WO2018059507A1 - 通信方法与设备 - Google Patents

通信方法与设备 Download PDF

Info

Publication number
WO2018059507A1
WO2018059507A1 PCT/CN2017/104064 CN2017104064W WO2018059507A1 WO 2018059507 A1 WO2018059507 A1 WO 2018059507A1 CN 2017104064 W CN2017104064 W CN 2017104064W WO 2018059507 A1 WO2018059507 A1 WO 2018059507A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
mhz
type
frame
service
Prior art date
Application number
PCT/CN2017/104064
Other languages
English (en)
French (fr)
Inventor
刘亚林
张军
钱湘江
孙军平
胡亨捷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17854957.2A priority Critical patent/EP3512254B1/en
Publication of WO2018059507A1 publication Critical patent/WO2018059507A1/zh
Priority to US16/368,664 priority patent/US10834016B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/302Route determination based on requested QoS
    • H04L45/306Route determination based on the nature of the carried application
    • H04L45/3065Route determination based on the nature of the carried application for real time traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/76Admission control; Resource allocation using dynamic resource allocation, e.g. in-call renegotiation requested by the user or requested by the network in response to changing network conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority

Definitions

  • the present application relates to the field of communications and, more particularly, to a communication method and apparatus.
  • the power system is composed of a power network for transmitting electricity and a communication network for transmitting information.
  • the distribution communication network refers to the communication system for transmitting information between the distribution terminal and the main station system, and is mainly used for monitoring and control of the distribution system, including the distribution automation service and the online monitoring service of the distribution network, wherein the distribution automation
  • the service has high requirements on communication reliability, quality of service (QoS), and transmission delay.
  • QoS quality of service
  • the online monitoring service of the distribution network has low QoS requirements for communication and is not very sensitive to delay.
  • the frame format supported in the power transmission system is: the subframe length is 5 ms, and one frame includes 5 subframes.
  • the frame length of the frame format is short, which causes the uplink and downlink to be too frequent, and the system overhead is too large.
  • the uplink and downlink switching overhead accounts for 20% of the total communication time.
  • This kind of frame format is advantageous for the distribution automation service (instant-sensitive service), but for the online monitoring service of the distribution network (immediate delay-sensitive service), too much system overhead is not necessary.
  • the present application provides a communication method and device, which can support different types of services through different frame structures, so as to meet the transmission requirements of different types of services.
  • a communication method includes: determining a first frequency band and a second frequency band in a working frequency band; transmitting a first type of frame on the first frequency band, and transmitting on the second frequency band a second type of frame, the first type of frame is used to carry the first type of service, the second type of frame is used to carry the second type of service, and the second type of frame is different from the frame structure of the first type of frame .
  • the sensitivity of the first type of service to the transmission delay is higher than the sensitivity of the second type of service to the transmission delay, where The frame length of a type of frame is smaller than the frame length of the second type of frame.
  • the frame length of the first type of frame is smaller than the frame length of the second type of frame, and the first type of frame can obtain a shorter uplink and downlink switching period than the second type of frame, and the transmission delay is small, thereby being applicable.
  • the second type of frames have longer switching cycles than the first-class frames, and the system overhead is small, which is suitable for delay-insensitive services (such as power distribution). Online monitoring business of the power grid). Therefore, the present application can meet different transmission requirements of different types of services by using different frame structures in different frequency bands of the working frequency band and carrying different services through different frame structures.
  • the first type of frame includes 5 subframes, each subframe has a length of 4 ms, and each subframe includes 5 orthogonal frequency division multiplexing OFDM symbols;
  • the second type of frame includes 15 subframes, each subframe has a length of 8 ms, and each subframe includes 10 OFDM symbols;
  • the first frequency band and the second frequency band The OFDM subcarrier width of the frequency band is 25/16 KHz.
  • the frame length of the first type of frame transmitted on the first frequency band is shorter, so as to obtain a shorter uplink and downlink switching period, thereby meeting the low delay requirement of the delay sensitive type service;
  • the second type of frame has a longer frame length to avoid frequent uplink and downlink handovers, which can reduce performance overhead and is suitable for delay-insensitive services. Therefore, the communication method provided by the present application can simultaneously satisfy the requirements of different types of services.
  • the first sub-band and the second frequency band adopt the same sub-carrier spacing, which can reduce the difficulty of system implementation.
  • the first type of frame includes 5 subframes, each subframe has a duration of 4 ms, and each subframe includes 10 OFDM symbols;
  • the second type of frame includes 15 subframes, each subframe has a duration of 8 ms, each subframe includes 10 OFDM symbols;
  • the OFDM subcarrier width of the first frequency band is 25/8 kHz, the first The OFDM subcarrier width of the two bands is 25/16 KHz.
  • the working frequency band includes a frequency band licensed to the power system.
  • the first type of service is an electric power distribution automation service
  • the second type of service is an online monitoring service of a power distribution network.
  • the working frequency band includes a frequency band licensed to the power system in a 230 MHz frequency band.
  • the determining the first frequency band and the second frequency band in the working frequency band including: in the 230 MHz frequency band 223.525 MHz - 224.650 MHz and 230.525 MHz - 231.650 MHz are determined as the first frequency band; 228.075 MHz - 228.750 MHz in the 230 MHz frequency band is determined as the second frequency band.
  • the two largest clusters are determined as the first frequency band according to three clusters (223.525 MHz - 224.650 MHz, 230.525 MHz - 231.650 MHz, and 228.075 MHz - 228.750 MHz) licensed to the power system in the 230 MHz band.
  • the other cluster is determined to be the second frequency band, thereby facilitating the large bandwidth requirement of the delay sensitive type service.
  • the determining the first frequency band and the second frequency band in the working frequency band including: in the 230 MHz frequency band 228.075 MHz-228.750 MHz and 230.525 MHz-231.650 MHz are determined as the first frequency band; 222.525 MHz-224.650 MHz in the 230 MHz frequency band is determined as the second frequency band.
  • two clusters with similar distances are divided into first according to three clusters (223.525MHz-224.650MHz, 230.525MHz-231.650MHz and 228.075MHz-228.750MHz) of the frequency band licensed to the power system in the 230MHz frequency band.
  • another cluster is determined as the second frequency band, which is beneficial to meet the large bandwidth requirement of the delay-sensitive service, and on the other hand, because the distance between the first frequency band and the second frequency band is far, Avoid interference between the first frequency band and the second frequency band, thereby facilitating simultaneous satisfaction of different types of services Demand.
  • the determining the first frequency band and the second frequency band in the working frequency band include: when the first type of service When the first service requirement is met, the frequency band authorized to the power system in the 230 MHz frequency band is determined as the first frequency band, and the second frequency band is set to 0; when the first type of service has the second service When required, 228.075 MHz-228.750 MHz and 230.525 MHz-231.650 MHz in the 230 MHz frequency band are determined as the first frequency band, and 222.525 MHz-224.650 MHz in the 230 MHz frequency band is determined as the second frequency band.
  • the working frequency band further includes a frequency band licensed to the power system in a 1.8 GHz frequency band;
  • the first frequency band and the second frequency band include: determining a frequency band authorized to the power system in the 1.8 GHz frequency band as the first frequency band; determining a frequency band authorized to the power system in the 230 MHz frequency band as the second frequency band .
  • the first type of frame includes indication information for indicating a range of the first frequency band.
  • the communication method further includes: sending a broadcast message, where the broadcast message includes indication information, where the indication information is used by And indicating a range of the first frequency band and/or the second frequency band.
  • a second aspect provides a communication device for performing the method of the first aspect or any one of the possible implementations of the first aspect.
  • the communication device may comprise means for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • a third aspect provides a communication device including a memory and a processor for storing instructions for executing instructions stored by the memory, and performing execution of the instructions stored in the memory such that the processing The method of the first aspect or any one of the possible implementations of the first aspect is performed.
  • FIG. 1 shows a schematic flow chart of a communication method according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing the operating frequency band in the embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing dividing a first frequency band and a second frequency band in an embodiment of the present invention.
  • FIG. 4 shows another schematic diagram of dividing a first frequency band and a second frequency band in an embodiment of the present invention.
  • FIG. 5 shows still another schematic diagram of dividing the first frequency band and the second frequency band in the embodiment of the present invention.
  • FIG. 6 shows still another schematic diagram of dividing the first frequency band and the second frequency band in the embodiment of the present invention.
  • FIG. 7 shows a schematic block diagram of a communication device of an embodiment of the present invention.
  • FIG. 8 shows another schematic block diagram of a communication device according to an embodiment of the present invention.
  • FIG. 1 is a schematic flowchart of a communication method 100 according to an embodiment of the present invention.
  • the communication method 100 may be performed by The base station performs, and the communication method 100 includes:
  • the first type of frame is transmitted on the first frequency band
  • the second type of frame is transmitted on the second frequency band.
  • the first type of frame is used to carry the first type of service
  • the second type of frame is used to carry the second type of service
  • the second type of frame is used to carry the second type of service.
  • the class frame is different from the frame structure of the first type of frame.
  • the frame structure of the second type of frame is different from the frame structure of the first type of frame, that is, the frame length of the second type of frame is different from the frame type of the first type of frame, or the second type of frame is different from the length of the first type of frame.
  • the second type of frame is different from the number of orthogonal frequency division multiplexing (OFDM) symbols included in the first type of frame.
  • OFDM orthogonal frequency division multiplexing
  • the first type of frame may be sent on the first frequency band
  • the second type of frame may be sent on the second frequency band.
  • the second type of frame may be sent at the same time, or may have a certain time difference. Not limited.
  • the first type of frame may be received on the first frequency band
  • the second type of frame may be received on the second frequency band, and may be received at the same time or may have a certain time difference. Not limited.
  • the sensitivity of the first type of service to the transmission delay is higher than the sensitivity of the second type of service to the transmission delay, and the frame length of the first type of frame. Less than the frame length of the second type of frame.
