WO2022134085A1 - 数据发送方法以及设备 - Google Patents

数据发送方法以及设备 Download PDF

Info

Publication number
WO2022134085A1
WO2022134085A1 PCT/CN2020/139662 CN2020139662W WO2022134085A1 WO 2022134085 A1 WO2022134085 A1 WO 2022134085A1 CN 2020139662 W CN2020139662 W CN 2020139662W WO 2022134085 A1 WO2022134085 A1 WO 2022134085A1
Authority
WO
WIPO (PCT)
Prior art keywords
logical channel
data
scheduled
sending
minimum rate
Prior art date
Application number
PCT/CN2020/139662
Other languages
English (en)
French (fr)
Inventor
吴旭科
尹小俊
贾磊
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/139662 priority Critical patent/WO2022134085A1/zh
Publication of WO2022134085A1 publication Critical patent/WO2022134085A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a data sending method and device.
  • the data in each logical channel is scheduled according to the priority of each logical channel in the UAV.
  • the scheduling method according to the priority is only applicable to the communication bandwidth between the UAV and the control terminal. when sufficient. When the communication bandwidth is insufficient, the data in the low-priority logical channel cannot be scheduled for a long time and become invalid.
  • a priority combined with a priority bit rate (PBR for short) method is adopted, that is, a minimum rate requirement is set for each logical channel to ensure that data in a low priority logical channel is scheduled.
  • Embodiments of the present application provide a data sending method and device, which are used to solve the problem that data cannot be scheduled in a low-priority logical channel and data failure occurs.
  • an embodiment of the present application provides a data sending method, which is applied to a sending device, where the sending device includes a transmitting component for sending data to a receiving device, and the method includes:
  • the data volume threshold of the data scheduled by each logical channel is determined according to the congestion scheduling ratio corresponding to each logical channel, and according to the data volume threshold The data for each logical channel is scheduled to the transmit component to transmit the data scheduled for each logical channel.
  • an embodiment of the present application provides a sending device, where the sending device includes a sending component for sending data to a receiving device, and the sending device further includes: a processor; and the processor is configured to:
  • the data volume threshold of the data scheduled by each logical channel is determined according to the congestion scheduling ratio corresponding to each logical channel, and according to the data volume threshold The data for each logical channel is scheduled to the transmit component to transmit the data scheduled for each logical channel.
  • an embodiment of the present application provides a readable storage medium on which a computer program is stored; when the computer program is executed, the method for sending data involved in the first aspect is implemented.
  • an embodiment of the present application provides a computer program product, including a computer program, which implements the data sending method involved in the first aspect when the computer program is executed by a processor.
  • the data transmission method and device provided by the embodiments of the present application acquire the transmission rate of data transmission from the transmitting apparatus to the receiving apparatus and the minimum required rate of each logical channel, and when the transmission rate cannot meet the minimum required rate of each logical channel, the quota is adopted.
  • the method schedules data in each logical channel, that is, according to the preset congestion scheduling ratio corresponding to each logical channel, the data volume threshold of the data scheduled by each logical channel is determined, so as to ensure that the logical channels will not occupy each other's data quota. In severe cases, the logical channel with low priority can still continue to transmit data, so as to avoid data failure in the logical channel with low priority due to long-term unschedulable failure.
  • FIG. 1 is a schematic structural diagram of a data communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a data sending method according to an embodiment of the present application
  • FIG. 3 is a schematic flowchart of data scheduling provided by another embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a sending device according to another embodiment of the present application.
  • the channels of each communication device are divided into logical channels, transport channels, and physical channels.
  • the logical channel is used to transmit data between the Radio Link Control (Radio Link Control, RLC) layer and the Media Access Control (Media Access Control, MAC) layer, and the transmission channel transmits the data between the MAC layer and the physical layer.
  • RLC Radio Link Control
  • MAC Media Access Control
  • the physical channel is used to transmit data over the air interface.
  • the UAV transmits data with the control terminal located on the ground through the air interface.
  • the data scheduling of the logical channel adopts the priority scheduling method, and the data in the logical channel with high priority is transmitted first, and the data in the logical channel with low priority is transmitted later.
  • the priority scheduling method is only used when the channel bandwidth is abundant. However, when the transmission link is congested, the data in the low-priority logical channel cannot be transmitted for a long time, which affects the operation of the entire communication system.
  • the concept of PBR introduced by the UAV side is to configure the minimum rate requirements of each logical channel before allocating resources to the logical channel, so as to provide a minimum data rate guarantee for each logical channel.
  • This method has a good effect when the transmission link congestion is not too serious, that is, when the transmission rate in the UAV communication system can meet the minimum rate requirement of each logical channel.
  • the rate requirement in the logical channel with high priority will still be guaranteed first, resulting in data failure in the logical channel with low priority because the data cannot be scheduled for a long time.
  • the present application provides a data transmission method and equipment, which aims to ensure that when a very serious link congestion occurs in the communication system, that is, the transmission rate when the transmitting device in the communication system transmits data to the receiving device cannot be used.
  • the minimum rate requirement of each logical channel is met, it can still ensure that the data in the logical channel with low priority can still be scheduled, and there will not be a situation where the data cannot be scheduled for a long time and become invalid.
  • This application adopts two scheduling methods.
  • the quota scheduling method is adopted, that is, the data in each logical channel is scheduled according to the congestion scheduling ratio to ensure that Data with low priority can still be scheduled when the link is heavily congested.
  • the quota scheduling method can be used to ensure that the data in the logical channel with low priority can also be scheduled, and the flight distance of the UAV will not be limited due to data transmission.
  • the data communication system provided by the embodiment of the present application includes a sending device 101 and a receiving device 102 , and the sending device 101 and the receiving device 102 are connected for communication.
  • the transmitting device includes a transmitting component and a processor, and the transmitting component is used for transmitting data to the receiving device.
  • the processor is configured to execute the data sending method described in the following embodiments.
  • the transmitting device is an unmanned aerial vehicle
  • the receiving device is a control terminal.
  • the control terminal may be one or more of a remote control, a smart phone, a desktop computer, a laptop computer, and a wearable device (watch, wristband).
  • an embodiment of the present application provides a data transmission method.
  • the data transmission method is applied to the data communication system shown in FIG. 1, and the method includes the following steps:
  • the sending device includes a plurality of logical channels, and each logical channel is used for transmitting data to be sent.
  • each logical channel is used for transmitting data to be sent.
  • a minimum rate requirement is set for each logical channel. The data transmission rate in each logical channel shall not be lower than the minimum rate requirement.
  • the minimum rate requirement of each logical channel is preset according to the expiration time of the data to be sent transmitted in each logical channel.
  • the minimum rate requirement of the logical channel needs to ensure that the data to be sent in the logical channel is scheduled in time and will not arrive Expiration time and the data to be sent in the logical channel has not yet been scheduled.
  • S202 Determine whether the transmission rate of the data transmission performed by the sending apparatus to the receiving apparatus satisfies the minimum rate requirement of each logical channel, if yes, go to S205, otherwise, go to S203.
  • the transmission rate when the sending device sends data to the receiving device is acquired in real time, and it is determined whether the transmission rate is lower than the sum of the minimum rate requirements of each logical channel. When the transmission rate is lower than the sum of the minimum rate requirements of each logical channel, it is determined that the transmission rate does not meet the minimum rate requirements of each logical channel. When the transmission rate is higher than or equal to the sum of the minimum rate requirements of each logical channel, it is determined that the transmission rate meets the minimum rate requirements of each logical channel.
  • the preset congestion scheduling ratio corresponding to each logical channel is acquired, and the congestion scheduling ratio is used to determine the data volume threshold of the data scheduled by each logical channel.
