WO2018059461A1 - 一种信息传输方法及装置 - Google Patents

一种信息传输方法及装置 Download PDF

Info

Publication number
WO2018059461A1
WO2018059461A1 PCT/CN2017/103805 CN2017103805W WO2018059461A1 WO 2018059461 A1 WO2018059461 A1 WO 2018059461A1 CN 2017103805 W CN2017103805 W CN 2017103805W WO 2018059461 A1 WO2018059461 A1 WO 2018059461A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
information
subgroup
type
receiving
Prior art date
Application number
PCT/CN2017/103805
Other languages
English (en)
French (fr)
Inventor
陈艺戬
鲁照华
李儒岳
吴昊
高波
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018059461A1 publication Critical patent/WO2018059461A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the present application relates to, but is not limited to, a wireless communication technology, and more particularly to an information transmission method and apparatus.
  • Narrow beam transmission can guarantee the basic coverage requirements of various channels, but the situation in Figure 2 is expected to be avoided, because it will cause strong interference between the two sending nodes.
  • the ideal situation is shown in Figure 3. For any Two nodes always stagger the beams to reduce interference, but it is actually difficult to achieve such an effect.
  • each transmitting node transmits N pieces of information content to resources in the same manner when the resource blocks of each beam scan transmit N pieces of information, for example, N parts.
  • the mapping of information to the Ni resource subgroups on the i-th resource block is independent of the value of i, or taking the spatial domain resource as an example, the binding relationship between the beam and the time-frequency code resource sub-group is relatively fixed, and cannot be It changes with the change of the resource block, otherwise it will cause the receiving beam to be inaccurate and lose the combined gain; that is, the combining gain cannot be obtained at the same time and the interference randomization is well performed.
  • Embodiments of the present invention are directed to providing an information transmission method and apparatus for simultaneously acquiring a combined gain and better performing interference randomization.
  • an embodiment of the present invention provides an information transmission method, where the transmission method should For the sender, the method includes:
  • the sending end determines N pieces of information to be sent
  • the transmitting end determines, according to the first type of parameters, N mapping functions to be sent to the resource subgroup according to the first type of parameters;
  • M is an integer not less than 2, and N is an integer.
  • an embodiment of the present invention provides an information transmission method, where the transmission method is applied to a receiving end, and the method includes:
  • the receiving end determines a resource block and a resource subgroup on the resource block
  • the receiving end receives information on a resource subgroup where the information to be received is located.
  • an embodiment of the present invention provides an information transmission method, where the transmission method is applied to a sending end, and the method includes:
  • the sending end determines a N group sending manner
  • the sending end determines a first binding function between the resource subgroup and the N group sending manner according to the first type of parameters
  • M is an integer not less than 2, and N is an integer.
  • an embodiment of the present invention provides an information transmission method, where the transmission method is applied to a receiving end, and the method includes:
  • the receiving end determines N sets of receiving modes
  • the receiving end determines a second binding function between the resource subgroup and the N group receiving manner according to the first type of parameters
  • M is an integer not less than 2, and N is an integer.
  • the embodiment of the present invention provides a first sending end, where the first sending end includes: a second determining module, a mapping module, and a first sending module, where
  • the second determining module is configured to determine N pieces of information to be sent
  • the mapping determining module is configured to determine, for each resource block, the mapping function of the N pieces of information to be sent to the resource subgroup according to the first type of parameters;
  • the first sending module is configured to send N pieces of information to be sent on the M resource blocks according to the mapping function;
  • M is an integer not less than 2, and N is an integer.
  • the embodiment of the present invention provides a first receiving end, where the receiving end includes: a third determining module, a fourth determining module, and a first receiving module, where
  • the third determining module is configured to determine a resource sub-group on the resource block and the resource block;
  • the fourth determining module is configured to determine, according to the first type of parameter, a resource subgroup in which the information to be received is located;
  • the first receiving module is configured to receive information on a resource subgroup where the information to be received is located.
  • the embodiment of the present invention provides a second sending end, where the sending end includes: a sixth determining module, a first binding module, and a second sending module, where
  • the sixth determining module is configured to determine a N group sending manner
  • the first binding module is configured to determine, according to the first type parameter, a first binding function between the resource subgroup and the N group sending manner for each resource block;
  • the second sending module is configured to send information to be sent on the M resource blocks according to the first binding function
  • M is an integer not less than 2, and N is an integer.
  • the embodiment of the present invention provides a second receiving end, where the receiving end includes: an eighth determining module, a second binding module, a ninth determining module, and a second receiving module, where
  • the eighth determining module is configured to determine an N group receiving manner
  • the second binding module determines, for each resource block, a second binding function between the resource subgroup and the N group receiving manner according to the first type parameter;
  • the ninth determining module is configured to determine, according to the second binding function, a resource subgroup corresponding receiving manner
  • the second receiving end is configured to receive information on the M resource blocks according to the receiving manner corresponding to the resource subgroup;
  • M is an integer not less than 2, and N is an integer.
  • the embodiment of the present invention provides an information transmission method and apparatus.
  • the transmitting end changes the mapping function between the resource subgroup and the information to be sent by introducing the first type of parameters, or the transmitting end introduces
  • the first type of parameter is used to change the first binding function between the resource subgroup and the sending mode required for the information to be sent, and the sending end sends the resource block to be sent by using the changed mapping function or the first binding function.
  • the information about the resource subgroup in which the information to be received is determined by the first type of parameter, or the receiving end determines the second binding of the receiving mode and the resource subgroup by using the first type of parameter when receiving the information to be received.
  • the function ensures that the receiving end accurately receives the transmission information from the transmitting end, thereby obtaining the combining gain and the better interference randomization effect at the same time.
  • FIG. 1 is a schematic diagram of a resource block and a resource subgroup according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a serious airspace interference in a narrow beam transmission according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of coordination of ideal airspace interference for narrow beam transmission according to an embodiment of the present invention
  • FIG. 4 is a flowchart of a method for transmitting information used by a transmitting end according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of sending, by a sending end, information to be sent according to a mapping relationship according to an embodiment of the present disclosure
  • FIG. 6 is a flowchart of a method for transmitting information on a receiving end according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of implementing a resource subgroup selection function according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of another method for transmitting information used by a transmitting end according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of sending, by a sending end, information to be sent according to a first binding relationship according to an embodiment of the present disclosure
  • FIG. 10 is a flowchart of another method for transmitting information on a receiving end according to an embodiment of the present invention.
  • FIG. 11 is a block diagram of a first sending end according to an embodiment of the present invention.
  • FIG. 12 is a block diagram of a first receiving end according to an embodiment of the present invention.
  • FIG. 13 is a block diagram of a second sending end according to an embodiment of the present invention.
  • FIG. 14 is a block diagram of a second receiving end according to an embodiment of the present invention.
  • FIG. 15 is a block diagram of an information transmission system according to an embodiment of the present invention.
  • FIG. 16 is a block diagram of another information transmission system according to an embodiment of the present invention.
  • the embodiment of the invention provides an information transmission method and device, and the information transmission method is applied to an information transmission device, and the information transmission device is mainly composed of a transmitting end and a receiving end.
  • the transmitting end changes the mapping function between the resource subgroup and the information to be sent by introducing the first type of parameters, or the transmitting end changes the resource subtype by introducing the first type of parameters.
  • the first binding function between the group and the sending mode required for the information to be sent the sending end sends the information to be sent on the resource block by using the changed mapping function or the first binding function, and the receiving end is receiving
  • the first type of parameters are used to determine the resource subgroup in which the information to be received is located, or the receiving end determines the receiving mode and the second binding function of the resource subgroup through the first type of parameters to ensure that the receiving end is accurate. Receiving the transmission information from the sender.
  • the method may be applied to a sending end, and the method includes:
  • the transmitting end determines the M resource blocks and the resource subgroups on the M resource blocks.
  • the ith resource block includes a Ni resource subgroup, where the M and Ni are positive integers, and i is an integer.
  • M is an integer not less than 2;
  • the sending end determines the M resource blocks and the resource subgroups on the M resource blocks, and may include:
  • the transmitting end determines the M resource blocks and the resource subgroups on the M resource blocks according to the link manner between the transmitting end and the receiving end;
  • the resource type of the resource block includes: a resource type formed by mixing at least one or a plurality of resources of a time domain resource, a frequency domain resource, an air domain resource, and a code domain resource;
  • the time domain resource includes a time domain symbol, or a time slot, or a subframe, or a time interval;
  • the frequency domain resource includes a subcarrier;
  • the spatial domain resource includes a beam, an antenna, and At least one of a sector and a port;
  • the code domain resource includes a sequence;
  • the link manner between the sending end and the receiving end includes: an uplink or a downlink or a side link;
  • the transmitting end is a terminal
  • the receiving end is a base station
  • the resource block is usually pre-configured
  • the terminal determines according to configuration signaling sent by the base station.