  • the first type of service is a delay-sensitive service in the power system, such as an electric power distribution automation service
  • the second type of service is a service that is not sensitive to delay in the power system, such as an online monitoring service of the power distribution network.
  • both the first type of frame and the second type of frame work in a Time Division Duplex (TDD) mode, wherein the first type of frame is shorter than the second type of frame, thereby obtaining a shorter
  • TDD Time Division Duplex
  • the first type of service instant delay sensitive service
  • the second type of service is carried on the second type of frame.
  • LTE Long Term Evolution
  • FDD Frequency Division Dual
  • TDD Frequency Division Dual
  • the respective frame structure but in the same system (such as FDD or TDD), the frame structure is the same.
  • a control channel and a data channel are designed in one system, but the control channel is identical to the frame structure on the data channel.
  • the embodiment of the present invention by dividing the working frequency band into the first frequency band and the second frequency band, by using different frame structures on the first frequency band and the second frequency band, and carrying different services through different frame structures, Meet the transmission needs of different types of services.
  • the embodiment of the present invention can meet the transmission requirements of the delay-sensitive service and the delay-insensitive service at the same time with a small system overhead.
  • the delay-sensitive service and the delay-insensitive service mentioned in the embodiments of the present invention are relative concepts, for example, the delay requirement indicator of the first service is 10 ms, and the delay requirement indicator of the second service is required. If the delay requirement indicator of the third service is 1 s, the second service is a delay-insensitive service with respect to the first service, but the second service is delayed-sensitive with respect to the third service.
  • the first type of frame includes 5 subframes, each subframe has a length of 4 ms, and each subframe includes 5 orthogonal frequency division multiplexing OFDM symbols.
  • the second type of frame includes 15 subframes, each subframe has a length of 8 ms, and each subframe includes 10 OFDM symbols; the first frequency band and the second frequency band of OFDM
  • the subcarrier width is 25/16KHz.
  • each OFDM subcarrier width is 25/16 KHz.
  • the frame length of the first type of frame transmitted on the first frequency band is shorter, so as to obtain a shorter uplink and downlink switching period, thereby meeting the low delay requirement of the delay sensitive service;
  • the second frame of the transmitted frame has a long frame length to avoid frequent uplink and downlink handover, which can improve transmission efficiency and reduce system overhead, and is suitable for delay-insensitive services. Therefore, the communication method provided by the embodiment of the present invention can better meet the requirements of different types of services at the same time.
  • the first sub-band and the second frequency band adopt the same sub-carrier spacing, which can reduce the difficulty of system implementation.
  • the first type of frame includes 5 subframes, each subframe has a duration of 4 ms, each subframe includes 10 OFDM symbols, and the second type of frame includes 15
  • Each sub-frame has a duration of 8 ms, and each sub-frame includes 10 OFDM symbols;
  • the OFDM sub-carrier width of the first frequency band is 25/8 kHz, and the OFDM sub-carrier width of the second frequency band is 25/16 KHz.
  • each OFDM subcarrier width in the first frequency band is greater than each OFDM subcarrier width in the second frequency band, and correspondingly, the corresponding OFDM symbol length on the first frequency band is smaller than the corresponding OFDM symbol length on the second frequency band,
  • the delay of the first type of frame transmitted on the first frequency band is smaller, and the delay of the second type of frame transmitted on the second frequency band is larger. Therefore, carrying the first type of service on the first type of frame is beneficial to satisfy Delay-sensitive business requires less time delay.
  • the width of each OFDM subcarrier of the second frequency band is smaller than the width of each OFDM subcarrier of the first frequency band.
  • the narrower subcarriers can be transmitted further within the same OFDM symbol.
  • the distance between the second frequency band and the first frequency band is larger, and the cell can also support more users at the same time. Therefore, the second type of service is carried in the second frame, and the delay-insensitive service can be satisfied. Wide coverage needs.
  • the operating frequency band includes a frequency band licensed to the power system.
  • the frequency band licensed to the power system is recorded as a power-dedicated frequency band.
  • the first type of service is a distribution automation service, and such a service has high requirements for delay
  • the second type of service is an online monitoring service of a distribution network, and such a service is delayed.
  • the requirements are not very high.
  • two frame formats are simultaneously supported in the power dedicated frequency band to meet the service transmission requirement of the power system, and specifically, in the power dedicated frequency band, the power distribution can be simultaneously satisfied.
  • the transmission requirements of the automation business and the transmission requirements of the online monitoring service of the distribution network are simultaneously satisfied.
  • the working frequency band includes a frequency band licensed to the power system in the 230 MHz frequency band.
  • the 230 MHz frequency band ranges from 223.525 MHz to 231.650 MHz, and the 230 MHz frequency band is allocated as a frequency point with a bandwidth of 25 kHz, for a total of 480 frequency points.
  • the 480 frequency points in the 230 MHz frequency band 40 frequency points are divided into power-specific frequency points, and the 40 power-specific frequency points (total 1 MHz) are dispersed in the 480 frequency points.
  • 40 power-specific frequency points are shown in Table 1 and Table 2.
  • the frequency bands licensed to the power system in the 230 MHz band are roughly divided into three clusters: 223.525 MHz - 224.650 MHz, 228.075 MHz - 228.750 MHz, and 230.525 MHz - 231.650 MHz.
  • 110 determines the first frequency band in the working frequency band and
  • the second frequency band includes:
  • the 222.525 MHz-224.650 MHz and 230.525 MHz-231.650 MHz in the 230 MHz band are determined as the first frequency band; and the 228.075 MHz-228.750 MHz in the 230 MHz frequency band is determined as the second frequency band.
  • the first frequency band is the frequency band shown in "Part 1" in FIG. 3
  • the second frequency band is the frequency band shown in "Part 2" in FIG.
  • the first type of frame transmitted on the first frequency band may have the frame structure of the first type of frame described in the foregoing embodiment
  • the second type of frame transmitted on the second frequency band may be The frame structure of the second type of frame described in the foregoing embodiment is not described herein for brevity.
  • the two largest clusters are determined as the first according to three clusters (223.525 MHz-224.650 MHz, 230.525 MHz-231.650 MHz, and 228.075 MHz-228.750 MHz) of the frequency band licensed to the power system in the 230 MHz frequency band.
  • another cluster is determined as the second frequency band, thereby facilitating the large bandwidth requirement of the delay sensitive service.
  • 110 determines the first frequency band and the second frequency band in the working frequency band, including:
  • 228.075MHz-228.750MHz and 230.525MHz-231.650MHz in the 230MHz frequency band are determined as the first frequency band;
  • the 222.525 MHz-224.650 MHz in the 230 MHz band is determined as the second frequency band.
  • the first frequency band is the frequency band shown in "Part 1" in FIG. 4
  • the second frequency band is the frequency band shown in "Part 2" in FIG.
  • the first type of frame transmitted on the first frequency band may have the frame structure of the first type of frame described in the foregoing embodiment
  • the second type of frame transmitted on the second frequency band may be The frame structure of the second type of frame described in the foregoing embodiment is not described herein for brevity.
  • the delay-sensitive service will be transmitted at 1.8 GHz, and the idle 230 MHz band will be used for delay-insensitive services.
  • the working frequency band includes a frequency band licensed to the power system in the 230 MHz frequency band and a frequency band authorized to the power system in the 1.8 GHz frequency band;
  • the frequency band licensed to the power system in the 230 MHz band is determined as the second frequency band.
  • the first frequency band and the second frequency band may be dynamically determined.
  • the frequency band granted to the power system in the 230 MHz frequency band is determined as the first frequency band, and the second frequency band is set to 0;
  • the service has the second service demand, it will be 228.075MHz-228.750MHz and 230.525MHz-231.650MHz in the 230MHz band.
  • the first frequency band is determined, and 223.525 MHz-224.650 MHz in the 230 MHz frequency band is determined as the second frequency band.
  • the part shown by the solid line in FIG. 5 and the part 1 indicated by the broken line are determined as the first frequency band, that is, on the 230 MHz frequency band. All power licensed frequency bands are used as the first frequency band, and the second frequency band ranges from zero.
  • the "part 1" shown by the solid line in FIG. 5 is determined as the first frequency band
  • the "part 2" shown by the broken line in FIG. 5 is determined as the second frequency band.
  • the first service requirement in the embodiment is, for example, a service requirement exceeding a threshold
  • the second service requirement is a service requirement that does not exceed a threshold, wherein the threshold may be preset by the system.
  • the method provided by the embodiment shown in FIG. 5 can be referred to as a communication method of scalable bandwidth, which can improve spectrum utilization.
  • FIG. 5 is merely an example and not a limitation.
  • the range of the first frequency band and the second frequency band can be dynamically adjusted according to the service requirements of the first type of service, and is not limited to the method shown in FIG.
  • the first frequency band and the second frequency band are determined according to the embodiment shown in FIG. 3; and the second service requirement of the first type of service is determined according to the embodiment shown in FIG. The first frequency band and the second frequency band.
  • 228.075 MHz-228.750 MHz and 230.525 MHz-231.650 MHz in the 230 MHz band are determined as the first frequency band, and 223.525 MHz-224.650 MHz in the 230 MHz frequency band.
  • the "part 1" shown by the solid line in FIG. 6 is determined as the first frequency band, which is shown by the solid line in FIG. "Part 2" is determined to be the second frequency band.
  • the "part 2" shown by the solid line in FIG. 6 and the “part 2" shown by the broken line are both determined as the second frequency band, and the 1.8 GHz band is authorized to the power system.
  • the frequency band is determined to be the first frequency band.
  • the first frequency band and the second frequency band are dynamically adjusted according to the acquisition of the spectrum resources, thereby providing a suitable spectrum resource for the delay sensitive service.
  • FIG. 6 is only an example and is not limited. In an actual application, the first frequency band and the second frequency band may be adjusted as appropriate according to specific situations, which is not limited by the embodiment of the present invention.
  • the range of the first frequency band and/or the second frequency band may be indicated in a broadcast manner or in a form in which the indication information is carried in the frame.
  • the first type of frame includes indication information indicating a range of the first frequency band.
  • the indication information is the first identifier (for example, 1), indicating that the first frequency band is 223.525 MHz-224.650 MHz (hereinafter referred to as the first cluster) and 230.525 MHz-231.650 MHz in the 230 MHz frequency band (hereinafter referred to as the first
  • the indication information is the second identifier (for example, 2), indicating that the first frequency band is 228.075 MHz-228.750 MHz (hereinafter referred to as the second cluster) and the third cluster
  • the indication information is the third identifier ( For example, when 3), indicating that the first frequency band is the first cluster and the second cluster
