WO2018059498A1 - 一种端口速率确定方法以及计算机设备 - Google Patents

一种端口速率确定方法以及计算机设备 Download PDF

Info

Publication number
WO2018059498A1
WO2018059498A1 PCT/CN2017/104022 CN2017104022W WO2018059498A1 WO 2018059498 A1 WO2018059498 A1 WO 2018059498A1 CN 2017104022 W CN2017104022 W CN 2017104022W WO 2018059498 A1 WO2018059498 A1 WO 2018059498A1
Authority
WO
WIPO (PCT)
Prior art keywords
rate
port
negotiation
channel
computer device
Prior art date
Application number
PCT/CN2017/104022
Other languages
English (en)
French (fr)
Inventor
魏旭
隆沅庭
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17854948.1A priority Critical patent/EP3512161B1/en
Publication of WO2018059498A1 publication Critical patent/WO2018059498A1/zh
Priority to US16/369,650 priority patent/US11005744B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0876Network utilisation, e.g. volume of load or congestion level
    • H04L43/0894Packet rate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/382Information transfer, e.g. on bus using universal interface adapter
    • G06F13/385Information transfer, e.g. on bus using universal interface adapter for adaptation of a particular data processing system to different peripheral devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/40Bus structure
    • G06F13/4004Coupling between buses
    • G06F13/4022Coupling between buses using switching circuits, e.g. switching matrix, connection or expansion network
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/42Bus transfer protocol, e.g. handshake; Synchronisation
    • G06F13/4265Bus transfer protocol, e.g. handshake; Synchronisation on a point to point bus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/4013Management of data rate on the bus
    • H04L12/40136Nodes adapting their rate to the physical link properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0896Bandwidth or capacity management, i.e. automatically increasing or decreasing capacities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0876Network utilisation, e.g. volume of load or congestion level
    • H04L43/0882Utilisation of link capacity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate

Definitions

  • the present application relates to the field of computers, and in particular, to a port rate determining method and a computer device.
  • Serial attached small computer system interface (English: serial attached small SCSI, abbreviated as: SAS) is an intelligent universal interface standard for communication between modules within a computer, and computer and The connection between other external devices (such as hard drives, optical drives, etc.).
  • SAS serial attached small SCSI
  • a data transmission is performed between a sender (English: initiator) and a receiver (English: target) by establishing a point-to-point connection and selecting a suitable physical channel.
  • the rate negotiation method is generally used to negotiate the rate of data transmission on each physical channel.
  • the negotiated rate that is, the negotiation rate, is used to indicate the maximum rate that can be transmitted when each physical channel performs data transmission. That is, the physical channel can transmit data at a speed lower than or equal to the negotiation rate, but cannot be higher than the negotiation rate. Speed for data transfer.
  • the SAS standard further defines the concept of a port (English: port). Specifically, multiple physical channels can be integrated into one port, and devices using the port can transmit data on any physical channel within the port.
  • the SAS port is controlled by the computer device. If the transmitting end has data to be transmitted, the computer device sets the channel transmission rate of the data, and then the port randomly selects an available physical channel and sets the channel on the selected physical channel. The data is transmitted at the transmission rate. By integrating multiple physical channels into one port, the effective bandwidth between the transmitting end and the receiving end of the data can be improved, thereby improving data transmission efficiency.
  • the negotiation rates of different physical channels in the same port may be the same or different, which causes trouble for the data transmission rate of the computer device. For example, if the computer device sets the channel transmission rate higher, the data transmission failure will occur if the port selects a physical channel with a negotiation rate lower than the set channel transmission rate during data transmission. In order to reduce the probability of data transmission failure, in the current technology, the computer equipment generally sets the channel transmission rate to the lowest negotiation rate among the negotiation rates of the physical channels. However, the total transmission bandwidth of the port thus obtained is the smallest, and the efficiency of data transmission is not ideal.
  • the present application provides a port rate determining method for determining a channel transmission rate of a SAS port.
  • the application also provides related computer equipment.
  • the first aspect of the present application provides a port rate determining method, including: for a port including N physical channels, the computer device determines M negotiation rates of the N physical channels, and the negotiation rate is that the port is established with the peer port. The communication rate negotiated by each physical channel when connected.
  • the computer device determines the total bandwidth of the M ports corresponding to the M different negotiation rates, and the total bandwidth of the port corresponding to the i-th negotiation rate is: the i-th negotiation rate is set as the port.
  • the computer device sets the negotiation rate corresponding to the total bandwidth of the largest port among the total bandwidth of the M ports as the channel transmission rate of the port.
  • the lowest negotiation rate is used as the channel transmission rate of the port, and the negotiation rate corresponding to the maximum port total bandwidth is determined as the channel transmission rate of the port, so that the maximum port total bandwidth can be obtained. High data transmission efficiency.
  • the total bandwidth of the port corresponding to the i-th negotiation rate is a product of a number of physical channels whose negotiation rate is not lower than the i-th negotiation rate, and the i-th negotiation rate.
  • the computer device closes the physical channel whose negotiation rate is less than the channel transmission rate.
  • the closed physical channel is no longer available, so that when the physical channel for transmitting data is subsequently selected, the physical channel whose negotiation rate is smaller than the channel transmission rate is not selected, and the probability of data transmission failure can be greatly reduced.
  • the computer device after setting the channel transmission rate of the port, the computer device reduces the negotiation rate of the physical channel whose negotiation rate is greater than the set channel transmission rate to the channel transmission rate.
  • the negotiation rate of each physical channel is the same, and the port randomly selects one physical channel for transmitting data, and the computer device does not need to select the physical channel. This reduces the amount of computation of the rate determining device computer device and equalizes the frequency of use of each physical channel.
  • the computer device selects the lowest negotiation rate of the two or more negotiation rates as the channel transmission rate. This ensures that more physical channels are used without shutting down, balancing the burden placed between physical channels.
  • a second aspect of the present application provides a computer device comprising a port for data transmission with a peer.
  • the port includes N physical channels
  • the computer device further includes: a negotiation rate determining module, configured to negotiate a rate of each of the N physical channels, and obtain mutually different M negotiation rates, where N is greater than 1.
  • a positive integer, M is a positive integer not greater than N.
  • the negotiation rate is used to indicate the communication rate negotiated by each physical channel when the port establishes a connection with the peer port.
  • the computer device further includes a port bandwidth calculation module, configured to determine a total bandwidth of the port corresponding to each of the M negotiation rates.
  • the total bandwidth of the port corresponding to the i-th negotiation rate of the M negotiation rates is: the total bandwidth that the port can reach when the i-th negotiation rate is used as the channel transmission rate of the port.
  • the channel transmission rate is used to indicate the actual rate at which data is transmitted by each physical channel in the port.
  • the computer device further includes a channel rate control module, configured to set a negotiation rate corresponding to a total port total bandwidth of the total port bandwidth corresponding to the M negotiation rates as a channel transmission rate of the port.
  • the computer device provided by the present application no longer uses the lowest negotiation rate as the channel transmission rate of the port, but determines the negotiation rate corresponding to the maximum port total bandwidth as the channel transmission rate of the port, so that the maximum port total bandwidth can be obtained, and the data is improved. Transmission efficiency.
  • the total bandwidth of the port corresponding to the ith negotiation rate is specifically the product of the number of physical channels whose negotiation rate is not lower than the ith negotiation rate and the i-th negotiation rate.
  • the channel rate control module is further configured to: close a physical channel in the port that negotiates a rate less than a channel transmission rate.
  • the closed physical channel is no longer available, so that when the physical channel for transmitting data is subsequently selected, the physical channel whose negotiation rate is smaller than the channel transmission rate is not selected, and the probability of data transmission failure can be greatly reduced.
  • the channel rate control module is further configured to: reduce the rate of the physical channel in the port that is negotiated to be greater than the channel transmission rate, and reduce the negotiation rate to the channel transmission rate.
  • the negotiation rate of the physical channels available in the port is the same, and the transmission performance of each physical channel can be utilized in a balanced manner.