  • the congestion scheduling ratio corresponding to each logical channel is set according to the actual data transmission requirements. If the congestion scheduling ratio is 0, it means that the logical channel will not be scheduled when the channel is severely congested.
  • the congestion scheduling ratio corresponding to each logical channel can be set according to the priority of each logical channel.
  • each logical channel after determining the data volume threshold value scheduled by each logical channel, schedule the data of each logical channel to the transmitting part, and ensure that the data volume of the data scheduled by each logical channel to the transmitting part is less than or equal to the data volume threshold value, so that each logical channel The channel does not occupy the quota of other logical channels, and the data in the low-priority logical channel can also be scheduled.
  • the transmitting unit After scheduling the data of each logical channel to the transmitting unit, the transmitting unit transmits the data allocated by each logical channel to the receiving apparatus through the air interface.
  • the PBR of each logical channel is used to determine the amount of data scheduled by each logical channel.
  • the PBR of each logical channel is determined according to the following formula (1):
  • GS i represents the minimum rate requirement of the ith logical channel
  • p represents the subframe ratio between the sending time interval and the receiving time interval
  • PBR i represents the PBR of the ith logical channel.
  • S206 Control the transmitting unit to transmit data scheduled by each logical channel according to the PBR and priority of each logical channel.
  • the data to be sent is allocated to each logical channel according to the PBR of each logical channel, and each logical channel transmits the data to be sent to the transmitting unit.
  • the transmitting part transmits the data transmitted by each logical channel according to the priority of each logical channel. That is, the transmitting component preferentially transmits the data transmitted by the logical channel with the high priority, and transmits the data transmitted by the logical channel with the low priority later.
  • the minimum rate requirement of each logical channel and the transmission rate of data transmission performed by the transmitting device to the receiving device are obtained, and when the transmission rate cannot meet the minimum rate requirement of each logical channel, the channel
  • the congestion scheduling ratio is used to schedule the data in each logical channel, so that the logical channel with low priority can continue to transmit data, and the data in the logical channel with low priority will not fail due to long-term unschedulable.
  • Another embodiment of the present application provides a data sending method.
  • the data sending method is applied to the data communication system shown in FIG. 1 , and the method includes the following steps:
  • S302 Determine whether the transmission rate of the data transmission performed by the sending apparatus to the receiving apparatus satisfies the minimum rate requirement of each logical channel, if yes, go to S305, otherwise, go to S303.
  • the transmission rate meets the minimum rate requirement of each logical channel.
  • first obtain the transmission rate when the sending device sends data to the receiving device in real time and then determine whether the transmission rate is lower than the minimum rate requirement of each logical channel. Sum. If the transmission rate is lower than the sum of the minimum rate requirements of each logical channel, it is determined that the transmission rate does not meet the minimum rate requirements of each logical channel. If the transmission rate is higher than or equal to the sum of the minimum rate requirements of each logical channel, it is determined that the transmission rate meets the minimum rate requirements of each logical channel.
  • the transmission rate of the data transmission performed by the sending device to the receiving device is obtained in the following manner: the total data volume of data sent by the sending component within at least one historical sending time interval is obtained.
  • the historical sending time interval refers to the sending time interval before the current sending time interval.
  • the total data volume is obtained by superimposing the data volume of the data sent by the transmitting unit in each historical sending time interval.
  • the transmission rate is determined according to the total data volume of data sent by the transmitting component during at least one historical sending time interval. More specifically, the time corresponding to each historical sending time interval is superimposed to obtain the total time, and the total data amount is divided by the total time to obtain the transmission rate of data transmission from the sending device to the receiving device.
  • selecting the historical sending time interval next to the current sending time interval can improve the accuracy of the obtained transmission rate, and then can accurately determine which data scheduling mode to use.
  • the transmission rate meets the minimum rate requirement of each logical channel.
  • the PBR of each logical channel can be obtained by calculation according to formula (1), which is not repeated here.
  • the strength of the communication network between the sending device and the receiving device is obtained in real time, and the total amount of schedulable data at the current sending time interval is calculated and obtained according to the strength of the communication network.
  • the total amount of schedulable data in the current sending time interval is used to represent the current ability of the sending device to send data, and the total amount of schedulable data changes in real time with the strength of the communication network.
  • the setting method of the congestion scheduling ratio has been described in detail in S203, and will not be repeated here.
  • Obtaining the total schedulable data amount at the current sending time interval has also been described in detail in S302, and will not be repeated here.
  • the congestion scheduling ratio corresponding to each logical channel is respectively multiplied by the total data volume that can be scheduled at the current sending time interval to determine the data volume threshold of the data scheduled by each logical channel.
  • the priority of each logical channel is obtained, and the data of each logical channel is scheduled to the transmitting unit according to the data volume threshold in order of priority from high to low, so that the transmitting unit sends the data scheduled by each logical channel according to the priority.
  • the specific process of scheduling the data in the logical channel to the transmitting unit according to the priority and the data volume threshold is as follows:
  • the first scheduled data volume of each logical channel is determined according to the data volume threshold, and the first scheduled data volume of each logical channel is less than or equal to the data volume threshold.
  • S3002 Schedule data in each logical channel to the transmitting component according to the priority of each logical channel and according to the amount of data scheduled for the first time.
  • the data in each logical channel is scheduled to the transmitting component according to the first scheduled data volume of each logical channel according to the priority of each logical channel. That is, the data in the logical channel with high priority is preferentially scheduled to the transmitting unit, and the transmitting unit preferentially transmits the data in the logical channel with high priority.
  • the data in the logical channel with low priority is scheduled to the transmitting part later, and the transmitting part sends the data in the logical channel with low priority later.
  • the amount of data scheduled by each logical channel to the transmitting component is the amount of data scheduled for the first time obtained by calculation.
  • the transmitting component counts the total amount of data received after receiving the data transmitted by each logical channel. Take the total schedulable data volume at the current sending time interval calculated according to the strength of the communication network as the initial schedulable total data volume, and obtain the remaining schedulable total data according to the initial schedulable total data volume and the received total data volume quantity.
  • S3004 Determine whether the total remaining schedulable data amount is greater than zero, if so, go to S3005, otherwise, go to S3006.
  • the transmitting component can continue to receive data transmitted by the logical channel. If the total amount of remaining schedulable data is less than or equal to zero, that is, the transmitting unit cannot continue to receive data transmitted by the logical channel.
  • each logical channel has already scheduled data to the transmitting component.
  • the logical channel with the highest priority may be selected for data scheduling first, and the total remaining schedulable data amount of the transmitting unit may be calculated. If the total remaining schedulable data amount of the transmitting unit is still greater than zero, the logical channel with the second priority is selected for data scheduling, and the remaining total schedulable data amount of the transmitting unit is calculated. If the total remaining schedulable data amount of the transmitting unit is still greater than zero, the logical channel with the third priority is selected for data scheduling until the remaining total schedulable data amount of the transmitting unit is less than or equal to zero.
  • the data amount of the first scheduling of each logical channel is determined according to the data amount threshold to ensure that the data in each logical channel is scheduled, and then the remaining available data is calculated according to the total data amount received by the transmitting unit during the first scheduling.
  • the total amount of scheduled data when the remaining total amount of schedulable data is not zero, continue to schedule data according to the priority of the logical channel, which can make full use of the ability of the transmitting component to send data, thereby ensuring that the data in each logical channel can be obtained.