  • the indication information is the fourth identifier (for example, 4), indicating that the first frequency band is all power licensed frequency bands in the 230 MHz frequency band (ie, the first cluster) And the second cluster and the third cluster);
  • the indication information is the fifth identifier (for example, 5), indicating that the first frequency band is a frequency band licensed to the power system in the first
  • the second type of frame may also include indication information for indicating a range of the second frequency band.
  • the communications method further includes:
  • a broadcast message is sent, the broadcast message including indication information for indicating a range of the first frequency band and/or the second frequency band.
  • the indication information is the first identifier (for example, 1), indicating that the first frequency band is the first cluster and the third cluster, and the second frequency band is the second cluster; and when the indication information is the second identifier (for example, 2), indicating that the first frequency band is the second cluster and the third cluster, and the second frequency band is the first cluster; when the indication information is the third identifier (for example, 3), indicating that the first frequency band is the first cluster and the second cluster The cluster, the second frequency band is the third cluster; when the indication information is the fourth identifier (for example, 4), indicating that the first frequency band is all the power licensed frequency bands in the 230 MHz frequency band, and the second frequency band ranges from 0; When it is the fifth identifier (for example, 5), it indicates that the first frequency band is a frequency band licensed to the power system in the 1.8 GHz frequency band, and the second frequency band is a frequency band authorized to the power system in the 230 MHz frequency band.
  • the fifth identifier for example, 5
  • the application scenario of the embodiment of the present invention is described as an example of the power system, and the embodiment of the present invention is not limited thereto.
  • the communication method provided by the embodiment of the present invention can also be applied to other communication scenarios of different services in which different delay requirements are required in the same system.
  • the executor of the above embodiment may be any communication device.
  • the steps in the embodiment shown in FIG. 1 may be performed by the sending device or may be performed by the receiving device.
  • the communication method of the embodiment of the present invention is described above with reference to FIG. 1 to FIG. 6.
  • the communication device of the embodiment of the present invention will be described below with reference to FIG. 7 and FIG.
  • FIG. 7 shows a schematic block diagram of a communication device 200 according to an embodiment of the present invention.
  • the communication device 200 includes:
  • a determining module 210 configured to determine a first frequency band and a second frequency band in the working frequency band
  • the transmitting module 220 is configured to transmit the first type of frame on the first frequency band determined by the determining module, and transmit the second type of frame in the second frequency band determined by the determining module, where the first type of frame is used to carry the first type of service, and the second type
  • the class frame is used to carry the second type of service, and the second type of frame is different from the frame structure of the first type of frame.
  • the sensitivity of the first type of service to the transmission delay is higher than the sensitivity of the second type of service to the transmission delay, and the frame length of the first type of frame is smaller than the frame length of the second type of frame.
  • the first type of frame includes 5 subframes, each subframe has a length of 4 ms, and each subframe includes 5 orthogonal frequency division multiplexing OFDM symbols; and the second type of frame includes 15 subframes.
  • Each subframe has a length of 8 ms, and each subframe includes 10 OFDM symbols; the OFDM subcarrier widths of the first frequency band and the second frequency band are both 25/16 KHz.
  • the first type of frame includes 5 subframes, each subframe has a duration of 4 ms, each subframe includes 10 OFDM symbols, and the second type of frame includes 15 subframes, and each subframe has a duration of 8ms, each subframe includes 10 OFDM symbols; the OFDM subcarrier width of the first frequency band is 25/8 kHz, and the OFDM subcarrier width of the second frequency band is 25/16 KHz.
  • the operating frequency band includes a frequency band that is licensed to the power system.
  • the operating frequency band includes a frequency band licensed to the power system in the 230 MHz frequency band.
  • the determining module 210 is configured to determine 223.525 MHz-224.650 MHz and 230.525 MHz-231.650 MHz in the 230 MHz frequency band as the first frequency band; and determine 228.075 MHz-228.750 MHz in the 230 MHz frequency band as the first Second frequency band.
  • the determining module 210 is configured to determine 228.075 MHz-228.750 MHz and 230.525 MHz-231.650 MHz in the 230 MHz frequency band as the first frequency band; and determine 223.525 MHz-224.650 MHz in the 230 MHz frequency band as the first Second frequency band.
  • the determining module 210 is configured to determine, when the first type of service has the first service requirement, the frequency band authorized to the power system in the 230 MHz frequency band as the first frequency band, and set the second frequency band. 0; when the first type of service has the second service requirement, the 228.075 MHz-228.750 MHz and the 230.525 MHz-231.650 MHz in the 230 MHz band are determined as the first frequency band, and the 223.525 MHz-224.650 MHz in the 230 MHz frequency band is determined as the first Second frequency band.
  • the working frequency band further includes a frequency band licensed to the power system in the 1.8 GHz frequency band; the determining module 210 is configured to determine a frequency band authorized to the power system in the 1.8 GHz frequency band as the first frequency band; The frequency band licensed to the power system is determined to be the second frequency band.
  • the first type of frame includes indication information for indicating a range of the first frequency band.
  • the transmission module 220 is further configured to send a broadcast message, where the broadcast message includes indication information, where the indication information is used to indicate a range of the first frequency band and/or the second frequency band.
  • the communication device 200 of the embodiments of the present invention may be used to perform the communication method of the above embodiments, and the above and other operations and/or functions of the respective modules in the communication device 200 are respectively implemented to implement the respective methods in FIGS. 1 to 6.
  • the corresponding process, for the sake of brevity, will not be described here.
  • determination module 210 can be performed by a processor or processor-related circuit component of the communication device 200, which can be executed by a transceiver or transceiver-related circuit component of the communication device 200.
  • an embodiment of the present invention further provides a network device 300, which includes a processor 310, a memory 320, a bus system 330, and a transceiver 340.
  • the processor 310, the memory 320 and the transceiver 340 are connected by a bus system 330 for storing instructions for executing instructions stored in the memory 320 to control the transceiver 340 to receive signals and/or Send a signal.
  • the processor 310 is configured to determine the first frequency band and the second frequency band in the working frequency band, and the transceiver 340 is configured to transmit the first type of frame in the first frequency band and transmit the second type of frame in the second frequency band.
  • the first type of frame is used to carry the first type of service
  • the second type of frame is used to carry the second type of service
  • the second type of frame is different from the frame structure of the first type of frame.
  • the sensitivity of the first type of service to the transmission delay is higher than the sensitivity of the second type of service to the transmission delay, and the frame length of the first type of frame is smaller than the frame length of the second type of frame.
  • the first type of frame includes 5 subframes, each subframe has a length of 4 ms, and each subframe includes 5 orthogonal frequency division multiplexing OFDM symbols; and the second type of frame includes 15 subframes.
  • Each subframe has a length of 8 ms, and each subframe includes 10 OFDM symbols; the OFDM subcarrier widths of the first frequency band and the second frequency band are both 25/16 KHz.
  • the first type of frame includes 5 subframes, each subframe has a duration of 4 ms, each subframe includes 10 OFDM symbols, and the second type of frame includes 15 subframes, and each subframe has a duration of 8ms, each subframe It includes 10 OFDM symbols; the OFDM subcarrier width of the first frequency band is 25/8 kHz, and the OFDM subcarrier width of the second frequency band is 25/16 KHz.
  • the operating frequency band includes a frequency band that is licensed to the power system.
  • the operating frequency band includes a frequency band licensed to the power system in the 230 MHz frequency band.
  • the processor 310 is configured to determine 223.525 MHz-224.650 MHz and 230.525 MHz-231.650 MHz in the 230 MHz frequency band as the first frequency band; and determine 228.075 MHz-228.750 MHz in the 230 MHz frequency band as the first Second frequency band.
  • the processor 310 is configured to determine 228.075 MHz-228.750 MHz and 230.525 MHz-231.650 MHz in the 230 MHz frequency band as the first frequency band; and determine 223.525 MHz-224.650 MHz in the 230 MHz frequency band as the first Second frequency band.
  • the processor 310 is configured to determine, when the first type of service has the first service requirement, the frequency band granted to the power system in the 230 MHz frequency band as the first frequency band, and set the second frequency band. 0; when the first type of service has the second service requirement, the 228.075 MHz-228.750 MHz and the 230.525 MHz-231.650 MHz in the 230 MHz band are determined as the first frequency band, and the 223.525 MHz-224.650 MHz in the 230 MHz frequency band is determined as the first Second frequency band.
  • the working frequency band further includes a frequency band licensed to the power system in the 1.8 GHz frequency band; the processor 310 is configured to determine a frequency band authorized to the power system in the 1.8 GHz frequency band as the first frequency band; The frequency band licensed to the power system is determined to be the second frequency band.
  • the first type of frame includes indication information for indicating a range of the first frequency band.
  • the transceiver 340 is configured to send a broadcast message, where the broadcast message includes indication information indicating information for indicating a range of the first frequency band and/or the second frequency band.
  • the processor 310 may be a central processing unit ("CPU"), and the processor 310 may also be other general-purpose processors, digital signal processors (DSPs). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 320 can include read only memory and random access memory and provides instructions and data to the processor 310. A portion of the memory 320 may also include a non-volatile random access memory. For example, the memory 320 can also store information of the device type.
  • the bus system 330 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 330 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 310 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 320, and the processor 310 reads the information in the memory 320 and combines the hardware to perform the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the transceiver 340 can indicate a device having a receive and transmit function, and can also include a separate receiver and a separate transmitter.
  • communication device 300 in accordance with embodiments of the present invention may be used to perform the method embodiments described above in connection with Figures 1 through 6, which may correspond to communication device 200 in accordance with an embodiment of the present invention, and that communicate
  • the foregoing and other operations and/or functions of the respective modules in the device 300 are respectively implemented in order to implement the respective processes of the respective methods in FIG. 1 to FIG. 6, and are not described herein again for brevity.
  • the size of the serial numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法和设备,该通信方法包括:确定工作频段中的第一频段与第二频段;在第一频段上传输第一类帧,在第二频段上传输第二类帧,第一类帧用于承载第一类业务,第二类帧用于承载第二类业务,第二类帧与第一类帧的帧结构不同。因此,在本发明实施例中,通过在工作频段的不同频段中使用不同的帧结构,并通过不同的帧结构承载不同的业务,从而可以满足不同类型业务的传输需求。

