation device further corrects the j time according to the predicted state parameter estimation value of the current time and the prediction state error covariance matrix. INS error, eliminating the cumulative error and sensor error generated during long navigation.
  • FIG. 4 is a structural block diagram of an integrated navigation device 400 for observing a time-delay system provided by an embodiment of the present application.
  • the navigation device 400 includes a GNSS/INS integrated navigation system 410, a processor 420, and a memory 430.
  • the processor 420 is coupled to the GNSS/INS integrated navigation system 410 and memory 430 via a bus, respectively.
  • Processor 420 includes one or more processing cores.
  • the processor 420 implements a solution and correction function of the navigation data by running an operating system or an application module.
  • the memory 430 can store an operating system 432, an application module 434 required for at least one function.
  • the application module 434 includes a storage module 434a, a solution module 434b, a conversion module 434c, and a modification module 434d.
  • the storage module 434a is configured to implement steps related to data storage;
  • the solution module 434b is configured to implement steps related to navigation data solution;
  • the conversion module 434c is configured to implement steps related to state transition;
  • the correction module 434d is configured to implement data modification A step of.
  • memory 430 can be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable In addition to Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Disk or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Disk Disk
  • Disk Disk or Optical Disk
  • FIG. 4 does not constitute a limitation on the navigation device, and the navigation device It may include more or fewer components or combinations of components, or different component arrangements.
  • FIG. 5 is a block diagram of an integrated navigation data solving apparatus for an observation time-delay system provided by an embodiment of the present application.
  • the device can be implemented as all or part of the navigation device by software or hardware.
  • the apparatus includes a storage unit 510, a resolving unit 520, a converting unit 530, and a correcting unit 540.
  • the storage unit 510 is configured to implement steps 201 and 301 and the like in the foregoing embodiment of FIG. 2A or FIG. 3A, and other implicit storage steps performed by the navigation device;
  • the solving unit 520 is configured to implement steps 202 and 302 and the like in the foregoing embodiment of FIG. 2A or FIG. 3A, and other implicit navigation data solving steps performed by the navigation device;
  • the converting unit 530 is configured to implement steps 203 and 303 and the like in the foregoing embodiment of FIG. 2A or FIG. 3A, and other implicit state transition steps performed by the navigation device;
  • the correcting unit 540 is configured to implement the steps 204, 205, 304, 305, 306, and 307 in the foregoing embodiment of FIG. 2A or FIG. 3A, and other implicit data correcting steps performed by the navigation device.
  • the storage unit 510 can be implemented by the processor 420 in FIG. 4 to execute the storage module 434a in the memory 430; the solution unit 520 can be implemented by the processor 420 in FIG. 4 to execute the solution module 434b in the memory 430; 530 can be implemented by processor 420 in FIG. 4 executing conversion module 434c in memory 430; modification unit 540 can be implemented by processor 420 in FIG. 4 executing modification module 434d in memory 430.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Navigation (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

一种观测时滞系统的组合导航数据解算方法、装置及导航设备,属于导航技术领域,该方法包括:存储k时刻的预测状态误差协方差矩阵以及INS解算得到的k时刻的第一导航数据;在k'时刻接收到k时刻采集的GNSS数据时,根据GNSS数据解算得到的第二导航数据、第一导航数据和预测误差协方差矩阵进行组合更新解算(202);根据累积状态转移矩阵和组合更新解算结果计算j时刻的预测状态参数估计值和预测状态误差协方差矩阵,j时刻为完成组合更新解算的时刻(203);根据上一时刻的组合更新解算结果对j时刻的预测状态参数估计值进行修正;根据修正后的j时刻的预测状态参数估计值和j时刻的预测状态误差协方差矩阵修正j时刻的INS误差(205)。