  • the scheduling situation makes full use of the transmitting unit's ability to send data.
  • S306 Control the transmitting unit to transmit data scheduled by each logical channel according to the PBR and priority of each logical channel.
  • the amount of data scheduled for the first time in each logical channel is determined according to the PBR of each logical channel.
  • the amount of data scheduled for the first time in each logical channel is the PBR of each logical channel.
  • Each logical channel transmits the data to be sent to the transmitting unit according to the amount of data first scheduled by each logical channel. And the remaining schedulable total data quantity of the emitting unit is determined according to the data quantity received by the emitting unit and the initial schedulable total data quantity of the emitting unit.
  • the logical channel with high priority is selected to transmit the data to the transmitting unit for the second round of data scheduling. And continue to calculate the remaining schedulable total data amount of the transmitting unit. If the remaining schedulable total data amount of the transmitting unit is greater than zero, continue to select the logical channel with high priority to transmit the data to the transmitting unit until the remaining schedulable data of the transmitting unit is greater than zero.
  • the total amount of scheduled data is equal to or less than zero.
  • the transmitting component After the transmitting component receives the data to be transmitted transmitted by the logical channel, the transmitting component transmits the data transmitted by each logical channel according to the priority of each logical channel. That is, the transmitting component preferentially transmits the data transmitted by the logical channel with the high priority, and transmits the data transmitted by the logical channel with the low priority later.
  • the congestion scheduling ratio and the total amount of schedulable data in the current sending time interval determine the data volume threshold of the data scheduled by each logical channel, so that the data in each logical channel can be scheduled according to the data volume threshold, so that the data scheduled in each logical channel
  • the data volume is less than the data volume threshold to ensure that the logical channels will not occupy the data quota each other.
  • An embodiment of the present application provides a data transmission method.
  • the data transmission method is applied to the data communication system shown in FIG. 1 , and the method includes the following steps:
  • the sending device is a drone
  • the receiving device is a control terminal
  • the three logical channels are labeled logical channel A, logical channel B, and logical channel C in sequence.
  • And set the scheduling priority of the logical channel as: logical channel A > logical channel B > logical channel C.
  • the minimum rate requirements GS i of logical channel A, logical channel B, and logical channel C are set to be 1 Mbps, 2 Mbps, and 500 kbps.
  • S402 Determine whether the transmission rate of the data transmission performed by the sending apparatus to the receiving apparatus satisfies the minimum rate requirement of each logical channel, if so, go to S405; otherwise, go to S403.
  • the transmission rate can reach 10Mbps
  • the schedulable data of the drone is 6000b
  • the sum of the minimum rate requirements of the three logical channels is 3.5Mbps.
  • the data transmission rate of the UAV to the control terminal is higher than the sum of the minimum rate requirements of the three logical channels, and meets the minimum rate requirements of each logical channel.
  • the transmission rate between the drone and the control terminal drops to 1.5Mbp
  • the schedulable data of the drone is 1875b
  • the transmission rate of the data transmission from the drone to the control terminal is less than three
  • the sum of the minimum rate requirements of logical channels does not meet the minimum rate requirements of each logical channel.
  • the preset congestion scheduling ratio of logical channel A, logical channel B, and logical channel C is 4, 5, and 1. According to the total schedulable data volume of the UAV and the congestion scheduling ratio of the three logical channels, it can be obtained
  • the data volume thresholds of the data scheduled by each logical channel are: 750b, 938b, and 187b, respectively.
  • the first scheduled data volume of the three logical channels is determined according to the data volume threshold.
  • the first scheduled data volumes of logical channel A, logical channel B and logical channel C are 750b, 900b and 180b, and the first scheduled data volume of each logical channel is less than the data volume threshold of each logical channel.
  • the data of each logical channel is scheduled to the transmitting unit according to the priority of the logical channels, so as to complete the first scheduling of the data in the three logical channels.
  • the total remaining schedulable data volume of the UAV is 45b, and the data in logical channel A is selected for scheduling.
  • the data volume of logical channel A in the second scheduling is 45b, and the remaining schedulable data of the UAV is 45b.
  • the total data volume is 0b, and this data scheduling is completed.
  • the logical channel C can still get 180b of scheduled data volume, and there will be no data in logical channel C that cannot be scheduled and fails.
  • the transmission rate between the UAV and the control terminal can meet the minimum rate requirement of each logical channel.
  • the subframe ratios of the three logical channels are all 0.8, the transmission time interval accounts for 8/10, and the reception time interval accounts for 2/10.
  • the PBRs corresponding to logical channel A, logical channel B, and logical channel C can be calculated to be 1250b, 2500b, and 625b, respectively.
  • S406 Control the transmitting unit to send data scheduled by each logical channel according to the PBR and priority of each logical channel.
  • the data volume of the first scheduling of each logical channel is determined according to the PBR of each logical channel, for example: the data volume of the first scheduling of logical channel A, logical channel B, and logical channel C is 1250b, 2500b, 625b, and the logical channels are sequentially A.
  • the data of logical channel B and logical channel C are scheduled to the transmitting unit, and then the remaining total data volume 1625b of the UAV that can be scheduled is calculated.
  • the priority of logical channel A is the highest, and the data in logical channel A is scheduled for the second time.
  • the data volume of logical channel A in the second scheduling is 1000b, and then the remaining total data volume of the UAV that can be scheduled is 625b.
  • the priority of the logical channel B is next, and the data in the logical channel B is scheduled for the second time.
  • the data amount of the logical channel B in the second scheduling is 625b, and this data scheduling is completed.
  • the congestion scheduling ratio is used to schedule data in each logical channel, so that the priority
  • the logical channel with low priority can still continue to transmit data, so as to avoid the failure of data in logical channel with low priority due to long-term unschedulable.
  • an embodiment of the present application provides a data sending apparatus, where the sending apparatus includes a transmitting component 501 and a processor 502 for sending data to a receiving apparatus; the processor 502 is used for:
  • the data volume threshold of the data scheduled by each logical channel is determined according to the congestion scheduling ratio corresponding to each logical channel, and according to the data volume threshold The data for each logical channel is scheduled to the transmit component to transmit the data scheduled for each logical channel.
  • the processor 502 is specifically configured to:
  • the data volume threshold of the data scheduled by each logical channel is determined.
  • the processor 502 is specifically configured to:
  • the data of each logical channel is scheduled to the transmitting unit according to the data volume threshold in turn to transmit the data scheduled by each logical channel.
  • the processor 502 is specifically configured to:
  • the processor 502 is specifically configured to:
  • the processor 502 is specifically configured to:
  • the transmission rate is determined according to the total data volume of data sent by the transmitting component in at least one historical sending time interval.
  • the processor 502 is specifically configured to:
  • the processor 502 is specifically configured to:
  • the PBR of each logical channel is determined according to the minimum rate requirement of each logical channel and the subframe ratio between the sending time interval and the receiving time interval.
  • the processor 502 is specifically configured to:
  • the PBR of each logical channel is determined according to the minimum rate requirement of each logical channel, and the transmitting unit is controlled to transmit the data scheduled by each logical channel according to the PBR and priority of each logical channel.
  • the sending device is a drone
  • the receiving device is a control terminal.
  • Another embodiment of the present application provides a readable storage medium, where a computer program is stored on the readable storage medium; when the computer program is executed, the data sending method described in the foregoing embodiment is implemented.
  • the data sending method can be specifically described with reference to the foregoing embodiments, and details are not repeated here.
  • Another embodiment of the present application provides a computer program product, including a computer program, which implements the data sending method described in the foregoing embodiments when the computer program is executed by a processor.
  • the data sending method can be specifically described with reference to the foregoing embodiments, and details are not repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种数据发送方法,方法应用于发送装置,发送装置包括用于向接收装置发送数据的发射部件,方法包括:获取发送装置的多个待发送的逻辑信道中各逻辑信道的最低速率需求;在发送装置向接收装置进行数据传输的传输速率不满足各逻辑信道的最低速率需求时,根据各逻辑信道对应的拥堵调度配比确定各逻辑信道所调度数据的数据量阈值,并根据数据量阈值将各逻辑信道的数据调度至发射部件以发送各逻辑信道调度的数据。本方案能够保证在信道拥堵情况十分严重时,逻辑信道不会相互占用数据配额,优先级低的逻辑信道仍可以继续传输数据,避免优先级低的逻辑信道内数据由于长期无法调度而失效。