Description

通信方法与设备
本申请要求于2016年9月29日提交中国专利局、申请号为201610865055.8、发明名称为“通信方法与设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种通信方法与设备。
背景技术
电力系统由电力网和通信网组成,其中电力网用于传输电,通信网用于传输信息。配电通信网是指配电终端与主站系统间传输信息的通信系统,主要用于配电系统的监测与控制,包括配电自动化业务和配电网的在线监测业务,其中,配电自动化业务对通信可靠性、服务质量(Quality of Service,QoS)、传输时延有较高要求,配电网的在线监测业务对通信的QoS要求不高,对时延不是很敏感。
目前电力传输系统中支持的帧格式为:子帧长度为5ms,一个帧包括5个子帧。这种帧格式的帧长度较短,导致上下行过于频繁,系统开销太大,上下行切换开销占全部通信时间的20%。这种帧格式对于配电自动化业务(即时延敏感类业务)是有利的,但是对于配电网的在线监测业务(即时延不敏感类业务)来说,太大的系统开销是非必须的。
发明内容
本申请提供一种通信方法与设备,能够支持通过不同的帧结构承载不同类型的业务,从而可以满足不同类型业务的传输需求。
第一方面,提供一种通信方法,所述通信方法包括:确定工作频段中的第一频段与第二频段;在所述第一频段上传输第一类帧,在所述第二频段上传输第二类帧,所述第一类帧用于承载第一类业务,所述第二类帧用于承载第二类业务,所述第二类帧与所述第一类帧的帧结构不同。
在本方案中,通过在工作频段的不同频段中使用不同的帧结构,并通过不同的帧结构承载不同的业务,从而可以满足不同类型业务的传输需求。
结合第一方面,在第一方面的一种可能的实现方式中,所述第一类业务对传输时延的敏感度高于所述第二类业务对传输时延的敏感度,所述第一类帧的帧长度小于所述第二类帧的帧长度。
在本方案中,第一类帧的帧长度小于第二类帧的帧长度,第一类帧相比于第二类帧能够获得较短的上下行切换周期,传输时延较小,从而适用于时延敏感类业务(例如电力配电自动化业务);第二类帧相比于第一类帧上下行切换周期较长,系统开销较小,适用于时延不敏感类业务(例如电力配电网的在线监测业务)。因此,本申请通过在工作频段的不同频段中使用不同的帧结构,并通过不同的帧结构承载不同的业务,从而可以满足不同类型业务的传输需求。
结合第一方面或上述某些可能的实现方式,在第一方面的一种可能的实现方式中,所述第一类帧包括5个子帧,每个子帧的长度为4ms,且每个子帧包括5个正交频分复用OFDM符号;所述第二类帧包括15个子帧,每个子帧的长度为8ms,且每个子帧包括10个OFDM符号;所述第一频段与所述第二频段的OFDM子载波宽度均为25/16KHz。
在本方案中,第一频段上传输的第一类帧的帧长度较短,以获得较短的上下行切换周期,从而能够满足时延敏感类业务的低时延要求;第二频段上传输的第二类帧的帧长度较长,以避免频繁的上下行切换,能够降低性能开销,适用于时延不敏感类业务。因此,本申请提供的通信方法能够同时满足不同类型业务的需求。此外,在本方案中,第一频段和第二频段采用相同的子载波间隔,能够降低系统实现的难度。
结合第一方面或上述某些可能的实现方式,在第一方面的一种可能的实现方式中,所述第一类帧包括5个子帧,每个子帧的时长为4ms,每个子帧包括10个OFDM符号;所述第二类帧包括15个子帧,每个子帧的时长为8ms,每个子帧包括10个OFDM符号;所述第一频段的OFDM子载波宽度为25/8kHz,所述第二频段的OFDM子载波宽度为25/16KHz。
结合第一方面或上述某些可能的实现方式,在第一方面的一种可能的实现方式中,所述工作频段包括授权给电力系统的频段。
在上述实现方式中,所述第一类业务为电力配电自动化业务,所述第二类业务为电力配电网的在线监测业务。
在本方案中,根据电力系统的业务传输特征,提出在电力专用频段中同时支持两种帧格式,以满足电力系统中不同业务的传输需求。
结合第一方面或上述某些可能的实现方式,在第一方面的一种可能的实现方式中,所述工作频段包括230MHz频段中授权给电力系统的频段。
结合第一方面或上述某些可能的实现方式,在第一方面的一种可能的实现方式中,所述确定工作频段中的第一频段与第二频段,包括:将所述230MHz频段中的223.525MHz-224.650MHz与230.525MHz-231.650MHz确定为所述第一频段;将所述230MHz频段中的228.075MHz-228.750MHz确定为所述第二频段。
在本方案中,根据230MHz频段中授权给电力系统的频段的三个簇(223.525MHz-224.650MHz、230.525MHz-231.650MHz与228.075MHz-228.750MHz),将两个最大的簇确定为第一频段,将另一个簇确定为第二频段,从而有利于满足时延敏感类业务的大带宽需求。
结合第一方面或上述某些可能的实现方式,在第一方面的一种可能的实现方式中,所述确定工作频段中的第一频段与第二频段,包括:将所述230MHz频段中的228.075MHz-228.750MHz与230.525MHz-231.650MHz确定为所述第一频段;将所述230MHz频段中的223.525MHz-224.650MHz确定为所述第二频段。
在本方案中,根据230MHz频段中授权给电力系统的频段的三个簇(223.525MHz-224.650MHz、230.525MHz-231.650MHz与228.075MHz-228.750MHz),将两个距离相近的簇划分为第一频段,将另外一个簇确定为第二频段,一方面有利于满足时延敏感类业务的大带宽需求,另一方面,由于第一频段与第二频段之间的距离较远,从而能够尽可能地避免第一频段与第二频段之间的干扰,从而有利于同时满足不同类型业务 的需求。
结合第一方面或上述某些可能的实现方式,在第一方面的一种可能的实现方式中,所述确定工作频段中的第一频段与第二频段,包括:当所述第一类业务具有第一业务需求时,将所述230MHz频段中授权给电力系统的频段均确定为所述第一频段,并将所述第二频段设置为0;当所述第一类业务具有第二业务需求时,将所述230MHz频段中的228.075MHz-228.750MHz与230.525MHz-231.650MHz确定为所述第一频段,将所述230MHz频段中的223.525MHz-224.650MHz确定为所述第二频段。
在本方案中,通过根据业务需求动态调整频谱范围,从而能够充分满足低时延、高性能业务的需求,此外,通过可扩展带宽的通信方式能够提高频谱利用率。
结合第一方面或上述某些可能的实现方式,在第一方面的一种可能的实现方式中,所述工作频段还包括1.8GHz频段中授权给电力系统的频段;所述确定工作频段中的第一频段与第二频段,包括:将所述1.8GHz频段中授权给电力系统的频段确定为所述第一频段;将所述230MHz频段中授权给电力系统的频段确定为所述第二频段。
结合第一方面或上述某些可能的实现方式,在第一方面的一种可能的实现方式中,所述第一类帧包括用于指示所述第一频段的范围的指示信息。
结合第一方面或上述某些可能的实现方式,在第一方面的一种可能的实现方式中,所述通信方法还包括:发送广播消息,所述广播消息包括指示信息,所述指示信息用于指示所述第一频段和/或所述第二频段的范围。
第二方面提供了一种通信设备,所述通信设备用于执行第一方面或第一方面的任一种可能的实现方式中的方法。
具体地,所述通信设备可以包括用于执行第一方面或第一方面的任一种可能的实现方式中的方法的模块。
第三方面提供了一种通信设备,该通信设备包括存储器和处理器,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,并且对该存储器中存储的指令的执行使得该处理器执行第一方面或第一方面的任一种可能的实现方式中的方法。
附图说明
图1示出本发明实施例的通信方法的示意性流程图。
图2示出本发明实施例中工作频段的示意图。
图3示出本发明实施例中划分第一频段与第二频段的示意图。
图4示出本发明实施例中划分第一频段与第二频段的另一示意图。
图5示出本发明实施例中划分第一频段与第二频段的再一示意图。
图6示出本发明实施例中划分第一频段与第二频段的再一示意图。
图7示出本发明实施例的通信设备的示意性框图。
图8示出本发明实施例的通信设备的另一示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1示出本发明实施例提供的通信方法100的示意性流程图,该通信方法100可以由 基站执行,该通信方法100包括:
110,确定工作频段中的第一频段与第二频段;
120,在第一频段上传输第一类帧,在第二频段上传输第二类帧,第一类帧用于承载第一类业务,第二类帧用于承载第二类业务,第二类帧与第一类帧的帧结构不同。
具体地,第二类帧与第一类帧的帧结构不同指的是,第二类帧与第一类帧的帧长度不同,或者第二类帧与第一类帧的子帧长度不同,再或者,第二类帧与第一类帧包括的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号数不同等。
在本发明实施例中,可以在第一频段上发送第一类帧,在第二频段上发送第二类帧,具体地,可以同时发送,也可以有一定的时间差,本发明实施例对此不作限定。
在本发明实施例中,可以在第一频段上接收第一类帧,在第二频段上接收第二类帧,具体地,可以同时接收,也可以有一定的时间差,本发明实施例对此不作限定。
因此,在本发明实施例中,通过在工作频段的不同频段中使用不同的帧结构,并通过不同的帧结构承载不同的业务,从而可以满足不同类型业务的传输需求。
可选地,作为一个实施例,在图1所示实施例中,第一类业务对传输时延的敏感度高于第二类业务对传输时延的敏感度,第一类帧的帧长度小于第二类帧的帧长度。
具体地,第一类业务为电力系统中对时延敏感的业务,例如电力配电自动化业务;第二类业务为电力系统中对时延不敏感的业务,例如电力配电网的在线监测业务。
可选地,第一类帧与第二类帧均工作在时分双工(Time Division Duplex,TDD)模式,其中第一类帧相对于第二类帧,帧长度较短,从而获得较短的上下行切换周期,时延较小,因此,通过在第一类帧上承载第一类业务(即时延敏感类业务),在第二类帧上承载第二类业务(即时延不敏感类业务),从而能够满足不同类型业务的需求。