Description

观测时滞系统的组合导航数据解算方法、装置及导航设备
本申请要求于2016年09月30日提交中国专利局、申请号为201610877288.X、发明名称为“观测时滞系统的组合导航数据解算方法、装置及导航设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及导航技术领域,特别涉及一种观测时滞系统的组合导航数据解算方法、装置及导航设备。
背景技术
随着导航技术的不断发展,单一导航系统已难以满足用户对导航精度的要求,因此,一种将至少两种导航系统组合在一起的组合导航技术应用而生。
相关技术中,组合导航技术被应用在全球卫星导航系统/惯性导航系统(Global Navigation Satellite System/Inertial Navigation System,GNSS/INS)组合导航系统中。相较于单一的导航系统,GNSS/INS组合导航系统在保持INS中信息全面性和自主性的同时,利用GNSS克服了INS中导航误差随时间累积的问题,在导航精度和导航性能上明显优于单一导航系统。
然而在实时差分(Real-Time Kinematic,RTK)模式下,GNSS/INS组合导航系统存在观测时滞。GNSS数据通过电台或网络传输时存在较大传输延迟,而INS数据却不存在传输延迟,导致同一时刻采集的GNSS数据和INS数据的接收时刻存在较大差异,致使进行导航数据组合解算时,GNSS数据和INS数据无法进行时间同步,严重影响组合导航的导航精度。
发明内容
为了解决相关技术中RTK模式下,GNSS数据通过电台或网络传输时存在较大传输延迟,而INS数据却不存在传输延迟,导致同一时刻采集的GNSS数据和INS数据的接收时刻存在较大差异,致使进行导航数据组合解算时,GNSS数据和INS数据无法进行时间同步,严重影响组合导航的导航精度的问题,本申请提供了一种观测时滞系统的组合导航数据解算方法、装置及导航设备。所述技术方案如下:
第一方面,提供了一种观测时滞系统的组合导航数据解算方法,用于GNSS/INS组合导航系统中,该方法包括:
存储k时刻的预测状态误差协方差矩阵以及INS解算得到的所述k时刻的第一导航数据,所述k时刻是GNSS采样时刻,所述预测状态误差协方差矩阵用于指示所述k时刻的预测状态参数估计值的误差;
在k’时刻接收到所述k时刻采集的GNSS数据时,根据所述GNSS数据解算得到的第二导航数据、所述第一导航数据和所述预测误差协方差矩阵进行组合更新解算,组合更新解算结果包括所述k时刻的状态参数估计值和状态误差协方差矩阵;
根据累积状态转移矩阵和所述组合更新解算结果计算j时刻的预测状态参数估计值和预测状态误差协方差矩阵,所述j时刻为完成组合更新解算的时刻,所述累积状态转移矩阵用于指示所述k时刻到所述j时刻的状态变化;
当k-时刻的组合更新解算发生在所述k时刻与所述k’时刻之间时,根据所述k-时刻的组合更新解算结果对所述j时刻的预测状态参数估计值进行修正,所述k-时刻为所述k时刻之前的GNSS采样时刻;
根据修正后的所述j时刻的预测状态参数估计值和所述j时刻的预测状态误差协方差矩阵修正所述j时刻的INS误差。
该实现方式中,导航设备在GNSS数据采集时刻对INS解算的INS数据进行存储,并在接收到GNSS采集的GNSS数据时对两者进行组合更新解算,从而将组合更新解算结果转换至解算完成时刻,实现GNSS数据和INS数据的时间同步;同时,当k-时刻的组合更新解算发生在k时刻与k’时刻之间,即GNSS数据的传输延迟大于GNSS的单位采样间隔时,导航设备考虑k-时刻的组合更新解算结果对状态参数估计值的影响,对解算完成时刻的预测状态参数估计值进行修正,提高了解算完成时刻的预测状态参数估计值的准确度,进而提高了组合导航的导航精度。
在一种可能的实现方式中,所述根据所述k-时刻的组合更新解算结果对所述j时刻的预测状态参数估计值进行修正,包括:
根据所述k时刻的状态参数估计值计算k-’时刻的第一预测状态参数估计值,所述k-’时刻为获取到所述k-时刻所采集的GNSS数据的时刻;
根据所述k-时刻的组合更新解算结果中包含的状态参数估计值计算所述k-’时刻的第二预测状态参数估计值;
根据所述第一预测状态参数估计值和所述第二预测状态参数估计值对所述j时刻的预测状态参数估计值进行修正。
在一种可能的实现方式中,所述根据所述第一预测状态参数估计值和所述第二预测状态参数估计值对所述j时刻的预测状态参数估计值进行修正,包括:
将所述第一预测状态参数估计值和所述第二预测状态参数估计值的差值确定为修正值;
根据所述修正值对所述j时刻的预测状态参数估计值进行修正;
其中,所述
Figure PCTCN2017104219-appb-000001
为所述第一预测状态参数估计值,
Figure PCTCN2017104219-appb-000002
为所述第二预测状态参数估计值,
Figure PCTCN2017104219-appb-000003
为t1时刻到t0’时刻的状态转移矩阵,
Figure PCTCN2017104219-appb-000004
为t0时刻到t0’时刻的状态转移矩阵,
Figure PCTCN2017104219-appb-000005
为t1时刻的状态参数估计值,
Figure PCTCN2017104219-appb-000006
为t0时刻的组合更新解算结果中包含的状态参数估计值,t0时刻为所述k-时刻,t0’时刻为获取到t0时刻所采集的GNSS数据的时刻,t1时刻为所述k时刻。
该实现方式中,通过将k时刻的状态参数估计值和k-时刻的状态参数估计值状态转移至同一时刻,得到对应同一时刻的两个预测状态参数估计值,从而根据两个预测状态参数估计值的差值确定出k-时刻的组合更新解算结果对状态参数估计值所产生的影响,并应用该差值对j时刻的预计状态参数估计值进行修正,提高了解算完成时刻的预测状态参数估计 值的准确度,进而提高了组合导航的导航精度。
在一种可能的实现方式中,所述根据所述GNSS数据解算得到的第二导航数据、所述第一导航数据和所述预测误差协方差矩阵进行组合更新解算,包括:
根据第一公式
Figure PCTCN2017104219-appb-000007
计算所述k时刻的状态参数估计值
Figure PCTCN2017104219-appb-000008
为所述k时刻的预测状态参数估计值,Kk为卡尔曼滤波增益矩阵,
Figure PCTCN2017104219-appb-000009
为新息序列,zk为所述第一导航数据与所述第二导航数据之差,Hk为观测矩阵;
根据第二公式
Figure PCTCN2017104219-appb-000010
计算所述k时刻的状态误差协方差矩阵
Figure PCTCN2017104219-appb-000011
Ι为单位矩阵,(Ι-KkHk)T为Ι-KkHk的转置矩阵,Rk为观测噪声方差矩阵,
Figure PCTCN2017104219-appb-000012
为Kk的转置矩阵;
其中,
Figure PCTCN2017104219-appb-000013
为所述k时刻的预测状态误差协方差矩阵。
在一种可能的实现方式中,所述根据累积状态转移矩阵和所述组合更新解算结果计算j时刻的预测状态参数估计值和预测状态误差协方差矩阵,包括:
根据第三公式
Figure PCTCN2017104219-appb-000014
计算所述j时刻的预测状态参数估计值
Figure PCTCN2017104219-appb-000015
Φj/k为所述累积状态转移矩阵;
根据第四公式
Figure PCTCN2017104219-appb-000016
计算所述j时刻的预测状态误差协方差矩阵