Description

数据发送方法以及设备 技术领域
本申请实施例涉及通信技术领域,尤其涉及一种数据发送方法以及设备。
背景技术
在无人机与地面控制终端之间通信时,根据无人机内各个逻辑信道的优先级调度各个逻辑信道内数据,按照优先级调度的方式仅适用于无人机和控制终端之间通信带宽充足时。当通信带宽不足时,会出现低优先级的逻辑信道内数据长期得不到调度而失效情况。为了解决上述问题,采用优先级结合优先比特率(Prioritised Bit Rate,简称:PBR)方式,也就是为各个逻辑信道设置最低速率需求,以保证低优先级的逻辑信道中数据得到调度。
然而,在通信带宽严重不足,无法满足各个逻辑信道的最低速率需求时,存在低优先级的逻辑信道内数据长期得不到调度而失效的问题。
发明内容
本申请实施例提供一种数据发送方法以及设备,用于解决低优先级的逻辑信道中数据得不到调度而出现数据失效的问题。
第一方面,本申请实施例提供一种数据发送方法,应用于发送装置,发送装置包括用于向接收装置发送数据的发射部件,方法包括:
获取发送装置的多个待发送的逻辑信道中各逻辑信道的最低速率需求;
在发送装置向接收装置进行数据传输的传输速率不满足各逻辑信道的最低速率需求时,根据各逻辑信道对应的拥堵调度配比确定各逻辑信道所调度数据的数据量阈值,并根据数据量阈值将各逻辑信道的数据调度至发射部件以发送各逻辑信道调度的数据。
第二方面,本申请实施例提供一种发送装置,发送装置包括用于向接收装置发送数据的发射部件,发送装置还包括:处理器;处理器用于:
获取发送装置的多个待发送的逻辑信道中各逻辑信道的最低速率需求;
在发送装置向接收装置进行数据传输的传输速率不满足各逻辑信道的最低速率需求时,根据各逻辑信道对应的拥堵调度配比确定各逻辑信道所调度数据的数据量阈值,并根据数据量阈值将各逻辑信道的数据调度至发射部件以发送各逻辑信道调度的数据。
第三方面,本申请实施例提供一种可读存储介质,可读存储介质上存储有计算机程序;计算机程序在被执行时,实现如第一方面所涉及的数据发送方法。
第四方面,本申请实施例提供一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现第一方面所涉及的数据发送方法。
本申请实施例提供的数据发送方法以及设备,获取发送装置向接收装置进行数据传输的传输速率以及各个逻辑信道的最低需求速率,在传输速率无法满足各个逻辑信道的最低需求速率时,采用配额的方式调度各个逻辑信道内数据,也就是根据预先设置的各逻辑信道对应的拥堵调度配比确定各逻辑信道所调度数据的数据量阈值,保证逻辑信道不会相互占用数据配额,在信道拥堵情况十分严重时,优先级低的逻辑信道仍可以继续传输数据,避免优先级低的逻辑信道内数据由于长期无法调度而失效。
附图说明
图1为本申请一实施例提供的数据通信系统的结构示意图;
图2为本申请一实施例提供的数据发送方法的流程示意图;
图3为本申请另一实施例提供的数据调度的流程示意图;
图4为本申请另一实施例提供的发送设备的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在由多个通信装置组成的通信系统中,各个通信装置的信道分为逻辑信道、传输信道以及物理信道。逻辑信道用于传送无线链路层控制协议(Radio Link Control,简称:RLC)层和介质访问控制(Media Access Control,简称:MAC)层之间的数据,传输信道传送MAC层和物理层之间的数据,物理信道用于将数据在空口传送。
在无人机通信系统中,无人机通过空口与位于地面的控制终端进行数据传输。在无人机端,逻辑信道的数据调度采用优先级调度方法,优先传输优先级高的逻辑信道中数据,低优先级的逻辑信道中的数据靠后传输。优先级调度方法仅使用于信道带宽充裕的情况下。然而,若出现传输链路拥堵的时候,低优先级的逻辑信道中数据由于长时间无法传输而影 响整个通信系统运转。
为防止上述问题出现,无人机端引入的PBR的概念,即在给逻辑信道分配资源之前,配置好各个逻辑信道的最低速率需求,从而为每个逻辑信道提供最小数据速率保证。该方法在传输链路拥堵不太严重时有较好的效果,也就是无人机通信系统内传输速率能够满足各个逻辑信道的最低速率需求时有较好的效果。而传输速率能够无法满足各个逻辑信道的最低速率需求时,仍然会优先保证优先级高的逻辑信道中速率需求,致使优先级低的逻辑信道中数据由于长时间得不到调度,出现数据失效。
为解决现有技术上述问题,本申请提供一种数据发送方法以及设备,旨在保证通信系统出现十分严重的链路拥堵时,也就是通信系统内发送装置向接收装置传输数据时的传输速率无法满足各个逻辑信道的最低速率需求时,仍能够保证优先级低的逻辑信道中数据仍能够得到调度,不会出现长时间无法得到调度而失效的情况。本申请采用两种调度方式,在发送装置向接收装置传输数据时的传输速率无法满足各个逻辑信道的最低速率需求时,采用配额调度方式,也就是根据拥堵调度比调度各个逻辑信道中数据,保证优先级低的数据在链路拥堵十分严重时仍能够得到调度。
当本申请提供的数据发送方法应用于无人机通信系统时,在无人机飞远而出现无人机和地面的控制终端之间数据的传输速率急剧降低时,也就是出现链路拥堵情况十分严重时,可以采用配额调度方式,保证优先级低的逻辑信道中数据也能得到调度,不会因为数据传输而限制无人机的飞行距离。
如图1所示,本申请实施例提供的数据通信系统包括发送装置101和接收装置102,发送装置101和接收装置102之间通信连接。
其中,发送装置包括发射部件以及处理器,该发射部件用于向接收装置发送数据。该处理器用于执行如下实施例描述的数据发送方法。
优选地,发送装置为无人机,接收装置为控制终端。控制终端可以是遥控器、智能手机、台式电脑、膝上型电脑、穿戴式设备(手表、手环)中的一种或多种。
如图2所示,本申请一实施例提供一种数据发送方法,该数据发送方法应用于图1所示数据通信系统,该方法包括如下步骤:
S201、获取发送装置的多个待发送的逻辑信道中各逻辑信道的最低速率需求。
其中,发送装置包括多个逻辑信道,每个逻辑信道中用于传输待发送的数据。为保证每个逻辑信道中待发送的数据能够被调度并传输至接收装置,为每个逻辑信道设置有最低速率需求。每个逻辑信道内数据传输速率不低于最低速率需求。
每个逻辑信道的最低速率需求根据每个逻辑信道内传输的待发送的数据的失效时间预先设定,逻辑信道的最低速率需求需要保证逻辑信道内待发送的数据得到及时调度,不会出现到达失效时间而逻辑信道内待发送的数据仍未得到调度的情况。
S202、判断发送装置向接收装置进行数据传输的传输速率是否满足各逻辑信道的最低速率需求,若是,进入S205,否则,进入S203。
其中,实时获取发送装置向接收装置发送数据时的传输速率,判断传输速率是否低于各逻辑信道的最低速率需求的总和。在传输速率低于各逻辑信道的最低速率需求的总和时,确定传输速率不满足各逻辑信道的最低速率需求。在传输速率高于或等于各逻辑信道的最低速率需求的总和时,确定传输速率满足各逻辑信道的最低速率需求。
S203、根据各逻辑信道对应的拥堵调度配比确定各逻辑信道所调度数据的数据量阈值。
其中,若确定发送装置向接收装置进行数据传输的传输速率不满足各逻辑信道的最低速率需求,信道拥堵情况十分严重,采用配额方式对各个逻辑通道内数据进行调度。
获取预先设置的各逻辑信道对应的拥堵调度配比,拥堵调度配比用于确定各逻辑信道所调度数据的数据量阈值。各逻辑信道对应的拥堵调度配比根据实际数据传输需求设置,如果拥堵调度配比为0,则表示该逻辑信道在通道严重拥堵时不进行调度。优选地,可根据各逻辑信道的优先级设置各逻辑信道对应的拥堵调度配比。
逻辑信道对应的拥堵调度配比的数值越高,该逻辑信道所调度数据的数据量阈值越高。逻辑信道对应的拥堵调度配比的数值越低,该逻辑信道所调度数据的数据量阈值越低。
S204、根据数据量阈值将各逻辑信道的数据调度至发射部件以发送各逻辑信道调度的数据。
其中,在确定各个逻辑信道所调度的数据量阈值后,将各逻辑信道的数据调度至发射部件,并保证各逻辑信道向发射部件所调度数据的数据量小于或者等于数据量阈值,使得各个逻辑信道不会占用其他逻辑信道的配额,低优先级的逻辑信道中数据也可以被调度。
在将各逻辑信道的数据调度至发射部件之后,发射部件通过空口向接收装置发送各个逻辑信道分配的数据。