  • the channel rate setting module may select the lowest of the two or more negotiation rates.
  • the negotiation rate is used as the channel transmission rate. Selecting the low negotiation rate as the channel transmission rate ensures that more physical channels are used without being shut down, balancing the burden placed between physical channels.
  • a third aspect of the present application provides a computer device including a processor, a memory, and a communication interface.
  • the processor is configured to perform the port rate determination method provided by the first aspect of the present application by calling program code stored in the memory.
  • 1 is a schematic structural diagram of a SAS port
  • FIG. 2 is a structural diagram of an embodiment of a computer device provided by the present application.
  • FIG. 3 is a flowchart of an embodiment of a method for determining a port rate provided by the present application
  • FIG. 4 is a structural diagram of an embodiment of a computer device provided by the present application.
  • the present application provides a port rate determining method for determining a channel transmission rate of a SAS port.
  • the present application also provides related computer equipment, which will be separately described below.
  • the SAS port is typically integrated on the SAS interface card, which is controlled by program software running on the computer device.
  • the SAS interface card can be used as a peripheral interface of a computer device or a device equipped with a computer device, and is connected to a computer device by means of a Peripheral Component Interconnect Express (PCIE).
  • PCIE Peripheral Component Interconnect Express
  • Figure 1 is a schematic diagram of the ports defined by the SAS standard.
  • a port can include multiple physical channels.
  • the communication rate negotiated by each physical channel is the negotiation rate of each physical channel.
  • the negotiation rate of each physical channel may be the same or different.
  • the common negotiation rate of physical channels is 12Gbits per second (English: bits per second, abbreviated: bps), 6G bps, 3G bps, etc.
  • Figure 1 is only 12G bps, 6G bps, 6G bps from left to right at the negotiation rate. Ports composed of 4 physical channels of 3G bps are described as an example. If the sender has data to transmit on the SAS port, the channel transmission rate of the port is generally determined by the computer device, and then the data is transmitted at a determined channel transmission rate on any physical channel on the port.
  • the computer device provided by the present application can be implemented by the computer device 200 shown in FIG. 2.
  • the computer device 200 includes a processor 201, a memory 202, and a communication interface 203.
  • a bus 204 is also included.
  • the processor 201, the memory 202, and the communication interface 203 can implement a communication connection with each other via the bus 204.
  • communication can also be achieved by other means such as wireless transmission.
  • the memory 202 may include a volatile memory, such as a random access memory (English: random-access memory, abbreviation: RAM), or a non-volatile memory (English: non-volatile memory).
  • a volatile memory such as a random access memory (English: random-access memory, abbreviation: RAM), or a non-volatile memory (English: non-volatile memory).
  • read-only memory English: read-only memory, abbreviation: ROM
  • flash memory English: flash memory
  • hard disk English: hard disk drive, abbreviation: HDD
  • SSD solid state disk
  • the memory 202 may also include a combination of the above types of memories.
  • the communication interface 203 is used to connect to the SAS interface card, and generally uses a PCIE interface that matches the SAS interface card, and other interfaces may be used, which is not limited in this application.
  • the processor 201 can be a CPU, digital signal processing (English: digital signal processing, abbreviation: DSP), an application specific integrated circuit (ASIC), a field programmable gate array (English: field-programmable gate) Array, abbreviation: FPGA), a hardware chip or any combination of hardware units having processing functions.
  • DSP digital signal processing
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • FPGA field-programmable gate array
  • the port rate determination method is shown in Figure 3 and is applicable to computer equipment.
  • the computer device includes a port for performing data transmission with the peer end, and the port rate determining method includes:
  • This embodiment is described by taking a port including N physical channels as an example, and N is a positive integer greater than 1.
  • the computer device obtains a negotiation rate of each of the N physical channels. Specifically, the computer device can determine the negotiation rate of each physical channel through rate negotiation, and obtain the negotiation rate of each physical channel in other manners, which is not limited in this embodiment.
  • the negotiation rates of the four physical channels are 12G bps, 6G bps, 6Gbps, and 3G bps, and three different negotiation rates are determined, which are 12G bps and 6G bps. , 3G bps.
  • the computer device determines the total bandwidth of the port corresponding to the M different negotiation rates.
  • the total bandwidth of the port corresponding to the i-th negotiation rate of the M negotiation rates is: the total bandwidth that the port can reach when the i-th negotiation rate is used as the channel transmission rate of the port.
  • the channel transmission rate of the port refers to the speed at which the port selects any one of the N physical channels to transmit data. i is a positive integer not greater than M.
  • the i-th negotiation rate when used as the channel transmission rate of the port, the physical channel whose negotiation rate is lower than the i-th negotiation rate cannot transmit data; the negotiation rate is equal to or higher than the physical of the i-th negotiation rate.
  • the channel can transmit data normally. Therefore, the total bandwidth of the port corresponding to the i-th negotiation rate is the product of the number of physical channels whose negotiation rate is not lower than the i-th negotiation rate and the i-th negotiation rate.
  • the negotiation rates of the four physical channels are 12G bps, 6G bps, 6G bps, and 3G bps in sequence.
  • step 201 three mutually different negotiation rates are determined to be 12G bps and 6G. Bps, 3G bps. If the first negotiation rate is 12G bps as the channel transmission rate, the first physical channel is available, and the negotiation rate of the second to fourth physical channels is less than 12G bps, and the data cannot be transmitted at 12G bps, so the second The fourth physical channel is not available, so the total bandwidth of the port corresponding to the negotiation rate of 12G bps is 12G bps.
  • the second negotiation rate is 6G bps as the channel transmission rate
  • the third negotiation rate is 3G bps as the channel transmission rate
  • the computer device determines the total bandwidth of the port corresponding to each negotiation rate of the M negotiation rates according to the method of determining that the total bandwidth of the port corresponding to the ith negotiation rate is the same, and obtains the total bandwidth of the M ports.
  • the computer device After determining the total bandwidth of the M ports corresponding to each of the M negotiation rates, the computer device determines the negotiation rate corresponding to the total bandwidth of the largest port in the total bandwidth of the M ports as the channel transmission rate of the port.
  • the port shown in FIG. 1 has a negotiation rate of 12G bps, 6G bps, 6G bps, and 3G bps in sequence, and there are three mutually different negotiation rates of 12G bps, 6G bps, and 3G bps.
  • the corresponding total port bandwidth is 12G bps, 18G bps and 12G bps.
  • the second negotiation rate of 6G bps corresponds to the maximum total bandwidth of the port of 18G bps, so the negotiation rate of 6G bps is determined as the channel transmission rate of the port.
  • the computer device After determining the channel transmission rate of the port, if the port has new data to be transmitted, the computer device selects a physical channel in the port, and transmits the new data at the channel transmission rate on the physical channel.
