WO2018059516A1 - 无线链路检测和处理方法及装置 - Google Patents

无线链路检测和处理方法及装置 Download PDF

Info

Publication number
WO2018059516A1
WO2018059516A1 PCT/CN2017/104087 CN2017104087W WO2018059516A1 WO 2018059516 A1 WO2018059516 A1 WO 2018059516A1 CN 2017104087 W CN2017104087 W CN 2017104087W WO 2018059516 A1 WO2018059516 A1 WO 2018059516A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio link
radio
parameter
physical layer
access network
Prior art date
Application number
PCT/CN2017/104087
Other languages
English (en)
French (fr)
Inventor
韩锋
孙文琦
晋英豪
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17854966.3A priority Critical patent/EP3515103B1/en
Publication of WO2018059516A1 publication Critical patent/WO2018059516A1/zh
Priority to US16/370,464 priority patent/US10931515B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0668Management of faults, events, alarms or notifications using network fault recovery by dynamic selection of recovery network elements, e.g. replacement by the most appropriate element after failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0677Localisation of faults
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present invention relates to the field of wireless network communications, and in particular, to a method and apparatus for wireless link detection and processing.
  • 5G fifth generation wireless communication technology
  • 5G will support diverse application needs, including support for higher speed experiences and greater bandwidth access, lower latency and highly reliable information interaction, and the connection of larger and lower cost machine-like communication devices. Entry and management, etc.
  • 5G will support a variety of vertical industry applications for vehicle networking, emergency communications, and industrial Internet. Faced with these performance requirements and application scenarios of 5G, 5G networks need to be closer to the specific needs of users, and their customization capabilities need to be further improved.
  • the conventional LTE system maintains a fixed radio physical layer parameter (Numerology) in a single carrier and carrier aggregation scenario, including a subframe length of 1 ms, a subcarrier spacing of 15 KHz, a symbol length of about 70 microseconds, and About 5 microseconds of Cyclix Prefix (CP) length, etc.
  • a radio physical layer parameter (Numerology)
  • CP Cyclix Prefix
  • NR Next-generation Radio introduces a variety of Numerology: each Numerology can correspond to different subcarrier spacing, Subframe length, etc.
  • the user equipment In a wireless network, the user equipment (User Equipment, UE for short) experiences different wireless link conditions at different times at the same time or at different times in the same location. Therefore, in order to ensure the quality of the communication service, The UE needs to perform radio link quality measurement and detect the radio link control (Radio Resource Control, RRC for short) connection when the radio link fails.
  • the NR network supports a variety of Numerology, and the wireless link corresponding to each Numerology will exhibit different characteristics.
  • the radio link detection method of the existing LTE system is used to detect link failure and perform RRC connection reestablishment processing, which is difficult to meet the requirements of radio link detection and processing of various Numerology in the NR network.
  • the embodiments of the present invention provide a method and an apparatus for detecting and processing a radio link, so as to provide a radio link detection for different Numerology and a processing method when a radio link fails for a UE using a plurality of Numerology.
  • an embodiment of the present invention provides a method for detecting and processing a wireless link.
  • the method includes: setting, by the access network device, radio link detection parameters of multiple radio physical layer parameters, where the multiple radio physical layer parameters correspond to different radio links, and the radio link detection parameters include And the indication information indicating the at least one of the wireless physical layer parameters; the access network device sends the wireless link detection parameter to the terminal device; and the access network device receives the wireless link reported by the terminal device a failure report, wherein the radio link failure report includes information of a failed radio link; the access network device interacts with the terminal device to process data of the failed radio link.
  • the radio link detection parameter includes a radio link failure related parameter of a default radio layer parameter indication and a default radio layer parameter, where
  • the radio link failure related parameter includes at least one of the following: a number of consecutive out-of-synchronization indications, a number of consecutive synchronization indications, a radio link quality parameter that occurs out of synchronization corresponding to a given block error rate, and a corresponding given block error rate occurs.
  • the radio link detection parameter includes a radio physical layer parameter indication list and a radio link failure related parameter of each radio physical layer parameter;
  • the wireless physical layer parameter indication list includes at least one wireless physical layer parameter indication used by the terminal device.
  • the radio link detection parameter includes a radio physical layer parameter indication list of a carrier/cell and a radio link failure of each radio physical layer parameter a parameter, wherein each of the carriers/cells uses a plurality of wireless physical layer parameters.
  • the radio link detection parameter includes a RAN node indication list and a carrier/cell indication list of each RAN node, and each carrier/cell A radio physical layer parameter indication list, and radio link failure related parameters for each radio physical layer parameter, wherein each of the carriers/cells uses a plurality of radio physical layer parameters.
  • the radio link detection parameter includes a radio physical layer parameter detection activation/deactivation indication, wherein the radio physical layer parameter detection activation/deactivation indication Used to activate or deactivate the detection of the wireless link corresponding to the wireless physical layer parameter indication.
  • the processing the data of the failed radio link includes: the access network device suspending scheduling the failed radio link Data transmission; or the access network device dispatches data of the failed wireless link to a normal wireless link for transmission; or the access network device emphasizes the need for the failed wireless link
  • the transmitted data is transmitted via other normal wireless links.
  • an embodiment of the present invention provides a method for detecting and processing a wireless link.
  • the method includes: the terminal device receives a radio link detection parameter sent by the access network device, where the radio link detection parameter includes radio link detection parameters of multiple radio layer parameters, and the multiple radio physics The layer parameters correspond to different wireless links, and the radio link detection parameter includes indication information for indicating at least one of the radio physical layer parameters; the terminal device sends a radio link failure report to the access network device, where The radio link failure report includes information of the failed radio link; the terminal device interacts with the access network device to process data of the failed radio link.
  • the processing the data of the failed radio link includes: the terminal device failing according to a scheduling of the access network device The data of the wireless link is scheduled to be transmitted to the normal wireless link; or the terminal device transmits the data of the failed wireless link that needs to be retransmitted according to the scheduling of the access network device via other normal wireless links. Transfer.
  • an embodiment of the present invention provides an access network device, where the access network device includes a communication interface and a processor.
  • the communication interface is configured to send the radio link detection parameters of the plurality of radio layer parameters to the terminal device, where the multiple radio layer parameters correspond to different radio links, and the radio link detection parameters include And indication information indicating at least one of the wireless physical layer parameters;
  • the communication interface is configured to receive a radio link failure report reported by the terminal device, where the radio link failure report includes a failed radio link
  • the processor is configured to process data of the failed wireless link.
  • the radio link detection parameter includes a default The line physical layer parameter indicates a radio link failure related parameter of the default radio physical layer parameter, where the radio link failure related parameter includes at least one of the following: a continuous out-of-synchronization indication number, a continuous synchronization indication number, and a corresponding The radio link quality parameter in which the error block rate is out of synchronization, the radio link quality parameter corresponding to the synchronization of the given block error rate, the timer duration for allowing the terminal device and the access network device to resume synchronization, and the maximum radio link control The number of retransmissions.
  • the radio link detection parameter includes a radio physical layer parameter indication list and a radio link failure related parameter of each radio physical layer parameter;
  • the wireless physical layer parameter indication list includes at least one wireless physical layer parameter indication used by the terminal device.
  • the radio link detection parameter includes a radio physical layer parameter indication list of a carrier/cell and a radio link failure of each radio physical layer parameter a parameter, wherein each of the carriers/cells uses a plurality of wireless physical layer parameters.
  • the radio link detection parameter includes a RAN node indication list and an indication list of carriers/cells of each RAN node, and each carrier/cell A radio physical layer parameter indication list, and radio link failure related parameters for each radio physical layer parameter, wherein each of the carriers/cells uses a plurality of radio physical layer parameters.
  • the radio link detection parameter includes a radio physical layer parameter detection activation/deactivation indication, where the radio physical layer parameter detection activation/deactivation indication Used to activate or deactivate the detection of the wireless link corresponding to the wireless physical layer parameter indication.
  • the processing the data of the failed radio link includes: the access network device suspending scheduling the failed radio link Data transmission; or the access network device dispatches data of the failed wireless link to a normal wireless link for transmission; or the access network device emphasizes the need for the failed wireless link
  • the transmitted data is transmitted via other normal wireless links.
  • an embodiment of the present invention provides a terminal device, where the terminal device includes a communication interface and a processor.
  • the communication interface is configured to receive a radio link detection parameter sent by the access network device, where the radio link detection parameter includes radio link detection parameters of multiple radio layer parameters, and the multiple radio layer parameters Corresponding to different wireless links, the radio link detection parameter includes indication information for indicating at least one of the radio physical layer parameters; the communication interface is configured to send a radio link failure report to the access network device, where The radio link failure report includes information of a failed radio link, and the processor is configured to process data of the failed radio link.
  • the processing the data of the failed wireless link includes: the terminal device failing according to a scheduling of the access network device The data of the wireless link is scheduled to be transmitted to the normal wireless link; or the terminal device transmits the data of the failed wireless link that needs to be retransmitted according to the scheduling of the access network device via other normal wireless links. Transfer.
  • the radio access network node configures independent radio link detection parameters for one or more radio physical layer parameters used by the terminal device, and the terminal device performs one or more radio link parameters of the radio physical layer parameters. Detecting, and detecting the detected radio link parameters of the radio link, the radio link failure is reported to the access network node, and the data of the radio physical layer parameter of the radio link failure is processed under the scheduling of the access network node.
  • independent wireless link detection for each wireless physical layer parameter the impact of communication between different wireless physical layer parameters of the terminal device is minimized, the UE triggering link reconstruction process is reduced, and data is continuously transmitted as much as possible.
  • FIG. 1 is a schematic diagram of an NR network scenario according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a physical layer frame of an NR network according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of a method for detecting and processing a wireless link according to an embodiment of the present invention
  • FIG. 5 is a schematic flowchart of another method for detecting and processing a wireless link according to an embodiment of the present invention.
  • FIG. 6 is another radio link detection parameter information according to an embodiment of the present invention.
  • FIG. 7 is another radio link detection parameter information according to an embodiment of the present invention.
  • FIG. 8 is another radio link detection parameter information according to an embodiment of the present invention.
  • FIG. 9 is another radio link detection parameter information according to an embodiment of the present invention.
  • FIG. 10 is another radio link detection parameter information according to an embodiment of the present invention.
  • FIG. 11 is another radio link detection parameter information according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a UE according to an embodiment of the present disclosure.
  • FIG. 13 is another schematic structural diagram of a UE according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a RAN device according to an embodiment of the present disclosure.
  • FIG. 15 is another schematic structural diagram of a RAN device according to an embodiment of the present invention.
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • the method and device for detecting and processing a radio link are applicable to detecting a radio link between a UE and a Radio Access Network (RAN) node and after a radio link failure occurs. Processing, especially for wireless access networks and UEs supporting one or more Numerology scenarios, as shown in Figure 1.
  • UE 110 and RAN node 101 perform data transmission over wireless link 121.
  • the UE 110 can also perform data transmission with the RAN node 102 through the wireless link 122 in a multi-connection manner.
  • the RAN node 101 is a primary RAN node
  • the node RAN 102 is a secondary RAN node.
  • One RAN node in the NR network may support transmitting one and/or more Numerology signals on one and/or multiple carriers/cells.
  • Different Numerology signals can correspond to different service types, such as NR network to Enhanced Mobile Broadband (eMBB) services, Massive Machine Type Communication (MMTC) services, and ultra-reliable and low-latency communication.
  • eMBB Enhanced Mobile Broadband
  • MMTC Massive Machine Type Communication
  • URLLC for short can use different Numerology for data transmission.
  • the URLLC service may be based on a short subframe length
  • the eMBB service may be based on a long subframe length
  • the mMTC service may be based on a long CP, and the like.
  • the 3GPP RAN1#86 conference discussed that the NR network supports multiple Numerologies in a combination of FDM/TDM or a combination of the two, and one UE can simultaneously support multiple Numerologies.
  • the carrier supports both the URLLC service and the eMBB service
  • the semi-static or dynamic radio resource sharing of the two services should be considered.
  • the 3GPP RAN2#95 conference discussed that different carriers can support different Numerology. For example, for a carrier operating at a high frequency, a large subcarrier spacing may be employed; and for a carrier operating at a relatively low frequency, a subcarrier spacing of LTE or the like may be employed.
  • the UE performs radio link detection based on the reference signal on the system carrier of the serving cell in the RRC connected state.
  • the UE detects that the cell reference signal strength is lower than the signal strength threshold set by the system corresponding to the block error rate of 10%, the UE considers that an out-of-sync occurs.
  • the UE continuously detects that the number of out-of-syncs reaches the number of times indicated by the system-set counter N310, the UE starts the timer T310 and starts timing.
  • the UE When the T310 timing does not exceed the duration set by the system, if the UE detects that the cell reference signal strength is higher than the signal strength threshold set by the system corresponding to the block error rate of 2%, it is considered to restore one-in-sync (in-sync).
  • the UE continuously detects that the number of in-syncs reaches the number indicated by the system-set counter N311, the UE stops the timer T310, and determines that the UE maintains an RRC connection with the serving cell. If the UE does not detect N311 times of in-sync when the T310 times out, it is determined that the radio link between the UE and the serving cell fails.