应理解,当前技术中,同一系统中只能支持一种帧结构,例如,在长期演进(Long Term Evolution,LTE)系统中,分别为频分双工(Frequency Division Dual,FDD)和TDD设计了各自的帧结构,但是在同一系统(例如FDD或TDD)中,帧结构都是相同的。再例如,一个系统中设计了控制信道与数据信道,但是控制信道与数据信道上的帧结构是相同的。
上述可知,在同一系统中存在时延需求不同的多种业务的场景下,现有技术不能很好地同时满足多种业务的传输需求。
在本发明实施例中,通过将工作频段划分为第一频段与第二频段,通过在第一频段与第二频段上使用不同的帧结构,并通过不同的帧结构承载不同的业务,从而可以满足不同类型业务的传输需求。此外,相对于现有的普天LTE230系统,本发明实施例可以较小的系统开销同时满足时延敏感类业务与时延不敏感类业务的传输需求。
需要说明的是,本发明实施例提到的时延敏感类业务与时延不敏感类业务均是相对的概念,例如第一业务的时延需求指标为10ms,第二业务的时延需求指标为20ms,第三业务的时延需求指标为1s,则第二业务相对于第一业务来说是时延不敏感类业务,但是第二业务相对于第三业务来说时延敏感类业务。
可选地,作为一个实施例,在图1所示实施例中,第一类帧包括5个子帧,每个子帧的长度为4ms,且每个子帧包括5个正交频分复用OFDM符号;第二类帧包括15个子帧,每个子帧的长度为8ms,且每个子帧包括10个OFDM符号;第一频段与第二频段的OFDM 子载波宽度均为25/16KHz。
应理解,在第一频段与第二频段内,每个OFDM子载波宽度均为25/16KHz。
在本发明实施例中,第一频段上传输的第一类帧的帧长度较短,以获得较短的上下行切换周期,从而能够满足时延敏感业务的低时延要求;第二频段上传输的第二类帧的帧长度较长,以避免频繁的上下行切换,能够提高传输的效率,还能降低系统开销,适用于时延不敏感业务。因此,本发明实施例提供的通信方法能够较好地同时满足不同类型业务的需求。
此外,在本发明实施例中,第一频段和第二频段采用相同的子载波间隔,能够降低系统实现的难度。
可选地,作为一个实施例,在图1所示实施例中,第一类帧包括5个子帧,每个子帧的时长为4ms,每个子帧包括10个OFDM符号;第二类帧包括15个子帧,每个子帧的时长为8ms,每个子帧包括10个OFDM符号;第一频段的OFDM子载波宽度为25/8kHz,第二频段的OFDM子载波宽度为25/16KHz。
应理解,第一频段中的每个OFDM子载波宽度大于第二频段中的每个OFDM子载波宽度,对应地,第一频段上对应的OFDM符号长度小于第二频段上对应的OFDM符号长度,则第一频段上传输的第一类帧的时延较小,第二频段上传输的第二类帧的时延较大,因此,在第一类帧上承载第一类业务,有利于满足时延敏感类业务的时延小的要求。此外,第二频段的每个OFDM子载波宽度小于第一频段的每个OFDM子载波宽度,应理解,采用同样发射功率,在同一个OFDM符号内,更窄的子载波可以传输的更远的距离,即第二频段相对于第一频段的覆盖范围较大,另外,小区也可以同时支持更多的用户,因此,在第二帧上承载第二类业务,能够满足时延不敏感类业务的广覆盖需求。
可选地,作为一个实施例,在图1所示实施例中,工作频段包括授权给电力系统的频段。
为了便于描述与理解,本文将授权给电力系统的频段记为电力专用频段。
具体地,在电力系统场景下,例如,第一类业务为配电自动化业务,这类业务对时延有高要求,第二类业务为配电网的在线监测业务,这类业务对时延要求不是很高。
在本发明实施例中,根据电力系统的业务传输特征,在电力专用频段中同时支持两种帧格式,以满足电力系统的业务传输需求,具体地,在电力专用频段内,可以同时满足配电自动化业务的传输需求和配电网的在线监测业务的传输需求。
可选地,作为一个实施例,在图1所示实施例中,工作频段包括230MHz频段中授权给电力系统的频段。
具体地,如图2所示,230MHz频段的范围为223.525MHz-231.650MHz,230MHz频段以25kHz的带宽作为一个频点进行分配,共480个频点。230MHz频段的480个频点中有40个频点被划分为电力专有频点,且这40个电力专有频点(共1MHz)分散在这480个频点中。具体地,40个电力专有频点如表1和表2所示。
表1
Figure PCTCN2017104064-appb-000001
Figure PCTCN2017104064-appb-000002
表2.
Figure PCTCN2017104064-appb-000003
从图2以及表1和表2中可以看出,230MHz频段中授权给电力系统的频段大致分为3个簇:223.525MHz-224.650MHz、228.075MHz-228.750MHz与230.525MHz-231.650MHz。
可选地,作为一个实施例,在图1所示实施例中,110确定工作频段中的第一频段与 第二频段,包括:
将230MHz频段中的223.525MHz-224.650MHz与230.525MHz-231.650MHz确定为第一频段;将230MHz频段中的228.075MHz-228.750MHz确定为第二频段。
具体地,第一频段如图3中“部分1”所示的频段,第二频段如图3中“部分2”所示的频段。
应理解,在图3所示实施例中,第一频段上传输的第一类帧可以具有上文实施例所述的第一类帧的帧结构;第二频段上传输的第二类帧可以具有上文实施例所述的第二类帧的帧结构,为了简洁,这里不再赘述。
在本发明实施例中,根据230MHz频段中授权给电力系统的频段的三个簇(223.525MHz-224.650MHz、230.525MHz-231.650MHz与228.075MHz-228.750MHz),将两个最大的簇确定为第一频段,将另一个簇确定为第二频段,从而有利于满足时延敏感业务的大带宽需求。
可选地,作为一个实施例,在图1所示实施例中,110确定工作频段中的第一频段与第二频段,包括:
将230MHz频段中的228.075MHz-228.750MHz与230.525MHz-231.650MHz确定为第一频段;
将230MHz频段中的223.525MHz-224.650MHz确定为第二频段。
具体地,第一频段如图4中“部分1”所示的频段,第二频段如图4中“部分2”所示的频段。
应理解,在图4所示实施例中,第一频段上传输的第一类帧可以具有上文实施例所述的第一类帧的帧结构;第二频段上传输的第二类帧可以具有上文实施例所述的第二类帧的帧结构,为了简洁,这里不再赘述。
在本发明实施例中,根据230MHz频段中授权给电力系统的频段的三个簇(223.525MHz-224.650MHz、230.525MHz-231.650MHz与228.075MHz-228.750MHz),将两个距离相近的簇划分为第一频段,将另外一个簇确定为第二频段,一方面有利于满足时延敏感业务的大带宽需求,另一方面,由于第一频段与第二频段之间的距离较远,从而能够尽可能地避免第一频段与第二频段之间的干扰,从而有利于同时满足不同类型业务的需求。
在有些城市,中国电力获得了1.8GHz频段的使用权,此种情况下,时延敏感类的业务将在1.8GHz进行传输,空闲出的230MHz频段全部供时延不敏感业务使用。
可选地,作为一个实施例,在图1所示实施例中,工作频段包括230MHz频段中授权给电力系统的频段与1.8GHz频段中授权给电力系统的频段;
110确定工作频段中的第一频段与第二频段,包括:
将1.8GHz频段中授权给电力系统的频段确定为第一频段;
将230MHz频段中授权给电力系统的频段确定为第二频段。
在本发明实施例中,可以动态确定第一频段与第二频段。
可选地,作为一个实施例,当第一类业务具有第一业务需求时,将230MHz频段中授权给电力系统的频段均确定为第一频段,将第二频段设置为0;当第一类业务具有第二业务需求时,将230MHz频段中的228.075MHz-228.750MHz与230.525MHz-231.650MHz确 定为第一频段,将230MHz频段中的223.525MHz-224.650MHz确定为第二频段。
具体地,如图5所示,当第一类业务具有第一业务需求时,将图5中实线所示的部分与虚线所示的“部分1”确定为第一频段,即230MHz频段上所有的电力授权频段均作为第一频段,第二频段的范围为0。当第一类业务具有第二业务需求时,将图5中实线所示的“部分1”确定为第一频段,将图5中虚线所示的“部分2”确定为第二频段。
应理解,本实施例中的第一业务需求例如为超过阈值的业务需求,第二业务需求为未超过阈值的业务需求,其中,阈值可以系统预设。
因此,在本发明实施例中,通过根据业务需求动态调整频谱范围,从而能够充分满足低时延、高性能业务的需求,
图5所示实施例提供的方法可以称为是可扩展带宽的通信方式,能够提高频谱利用率。
应理解,图5仅为示例而非限定。实际应用中,可以根据第一类业务的业务需求,动态调整第一频段与第二频段的范围,并不限定于图5所示方法。例如,在第一类业务的第一业务需求下,按照图3所示实施例确定第一频段与第二频段;在第一类业务的第二业务需求下,按照图4所示实施例确定第一频段与第二频段。
作为一个实施例,在未获得1.8GHz频段的使用权的情况下,将230MHz频段中的228.075MHz-228.750MHz与230.525MHz-231.650MHz确定为第一频段,将230MHz频段中的223.525MHz-224.650MHz确定为第二频段;在获得1.8GHz频段的使用权的情况下,将1.8GHz频段中授权给电力系统的频段确定为第一频段,将230MHz频段中授权给电力系统的频段确定为第二频段。
具体地,如图6所示,在未获得1.8GHz频段的使用权的情况下,将图6中实线所示的“部分1”确定为第一频段,将图6中实线所示的“部分2”确定为第二频段。在获得1.8GHz频段的使用权的情况下,将图6中实线所示的“部分2”与虚线所示的“部分2”均确定为第二频段,将1.8GHz频段中授权给电力系统的频段确定为第一频段。
在本发明实施例中,根据频谱资源的获取情况,动态调整第一频段与第二频段,从而为时延敏感业务提供较为合适的频谱资源。
还应理解,图6仅为示例而非限定,实际应用中,可以根据具体情况,酌情调整第一频段与第二频段,本发明实施例对此不作限定。
在本发明实施例中,可以通过广播的方式或者在帧中携带指示信息的形式来指示第一频段和/或第二频段的范围。
可选地,作为一个实施例,第一类帧中包括指示信息,该指示信息指示第一频段的范围。