S205、根据各逻辑信道的最低速率需求确定各逻辑信道的PBR。
其中,若确定发送装置向接收装置进行数据传输的传输速率满足各逻辑信道的最低速率需求,信道拥堵情况不严重,采用最低速率需求调度和优先级调度相结合方式对各个逻辑通道内数据进行调度。
获取预先设置的各逻辑信道的最低速率需求,根据各逻辑信道的最低速率需求确定各 逻辑信道的PBR。各逻辑信道的PBR用于确定各个逻辑信道所调度数据的数据量。
更具地,根据如下公式(1)计算获得确定各逻辑信道的PBR:
Figure PCTCN2020139662-appb-000001
其中,GS i表示第i个逻辑信道的最低速率需求,p表示发送时间间隔与接收时间间隔之间的子帧比,PBR i表示第i个逻辑信道的PBR。
S206、根据各逻辑信道的PBR和优先级控制发射部件发送各逻辑信道调度的数据。
其中,根据各逻辑信道的PBR为各逻辑信道分配待发送的数据,各个逻辑信道将待发送的数据传输至发射部件。发射部件按照各个逻辑信道的优先级发送各个逻辑信道传输的数据。也就是,发射部件优先发送优先级高的逻辑信道所传输的数据,优先级低的逻辑信道所传输的数据靠后发送。
在本申请实施例提供的数据发送方法中,获取各逻辑信道的最低速率需求以及发送装置向接收装置进行数据传输的传输速率,在传输速率无法满足各逻辑信道的最低速率需求时,也就是信道拥堵情况十分严重时,采用拥堵调度配比调度各个逻辑信道内数据,使得优先级低的逻辑信道仍可以继续传输数据,避免优先级低的逻辑信道内数据由于长期无法调度而失效。
本申请另一实施例提供一种数据发送方法,该数据发送方法应用于图1所示数据通信系统,该方法包括如下步骤:
S301、获取发送装置的多个待发送的逻辑信道中各逻辑信道的最低速率需求。
其中,该步骤已经在S201中详细说明,此处不再赘述。
S302、判断发送装置向接收装置进行数据传输的传输速率是否满足各逻辑信道的最低速率需求,若是,进入S305,否则,进入S303。
其中,作为判断传输速率是否满足各个逻辑信道的最低速率需求的一种实现方式,先实时获取发送装置向接收装置发送数据时的传输速率,再判断传输速率是否低于各逻辑信道的最低速率需求的总和。若传输速率低于各逻辑信道的最低速率需求的总和,确定传输速率不满足各逻辑信道的最低速率需求。若传输速率高于或等于各逻辑信道的最低速率需求的总和,确定传输速率满足各逻辑信道的最低速率需求。
采用如下方式获取发送装置向接收装置进行数据传输的传输速率:获取至少一个历史发送时间间隔内发射部件所发送数据的总数据量。历史发送时间间隔是指在当前发送时间间隔之前的发送时间间隔,将每个历史发送时间间隔内发射部件所发送数据的数据量叠加 获得总数据量。
在获得至少一个历史发送时间间隔内发射部件所发送数据的总数据量之后,根据至少一个历史发送时间间隔内发射部件所发送数据的总数据量确定传输速率。更具体地,将每个历史发送时间间隔对应时间进行叠加获得总时间,将总数据量除以总时间获得发送装置向接收装置进行数据传输的传输速率。
优选地,选择紧邻当前发送时间间隔的历史发送时间间隔,可以提高所获得的传输速率的准确度,进而可以准确判断采用何种数据调度方式。
作为判断传输速率是否满足各个逻辑信道的最低速率需求的另一种实现方式,先根据各逻辑信道的最低速率需求确定各逻辑信道的PBR,并获取当前发送时间间隔可调度的总数据量。再将各个逻辑信道的PBR与当前发送时间间隔可调度的总数据量进行比较,根据比较结果确定传输速率是否满足各个逻辑信道的最低速率需求。
可根据公式(1)计算获得各逻辑信道的PBR,此处不再赘述。
实时获得发送装置和接收装置之间通信网络强度,根据通信网络强度计算获得当前发送时间间隔可调度的总数据量。当前发送时间间隔可调度的总数据量用于表示发送装置当前发送数据能力,且可调度的总数据量随着通信网络强度实时变化的。
在当前发送时间间隔可调度的总数据量低于各逻辑信道的PBR的总和时,确定传输速率不满足各逻辑信道的速率需求。在当前发送时间间隔可调度的总数据量高于或者等于各逻辑信道的PBR的总和时,确定传输速率满足各逻辑信道的速率需求。
S303、根据各逻辑信道对应的拥堵调度配比确定各逻辑信道所调度数据的数据量阈值。
其中,若确定发送装置向接收装置进行数据传输的传输速率不满足各逻辑信道的速率需求,信道拥堵情况十分严重,采用配额方式对各个逻辑通道内传输数据进行调度。
拥堵调度配比的设置方式已经在S203中详细说明,此处不再赘述。获得当前发送时间间隔可调度的总数据量也已经在S302中详细说明,此处不再赘述。
在获得当前发送时间间隔可调度的总数据量和各个逻辑信道对应的拥堵调度配比后,根据各逻辑信道对应的拥堵调度配比和当前发送时间间隔可调度的总数据量确定各逻辑信道所调度数据的数据量阈值。
优选地,分别将各逻辑信道对应的拥堵调度配比乘以当前发送时间间隔可调度的总数据量,确定各逻辑信道所调度数据的数据量阈值。
S304、根据数据量阈值将各逻辑信道的数据调度至发射部件以发送各逻辑信道调度的数据。
其中,获取各逻辑信道的优先级,按照优先级由高到低的顺序依次根据数据量阈值将各逻辑信道的数据调度至发射部件,以使发射部件按照优先级发送各逻辑信道调度的数据。
如图3所示,在一个发送时间间隔内,根据优先级以及数据量阈值对逻辑信道内数据调度至发射部件的具体过程如下:
S3001、根据数据量阈值确定每个逻辑信道的首次调度的数据量。
其中,在确定各个逻辑信道所调度的数据量阈值后,根据数据量阈值确定每个逻辑信道的首次调度的数据量,每个逻辑信道的首次调度的数据量小于或者等于数据量阈值。
S3002、按照各个逻辑信道的优先级根据首次调度的数据量将各个逻辑信道内数据调度至发射部件。
其中,在确定每个逻辑信道的首次调度的数据量之后,根据各个逻辑信道的优先级按照各个逻辑信道的首次调度的数据量将每个逻辑信道中的数据调度至发射部件。也就是,优先级高的逻辑信道中数据优先调度至发射部件,由发射部件优先发送优先级高的逻辑信道中数据。优先级低的逻辑信道中数据靠后调度至发射部件,由发射部件靠后发送优先级低的逻辑信道中数据。且各个逻辑信道向发射部件调度的数据量为计算获得的首次调度的数据量。
S3003、计算发射部件的剩余可调度的总数据量。
其中,发射部件在接收各个逻辑信道传输的数据后统计接收到的总数据量。将根据通信网络强度计算获得的当前发送时间间隔可调度的总数据量作为初始可调度的总数据量,根据初始可调度的总数据量和接收到的总数据量计算获得剩余可调度的总数据量。
S3004、判断剩余可调度的总数据量是否大于零,若是,则进入S3005,否则,进入S3006。
其中,若剩余可调度的总数据量大于零,也就是发射部件还可以继续接收逻辑信道传输的数据。若剩余可调度的总数据量小于或者等于零,也就是发射部件无法继续接收逻辑信道传输的数据。
S3005、选择优先级高的逻辑信道继续向发射部件传输数据,并返回至S3003。
其中,经过首轮调度后,各个逻辑信道均已经向发射部件调度数据。在第二轮调度时,可先选择优先级最高的逻辑信道进行数据调度,并计算发射部件的剩余可调度的总数据量。若发射部件的剩余可调度的总数据量仍大于零,则选择优先级排第二的逻辑信道进行数据调度,并计算发射部件的剩余可调度的总数据量。若发射部件的剩余可调度的总数据量仍大于零,则选择优先级排第三的逻辑信道进行数据调度,直至发射部件的剩余可调度的总 数据量小于或者等于零为止。
S3006、结束当前发送时间间隔内的数据调度。
在上述具体实施方式中,根据数据量阈值确定每个逻辑信道的首次调度的数据量,保证每个逻辑信道中数据得到调度,再根据发射部件在首次调度时接收到的总数据量计算剩余可调度的总数据量,在剩余可调度的总数据量不为零时,根据逻辑信道的优先级继续调度数据,可以充分利用发射部件发送数据的能力,进而实现在保证每个逻辑信道中数据得到调度情况下充分利用发射部件的发送数据的能力。
S305、根据各逻辑信道的最低速率需求确定各逻辑信道的PBR。
其中,该步骤已经在S205中详细说明,此处不再赘述。
S306、根据各逻辑信道的PBR和优先级控制发射部件发送各逻辑信道调度的数据。
其中,根据各逻辑信道的PBR确定各个逻辑信道首次调度的数据量。优选地,每个逻辑信道首次调度的数据量为每个逻辑信道的PBR。
各个逻辑信道根据各个逻辑信道首次调度的数据量将待发送的数据传输至发射部件。并根据发射部件接收到的数据量和发射部件的初始可调度的总数据量确定发射部件的剩余可调度的总数据量。