  • the UE determines that the radio link fails to be detected. At this time, data transmission between the UE and the serving cell is interrupted. The UE then initiates an RRC Connection Reestablishment Request to the serving cell in an attempt to reestablish the RRC connection.
  • the UE detects only the radio link of the primary cell (PCell) and does not detect the radio link of the secondary cell (SCell). When the link fails on the PCell, The UE will initiate an RRC connection re-establishment.
  • the UE performs a radio link on the PCell of the master eNB (MeNB for short), and also the primary secondary cell (PSCell) on the secondary eNB (SeNB). ) Perform wireless link detection.
  • the radio link fails in the PCell, the UE will initiate RRC connection reestablishment.
  • the radio link fails in the PSCell, the UE passes The RRC message informs the MeNB that a radio link failure has occurred in its PSCell. At this time, data transmission between the UE and the SeNB is interrupted.
  • the MeNB needs to restart the signaling flow of increasing the SeNB according to the measurement result of the UE.
  • the NR network supports a variety of Numerology, and the wireless link corresponding to each Numerology will exhibit different characteristics. For example, different Numerologies can use different reference signals at different time-frequency resources. UEs that support multiple Numerology may have different measurements for different Numerology reference signals. And when the UE measures a reference signal of the Numerology to detect that the radio link corresponding to the Numerology fails, the RRC connection reestablishment is initiated, which may cause a negative impact on other normal Numerology communication connections. In addition, NR networks can operate in high frequency bands (>6 GHz), and narrow-band based high-band communication techniques often result in faster degradation of radio link quality than in low-band communications.
  • high frequency bands >6 GHz
  • the available bandwidth in the high frequency band is larger, and the frequency selective fading is more obvious, resulting in significantly different link characteristics from the low frequency band.
  • the detection result cannot reflect the signal quality of other cells (such as SCell), even if the part of the cell is wireless.
  • the link fails, and the radio links of other cells can still maintain good communication quality.
  • the radio link detection method of the existing LTE system is used to detect the link failure and perform the RRC connection reestablishment process, the detection and difference processing of different Numerology links in the NR network cannot be well performed, and it is difficult to effectively maintain the NR network.
  • the transmission quality of multiple service types are used to detect the link failure and perform the RRC connection reestablishment process.
  • the RAN node configures independent radio link detection parameters for one or more Numerology used by the UE, and the UE performs one or more Numerology radio link detection, and detects the detected Numerology radio chain.
  • the path fails to be reported to the access network node, and the Numerology data of the radio link failure is processed under the configuration of the access network node.
  • FIG. 2 is a schematic diagram of a NR physical layer frame structure provided by an embodiment of the present invention.
  • the NR network can divide the system bandwidth into different sub-bands, and each sub-band uses different Numerology to transmit signals of different services.
  • the high-throughput feature of the eMBB service can use the Numerology of the long subframe length
  • the packet service feature of the mMTC service can use the Numerology of the small subcarrier bandwidth
  • the low latency feature of the URLLC service can use the Numerology of the short subframe length.
  • the UE can simultaneously support one or more services, so that one or more Numerologies can be simultaneously used for data transmission.
  • the NR network configures an identity for each of the supported Numerologies.
  • the RAN node may allocate a Numerology identifier to the UE when the UE accesses the NR network, or allocate a Numerology identifier to the UE in the RRC connection configuration message after the UE accesses the network.
  • FIG. 3 is a schematic flowchart diagram of a method for detecting and processing a wireless link according to an embodiment of the present invention. The process includes the following steps:
  • the RAN node sends a radio link detection parameter to the UE.
  • the radio link detection parameter is as shown in FIG. 4, and includes a default Numerology indication and a radio link failure related parameter.
  • the UE communicates with the RAN node by using one or more Numerology
  • the RAN node may specify one of the Numerology as the default Numerology for the UE to perform radio link detection by using RRC signaling, indicating that the UE is defaulting to the default. Numerology's wireless link is detected.
  • the Numerology indication may include an identifier of the Numerology, a corresponding air interface radio resource (such as a time-frequency resource and a code domain resource, etc.), a reference signal configuration, and the like.
  • the Numerology indication may include corresponding air interface radio resources (such as time-frequency resources and code domain resources, etc.) and reference signal configuration.
  • the radio link failure related parameter may include a counter parameter N310, a counter parameter N311, a packet error rate parameter X, a packet error rate parameter Y, a timer parameter T310, and an RLC maximum retransmission number.
  • the configuration of the radio link detection parameter may be sent by the RAN node to the UE when the UE accesses the network or in the RRC connection configuration message of the UE, or may be sent by the RAN node to the UE by using a broadcast message.
  • the UE detects the radio link of the default Numerology and determines that the radio link fails.
  • the UE detects the radio link of the default Numerology according to the configuration of the received radio link detection parameter, and uses the radio link failure related parameter to determine whether the UE generates wireless in the default Numerology. The link failed.
  • the UE may measure the reference signal on the time-frequency resource occupied by the default Numerology to determine the radio link quality of the default Numerology, and according to the received default Numerology corresponding to the N310/N311 /X/Y/T310 related parameters, determine the default Numerology wireless link failure.
  • the UE may also determine a wireless link of the default Numerology by detecting that the number of RLC retransmissions of the data transmitted on the default Numerology is greater than the maximum number of RLC retransmissions corresponding to the received default Numerology. A failure has occurred.
  • the UE initiates an RRC connection reestablishment request to the RAN node.
  • the RRC connection reestablishment request is initiated to the RAN node.
  • the access layer security of the UE is in an active state, and the UE initiates an RRC connection reestablishment request to the RAN node.
  • the access layer security of the UE is not activated, and the UE directly enters the RRC idle state.
  • the RAN node If the RAN node successfully receives the RRC connection reestablishment request initiated by the UE, the RRC connection is reestablished for the UE. If the RAN node fails to successfully receive the RRC connection reestablishment request initiated by the UE, the network side is requested to release the UE context.
  • FIG. 5 is a schematic flowchart diagram of another method for detecting and processing a wireless link according to an embodiment of the present invention. Compared with the embodiment shown in FIG. 3, in this embodiment, the UE detects and processes the wireless links of various Numerologies currently used. As shown in FIG. 5, the method includes the following steps:
  • the RAN node sends a radio link detection parameter to the UE.
  • the radio link detection parameter includes an indication list of multiple Numerologies currently used by the UE and a radio link failure related parameter of each Numerology.
  • the RAN node configures the UE to perform radio link detection for multiple Numerologies currently used, and configures corresponding radio link failure related parameters for each Numerology.
  • the radio link detection parameters configured by the RAN node for the UE are as shown in FIG. 6.
  • the UE currently uses N (N is an integer greater than 1) Numerology
  • the radio link detection parameter configured by the RAN node to the UE includes a Numerology indication list (Numerology_1, Numerology_2, . . . , Numerology_N), and N sets of radio link failure related parameter sets corresponding to Numerology shown in FIG. 6.
  • the RAN node may indicate that the UE uses different radio link failure related parameters.
  • the value of the X parameter may be smaller than the value of the X parameter of the Numerology corresponding to the eMBB service.
  • the Numerology indication list may be used to indicate that the UE reports the Numerology link failure report to the RAN node by using the priority of the Numerology in the list after detecting that the radio link fails in the part of the Numerology.
  • the Numerology list is (Numerology1, Numerology2, Numerology3, Numerology4, Numerology5). If the UE detects that the radio link fails in Numerology1 and Numerology3, the Numerology2 reports the Numerology radio link failure report to the RAN node.
  • the configuration of the radio link detection parameter may be sent by the RAN node to the UE through an RRC connection reconfiguration message, or may be sent by the RAN node to the UE by using a broadcast message.
  • the UE detects the radio link of the configured Numerology, and determines that some of the Numerology radio links fail.
  • the UE performs radio link detection on each type of Numerology in the configured Numerology indication list according to the received radio link detection parameter, and uses the radio link failure related parameter to determine that the UE is in each A Numerology has a radio link failure.
  • the UE detects all the radio links of the Numerology in the configured Numerology indication list by using the method in the foregoing step 302, and determines that a part of the Numerology fails the radio link.
  • the RAN node configures three types of Numerology radio link detection for the UE, and the UE determines to determine one of them or The wireless links of the two Numerology failed.
  • the UE sends a Numerology radio link failure report to the RAN node.
  • the Numerology Radio Link Failure Report contains a list of radio link failure Numerology.
  • a normal Numerology is selected to send a Numerology radio link failure report to the RAN node, and one or more Numerologies that fail the radio link are reported.
  • the Numerology in which the radio link failure occurs is included in the radio link failure Numerology list.
  • the UE may select a Numerology to send a Numerology radio link failure report according to the priority order of receiving the Numerology indication list in step 501.
  • the UE and the RAN node process data on the Numerology that fails the radio link.
  • the UE detects that the radio link of the part of the Numerology fails, that is, after the timer T310 corresponding to the Numerology of the radio link failure expires, the UE continues to detect whether the radio link of the Numerology is restored. . Specifically, if the UE detects that the number of in-syncs of the Numerology that failed the radio link reaches the number of times indicated by the counter N311 set by the system, it determines that the radio link recovery of the UE in the Numerology. When the radio link of the one or more Numerologies is restored, the UE may report a Numerology indication of the restored radio link to the RAN node. On the other hand, after receiving the Numerology radio link failure report, the RAN node can process the data on the Numerology in the following three ways:
  • the RAN node suspends the scheduling of the data of the Numerology in which the radio link fails, and continues to schedule the data of the Numerology after receiving the Numerology indication of the restored radio link reported by the UE;
  • the RAN node schedules the data of the Numerology that failed the radio link to the normal Numerology for transmission.
  • the RAN node may indicate which Numerology to prioritize the data of the Numerology that failed the radio link.
  • the RAN node may select a normal Numerology according to the priority order in the Numerology indication list configured in step 501 to transmit the data of the Numerology in which the radio link fails.
  • the RAN node transmits the data that needs to be retransmitted by the Numerology that has failed the radio link through other normal Numerology.
  • the RAN node may indicate which Numerology retransmits the data of the Numerology that failed the radio link.
  • the RAN node may select a normal Numerology according to the priority in the Numerology indication list configured in step 501 to retransmit the data of the Numerology in which the radio link fails.
  • the UE detects that all the Numerologys in the Numerology indication list configured by the RAN node fail the radio link, and the UE does not enter step 503, but The RRC connection reestablishment request is initiated directly to the RAN node.
  • the UE detects that a radio link failure occurs in a certain number of Numerologys in the Numerology indication list configured by the RAN node, and the UE does not enter step 503, but directly initiates an RRC connection reestablishment request to the RAN node. .
  • the UE detects that each of the at least two Numerologys in the Numerology indication list configured by the RAN node indicates a mathematical operation result of the number of consecutive out-of-sync occurrences (eg, weighted summation)
  • the UE does not proceed to step 503, but directly initiates an RRC connection reestablishment request to the RAN node.
  • the RAN node configurable UE determines, in one of the above embodiments, under what circumstances the RRC connection reestablishment request is sent.
  • the UE may initiate an RRC Connection Reestablishment Request on the default Numerology, or the Numerology specified by the RAN node before the radio link failure occurs, or the Numerology specified in the received RAN Node Broadcast message.
  • the specific steps of the UE to initiate the RRC connection reestablishment request to the RAN node are similar to the implementation manner of the step 303 in the foregoing embodiment, and details are not described herein again.
  • the RAN node can indicate activation and/or shutdown detection for each type of Numerology, such as configuring the UE to detect only part of the Numerology wireless link.
  • the radio link detection parameters of each Numerology that the RAN node can configure for the UE are as shown in FIG. 7 , and include a Numerology indication list, a detection activation/deactivation indication corresponding to each Numerology, and a radio link corresponding to each Numerology. Failure related parameters.
  • the RAN node defines a 1-bit detection indication for each type of Numerology, such as "1" indicating radio link detection to activate the Numerology, and "0" indicating radio link detection to disable the Numerology.
  • the UE implements differentiated link detection on different wireless links of different Numerology according to radio link detection parameters of different Numerology, and may not perform RRC connection immediately when one or more Numerology radio links fail. Rebuild to avoid affecting the data transmission of other normal Numerology.
  • one RAN node provides services for the UE by using multiple carriers, and one carrier may correspond to one cell, for example, the primary carrier corresponds to the PCell, and one secondary carrier corresponds to one SCell.
  • the UE can support different Numerology on different carriers, and can also support multiple Numerologies on the same carrier.
  • the UE uses multiple carriers simultaneously, each using a Numerology.
  • the UE uses three carriers simultaneously, and the UE may use the first, second, and third Numerology on the first, second, and third carriers, respectively, or may use the first Numerology on the first and second carriers.
  • the second Numerology is used on the third carrier.
  • Figure 8 illustrates radio link detection parameters for each carrier/cell used by the UE configured by the RAN node for the UE.
  • each carrier/cell uses a Numerology.
  • the RAN node may also detect activation/deactivation for each carrier/cell indication, such as configuring the UE to detect only the radio link of the Numerology used by part of the carrier/cell.
  • the UE supports multiple carriers at the same time, and each carrier can use multiple Numerologies. Exemplarily, the UE uses two carriers simultaneously, the UE may use the first Numerology on the first carrier, and the second Numerology and the third Numerology on the second carrier.
  • Figure 9 illustrates radio link detection parameters for each of Numerology for each carrier/cell used by the UE configured by the RAN node for the UE.
  • one carrier/cell uses one or more Numerology.
  • the RAN node may also detect activation/deactivation for each Numerology indication under one carrier/cell, such as configuring the UE to detect only part of the Numerology wireless link used by part of the carrier/cell.
  • radio link detection and processing procedure in the carrier aggregation scenario is similar to the flow diagram shown in FIG. 5, and the main differences are:
  • the radio link detection parameter sent by the RAN node to the UE is as shown in FIG. 8 or FIG. 9.
  • the radio link detection parameter includes a cell/carrier indication used by the UE.