具体地,当该指示信息为第一标识(例如1)时,指示第一频段为230MHz频段中的223.525MHz-224.650MHz(下文简称为第一簇)与230.525MHz-231.650MHz(下文简称为第三簇);当该指示信息为第二标识(例如2)时,指示第一频段为228.075MHz-228.750MHz(下文简称为第二簇)与第三簇;当该指示信息为第三标识(例如3)时,指示第一频段为第一簇与第二簇;当该指示信息为第四标识(例如4)时,指示第一频段为230MHz频段上所有的电力授权频段(即第一簇、第二簇与第三簇);当该指示信息为第五标识(例如5)时,指示第一频段为1.8GHz频段中授权给电力系统的频段。
可选地,第二类帧中也可以包括用于指示第二频段的范围的指示信息。
可选地,作为一个实施例,该通信方法还包括:
发送广播消息,广播消息包括指示信息,该指示信息用于指示第一频段和/或第二频段的范围。
具体地,例如,当该指示信息为第一标识(例如1)时,指示第一频段为第一簇与第三簇,第二频段为第二簇;当该指示信息为第二标识(例如2)时,指示第一频段为第二簇与第三簇,第二频段为第一簇;当该指示信息为第三标识(例如3)时,指示第一频段为第一簇与第二簇,第二频段为第三簇;当该指示信息为第四标识(例如4)时,指示第一频段为230MHz频段上所有的电力授权频段,第二频段的范围为0;当该指示信息为第五标识(例如5)时,指示第一频段为1.8GHz频段中授权给电力系统的频段,第二频段为230MHz频段中授权给电力系统的频段。
综上所述,在本发明实施例中,通过在工作频段的不同频段中使用不同的帧结构,并通过不同的帧结构承载不同的业务,从而可以满足不同类型业务的传输需求。
应理解,上文以本发明实施例的应用场景为电力系统为例进行了描述,本发明实施例并非限定于此。本发明实施例提供的通信方法还可以应用于其它同一系统中存在不同时延要求的不同业务的通信场景。
还应理解,上面实施例的执行主体可以为任意通信设备,图1所示实施例中各个步骤可以是发送端设备执行,也可以是接收端设备执行。
上文中结合图1至图6,描述了本发明实施例的通信方法,下面将结合图7和图8,描述本发明实施例的通信设备。
图7示出本发明实施例的通信设备200的示意性框图,通信设备200包括:
确定模块210,用于确定工作频段中的第一频段与第二频段;
传输模块220,用于在确定模块确定的第一频段上传输第一类帧,在确定模块确定的第二频段上传输第二类帧,第一类帧用于承载第一类业务,第二类帧用于承载第二类业务,第二类帧与第一类帧的帧结构不同。
因此,在本发明实施例中,通过在工作频段的不同频段中使用不同的帧结构,并通过不同的帧结构承载不同的业务,从而可以满足不同类型业务的传输需求。
可选地,作为一个实施例,第一类业务对传输时延的敏感度高于第二类业务对传输时延的敏感度,第一类帧的帧长度小于第二类帧的帧长度。
可选地,作为一个实施例,第一类帧包括5个子帧,每个子帧的长度为4ms,且每个子帧包括5个正交频分复用OFDM符号;第二类帧包括15个子帧,每个子帧的长度为8ms,且每个子帧包括10个OFDM符号;第一频段与第二频段的OFDM子载波宽度均为25/16KHz。
可选地,作为一个实施例,第一类帧包括5个子帧,每个子帧的时长为4ms,每个子帧包括10个OFDM符号;第二类帧包括15个子帧,每个子帧的时长为8ms,每个子帧包括10个OFDM符号;第一频段的OFDM子载波宽度为25/8kHz,第二频段的OFDM子载波宽度为25/16KHz。
可选地,作为一个实施例,工作频段包括授权给电力系统的频段。
可选地,作为一个实施例,工作频段包括230MHz频段中授权给电力系统的频段。
可选地,作为一个实施例,确定模块210用于,将230MHz频段中的223.525MHz-224.650MHz与230.525MHz-231.650MHz确定为第一频段;将230MHz频段中的228.075MHz-228.750MHz确定为第二频段。
可选地,作为一个实施例,确定模块210用于,将230MHz频段中的228.075MHz-228.750MHz与230.525MHz-231.650MHz确定为第一频段;将230MHz频段中的223.525MHz-224.650MHz确定为第二频段。
可选地,作为一个实施例,确定模块210用于,当第一类业务具有第一业务需求时,将230MHz频段中授权给电力系统的频段均确定为第一频段,并将第二频段设置为0;当第一类业务具有第二业务需求时,将230MHz频段中的228.075MHz-228.750MHz与230.525MHz-231.650MHz确定为第一频段,将230MHz频段中的223.525MHz-224.650MHz确定为第二频段。
可选地,作为一个实施例,工作频段还包括1.8GHz频段中授权给电力系统的频段;确定模块210用于,将1.8GHz频段中授权给电力系统的频段确定为第一频段;将230MHz频段中授权给电力系统的频段确定为第二频段。
可选地,作为一个实施例,第一类帧包括用于指示第一频段的范围的指示信息。
可选地,作为一个实施例,传输模块220还用于,发送广播消息,广播消息包括指示信息,指示信息用于指示第一频段和/或第二频段的范围。
应理解,本发明实施例的通信设备200可用于执行上述实施例的通信方法,并且通信设备200中的各个模块的上述和其它操作和/或功能分别为了实现图1至图6中的各个方法的相应流程,为了简洁,在此不再赘述。
还应理解,上述确定模块210可以由通信设备200的处理器或者处理器相关电路组件执行,传输模块220可以由通信设备200的收发器或者收发器相关电路组件执行。
如图8所示,本发明实施例还提供了一种网络设备300,该网络设备300包括处理器310、存储器320、总线系统330、收发器340。其中,处理器310、存储器320和收发器340通过总线系统330相连,该存储器320用于存储指令,该处理器310用于执行该存储器320存储的指令,以控制收发器340接收信号和/或发送信号。其中,该处理器310用于,确定工作频段中的第一频段与第二频段;收发器340用于,在第一频段上传输第一类帧,在第二频段上传输第二类帧,第一类帧用于承载第一类业务,第二类帧用于承载第二类业务,第二类帧与第一类帧的帧结构不同。
因此,在本发明实施例中,通过在工作频段的不同频段中使用不同的帧结构,并通过不同的帧结构承载不同的业务,从而可以满足不同类型业务的传输需求。
可选地,作为一个实施例,第一类业务对传输时延的敏感度高于第二类业务对传输时延的敏感度,第一类帧的帧长度小于第二类帧的帧长度。
可选地,作为一个实施例,第一类帧包括5个子帧,每个子帧的长度为4ms,且每个子帧包括5个正交频分复用OFDM符号;第二类帧包括15个子帧,每个子帧的长度为8ms,且每个子帧包括10个OFDM符号;第一频段与第二频段的OFDM子载波宽度均为25/16KHz。
可选地,作为一个实施例,第一类帧包括5个子帧,每个子帧的时长为4ms,每个子帧包括10个OFDM符号;第二类帧包括15个子帧,每个子帧的时长为8ms,每个子帧 包括10个OFDM符号;第一频段的OFDM子载波宽度为25/8kHz,第二频段的OFDM子载波宽度为25/16KHz。
可选地,作为一个实施例,工作频段包括授权给电力系统的频段。
可选地,作为一个实施例,工作频段包括230MHz频段中授权给电力系统的频段。
可选地,作为一个实施例,处理器310用于,将230MHz频段中的223.525MHz-224.650MHz与230.525MHz-231.650MHz确定为第一频段;将230MHz频段中的228.075MHz-228.750MHz确定为第二频段。
可选地,作为一个实施例,处理器310用于,将230MHz频段中的228.075MHz-228.750MHz与230.525MHz-231.650MHz确定为第一频段;将230MHz频段中的223.525MHz-224.650MHz确定为第二频段。
可选地,作为一个实施例,处理器310用于,当第一类业务具有第一业务需求时,将230MHz频段中授权给电力系统的频段均确定为第一频段,并将第二频段设置为0;当第一类业务具有第二业务需求时,将230MHz频段中的228.075MHz-228.750MHz与230.525MHz-231.650MHz确定为第一频段,将230MHz频段中的223.525MHz-224.650MHz确定为第二频段。
可选地,作为一个实施例,工作频段还包括1.8GHz频段中授权给电力系统的频段;处理器310用于,将1.8GHz频段中授权给电力系统的频段确定为第一频段;将230MHz频段中授权给电力系统的频段确定为第二频段。
可选地,作为一个实施例,第一类帧包括用于指示第一频段的范围的指示信息。
可选地,作为一个实施例,收发器340用于,发送广播消息,广播消息包括指示信息指示信息用于指示第一频段和/或第二频段的范围。
应理解,在本发明实施例中,该处理器310可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器310还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器320可以包括只读存储器和随机存取存储器,并向处理器310提供指令和数据。存储器320的一部分还可以包括非易失性随机存取存储器。例如,存储器320还可以存储设备类型的信息。
该总线系统330除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统330。
在实现过程中,上述方法的各步骤可以通过处理器310中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器320,处理器310读取存储器320中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
还应理解,收发器340可以指示具备接收与发送功能的器件,也可以包括独立的接收器与独立的发送器。
还应理解,根据本发明实施例的通信设备300可用于执行上文结合图1至图6所述的方法实施例,该通信设备300可以对应于根据本发明实施例的通信设备200,并且通信设备300中的各个模块的上述和其它操作和/或功能分别为了实现图1至图6中的各个方法的相应流程,为了简洁,在此不再赘述。
还应理解,本文中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本发明实施例的范围。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (24)