Figure PCTCN2017104219-appb-000017
所述
Figure PCTCN2017104219-appb-000018
为Φj/k的转置矩阵,Mk+1,j为k+1时刻到所述j时刻累积的状态噪声矩阵;
其中,
Figure PCTCN2017104219-appb-000019
Qj-1为j-1时刻经过离散化处理的系统噪声协方差矩阵,Φj/j-1为j-1时刻到所述j时刻的状态转移矩阵,Mk+1,j-1为k+1时刻到所述j-1时刻的累积状态噪声矩阵。
第二方面,提供了一种观测时滞系统的组合导航数据解算装置,该装置包括至少一个单元,该至少一个单元用于实现上述第一方面或第一方面任意一种可能的实现方式所提供的观测时滞系统的组合导航数据解算方法。
第三方面,本申请实施例提供了一种导航设备,该导航设备包括GNSS/INS组合导航系统、处理器以及存储器,所述存储器用于存储一个或一个以上的指令,所述指令被指示由所述处理器执行,所述处理器用于实现上述第一方面或第一方面中任意一种可能的实现方式所提供的观测时滞系统的组合导航数据解算方法。
第四方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质中存储有用于实现上述第一方面或第一方面中任意一种可能的实现方式所提供的观测时滞系统的组合导航数据解算方法的可执行程序。
附图说明
图1示出了本申请各个实施例提供的观测时滞系统的组合导航数据解算方法的原理示意图;
图2A示出了本申请一个实施例提供的观测时滞系统的组合导航数据解算方法的流程图;
图2B是图2A所示组合导航数据解算方法的实施示意图;
图3A示出了本申请另一个实施例提供的观测时滞系统的组合导航数据解算方法的流程图;
图3B是图3A所示组合导航数据解算方法的实施示意图;
图4示出了本申请一个实施例提供的导航设备的结构框图;
图5示出了本申请一个实施例提供的观测时滞系统的组合导航数据解算装置的框图。
具体实施方式
下面将结合附图对本申请实施方式作进一步地详细描述。
INS是一种利用角速度传感器和加速度传感器进行导航的导航系统。工作状态下,INS对加速度传感器采集到的加速度数据进行积分,确定物体当前的行进速度;对角速度传感器采集到的角速度数据进行积分,确定物体当前的姿态,从而根据实时的行进速度和姿态绘制出物体的行进轨迹,并根据该行进轨迹进行导航。相较于其他类型导航系统,INS采集数据的频率较高(通常为100Hz或200Hz),所采集的数据全面且具有自主性;但是在进行长时间导航的情况下,连续积分所产生的累计误差将影响INS的导航准确度。而GNSS利用卫星进行导航时不存在累计误差,因此,将GNSS和INS进行组合,并利用GNSS采集的GNSS数据对同一时刻INS的INS数据进行修正(即组合更新解算过程),能够消除INS长时间导航时产生的累计误差。
但是在RTK模式下,GNSS需要通过电台或网络接收GNSS基站差分信号(即接收GNSS数据),而GNSS基站差分信号在传输过程中存在传输延迟,且该传输延迟与GNSS基站差分信号的传输距离有关。当GNSS基站差分信号的传输距离较长时,传输延迟将大于GNSS的单位采样时间间隔(即传输延迟超过1s),导致利用GNSS数据对INS数据进行修正时产生严重的时间异步问题,影响组合导航的导航精度。
而本申请各个实施例提供的导航数据解算方法中,如图1所示,在GNSS112的采样时刻,INS111通过惯性导航单元(Inertial Measurement Unit,IMU)采集的IMU数据经过IMU数据解算后存储在存储器120中(通常为寄存器)。当接收到采集的GNSS数据时,处理器即对存储器120中存储的INS数据(IMU数据经过解算后得到)以及GNSS数据(经过GNSS数据解算得到)进行组合更新解算,实现了GNSS数据与INS数据的同步化。完成组合更新解算后,处理器对组合更新解算结果进行状态转移,并在GNSS数据的传输延迟较长的情况下,利用上一次组合更新解算结果对状态转移后的结果进行修正,最终输出最优的GNSS/INS实时组合导航结果。在INS修正阶段,处理器即利用解算完成时刻的预测状态参数估计值对INS111进行修正,从而消除INS111在长时间导航过程中的累计误差和传感器误差。
本申请各个实施例适用于安装有GNSS/INS组合导航系统的导航设备中,该导航设备可以是具有导航功能的移动终端或安装在车辆中的车载导航设备。GNSS/INS中的GNSS可以是全球定位系统(Global Positioning System,GPS)、格洛纳斯导航系统(GLONASS)、伽利略导航系统(Galileo)或北斗导航系统,且INS由多种IMU构成,该IMU包括加速度传感器和角速度传感器等等。下面采用示意性的实施例进行说明。
请参考图2A,其示出了本申请一个实施例提供的观测时滞系统的组合导航数据解算方法的流程图。本实施例以该组合导航数据解算方法用于安装有GNSS/INS组合导航系统的导航设备中来举例说明,该方法包括:
步骤201,存储k时刻的预测状态误差协方差矩阵以及INS解算得到的k时刻的第一导航数据,k时刻是GNSS采样时刻。
可选的,当在k时刻检测到采集GNSS数据时,INS对同为k时刻采集的INS数据进行解算,并对解算得到的第一导航数据进行存储。其中,解算的方法为机械编排解算,第一导航数据用于指示k时刻的行进速度、行进姿态以及行进轨迹。
在存储第一导航数据的同时,导航设备对k时刻对应的预测误差协方差矩阵进行存储,该预测状态误差协方差矩阵根据INS上一采样时刻量测后的状态误差协方差矩阵迭代计算得到,用于指示k时刻的预测状态参数估计值的误差。
比如,如图2B所示,GNSS的采样间隔大于INS的采样间隔,GNSS在t0、t1和t2时刻进行数据采样时,导航设备存储t0、t1和t2时刻INS采样并解算得到的第一导航数据。
步骤202,在k’时刻接收在k时刻采集的GNSS数据时,根据GNSS数据解算得到的第二导航数据、第一导航数据和预测误差协方差矩阵进行组合更新解算。
由于GNSS数据在传输过程中存在传输延迟,因此导航设备需要经过一段时间后才能获取k时刻采集的GNSS数据。比如,如图2B所示,导航设备在t0’时刻获取GNSS在t0时刻采集到的GNSS数据,在t1’时刻获取GNSS在t1时刻采集到的GNSS数据。
获取到GNSS数据后,导航设备对该GNSS数据进行解算,得到对应的第二导航数据,并进一步根据存储的k时刻的第一导航数据、预测状态误差协方差矩阵以及该第二导航数据进行组合更新解算,即利用k时刻的GNSS数据进行修正。其中,组合更新解算结果包括k时刻的状态参数估计值和状态误差协方差矩阵。
步骤203,根据累积状态转移矩阵和组合更新解算结果计算j时刻的预测状态参数估计值和预测状态误差协方差矩阵,j时刻为完成组合更新解算的时刻。
在j时刻,导航设备完成对k时刻的组合更新解算,并根据k时刻与j时刻之间各个采集时刻的状态转移矩阵迭代计算出k时刻到j时刻的累积状态转移矩阵。
进一步的,导航设备利用该累积状态转移矩阵对k时刻的组合更新解算结果进行状态转移,从而得到j时刻的预测状态参数估计值和预测状态误差协方差矩阵。
步骤204,当k-时刻的组合更新解算发生在k时刻与k’时刻之间时,根据k-时刻的组合更新解算结果对j时刻的预测状态参数估计值进行修正,k-时刻为k时刻之前的GNSS采样时刻。
当GNSS数据的传输延迟较短时,GNSS数据的接收以及组合更新解算过程在一个GNSS采样间隔内完成;但是当GNSS数据的传输延迟较长时,GNSS数据的接收以及组合更新解算过程可能会跨历多个GNSS采样间隔。
比如,如图2B所示,导航设备在t1时刻之后的t0’时刻接收到t0时刻采集的GNSS数据,导航设备在t2时刻之后的t1’时刻接收到t1时刻采集的GNSS数据。