  • the UE uses M carriers, and correspondingly uses N1...NM (Ni is an integer greater than or equal to 1) Numerology
  • the radio link detection parameter configured by the RAN node to the UE includes (Numerology_1, Numerology_2, ...., Numerology_M*NM) Numerology indication list, and M*NM Numerology corresponding radio link failure related parameter sets.
  • the RAN node may use a RRC signaling to specify a carrier/cell as a default carrier/cell for the UE to perform radio link detection, and instruct the UE to detect the radio link of the default carrier/cell; or
  • the carrier/cell specifies a Numerology as the default Numerology for the UE to perform radio link detection, and instructs the UE to detect the radio link of the default Numerology.
  • the UE detects a radio link of each carrier/cell, and determines a partial carrier/cell radio link failure.
  • the UE detects each radio link of each carrier/cell and determines a partial Numerology radio link failure of a part of carriers/cells.
  • the case where the UE determines that the RRC connection reestablishment request is directly initiated without performing the radio link failure report includes: the UE detects the location in the Numerology indication list configured by the RAN node.
  • the wireless link fails in the Numerology on the carrier; or the UE detects the weighted sum of the number of consecutive out-of-syncs of the Numerology on the at least two carriers configured by the RAN node to reach a network setting The threshold time; or the Numerology on the carrier indicates that more than a certain number of Numerology in the list has failed to generate a radio link.
  • the RAN node configurable UE determines, in one of the above embodiments, under what circumstances the RRC connection reestablishment request is sent.
  • the difference from the UE that sends the Numerology radio link failure report to the RAN node in step 503 of the foregoing embodiment is that when a carrier/cell uses a Numerology, the UE detects that a part of the carrier/cell has failed to generate a radio link.
  • the carrier/cell link failure report is reported to the RAN node in a suitable carrier/cell by the priority order of the carrier/cell indication list.
  • the Numerology indication list may be prioritized to select a carrier in a suitable carrier/cell to report the carrier to the RAN node/ Cell link failure report.
  • the processing procedure for Numerology in step 404 is applicable to the processing procedure for the carrier/cell in the embodiment of the present invention.
  • the UE and the RAN node are directed to data processing of multiple Numerologies in multiple carriers/cells.
  • the processing procedure for Numerology in step 504 is applicable to the processing flow of the carrier/cell Numerology in the embodiment of the present invention.
  • the RAN node and the UE transmit data that needs to be retransmitted by Numerology that has failed the radio link via Numerology on other normal carriers.
  • the UE implements differentiated link detection on the wireless link of different Numerology according to the radio link detection parameter of the Numerology of different carriers, and when the radio link of the Numerology of one or more carriers fails, Immediately perform RRC connection reestablishment to avoid data transmission of Numerology that affects other normal carriers.
  • each of the primary RAN node and the one or more secondary RAN nodes may serve the UE using one or more carriers/cells.
  • the UE simultaneously uses multiple carriers/cells of multiple RAN nodes, each using a Numerology.
  • Figure 10 illustrates radio link detection parameters for each carrier/cell of each RAN node used by the UE configured by the primary RAN node for the UE.
  • Each RAN node may serve the UE by using one or more carriers/cells, and each carrier/cell uses a Numerology. Further, the RAN node may also detect activation/deactivation for each carrier/cell indication, such as configuring the UE to detect only the radio link of the Numerology used by part of the carrier/cell.
  • the UE uses multiple carriers/cells simultaneously, and each carrier/cell can use multiple Numerologies.
  • 11 illustrates radio link detection parameters for each of Numerology for each carrier/cell of each RAN node used by the primary RAN node for the UE.
  • Each RAN node may serve the UE by using one or more carriers/cells, and each carrier/cell uses multiple Numerologies.
  • the RAN node may also detect activation/deactivation for each Numerology indication under one carrier/cell, such as configuring the UE to detect only part of the Numerology wireless link used by part of the carrier/cell.
  • radio link detection and processing flow in multiple scenarios is similar to the flow diagram shown in FIG. 5, and the main differences are:
  • the radio link detection parameter sent by the main RAN node to the UE is as shown in FIG. 10 or FIG. 11.
  • the radio link detection parameter includes a RAN node/cell/carrier indication used by the UE.
  • the primary RAN node may specify, by using RRC signaling, a Numerology for each RAN node on each carrier/cell as the default Numerology for the UE to perform radio link detection, and instruct the UE to perform the radio link of the default Numerology. Detection.
  • step 502 of the foregoing embodiment is that, on the one hand, the UE detects each carrier/cell of each RAN node.
  • a radio link of Numerology determines a partial Numerology radio link failure of a part of a carrier/cell of a part of the RAN node.
  • the UE determines that the RRC connection reestablishment request is directly initiated without performing the radio link failure report, and the UE detects that the Numerology on at least two carriers on the at least two RAN nodes configured by the master RAN node continuously occurs out- When the weighted sum of the number of times of -sync reaches a threshold set by the network; or a radio link fails in a certain number of Numerology in the Numerology indication list on the carrier of the at least two RAN nodes; or all configurations
  • the RAN node/cell/carrier/Numerology has a radio link failure.
  • the RAN node configurable UE determines, in one of the above embodiments, under what circumstances the RRC connection reestablishment request is sent.
  • the difference from the UE that sends the Numerology radio link failure report to the RAN node in step 503 of the foregoing embodiment is that, when the UE detects that a part of the Numerology has failed the radio link, the priority of the Numerology indication list is selected at a suitable RAN node.
  • the carrier/cell Numerology reports a carrier/cell link failure report to the RAN node.
  • the difference from the data processing of the Numerology of the radio link failure in the step 504 of the foregoing embodiment is that the UE and the RAN node are directed to data processing of a plurality of Numerologies in a plurality of carriers/cells of the plurality of RAN nodes.
  • the processing procedure for Numerology in step 504 is applicable to the processing flow of the RAN node/carrier/cell Numerology in the embodiment of the present invention.
  • the RAN node and the UE transmit the data that needs to be retransmitted by the Numerology of the radio link failure via a Numerology on one carrier of the other normal RAN node.
  • the UE implements differentiated link detection on the radio link of different carriers/cells of different RAN nodes according to the radio link detection parameters of different carriers/cells of different RAN nodes, and in one of the links.
  • the radio link of the Numerology of multiple carriers fails, the RRC connection reestablishment may not be performed immediately, and the Numerology data transmission of other normal carriers may be avoided.
  • the RAN node has the function of supporting network slicing.
  • each network slice can use a Numerology on the air interface.
  • the network slice ID may be used in the radio link detection parameter configured by the RAN node for the UE instead of the Numerology indication.
  • a network slice ID list may be used instead of the Numerology indication list.
  • each network element includes a corresponding hardware structure and/or software module for executing each function.
  • each network element includes a corresponding hardware structure and/or software module for executing each function.
  • the present patent application can be implemented in a combination of hardware or hardware and computer software in conjunction with the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for implementing the described functions for each particular application, but such implementation should not be considered to be beyond the scope of this patent application.
  • FIG. 12 is a schematic structural diagram of a UE according to an embodiment of the present invention.
  • the UE 1200 includes a processor 1201, a memory 1202, and a communication interface 1203.
  • the processor 1201 is coupled to the memory 1202 and the communication interface 1203, for example, the processor 1201 can be coupled to the memory 1202 and the communication interface 1203 via a bus.
  • the processor 1201 is configured to support the RAN device to perform the corresponding functions in the above methods.
  • the processor 1201 may be a Central Processing Unit (CPU), a Network Processor (NP), a hardware chip, or any combination thereof.
  • the hardware chip may be an Application-Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), or a combination thereof.
  • the above PLD may be a Complex Programmable Logic Device (referred to as Complex Programmable Logic Device). CPLD), Field-Programmable Gate Array (FPGA), Generic Array Logic (GAL) or any combination thereof.
  • the memory 1202 is used to store signaling and data that the RAN device needs to transmit, and to receive signaling and data from the UE, and the like.
  • the memory 1202 may include a volatile memory (Volatile Memory), such as a random access memory (RAM); the memory 1202 may also include a non-volatile memory (Non-Volatile Memory), such as a read only memory ( Read-Only Memory (ROM), Flash Memory, Hard Disk Drive (HDD) or Solid-State Drive (SSD); the memory 1202 may also include a combination of the above types of memories. .
  • the communication interface 1203 is configured to communicate with the RAN device, and to transmit and receive signaling and data involved in the above method with the RAN device.
  • the processor 1201 can perform the following operations:
  • the uplink signaling and data are transmitted through the communication interface 1203 and/or the downlink signaling and data are received.
  • the processor 1201 receives the radio link detection parameter configured by the RAN node through the communication interface 1203, performs detection of one or more radio links of the Numerology according to the configuration, and sends an RRC connection reestablishment request or a Numerology radio through the communication interface 1203 according to the detection result.
  • Link failure report is optionally, when the link recovery of the Numerology of the radio link failure occurs, the Numerology indication of the recovery radio link is reported to the RAN node through the communication interface 1203.
  • the processor 1201 further processes the data of the Numerology that fails the radio link. For details, refer to the embodiments of FIG. 2 to FIG. 10 .
  • FIG. 13 is a schematic structural diagram of another UE according to an embodiment of the present invention. As shown in FIG. 13, the UE 1300 includes a receiving module 1301, a processing module 1302, and a sending module 1303.
  • the receiving module 1301 is configured to receive a message, such as a radio link detection parameter configured by the RAN node, where the radio link detection parameter may include one or more indications of Numerology, and radio link failure related parameters of each Numerology.
  • the processing module 1302 performs corresponding processing according to the information received by the receiving module 1301, and sends the processed partial result to the sending module 1303.
  • the processing module 1302 performs detection of one or more radio links of the Numerology according to the configuration, and generates an RRC connection reestablishment request or a Numerology radio link failure report according to the detection result.
  • a Numerology indication of recovering the radio link is generated.
  • the processing module 1302 further processes the data of the Numerology that fails the radio link. For details, please refer to the embodiments of FIG. 2 to FIG. 10 .
  • the sending module 1303 is configured to send an RRC connection reestablishment request, a Numerology radio link failure report, and a Numerology indication for restoring the radio link, where the Numerology radio link failure report and the restoration of the radio link's Numerology indication may include one or A variety of Numerology instructions.
  • FIG. 14 is a schematic structural diagram of a RAN device according to an embodiment of the present invention.
  • the RAN device 1400 includes a processor 1401, a memory 1402, and a communication interface 1403.
  • the processor 1401 is coupled to the memory 1402 and the communication interface 1403, for example, the processor 1401 can be coupled to the memory 1402 and the communication interface 1403 via a bus.
  • the processor 1401 is configured to support the RAN device to perform the corresponding functions in the above methods.
  • the processor 1401 may be a Central Processing Unit (CPU), a Network Processor (NP), a hardware chip, or any combination thereof.
  • the hardware chip may be an Application-Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), or a combination thereof.
  • the PLD may be a Complex Programmable Logic Device (CPLD), a Field-Programmable Gate Array (FPGA), a Generic Array Logic (GAL) or any of the above. combination.
  • CPLD Complex Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • GAL Generic Array Logic
  • the memory 1402 is configured to store signaling and data that the RAN device needs to transmit, and receive signaling and numbers from the UE.
  • the memory 1402 may include a Volotile Memory, such as a Random Access Memory (RAM); the memory 1402 may also include a Non-Volatile Memory, such as a Read Only Memory ( Read-Only Memory (ROM), Flash Memory, Hard Disk Drive (HDD) or Solid-State Drive (SSD); the memory 1402 may also include a combination of the above types of memory. .
  • the communication interface 1403 is configured to communicate with the UE, and transmit and receive signaling and data involved in the foregoing method with the UE.
  • the processor 1401 can perform the following operations:
  • Signaling and data are transmitted via communication interface 1403 and/or signaling and data are received.
  • the processor 1401 configures, for each UE, one or more radio link detection parameters of the Numerology used by the UE, and sends the configuration information to the UE through the communication interface 1403; and receives the RRC sent by the UE through the communication interface 1403. Connect the rebuild request message or the Numerology radio link failure report.
  • the Numerology indication of the recovered radio link sent by the UE is received through the communication interface 1403.
  • the RRC connection reestablishment process is performed according to the RRC connection reestablishment request message sent by the UE, or the Numerology data of the radio link failure is processed according to the Numerology radio link failure report sent by the UE. Please refer to the embodiment of FIG. 2 to FIG. 10 for details.
  • FIG. 15 is a schematic structural diagram of another RAN device according to an embodiment of the present invention. As shown in FIG. 15, the RAN device 1500 includes a receiving module 1501, a processing module 1502, and a transmitting module 1503.
  • the receiving module 1501 is configured to receive a message, such as an RRC connection reestablishment request sent by the UE, a Numerology radio link failure report, and a Numerology indication of restoring the radio link, where the Numerology radio link failure report and the restoration of the radio link's Numerology indication may include One or more Numerology instructions.
  • a message such as an RRC connection reestablishment request sent by the UE, a Numerology radio link failure report, and a Numerology indication of restoring the radio link, where the Numerology radio link failure report and the restoration of the radio link's Numerology indication may include One or more Numerology instructions.
  • the processing module 1502 performs corresponding processing according to the information received by the receiving module 1501.
  • the processing module 1502 configures, for each UE, one or more radio link detection parameters of the Numerology used by the UE, and sends the radio link detection parameters to the UE.
  • the RRC connection reestablishment process is performed according to the RRC connection reestablishment request message sent by the UE, or the Numerology data of the radio link failure is processed according to the Numerology radio link failure report sent by the UE and the Numerology indication message of the radio link. Please refer to the embodiment of FIG. 2 to FIG. 10 for details.
  • the sending module 1503 is configured to send a message, such as a radio link detection parameter, to the UE, where the radio link detection parameter may include one or more indications of Numerology, and radio link failure related parameters of each Numerology.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of cells is only a logical function division.
  • multiple units or components may be combined or integrated. Go to another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present patent application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种无线链路检测和处理的方法和装置。该方法包括:无线接入网节点为终端设备使用的一种或多种无线物理层参数配置独立的无线链路检测参数,终端设备进行一种或多种无线物理层参数的无线链路检测,并将检测到的无线物理层参数无线链路失败上报接入网节点,并在接入网节点的调度下配置下对无线链路失败的无线物理层参数的数据进行处理。通过对每一个无线物理层参数的独立的无线链路检测,保证终端设备不同无线物理层参数之间的通信的影响最小化,减少了终端设备触发链路重建过程,尽可能保证数据不间断传输。