  • the embodiment of the present application provides a method for determining a port rate, wherein, for a port including N physical channels, the computer device determines M negotiation rates of the N physical channels that are different from each other; The total bandwidth of the M ports corresponding to the same negotiation rate; the negotiation rate corresponding to the total bandwidth of the largest port of the M ports is determined as the channel transmission rate of the port.
  • the lowest negotiation rate is used as the channel transmission rate of the port, and the negotiation rate corresponding to the maximum port total bandwidth is determined as the channel transmission rate of the port, so that the maximum total port bandwidth can be obtained, and the data transmission efficiency is improved.
  • the computer device can close the physical channel in the port that negotiates a rate less than the channel transmission rate.
  • the closed physical channel is no longer available, so that when the physical channel for transmitting data is subsequently selected, the physical channel whose negotiation rate is smaller than the channel transmission rate is not selected, and the probability of data transmission failure can be greatly reduced.
  • the channel transmission rate of the port determined in step 303 may be less than the negotiation rate of some available physical channels in the port.
  • the computer device also has the function of selecting a physical channel.
  • the negotiation rate of the physical channels available in the port is different, the computer device preferentially selects the physical channel with a lower negotiation rate to fully utilize the performance of each physical channel.
  • the physical channel is not randomly selected, which will increase the computational complexity of the computer equipment.
  • the physical channel with low negotiation rate is used preferentially, which will result in uneven use of the physical channels and the inability to utilize the physics in a balanced manner. Channel transmission performance.
  • the computer device can reduce the rate of the physical channel in the port that is greater than the channel transmission rate, so that the negotiation rate is reduced to the channel transmission rate.
  • the negotiation rate of the physical channels available in the port is the same. Therefore, only one physical channel is randomly selected for the port to transmit data, and the computer device does not need to select the physical channel. This reduces the amount of computation of the computer device.
  • the physical channel is randomly selected so that the frequency of use of each physical channel is uniform, and the transmission performance of each physical channel can be utilized in a balanced manner.
  • one of the negotiation rates may be randomly selected as the channel transmission rate of the port, or According to a certain rule, one of the negotiation rates is selected as the channel transmission rate of the port, which is not limited in this application.
  • the lowest negotiation rate of the two or more negotiation rates may be selected as the channel transmission rate. Selecting the low negotiation rate as the channel transmission rate ensures that more physical channels are used without being shut down, balancing the burden placed between physical channels.
  • the computer device performs the port rate determination method shown in FIG. 3 again, Re-determine the channel transfer rate of the port.
  • the above embodiment describes the port rate determining method provided by the present application.
  • the following describes the computer device that implements the above method.
  • FIG. 4 For the specific structure, refer to FIG. 4, which mainly includes:
  • the negotiation rate determining module 401 is configured to determine a negotiation rate of each of the N physical channels of the SAS port, where N is a positive integer greater than 1, and the negotiation rate is used to indicate that when the port establishes a connection with the peer port, The communication rate negotiated by the physical channel.
  • the negotiation rate of the N physical channels includes mutually different M negotiation rates, and M is a positive integer not greater than N.
  • the port bandwidth calculation module 402 is configured to determine a total port bandwidth corresponding to each of the M negotiation rates.
  • the total bandwidth of the port corresponding to the i th negotiation rate of the M negotiation rates is: the i th negotiation rate
  • the channel transmission rate is used to indicate the actual rate at which data is transmitted by each physical channel of the port.
  • the channel rate control module 403 is configured to set a negotiation rate corresponding to a total port bandwidth of the total port bandwidth corresponding to the M negotiation rates as a channel transmission rate of the port.
  • the embodiment of the present application provides a computer device, wherein, for a port including N physical channels, the negotiation rate determining module 401 determines M different negotiation rates of the N physical channels; the port bandwidth calculation module 402 respectively The total bandwidth of the M ports corresponding to the M different negotiation rates is determined.
  • the channel rate control module 403 determines the negotiation rate corresponding to the total bandwidth of the largest port of the M ports as the channel transmission rate of the port.
  • the computer device provided in this embodiment no longer uses the lowest negotiation rate as the channel transmission rate of the port, but determines the negotiation rate corresponding to the maximum port total bandwidth as the channel transmission rate of the port, so that the maximum total port bandwidth can be obtained and the data can be improved. Transmission efficiency.
  • the total bandwidth of the port corresponding to the ith negotiation rate is specifically the product of the number of physical channels whose negotiation rate is not lower than the ith negotiation rate and the i-th negotiation rate.
  • the channel rate control module 403 is further configured to: close a physical channel in the port that negotiates a rate less than a channel transmission rate.
  • the closed physical channel is no longer available, so that when the physical channel for transmitting data is subsequently selected, the physical channel whose negotiation rate is smaller than the channel transmission rate is not selected, and the probability of data transmission failure can be greatly reduced.
  • the channel rate control module 403 is further configured to: reduce the rate of the physical channel in the port that is negotiated to be greater than the channel transmission rate, and reduce the negotiation rate to the channel transmission rate.
  • the negotiation rate of the physical channels available in the port is the same, and the transmission performance of each physical channel can be utilized in a balanced manner.
  • the channel rate setting module 403 may select the lowest of the two or more negotiation rates.
  • the negotiation rate is used as the channel transmission rate. Selecting the low negotiation rate as the channel transmission rate ensures that more physical channels are used without being shut down, balancing the burden placed between physical channels.
  • the computer device shown in FIG. 4 can be implemented by the computer device 200 shown in FIG. 2, which is not limited in the present application.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present application is essentially Or the portion contributing to the prior art or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium, including a plurality of instructions for causing a computer device ( It may be a personal computer, a server, or a network device, etc.) performing all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Quality & Reliability (AREA)
  • Mathematical Physics (AREA)
  • Computer Hardware Design (AREA)
  • Communication Control (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请提供了一种端口速率确定方法,用于确定SAS端口的通道传输速率,包括:对于一个包括N个物理通道的端口,计算机设备确定该N个物理通道的M个互不相同的协商速率;分别确定该M个互不相同的协商速率对应的M个端口总带宽;将该M个端口总带宽中,最大的端口总带宽对应的协商速率,确定为端口的通道传输速率。本申请不再使用最低协商速率作为端口的通道传输速率,而是将最大端口总带宽对应的协商速率确定为端口的通道传输速率,这样能够最大的发挥整个端口的传输性能,提高数据的传输效率。本申请还提供了相关的计算机设备。