若发射部件的剩余可调度的总数据量大于零,也就是发射部件还可以继续接收逻辑信道传输的数据,则选择优先级高的逻辑信道将数据传输至发射部件,进行第二轮数据调度。并继续计算发射部件的剩余可调度的总数据量,若发射部件的剩余可调度的总数据量大于零,则继续选择优先级高的逻辑信道将数据传输至发射部件,直至发射部件的剩余可调度的总数据量等于或者小于零为止。
发射部件在接收到逻辑信道传输的待发送的数据后,发射部件按照各个逻辑信道的优先级发送各个逻辑信道传输的数据。也就是,发射部件优先发送优先高的逻辑信道所传输的数据,优先级低的逻辑信道所传输的数据靠后发送。
在本申请实施例提供的数据发送方法中,在确定发送装置向接收装置进行数据传输的传输速率无法满足各逻辑信道的最低速率需求时,也就是信道拥堵情况十分严重时,根据各逻辑信道对应的拥堵调度配比和当前发送时间间隔可调度的总数据量确定各逻辑信道所调度数据的数据量阈值,以根据数据量阈值调度各个逻辑信道内的数据,使得各个逻辑信道内所调度的数据量小于数据量阈值,保证逻辑信道不会相互占用数据配额,在信道拥堵情况十分严重时,优先级低的逻辑信道仍可以继续传输数据,避免优先级低的逻辑信道内数据由于长期无法调度而失效。
本申请一实施例提供一种数据发送方法,该数据发送方法应用于图1所示数据通信系统,该方法包括如下步骤:
S401、获取发送装置的多个待发送的逻辑信道中各逻辑信道的最低速率需求。
其中,发送装置为无人机,接收装置为控制终端,无人机内部设有3个逻辑信道,用于无人机向地面的控制终端进行数据传输。将三个逻辑信道依次标记为逻辑信道A、逻辑信道B以及逻辑信道C。并设置逻辑信道的调度优先级为:逻辑信道A>逻辑信道B>逻辑信道C。
设定逻辑信道A、逻辑信道B以及逻辑信道C的最低速率需求GS i为1Mbps,2Mbps,500kbps。
S402、判断发送装置向接收装置进行数据传输的传输速率是否满足各逻辑信道的最低速率需求,若是,进入S405,否则,进入S403。
其中,当无人机和控制终端在近距离通信时,传输速率可以达到10Mbps,无人机的可调度的数据为6000b,三个逻辑信道的最低速率需求的总和为3.5Mbps。无人机向控制终端进行数据传输的传输速率高于三个逻辑信道的最低速率需求的总和,满足各逻辑信道的最低速率需求。
当无人机飞远时,无人机和控制终端之间的传输速率降到1.5Mbp,无人机的可调度的数据为1875b,无人机向控制终端进行数据传输的传输速率小于三个逻辑信道的最低速率需求的总和,不满足各逻辑信道的最低速率需求。
S403、根据各逻辑信道对应的拥堵调度配比确定各逻辑信道所调度数据的数据量阈值。
其中,当无人机飞远时,无人机和控制终端之间通信拥塞,已无法保证所有逻辑信道的最低需求,采用配额方式为各个逻辑信道调度数据。
预先设置的逻辑信道A、逻辑信道B、以及逻辑信道C的拥堵调度配比为4,5,1,根据无人机的可调度的总数据量和三个逻辑信道的拥堵调度配比可以得到各逻辑信道所调度数据的数据量阈值分别为:750b,938b,187b。
S404、根据数据量阈值将各逻辑信道的数据调度至发射部件以发送各逻辑信道调度的数据。
其中,根据数据量阈值确定三个逻辑信道的首次调度的数据量。例如:逻辑信道A、逻辑信道B以及逻辑信道C的首次调度的数据量为750b、900b以及180b,每个逻辑信道的首次调度的数据量小于各个逻辑信道的数据量阈值。按照逻辑信道的优先级将各个逻辑信道的数据调度至发射部件,以完成三个逻辑信道内数据的首次调度。
在经过首次调度后,无人机的剩余可调度的总数据量为45b,选择逻辑信道A中数据进行调度,逻辑信道A在第二次调度的数据量45b,无人机的剩余可调度的总数据量为0b,完成本次数据调度。
在无人机飞远,无人机和控制终端之间通信速率降至1.5Mbps时,逻辑通道C仍然能得到180b的调度数据量,不会存在逻辑信道C中数据一直无法调度而失效。
S405、根据各逻辑信道的最低速率需求确定各逻辑信道的PBR。
其中,在无人机和控制终端之间近距离通信时,无人机向控制终端之间传输速率可以满足各个逻辑信道的最低速率需求。
三个逻辑信道的子帧比均为0.8,发送时间间隔占比为8/10,接收时间间隔占比为2/10。根据公式(1)可以计算获得逻辑信道A、逻辑信道B以及逻辑信道C对应的PBR分别为1250b,2500b,625b。
S406、根据各逻辑信道的PBR和优先级控制发射部件发送各逻辑信道调度的数据。
其中,根据各个逻辑信道的PBR确定各个逻辑信道的首次调度的数据量,例如:逻辑信道A、逻辑信道B、以及逻辑信道C的首次调度的数据量为1250b,2500b,625b,依次将逻辑信道A、逻辑信道B以及逻辑信道C的数据调度至发射部件,再计算无人机的剩余可调度的总数据量1625b。逻辑信道A的优先级最高,对逻辑信道A中数据进行第二次调度,逻辑信道A在第二次调度的数据量为1000b,再计算无人机的剩余可调度的总数据量为625b。逻辑信道B的优先级次之,对逻辑信道B中数据进行第二次调度,逻辑信道B在第二次调度的数据量为625b,完成本次数据调度。
在本申请实施例提供的数据发送方法中,在传输速率无法满足各逻辑信道的最低速率需求时,也就是信道拥堵情况十分严重时,采用拥堵调度配比调度各个逻辑信道内数据,使得优先级低的逻辑信道仍可以继续传输数据,避免优先级低的逻辑信道内数据由于长期无法调度而失效。
如图4所示,本申请实施例提供一种数据发送装置,发送装置包括用于向接收装置发送数据的发射部件501和处理器502;处理器502用于:
获取发送装置的多个待发送的逻辑信道中各逻辑信道的最低速率需求;
在发送装置向接收装置进行数据传输的传输速率不满足各逻辑信道的最低速率需求时,根据各逻辑信道对应的拥堵调度配比确定各逻辑信道所调度数据的数据量阈值,并根据数据量阈值将各逻辑信道的数据调度至发射部件以发送各逻辑信道调度的数据。
可选地,处理器502具体用于:
获取各逻辑信道对应的拥堵调度配比;
根据各逻辑信道对应的拥堵调度配比和当前发送时间间隔可调度的总数据量,确定各逻辑信道所调度数据的数据量阈值。
可选地,处理器502具体用于:
获取各逻辑信道的优先级;
按照优先级由高到低的顺序,依次根据数据量阈值将各逻辑信道的数据调度至发射部件以发送各逻辑信道调度的数据。
可选地,处理器502具体用于:
分别将各逻辑信道对应的拥堵调度配比乘以总数据量,确定各逻辑信道所调度数据的数据量阈值。
可选地,处理器502具体用于:
获取发送装置向接收装置进行数据传输的传输速率;
在传输速率低于各逻辑信道的最低速率需求的总和时,确定传输速率不满足各逻辑信道的最低速率需求。
可选地,处理器502具体用于:
获取至少一个历史发送时间间隔内发射部件所发送数据的总数据量;
根据至少一个历史发送时间间隔内发射部件所发送数据的总数据量,确定传输速率。
可选地,处理器502具体用于:
根据各逻辑信道的最低速率需求,确定各逻辑信道的PBR;
获取当前发送时间间隔可调度的总数据量;
在当前发送时间间隔可调度的总数据量低于各逻辑信道的PBR的总和时,确定传输速率不满足各逻辑信道的最低速率需求。
可选地,处理器502具体用于:
根据各逻辑信道的最低速率需求和发送时间间隔与接收时间间隔的子帧比,确定各逻辑信道的PBR。
可选地,处理器502具体用于:
在传输速率满足各逻辑信道的最低速率需求时,根据各逻辑信道的最低速率需求确定各逻辑信道的PBR,并根据各逻辑信道的PBR和优先级控制发射部件发送各逻辑信道调度的数据。
可选地,发送装置为无人机,接收装置为控制终端。
本申请另一实施例提供一种可读存储介质,可读存储介质上存储有计算机程序;计算机程序在被执行时,实现上述实施例描述的数据发送方法。该数据发送方法可以具体参考上述实施例描述,此处不再赘述。
本申请另一实施例提供一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现上述实施例描述的数据发送方法。该数据发送方法可以具体参考上述实施例描述,此处不再赘述。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:只读内存(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (22)