Description

无线链路检测和处理方法及装置
本申请要求于2016年9月30日提交中国专利局、申请号为201610877308.3、申请名称为“无线链路检测和处理方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无线网络通信领域,尤其涉及一种无线链路检测和处理的方法和装置。
背景技术
随着无线通信技术的飞速发展,第五代(5th Generation;简称:5G)无线通信技术已是目前业界的热点。5G将支持多样化的应用需求,其中包括支持更高速率体验和更大带宽的接入能力、更低时延和高可靠的信息交互、以及更大规模且低成本的机器类通信设备的接入和管理等。此外,5G将支持面向车联网、应急通信、工业互联网等各种垂直行业应用场景。面对5G这些性能要求和应用场景,5G网络需要更加贴近用户特定需求,其定制化能力需要进一步提升。
传统的LTE系统在单载波和载波聚合的场景下维持固定的无线物理层参数(Numerology),包括1ms的子帧(subframe)长度、以及15KHz的子载波间隔、约70微秒的符号长度、以及约5微秒的循环前缀(Cyclix Prefix,简称CP)长度等。为了应对5G的定制化能力需求,更好地支持各种业务类型和应用场景,下一代空口(Next-generation Radio,简称NR)引入了多种Numerology:每种Numerology可以对应不同的子载波间隔、子帧长度等。
在无线网络中,由于无线信道的特点,用户设备(User Equipment,简称UE)在同一时刻的不同位置或者在同一位置的不同时刻都会经历不同的无线链路状况,因此为了保障通信业务的质量,需要UE进行无线链路质量的测量,并在无线链路失败时能及时检测出来,进行无线资源控制(Radio Resource Control,简称RRC)连接的重建。NR网络支持多种Numerology,每种Numerology所对应的无线链路会呈现不同的特性。采用现有LTE系统的无线链路检测方法来检测链路失败并进行RRC连接重建处理,难以满足NR网络中多种Numerology的无线链路检测和处理的需求。
发明内容
本发明实施例提供一种无线链路检测和处理的方法和装置,从而为使用多种Numerology的UE提供针对不同Numerology的无线链路检测以及无线链路失败时的处理方法。
第一方面,本发明实施例提供一种无线链路检测和处理的方法。其中,该方法包括:接入网设备设置多种无线物理层参数的无线链路检测参数,其中,所述多种无线物理层参数对应不同的无线链路,所述无线链路检测参数包含用于指示至少一种所述无线物理层参数的指示信息;所述接入网设备将所述无线链路检测参数发送给终端设备;所述接入网设备接收所述终端设备上报的无线链路失败报告,其中,所述无线链路失败报告包括失败的无线链路的信息;所述接入网设备和终端设备交互,对所述失败的无线链路的数据进行处理。
结合第一方面,在第一方面的第一种可能的实现方式中,所述无线链路检测参数包括缺省无线物理层参数指示和缺省无线物理层参数的无线链路失败相关参数,其中,所述无线链路失败相关参数包含以下中的至少一个:连续失步指示次数、连续同步指示次数、对应给定误块率发生失步的无线链路质量参数、对应给定误块率发生同步的无线链路质量参数、允许终端设备和接入网设备恢复同步的定时器时长、和无线链路控制最大重传次数。
结合第一方面,在第一方面的第二种可能的实现方式中,所述无线链路检测参数包括无线物理层参数指示列表和每种无线物理层参数的无线链路失败相关参数;所述无线物理层参数指示列表包括所述终端设备使用的至少一种无线物理层参数指示。
结合第一方面,在第一方面的第三种可能的实现方式中,所述无线链路检测参数包括载波/小区的无线物理层参数指示列表和每种无线物理层参数的无线链路失败相关参数,其中,所述每个载波/小区使用多种无线物理层参数。
结合第一方面,在第一方面的第四种可能的实现方式中,所述无线链路检测参数包括RAN节点指示列表和每个RAN节点的载波/小区的指示列表、每个载波/小区的无线物理层参数指示列表、以及每种无线物理层参数的无线链路失败相关参数,其中,所述每个载波/小区使用多种无线物理层参数。
结合第一方面,在第一方面的第五种可能的实现方式中,所述无线链路检测参数包括无线物理层参数检测激活/关闭指示,其中,所述无线物理层参数检测激活/关闭指示用于激活或关闭对与无线物理层参数指示对应的无线链路的检测。
结合第一方面,在第一方面的第六种可能的实现方式中,所述对所述失败的无线链路的数据进行处理包括:所述接入网设备暂停调度所述失败的无线链路的数据传输;或所述接入网设备将所述失败的无线链路的数据调度到正常的无线链路上进行传输;或所述接入网设备将所述失败的无线链路的需要重传的数据经由其他正常的无线链路进行传输。
第二方面,本发明实施例提供一种无线链路检测和处理的方法。其中,该方法包括:终端设备接收接入网设备发送的无线链路检测参数,其中,所述无线链路检测参数包含多种无线物理层参数的无线链路检测参数,所述多种无线物理层参数对应不同的无线链路,所述无线链路检测参数包含用于指示至少一种所述无线物理层参数的指示信息;所述终端设备发送无线链路失败报告给接入网设备,其中,所述无线链路失败报告包括失败的无线链路的信息;所述终端设备和接入网设备交互,对所述失败的无线链路的数据进行处理。
结合第二方面,在第二方面的第一种可能的实现方式中,所述对所述失败的无线链路的数据进行处理包括:所述终端设备根据接入网设备的调度将所述失败的无线链路的数据调度到正常的无线链路上进行传输;或所述终端设备根据接入网设备的调度将所述失败的无线链路的需要重传的数据经由其他正常的无线链路进行传输。
第三方面,本发明实施例提供一种接入网设备,所述接入网设备包括通信接口和处理器。所述通信接口用于将多种无线物理层参数的无线链路检测参数发送给终端设备,其中,所述多种无线物理层参数对应不同的无线链路,所述无线链路检测参数包含用于指示至少一种所述无线物理层参数的指示信息;所述通信接口用于接收所述终端设备上报的无线链路失败报告,其中,所述无线链路失败报告包括失败的无线链路的信息;所述处理器,用于对所述失败的无线链路的数据进行处理。
结合第三方面,在第三方面的第一种可能的实现方式中,所述无线链路检测参数包括缺省无 线物理层参数指示和缺省无线物理层参数的无线链路失败相关参数,其中,所述无线链路失败相关参数包含以下中的至少一个:连续失步指示次数、连续同步指示次数、对应给定误块率发生失步的无线链路质量参数、对应给定误块率发生同步的无线链路质量参数、允许终端设备和接入网设备恢复同步的定时器时长、和无线链路控制最大重传次数。
结合第三方面,在第三方面的第二种可能的实现方式中,所述无线链路检测参数包括无线物理层参数指示列表和每种无线物理层参数的无线链路失败相关参数;所述无线物理层参数指示列表包括所述终端设备使用的至少一种无线物理层参数指示。
结合第三方面,在第三方面的第三种可能的实现方式中,所述无线链路检测参数包括载波/小区的无线物理层参数指示列表和每种无线物理层参数的无线链路失败相关参数,其中,所述每个载波/小区使用多种无线物理层参数。
结合第三方面,在第三方面的第四种可能的实现方式中,所述无线链路检测参数包括RAN节点指示列表和每个RAN节点的载波/小区的指示列表、每个载波/小区的无线物理层参数指示列表、以及每种无线物理层参数的无线链路失败相关参数,其中,所述每个载波/小区使用多种无线物理层参数。
结合第三方面,在第三方面的第五种可能的实现方式中,所述无线链路检测参数包括无线物理层参数检测激活/关闭指示,其中,所述无线物理层参数检测激活/关闭指示用于激活或关闭对与无线物理层参数指示对应的无线链路的检测。
结合第三方面,在第三方面的第六种可能的实现方式中,所述对所述失败的无线链路的数据进行处理包括:所述接入网设备暂停调度所述失败的无线链路的数据传输;或所述接入网设备将所述失败的无线链路的数据调度到正常的无线链路上进行传输;或所述接入网设备将所述失败的无线链路的需要重传的数据经由其他正常的无线链路进行传输。
第四方面,本发明实施例提供一种终端设备,所述终端设备包括通信接口和处理器。所述通信接口用于接收接入网设备发送的无线链路检测参数,其中,所述无线链路检测参数包含多种无线物理层参数的无线链路检测参数,所述多种无线物理层参数对应不同的无线链路,所述无线链路检测参数包含用于指示至少一种所述无线物理层参数的指示信息;所述通信接口用于发送无线链路失败报告给接入网设备,其中,所述无线链路失败报告包括失败的无线链路的信息;所述处理器,用于对所述失败的无线链路的数据进行处理。
结合第四方面,在第四方面的第一种可能的实现方式中,所述对所述失败的无线链路的数据进行处理包括:所述终端设备根据接入网设备的调度将所述失败的无线链路的数据调度到正常的无线链路上进行传输;或所述终端设备根据接入网设备的调度将所述失败的无线链路的需要重传的数据经由其他正常的无线链路进行传输。
本发明实施例中,无线接入网节点为终端设备使用的一种或多种无线物理层参数配置独立的无线链路检测参数,终端设备进行一种或多种无线物理层参数的无线链路检测,并将检测到的无线物理层参数无线链路失败上报接入网节点,并在接入网节点的调度下配置下对无线链路失败的无线物理层参数的数据进行处理。通过对每一个无线物理层参数的独立的无线链路检测,保证终端设备不同无线物理层参数之间的通信的影响最小化,减少了UE触发链路重建过程,尽可能保证数据不间断传输。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种NR网络场景示意图;
图2是本发明实施例提供的一种NR网络物理层帧结构示意图;
图3是本发明实施例提供的一种无线链路检测和处理方法流程示意图;
图4是本发明实施例提供的一种无线链路检测参数信息;
图5是本发明实施例提供的另一种无线链路检测和处理方法流程示意图;
图6是本发明实施例提供的另一种无线链路检测参数信息;
图7是本发明实施例提供的另一种无线链路检测参数信息;
图8是本发明实施例提供的另一种无线链路检测参数信息;
图9是本发明实施例提供的另一种无线链路检测参数信息;
图10是本发明实施例提供的另一种无线链路检测参数信息;
图11是本发明实施例提供的另一种无线链路检测参数信息;
图12是本发明实施例提供的UE的一种结构示意图;
图13是本发明实施例提供的UE的另一种结构示意图;
图14是本发明实施例提供的RAN设备的一种结构示意图;
图15是本发明实施例提供的RAN设备的另一种结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本申请中,“示例性”一词用来表示“用作例子、例证或说明”。本申请中被描述为“示例性”的任何实施例不一定被解释为比其它实施例更优选或更具优势。为了使本领域任何技术人员能够实现和使用本发明,给出了以下描述。在以下描述中,为了解释的目的而列出了细节。应当明白的是,本领域普通技术人员可以认识到,在不使用这些特定细节的情况下也可以实现本发明。在其它实例中,不会对公知的结构和过程进行详细阐述,以避免不必要的细节使本发明的描述变得晦涩。因此,本发明并非旨在限于所示的实施例,而是与符合本申请所公开的原理和特征的最广范围相一致。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固 有的其它步骤或单元。
本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
下面以具体地实施例对本发明的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
本发明实施例提供的无线链路检测和处理的方法和装置,适用于UE和无线接入网络(Radio Access Network,简称RAN)节点之间的无线链路的检测和发生无线链路失败后的处理,尤其是无线接入网络和UE支持一种或多种Numerology的场景,如图1所示。在图1中,UE110和RAN节点101通过无线链路121进行数据传输。可选地,UE110还可以多连接的方式同时和RAN节点102通过无线链路122进行数据传输,此时RAN节点101为主RAN节点,节点RAN102为辅助RAN节点。NR网络中一个RAN节点可以支持在一个和/或多个载波/小区上发送一种和/或多种Numerology的信号。不同的Numerology信号可对应不同的业务类型,如NR网络对增强移动宽带(Enhanced Mobile Broadband,简称eMBB)业务、海量机器类通信(Massive Machine Type Communication,简称mMTC)业务和超可靠及低时延通信(Ultra Reliable and Low Latency Communication,简称URLLC)业务可分别使用不同的Numerology进行数据传输。例如,URLLC业务可基于短子帧长度、eMBB业务可基于长子帧长度、mMTC业务可以基于长CP等。对于单载波场景,3GPP的RAN1#86次会议讨论通过了NR网络支持多种Numerology以FDM/TDM或两者结合的方式复用,并且一个UE可同时支持多种Numerology。当该载波同时支持URLLC业务和eMBB业务时,应考虑两种业务的半静态或动态的无线资源共享。对于载波聚合的场景,3GPP的RAN2#95次会议讨论通过了不同载波可以支持不同的Numerology。例如,对于工作于高频的载波,可以采用大的子载波间隔;而对于工作于相对低频的载波,可采用LTE的子载波间隔等。
在LTE系统中,根据TS 36.133规范,在单载波场景下,UE在RRC连接态会在服务小区的系统载波上基于参考信号进行无线链路检测。UE检测到小区参考信号强度低于对应误块率为10%的系统设置的信号强度门限时即认为发生一次失步(out-of-sync)。当UE连续检测到out-of-sync次数达到系统设置的计数器N310指示的次数时,UE启动定时器T310并开始计时。在T310计时未超过系统设置的时长时,如果UE检测到小区参考信号强度高于对应误块率为2%的系统设置的信号强度门限时即认为恢复一次同步(in-sync)。当UE连续检测到in-sync次数达到系统设置的计数器N311指示的次数时,UE停止计时器T310,确定UE与服务小区保持RRC连接。如果UE在T310超时时未检测到N311次in-sync,则确定UE与服务小区的无线链路发生失败。此外,UE在随机接入失败时、或无线链路控制(Radio Link Control,简称RLC)重传达到最大重传次数时也确定检测到无线链路发生失败。此时,UE与服务小区的数据传输发生中断。随后UE向服务小区发起RRC连接重建请求,试图重建RRC连接。在载波聚合场景下,UE仅仅对主小区(Primary Cell,简称PCell)的无线链路进行检测而不对辅小区(Secondary Cell,简称SCell)的无线链路进行检测,当PCell发生链路失败时,UE将启动RRC连接重建。在双连接场景下,UE除了对主基站(Master eNB,简称MeNB)的PCell进行无线链路进行外,也对辅助基站(Secondary eNB,简称SeNB)上的辅助主小区(Primary Secondary Cell,简称PSCell)进行无线链路检测。当PCell发生无线链路失败时,UE将启动RRC连接重建。当PSCell发生无线链路失败时,UE通过 RRC消息告知MeNB其PSCell发生了无线链路失败。此时,UE与SeNB的数据传输发生中断。为了恢复双连接,MeNB需要再次根据UE的测量结果,重新启动增加SeNB的信令流程。