  • the division of the resource subgroup for example, the resource block is a time domain resource, and the configuration signaling includes a period, a resource form, a time domain offset, a time domain symbol included in the resource block, and a division of a time domain symbol resource subgroup;
  • the configuration signaling includes the indication information of the resource block in the frequency domain, the sub-carrier resource sub-group division information included in the frequency domain resource block, and the resource block is the code domain resource, and the configuration signaling includes the code sequence.
  • the link between the sender and the receiver is the downlink
  • the sender is the base station
  • the receiver is the terminal
  • the resource block is determined by the base station according to the current transmission requirement.
  • the downlink signaling indicates the location of the terminal resource block and the division manner of the resource subgroup;
  • the link between the sender and the receiver is a sidelink
  • the sender is the first terminal
  • the receiver is the second terminal
  • the resource block relates to the sending between the first terminal and the second terminal
  • the manner in which the resource subgroups are divided may be determined by the configuration of the macro base station associated with the first terminal and the second terminal.
  • the transmitting end and the receiving end may establish a link through the air interface, and may also establish a link in other manners, which is not limited in the embodiment of the present invention.
  • the sending end determines N pieces of information to be sent; where N is an integer not exceeding Ni;
  • step S402 if the number N of information to be transmitted is greater than the number of resource subgroups Ni, the number N of information to be transmitted is equal to the number Ni of resource subgroups;
  • the information to be sent may be multiple types of information
  • the information to be sent may be:
  • broadcast information being broadcast information indicating paging information, or broadcast information indicating System Information Block (SIB) information;
  • SIB System Information Block
  • N sets of synchronization signals are N sets of secondary synchronization signals, or N sets of extended synchronization signals;
  • control information being control information indicating paging information, or control information indicating SIB information, or channel state information (CSI, Channel State Information, ACK/NACK, Acknowledgment/ Negative-Acknowledgment) at least one of information, scheduling request (SR, Scheduling Request) information;
  • CSI Channel State Information
  • ACK/NACK Acknowledgment/ Negative-Acknowledgment
  • SR Scheduling Request
  • N groups of random access preamble information
  • the N sets of measurement pilot information where the measurement pilot information is a Channel State Information Reference Signal (CSI-RS), or a Beam Reference Signal (BRS), or a more refined beam measurement.
  • CSI-RS Channel State Information Reference Signal
  • BRS Beam Reference Signal
  • Guided BRRS Beam Refinement Reference Signal
  • SRS Sounding Reference Signal
  • DRS Demodulation Reference Signal
  • DRS Demodulation Reference Signal
  • the sending end determines, according to the first type of parameters, N mapping functions to be sent to the resource subgroup according to the first type of parameters;
  • the first type of parameters may include a configuration indication parameter, a location index of the resource block, a resource block index, a value of the information, a value of the resource subgroup, a cell index, a UE index, a type of the information, and a type At least one of the frequency frequencies.
  • mapping function is agreed by the receiving end and the transmitting end, or configured by the sending end, or configured by the receiving end;
  • At least one of the independent variables of the mapping function is determined according to the first type of parameter.
  • q can be determined according to the value of N and / or Ni, for example, when N or Ni is less, q can be 0, or when N is much smaller than Ni, q can be 0, q can also be
  • the UE ID determines, for example, q may represent the UE ID, and q may also be determined by the cell ID, or determined by the configuration indication parameter, or determined by the location index or resource block index of the resource block, or by the type of the information, such as the measurement guide.
  • the y value obtained by taking the N pieces of information to be sent is the information number mapped to the resource subgroup.
  • the embodiment of the present invention is not concerned with the actual form of the mapping function, but the mapping.
  • the variable nature of the function, and the mapping function F can also be easily extended to more parameters.
  • S404 The sending end sends, according to the mapping function, N pieces of information to be sent on the M resource blocks.
  • step S404 at least two resource blocks exist in the M resource blocks, and the mapping function used by the resource subgroup and the N pieces of information to be sent is different;
  • the sending end when the sending end sends the information to be sent, the first binding function between each resource block, the resource subgroup and the sending mode required for the information to be sent is the same, and the resource subgroup and the resource subgroup The mapping function between the information to be sent is different;
  • the schematic diagram of the sending end sending the information to be sent according to the mapping relationship may be as shown in FIG. 5;
  • the beams corresponding to the resource subgroups on each resource block are the same in each transmission period, and the resource subgroup corresponding to the resource blocks
  • the information to be sent is different in each transmission period. That is, the binding relationship between the resource subgroup and the beam whose resource type is the airspace resource is constant for each resource block, and only the information and resources to be sent are changed.
  • the mapping relationship of subgroups is not limited to the following subgroups.
  • This embodiment provides an information transmission method, where the method is used by a transmitting end, where the transmitting end determines M resource blocks and resource subgroups on M resource blocks, and the sending end determines N pieces of information to be sent. And for each resource block, the sending end determines, according to the first type of parameters, N pieces of information to be sent to a mapping function of the resource subgroup, and the sending end sends N parts of the M resource blocks according to the mapping function.
  • the transmitted information so as to obtain the combined gain and better interference randomization effect.
  • an information transmission method is provided for the first embodiment of the present invention.
  • the method is applied to a receiving end, and the method includes:
  • S601 The receiving end determines a resource block and a resource subgroup on the resource block.
  • the receiving end determines the resource sub-group on the resource block and the resource block, including:
  • the receiving end determines a resource sub-group on the resource block and the resource block according to a link manner between the transmitting end and the receiving end;
  • the resource type of the resource block includes a resource type composed of a mixture of at least one of a time domain resource, a frequency domain resource, an air domain resource, and a code domain resource;
  • the time domain resource includes a time domain symbol, or a time slot, or a subframe, or a Time interval;
  • the frequency domain resource includes a subcarrier;
  • the spatial domain resource includes a beam, an antenna, a sector, and a port. At least one of the code domain resources including a sequence;
  • the link manner between the sending end and the receiving end includes: an uplink or a downlink or a side link;
  • the transmitting end is a terminal
  • the receiving end is a base station
  • the resource block is usually pre-configured
  • the terminal determines according to configuration signaling sent by the base station.
  • the division of the resource subgroup for example, the resource block is a time domain resource, and the configuration signaling includes a period, a resource form, a time domain offset, a time domain symbol included in the resource block, and a division of a time domain symbol resource subgroup;
  • the configuration signaling includes the indication information of the resource block in the frequency domain, the sub-carrier resource sub-group division information included in the frequency domain resource block, and the resource block is the code domain resource, and the configuration signaling includes the code sequence.
  • the sender is the base station
  • the receiver is the terminal.
  • the resource block is determined by the base station according to the current transmission requirement, and is indicated by the downlink signaling to the terminal resource. The location of the block and the way in which the resource subgroups are divided;
  • the link between the sender and the receiver is a sidelink
  • the sender is the first terminal
  • the receiver is the second terminal
  • the resource block relates to the sending between the first terminal and the second terminal
  • the manner in which the resource subgroups are divided may be determined by the configuration of the macro base station associated with the first terminal and the second terminal.
  • the transmitting end and the receiving end may establish a link through the air interface, and may also establish a link in other manners, which is not limited in the embodiment of the present invention.
  • the receiving end determines, according to the first type of parameter, a resource subgroup in which the information to be received is located;
  • the first type of parameters include a configuration indication parameter, a location index of a resource block, a resource block index, a value of N, a value of Ni, a cell index, a UE index, and a class of information. At least one of type and carrier frequency.
  • the information to be received by the receiving end is the same as the information to be sent sent by the sending end in the first embodiment, and the first type of parameters are the same as the first type of parameters corresponding to the sending end in the first embodiment. content.
  • the receiving end determines, according to the first type of parameter, the resource subgroup in which the information to be received is located, including:
  • the receiving end determines a resource subgroup in which the information to be received is located by using a resource subgroup selection function between the resource subgroup and the first type of parameters.
  • the resource subgroup selection function is configured to represent that the difference of the first type of parameters may change a resource subgroup corresponding to the information to be received;
  • the resource subgroup selection function implementation diagram may be as shown in FIG. 7;
  • the resource subgroup selection function associated with the first type of parameter can determine the resource subgroup in which the information to be received is located
  • the receiving end acquires the resource subgroup in which the information to be received is located according to the first type of parameter in the resource subgroup selection function.
  • S603 The receiving end receives information on a resource subgroup where the information to be received is located.
  • the receiving end may be applied to receiving various information, such as: N sets of broadcast information, the broadcast information is broadcast information indicating paging information, or broadcast information indicating SIB, information;
  • N sets of synchronization signals are N sets of secondary synchronization signals, or N sets of extended synchronization signals;
  • control information is control information indicating paging information, or control information indicating SIB information, or at least one of channel state information CSI, ACK/NACK information, and SR information;
  • N groups of random access preamble information
  • N sets of measurement pilot information where the measurement pilot information is a downlink measurement pilot CSI-RS, or beam reference pilot BRS, or more refined beam measurement pilot BRRS, or uplink sounding pilot SRS, or DRS, may also be some other measurement pilot such as demodulation reference signal, etc. It is the uplink measurement pilot.