当GNSS的采样时刻(k时刻)到GNSS数据接收时刻(k’时刻)之间发生了组合更新解算(k-时刻的组合更新解算)时,导航设备在进行状态转移过程中,需要考虑组合更新解算对j时刻的预测状态参数估计值的影响,并进一步对j时刻的预测状态参数估计值进行修正,从而提高j时刻的预测状态参数估计值的准确性。比如,如图2B所示,导航设备使用t0时刻的组合更新解算结果对t1’时刻的预测状态参数估计值进行修正。
步骤205,根据修正后的j时刻的预测状态参数估计值和j时刻的预测状态误差协方差 矩阵修正j时刻的INS误差。
通过上述步骤201至204完成GNSS采集时刻到当前时刻(即j时刻)的状态转移后,导航设备进一步根据当前时刻的预测状态参数估计值和预测状态误差协方差矩阵修正j时刻的INS误差,从而消除长时间导航过程中产生的累计误差和传感器误差。
综上所述,本实施例中,导航设备在GNSS数据采集时刻对INS解算的INS数据进行存储,并在接收到GNSS采集的GNSS数据时对两者进行组合更新解算,从而将组合更新解算结果转换至解算完成时刻,实现GNSS数据和INS数据的时间同步;同时,当k-时刻的组合更新解算发生在k时刻与k’时刻之间,即GNSS数据的传输延迟大于GNSS的单位采样间隔时,导航设备考虑k-时刻的组合更新解算结果对状态参数估计值的影响,对解算完成时刻的预测状态参数估计值进行修正,提高了解算完成时刻的预测状态参数估计值的准确度,进而提高了组合导航的导航精度。
请参考图3A,其示出了本申请另一个实施例提供的观测时滞系统的组合导航数据解算方法的流程图。本实施例以该组合导航数据解算方法用于安装有GNSS/INS组合导航系统的导航设备中来举例说明,该方法包括:
步骤301,存储k时刻的预测状态误差协方差矩阵以及INS解算得到的k时刻的第一导航数据,k时刻是GNSS采样时刻。
在INS中,当前采样时刻的状态与上一采样时刻的状态有关,且当前采样时刻的状态可以根据上一采样时刻的状态和状态转移矩阵计算得到。其中,根据上一采样时刻的状态和状态转移矩阵计算当前采样时刻的状态的公式如下。
Figure PCTCN2017104219-appb-000020
其中,
Figure PCTCN2017104219-appb-000021
为k时刻的预测状态参数估计值,Φk,k-1为k-1时刻至k时刻的状态转移矩阵,
Figure PCTCN2017104219-appb-000022
为k-1时刻量测更新后的状态参数估计值。
需要说明的是,k-1时刻和k时刻为相邻的INS采集时刻。
相似的,导航设备可以根据k-1时刻的状态误差协方差矩阵计算得到k时刻的预测状态误差协方差矩阵并进行存储。其中,根据计算k时刻的预测状态误差协方差矩阵的公式如下:
Figure PCTCN2017104219-appb-000023
其中,
Figure PCTCN2017104219-appb-000024
为k时刻的预测状态误差协方差矩阵,Φk,k-1为k-1时刻至k时刻的状态转移矩阵,
Figure PCTCN2017104219-appb-000025
为k-1时刻量测更新后的状态误差协方差矩阵,
Figure PCTCN2017104219-appb-000026
为Φk,k-1的转置矩阵,Qk-1为k-1时刻经离散化后的系统噪声协方差矩阵。
需要说明的是,导航设备在存储第一导航数据和预测状态误差协方差矩阵的同时,从k时刻开始累计状态转移矩阵和系统噪声协方差矩阵,供后续进行状态转移时使用。
步骤302,在k’时刻接收到k时刻采集的GNSS数据时,根据GNSS数据解算得到的第二导航数据、第一导航数据和预测误差协方差矩阵进行组合更新解算。
当在k’时刻接收到k时刻采集的GNSS数据时,导航设备即通过GNSS对接收到的GNSS数据进行解算,得到指示k时刻行进方向和行进速度的第二导航数据。
完成GNSS数据解算后,导航设备获取上述步骤301存储的k时刻的第一导航数据以及预测状态误差协方差矩阵,并利用解算得到的第二导航数据对其进行修正,即根据第二 导航数据、第一导航数据和预测误差协方差矩阵进行组合更新解算(卡尔曼量测更新过程),得到k时刻量测更新后的状态参数估计值以及量测更新后的状态误差协方差矩阵。
在一种可能的实施方式中,本步骤可以包括如下步骤。
一、根据第一公式
Figure PCTCN2017104219-appb-000027
计算k时刻的状态参数估计值
Figure PCTCN2017104219-appb-000028
其中,
Figure PCTCN2017104219-appb-000029
为k时刻的预测状态参数估计值,Kk为卡尔曼滤波增益矩阵,
Figure PCTCN2017104219-appb-000030
为新息序列,zk为构建的观测信息向量,用于指示第一导航数据与第二导航数据之差(具体包括位置和速度之差),Hk为观测矩阵。
可选的,在计算k时刻的状态参数估计值和状态误差协方差矩阵前,导航设备根据存储的k时刻的预计状态误差协方差矩阵和观测矩阵计算卡尔曼滤波增益矩阵。
其中,卡尔曼滤波增益矩阵
Figure PCTCN2017104219-appb-000031
为所述k时刻的预测状态误差协方差矩阵,Rk为观测噪声方差矩阵,该卡尔曼滤波增益矩阵用于指示根据GNSS数据进行修正的权重。
计算得到卡尔曼滤波增益矩阵后,导航设备即通过第一公式计算量测更新后k时刻的状态参数估计值。
二、根据第二公式
Figure PCTCN2017104219-appb-000032
计算k时刻的状态误差协方差矩阵
Figure PCTCN2017104219-appb-000033
在计算k时刻状态参数估计值的同时,导航设备根据在k时刻预测状态误差协方差矩阵的基础上,通过第二公式计算k时刻的状态误差协方差矩阵。其中,第二公式中,Ι为单位矩阵,(Ι-KkHk)T为Ι-KkHk的转置矩阵,Rk为k时刻的观测噪声方差矩阵,
Figure PCTCN2017104219-appb-000034
为Kk的转置矩阵。
需要说明的是,根据第二公式计算得到的状态误差协方差矩阵
Figure PCTCN2017104219-appb-000035
采用Joseph形式表示,从而避免因计算误差累积造成矩阵失去正定性甚至对称性,有利于后续的矩阵计算。
通过上述步骤,导航设备完成组合更新解算后,即获得k时刻的状态参数估计值以及相应的状态误差协方差矩阵。
步骤303,根据累积状态转移矩阵和组合更新解算结果计算j时刻的预测状态参数估计值和预测状态误差协方差矩阵,j时刻为完成组合更新解算的时刻。
经过上述步骤302可以得到k时刻的状态参数估计值以及相应的状态误差协方差矩阵,为了进一步根据k时刻的状态得到j时刻(即组合更新解算完成时刻)的状态,导航设备需要进一步根据k时刻与j时刻之间的状态转移矩阵对k时刻的状态进行状态转移。
导航设备在进行状态转移前,需要计算k时刻到j时刻的累积状态转移矩阵。在一种可能的实施方式中,导航设备将k时刻至j时刻之间的状态转移矩阵进行迭代,即可计算得到k时刻至j时刻的累积状态转移矩阵Φj/k
进一步的,导航设备根据累计状态转移矩阵从k时刻迭代至j时刻,可以得到
Figure PCTCN2017104219-appb-000036
其中,G为系统噪声驱动矩阵,w为系统噪声,可见,状态转移可以由累积状态转移矩阵及累积状态噪声阵得到。结合状态转移矩阵的性质Φk+1/k-1=Φk+1/kΦk/k-1以及上述公式,可以进一步得到第三公式
Figure PCTCN2017104219-appb-000037
以及第四公式
Figure PCTCN2017104219-appb-000038
其中,Φj/k为累积状态转移矩阵,