NR网络支持多种Numerology,每种Numerology所对应的无线链路会呈现不同的特性。例如,不同的Numerology可在不同的时频资源使用不同的参考信号。支持多种Numerology的UE对不同Numerology参考信号的测量结果可能不同。并且UE测量一种Numerology的参考信号检测到该Numerology对应的无线链路失败时就启动RRC连接重建,会造成对其他正常的Numerology通信连接的负面影响。此外,NR网络可工作于高频段(>6GHz),基于窄波束的高频段通信技术往往导致比低频段通信时更快速的无线链路质量恶化。并且高频段可用带宽更大,频率选择性衰落更加明显,导致和低频段的链路特性明显不同。在高频段时,如果UE遵循LTE标准仅对部分小区(如PCell、PSCell等)进行无线链路检测,其检测结果不能反映其他小区(如SCell)的信号质量,即使所述部分小区发生了无线链路失败,其他小区无线链路仍然可以保持良好的通信质量。如果采用现有LTE系统的无线链路检测方法来检测链路失败并进行RRC连接重建处理,不能很好地针对NR网络中不同的Numerology链路的检测和差异性处理,难以有效地维护NR网络中多种业务类型的传输质量。
在本发明实施例中,RAN节点为UE使用的一种或多种Numerology配置独立的无线链路检测参数,UE进行一种或多种Numerology的无线链路检测,并将检测到的Numerology无线链路失败上报接入网节点,并在接入网节点的调度下配置下对无线链路失败的Numerology的数据进行处理。通过对每一个Numerology的独立的无线链路检测,保证终端设备不同Numerology之间的通信的影响最小化,减少了UE触发链路重建过程,尽可能保证数据不间断传输。
图2示出了本发明实施例提供的一种NR物理层帧结构示意图。如图2所示,NR网络可以将系统带宽划分为不同的子带,每个子带使用不同的Numerology发送不同业务的信号。例如eMBB业务的高吞吐量特性可使用长子帧长度的Numerology;mMTC业务的小包业务特性可使用小子载波带宽的Numerology;URLLC业务的低时延特性可使用短子帧长度的Numerology。相应地,UE可同时支持一种或多种业务,因此可同时使用一种或多种Numerology进行数据传输。在本发明实施例中,NR网络为其支持的每一种Numerology配置一个标识。在UE接入NR网络时RAN节点可为UE分配Numerology标识,或在UE接入网络后的RRC连接配置消息中为UE分配Numerology标识。
图3示出了本发明实施例提供的一种无线链路检测和处理方法流程示意图。所述流程包含如下步骤:
301、RAN节点向UE发送无线链路检测参数。
其中所述无线链路检测参数如图4所示,包含缺省Numerology指示和无线链路失败相关参数。
在本发明实施例中,UE使用一种或多种Numerology与RAN节点进行通信,RAN节点可通过RRC信令指定其中一种Numerology作为UE进行无线链路检测的缺省Numerology,指示UE对缺省Numerology的无线链路进行检测。在一种实施方式中,所述Numerology指示可包含所述Numerology的标识、对应的空口无线资源(如时频资源和码域资源等)、以及参考信号配置等。在另一种实施方式中,所述Numerology指示可包含对应的空口无线资源(如时频资源和码域资源等)和参考信号配置等。所述无线链路失败相关参数可包含计数器参数N310、计数器参数N311、错包率参数X、错包率参数Y、定时器参数T310、RLC最大重传次数。示例性地,所述无线链路检测参数的配置可由RAN节点在UE接入网络时或在UE的RRC连接配置消息中发送给UE,也可由RAN节点通过广播消息发送给UE。
302、UE对缺省Numerology的无线链路进行检测,确定无线链路失败。
在本发明实施例中,UE根据所接收的无线链路检测参数的配置对缺省Numerology的无线链路进行检测,并使用所述无线链路失败相关参数来判断UE在缺省Numerology是否发生无线链路失败。在一种实施方式中,UE可对所述缺省Numerology占用的时频资源上的参考信号进行测量以确定缺省Numerology的无线链路质量,并根据所接收的缺省Numerology对应的N310/N311/X/Y/T310相关参数,确定缺省Numerology的无线链路发生失败。在另一种实施方式中,UE还可通过检测所述缺省Numerology上传输的数据的RLC重传次数大于所接收的缺省Numerology对应的最大RLC重传次数,确定缺省Numerology的无线链路发生失败。
303、UE向RAN节点发起RRC连接重建请求。
在本发明实施例中,当UE确定缺省Numerology的无线链路发生失败时,向RAN节点发起RRC连接重建请求。在一种实施方式中,UE的接入层安全处于激活态,UE向RAN节点发起RRC连接重建请求。在另一种实施方式中,UE的接入层安全未被激活,UE直接进入RRC空闲状态。
RAN节点如果成功收到UE发起的RRC连接重建请求,则为UE重建RRC连接。如果RAN节点未能成功收到UE发起的RRC连接重建请求,则会请求网络侧释放UE上下文。
图5示出了本发明实施例提供的另一种无线链路检测和处理方法流程示意图。与图3所示实施例相比,在本实施例中,UE对当前使用的多种Numerology的无线链路进行检测和处理。如图5所示,该方法包含如下步骤:
501、RAN节点向UE发送无线链路检测参数。
其中所述无线链路检测参数包含UE当前使用的多种Numerology的指示列表和每一种Numerology的无线链路失败相关参数。
本发明实施例中,RAN节点配置UE为当前使用的多种Numerology进行无线链路检测,并且为每一种Numerology配置相应的无线链路失败相关参数。具体地,RAN节点为UE配置的无线链路检测参数如图6所示。示例性地,UE当前使用了N(N为大于1的整数)种Numerology,则RAN节点向UE配置的无线链路检测参数包含了(Numerology_1,Numerology_2,….,Numerology_N)的Numerology指示列表、以及N个图6所示Numerology对应的无线链路失败相关参数集。对于每一种Numerology,RAN节点可指示UE使用不同的无线链路失败相关参数,例如对于URLLC业务对应的Numerology,X参数的取值可以小于eMBB业务对应的Numerology的X参数取值。
进一步地,所述Numerology指示列表可用于指示UE在检测到部分Numerology发生无线链路失败后通过该列表内Numerology的优先次序向RAN节点上报Numerology链路失败报告。示例性地,所述Numerology列表为(Numerology1,Numerology2,Numerology3,Numerology4,Numerology5),如果UE检测到Numerology1和Numerology3发生无线链路失败,则优先通过Numerology2向RAN节点上报Numerology无线链路失败报告。所述无线链路检测参数的配置可由RAN节点通过RRC连接重配置消息发送给UE,也可由RAN节点通过广播消息发送给UE。
502、UE对配置的Numerology的无线链路进行检测,确定部分Numerology无线链路失败。
在本发明实施例中,UE根据所接收的无线链路检测参数对配置的Numerology指示列表中的每一种Numerology进行无线链路检测,并使用所述无线链路失败相关参数来判断UE在每一种Numerology是否发生无线链路失败。UE通过前述实施例步骤302中所述方法对配置的Numerology指示列表中的所有Numerology的无线链路进行检测,确定部分Numerology发生无线链路失败。示例性地,RAN节点为UE配置了三种Numerology的无线链路检测,UE经过检测确定其中一种或 两种Numerology的无线链路失败。
503、UE向RAN节点发送Numerology无线链路失败报告。
所述Numerology无线链路失败报告包含无线链路失败Numerology列表。
在本发明实施例中,当UE确定部分Numerology的无线链路发生失败,选择一个正常的Numerology向RAN节点发送Numerology无线链路失败报告,上报发生无线链路失败的一个或多个Numerology。所述发生无线链路失败的Numerology包含在无线链路失败Numerology列表中。示例性地,UE可根据在步骤501接收到Numerology指示列表的优先次序选择一个Numerology来发送Numerology无线链路失败报告。
504、UE和RAN节点对无线链路失败的Numerology上的数据进行处理。
在本发明实施例中,一方面,UE检测到部分Numerology的无线链路失败,即发生无线链路失败的Numerology所对应的定时器T310超时后,继续检测所述Numerology的无线链路是否会恢复。具体地,如果UE检测到发生无线链路失败的Numerology的in-sync次数达到系统设置的计数器N311指示的次数时,确定UE在所述Numerology的无线链路恢复。当所述一种或多种Numerology的无线链路恢复时,UE可向RAN节点上报恢复无线链路的Numerology指示。另一方面,RAN节点收到Numerology无线链路失败报告后,可采取以下三种方式处理所述Numerology上的数据:
方式一,RAN节点暂停发生无线链路失败的Numerology的数据的调度,直到收到UE上报的恢复无线链路的Numerology指示后继续对所述Numerology的数据的调度;
方式二,RAN节点将发生无线链路失败的Numerology的数据调度到正常的Numerology上进行传输。RAN节点可指示优先在哪一种Numerology发送发生无线链路失败的Numerology的数据。示例性地,RAN节点可根据步骤501配置的Numerology指示列表中的优先次序择一个正常的Numerology来传输发生无线链路失败的Numerology的数据。
方式三,RAN节点将发生无线链路失败的Numerology的需要重传的数据经由其他正常的Numerology进行传输。RAN节点可指示优先在哪一种Numerology重传发生无线链路失败的Numerology的数据。示例性的,RAN节点可根据步骤501配置的Numerology指示列表中的优先次序择一个正常的Numerology来重传发生无线链路失败的Numerology的数据。
值得注意的是,在上述实施例步骤502,在一种实施方式中,UE检测到RAN节点所配置的Numerology指示列表中的所有Numerology都发生无线链路失败,则UE不进入步骤503,而是直接向RAN节点发起RRC连接重建请求。在另一种实施方式中,UE检测到RAN节点所配置的Numerology指示列表中的超过一定数目的Numerology发生无线链路失败,则UE不进入步骤503,而是直接向RAN节点发起RRC连接重建请求。在另一种实施方式中,UE检测到RAN节点所配置的Numerology指示列表中至少两个Numerology中的每一个Numerology指示连续发生out-of-sync的次数的一种数学运算结果(如加权求和等)达到系统设置的门限时,则UE不进入步骤503,而是直接向RAN节点发起RRC连接重建请求。可选地,RAN节点可配置UE以上述实施方式中的一种方式确定在什么情况下发送RRC连接重建请求。示例性地,UE可在缺省Numerology、或在发生无线链路失败前RAN节点指定的Numerology、或在接收的RAN节点广播消息中指定的Numerology上发起RRC连接重建请求。UE向RAN节点发起RRC连接重建请求的具体步骤与前述实施例中步骤303的实现方式相类似,此处不再赘述。
在UE同时使用多种Numerology的情况下,进一步地,为了减轻UE对多种Numerology的无 线链路检测的功耗和复杂度,RAN节点可为每一种Numerology指示激活和/或关闭检测,如配置UE只对部分Numerology的无线链路进行检测。RAN节点可为UE配置的每一种Numerology的无线链路检测参数如图7所示,包含Numerology指示列表、每一种Numerology对应的检测激活/关闭指示、以及每一种Numerology对应的无线链路失败相关参数。示例性地,RAN节点为每一种Numerology定义一个1比特位的检测指示,如“1”表示激活该Numerology的无线链路检测,“0”表示关闭该Numerology的无线链路检测。
本实施例实现UE根据不同Numerology的无线链路检测参数对不同Numerology的无线链路实现差异化的链路检测,并且在其中一种或多种Numerology的无线链路失败时,可不立即进行RRC连接重建,避免影响其他正常的Numerology的数据传输。
在载波聚合的场景下,一个RAN节点使用多个载波为UE提供服务,一个载波可对应为一个小区,如主载波对应PCell,一个辅载波对应一个SCell。UE可支持在不同的载波使用不同的Numerology,还可支持在同一个载波使用多种Numerology。在一种实施方式中,UE同时使用多个载波,每个载波使用一种Numerology。示例性地,UE同时使用三个载波,UE可以在第一、第二和第三载波上分别使用第一、第二和第三Numerology,也可以在第一和第二载波上使用第一Numerology,在第三载波上使用第二Numerology。图8示出了RAN节点为UE配置的所述UE使用的每个载波/小区的无线链路检测参数。其中,每个载波/小区使用一种Numerology。进一步地,RAN节点还可为每个载波/小区指示检测激活/关闭,如配置UE只对部分载波/小区所使用的Numerology的无线链路进行检测。在另一种实施方式中,UE同时支持多个载波,每个载波可使用多种Numerology。示例性地,UE同时使用两个载波,UE可以在第一载波上使用第一Numerology,在第二载波上使用第二Numerology和第三Numerology。图9示出了RAN节点为UE配置的所述UE使用的每个载波/小区的每一种Numerology的无线链路检测参数。其中,一个载波/小区使用一种或多种Numerology。进一步地,RAN节点还可为一个载波/小区下的每一种Numerology指示检测激活/关闭,如配置UE只对部分载波/小区所使用的部分Numerology的无线链路进行检测。
相应地,在载波聚合场景下的无线链路检测和处理流程与图5所述流程示意图是相似的,主要区别在于:
与前述实施例步骤501的RAN节点向UE发送无线链路检测参数的不同之处在于,RAN节点向UE发送的无线链路检测参数如图8或图9所示。在本发明实施例中,所述无线链路检测参数包含了UE使用的小区/载波指示。示例性地,UE使用了M个载波,对应地分别使用了N1…NM(Ni为大于等于1的整数)种Numerology,则RAN节点向UE配置的无线链路检测参数包含了(Numerology_1,Numerology_2,….,Numerology_M*NM)的Numerology指示列表、以及M*NM个Numerology对应的无线链路失败相关参数集。可选地,RAN节点可通过RRC信令在指定一个载波/小区作为UE进行无线链路检测的缺省载波/小区,指示UE对缺省载波/小区的无线链路进行检测;或在每个载波/小区指定一种Numerology作为UE进行无线链路检测的缺省Numerology,指示UE对缺省Numerology的无线链路进行检测。
与前述实施例步骤502的不同之处在于,一方面,在一个载波/小区使用一种Numerology的情况下,UE检测各载波/小区的无线链路,确定部分载波/小区无线链路失败。在一个载波/小区使用多种Numerology的情况下,UE检测各载波/小区的每一种Numerology的无线链路,确定部分载波/小区的部分Numerology无线链路失败。另一方面,UE确定不进行无线链路失败报告而直接发起RRC连接重建请求的情况包括:UE检测到RAN节点所配置的Numerology指示列表中的所 有载波上的所述Numerology都发生无线链路失败;或UE检测到RAN节点所配置的至少两个载波上的所述Numerology的连续发生out-of-sync的次数的加权和达到一个网路设置的门限时;或所述载波上的Numerology指示列表中的超过一定数目的Numerology发生无线链路失败。可选地,RAN节点可配置UE以上述实施方式中的一种方式确定在什么情况下发送RRC连接重建请求。