  • the measurement pilot information is a downlink measurement pilot CSI-RS, or beam reference pilot BRS, or more refined beam measurement pilot BRRS, or uplink sounding pilot SRS, or DRS, may also be some other measurement pilot such as demodulation reference signal, etc. It is the uplink measurement pilot.
  • the embodiment provides an information transmission method, where the information transmission method is used by a receiving end, and the receiving end determines a resource sub-group on a resource block and a resource block, where the receiving end passes between the resource sub-group and the first-type parameter.
  • the resource sub-group selection function determines the resource sub-group in which the information to be received is located, and the receiving end receives the information on the resource sub-group in which the information to be received is located, and ensures the randomized interference effect between the nodes.
  • the receiving end accurately receives the information from the transmitting end to avoid the combined gain loss.
  • FIG. 8 another information transmission method according to an embodiment of the present invention is shown.
  • the method is applied to a sending end, and the method includes:
  • the transmitting end determines the M resource blocks and the resource subgroups on the M resource blocks.
  • the ith resource block includes a Ni resource subgroup, where the M and Ni are positive integers, and i is an integer.
  • M is an integer not less than 2;
  • the transmitting end determines the M resource blocks and the resource subgroups on the M resource blocks, including:
  • the transmitting end determines the M resource blocks and the resource subgroups on the M resource blocks according to the link manner between the sending end and the receiving end;
  • the resource type of the resource block includes a resource type composed of a mixture of at least one of a time domain resource, a frequency domain resource, and a code domain resource;
  • the time domain resource is a time domain symbol, or a time slot, or a subframe, or a Time interval;
  • the frequency domain resource includes a subcarrier; and
  • the code domain resource includes a sequence;
  • the link manner between the sending end and the receiving end includes: an uplink or a downlink or a side link;
  • the transmitting end when the link between the transmitting end and the receiving end is an uplink, the transmitting end is a terminal, the receiving end is a base station, and the resource block is usually pre-configured, and the terminal determines according to configuration signaling sent by the base station.
  • Division of resource subgroups for example, resource blocks are time domain resources, configuration signaling The cycle, the resource form, the time domain offset, the time domain symbol included in the resource block, and the division of the time domain symbol resource subgroup are included; if the resource block is a frequency domain resource, the configuration signaling includes an indication of the resource block in the frequency domain.
  • the configuration signaling includes the set information of the code sequence, the division information of the sequence resource sub-group, etc.; the resource block is an air-space resource,
  • the configuration signaling includes information about antenna port information, beam information, antenna port resource subgroup, and beam resource subgroup.
  • the sender is the base station
  • the receiver is the terminal.
  • the resource block is determined by the base station according to the current transmission requirement, and is indicated by the downlink signaling to the terminal resource. The location of the block and the way in which the resource subgroups are divided;
  • the link between the sender and the receiver is a sidelink
  • the sender is the first terminal
  • the receiver is the second terminal
  • the resource block relates to the sending between the first terminal and the second terminal
  • the manner in which the resource subgroups are divided may be determined by the configuration of the macro base station associated with the first terminal and the second terminal.
  • the transmitting end and the receiving end may establish a link through the air interface, and may also establish a link in other manners, which is not limited in the embodiment of the present invention.
  • the sending end determines an N group sending manner, where N is an integer that does not exceed Ni;
  • step S802 if the number N of the transmission modes exceeds the number Ni of resource subgroups, the number N of transmission modes is equal to the number Ni of resource subgroups;
  • the sending manner includes: sending power, or at least one of a transmitting beam, a transmitting antenna, a sending port, and a sending sector;
  • the transmission method may include: a group of beams [beam 1, beam 2, ... beam N];
  • the sending end determines, according to the first type of parameter, a first binding function between the resource subgroup and the N group sending manner;
  • the first type of parameters include a configuration indication parameter, a location index of the resource block, a resource block index, a value of N, a value of Ni, a cell index, a UE index, and a class of information. At least one of type and carrier frequency.
  • the first binding function is agreed by the sending end and the receiving end, or configured by the sending end, or configured by the receiving end;
  • At least one of the independent variables of the first binding function is determined according to the first type of parameter.
  • the type determination for example, the measurement of the pilot and the synchronization signal have different values of q, or may be determined by the carrier frequency, and the values of q of different carrier frequencies are different, or q may be jointly determined by the plurality of first-class parameters;
  • the y value obtained by summing the N first type transmission resources is the number of the first type of transmission resource bound to the resource subgroup.
  • S804 The sending end sends the information to be sent on the M resource blocks according to the first binding function.
  • the information to be sent is N sets of broadcast information, the broadcast information is broadcast information indicating paging information, or broadcast information indicating SIB, information;
  • N sets of synchronization signals are N sets of secondary synchronization signals, or N sets of extended synchronization signals;
  • control information is control information indicating paging information, or control information indicating SIB information, or at least one of channel state information CSI, ACK/NACK information, and SR information;
  • N groups of random access preamble information
  • the measurement pilot information is a downlink measurement pilot CSI-RS, or a beam reference pilot BRS, or a more refined beam measurement pilot BRRS, or an uplink sounding pilot SRS, or
  • the DRS may also be some other measurement pilot such as a demodulation reference signal, or may be an uplink measurement pilot.
  • step S804 at least two resource blocks exist in the M resource blocks, and the resource binding group is different from the first binding function of the N group sending manner;
  • the mapping function between the resource subgroup and the information to be sent is the same for each resource block, and the first between the resource subgroup and the sending mode.
  • Different binding functions
  • a schematic diagram of sending, by the sending end, the information to be sent on the M resource blocks according to the first binding function may be as shown in FIG. 9;
  • the information to be sent corresponding to the resource sub-group on each resource block is the same in each transmission period in each transmission period, and the resources are the same.
  • the beams corresponding to the resource subgroups on the block are different, that is, the mapping relationship between the information to be sent and the resource subgroup is constant for each resource block in each transmission cycle, and only the resource subgroups are changed. Beam binding relationship.
  • This embodiment provides another information transmission method, where the information transmission method is used by a transmitting end, and the transmitting end determines M resource blocks and resource subgroups on M resource blocks, and the transmitting end determines N groups to send.
  • the method for each resource block, the sending end determines, according to the first type of parameter, a first binding function between the resource subgroup and the N group sending manner, where the sending end sends according to the first binding function.
  • an information transmission method provided by the embodiment of the present invention is provided.
  • the method is applied to a receiving end, and the method includes:
  • the receiving end determines M resource blocks and resource subgroups on M resource blocks; wherein, the i th resource block includes Ni resource subgroups;
  • the receiving end determines the M resource blocks and the resource subgroups on the M resource blocks, and may include:
  • the receiving end determines the M resource blocks and the resource subgroups on the M resource blocks according to the link manner between the sending end and the receiving end;
  • the resource type of the resource block includes a resource type composed of a mixture of at least one of a time domain resource, a frequency domain resource, and a code domain resource;
  • the time domain resource is a time domain symbol, or a time slot, or a subframe, or a Time interval;
  • the frequency domain resource includes a subcarrier; and
  • the code domain resource includes a sequence;
  • the link manner between the sending end and the receiving end includes: an uplink or a downlink or a side link;
  • the transmitting end is a terminal
  • the receiving end is a base station
  • the resource block is usually pre-configured
  • the terminal determines according to configuration signaling sent by the base station.
  • the division of the resource subgroup for example, the resource block is a time domain resource, and the configuration signaling includes a period, a resource form, a time domain offset, a time domain symbol included in the resource block, and a division of a time domain symbol resource subgroup;
  • the configuration signaling includes the indication information of the resource block in the frequency domain, the sub-carrier resource sub-group division information included in the frequency domain resource block, and the resource block is the code domain resource, and the configuration signaling includes the code sequence.
  • the sender is the base station
  • the receiver is the terminal.
  • the resource block is determined by the base station according to the current transmission requirement, and is indicated by the downlink signaling to the terminal resource. The location of the block and the way in which the resource subgroups are divided;
  • the sender is the first terminal.
  • the receiving end is a second terminal, and the resource block relates to the sending between the first terminal and the second terminal, and the location of the resource block and the dividing manner of the resource sub-group may be adopted by the macro base station related to the first terminal and the second terminal. Configuration is determined.
  • the transmitting end and the receiving end may establish a link through the air interface, and may also establish a link in other manners, which is not limited in the embodiment of the present invention.