  1. 一种通信方法,其特征在于,包括:
    确定工作频段中的第一频段与第二频段;
    在所述第一频段上传输第一类帧,在所述第二频段上传输第二类帧,所述第一类帧用于承载第一类业务,所述第二类帧用于承载第二类业务,所述第二类帧与所述第一类帧的帧结构不同。
  2. 根据权利要求1所述的通信方法,其特征在于,所述第一类业务对传输时延的敏感度高于所述第二类业务对传输时延的敏感度,所述第一类帧的帧长度小于所述第二类帧的帧长度。
  3. 根据权利要求1或2所述的通信方法,其特征在于,
    所述第一类帧包括5个子帧,每个子帧的长度为4ms,且每个子帧包括5个正交频分复用OFDM符号;
    所述第二类帧包括15个子帧,每个子帧的长度为8ms,且每个子帧包括10个OFDM符号;
    所述第一频段与所述第二频段的OFDM子载波宽度均为25/16KHz。
  4. 根据权利要求1或2所述的通信方法,其特征在于,
    所述第一类帧包括5个子帧,每个子帧的时长为4ms,每个子帧包括10个OFDM符号;
    所述第二类帧包括15个子帧,每个子帧的时长为8ms,每个子帧包括10个OFDM符号;
    所述第一频段的OFDM子载波宽度为25/8kHz,所述第二频段的OFDM子载波宽度为25/16KHz。
  5. 根据权利要求1-4中任一项所述的通信方法,其特征在于,所述工作频段包括授权给电力系统的频段。
  6. 根据权利要求5所述的通信方法,其特征在于,所述工作频段包括230MHz频段中授权给电力系统的频段。
  7. 根据权利要求6所述的通信方法,其特征在于,所述确定工作频段中的第一频段与第二频段,包括:
    将所述230MHz频段中的223.525MHz-224.650MHz与230.525MHz-231.650MHz确定为所述第一频段;
    将所述230MHz频段中的228.075MHz-228.750MHz确定为所述第二频段。
  8. 根据权利要求6所述的通信方法,其特征在于,所述确定工作频段中的第一频段与第二频段,包括:
    将所述230MHz频段中的228.075MHz-228.750MHz与230.525MHz-231.650MHz确定为所述第一频段;
    将所述230MHz频段中的223.525MHz-224.650MHz确定为所述第二频段。
  9. 根据权利要求6所述的通信方法,其特征在于,所述确定工作频段中的第一频段 与第二频段,包括:
    当所述第一类业务具有第一业务需求时,将所述230MHz频段中授权给电力系统的频段均确定为所述第一频段,并将所述第二频段设置为0;
    当所述第一类业务具有第二业务需求时,将所述230MHz频段中的228.075MHz-228.750MHz与230.525MHz-231.650MHz确定为所述第一频段,将所述230MHz频段中的223.525MHz-224.650MHz确定为所述第二频段。
  10. 根据权利要求6所述的通信方法,其特征在于,所述工作频段还包括1.8GHz频段中授权给电力系统的频段;
    所述确定工作频段中的第一频段与第二频段,包括:
    将所述1.8GHz频段中授权给电力系统的频段确定为所述第一频段;
    将所述230MHz频段中授权给电力系统的频段确定为所述第二频段。
  11. 根据权利要求1-10中任一项所述的通信方法,其特征在于,所述第一类帧包括用于指示所述第一频段的范围的指示信息。
  12. 根据权利要求1-10中任一项所述的通信方法,其特征在于,所述通信方法还包括:
    发送广播消息,所述广播消息包括指示信息,所述指示信息用于指示所述第一频段和/或所述第二频段的范围。
  13. 一种通信设备,其特征在于,包括:
    确定模块,用于确定工作频段中的第一频段与第二频段;
    传输模块,用于在所述确定模块确定的所述第一频段上传输第一类帧,在所述确定模块确定的所述第二频段上传输第二类帧,所述第一类帧用于承载第一类业务,所述第二类帧用于承载第二类业务,所述第二类帧与所述第一类帧的帧结构不同。
  14. 根据权利要求13所述的通信设备,其特征在于,所述第一类业务对传输时延的敏感度高于所述第二类业务对传输时延的敏感度,所述第一类帧的帧长度小于所述第二类帧的帧长度。
  15. 根据权利要求13或14所述的通信设备,其特征在于,
    所述第一类帧包括5个子帧,每个子帧的长度为4ms,且每个子帧包括5个正交频分复用OFDM符号;
    所述第二类帧包括15个子帧,每个子帧的长度为8ms,且每个子帧包括10个OFDM符号;
    所述第一频段与所述第二频段的OFDM子载波宽度均为25/16KHz。
  16. 根据权利要求13或14所述的通信设备,其特征在于,
    所述第一类帧包括5个子帧,每个子帧的时长为4ms,每个子帧包括10个OFDM符号;
    所述第二类帧包括15个子帧,每个子帧的时长为8ms,每个子帧包括10个OFDM符号;
    所述第一频段的OFDM子载波宽度为25/8kHz,所述第二频段的OFDM子载波宽度为25/16KHz。
  17. 根据权利要求13-16中任一项所述的通信设备,其特征在于,所述工作频段包括 授权给电力系统的频段。
  18. 根据权利要求17所述的通信设备,其特征在于,所述工作频段包括230MHz频段中授权给电力系统的频段。
  19. 根据权利要求18所述的通信设备,其特征在于,所述确定模块用于,将所述230MHz频段中的223.525MHz-224.650MHz与230.525MHz-231.650MHz确定为所述第一频段;将所述230MHz频段中的228.075MHz-228.750MHz确定为所述第二频段。
  20. 根据权利要求18所述的通信设备,其特征在于,所述确定模块用于,将所述230MHz频段中的228.075MHz-228.750MHz与230.525MHz-231.650MHz确定为所述第一频段;将所述230MHz频段中的223.525MHz-224.650MHz确定为所述第二频段。
  21. 根据权利要求18所述的通信设备,其特征在于,所述确定模块用于,当所述第一类业务具有第一业务需求时,将所述230MHz频段中授权给电力系统的频段均确定为所述第一频段,并将所述第二频段设置为0;当所述第一类业务具有第二业务需求时,将所述230MHz频段中的228.075MHz-228.750MHz与230.525MHz-231.650MHz确定为所述第一频段,将所述230MHz频段中的223.525MHz-224.650MHz确定为所述第二频段。
  22. 根据权利要求18所述的通信设备,其特征在于,所述工作频段还包括1.8GHz频段中授权给电力系统的频段;
    所述确定模块用于,将所述1.8GHz频段中授权给电力系统的频段确定为所述第一频段;将所述230MHz频段中授权给电力系统的频段确定为所述第二频段。
  23. 根据权利要求13-22中任一项所述的通信设备,其特征在于,所述第一类帧包括用于指示所述第一频段的范围的指示信息。
  24. 根据权利要求13-22中任一项所述的通信设备,其特征在于,所述传输模块还用于,发送广播消息,所述广播消息包括指示信息,所述指示信息用于指示所述第一频段和/或所述第二频段的范围。
PCT/CN2017/104064 2016-09-29 2017-09-28 通信方法与设备 WO2018059507A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17854957.2A EP3512254B1 (en) 2016-09-29 2017-09-28 Communication method and apparatus
US16/368,664 US10834016B2 (en) 2016-09-29 2019-03-28 Communications method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610865055.8A CN106254038B (zh) 2016-09-29 2016-09-29 通信方法与设备
CN201610865055.8 2016-09-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/368,664 Continuation US10834016B2 (en) 2016-09-29 2019-03-28 Communications method and device