与前述实施例步骤503的UE向RAN节点发送Numerology无线链路失败报告的不同之处在于,在一个载波/小区使用一种Numerology的情况下,当UE检测到部分载波/小区发生无线链路失败后通过载波/小区指示列表的优先次序选择在一个合适的载波/小区向RAN节点上报载波/小区链路失败报告。在一个载波/小区使用多种Numerology的情况下,当UE检测到部分Numerology发生无线链路失败后,可通过Numerology指示列表的优先次序选择在一个合适的载波/小区的Numerology向RAN节点上报载波/小区链路失败报告。
与前述实施例步骤504的对无线链路失败的Numerology的数据处理的不同之处在于,在一个载波/小区使用一种Numerology的情况下,UE和RAN节点针对的是载波/小区的数据处理,相应地,步骤404中针对Numerology的处理流程适用于本发明实施例中针对载波/小区的处理流程。在一个载波/小区使用多种Numerology的情况下,UE和RAN节点针对的是多个载波/小区中的多个Numerology的数据处理。相应地,步骤504中针对Numerology的处理流程适用于本发明实施例中针对载波/小区的Numerology的处理流程。示例性地,RAN节点与UE将发生无线链路失败的Numerology的需要重传的数据经由其他正常的载波上的Numerology进行传输。
本实施例实现UE根据不同载波的Numerology的无线链路检测参数对不同Numerology的无线链路实现差异化的链路检测,并且在其中一种或多种载波的Numerology的无线链路失败时,可不立即进行RRC连接重建,避免影响其他正常的载波的Numerology的数据传输。
在多连接的场景下,主RAN节点和一个或多个辅助RAN节点各自可使用一个或多个载波/小区为UE提供服务。在一种实施方式中,UE同时使用多个RAN节点的多个载波/小区,每个载波/小区使用一种Numerology。图10示出了主RAN节点为UE配置的所述UE使用的每个RAN节点的每个载波/小区的无线链路检测参数。其中,每个RAN节点可使用一个或多个载波/小区为UE提供服务,每个载波/小区使用一种Numerology。进一步地,RAN节点还可为每个载波/小区指示检测激活/关闭,如配置UE只对部分载波/小区所使用的Numerology的无线链路进行检测。在另一种实施方式中,UE同时使用多个载波/小区,每个载波/小区可使用多种Numerology。图11示出了主RAN节点为UE配置的所述UE使用的每个RAN节点的每个载波/小区的每一种Numerology的无线链路检测参数。其中,每个RAN节点可使用一个或多个载波/小区为UE提供服务,每个载波/小区使用多种Numerology。进一步地,RAN节点还可为一个载波/小区下的每一种Numerology指示检测激活/关闭,如配置UE只对部分载波/小区所使用的部分Numerology的无线链路进行检测。
相应地,在多场景下的无线链路检测和处理流程与图5所述流程示意图是相似的,主要区别在于:
与前述实施例步骤501的RAN节点向UE发送无线链路检测参数的不同之处在于,主RAN节点向UE发送的无线链路检测参数如图10或图11所示。在本发明实施例中,所述无线链路检测参数包含了UE使用的RAN节点/小区/载波指示。可选地,主RAN节点可通过RRC信令为每个RAN节点在每个载波/小区上指定一个Numerology作为UE进行无线链路检测的缺省Numerlogy,指示UE对缺省Numerology的无线链路进行检测。
与前述实施例步骤502的不同之处在于,一方面,UE检测每个RAN节点的各载波/小区的每 一种Numerology的无线链路,确定部分RAN节点的部分载波/小区的部分Numerology无线链路失败。另一方面,UE确定不进行无线链路失败报告而直接发起RRC连接重建请求的情况包括:UE检测到主RAN节点所配置的至少两个RAN节点上至少两个载波上的Numerology连续发生out-of-sync的次数的加权和达到一个网路设置的门限时;或所述至少两个RAN节点的载波上的Numerology指示列表中的超过一定数目的Numerology发生无线链路失败;或所述所有配置的RAN节点/小区/载波/Numerology都发生无线链路失败。可选地,RAN节点可配置UE以上述实施方式中的一种方式确定在什么情况下发送RRC连接重建请求。
与前述实施例步骤503的UE向RAN节点发送Numerology无线链路失败报告的不同之处在于,当UE检测到部分Numerology发生无线链路失败后通过Numerology指示列表的优先次序选择在一个合适的RAN节点的载波/小区的Numerology向RAN节点上报载波/小区链路失败报告。
与前述实施例步骤504的对无线链路失败的Numerology的数据处理的不同之处在于,UE和RAN节点针对的是多个RAN节点的多个载波/小区中的多个Numerology的数据处理。相应地,步骤504中针对Numerology的处理流程适用于本发明实施例中针对RAN节点/载波/小区的Numerology的处理流程。示例性地,RAN节点与UE将发生无线链路失败的Numerology的需要重传的数据经由其他正常的一个RAN节点的一个载波上的一种Numerology进行传输。
本实施例实现UE根据不同RAN节点的不同载波/小区的Numerology的无线链路检测参数对不同RAN节点的不同载波/小区的Numerology的无线链路实现差异化的链路检测,并且在其中一种或多种载波的Numerology的无线链路失败时,可不立即进行RRC连接重建,避免影响其他正常的载波的Numerology的数据传输。
在NR网络中,RAN节点具有支持网络切片的功能。可选地,每个网络切片在空口上可使用一种Numerology。在这种情况下,上述实施例中,RAN节点对UE配置的无线链路检测参数中可以使用网络切片ID来代替Numerology指示。进一步地,可以使用网络切片ID列表来代替Numerology指示列表。
上述主要从各个网元之间的交互以及网元自身的处理的角度对本发明实施例提供的方案进行了介绍。可以理解的是,各个网元为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例,本专利申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本专利申请的范围。
本专利申请进一步给出实现上述方法实施例中各步骤及方法的装置实施例。值得注意的是,装置实施例可以与上述方法配合使用,也可以单独使用。
图12是本发明实施例提供的一种UE的结构示意图。如图12所示,所述UE1200包括处理器1201、存储器1202以及通信接口1203。处理器1201连接到存储器1202和通信接口1203,例如处理器1201可以通过总线连接到存储器1202和通信接口1203。
处理器1201被配置为支持RAN设备执行上述方法中相应的功能。该处理器1201可以是中央处理器(Central Processing Unit,简称CPU),网络处理器(Network Processor,简称NP),硬件芯片或者其任意组合。上述硬件芯片可以是专用集成电路(Application-Specific Integrated Circuit,简称ASIC),可编程逻辑器件(Programmable Logic Device,简称PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(Complex Programmable Logic Device,简称 CPLD),现场可编程逻辑门阵列(Field-Programmable Gate Array,简称FPGA),通用阵列逻辑(Generic Array Logic,简称GAL)或其任意组合。
存储器1202存储器用于存储RAN设备需要发送的信令和数据、以及接收来自UE的信令和数据等。存储器1202可以包括易失性存储器(Volatile Memory),例如随机存取存储器(Random-Access Memory,简称RAM);存储器1202也可以包括非易失性存储器(Non-Volatile Memory),例如只读存储器(Read-Only Memory,简称ROM),快闪存储器(Flash Memory),硬盘(Hard Disk Drive,简称HDD)或固态硬盘(Solid-State Drive,简称SSD);存储器1202还可以包括上述种类的存储器的组合。
通信接口1203用于与RAN设备通信,与RAN设备收发上述方法中所涉及的信令以及数据。
处理器1201可以执行以下操作:
通过通信接口1203发送上行信令和数据和/或接收下行信令和数据。处理器1201通过通信接口1203接收RAN节点配置的无线链路检测参数,根据配置进行一种或多种Numerology的无线链路的检测,并根据检测结果通过通信接口1203发送RRC连接重建请求或Numerology无线链路失败报告。可选地,当发生无线链路失败的Numerology的链路恢复时,通过通信接口1203向RAN节点上报恢复无线链路的Numerology指示。此外,处理器1201对无线链路失败的Numerology的数据进行进一步的处理,具体请参阅图2至图10的实施方式。
图13是本发明实施例提供的另一种UE的结构示意图。如图13所示,该UE1300包括接收模块1301、处理模块1302、以及发送模块1303。
接收模块1301,用于接收RAN节点配置的无线链路检测参数等消息,所述无线链路检测参数可以包含一种或多种Numerology的指示、以及每种Numerology的无线链路失败相关参数。
处理模块1302,根据接收模块1301接收的信息进行相应的处理,并将处理的部分结果通过发送模块1303发送。处理模块1302根据配置进行一种或多种Numerology的无线链路的检测,并根据检测结果生成RRC连接重建请求或Numerology无线链路失败报告。可选地,当发生无线链路失败的Numerology的链路恢复时,生成恢复无线链路的Numerology指示。此外,处理模块1302对无线链路失败的Numerology的数据进行进一步的处理,具体请参阅图2至图10的实施方式。
发送模块1303,用于发送RRC连接重建请求、Numerology无线链路失败报告、恢复无线链路的Numerology指示等消息,所述Numerology无线链路失败报告和恢复无线链路的Numerology指示可以包含一种或多种Numerology指示。
图14是本发明实施例提供的一种RAN设备的结构示意图。如图14所示,所述RAN设备1400包括处理器1401、存储器1402以及通信接口1403。处理器1401连接到存储器1402和通信接口1403,例如处理器1401可以通过总线连接到存储器1402和通信接口1403。
处理器1401被配置为支持RAN设备执行上述方法中相应的功能。该处理器1401可以是中央处理器(Central Processing Unit,简称CPU),网络处理器(Network Processor,简称NP),硬件芯片或者其任意组合。上述硬件芯片可以是专用集成电路(Application-Specific Integrated Circuit,简称ASIC),可编程逻辑器件(Programmable Logic Device,简称PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(Complex Programmable Logic Device,简称CPLD),现场可编程逻辑门阵列(Field-Programmable Gate Array,简称FPGA),通用阵列逻辑(Generic Array Logic,简称GAL)或其任意组合。
存储器1402存储器用于存储RAN设备需要发送的信令和数据、以及接收来自UE的信令和数 据等。存储器1402可以包括易失性存储器(Volatile Memory),例如随机存取存储器(Random-Access Memory,简称RAM);存储器1402也可以包括非易失性存储器(Non-Volatile Memory),例如只读存储器(Read-Only Memory,简称ROM),快闪存储器(Flash Memory),硬盘(Hard Disk Drive,简称HDD)或固态硬盘(Solid-State Drive,简称SSD);存储器1402还可以包括上述种类的存储器的组合。
通信接口1403用于与UE通信,与UE收发上述方法中所涉及的信令以及数据。
处理器1401可以执行以下操作:
通过通信接口1403发送信令和数据和/或接收信令和数据。处理器1401为每个UE配置所述UE所使用的一种或多种Numerology的无线链路检测参数,并通过通信接口1403将所述配置信息发送给UE;通过通信接口1403接收UE发送的RRC连接重建请求消息或Numerology无线链路失败报告。可选地,当发生无线链路失败的Numerology的链路恢复时,通过通信接口1403接收UE发送的恢复无线链路的Numerology指示。根据UE发送的RRC连接重建请求消息进行RRC连接重建处理,或根据UE发送的Numerology无线链路失败报告对无线链路失败的Numerology的数据进行处理等。具体请参阅图2至图10的实施方式。
图15是本发明实施例提供的另一种RAN设备的结构示意图。如图15所示,该RAN设备1500包括接收模块1501、处理模块1502、以及发送模块1503。
接收模块1501,用于接收UE发送的RRC连接重建请求、Numerology无线链路失败报告、恢复无线链路的Numerology指示等消息,所述Numerology无线链路失败报告和恢复无线链路的Numerology指示可以包含一种或多种Numerology指示。
处理模块1502,根据接收模块1501接收的信息进行相应的处理。处理模块1502为每个UE配置所述UE所使用的一种或多种Numerology的无线链路检测参数并发送给UE。根据UE发送的RRC连接重建请求消息进行RRC连接重建处理,或根据UE发送的Numerology无线链路失败报告、以及恢复无线链路的Numerology指示消息,对无线链路失败的Numerology的数据进行处理等。具体请参阅图2至图10的实施方式。
发送模块1503,用于向UE发送无线链路检测参数等消息,所述无线链路检测参数可以包含一种或多种Numerology的指示、以及每种Numerology的无线链路失败相关参数。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本专利申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本专利申请的技术方案本质上或者说对现有技术做出贡 献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包含若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本专利申请各个实施例方法的全部或部分步骤。而前述的存储介质包含:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上,仅为本专利申请的具体实施方式,但本专利申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本专利申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本专利申请的保护范围之内。因此,本专利申请的保护范围应以权利要求的保护范围为准。