  • the receiving end determines an N group receiving manner; where N is an integer that does not exceed Ni;
  • step S1002 if the number N of the receiving modes exceeds the number Ni of resource subgroups, the number N of receiving modes is equal to the number Ni of resource subgroups;
  • the receiving manner includes at least one of a receiving beam, a receiving antenna, a receiving port, and a receiving sector.
  • the receiving end determines a second binding function between the resource subgroup and the N group receiving manner according to the first type parameter;
  • the first type of parameters include a configuration indication parameter, a location index of the resource block, a resource block index, a value of N, a value of Ni, a cell index, a UE index, a type of information, and a carrier frequency. At least one.
  • the second binding function is agreed by the sending end and the receiving end, or configured by the sending end, or configured by the receiving end;
  • At least one of the independent variables of the first binding function is determined according to the first type of parameter.
  • Type determination such as measuring the difference between the pilot and the synchronization signal q, can also be
  • the sum of the y values obtained by taking the remainder of the N first type of receiving resources is the number of the first type of receiving resources bound to the resource subgroup.
  • the first type of parameters and the first type of parameters corresponding to the sending end in the third embodiment are the same content.
  • the receiving end determines, according to the second binding function, a resource subgroup corresponding receiving manner.
  • step S1004 at least two resource blocks exist in the M resource blocks, and the resource binding group is different from the second binding function in the N group sending manner;
  • the second binding relationship is the same as the implementation process of the first binding relationship in the third embodiment.
  • the receiving end receives information on the M resource blocks according to the receiving manner corresponding to the resource subgroup.
  • the information to be received by the receiving end is the same information as the information to be sent sent by the sending end in the third embodiment
  • the receiving end may be applied to receiving various information, such as: N sets of broadcast information, the broadcast information is broadcast information indicating paging information, or broadcast information indicating SIB, information;
  • N sets of synchronization signals are N sets of secondary synchronization signals, or N sets of extended synchronization signals;
  • control information is control information indicating paging information, or control information indicating SIB information, or channel state information CSI, ACK/NACK information, At least one of the SR information;
  • N groups of random access preamble information
  • the measurement pilot information is a downlink measurement pilot CSI-RS, or a beam reference pilot BRS, or a more refined beam measurement pilot BRRS, or an uplink sounding pilot SRS, or
  • the DRS may also be some other measurement pilot such as a demodulation reference signal, or may be an uplink measurement pilot.
  • This embodiment provides another information transmission method, where the method is used by a receiving end, where the receiving end determines M resource blocks and resource subgroups on M resource blocks, and the receiving end determines N groups of receiving modes. For each resource block, the receiving end determines a second binding function between the resource subgroup and the N group receiving manner according to the first type parameter, and the receiving end receives M according to the second binding function.
  • the information to be received on the resource block avoids the combined gain loss.
  • the first transmitting end 11 includes: a first determining module 1101, a second determining module 1102, a mapping module 1103, and a first sending. Module 1104, wherein
  • the first determining module 1101 is configured to determine M resource blocks and resource subgroups on the M resource blocks; wherein the i th resource blocks include Ni resource subgroups, and the M and Ni are positive integers. i is an integer, and M is an integer not less than 2;
  • the second determining module 1102 is configured to determine N pieces of information to be sent; wherein N is an integer not exceeding Ni;
  • the mapping module 1103 is configured to determine, for each resource block, a mapping function of N pieces of information to be sent to a resource subgroup according to the first type of parameters;
  • the first sending module 1104 is configured to send N pieces of information to be sent on the M resource blocks according to the mapping function.
  • the first determining module 1101 is configured to
  • the resource type of the resource block includes: a resource type package of the resource block a resource type consisting of a mixture of at least one or more of a time domain resource, a frequency domain resource, an air domain resource, and a code domain resource;
  • the time domain resource includes a time domain symbol, or a time slot, or a subframe, or a Time interval;
  • the frequency domain resource includes a subcarrier;
  • the spatial domain resource includes a beam, an antenna, a sector, and a port. At least one of the code domain resources including a sequence;
  • the link manner between the sending end and the receiving end includes: an uplink or a downlink or a side link;
  • the transmitting end is a terminal
  • the receiving end is a base station
  • the resource block is usually pre-configured
  • the terminal determines according to configuration signaling sent by the base station.
  • the division of the resource subgroup for example, the resource block is a time domain resource, and the configuration signaling includes a period, a resource form, a time domain offset, a time domain symbol included in the resource block, and a division of a time domain symbol resource subgroup;
  • the configuration signaling includes the indication information of the resource block in the frequency domain, the sub-carrier resource sub-group division information included in the frequency domain resource block, and the resource block is the code domain resource, and the configuration signaling includes the code sequence.
  • the sender is the base station
  • the receiver is the terminal.
  • the resource block is determined by the base station according to the current transmission requirement, and is indicated by the downlink signaling to the terminal resource. The location of the block and the way in which the resource subgroups are divided;
  • the link between the sender and the receiver is a sidelink
  • the sender is the first terminal
  • the receiver is the second terminal
  • the resource block relates to the sending between the first terminal and the second terminal
  • the manner in which the resource subgroups are divided may be determined by the configuration of the macro base station associated with the first terminal and the second terminal.
  • the transmitting end and the receiving end may establish a link through the air interface, and may also establish a link in other manners, which is not limited in the embodiment of the present invention.
  • the second determining module 1102 if the number N of information to be sent is greater than the number of resource subgroups Ni, the number N of information to be sent is equal to the number Ni of resource subgroups;
  • the information to be sent may be multiple types of information
  • the information to be sent may be:
  • the broadcast information is broadcast information indicating paging information, or broadcast information indicating SIB, information;
  • N sets of synchronization signals are N sets of secondary synchronization signals, or N sets of extended synchronization signals;
  • control information is control information indicating paging information, or control information indicating SIB information, or at least one of channel state information CSI, ACK/NACK information, and SR information;
  • N groups of random access preamble information
  • the measurement pilot information is a downlink measurement pilot CSI-RS, or a beam reference pilot BRS, or a more refined beam measurement pilot BRRS, or an uplink sounding pilot SRS, or
  • the DRS may also be some other measurement pilot such as a demodulation reference signal, or may be an uplink measurement pilot.
  • the first type of parameters include a configuration indication parameter, a location index of a resource block, a resource block index, a value of information, a value of a resource subgroup, a cell index, a UE index, and a type of information. At least one of the carrier frequency.
  • mapping function is agreed by the receiving end and the transmitting end, or configured by the sending end, or configured by the receiving end;
  • At least one of the independent variables of the mapping function is determined according to the first type of parameter.
  • a kind of numerical information in the parameter, q can be determined according to the value of N and/or Ni. For example, when N or Ni is less, q can be 0, or when N is much smaller than Ni, q can be 0, q.
  • q may represent the UE ID
  • q may also be determined by the cell ID, or determined by the configuration indication parameter, or determined by the location index or the resource block index of the resource block, or by the letter.
  • the type of interest is determined, for example, the value of q of the measurement pilot and the synchronization signal is different, or the carrier frequency may be determined, and the values of q of different carrier frequencies are different, or q may be combined by the plurality of first type parameters. determine;
  • the y value obtained by taking the N pieces of information to be sent is the information number mapped to the resource subgroup.
  • the embodiment of the present invention is not concerned with the actual form of the mapping function, but the mapping.
  • the variable nature of the function, and the mapping function F can also be easily extended to more parameters.
  • the functions of the first determining module 1101, the second determining module 1102, and the mapping module 1103 may be implemented by the processor of the first sending end 11 calling a program in the memory or pre-storing data.
  • the processor may be an Application Specific Integrated Circuit (ASIC), a Digital Signal Processor (DSP), a Digital Signal Processing Device (DSPD), or a Programmable Logic Device (PLD). At least one of a Programmable Logic Device, a Field Programmable Gate Array (FPGA), a Central Processing Unit (CPU), a controller, a microcontroller, and a microprocessor.
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal Processor
  • DSPD Digital Signal Processing Device
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • CPU Central Processing Unit
  • controller a controller
  • microcontroller a microcontroller
  • the sending end when the sending end sends the information to be sent, the first binding function between each resource block, the resource subgroup and the sending mode required for the information to be sent is the same, and the resource subgroup and the resource subgroup The mapping function between the messages to be sent is different.
  • the function of the first sending module 1104 may be through a communication component in the first transmitting end 11 to implement wired or wireless communication with other devices, and the communication component may access a communication standard based Wireless networks such as WiFi, 2G or 3G, or a combination of them.
  • a communication standard based Wireless networks such as WiFi, 2G or 3G, or a combination of them.
  • the communication component receives a broadcast signal from an external broadcast management system via a broadcast channel Or broadcasting related information; or the communication component may further include a Near Field Communication (NFC) module to facilitate short-range communication
  • NFC Near Field Communication
  • the NFC module may be based on radio frequency identification (RFID, Radio, Frequency Identification) technology, infrared data association ( IrDA, Infrared Data Association technology, UWB (UWB, Ultra Wide Band) technology, Bluetooth (BT) technology and other technologies to achieve.