Figure PCTCN2017104219-appb-000039
为Φj/k的转置矩阵,Mk+1,j为k+1时刻到j时 刻累积的状态噪声矩阵。
相应的,导航设备根据k时刻的状态参数估计值以及k时刻至j时刻的累积状态转移矩阵,通过第三公式即可计算得到j时刻的预测状态参数估计值;
导航设备根据k时刻的状态误差协方差矩阵以及k时刻至j时刻的累积状态转移矩阵,通过第四公式即可计算得到j时刻的预测状态误差协方差矩阵。
步骤304,根据k时刻的状态参数估计值计算k-’时刻的第一预测状态参数估计值,k-’时刻为获取到k-时刻所采集的GNSS数据的时刻。
当GNSS数据的传输延迟较长时,GNSS数据的接收以及组合更新解算过程可能会跨历多个GNSS采样间隔。相应的,当GNSS数据的接收以及组合更新解算过程跨历多个GNSS采样间隔时,k-时刻的组合更新解算即发生在k时刻与k’时刻之间。
比如,如图3B所示,导航设备在t2时刻之后的t1’时刻接收到t1时刻采集的GNSS数据(即t1时刻GNSS数据的接收以及组合更新解算过程跨历两个GNSS采样间隔),且t0时刻的组合更新解算发生在t1时刻与t1’时刻之间。
考虑到k-时刻的组合更新解算对j时刻带来的影响,导航设备需要根据k-时刻的组合更新解算对j时刻的预测状态参数估计值进行修正,从而提高j时刻预测状态参数估计值的准确性。
在一种可能的实施方式中,如图3B所示,导航设备可以根据转移区间T1和转移区间T2内状态参数估计值的变换情况确定t0时刻的组合更新解算产生的影响。
如图3B所示,以k时刻为t1时刻,k’时刻为t1’时刻,k-时刻为t0时刻,k-’时刻为t0’时刻为例,导航设备可以根据t1时刻的状态参数估计值以及t0’时刻至t1时刻的状态转移矩阵计算t0’时刻的第一预测状态参数估计值。
具体的,第一预测状态参数估计值
Figure PCTCN2017104219-appb-000040
其中,
Figure PCTCN2017104219-appb-000041
为t1时刻到t0’时刻的状态转移矩阵,
Figure PCTCN2017104219-appb-000042
为t1时刻的状态参数估计值。
步骤305,根据k-时刻的组合更新解算结果中包含的状态参数估计值计算k-’时刻的第二预测状态参数估计值。
与上述步骤304相似的,导航设备可以根据t0时刻的状态参数估计值以及t0时刻至t0’时刻的状态转移矩阵计算t0’时刻的第二预测状态参数估计值。
具体的,第二预测状态参数估计值
Figure PCTCN2017104219-appb-000043
其中,
Figure PCTCN2017104219-appb-000044
为t0时刻到t0’时刻的状态转移矩阵,
Figure PCTCN2017104219-appb-000045
为t0时刻的状态参数估计值。
步骤306,根据第一预测状态参数估计值和第二预测状态参数估计值对j时刻的预测状态参数估计值进行修正。
通过上述步骤304和305,导航设备根据k时刻的状态参数估计值和k-时刻的状态参数估计值得到同一时刻(k-’时刻)的两个预测结果;进一步的,通过分析两个预测结果的差异,导航设备即可对j时刻的预测状态参数估计值进行修正。
在一种可能的实施方式中,导航设备可以将第一预测状态参数估计值和第二预测状态参数估计值的差值作为j时刻的修正值,并利用该修正值进行修正。可选的,本步骤可以包括如下步骤。
一、将第一预测状态参数估计值和第二预测状态参数估计值的差值确定为修正值。
结合上述步骤304和步骤305,导航设备计算得到的
Figure PCTCN2017104219-appb-000047
二、根据修正值对j时刻的预测状态参数估计值进行修正。
在一种可能的实施方式中,导航设备可以根据上述步骤计算得到的修正值以及t0’时刻至t1’时刻的状态转移矩阵进行状态参数修正。比如,导航设备可以通过如下公式对j时刻的预测状态参数估计值进行修正:
Figure PCTCN2017104219-appb-000048
其中,
Figure PCTCN2017104219-appb-000049
为及t0’时刻至t1’时刻的状态转移矩阵。
步骤307,根据修正后的j时刻的预测状态参数估计值和j时刻的预测状态误差协方差矩阵修正j时刻的INS误差。
通过上述步骤301至306完成GNSS采集时刻到当前时刻(即j时刻)的状态转移以及状态参数修正后,导航设备进一步根据当前时刻的预测状态参数估计值和预测状态误差协方差矩阵修正j时刻的INS误差,从而消除长时间导航过程中产生的累计误差和传感器误差。
本实施例中,通过将k时刻的状态参数估计值和k-时刻的状态参数估计值状态转移至同一时刻,得到对应同一时刻的两个预测状态参数估计值,从而根据两个预测状态参数估计值的差值确定出k-时刻的组合更新解算结果对状态参数估计值所产生的影响,并应用该差值对j时刻的预计状态参数估计值进行修正,提高了解算完成时刻的预测状态参数估计值的准确度,进而提高了组合导航的导航精度。
以下为本申请实施例的装置实施例,对于装置实施例中未详细阐述的部分,可以参考上述方法实施例中的细节。
请参考图4,其示出了本申请一个实施例提供的观测时滞系统的组合导航设备400的结构框图。该导航设备400包括:GNSS/INS组合导航系统410、处理器420以及存储器430。
处理器420通过总线分别与GNSS/INS组合导航系统410和存储器430相连。
处理器420包括一个或一个以上处理核心。处理器420通过运行操作系统或应用程序模块,实现导航数据的解算及修正功能。
可选地,存储器430可存储操作系统432、至少一个功能所需的应用程序模块434。可选的,应用程序模块434包括存储模块434a、解算模块434b、转换模块434c和修正模块434d。其中,存储模块434a用于实现有关数据存储的步骤;解算模块434b用于实现有关导航数据解算的步骤;转换模块434c用于实现有关状态转移的步骤;修正模块434d用于实现有关数据修正的步骤。
此外,存储器430可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
本领域技术人员可以理解,图4中所示出的结构并不构成对导航设备的限定,导航设 备可以包括比图示更多或更少的部件或组合某些部件,或者不同的部件布置。
请参考图5,其示出了本申请一个实施例提供的观测时滞系统的组合导航数据解算装置的框图。该装置可以通过软件或硬件实现成为导航设备的全部或一部分。该装置包括:存储单元510、解算单元520、转换单元530和修正单元540。
存储单元510用于实现上述图2A或图3A实施例中的步骤201和301等步骤,以及其它隐含的由导航设备执行的存储步骤;
解算单元520用于实现上述图2A或图3A实施例中的步骤202和302等步骤,以及其它隐含的由导航设备执行的导航数据解算步骤;
转换单元530用于实现上述图2A或图3A实施例中的步骤203和303等步骤,以及其它隐含的由导航设备执行的状态转移步骤;
修正单元540用于实现上述图2A或图3A实施例中的步骤204、205、304、305、306和307等步骤,以及其它隐含的由导航设备执行的数据修正步骤。
其中,存储单元510可以由图4中的处理器420执行存储器430中的存储模块434a实现;解算单元520可以由图4中的处理器420执行存储器430中的解算模块434b实现;转换单元530可以由图4中的处理器420执行存储器430中的转换模块434c实现;修正单元540可以由图4中的处理器420执行存储器430中的修正模块434d实现。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。