  1. 一种数据发送方法,应用于发送装置,所述发送装置包括用于向接收装置发送数据的发射部件,其特征在于,所述方法包括:
    获取所述发送装置的多个待发送的逻辑信道中各逻辑信道的最低速率需求;
    在所述发送装置向接收装置进行数据传输的传输速率不满足各逻辑信道的最低速率需求时,根据各逻辑信道对应的拥堵调度配比确定所述各逻辑信道所调度数据的数据量阈值,并根据所述数据量阈值将所述各逻辑信道的数据调度至所述发射部件以发送所述各逻辑信道调度的数据。
  2. 根据权利要求1所述的方法,其特征在于,所述根据各逻辑信道对应的拥堵调度配比确定所述各逻辑信道所调度数据的数据量阈值,包括:
    获取各逻辑信道对应的拥堵调度配比;
    根据各逻辑信道对应的拥堵调度配比和当前发送时间间隔可调度的总数据量,确定所述各逻辑信道所调度数据的数据量阈值。
  3. 根据权利要求1或2所述的方法,其特征在于,所述根据所述数据量阈值将所述各逻辑信道的数据调度至所述发射部件以发送所述各逻辑信道调度的数据,包括:
    获取各逻辑信道的优先级;
    按照优先级由高到低的顺序,依次根据所述数据量阈值将所述各逻辑信道的数据调度至所述发射部件以发送所述各逻辑信道调度的数据。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,根据各逻辑信道对应的拥堵调度配比和当前发送时间间隔可调度的总数据量,确定所述各逻辑信道所调度数据的数据量阈值,包括:
    分别将各逻辑信道对应的拥堵调度配比乘以所述总数据量,确定所述各逻辑信道所调度数据的数据量阈值。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:
    获取所述发送装置向接收装置进行数据传输的传输速率;
    在所述传输速率低于各逻辑信道的最低速率需求的总和时,确定所述传输速率不满足各逻辑信道的最低速率需求。
  6. 根据权利要求5所述的方法,其特征在于,获取所述发送装置向接收装置进行数据传输的传输速率,包括:
    获取至少一个历史发送时间间隔内所述发射部件所发送数据的总数据量;
    根据所述至少一个历史发送时间间隔内所述发射部件所发送数据的总数据量,确定所述传输速率。
  7. 根据权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:
    根据各逻辑信道的最低速率需求,确定各逻辑信道的PBR;
    获取当前发送时间间隔可调度的总数据量;
    在所述当前发送时间间隔可调度的总数据量低于各逻辑信道的PBR的总和时,确定所述传输速率不满足各逻辑信道的最低速率需求。
  8. 根据权利要求7所述的方法,其特征在于,根据各逻辑信道的最低速率需求,确定各逻辑信道的PBR,包括:
    根据各逻辑信道的最低速率需求和发送时间间隔与接收时间间隔的子帧比,确定各逻辑信道的PBR。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述方法还包括:
    在所述传输速率满足各逻辑信道的最低速率需求时,根据各逻辑信道的最低速率需求确定各逻辑信道的PBR,并根据所述各逻辑信道的PBR和优先级控制所述发射部件发送所述各逻辑信道调度的数据。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述发送装置为无人机,所述接收装置为控制终端。
  11. 一种发送装置,所述发送装置包括用于向接收装置发送数据的发射部件,其特征在于,所述发送装置还包括:处理器;所述处理器用于:
    获取所述发送装置的多个待发送的逻辑信道中各逻辑信道的最低速率需求;
    在所述发送装置向接收装置进行数据传输的传输速率不满足各逻辑信道的最低速率需求时,根据各逻辑信道对应的拥堵调度配比确定所述各逻辑信道所调度数据的数据量阈值,并根据所述数据量阈值将所述各逻辑信道的数据调度至所述发射部件以发送所述各逻辑信道调度的数据。
  12. 根据权利要求11所述的装置,其特征在于,所述处理器具体用于:
    获取各逻辑信道对应的拥堵调度配比;
    根据各逻辑信道对应的拥堵调度配比和当前发送时间间隔可调度的总数据量,确定所述各逻辑信道所调度数据的数据量阈值。
  13. 根据权利要求11或12所述的装置,其特征在于,所述处理器具体用于:
    获取各逻辑信道的优先级;
    按照优先级由高到低的顺序,依次根据所述数据量阈值将所述各逻辑信道的数据调度至所述发射部件以发送所述各逻辑信道调度的数据。
  14. 根据权利要求11-13任一项所述的装置,其特征在于,所述处理器具体用于:
    分别将各逻辑信道对应的拥堵调度配比乘以总数据量,确定所述各逻辑信道所调度数据的数据量阈值。
  15. 根据权利要求11-14任一项所述的装置,其特征在于,所述处理器具体用于:
    获取所述发送装置向接收装置进行数据传输的传输速率;
    在所述传输速率低于各逻辑信道的最低速率需求的总和时,确定所述传输速率不满足各逻辑信道的最低速率需求。
  16. 根据权利要求15所述的装置,其特征在于,所述处理器具体用于:
    获取至少一个历史发送时间间隔内所述发射部件所发送数据的总数据量;
    根据所述至少一个历史发送时间间隔内所述发射部件所发送数据的总数据量,确定所述传输速率。
  17. 根据权利要求11-14任一项所述的装置,其特征在于,所述处理器具体用于:
    根据各逻辑信道的最低速率需求,确定各逻辑信道的PBR;
    获取当前发送时间间隔可调度的总数据量;
    在所述当前发送时间间隔可调度的总数据量低于各逻辑信道的PBR的总和时,确定所述传输速率不满足各逻辑信道的最低速率需求。
  18. 根据权利要求17所述的装置,其特征在于,所述处理器具体用于:
    根据各逻辑信道的最低速率需求和发送时间间隔与接收时间间隔的子帧比,确定各逻辑信道的PBR。
  19. 根据权利要求11-18任一项所述的装置,其特征在于,所述处理器还用于:
    在所述传输速率满足各逻辑信道的最低速率需求时,根据各逻辑信道的最低速率需求确定各逻辑信道的PBR,并根据所述各逻辑信道的PBR和优先级控制所述发射部件发送所述各逻辑信道调度的数据。
  20. 根据权利要求11-19任一项所述的装置,其特征在于,所述发送装置为无人机,所述接收装置为控制终端。
  21. 一种可读存储介质,其特征在于,所述可读存储介质上存储有计算机程序;所述计算机程序在被执行时,实现如权利要求1-10任一项所述的数据发送方法。
  22. 一种计算机程序产品,包括计算机程序,其特征在于,该计算机程序被处理器执 行时实现权利要求1-10中任意一项所述的数据发送方法。
PCT/CN2020/139662 2020-12-25 2020-12-25 数据发送方法以及设备 WO2022134085A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/139662 WO2022134085A1 (zh) 2020-12-25 2020-12-25 数据发送方法以及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/139662 WO2022134085A1 (zh) 2020-12-25 2020-12-25 数据发送方法以及设备