  • RFID radio frequency identification
  • IrDA Infrared Data Association technology
  • UWB Ultra Wide Band
  • Bluetooth Bluetooth
  • This embodiment provides a first sending end, where the first determining module 1101 is configured to determine M resource blocks and resource subgroups on M resource blocks, and the second determining module 1102 is configured to determine N servings.
  • the mapping module 1103 is configured to determine a mapping function between the resource sub-group and the information to be sent in each resource block according to the first type of parameters, where the first sending module 1104 is configured to send according to the mapping relationship. The information to be sent, thereby obtaining the combined gain and better interference randomization effect.
  • the embodiment of the present invention provides a corresponding first receiving end for the fifth embodiment.
  • the first receiving end 120 of the information transmitting apparatus of the embodiment of the present invention is shown.
  • the first receiving end includes: a third determining a module 1201, a fourth determining module 1202, and a first receiving module 1203, where
  • the third determining module 1201 is configured to determine a resource sub-group on the resource block and the resource block;
  • the fourth determining module 1202 is configured to determine, according to the first type of parameter, a resource subgroup in which the information to be received is located;
  • the first receiving module 1203 is configured to receive information on a resource subgroup where the information to be received is located.
  • the third determining module 1201 is configured to
  • the receiving end determines a resource sub-group on the resource block and the resource block according to a link manner between the transmitting end and the receiving end;
  • the resource type of the resource block includes a resource type composed of a mixture of at least one of a time domain resource, a frequency domain resource, an air domain resource, and a code domain resource;
  • the time domain resource includes an Orthogonal Frequency Division Multiplexing (OFDM) time domain symbol, or a time slot, or a subframe, or a time interval;
  • the frequency domain resource includes a subcarrier;
  • the spatial domain resource includes at least one of a beam, an antenna, a sector, and a port; and
  • the code domain resource includes a sequence;
  • the link manner between the sending end and the receiving end includes: an uplink or a downlink or a side link;
  • the transmitting end is a terminal
  • the receiving end is a base station
  • the resource block is usually pre-configured
  • the terminal determines according to configuration signaling sent by the base station.
  • the division of the resource subgroup for example, the resource block is a time domain resource, and the configuration signaling includes a period, a resource form, a time domain offset, a time domain symbol included in the resource block, and a division of a time domain symbol resource subgroup;
  • the configuration signaling includes the indication information of the resource block in the frequency domain, the sub-carrier resource sub-group division information included in the frequency domain resource block, and the resource block is the code domain resource, and the configuration signaling includes the code sequence.
  • the sender is the base station
  • the receiver is the terminal.
  • the resource block is determined by the base station according to the current transmission requirement, and is indicated by the downlink signaling to the terminal resource. The location of the block and the way in which the resource subgroups are divided;
  • the link between the sender and the receiver is a sidelink
  • the sender is the first terminal
  • the receiver is the second terminal
  • the resource block relates to the sending between the first terminal and the second terminal
  • the manner in which the resource subgroups are divided may be determined by the configuration of the macro base station associated with the first terminal and the second terminal.
  • the sending end and the receiving end may establish a link through the air interface, and may also establish a link in other manners, which is not limited in the embodiment of the present invention.
  • the first type of parameters includes a configuration indication parameter, a location index of a resource block, a resource block index, a value of N, a value of Ni, a cell index, a UE index, and a type of information. At least one of the carrier frequency.
  • the information to be received by the receiving end is the same as the information to be sent sent by the sending end in the fifth embodiment, and the first type of parameters are sent in the fifth embodiment.
  • the first type of parameters corresponding to the sending end are the same content.
  • the fourth determining module 1202 is configured to
  • the resource subgroup selection function Determining, by the resource subgroup selection function between the resource subgroup and the first type of parameters, the resource subgroup in which the information to be received is located; wherein the resource subgroup selection function is used to represent different parameters of the first type of parameter Change the resource subgroup corresponding to the information to be received.
  • the functions of the third determining module 1201 and the fourth determining module 1202 may be implemented by using a processor in the first receiving end 12 to call a program in the memory or pre-storing data.
  • the processor may be at least one of an ASIC, a DSP, a DSPD, a PLD, an FPGA, a CPU, a controller, a microcontroller, and a microprocessor. It is to be understood that the electronic device for implementing the above-mentioned processor functions may be other for different devices, which is not limited in the embodiment of the present invention.
  • the receiving end may be applied to receiving various information, such as: N sets of broadcast information, the broadcast information is broadcast information indicating paging information, or indicates SIB, broadcast information of information ;
  • N sets of synchronization signals are N sets of secondary synchronization signals, or N sets of extended synchronization signals;
  • control information is control information indicating paging information, or control information indicating SIB information, or at least one of channel state information CSI, ACK/NACK information, and SR information;
  • N groups of random access preamble information
  • the measurement pilot information is a downlink measurement pilot CSI-RS, or a beam reference pilot BRS, or a more refined beam measurement pilot BRRS, or an uplink sounding pilot SRS, or
  • the DRS may also be some other measurement pilot such as a demodulation reference signal, or may be an uplink measurement pilot.
  • the function of the first receiving module 1203 may be through a communication component in the first transmitting end 11 to implement wired or wireless communication with other devices, and the communication component may access a communication standard based Wireless networks such as WiFi, 2G or 3G, or a combination of them.
  • the communication component receives a broadcast signal from an external broadcast management system via a broadcast channel Or broadcast related information; or the communication component may also include an NFC module to facilitate short-range communication, for example, the NFC module may be implemented based on RFID technology, IrDA technology, UWB technology, BT technology, and other technologies. It is to be understood that, for different devices, the communication component for implementing the above communication function may be other, which is not limited by the embodiment of the present invention.
  • the embodiment provides a first receiving end, the third determining module 1201 is configured to determine resource subgroups on the resource block and the resource block, and the fourth determining module 1202 is configured to pass the resource subgroup and the first class.
  • the resource subgroup selection function between the parameters determines the resource subgroup in which the information to be received is located, and the first receiving module 1203 is configured to receive information on the corresponding resource subgroup, and the premise of ensuring the randomized interference effect between the nodes
  • the first receiving end ensures that the information from the first transmitting end is accurately received to avoid the combined gain loss.
  • the second transmitting end 13 includes: a fifth determining module 1301, a sixth determining module 1302, and a first binding. a module 1303 and a second sending module 1304, where
  • the fifth determining module 1301 is configured to determine a resource subgroup of the M resource blocks and the M resource blocks, where the i th resource blocks include Ni resource subgroups, where the M and Ni are positive integers. i is an integer, and M is an integer not less than 2;
  • the sixth determining module 1302 is configured to determine an N group sending manner, where N is an integer that does not exceed Ni;
  • the first binding module 1303 is configured to determine, according to the first type parameter, a first binding function between the resource subgroup and the N group sending manner according to the first type parameter;
  • the second sending module 1304 is configured to send information to be sent on the M resource blocks according to the first binding function.
  • the fifth determining module 1301 is configured to
  • the resource type of the resource block includes a resource type composed of a mixture of at least one of a time domain resource, a frequency domain resource, and a code domain resource;
  • the time domain resource is a time domain symbol, or a time slot, or a subframe, or a Time interval;
  • the frequency domain resource includes a subcarrier; and
  • the code domain resource includes a sequence;
  • the link manner between the sending end and the receiving end includes: an uplink or a downlink or a side link;
  • the transmitting end is a terminal
  • the receiving end is a base station
  • the resource block is usually pre-configured
  • the terminal determines according to configuration signaling sent by the base station.
  • the division of the resource subgroup for example, the resource block is a time domain resource, and the configuration signaling includes a period, a resource form, a time domain offset, a time domain symbol included in the resource block, and a division of a time domain symbol resource subgroup;
  • the configuration signaling includes the indication information of the resource block in the frequency domain, the sub-carrier resource sub-group division information included in the frequency domain resource block, and the resource block is the code domain resource, and the configuration signaling includes the code sequence.
  • the sender is the base station
  • the receiver is the terminal.
  • the resource block is determined by the base station according to the current transmission requirement, and is indicated by the downlink signaling to the terminal resource. The location of the block and the way in which the resource subgroups are divided;
  • the link between the sender and the receiver is a sidelink
  • the sender is the first terminal
  • the receiver is the second terminal
  • the resource block relates to the sending between the first terminal and the second terminal
  • the manner in which the resource subgroups are divided may be determined by the configuration of the macro base station associated with the first terminal and the second terminal.
  • the sending end and the receiving end may establish a link through the air interface, and may also establish a link in other manners, which is not limited in the embodiment of the present invention.