Claims (15)

  1. 一种观测时滞系统的组合导航数据解算方法,其特征在于,用于安装有全球卫星导航系统/惯性导航系统GNSS/INS组合导航系统的导航设备中,所述方法包括:
    存储k时刻的预测状态误差协方差矩阵以及INS解算得到的所述k时刻的第一导航数据,所述k时刻是GNSS采样时刻,所述预测状态误差协方差矩阵用于指示所述k时刻的预测状态参数估计值的误差;
    在k’时刻接收到所述k时刻采集的GNSS数据时,根据所述GNSS数据解算得到的第二导航数据、所述第一导航数据和所述预测误差协方差矩阵进行组合更新解算,组合更新解算结果包括所述k时刻的状态参数估计值和状态误差协方差矩阵;
    根据累积状态转移矩阵和所述组合更新解算结果计算j时刻的预测状态参数估计值和预测状态误差协方差矩阵,所述j时刻为完成组合更新解算的时刻,所述累积状态转移矩阵用于指示所述k时刻到所述j时刻的状态变化;
    当k-时刻的组合更新解算发生在所述k时刻与所述k’时刻之间时,根据所述k-时刻的组合更新解算结果对所述j时刻的预测状态参数估计值进行修正,所述k-时刻为所述k时刻之前的GNSS采样时刻;
    根据修正后的所述j时刻的预测状态参数估计值和所述j时刻的预测状态误差协方差矩阵修正所述j时刻的INS误差。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述k-时刻的组合更新解算结果对所述j时刻的预测状态参数估计值进行修正,包括:
    根据所述k时刻的状态参数估计值计算k-’时刻的第一预测状态参数估计值,所述k-’时刻为获取到所述k-时刻所采集的GNSS数据的时刻;
    根据所述k-时刻的组合更新解算结果中包含的状态参数估计值计算所述k-’时刻的第二预测状态参数估计值;
    根据所述第一预测状态参数估计值和所述第二预测状态参数估计值对所述j时刻的预测状态参数估计值进行修正。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述第一预测状态参数估计值和所述第二预测状态参数估计值对所述j时刻的预测状态参数估计值进行修正,包括:
    将所述第一预测状态参数估计值和所述第二预测状态参数估计值的差值确定为修正值;
    根据所述修正值对所述j时刻的预测状态参数估计值进行修正;
    其中,所述修正值
    Figure PCTCN2017104219-appb-100001
    为所述第一预测状态参数估计值,
    Figure PCTCN2017104219-appb-100002
    为所述第二预测状态参数估计值,
    Figure PCTCN2017104219-appb-100003
    为t1时刻到t0’时刻的状态转移矩阵,
    Figure PCTCN2017104219-appb-100004
    为t0时刻到t0’时刻的状态转移矩阵,
    Figure PCTCN2017104219-appb-100005
    为t1时刻的状态参数估计值,
    Figure PCTCN2017104219-appb-100006
    为t0时刻的组合更新解算结果中包含的状态参数估计值,t0时刻为所述k-时刻,t0’时刻为获取到t0时刻所采集的GNSS数据的时刻,t1时刻为所述k时刻。
  4. 根据权利要求1至3任一所述的方法,其特征在于,所述根据所述GNSS数据解算得到的第二导航数据、所述第一导航数据和所述预测误差协方差矩阵进行组合更新解算,包括:
    根据第一公式
    Figure PCTCN2017104219-appb-100007
    计算所述k时刻的状态参数估计值
    Figure PCTCN2017104219-appb-100008
    为所述k时刻的预测状态参数估计值,Kk为卡尔曼滤波增益矩阵,
    Figure PCTCN2017104219-appb-100009
    为新息序列,zk为所述第一导航数据与所述第二导航数据之差,Hk为观测矩阵;
    根据第二公式
    Figure PCTCN2017104219-appb-100010
    计算所述k时刻的状态误差协方差矩阵
    Figure PCTCN2017104219-appb-100011
    Ι为单位矩阵,(Ι-KkHk)T为Ι-KkHk的转置矩阵,Rk为观测噪声方差矩阵,
    Figure PCTCN2017104219-appb-100012
    为Kk的转置矩阵;
    其中,
    Figure PCTCN2017104219-appb-100013
    为所述k时刻的预测状态误差协方差矩阵。
  5. 根据权利要求4所述的方法,其特征在于,所述根据累积状态转移矩阵和所述组合更新解算结果计算j时刻的预测状态参数估计值和预测状态误差协方差矩阵,包括:
    根据第三公式
    Figure PCTCN2017104219-appb-100014
    计算所述j时刻的预测状态参数估计值
    Figure PCTCN2017104219-appb-100015
    Φj/k为所述累积状态转移矩阵;
    根据第四公式
    Figure PCTCN2017104219-appb-100016
    计算所述j时刻的预测状态误差协方差矩阵
    Figure PCTCN2017104219-appb-100017
    所述
    Figure PCTCN2017104219-appb-100018
    为Φj/k的转置矩阵,Mk+1,j为k+1时刻到所述j时刻累积的状态噪声矩阵;
    其中,
    Figure PCTCN2017104219-appb-100019
    为j-1时刻经过离散化处理的系统噪声协方差矩阵,Φj/j-1为j-1时刻到所述j时刻的状态转移矩阵,Mk+1,j-1为k+1时刻到所述j-1时刻的累积状态噪声矩阵。
  6. 一种观测时滞系统的组合导航数据解算装置,其特征在于,所述装置包括:
    存储单元,用于存储k时刻的预测状态误差协方差矩阵以及INS解算得到的所述k时刻的第一导航数据,所述k时刻是GNSS采样时刻,所述预测状态误差协方差矩阵用于指示所述k时刻的预测状态参数估计值的误差;
    解算单元,用于在k’时刻接收到所述k时刻采集的GNSS数据时,根据所述GNSS数据解算得到的第二导航数据、所述第一导航数据和所述预测误差协方差矩阵进行组合更新解算,组合更新解算结果包括所述k时刻的状态参数估计值和状态误差协方差矩阵;
    转换单元,用于根据累积状态转移矩阵和所述组合更新解算结果计算j时刻的预测状态参数估计值和预测状态误差协方差矩阵,所述j时刻为完成组合更新解算的时刻,所述累积状态转移矩阵用于指示所述k时刻到所述j时刻的状态变化;
    修正单元,用于当k-时刻的组合更新解算发生在所述k时刻与所述k’时刻之间时,根据所述k-时刻的组合更新解算结果对所述j时刻的预测状态参数估计值进行修正,所述k-时刻为所述k时刻之前的GNSS采样时刻;
    所述修正单元,用于根据修正后的所述j时刻的预测状态参数估计值和所述j时刻的预测状态误差协方差矩阵修正所述j时刻的INS误差。
  7. 根据权利要求6所述的装置,其特征在于,
    所述修正单元,用于根据所述k时刻的状态参数估计值计算k-’时刻的第一预测状态参数 估计值,所述k-’时刻为获取到所述k-时刻所采集的GNSS数据的时刻;
    所述修正单元,用于根据所述k-时刻的组合更新解算结果中包含的状态参数估计值计算所述k-’时刻的第二预测状态参数估计值;
    所述修正单元,用于根据所述第一预测状态参数估计值和所述第二预测状态参数估计值对所述j时刻的预测状态参数估计值进行修正。
  8. 根据权利要求7所述的装置,其特征在于,
    所述修正单元,用于将所述第一预测状态参数估计值和所述第二预测状态参数估计值的差值确定为修正值;
    所述修正单元,用于根据所述修正值对所述j时刻的预测状态参数估计值进行修正;
    其中,所述修正值
    Figure PCTCN2017104219-appb-100020
    为所述第一预测状态参数估计值,
    Figure PCTCN2017104219-appb-100021
    为所述第二预测状态参数估计值,
    Figure PCTCN2017104219-appb-100022
    为t1时刻到t0’时刻的状态转移矩阵,
    Figure PCTCN2017104219-appb-100023
    为t0时刻到t0’时刻的状态转移矩阵,