Description

一种端口速率确定方法以及计算机设备 技术领域
本申请涉及计算机领域,尤其涉及一种端口速率确定方法以及计算机设备。
背景技术
串行连接小型计算机系统接口(英文:serial attached small computer system interface,缩写:Serial Attached SCSI,简称:SAS)是一种智能的通用接口标准,用于计算机内部模块之间的通信连接,以及计算机与其它外接设备(如硬盘、光驱等)之间的连接。在SAS标准中,数据的发送端(英文:initiator)与接收端(英文:target)之间通过建立点对点连接,选择一个合适的物理通道进行数据传输。采用SAS标准的物理通道在使用之前,一般需要先通过速率协商方法来协商各物理通道传输数据的速率。所协商的速率,即协商速率用于表示每个物理通道进行数据传输时能够传输的最大速率,即物理通道能够以低于或等于协商速率的速度进行数据传输,但无法以高于协商速率的速度进行数据传输。
SAS标准在物理通道的基础上,还进一步的定义了端口(英文:port)的概念。具体的,一个端口中可以集成有多个物理通道,使用该端口的设备能够在该端口内的任意物理通道上传输数据。SAS端口由计算机设备来控制,若发送端有数据待传输,则计算机设备设定该数据的通道传输速率,然后端口随机选择一个可用的物理通道,并在选择的物理通道上以设定的通道传输速率传输该数据。通过将多个物理通道集成到一个端口内,能够提高数据的发送端和接收端之间的有效带宽,进而提升数据传输效率。
但是,同一端口中不同物理通道的协商速率可能相同也可能不同,这就给计算机设备设定数据的传输速率带来了麻烦。举例来说,若计算机设备将通道传输速率设定的较高,则一旦端口在数据传输时选择了协商速率比设定的通道传输速率小的物理通道传输数据,就会造成数据传输失败。为了减少数据传输失败的几率,现阶段的技术中计算机设备一般将通道传输速率设置为各物理通道的协商速率中最低的协商速率。但是这样得到的端口的传输总带宽最小,数据传输的效率不够理想。
发明内容
本申请提供了一种端口速率确定方法,用于确定SAS端口的通道传输速率。本申请还提供了相关的计算机设备。
本申请第一方面提供了一种端口速率确定方法,包括:对于一个包括N个物理通道的端口,计算机设备确定该N个物理通道的M个协商速率,协商速率为端口在与对端端口建立连接时,每个物理通道所协商的通讯速率。计算机设备分别确定该M个互不相同的协商速率对应的M个端口总带宽,该M个协商速率中,第i个协商速率对应的端口总带宽为:将第i个协商速率设定为端口的通道传输速率时,端口达到的总带宽。计算机设备将该M个端口总带宽中,最大的端口总带宽对应的协商速率,设定为端口的通道传输速率。本实施例不再使用最低协商速率作为端口的通道传输速率,而是将最大端口总带宽对应的协商速率确定为端口的通道传输速率,这样能够得到最大的端口总带宽,提 高数据的传输效率。
可选的,第i个协商速率对应的端口的总带宽为:协商速率不低于该第i个协商速率的物理通道的个数,与该第i个协商速率的乘积。
可选的,计算机设备在设定了端口的通道传输速率后,关闭端口中协商速率小于通道传输速率的物理通道。关闭后的物理通道不再可用,这样在后续选择传输数据的物理通道时,就不会选择到协商速率小于通道传输速率的物理通道,能够大大减小数据传输失败的发生几率。
可选的,计算机设备在设定了端口的通道传输速率后,将协商速率大于设定的通道传输速率的物理通道的协商速率降低到该通道传输速率。这样各个物理通道的协商速率相同,端口随机选定一个物理通道用于传输数据即可,计算机设备无需选择物理通道。这样就减少了速率确定装置计算机设备的计算量,均衡了各物理通道的使用频率。
可选的,若最大端口总带宽对应两个或两个以上的协商速率,则计算机设备选择该两个或两个以上的协商速率中,最低的协商速率作为通道传输速率。这样能够保证更多的物理通道被使用而无需关闭,均衡了各物理通道之间承载的负担。
本申请第二方面提供了一种计算机设备,包括用于与对端进行数据传输的端口。该端口包括N个物理通道,该计算机设备还包括:协商速率确定模块,用于该N个物理通道中每个物理通道的协商速率,得到互不相同的M协商速率,其中N为大于1的正整数,M为不大于N的正整数。协商速率用于表示端口与对端端口建立连接时,每个物理通道所协商的通讯速率。计算机设备还包括端口带宽计算模块,用于确定该M个协商速率中每个协商速率对应的端口总带宽。该M个协商速率中的第i个协商速率对应的端口总带宽为:以第i个协商速率作为端口的通道传输速率时,端口所能达到的总带宽。其中通道传输速率用于表示端口中的每个物理通道传输数据的实际速率。计算机设备还包括通道速率控制模块,用于将该M个协商速率对应的端口总带宽中,最大的端口总带宽对应的协商速率设定为端口的通道传输速率。本申请提供的计算机设备不再使用最低协商速率作为端口的通道传输速率,而是将最大端口总带宽对应的协商速率确定为端口的通道传输速率,这样能够得到最大的端口总带宽,提高数据的传输效率。
可选的,第i个协商速率对应的端口的总带宽具体为:协商速率不低于该第i个协商速率的物理通道的个数,与该第i个协商速率的乘积。
可选的,通道速率控制模块还用于:关闭端口中协商速率小于通道传输速率的物理通道。关闭后的物理通道不再可用,这样在后续选择传输数据的物理通道时,就不会选择到协商速率小于通道传输速率的物理通道,能够大大减小数据传输失败的发生几率。
可选的,通道速率控制模块还用于:将端口中协商速率大于通道传输速率的物理通道降速,使其协商速率降低到通道传输速率。这样端口中可用的物理通道的协商速率相同,能够均衡的利用各物理通道的传输性能。
可选的,若该M个端口总带宽中最大的端口总带宽对应两个或两个以上的协商速率,则通道速率设定模块可以选择该两个或两个以上的协商速率中,最低的协商速率作为通道传输速率。选择低协商速率作为通道传输速率,能够保证更多的物理通道被使用而无需关闭,均衡了各物理通道之间承载的负担。
本申请第三方面提供了一种计算机设备,包括处理器、存储器、以及通信接口。通过调用存储器中存储的程序代码,处理器用于执行本申请第一方面提供的端口速率确定方法。
附图说明
图1为SAS端口的结构示意图;
图2为本申请提供的计算机设备一个实施例结构图;
图3为本申请提供的端口速率确定方法一个实施例流程图;
图4为本申请提供的计算机设备一个实施例结构图。
具体实施方式
本申请提供了一种端口速率确定方法,用于确定SAS端口的通道传输速率。本申请还提供了相关的计算机设备,以下将分别进行描述。
SAS端口一般集成在SAS接口卡上,SAS接口卡由计算机设备上运行的程序软件来控制。SAS接口卡可以作为计算机设备或设置有计算机设备的设备的外设接口,并通过快速外设部件互连标准(英文:peripheral component interconnect express,缩写:PCIE)方式与计算机设备相连。
图1是SAS标准所定义的端口的一个示意图。从图1可以看出,一个端口可以包括多个物理通道。当端口与对端端口建立连接后,端口的电信号发生变化,进而触发计算机设备进行速率协商,每个物理通道所协商的通讯速率即为该每个物理通道的协商速率。每个物理通道的协商速率可以相同也可以不同。物理通道常用的协商速率有12G比特每秒(英文:bits per second,缩写:bps)、6G bps、3G bps等,图1仅以协商速率从左向右依次为12G bps、6G bps、6G bps、3G bps的4个物理通道所组成的端口为例进行描述。若发送端有数据要在SAS端口上传输,则一般先通过计算机设备确定端口的通道传输速率,然后在端口上的任一物理通道上以确定的通道传输速率传输该数据。
本申请提供的计算机设备可以由图2所示的计算机设备200实现。计算机设备200包括处理器201、存储器202、通信接口203。可选的,还包括总线204。处理器201、存储器202和通信接口203可以通过总线204实现彼此之间的通信连接。当然,也可以通过无线传输等其他手段实现通信
存储器202可以包括易失性存储器(英文:volatile memory),例如随机存取存储器(英文:random-access memory,缩写:RAM);也可以包括非易失性存储器(英文:non-volatile memory),例如只读存储器(英文:read-only memory,缩写:ROM),快闪存储器(英文:flash memory),硬盘(英文:hard disk drive,缩写:HDD)或固态硬盘(英文:solid state disk,缩写:SSD);存储器202还可以包括上述种类的存储器的组合。在通过软件来实现本申请提供的技术方案时,用于实现本申请提供的端口速率确定方法的程序代码可以保存在存储器202中,并由处理器201来执行。
通信接口203用于与SAS接口卡相连,一般采用与SAS接口卡相匹配的PCIE接口,也可以采用其它接口,本申请中不做限定。
处理器201可以为CPU、数字信号处理(英文:digital signal processing,缩写:DSP)、专用集成电路(英文:application specific integrated circuit,缩写:ASIC)、现场可编程门阵列(英文:field-programmable gate array,缩写:FPGA)、硬件芯片等具有处理功能的硬件单元中的任意一种或几种的组合。通过调用存储器202中的程序代码,处理器201运行存储器202中的程序代码以执行图3所示的端口速率确定方法。