  • the sixth determining module 1302 if the number N of the transmission modes exceeds the number Ni of the resource subgroups, the number N of the transmission modes is equal to the number Ni of the resource subgroups;
  • the sending manner includes: sending power, or at least one of a transmitting beam, a transmitting antenna, a sending port, and a sending sector;
  • the transmission method may include: a group of beams [beam 1, beam 2, ... beam N];
  • the first type of parameters includes a configuration indication parameter, a location index or a resource block index of a resource block, a value of N and/or Ni, a cell index, a UE index, and a type of information. At least one of carrier frequency;
  • the first binding function is agreed by the sending end and the receiving end, or configured by the sending end, or configured by the receiving end;
  • At least one of the independent variables of the first binding function is determined according to the first type of parameter.
  • q can be 0, or N is much smaller than when Ni, q can be 0, q can also be determined by the UE ID, for example, q can represent the UE ID, q can also be determined by the cell ID, or determined by the configuration indication parameter, or by the location index or resource block index of the resource block. Determined, or determined by the type of information, such as the difference between the measurement pilot and the synchronization signal q, or the carrier frequency determination, the value of q of different carrier frequencies is different, or q may be by the above multiple A class of parameters is jointly determined;
  • the y value obtained by summing the N first type transmission resources is the number of the first type of transmission resource bound to the resource subgroup.
  • the functions of the fifth determining module 1301, the sixth determining module 1302, and the first binding module 1303 may be performed by using a processor in the second transmitting end 13 to call a program in the memory or pre-storing data.
  • the foregoing processor may be at least one of an ASIC, a DSP, a DSPD, a PLD, an FPGA, a CPU, a controller, a microcontroller, and a microprocessor. It is to be understood that the electronic device for implementing the above-mentioned processor functions may be other for different devices, which is not limited in the embodiment of the present invention.
  • the information to be sent is N sets of broadcast information, the broadcast information is broadcast information indicating paging information, or broadcast information indicating SIB, information;
  • N sets of synchronization signals are N sets of secondary synchronization signals, or N sets of extended synchronization signals;
  • control information is control information indicating paging information, or control information indicating SIB information, or at least one of channel state information CSI, ACK/NACK information, and SR information;
  • N groups of random access preamble information
  • the measurement pilot information is a downlink measurement pilot CSI-RS, or a beam reference pilot BRS, or a more refined beam measurement pilot BRRS, or an uplink sounding pilot SRS, or
  • the DRS may also be some other measurement pilot such as a demodulation reference signal, or may be an uplink measurement pilot.
  • At least two resource blocks exist in the M resource blocks, and the resource binding group is different from the first binding function in the N group sending manner;
  • the mapping function between the resource subgroup and the information to be sent is the same for each resource block, and the first between the resource subgroup and the sending mode.
  • the binding function is different.
  • the function of the first receiving module 1304 may be through a communication component in the first transmitting end 11 to implement wired or wireless communication with other devices, and the communication component may access a communication standard based Wireless networks such as WiFi, 2G or 3G, or a combination of them.
  • the communication component receives a broadcast signal from an external broadcast management system via a broadcast channel Or broadcasting related information; or the communication component configured by the second transmitting end 13 may further include an NFC module to facilitate short-range communication, for example, the NFC module may be implemented based on RFID technology, IrDA technology, UWB technology, BT technology, and other technologies.
  • the communication component for implementing the above communication function may be other, which is not limited by the embodiment of the present invention.
  • This embodiment provides a second sending end, the fifth determining module 1301 is configured to determine a resource block and a resource sub-group, and the sixth determining module 1302 is configured to determine a sending mode, and the first binding module 1303 is configured to be according to the first class.
  • the parameter determines a first binding function between the resource sub-group and the sending mode in each resource block, and the second sending module 1304 is configured to send the information to be sent according to the first binding function, thereby acquiring the combining gain and comparing at the same time. Good interference randomization effect.
  • the embodiment of the present invention provides a corresponding second receiving end for the seventh embodiment.
  • the second receiving end 14 of the information transmitting apparatus of the embodiment of the present invention is shown, and the second receiving end includes: a seventh determining a module 1401, an eighth determining module 1402, a second binding module 1403, a ninth determining module 1404, and a second receiving module 1405, wherein
  • the seventh determining module 1401 is configured to determine M resource blocks and resource subgroups on the M resource blocks; wherein the i th resource block includes Ni resource subgroups;
  • the eighth determining module 1402 is configured to determine an N group receiving manner; where N is an integer that does not exceed Ni;
  • the second binding module 1403 is configured to determine, according to the first type parameter, a second binding function between the resource subgroup and the N group receiving manner according to the first type parameter;
  • the ninth determining module 1404 is configured to determine, according to the second binding function, a resource subgroup corresponding receiving manner
  • the second receiving module 1405 is configured to receive information to be received on the M resource blocks according to the second binding function.
  • the seventh determining module 1401 is configured to
  • the resource type of the resource block includes a resource type composed of a mixture of at least one of a time domain resource, a frequency domain resource, and a code domain resource;
  • the time domain resource is a time domain symbol, or a time slot, or a subframe, or a Time interval;
  • the frequency domain resource includes a subcarrier; and
  • the code domain resource includes a sequence;
  • the link manner between the sending end and the receiving end includes: an uplink or a downlink or a side link;
  • the transmitting end is a terminal
  • the receiving end is a base station
  • the resource block is usually pre-configured
  • the terminal determines according to configuration signaling sent by the base station.
  • the division of the resource subgroup for example, the resource block is a time domain resource, and the configuration signaling includes a period, a resource form, a time domain offset, a time domain symbol included in the resource block, and a division of a time domain symbol resource subgroup;
  • the configuration signaling includes the indication information of the resource block in the frequency domain, the sub-carrier resource sub-group division information included in the frequency domain resource block, and the resource block is the code domain resource, and the configuration signaling includes the code sequence.
  • the sender is the base station
  • the receiver is the terminal.
  • the resource block is determined by the base station according to the current transmission requirement, and is indicated by the downlink signaling to the terminal resource. The location of the block and the way in which the resource subgroups are divided;
  • the link between the sender and the receiver is a sidelink
  • the sender is the first terminal
  • the receiver is the second terminal
  • the resource block relates to the sending between the first terminal and the second terminal
  • the manner in which the resource subgroups are divided may be determined by the configuration of the macro base station associated with the first terminal and the second terminal.
  • the transmitting end and the receiving end may establish a link through an air interface, and may also establish a link in other manners, which is not limited in the embodiment of the present invention.
  • the eighth determining module 1402 if the number N of the receiving modes exceeds the number Ni of resource subgroups, the number N of receiving modes is equal to the number Ni of resource subgroups;
  • the receiving manner includes at least one of a transmitting beam, a transmitting antenna, a transmitting port, and a transmitting sector.
  • the first type of parameters include a configuration indication parameter, a location index of a resource block, a resource block index, a value of N, a value of Ni, a cell index, a UE index, and information. At least one of type and carrier frequency.
  • the second binding function is agreed by the sending end and the receiving end, or configured by the sending end, or configured by the receiving end;
  • At least one of the independent variables of the first binding function is determined according to the first type of parameter.
  • q can be 0, or N is much smaller than when Ni, q can be 0, q can also be determined by the UE ID, for example, q can represent the UE ID, q can also be determined by the cell ID, or determined by the configuration indication parameter, or by the location index or resource block index of the resource block. Determined, or determined by the type of information, such as the difference between the measurement pilot and the synchronization signal q, or the carrier frequency determination, the value of q of different carrier frequencies is different, or q may be by the above multiple A class of parameters is jointly determined;
  • the sum of the y values obtained by taking the remainder of the N first type of receiving resources is the number of the first type of receiving resources bound to the resource subgroup.
  • the first type of parameters is the same as the first type of parameters corresponding to the sending end in the seventh embodiment.
  • the ninth determining module 1404 at least two resource blocks exist in the M resource blocks, and the resource binding group is different from the second binding function in the N group sending manner;
  • the second binding relationship is the same as the implementation process of the first binding relationship in Embodiment 7.
  • the functions of the seventh determining module 1401, the eighth determining module 1402, the second binding module 1403, and the ninth determining module 1404 may be invoked in the memory by the processor of the second receiving end 14
  • the program or the pre-stored data is implemented.
  • the processor may be at least one of an ASIC, a DSP, a DSPD, a PLD, an FPGA, a CPU, a controller, a microcontroller, and a microprocessor. It is to be understood that the electronic device for implementing the above-mentioned processor functions may be other for different devices, which is not limited in the embodiment of the present invention.