    Figure PCTCN2017104219-appb-100024
    为t1时刻的状态参数估计值,
    Figure PCTCN2017104219-appb-100025
    为t0时刻的组合更新解算结果中包含的状态参数估计值,t0时刻为所述k-时刻,t0’时刻为获取到t0时刻所采集的GNSS数据的时刻,t1时刻为所述k时刻。
  9. 根据权利要求6至8任一所述的装置,其特征在于,
    所述解算单元,用于根据第一公式
    Figure PCTCN2017104219-appb-100026
    计算所述k时刻的状态参
    Figure PCTCN2017104219-appb-100027
    阵;
    所述解算单元,用于根据第二公式
    Figure PCTCN2017104219-appb-100028
    计算所述k时刻的状态误差协方差矩阵
    Figure PCTCN2017104219-appb-100029
    Ι为单位矩阵,(Ι-KkHk)T为Ι-KkHk的转置矩阵,Rk为观测噪声方差矩阵,
    Figure PCTCN2017104219-appb-100030
    为Kk的转置矩阵;
    其中,
    Figure PCTCN2017104219-appb-100031
    为所述k时刻的预测状态误差协方差矩阵。
  10. 根据权利要求9所述的装置,其特征在于,
    所述转换单元,用于根据第三公式
    Figure PCTCN2017104219-appb-100032
    计算所述j时刻的预测状态参数估计值
    Figure PCTCN2017104219-appb-100033
    Φj/k为所述累积状态转移矩阵;
    所述转换单元,用于根据第四公式
    Figure PCTCN2017104219-appb-100034
    计算所述j时刻的预测状态误差协方差矩阵
    Figure PCTCN2017104219-appb-100035
    所述
    Figure PCTCN2017104219-appb-100036
    为Φj/k的转置矩阵,Mk+1,j为k+1时刻到所述j时刻累积的状态噪声矩阵;
    其中,
    Figure PCTCN2017104219-appb-100037
    Qj-1为j-1时刻经过离散化处理的系统噪声协方差矩阵,Φj/j-1为j-1时刻到所述j时刻的状态转移矩阵,Mk+1,j-1为k+1时刻到所述j-1时刻的累积状态噪声矩阵。
  11. 一种导航设备,其特征在于,所述导航设备包括:全球卫星导航系统/惯性导航系统 GNSS/INS组合导航系统、处理器以及存储器,其中,所述存储器用于存储一个或者一个以上的指令,所述处理器用于通过执行所述指令来完成下述操作;
    所述存储器,用于存储k时刻的预测状态误差协方差矩阵以及INS解算得到的所述k时刻的第一导航数据,所述k时刻是GNSS采样时刻,所述预测状态误差协方差矩阵用于指示所述k时刻的预测状态参数估计值的误差;
    所述处理器,用于在k’时刻接收到所述k时刻采集的GNSS数据时,根据所述GNSS数据解算得到的第二导航数据、所述第一导航数据和所述预测误差协方差矩阵进行组合更新解算,组合更新解算结果包括所述k时刻的状态参数估计值和状态误差协方差矩阵;
    所述处理器,用于根据累积状态转移矩阵和所述组合更新解算结果计算j时刻的预测状态参数估计值和预测状态误差协方差矩阵,所述j时刻为完成组合更新解算的时刻,所述累积状态转移矩阵用于指示所述k时刻到所述j时刻的状态变化;
    所述处理器,用于当k-时刻的组合更新解算发生在所述k时刻与所述k’时刻之间时,根据所述k-时刻的组合更新解算结果对所述j时刻的预测状态参数估计值进行修正,所述k-时刻为所述k时刻之前的GNSS采样时刻;
    所述处理器,用于根据修正后的所述j时刻的预测状态参数估计值和所述j时刻的预测状态误差协方差矩阵修正所述j时刻的INS误差。
  12. 根据权利要求11所述的导航设备,其特征在于,
    所述处理器,用于根据所述k时刻的状态参数估计值计算k-’时刻的第一预测状态参数估计值,所述k-’时刻为获取到所述k-时刻所采集的GNSS数据的时刻;
    所述处理器,用于根据所述k-时刻的组合更新解算结果中包含的状态参数估计值计算所述k-’时刻的第二预测状态参数估计值;
    所述处理器,用于根据所述第一预测状态参数估计值和所述第二预测状态参数估计值对所述j时刻的预测状态参数估计值进行修正。
  13. 根据权利要求12所述的导航设备,其特征在于,
    所述处理器,用于将所述第一预测状态参数估计值和所述第二预测状态参数估计值的差值确定为修正值;
    所述处理器,用于根据所述修正值对所述j时刻的预测状态参数估计值进行修正;
    其中,所述修正值
    Figure PCTCN2017104219-appb-100038
    为所述第一预测状态参数估计值,
    Figure PCTCN2017104219-appb-100039
    为所述第二预测状态参数估计值,
    Figure PCTCN2017104219-appb-100040
    为t1时刻到t0’时刻的状态转移矩阵,
    Figure PCTCN2017104219-appb-100041
    为t0时刻到t0’时刻的状态转移矩阵,
    Figure PCTCN2017104219-appb-100042
    为t1时刻的状态参数估计值,
    Figure PCTCN2017104219-appb-100043
    为t0时刻的组合更新解算结果中包含的状态参数估计值,t0时刻为所述k-时刻,t0’时刻为获取到t0时刻所采集的GNSS数据的时刻,t1时刻为所述k时刻。
  14. 根据权利要求11至13任一所述的导航设备,其特征在于,
    所述处理器,用于根据第一公式
    Figure PCTCN2017104219-appb-100044
    计算所述k时刻的状态参数
    Figure PCTCN2017104219-appb-100045
    阵;
    所述处理器,用于根据第二公式
    Figure PCTCN2017104219-appb-100046
    计算所述k时刻的状态误差协方差矩阵
    Figure PCTCN2017104219-appb-100047
    Ι为单位矩阵,(Ι-KkHk)T为Ι-KkHk的转置矩阵,Rk为观测噪声方差矩阵,
    Figure PCTCN2017104219-appb-100048
    为Kk的转置矩阵;
    其中,
    Figure PCTCN2017104219-appb-100049
    为所述k时刻的预测状态误差协方差矩阵。
  15. 根据权利要求14所述的装置,其特征在于,
    所述处理器,用于根据第三公式
    Figure PCTCN2017104219-appb-100050
    计算所述j时刻的预测状态参数估计值
    Figure PCTCN2017104219-appb-100051
    Φj/k为所述累积状态转移矩阵;
    所述处理器,用于根据第四公式
    Figure PCTCN2017104219-appb-100052
    计算所述j时刻的预测状态误差协方差矩阵
    Figure PCTCN2017104219-appb-100053
    所述
    Figure PCTCN2017104219-appb-100054
    为Φj/k的转置矩阵,Mk+1,j为k+1时刻到所述j时刻累积的状态噪声矩阵;
    其中,
    Figure PCTCN2017104219-appb-100055
    Qj-1为j-1时刻经过离散化处理的系统噪声协方差矩阵,Φj/j-1为j-1时刻到所述j时刻的状态转移矩阵,Mk+1,j-1为k+1时刻到所述j-1时刻的累积状态噪声矩阵。
PCT/CN2017/104219 2016-09-30 2017-09-29 观测时滞系统的组合导航数据解算方法、装置及导航设备 WO2018059532A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610877288.X 2016-09-30
CN201610877288.XA CN107884800B (zh) 2016-09-30 2016-09-30 观测时滞系统的组合导航数据解算方法、装置及导航设备