Claims (28)

  1. 一种无线链路检测和处理的方法,其特征在于,该方法包括:
    接入网设备设置多种无线物理层参数的无线链路检测参数,其中,所述多种无线物理层参数对应不同的无线链路,所述无线链路检测参数包含用于指示所述多种无线物理层参数的指示信息;
    所述接入网设备将所述无线链路检测参数发送给终端设备;
    所述接入网设备接收所述终端设备上报的无线链路失败报告,其中,所述无线链路失败报告包括失败的无线链路的信息;
    所述接入网设备对所述失败的无线链路的数据进行处理。
  2. 根据权利要求1所述的方法,其特征在于,所述无线链路检测参数包括缺省无线物理层参数指示和缺省无线物理层参数的无线链路失败相关参数,其中,所述无线链路失败相关参数包含以下中的至少一个:连续失步指示次数、连续同步指示次数、对应给定误块率发生失步的无线链路质量参数、对应给定误块率发生同步的无线链路质量参数、允许终端设备和接入网设备恢复同步的定时器时长、和无线链路控制最大重传次数。
  3. 根据权利要求1所述的方法,其特征在于,
    所述无线链路检测参数包括无线物理层参数指示列表和每种无线物理层参数的无线链路失败相关参数;
    所述无线物理层参数指示列表包括所述终端设备使用的所述多种无线物理层参数指示。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,
    所述无线链路检测参数包括载波/小区指示列表和每个载波/小区的无线链路失败相关参数,其中,所述每个载波/小区使用一种无线物理层参数。
  5. 根据权利要求1-3中任一项所述的方法,其特征在于,
    所述无线链路检测参数包括载波/小区的无线物理层参数指示列表和每种无线物理层参数的无线链路失败相关参数,其中,所述每个载波/小区使用多种无线物理层参数。
  6. 根据权利要求1-3中任一项所述的方法,其特征在于,
    所述无线链路检测参数包括RAN节点指示列表和每个RAN节点的载波/小区的指示列表、以及每个载波/小区的无线链路失败相关参数,其中,所述每个载波/小区使用一种无线物理层参数。
  7. 根据权利要求1-3中任一项所述的方法,其特征在于,
    所述无线链路检测参数包括RAN节点指示列表和每个RAN节点的载波/小区的指示列表、每个载波/小区的无线物理层参数指示列表、以及每种无线物理层参数的无线链路失败相关参数,其中,所述每个载波/小区使用多种无线物理层参数。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,
    所述无线链路检测参数包括无线物理层参数检测激活/关闭指示,其中,所述无线物理层参数检测激活/关闭指示用于激活或关闭对与无线物理层参数指示对应的无线链路的检测。
  9. 根据权利要求1所述的方法,其特征在于,所述对所述失败的无线链路的数据进行处理包括:
    所述接入网设备暂停调度所述失败的无线链路的数据传输;或
    所述接入网设备将所述失败的无线链路的数据调度到正常的无线链路上进行传输;或
    所述接入网设备将所述失败的无线链路的需要重传的数据经由其他正常的无线链路进行传输。
  10. 一种无线链路检测和处理的方法,其特征在于,该方法包括:
    终端设备接收接入网设备发送的无线链路检测参数,其中,所述无线链路检测参数包含多种无线物理层参数的无线链路检测参数,所述多种无线物理层参数对应不同的无线链路,所述无线链路检测参数包含用于指示所述多种无线物理层参数的指示信息;
    所述终端设备发送无线链路失败报告给接入网设备,其中,所述无线链路失败报告包括失败的无线链路的信息;
    所述终端设备对所述失败的无线链路的数据进行处理。
  11. 根据权利要求10所述的方法,其特征在于,所述终端设备发送无线链路失败报告给接入网设备包括:
    所述终端设备选择一个正常的无线链路发送无线链路失败报告给接入网设备,其中所述无线链路失败报告包含发生无线链路失败的至少一种所述物理层参数的指示信息。
  12. 根据权利要求10所述的方法,其特征在于,所述对所述失败的无线链路的数据进行处理包括:
    所述终端设备根据所述接入网设备的调度将所述失败的无线链路的数据调度到正常的无线链路上进行传输;或
    所述终端设备根据所述接入网设备的调度将所述失败的无线链路的需要重传的数据经由其他正常的无线链路进行传输。
  13. 一种接入网设备,包括:
    通信接口,用于将多种无线物理层参数的无线链路检测参数发送给终端设备,其中,所述多种无线物理层参数对应不同的无线链路,所述无线链路检测参数包含用于指示所述多种无线物理层参数的指示信息;
    所述通信接口用于接收所述终端设备上报的无线链路失败报告以及与所述终端设备进行失败的无线链路的数据传输,其中,所述无线链路失败报告包括失败的无线链路的信息;
    处理器,用于对所述失败的无线链路的数据进行处理。
  14. 根据权利要求13所述的接入网设备,其特征在于,所述无线链路检测参数包括缺省无线物理层参数指示和缺省无线物理层参数的无线链路失败相关参数,其中,所述无线链路失败相关参数包含以下中的至少一个:连续失步指示次数、连续同步指示次数、对应给定误块率发生失步的无线链路质量参数、对应给定误块率发生同步的无线链路质量参数、允许终端设备和接入网设备恢复同步的定时器时长、和无线链路控制最大重传次数。
  15. 根据权利要求13所述的接入网设备,其特征在于,
    所述无线链路检测参数包括无线物理层参数指示列表和每种无线物理层参数的无线链路失败相关参数;
    所述无线物理层参数指示列表包括所述终端设备使用的所述多种无线物理层参数指示。
  16. 根据权利要求13-15中任一项所述的接入网设备,其特征在于,所述无线链路检测参数包括载波/小区指示列表和每个载波/小区的无线链路失败相关参数,其中,所述每个载波/小区使用一种无线物理层参数。
  17. 根据权利要求13-15中任一项所述的接入网设备,其特征在于,
    所述无线链路检测参数包括载波/小区的无线物理层参数指示列表和每种无线物理层参数的无线链路失败相关参数,其中,所述每个载波/小区使用多种无线物理层参数。
  18. 根据权利要求13-15中任一项所述的接入网设备,其特征在于,
    所述无线链路检测参数包括RAN节点指示列表和每个RAN节点的载波/小区的指示列表、以及每个载波/小区的无线链路失败相关参数,其中,所述每个载波/小区使用一种无线物理层参数。
  19. 根据权利要求13-15中任一项所述的接入网设备,其特征在于,
    所述无线链路检测参数包括RAN节点指示列表和每个RAN节点的载波/小区的指示列表、每个载波/小区的无线物理层参数指示列表、以及每种无线物理层参数的无线链路失败相关参数,其中,所述每个载波/小区使用多种无线物理层参数。
  20. 根据权利要求13-19任一项所述的接入网设备,其特征在于,
    所述无线链路检测参数包括无线物理层参数检测激活/关闭指示,其中,所述无线物理层参数检测激活/关闭指示用于激活或关闭对与无线物理层参数指示对应的无线链路的检测。
  21. 根据权利要求13所述的接入网设备,其特征在于,所述对所述失败的无线链路的数据进行处理包括:
    所述处理器暂停调度所述失败的无线链路的数据传输;或
    所述处理器将所述失败的无线链路的数据调度到正常的无线链路上通过所述通信接口进行传输;或
    所述处理器将所述失败的无线链路的需要重传的数据经由其他正常的无线链路通过所述通信接口进行传输。
  22. 一种终端设备,包括:
    通信接口,用于接收接入网设备发送的无线链路检测参数,其中,所述无线链路检测参数包含多种无线物理层参数的无线链路检测参数,所述多种无线物理层参数对应不同的无线链路,所述无线链路检测参数包含用于指示所述多种无线物理层参数的指示信息;
    所述通信接口用于发送无线链路失败报告给接入网设备以及与所述接入网设备进行失败的无线链路的数据传输,其中,所述无线链路失败报告包括失败的无线链路的信息;
    处理器,用于对所述失败的无线链路的数据进行处理。
  23. 根据权利要求22所述的终端设备,其特征在于,所述终端设备发送无线链路失败报告给接入网设备包括:
    所述处理器选择一个正常的无线链路通过所述通信接口发送无线链路失败报告给接入网设备,其中所述无线链路失败报告包含发生无线链路失败的至少一种所述物理层参数的指示信息。
  24. 根据权利要求22所述的终端设备,其特征在于,所述对所述失败的无线链路的数据进行处理包括:
    所述处理器根据所述接入网设备的调度将所述失败的无线链路的数据调度到正常的无线链路上通过所述通信接口进行传输;或
    所述处理器根据所述接入网设备的调度将所述失败的无线链路的需要重传的数据经由其他正常的无线链路通过所述通信接口进行传输。
  25. 一种计算机可读存储介质,其特征在于,包括指令,当所述指令在接入网设备上运行时,使得所述接入网设备执行如权利要求1-9中任一项所述的方法。
  26. 一种计算机可读存储介质,其特征在于,包括指令,当所述指令在终端设备上运行时,使得所述终端设备执行如权利要求10-12中任一项所述的方法。
  27. 一种计算机程序产品,其特征在于,包括计算机程序代码,当所述计算机程序代码在接入网设备上运行时,使得所述接入网设备执行如权利要求1-9中任一项所述的方法。
  28. 一种计算机程序产品,其特征在于,包括计算机程序代码,当所述计算机程序代码在终端设备上运行时,使得所述终端设备执行如权利要求10-12中任一项所述的方法。
PCT/CN2017/104087 2016-09-30 2017-09-28 无线链路检测和处理方法及装置 WO2018059516A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17854966.3A EP3515103B1 (en) 2016-09-30 2017-09-28 Wireless link detecting and processing method and device
US16/370,464 US10931515B2 (en) 2016-09-30 2019-03-29 Method for detecting and processing radio link and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610877308.3 2016-09-30
CN201610877308.3A CN107889133B (zh) 2016-09-30 2016-09-30 无线链路检测和处理方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/370,464 Continuation US10931515B2 (en) 2016-09-30 2019-03-29 Method for detecting and processing radio link and apparatus