Publications (1)

Publication Number Publication Date
WO2018059507A1 true WO2018059507A1 (zh) 2018-04-05

Family

ID=57611077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104064 WO2018059507A1 (zh) 2016-09-29 2017-09-28 通信方法与设备

Country Status (4)

Country Link
US (1) US10834016B2 (zh)
EP (1) EP3512254B1 (zh)
CN (1) CN106254038B (zh)
WO (1) WO2018059507A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112567669A (zh) * 2018-08-21 2021-03-26 高通股份有限公司 多播传输的可靠性

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106254038B (zh) 2016-09-29 2020-02-14 华为技术有限公司 通信方法与设备
CN112448801A (zh) * 2019-09-03 2021-03-05 普天信息技术有限公司 离散多子带通信系统的数据传输方法及装置
CN112449427B (zh) * 2019-09-05 2024-04-23 普天信息技术有限公司 多子带通信系统的数据传输方法、电子设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1937449A (zh) * 2005-09-20 2007-03-28 展讯通信(上海)有限公司 一种可变长度的prach帧结构及其实现方法
CN1937450A (zh) * 2005-09-20 2007-03-28 展讯通信(上海)有限公司 一种可变长度的prach消息结构及其实现方法
CN101212413A (zh) * 2006-12-30 2008-07-02 中兴通讯股份有限公司 一种移动多媒体广播数据的传输方法
CN102123466A (zh) * 2011-01-18 2011-07-13 华为技术有限公司 多模终端减少频段干扰方法、多模终端及网络设备
CN106254038A (zh) * 2016-09-29 2016-12-21 华为技术有限公司 通信方法与设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101197655B (zh) * 2006-12-07 2010-09-22 大唐移动通信设备有限公司 时分双工结合频分双工的通信方法和通信设备
US9131498B2 (en) * 2012-09-12 2015-09-08 Futurewei Technologies, Inc. System and method for adaptive transmission time interval (TTI) structure
CN105210448A (zh) * 2013-03-15 2015-12-30 惠普发展公司,有限责任合伙企业 单wi-fi无线电设备的多频带操作
US10560245B2 (en) * 2014-10-21 2020-02-11 Lg Electronics Inc. Data transmission/reception method in wireless communication system that supports low latency, and apparatus therefor
CN105553605B (zh) * 2014-11-04 2019-04-05 中国电信股份有限公司 通信方法、系统以及基站和终端
AT516644B1 (de) * 2014-12-29 2020-12-15 Fronius Int Gmbh Leistungsübertragungssystem
KR101990945B1 (ko) * 2015-03-06 2019-06-19 후아웨이 테크놀러지 컴퍼니 리미티드 무선 인터페이스 기술을 사용하기 위한 방법, 장치 및 통신 시스템
US10333678B2 (en) * 2015-05-29 2019-06-25 Huawei Technologies Co., Ltd. Systems and methods of adaptive frame structure for time division duplex
CN105407078A (zh) 2015-10-20 2016-03-16 国网四川省电力公司信息通信公司 一种电力通信系统中的数据传输方法及系统
CN107534866B (zh) * 2016-01-20 2020-03-20 华为技术有限公司 电力通信系统中传输信息的方法、装置和系统
EP3539339B1 (en) * 2016-11-11 2024-07-03 Sony Group Corporation Wireless telecommunications apparatus and methods
CN108400949B (zh) * 2017-02-04 2021-08-20 华为技术有限公司 通信方法和设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1937449A (zh) * 2005-09-20 2007-03-28 展讯通信(上海)有限公司 一种可变长度的prach帧结构及其实现方法
CN1937450A (zh) * 2005-09-20 2007-03-28 展讯通信(上海)有限公司 一种可变长度的prach消息结构及其实现方法
CN101212413A (zh) * 2006-12-30 2008-07-02 中兴通讯股份有限公司 一种移动多媒体广播数据的传输方法
CN102123466A (zh) * 2011-01-18 2011-07-13 华为技术有限公司 多模终端减少频段干扰方法、多模终端及网络设备
CN106254038A (zh) * 2016-09-29 2016-12-21 华为技术有限公司 通信方法与设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3512254A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112567669A (zh) * 2018-08-21 2021-03-26 高通股份有限公司 多播传输的可靠性

Also Published As

Publication number Publication date
US20190222532A1 (en) 2019-07-18
EP3512254A1 (en) 2019-07-17
EP3512254A4 (en) 2019-09-18
US10834016B2 (en) 2020-11-10
CN106254038A (zh) 2016-12-21
EP3512254B1 (en) 2024-05-22
CN106254038B (zh) 2020-02-14

Similar Documents

Publication Publication Date Title
WO2017092707A1 (zh) 无线通信的方法和装置
US11895586B2 (en) Temporarily floating dl timing approach for unlicensed radio band scenarios
WO2017193980A1 (zh) 传输下行控制信息的方法和装置
WO2020108275A1 (zh) 一种防护频带指示方法及装置
WO2019136728A1 (zh) 传输配置方法及相关产品
WO2018059507A1 (zh) 通信方法与设备
RU2722683C1 (ru) Способ передачи информации, оконечное устройство и сетевое устройство
WO2016161977A1 (zh) 载波聚合中的pucch资源配置方法及其设备
WO2018228537A1 (zh) 信息发送、接收方法及装置
WO2019051707A1 (zh) 用于传输信息的方法、终端设备和网络设备
WO2012155326A1 (en) Method and apparatus for configuring sounding reference signal for segment carrier
WO2017167011A1 (zh) 信息的传输方法及相关装置
CN110768768A (zh) 探测参考信号的资源配置方法及通信装置
CN108781375A (zh) 上行数据传输的方法和设备
TWI757382B (zh) 傳輸信息的方法、網路設備和終端設備
WO2018082551A1 (zh) 控制信道的资源配置方法、基站和终端设备
WO2018201936A1 (zh) 发送信息的方法、接收信息的方法、网络设备和终端设备
WO2018141091A1 (zh) 发送信息的方法、接收信息的方法和装置
EP3512284B1 (en) Method for determining time at which rrc signaling takes effect and terminal,
WO2019062501A1 (zh) 特殊子帧的配置方法、检测方法、基站及终端
WO2023151073A1 (en) Apparatus, methods, and computer programs related to positioning reference signals
WO2018188095A1 (zh) 一种通信方法及装置
WO2018187931A1 (zh) 下行控制信道的配置方法及网络设备、终端
WO2017036236A9 (zh) 一种基于tdd的m2m系统的通信方法、装置与系统
WO2019192408A1 (zh) 通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854957

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017854957

Country of ref document: EP

Effective date: 20190409