端口速率确定方法如图3所示,适用于计算机设备。其中,计算机设备包括用于与对端进行数据传输的端口,所述端口速率确定方法包括:
301、获取端口的N个物理通道的M个协商速率;
本实施例以包括N个物理通道的端口为例来进行说明,N为大于1的正整数。计算机设备获取该N个物理通道中每个物理通道的协商速率。具体的,计算机设备可以通过速率协商来确定每个物理通道的协商速率,也可以通过其它方式获取每个物理通道的协商速率,本实施例中不做限定。
该N个物理通道的协商速率可能互不相同,也可能有部分物理通道的协商速率相同。故计算机设备确定该N个物理通道的协商速率,共能得到M个互不相同的协商速率,其中M为不大于N的正整数。具体的,若该N个物理通道的协商速率互不相同,则N=M。若有部分物理通道的协商速率相同,则M<N。
以图1所示的端口举例来说:4个物理通道的协商速率依次为12G bps、6G bps、6Gbps、3G bps,则共确定3个互不相同的协商速率,依次为12G bps、6G bps、3G bps。
302、确定该M个协商速率中每个协商速率对应的端口总带宽;
计算机设备在确定了M个不同的协商速率后,确定该M个不同的协商速率对应的端口总带宽。本实施例中,该M个协商速率中的第i个协商速率对应的端口总带宽为:以第i个协商速率作为端口的通道传输速率时,端口所能达到的总带宽。其中,端口的通道传输速率指的是端口选择该N个物理通道的中的任一物理通道传输数据的速度。i为不大于M的正整数。
可以理解的,在以第i个协商速率作为端口的通道传输速率时,协商速率低于该第i个协商速率的物理通道无法传输数据;协商速率等于或高于该第i个协商速率的物理通道能够正常传输数据。故第i个协商速率对应的端口的总带宽为:协商速率不低于该第i个协商速率的物理通道的个数,与该第i个协商速率的乘积。
以图1所示的端口举例来说:4个物理通道的协商速率依次为12G bps、6G bps、6G bps、3G bps,步骤201中确定3个互不相同的协商速率依次为12G bps、6G bps、3G bps。若以第1个协商速率12G bps作为通道传输速率,则第1个物理通道可用,第2个至第4个物理通道的协商速率小于12G bps,无法以12G bps来传输数据,故第2个至第4个物理通道不可用,因此协商速率12G bps对应的端口总带宽为12G bps。若以第2个协商速率6G bps作为通道传输速率,则第1个至第3个物理通道可用,第4个物理通道的协商速率小于6G bps故不可用,因此协商速率6G bps对应的端口总带宽为6G bps×3=18G bps。若以第3个协商速率3G bps作为通道传输速率,则第1个至第4个物理通道均可用,因此协商速率3G bps对应的端口总带宽为3G bps×4=12G bps。
计算机设备按照确定第i个协商速率对应的端口总带宽相同的方法,确定该M个协商速率中每个协商速率对应的端口总带宽,共得到M个端口总带宽。
303、确定端口的通道传输速率。
计算机设备在确定了该M个协商速率中每个协商速率对应的M个端口总带宽后,将该M个端口总带宽中最大的端口总带宽对应的协商速率,确定为端口的通道传输速率。
以图1所示的端口举例来说:4个物理通道的协商速率依次为12G bps、6G bps、6G bps、3G bps,共有3个互不相同的协商速率12G bps、6G bps、3G bps,其对应的端口总带宽分别为12G bps、18G bps和12G bps。其中第2个协商速率6G bps对应的端口总带宽18G bps最大,故将协商速率6G bps确定为端口的通道传输速率。
确定了端口的通道传输速率后,若端口又有新的数据待传输,则计算机设备在端口中选择一个物理通道,并在该物理通道上以通道传输速率来传输该新的数据。
本申请实施例提供了一种端口速率确定方法,其中,对于一个包括N个物理通道的端口,计算机设备确定该N个物理通道的M个互不相同的协商速率;分别确定该M个互不相同的协商速率对应的M个端口总带宽;将该M个端口总带宽中,最大的端口总带宽对应的协商速率,确定为端口的通道传输速率。本实施例不再使用最低协商速率作为端口的通道传输速率,而是将最大端口总带宽对应的协商速率确定为端口的通道传输速率,这样能够得到最大的端口总带宽,提高数据的传输效率。
可选的,在确定了端口的通道传输速率后,计算机设备可以关闭端口中协商速率小于通道传输速率的物理通道。关闭后的物理通道不再可用,这样在后续选择传输数据的物理通道时,就不会选择到协商速率小于通道传输速率的物理通道,能够大大减小数据传输失败的发生几率。
步骤303中确定的端口的通道传输速率有可能小于端口中某些可用物理通道的协商速率。在现有技术的某些场景中,计算机设备还具有选择物理通道的功能。当端口中可用的物理通道的协商速率不同时,计算机设备会优先选择协商速率较低的物理通道,以充分利用各物理通道的性能。但这种方法一来物理通道不是随机选择,会加大计算机设备的计算量;二来协商速率低的物理通道被优先使用,会导致各物理通道的使用频率不均一,不能均衡的利用各物理通道的传输性能。因此可选的,本申请实施例在确定了端口的通道传输速率后,计算机设备可以将端口中协商速率大于通道传输速率的物理通道降速,使其协商速率降低到通道传输速率。这样端口中可用的物理通道的协商速率相同,故只需要端口随机选定一个物理通道用于传输数据即可,计算机设备无需选择物理通道。这样就减少了计算机设备的计算量。而且随机选择物理通道使得各物理通道的使用频率均一,能够均衡的利用各物理通道的传输性能。
可选的,步骤303中,若该M个端口总带宽中最大的端口总带宽对应两个或两个以上的协商速率,则可以随机选择其中的一个协商速率作为端口的通道传输速率,也可以根据一定的规则选择其中的一个协商速率作为端口的通道传输速率,本申请中不做限定。举例来说,可以选择该两个或两个以上的协商速率中,最低的协商速率作为通道传输速率。选择低协商速率作为通道传输速率,能够保证更多的物理通道被使用而无需关闭,均衡了各物理通道之间承载的负担。
可选的,每当计算机设备或设置有计算机设备的设备进行重启、拔插线缆,或有其他导致端口重新协商的事件发生,则计算机设备再次执行图3所示的端口速率确定方法,以重新确定端口的通道传输速率。
上面的实施例介绍了本申请提供的端口速率确定方法,下面将介绍实现上述方法的计算机设备,其具体结构请参阅图4,主要包括:
协商速率确定模块401,用于确定SAS端口的N个物理通道中,每个物理通道的协商速率,其中N为大于1的正整数,协商速率用于表示端口与对端端口建立连接时,每个物理通道所协商的通讯速率。该N个物理通道的协商速率中包括个互不相同的M协商速率,M为不大于N的正整数。
端口带宽计算模块402,用于确定该M个协商速率中每个协商速率对应的端口总带宽。该M个协商速率中的第i个协商速率对应的端口总带宽为:以第i个协商速率作为 端口的通道传输速率时,端口所能达到的总带宽。其中通道传输速率用于表示端口的每个物理通道传输数据的实际速率。
通道速率控制模块403,用于将该M个协商速率对应的端口总带宽中,最大的端口总带宽对应的协商速率设定为端口的通道传输速率。
本申请实施例提供了一种计算机设备,其中,对于一个包括N个物理通道的端口,协商速率确定模块401确定该N个物理通道的M个互不相同的协商速率;端口带宽计算模块402分别确定该M个互不相同的协商速率对应的M个端口总带宽;通道速率控制模块403将该M个端口总带宽中,最大的端口总带宽对应的协商速率,确定为端口的通道传输速率。本实施例提供的计算机设备不再使用最低协商速率作为端口的通道传输速率,而是将最大端口总带宽对应的协商速率确定为端口的通道传输速率,这样能够得到最大的端口总带宽,提高数据的传输效率。
可选的,第i个协商速率对应的端口的总带宽具体为:协商速率不低于该第i个协商速率的物理通道的个数,与该第i个协商速率的乘积。
可选的,通道速率控制模块403还用于:关闭端口中协商速率小于通道传输速率的物理通道。关闭后的物理通道不再可用,这样在后续选择传输数据的物理通道时,就不会选择到协商速率小于通道传输速率的物理通道,能够大大减小数据传输失败的发生几率。
可选的,通道速率控制模块403还用于:将端口中协商速率大于通道传输速率的物理通道降速,使其协商速率降低到通道传输速率。这样端口中可用的物理通道的协商速率相同,能够均衡的利用各物理通道的传输性能。
可选的,若该M个端口总带宽中最大的端口总带宽对应两个或两个以上的协商速率,则通道速率设定模块403可以选择该两个或两个以上的协商速率中,最低的协商速率作为通道传输速率。选择低协商速率作为通道传输速率,能够保证更多的物理通道被使用而无需关闭,均衡了各物理通道之间承载的负担。
图4所示的计算机设备的相关描述可以参考图3所示的方法实施例的相关描述,此处不做赘述。
图4所示的计算机设备可以由图2所示的计算机设备200实现,本申请中不做限定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上 或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (11)