Publications (1)

Publication Number Publication Date
WO2018059516A1 true WO2018059516A1 (zh) 2018-04-05

Family

ID=61763730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104087 WO2018059516A1 (zh) 2016-09-30 2017-09-28 无线链路检测和处理方法及装置

Country Status (4)

Country Link
US (1) US10931515B2 (zh)
EP (1) EP3515103B1 (zh)
CN (1) CN107889133B (zh)
WO (1) WO2018059516A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021207920A1 (en) * 2020-04-14 2021-10-21 Qualcomm Incorporated Method for fast detect and recover from dual connectivity data stall
CN113748704A (zh) * 2019-04-18 2021-12-03 华为技术有限公司 一种更改无线链路监测配置的方法及设备

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3873165A1 (en) * 2017-03-24 2021-09-01 Telefonaktiebolaget LM Ericsson (publ) Rlm and beam failure detection based on a mix of different reference signals
CN111886891B (zh) * 2018-01-11 2024-02-06 株式会社Ntt都科摩 用户终端以及无线通信方法
US11064376B2 (en) 2018-06-08 2021-07-13 Qualcomm Incorporated Radio link monitoring and radio link failure recovery
KR102628038B1 (ko) * 2018-06-22 2024-01-22 삼성전자주식회사 이동통신 시스템에서 무선 링크 실패 보고 방법 및 장치
CN110972177B (zh) * 2018-09-28 2022-10-11 华为技术有限公司 一种链路检测方法及装置
CN111092640B (zh) 2018-10-24 2021-03-09 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN111614447B (zh) * 2019-04-01 2021-11-02 维沃移动通信有限公司 无线链路状态指示上报方法和终端设备
CN111836318B (zh) * 2019-08-21 2021-12-03 维沃移动通信有限公司 链路失败处理的方法和通信设备
US11064372B1 (en) * 2020-01-16 2021-07-13 Sprint Spectrum L.P. Dynamic reconfiguration of secondary access node radiation pattern in response to threshold high rate of secondary access node addition failures for dual connectivity
US11564245B2 (en) * 2020-02-11 2023-01-24 Qualcomm Incorporated Uplink-based radio link failure reporting for a cell group
US11910262B2 (en) * 2020-07-20 2024-02-20 Qualcomm Incorporated Radio link management for ultra-reliable low-latency communication

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130010620A1 (en) * 2011-07-10 2013-01-10 Esmael Dinan Connection Reconfiguration in a Multicarrier OFDM Network
CN102939777A (zh) * 2010-04-12 2013-02-20 瑞典爱立信有限公司 蜂窝无线电接入网络中无线电链路失败后基于ue的mdt测量和报告
CN103379517A (zh) * 2012-04-13 2013-10-30 华为技术有限公司 无线链路失败报告处理方法、异常事件统计处理方法及设备和系统

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1980467A (zh) * 2005-12-05 2007-06-13 大唐移动通信设备有限公司 无线链路再恢复的方法
CN101018354B (zh) * 2006-08-18 2010-10-27 华为技术有限公司 一种服务小区更新的控制方法、装置
US20080074994A1 (en) * 2006-09-21 2008-03-27 Innovative Sonic Limited Method for detecting radio link failure in wireless communications system and related apparatus
US9338597B2 (en) * 2007-12-06 2016-05-10 Suhayya Abu-Hakima Alert broadcasting to unconfigured communications devices
DE602008003225D1 (de) * 2008-08-28 2010-12-09 Alcatel Lucent Messung in Funkkommunikationssystemen
CN101815314A (zh) * 2009-02-20 2010-08-25 华为技术有限公司 发现无线网络问题的方法、装置及系统
KR20130088174A (ko) * 2009-03-12 2013-08-07 인터디지탈 패튼 홀딩스, 인크 무선 링크 실패에 대한 모니터링을 위한 방법 및 장치
GB2475164B (en) * 2009-11-04 2012-05-16 Lg Electronics Inc Method for handling radio link failure in multiple carrier system
CN101707537B (zh) * 2009-11-18 2012-01-25 华为技术有限公司 故障链路定位方法、告警根因分析方法及设备、系统
CN101883377B (zh) * 2010-06-24 2015-06-03 中兴通讯股份有限公司 E1线或t1线错接故障的检测方法及系统、基站
US8315156B2 (en) * 2010-06-30 2012-11-20 Oracle America, Inc. Method and system for distributing network traffic among multiple direct hardware access datapaths
EP2685760B1 (en) * 2011-07-27 2018-04-04 Huawei Technologies Co., Ltd. Device, link energy management method and link energy management system for peripheral component interconnect (pci) express
WO2013163902A1 (zh) * 2012-05-04 2013-11-07 华为技术有限公司 无线链路管理的方法、用户设备和基站
EP2949144B1 (en) * 2013-01-25 2020-09-16 Qualcomm Incorporated Adaptive observation of behavioral features on a mobile device
US20150094063A1 (en) * 2013-09-27 2015-04-02 Qualcomm Incorporated Devices and methods for facilitating optimized hand down operations in hybrid access terminals
US9867226B2 (en) * 2015-12-14 2018-01-09 Qualcomm Incorporated Radio link failure (RLF) failover in a multi-connectivity environment
EP3445115A4 (en) * 2016-04-15 2019-12-04 Ntt Docomo, Inc. USER TERMINAL AND METHOD FOR WIRELESS COMMUNICATION
WO2017179659A1 (ja) * 2016-04-15 2017-10-19 株式会社Nttドコモ 無線基地局、ユーザ端末及び無線通信方法
KR102313906B1 (ko) * 2016-05-13 2021-10-18 한국전자통신연구원 제어 채널을 위한 자원의 설정 정보를 전송하는 방법 및 장치, 상향링크 drs를 위한 자원의 설정 정보를 전송하는 방법 및 장치, 서브프레임/슬롯의 타입을 지시하는 지시자를 전송하는 방법 및 장치, 그리고 하향링크 심볼의 개수를 전송하는 방법 및 장치
WO2017209505A1 (ko) * 2016-05-31 2017-12-07 엘지전자 주식회사 무선 통신 시스템에서 rrm 보고 방법 및 이를 지원하는 장치
CN109644493A (zh) * 2016-06-15 2019-04-16 康维达无线有限责任公司 无许可操作
KR102345353B1 (ko) * 2016-08-05 2021-12-30 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 보고를 위한 방법 및 이를 위한 장치
US10785759B2 (en) * 2016-08-12 2020-09-22 Asustek Computer Inc. Method and apparatus for determining numerology bandwidth in a wireless communication system
EP3282632A1 (en) * 2016-08-12 2018-02-14 ASUSTek Computer Inc. Method and apparatus for determining numerology bandwidth for measurement in a wireless communication system
US11452136B2 (en) * 2016-08-12 2022-09-20 Futurewei Technologies, Inc System and method for network access

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102939777A (zh) * 2010-04-12 2013-02-20 瑞典爱立信有限公司 蜂窝无线电接入网络中无线电链路失败后基于ue的mdt测量和报告
US20130010620A1 (en) * 2011-07-10 2013-01-10 Esmael Dinan Connection Reconfiguration in a Multicarrier OFDM Network
CN103379517A (zh) * 2012-04-13 2013-10-30 华为技术有限公司 无线链路失败报告处理方法、异常事件统计处理方法及设备和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on New Radio Access Technology; Radio Interface Protocol Aspects (Release 14", 3GPP TR 38.804 V0.01, 31 May 2016 (2016-05-31), pages 1 - 9, XP051124107 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113748704A (zh) * 2019-04-18 2021-12-03 华为技术有限公司 一种更改无线链路监测配置的方法及设备
CN113748704B (zh) * 2019-04-18 2024-04-09 华为技术有限公司 一种更改无线链路监测配置的方法及设备
WO2021207920A1 (en) * 2020-04-14 2021-10-21 Qualcomm Incorporated Method for fast detect and recover from dual connectivity data stall

Also Published As

Publication number Publication date
EP3515103A1 (en) 2019-07-24
US10931515B2 (en) 2021-02-23
US20190229980A1 (en) 2019-07-25
CN107889133B (zh) 2021-06-08
EP3515103B1 (en) 2021-03-03
CN107889133A (zh) 2018-04-06
EP3515103A4 (en) 2019-08-21

Similar Documents

Publication Publication Date Title
WO2018059516A1 (zh) 无线链路检测和处理方法及装置
JP7100759B2 (ja) マスターノード無線リンク障害のレポート
JP7431229B2 (ja) 障害のないセルでのビーム障害回復
US11758422B2 (en) User equipment and related method
JP7341063B2 (ja) 無線リンク失敗処理方法及び関連製品
KR20210142714A (ko) Nr v2x에 대한 rlm 및 rlf 절차들
CN112292884A (zh) 使用多连接的移动稳健性和空间可靠性
EP3823411B1 (en) Control method for user equipment, and user equipment for mcg failure processing
US11304081B2 (en) Data transmission method and data transmission apparatus
CN114747288A (zh) 报告无线网络中的先听后说失败
WO2021088988A1 (zh) 无线链路失败处理的方法和设备
WO2019096274A1 (zh) 信号传输的方法和装置
WO2019196885A1 (zh) 一种波束恢复的方法及装置
WO2020088305A1 (zh) 一种通信方法、通信装置及系统
WO2022030579A1 (ja) 通信制御方法
TW201935993A (zh) 與基地台處理一雙連結的裝置及方法
US20210377758A1 (en) Communication control method
US20210153276A1 (en) Radio link failure management in wireless communication networks
WO2020198961A1 (zh) 链路失败的恢复方法和设备
EP4145951A1 (en) Method and device for transmitting and receiving data in wireless communication system
US20230138554A1 (en) Apparatus for wireless communications system and user equipment
US20240137786A1 (en) Multi-connectivity communication method and apparatus
EP4344289A1 (en) Communication method and apparatus under multi-connectivity
CN115707010A (zh) 一种通信方法及装置
CN116709439A (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854966

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017854966

Country of ref document: EP

Effective date: 20190415