Publications (1)

Publication Number Publication Date
WO2018059532A1 true WO2018059532A1 (zh) 2018-04-05

Family

ID=61763276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104219 WO2018059532A1 (zh) 2016-09-30 2017-09-29 观测时滞系统的组合导航数据解算方法、装置及导航设备

Country Status (2)

Country Link
CN (1) CN107884800B (zh)
WO (1) WO2018059532A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109724598A (zh) * 2019-03-08 2019-05-07 哈尔滨工程大学 一种gnss/ins松组合时延误差的估计及补偿方法
CN110006427A (zh) * 2019-05-20 2019-07-12 中国矿业大学 一种低动态高振动环境下的bds/ins紧组合导航方法
CN112269201A (zh) * 2020-10-23 2021-01-26 北京云恒科技研究院有限公司 一种gnss/ins紧耦合时间分散滤波方法
CN112833919A (zh) * 2021-03-25 2021-05-25 成都纵横自动化技术股份有限公司 一种多余度的惯性测量数据的管理方法及其系统
CN113110548A (zh) * 2021-04-21 2021-07-13 北京控制工程研究所 一种航天器椭球集合演化的设计方法
CN113137975A (zh) * 2020-05-28 2021-07-20 西安天和防务技术股份有限公司 天文惯性组合导航的惯性校正方法、装置及电子设备
CN113670337A (zh) * 2021-09-03 2021-11-19 东南大学 一种用于gnss/ins组合导航卫星缓变故障检测方法
CN117590441A (zh) * 2024-01-16 2024-02-23 广州导远电子科技有限公司 一种完好性保护水平计算方法及相关设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110207687B (zh) * 2018-04-25 2022-08-23 腾讯科技(深圳)有限公司 物体姿态测量方法、测量装置、电子设备及存储介质
CN113063429B (zh) * 2021-03-18 2023-10-24 苏州华米导航科技有限公司 一种自适应车载组合导航定位方法
CN113783652B (zh) * 2021-09-13 2023-06-16 广东汇天航空航天科技有限公司 一种组合导航系统的数据同步方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6134484A (en) * 2000-01-28 2000-10-17 Motorola, Inc. Method and apparatus for maintaining the integrity of spacecraft based time and position using GPS
CN103278837A (zh) * 2013-05-17 2013-09-04 南京理工大学 基于自适应滤波的sins/gnss多级容错组合导航方法
CN105806338A (zh) * 2016-03-17 2016-07-27 孙红星 基于三向卡尔曼滤波平滑器的gnss/ins组合定位定向算法
CN105866807A (zh) * 2016-04-05 2016-08-17 南信大影像技术工程(苏州)有限公司 一种提高gnss实时监测数据精度的算法
CN105954783A (zh) * 2016-04-26 2016-09-21 武汉大学 一种改进gnss/ins实时紧组合导航实时性能的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6134484A (en) * 2000-01-28 2000-10-17 Motorola, Inc. Method and apparatus for maintaining the integrity of spacecraft based time and position using GPS
CN103278837A (zh) * 2013-05-17 2013-09-04 南京理工大学 基于自适应滤波的sins/gnss多级容错组合导航方法
CN105806338A (zh) * 2016-03-17 2016-07-27 孙红星 基于三向卡尔曼滤波平滑器的gnss/ins组合定位定向算法
CN105866807A (zh) * 2016-04-05 2016-08-17 南信大影像技术工程(苏州)有限公司 一种提高gnss实时监测数据精度的算法
CN105954783A (zh) * 2016-04-26 2016-09-21 武汉大学 一种改进gnss/ins实时紧组合导航实时性能的方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109724598A (zh) * 2019-03-08 2019-05-07 哈尔滨工程大学 一种gnss/ins松组合时延误差的估计及补偿方法
CN110006427A (zh) * 2019-05-20 2019-07-12 中国矿业大学 一种低动态高振动环境下的bds/ins紧组合导航方法
CN110006427B (zh) * 2019-05-20 2020-10-27 中国矿业大学 一种低动态高振动环境下的bds/ins紧组合导航方法
CN113137975A (zh) * 2020-05-28 2021-07-20 西安天和防务技术股份有限公司 天文惯性组合导航的惯性校正方法、装置及电子设备
CN113137975B (zh) * 2020-05-28 2024-03-19 西安天和防务技术股份有限公司 天文惯性组合导航的惯性校正方法、装置及电子设备
CN112269201A (zh) * 2020-10-23 2021-01-26 北京云恒科技研究院有限公司 一种gnss/ins紧耦合时间分散滤波方法
CN112269201B (zh) * 2020-10-23 2024-04-16 北京云恒科技研究院有限公司 一种gnss/ins紧耦合时间分散滤波方法
CN112833919B (zh) * 2021-03-25 2023-11-03 成都纵横自动化技术股份有限公司 一种多余度的惯性测量数据的管理方法及其系统
CN112833919A (zh) * 2021-03-25 2021-05-25 成都纵横自动化技术股份有限公司 一种多余度的惯性测量数据的管理方法及其系统
CN113110548A (zh) * 2021-04-21 2021-07-13 北京控制工程研究所 一种航天器椭球集合演化的设计方法
CN113670337A (zh) * 2021-09-03 2021-11-19 东南大学 一种用于gnss/ins组合导航卫星缓变故障检测方法
CN117590441A (zh) * 2024-01-16 2024-02-23 广州导远电子科技有限公司 一种完好性保护水平计算方法及相关设备
CN117590441B (zh) * 2024-01-16 2024-04-30 广州导远电子科技有限公司 一种完好性保护水平计算方法及相关设备

Also Published As

Publication number Publication date
CN107884800B (zh) 2020-06-26
CN107884800A (zh) 2018-04-06

Similar Documents

Publication Publication Date Title
WO2018059532A1 (zh) 观测时滞系统的组合导航数据解算方法、装置及导航设备
JP6972355B2 (ja) 測位システム、方法及び媒体
JP5684279B2 (ja) ワイヤレス信号を使用した位置判断
US8412456B2 (en) Loosely-coupled integration of global navigation satellite system and inertial navigation system: speed scale-factor and heading bias calibration
EP2264403B1 (en) Positioning device and positioning method
US11035915B2 (en) Method and system for magnetic fingerprinting
JP6965253B2 (ja) 視覚慣性オドメトリおよび衛星測位システムの基準フレームのアラインメント
JP5301762B2 (ja) キャリア位相相対測位装置
WO2015099194A1 (ja) 衛星測位システム、測位端末、測位方法、及び記録媒体
US20120215442A1 (en) Positioning apparatus, positioning method, and storage medium for measuring position using both autonomous navigation and gps
WO2015123604A1 (en) Systems and methods for estimating movements of a vehicle using a mobile device
JP6905841B2 (ja) ナビゲーションシステム及び誤差補正のための方法
US11808863B2 (en) Methods and systems for location determination
CN110715659A (zh) 零速检测方法、行人惯性导航方法、装置及存储介质
JP5742794B2 (ja) 慣性航法装置及びプログラム
KR20130036145A (ko) 이동 정보 결정 장치, 수신기 및 그에 의한 방법
KR101141984B1 (ko) Dr/gps 데이터 융합 방법
US10323942B2 (en) User-specific learning for improved pedestrian motion modeling in a mobile device
RU2515959C2 (ru) Навигационное устройство и способ его позиционирования
US20160349057A1 (en) Multiple data sources pedestrian navigation system
JP5994237B2 (ja) 測位装置及びプログラム
US10914793B2 (en) Method and system for magnetometer calibration
JP2022545327A (ja) 反射したgnss信号に対する感度を高めること
US20130238237A1 (en) Multiple data sources pedestrian navigation system
CN112924999B (zh) 一种无人机的定位方法、系统、装置及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17854982

Country of ref document: EP

Kind code of ref document: A1