  1. 一种端口速率确定方法,应用于计算机设备,所述计算机设备包括用于与对端进行数据传输的端口,所述端口包括N个物理通道,其特征在于,所述端口速率确定方法包括:
    所述计算机设备获取所述N个物理通道中每个物理通道的协商速率,得到互不相同的M个协商速率,所述协商速率为所述端口与对端端口建立连接时,每个物理通道所协商的通讯速率,所述N为大于1的正整数,所述M为不大于所述N的正整数;
    所述计算机设备确定所述M个协商速率中每个协商速率对应的端口总带宽,所述M个协商速率中,第i个协商速率对应的端口总带宽为:将所述第i个协商速率设定为所述端口的通道传输速率时,所述端口达到的总带宽,所述通道传输速率用于表示:所述端口的每个物理通道传输数据的实际速率;
    所述计算机设备将所述M个协商速率对应的端口总带宽中最大的端口总带宽对应的协商速率,设定为所述端口的通道传输速率。
  2. 根据权利要求1所述的端口速率确定方法,其特征在于,所述第i个协商速率对应的端口总带宽具体为:所述N个物理通道中协商速率不小于所述第i个协商速率的物理通道的个数与所述第i个协商速率的乘积。
  3. 根据权利要求1或2所述的端口速率确定方法,其特征在于,所述方法在所述将所述M个协商速率对应的端口总带宽中,最大的端口总带宽对应的协商速率,设定为所述端口的通道传输速率之后还包括:
    关闭所述N个物理通道中,协商速率小于所述通道传输速率的物理通道。
  4. 根据权利要求1至3中任一项所述的端口速率确定方法,其特征在于,所述方法在所述将所述M个协商速率对应的端口总带宽中,最大的端口总带宽对应的协商速率,设定为所述端口的通道传输速率之后还包括:
    将所述N个通道中,协商速率大于所述通道传输速率的物理通道的协商速率降低到所述通道传输速率。
  5. 根据权利要求1至4中任一项所述的端口速率确定方法,其特征在于,所述将所述M个协商速率对应的端口总带宽中,最大的端口总带宽对应的协商速率,设定为所述端口的通道传输速率包括:
    若所述M个协商速率对应的端口总带宽中,最大的端口总带宽对应两个或两个以上的协商速率,则将所述两个或两个以上的协商速率中,最小的协商速率确定为所述端口的通道传输速率。
  6. 一种计算机设备,所述计算机设备包括用于与对端进行数据传输的端口,所述端口包括N个物理通道,其特征在于,所述计算机设备还包括:
    协商速率确定模块,用于获取所述N个物理通道中每个物理通道的协商速率,得到M个协商速率,所述协商速率为所述端口与对端端口建立连接时,每个物理通道所协商的通讯速率,所述N为大于1的正整数,所述M为不大于所述N的正整数;
    端口带宽计算模块,用于确定所述M个协商速率中每个协商速率对应的端口总带宽,所述M个协商速率中,第i个协商速率对应的端口总带宽为:将所述第i个协商速率设定为所述端口的通道传输速率时,所述端口达到的总带宽,所述通道传输速率用于 表示:所述端口的每个物理通道传输数据的实际速率;
    通道速率控制模块,用于将所述M个协商速率对应的端口总带宽中,最大的端口总带宽对应的协商速率,设定为所述端口的通道传输速率。
  7. 根据权利要求6所述的计算机设备,其特征在于,所述第i个协商速率对应的端口总带宽具体为:所述N个物理通道中协商速率不小于所述第i个协商速率的物理通道的个数与所述第i个协商速率的乘积。
  8. 根据权利要求6或7所述的计算机设备,其特征在于,所述通道速率控制模块还用于:
    关闭所述N个物理通道中,协商速率小于所述通道传输速率的物理通道。
  9. 根据权利要求6至8中任一项所述的计算机设备,其特征在于,所述通道速率控制模块还用于:
    将所述N个通道中,协商速率大于所述通道传输速率的物理通道的协商速率降低到所述通道传输速率。
  10. 根据权利要求6至9中任一项所述的计算机设备,其特征在于,所述通道速率控制模块还用于:
    若所述M个协商速率对应的端口总带宽中,最大的端口总带宽对应两个或两个以上的协商速率,则将所述两个或两个以上的协商速率中,最小的协商速率确定为所述端口的通道传输速率。
  11. 一种计算机设备,其特征在于,包括处理器、存储器、以及通信接口,通过调用所述存储器中存储的程序代码,所述处理器用于执行如权利要求1至5中任一项所述的端口速率确定方法。
PCT/CN2017/104022 2016-09-30 2017-09-28 一种端口速率确定方法以及计算机设备 WO2018059498A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17854948.1A EP3512161B1 (en) 2016-09-30 2017-09-28 Port rate determination method, and computer device
US16/369,650 US11005744B2 (en) 2016-09-30 2019-03-29 Port rate determining method and computer device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610876824.4 2016-09-30
CN201610876824.4A CN107888442B (zh) 2016-09-30 2016-09-30 一种端口速率确定方法以及计算机设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/369,650 Continuation US11005744B2 (en) 2016-09-30 2019-03-29 Port rate determining method and computer device