  • the second receiving module 1405, the information to be received by the receiving end is the same information as the information to be sent sent by the sending end in the seventh embodiment;
  • the second receiving module 1405 can be applied to receive multiple types of information, for example, the information to be sent is N sets of broadcast information, and the broadcast information is broadcast information indicating paging information. Or indicating the SIB, broadcast information of the information;
  • N sets of synchronization signals are N sets of secondary synchronization signals, or N sets of extended synchronization signals;
  • control information is control information indicating paging information, or control information indicating SIB information, or at least one of channel state information CSI, ACK/NACK information, and SR information;
  • N groups of random access preamble information
  • the measurement pilot information is a downlink measurement pilot CSI-RS, or a beam reference pilot BRS, or a more refined beam measurement pilot BRRS, or an uplink sounding pilot SRS, or
  • the DRS may also be some other measurement pilot such as a demodulation reference signal, or may be an uplink measurement pilot.
  • the function of the second receiving module 1405 can be through a communication component in the first transmitting end 11 to implement wired or wireless communication with other devices, and the communication component can access the communication standard.
  • Wireless networks such as WiFi, 2G or 3G, or their groups Hehe.
  • the communication component receives a broadcast signal or broadcast associated information from an external broadcast management system via a broadcast channel; or the communication component configured by the second receiving end 14 may further include an NFC module to facilitate short-range communication, for example, the NFC module may be based on RFID technology, IrDA technology, UWB technology, BT technology and other technologies are implemented. It is to be understood that, for different devices, the communication component for implementing the above communication function may be other, which is not limited by the embodiment of the present invention.
  • This embodiment provides a second receiving end, where the seventh determining module 1401 is configured to determine a resource sub-group on the resource block and the resource block, and the eighth determining module 1402 is configured to determine the receiving mode, and the second binding module 1403 is configured to Determining, by the first type of parameter, a second binding function between the resource subgroup and the receiving mode, the ninth determining module 1404 is configured to determine, according to the second binding function, a resource subgroup corresponding receiving manner, and the second receiving module 1405, according to the second binding function, receiving the information to be received on the resource block, and ensuring that the second receiving end accurately receives the information from the second sending end under the premise of ensuring the randomized interference effect between the nodes, thereby avoiding Combine gain loss.
  • an embodiment of the present invention further provides an information transmission system 15 including a first transmitting end 11 and a first receiving end 12, wherein
  • the first transmitting end is configured to determine M resource blocks and resource subgroups on M resource blocks; wherein, the i th resource blocks include Ni resource subgroups, and the M and Ni are positive integers, i Is an integer, and M is an integer not less than 2;
  • N is an integer not exceeding Ni
  • the first receiving end is configured to determine a resource sub-group on the resource block and the resource block;
  • an embodiment of the present invention further provides another information transmission system 16, which includes a second transmitting end 13 and a second receiving end 14, wherein
  • the second transmitting end is configured to determine M resource blocks and resource subgroups on M resource blocks; wherein, the i th resource blocks include Ni resource subgroups, and the M and Ni are positive integers, i Is an integer, and M is an integer not less than 2;
  • N is an integer not exceeding Ni
  • the second receiving end is configured to determine M resource blocks and resource subgroups on M resource blocks; wherein the i th resource block includes Ni resource subgroups;
  • N sets of receiving modes required to determine information to be received; wherein N is an integer not exceeding Ni;
  • Embodiments of the invention may provide a method, system, or computer program product. Accordingly, the present application can take the form of a hardware embodiment, a software embodiment, an embodiment of the combined software and hardware. Moreover, the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.
  • These computer program instructions may also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computing and readable memory produce an article of manufacture comprising the instruction device.
  • the instruction means implements the functions specified in one or more blocks of the flow or processes and/or block diagrams in the flowchart.
  • These computer program instructions can also be loaded on a computer or other programmable processing device such that instructions executed on a computer or other programmable device are provided for implementation in a flow or a block diagram of a flow or a block diagram or The steps of the function specified in multiple boxes.
  • the embodiment of the present invention provides an information transmission method and apparatus.
  • the transmitting end changes the mapping function between the resource subgroup and the information to be sent by introducing the first type of parameters, or the transmitting end introduces
  • the first type of parameter is used to change the first binding function between the resource subgroup and the sending mode required for the information to be sent, and the sending end sends the resource block to be sent by using the changed mapping function or the first binding function.