Publications (1)

Publication Number Publication Date
WO2022134085A1 true WO2022134085A1 (zh) 2022-06-30

Family

ID=82158708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/139662 WO2022134085A1 (zh) 2020-12-25 2020-12-25 数据发送方法以及设备

Country Status (1)

Country Link
WO (1) WO2022134085A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190230018A1 (en) * 2016-09-30 2019-07-25 Huawei Technologies Co., Ltd. Port rate determining method and computer device
CN110996391A (zh) * 2016-11-01 2020-04-10 华为技术有限公司 一种资源分配方法及终端
CN111294758A (zh) * 2019-07-22 2020-06-16 北京展讯高科通信技术有限公司 逻辑信道优先级处理方法及装置、存储介质、终端
CN111741536A (zh) * 2020-08-21 2020-10-02 深圳微品致远信息科技有限公司 一种用于5g网络的动态网络切片方法和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190230018A1 (en) * 2016-09-30 2019-07-25 Huawei Technologies Co., Ltd. Port rate determining method and computer device
CN110996391A (zh) * 2016-11-01 2020-04-10 华为技术有限公司 一种资源分配方法及终端
CN111294758A (zh) * 2019-07-22 2020-06-16 北京展讯高科通信技术有限公司 逻辑信道优先级处理方法及装置、存储介质、终端
CN111741536A (zh) * 2020-08-21 2020-10-02 深圳微品致远信息科技有限公司 一种用于5g网络的动态网络切片方法和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FUJITSU: "Discussion on the Fairness Enforcement for IAB", 3GPP DRAFT; R2-2009006, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online; 20201102 - 20201113, 23 October 2020 (2020-10-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051942051 *

Similar Documents

Publication Publication Date Title
US8819269B2 (en) Adaptive bit rate method and system using retransmission and replacement
CN104333767B (zh) 一种车载视频监控系统多通道优先级控制方法及系统
CN108667573B (zh) 一种数据处理方法、装置及相关设备
US20210377799A1 (en) Data Packet Distribution Method, Sender Device, Receiver Device and Storage Medium
CN102348292B (zh) 一种基于mac子层和rlc子层的数据传输方法和设备
US10638347B2 (en) Method, device and computer storage medium for transmitting a control message
CN109450606B (zh) 数据传输管控方法及装置
CN106664440B (zh) 用于在多媒体系统中接收和发送信息的方法和设备
EP3291598A1 (en) Base station and user device
EP2997762B1 (en) Method and system for providing deterministic quality of service for communication devices
US11146494B2 (en) Scheduling prioritized traffic in a scrambled coded multiple access (SCMA) system
CN111064788A (zh) 信号传输方法、机器人及计算机可读存储介质
WO2022134085A1 (zh) 数据发送方法以及设备
US10200988B2 (en) Physical resource block scheduling method, device, and system
WO2017008198A1 (zh) 信道接入期的分配方法、装置及系统
CN108924063B (zh) 一种时延约束感知的最小化端到端时延的流量分配方法
CN109756936B (zh) 一种流的映射方法、接收方法、网络设备及终端
EP4260624B1 (en) Method and apparatus for use in a data pulling operation
US11134018B2 (en) Communication device, communication system and method for controlling communication rate in the communication system
US20230413245A1 (en) Base station and storage medium
CN104025519A (zh) 传送数据流的分组的网络网关和方法
CN113905417B (zh) 基于令牌桶的5g基站分组数据汇聚协议层流量控制方法
CN115914682A (zh) 视频码率调整方法、系统、服务器及存储介质
CN118828935A (zh) 上行业务的预调度方法、装置、设备及存储介质
CN117121460A (zh) 用于调度业务的装置和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20966648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20966648

Country of ref document: EP

Kind code of ref document: A1