Publications (1)

Publication Number Publication Date
WO2018059498A1 true WO2018059498A1 (zh) 2018-04-05

Family

ID=61763757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104022 WO2018059498A1 (zh) 2016-09-30 2017-09-28 一种端口速率确定方法以及计算机设备

Country Status (4)

Country Link
US (1) US11005744B2 (zh)
EP (1) EP3512161B1 (zh)
CN (1) CN107888442B (zh)
WO (1) WO2018059498A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111526042B (zh) * 2020-04-10 2022-09-06 深圳震有科技股份有限公司 一种基于速率的端口聚合方法、系统及存储介质
WO2022134085A1 (zh) * 2020-12-25 2022-06-30 深圳市大疆创新科技有限公司 数据发送方法以及设备
CN114297112B (zh) * 2021-12-29 2023-12-19 无锡唐古半导体有限公司 数据传输设备、硅基微显示器以及数据传输方法
CN114706803B (zh) * 2022-03-29 2023-11-10 深圳市广和通科技有限公司 多速率适配方法及PCIe设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020122421A1 (en) * 2000-12-01 2002-09-05 Thales Method for the sizing of a deterministic type packet-switching transmission network
CN1414737A (zh) * 2002-05-23 2003-04-30 华为技术有限公司 一种流量负载分担的方法
CN101442781A (zh) * 2007-11-23 2009-05-27 大唐移动通信设备有限公司 远端设备传输速率自适应方法及装置
CN101510847A (zh) * 2009-02-24 2009-08-19 华为技术有限公司 链路速率调整方法和装置
CN103139088A (zh) * 2011-11-28 2013-06-05 华为技术有限公司 控制通信接口传输速率的方法和网络设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7502865B2 (en) * 2003-12-18 2009-03-10 Intel Corporation Addresses assignment for adaptor interfaces
US7290066B2 (en) * 2004-03-18 2007-10-30 Lsi Corporation Methods and structure for improved transfer rate performance in a SAS wide port environment
US7710974B2 (en) * 2004-08-12 2010-05-04 Cisco Technology, Inc. Method and apparatus for dynamically allocating traffic in a physical layer device
US20070093124A1 (en) * 2005-10-20 2007-04-26 Lsi Logic Corporation Methods and structure for SAS expander optimization of SAS wide ports
US8125906B2 (en) * 2006-03-03 2012-02-28 Kiranmai Vedanabhatla Capture RCDT and SNTT SAS speed negotiation decodes in a network diagnostic component
US7724683B2 (en) * 2007-03-31 2010-05-25 Intel Corporation Arrangements for controlling multiple MAC interfaces
CN101217436B (zh) * 2008-01-16 2010-08-04 中兴通讯股份有限公司 以太网端口及其速率设置方法
CN102651709A (zh) * 2011-02-28 2012-08-29 鸿富锦精密工业(深圳)有限公司 具有省电功能的交换机及其省电方法
US20120233399A1 (en) * 2011-03-09 2012-09-13 Midori Kurokawa Storage apparatus and method of controlling the same
US8687682B2 (en) * 2012-01-30 2014-04-01 Lsi Corporation Transmitter adaptation loop using adjustable gain and convergence detection
US9336171B2 (en) * 2012-11-06 2016-05-10 Avago Technologies General Ip (Singapore) Pte. Ltd. Connection rate management in wide ports
US9191335B2 (en) * 2012-12-13 2015-11-17 Avago Technologies General Ip (Singapore) Pte. Ltd. Link rate availability based arbitration
US9425912B2 (en) * 2013-05-15 2016-08-23 Avago Technologies General Ip (Singapore) Pte. Ltd. Lane-based multiplexing for physical links in serial attached small computer system interface architectures
CN104170322B (zh) * 2014-04-02 2017-06-20 华为技术有限公司 一种PCIe链路故障的处理方法、设备及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020122421A1 (en) * 2000-12-01 2002-09-05 Thales Method for the sizing of a deterministic type packet-switching transmission network
CN1414737A (zh) * 2002-05-23 2003-04-30 华为技术有限公司 一种流量负载分担的方法
CN101442781A (zh) * 2007-11-23 2009-05-27 大唐移动通信设备有限公司 远端设备传输速率自适应方法及装置
CN101510847A (zh) * 2009-02-24 2009-08-19 华为技术有限公司 链路速率调整方法和装置
CN103139088A (zh) * 2011-11-28 2013-06-05 华为技术有限公司 控制通信接口传输速率的方法和网络设备

Also Published As

Publication number Publication date
US20190230018A1 (en) 2019-07-25
EP3512161B1 (en) 2020-04-22
CN107888442B (zh) 2021-05-14
CN107888442A (zh) 2018-04-06
US11005744B2 (en) 2021-05-11
EP3512161A1 (en) 2019-07-17
EP3512161A4 (en) 2019-09-11

Similar Documents

Publication Publication Date Title
WO2018059498A1 (zh) 一种端口速率确定方法以及计算机设备
US10560517B1 (en) Remote management of a storage array
US11140162B2 (en) Response method and system in virtual network computing authentication, and proxy server
CN107430668B (zh) 用于个人设备和云数据的安全分布式备份
JP2021501407A (ja) アルゴリズムをオフロードするための方法、デバイス、およびシステム
CN109474417B (zh) 一种高效的量子隐私比较方法及系统
CN111666246A (zh) 用于串行互连的安全流协议
US20150121060A1 (en) Methods for configurable hardware logic device reloading and devices thereof
US20130223281A1 (en) Large frame path mtu discovery and communication for fcoe devices
EP3779708A1 (en) Method for fast balancing, chips, and communication system
WO2020199686A1 (zh) 一种提供边缘服务的方法、系统及计算设备
WO2015066842A1 (zh) 通信方法、高速外围组件互连pcie芯片及pcie设备
JP7232827B2 (ja) 確立したセッション内で暗号および鍵を変更するための方法およびシステム(確立したセッション内での暗号および鍵の変更)
US20080270797A1 (en) Symbiotic storage devices
EP2620876B1 (en) Method and apparatus for data processing, pci-e bus system and server
WO2022206044A1 (zh) 带宽限流方法和电子设备
CN105323236B (zh) 用于经由多态安全代理来检查在线通信会话的系统、方法和装置
EP3930282B1 (en) System, apparatus and method for remotely authenticating peripheral devices
US11175855B2 (en) Electronic device for communicating with host and operating method of the electronic device
US11552932B1 (en) Identifying virtual private network servers for user devices
US10812399B2 (en) Communication method, communication apparatus, and program for reducing delay time of transmission control protocol (TCP) transmission processing
US20200042692A1 (en) Apparatus and Method to Protect an Information Handling System Against Other Devices
US20170269845A1 (en) Method and device for data backup
CN113190490A (zh) 用于加密的方法、电子系统和加密装置
TW201111993A (en) System, method, and computer program product for maintaining a direct connection between an initiator and a drive

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017854948

Country of ref document: EP

Effective date: 20190411