  • the information about the resource subgroup in which the information to be received is determined by the first type of parameter, or the receiving end determines the second binding of the receiving mode and the resource subgroup by using the first type of parameter when receiving the information to be received.
  • the function ensures that the receiving end accurately receives the transmission information from the transmitting end, thereby obtaining the combining gain and the better interference randomization effect at the same time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信息传输方法及装置,所述发送端确定M个资源块及M个资源块上的资源子组,所述发送端确定N份待发送的信息,对每个资源块,所述发送端根据第一类参数确定N份待发送的信息到资源子组的映射函数,所述发送端根据所述映射函数发送M个资源块上的N份待发送的信息。

Description

一种信息传输方法及装置 技术领域
本申请涉及但不限于无线通讯技术,尤指一种信息传输方法及装置。
背景技术
在通信系统中,如果使用多个波束传输多份信息,会面临在保障各种信道的基本覆盖需求前提下,如何将多份信息放置在多个传输资源上的问题,假设存在M个资源块,第i个资源块存在Ni个资源子组,资源块及资源子组的示意图如图1所示。
窄波束发送可以保障各种信道的基本覆盖需求,但图2中的情况是期望避免的,因为会导致两个发送节点之间发生较强的干扰,理想的情况如图3所示,对于任意两个节点总是会将波束错开减少干扰,但是实际上很难实现这样的效果。
常规的基于窄波束的信息发送技术中,每个发送节点在每个波束扫描的资源块发送N份信息时,其发送的N份信息内容到资源的映射都采用相同的方式,例如,N份信息到第i个资源块上的Ni个资源子组的映射是与i的取值无关的,或者以空域资源为例,波束与时频码资源子组的绑定关系也是比较固定的,不能随资源块的变化而变化,否则会引起接收波束对不准问题而损失合并增益;也就是说,不能同时获取合并增益及很好的进行干扰随机化。
发明概述
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例期望提供一种信息传输方法及装置,以同时获取合并增益及较好的进行干扰随机化。
第一方面,本发明实施例提供了一种信息传输方法,所述传输方法应 用于发送端,所述方法包括:
所述发送端确定N份待发送的信息;
对每个资源块,所述发送端根据第一类参数确定N份待发送的信息到资源子组的映射函数;
所述发送端根据所述映射函数发送M个资源块上的N份待发送的信息;
其中,所述M为不小于2的整数,N为整数。
第二方面,本发明实施例提供了一种信息传输方法,所述传输方法应用于接收端,所述方法包括:
所述接收端确定资源块及资源块上的资源子组;
所述接收端根据第一类参数确定待接收的信息所在资源子组;
所述接收端在所述待接收的信息所在资源子组上接收信息。
第三方面,本发明实施例提供了一种信息传输方法,所述传输方法应用于发送端,所述方法包括:
所述发送端确定N组发送方式;
对每个资源块,所述发送端根据第一类参数确定资源子组与所述N组发送方式之间的第一绑定函数;
所述发送端根据所述第一绑定函数发送M个资源块上的待发送的信息;
其中,所述M为不小于2的整数,N为整数。
第四方面,本发明实施例提供了一种信息传输方法,所述传输方法应用于接收端,所述方法包括:
所述接收端确定N组接收方式;
对每个资源块,所述接收端根据第一类参数确定资源子组与所述N组接收方式之间的第二绑定函数;
所述接收端根据所述第二绑定函数确定资源子组对应接收方式;
所述接收端根据所述资源子组对应的接收方式在M个资源块上的接收信息;
其中,所述M为不小于2的整数,N为整数。
第五方面,本发明实施例提供了一种第一发送端,所述第一发送端包括:第二确定模块、映射模块及第一发送模块,其中,
所述第二确定模块,设置为确定N份待发送的信息;
所述映射确定模块,设置为对每个资源块,所述发送端根据第一类参数确定N份待发送的信息到资源子组的映射函数;
所述第一发送模块,设置为根据所述映射函数发送M个资源块上的N份待发送的信息;
其中,所述M为不小于2的整数,N为整数。
第六方面,本发明实施例提供了一种第一接收端,所述接收端包括:第三确定模块、第四确定模块及第一接收模块,其中,
所述第三确定模块,设置为确定资源块及资源块上的资源子组;
所述第四确定模块,设置为根据第一类参数确定待接收的信息所在资源子组;
所述第一接收模块,设置为在所述待接收的信息所在资源子组上接收信息。
第七方面,本发明实施例提供了一种第二发送端,所述发送端包括:第六确定模块、第一绑定模块及第二发送模块,其中,
所述第六确定模块,设置为确定N组发送方式;
所述第一绑定模块,设置为对每个资源块,根据第一类参数确定资源子组与所述N组发送方式之间的第一绑定函数;
所述第二发送模块,设置为根据所述第一绑定函数发送M个资源块上的待发送的信息;
其中,所述M为不小于2的整数,N为整数。
第八方面,本发明实施例提供了一种第二接收端,所述接收端包括:第八确定模块、第二绑定模块、第九确定模块及第二接收模块,其中,
所述第八确定模块,设置为确定N组接收方式;
所述第二绑定模块,对每个资源块,根据第一类参数确定资源子组与所述N组接收方式之间的第二绑定函数;
所述第九确定模块,设置为根据所述第二绑定函数确定资源子组对应接收方式;
所述第二接收端,设置为根据所述资源子组对应的接收方式在M个资源块上的接收信息;
其中,所述M为不小于2的整数,N为整数。
本发明实施例提供了一种信息传输方法及装置,针对每个资源块,发送端通过引入第一类参数来改变资源子组与待发送的信息之间的映射函数,或者发送端通过引入的第一类参数来改变资源子组与待发送的信息所需的发送方式之间的第一绑定函数,发送端通过所述改变后的映射函数或者第一绑定函数发送资源块上待发送的信息,接收端在接收待接收的信息时,通过引入的第一类参数确定待接收信息所在的资源子组,或者接收端通过第一类参数确定接收方式与资源子组的第二绑定函数,保证所述接收端准确的接收来自发送端的发送信息,从而同时获取合并增益及较好的干扰随机化效果。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明实施例提供的一种资源块及资源子组的示意图;
图2为本发明实施例提供的一种窄波束发送存在严重空域干扰的示意图;
图3为本发明实施例提供的一种窄波束发送理想空域干扰协调示意图;
图4为本发明实施例提供的一种用于发送端的信息传输方法流程图;
图5为本发明实施例提供的一种发送端根据映射关系发送待发送的信息的示意图;
图6为本发明实施例提供的一种用于接收端的信息传输方法流程图;
图7为本发明实施例提供的一种资源子组选择函数实现示意图;
图8为本发明实施例提供的另一种用于发送端的信息传输方法流程图;
图9为本发明实施例提供的一种发送端根据第一绑定关系发送待发送的信息的示意图;
图10为本发明实施例提供的另一种用于接收端的信息传输方法流程图;
图11为本发明实施例提供的一种第一发送端框图;
图12为本发明实施例提供的一种第一接收端框图;
图13为本发明实施例提供的一种第二发送端框图;
图14为本发明实施例提供的一种第二接收端框图;
图15为本发明实施例提供的一种信息传输系统框图;
图16为本发明实施例提供的另一种信息传输系统框图。
详述
下面将结合本发明实施例中的附图,对发明实施例进行清楚、完整地描述。
本发明实施例提供了一种信息传输方法及装置,所述信息传输方法应用于信息传输装置,所述信息传输装置主要由发送端和接收端组成。
本发明实施例中:针对每个资源块,发送端通过引入第一类参数来改变资源子组与待发送的信息之间的映射函数,或者发送端通过引入的第一类参数来改变资源子组与待发送的信息所需的发送方式之间的第一绑定函数,发送端通过所述改变后的映射函数或者第一绑定函数发送资源块上待发送的信息,接收端在接收待接收的信息时,通过引入的第一类参数确定待接收信息所在的资源子组,或者接收端通过第一类参数确定接收方式与资源子组的第二绑定函数,保证所述接收端准确的接收来自发送端的发送信息。
实施例一
参见图4,其示出了本发明实施例提供的一种信息传输方法,所述方法可以应用于发送端,所述方法包括:
S401:所述发送端确定M个资源块及M个资源块上的资源子组;其中,第i个资源块上包括Ni个资源子组,所述M、Ni为正整数,i为整数,并且M为不小于2的整数;
对于步骤S401,所述发送端确定M个资源块及M个资源块上的资源子组,可包括:
所述发送端根据发送端与接收端之间的链路方式确定M个资源块及M个资源块上的资源子组;
在一实施方式中,所述资源块的资源类型包括:时域资源、频域资源、空域资源、码域资源中至少一种或多种资源混合构成的资源类型;
在一实施方式中,所述时域资源包括时域符号,或者时隙,或者子帧,或者时间间隔(Time interval);所述频域资源包括子载波;所述空域资源包括波束、天线、扇区、端口中至少一种;所述码域资源包括序列;
在一实施方式中,所述发送端与接收端之间的链路方式包括:上行链路或者下行链路或者副链路(sidelink);
在一实施方式中,发送端与接收端之间的链路方式为上行链路时,发送端为终端,接收端为基站,资源块通常是预先配置的,终端根据基站发送的配置信令确定资源子组的划分;比如,资源块为时域资源,配置信令包括了周期、资源形式、时域偏置、资源块包含的时域符号以及时域符号资源子组的划分等;资源块为频域资源,则配置信令包含了频域的资源块的指示信息,频域资源块包含的子载波资源子组划分信息;资源块为码域资源,则配置信令包含了码序列的集合信息,序列资源子组的划分信息等;资源块为空域资源,则配置信令包含了天线端口信息、波束信息、天线端口资源子组、波束资源子组的划分信息;
或者,发送端与接收端之间的链路方式为下行链路时,发送端为基站,接收端为终端,资源块是基站根据当前的发送需求自行确定,并通过 下行信令指示给终端资源块的位置以及资源子组的划分方式;
或者,发送端与接收端之间的链路方式为sidelink时,发送端为第一终端,接收端为第二终端,资源块涉及第一终端与第二终端之间的发送,资源块的位置以及资源子组的划分方式可以通过与第一终端和第二终端相关的宏基站的配置确定。
对于步骤S401,所述发送端与接收端可以通过空中接口建立链路,也可以采取其他的方式建立链路,本发明实施例不作限定。
S402:所述发送端确定N份待发送的信息;其中,N为不超过Ni的整数;
对于步骤S402,如果待发送的信息数量N大于资源子组数量Ni,则待发送的信息的数量N等于资源子组的数量Ni;
所述待发送的信息可以为多种类型的信息;
比如,所述待发送的信息可以为:
N组广播信息,所述广播信息为指示寻呼信息的广播信息,或者指示系统信息模块(SIB,System Information Block)信息的广播信息;
或者,N组同步信号,所述N组同步信号为N组辅同步信号,或者N组扩展同步信号;
或者,N组控制信息,所述控制信息为指示寻呼信息的控制信息,或者指示SIB信息的控制信息,或者信道状态信息(CSI,Channel State Information、应答/非应答(ACK/NACK,Acknowledgment/Negative-Acknowledgment)信息、调度请求(SR,Scheduling Request)信息中至少一种;
或者,N组随机接入前导信息;
或者,N组测量导频信息,所述测量导频信息为下行测量导频CSI-RS(Channel State Information Reference Signals),或者波束参考导频BRS(Beam Reference Signal),或者更精细化的波束测量导频BRRS(Beam Refinement Reference Signal),或者上行探测导频SRS(Sounding Reference Signal),或者发现参考信号(DRS,Demodulation Reference Signal),也 可以是一些其他的测量导频如解调参考信号等,还可以是上行测量导频。
S403:对每个资源块,所述发送端根据第一类参数确定N份待发送的信息到资源子组的映射函数;
对于步骤S403,所述第一类参数可包括配置指示参数、资源块所处位置索引、资源块索引、信息的取值、资源子组的取值、小区索引、UE索引、信息的类型、载频频率中至少一种。
所述映射函数由接收端和发送端进行约定,或者由发送端进行配置,或者接收端进行配置;
在一实施方式中,所述映射函数的自变量中至少存在一个自变量根据第一类参数确定。
示例性地,对于步骤S403,资源子组的编号为x=1……Ni,信息的编号为y=1……N,N份待发送的信息映射到Ni个资源子组所得的映射函数可以表示为y=F(x,q),其中,F是映射函数,映射函数F由发送端和接收端进行约定或者由发送端进行配置或者由接收端进行配置,q为第一类参数中的一种数值信息,q可以根据N和/或Ni的取值确定,例如较少的N或Ni时,q可以为0,或者是N远远小于Ni时,q可以为0,q也可以由UE ID确定,例如q可以表示UE ID,q还可以由小区ID确定,或者由配置指示参数确定,或者由资源块所处位置索引或资源块索引确定,或者由信息的类型确定,比如测量导频和同步信号的q的取值不同,也可以是载波频率确定,不同载波频率的q的取值不同,或者q也可以是由上述多个第一类参数联合确定;
映射函数可以表示为一个简单的形式y=Mod(x+q,N),其中,y=Mod(x+q,N)表示编号为x的资源子组与第一类参数对应的数值q之和对待发送的N份信息取余得到的y值即为映射到资源子组的信息编号。
映射函数还可以是y=F(x,q1,q2),q1和q2分别由第一类参数中的不同参数确定,本发明实施例关注的并不是这个映射函数的实际形式,而是这个映射函数的可变特性,并且映射函数F也可以很容易的扩展到更多参数的情况。
S404:所述发送端根据所述映射函数发送M个资源块上的N份待发送的信息。
对于步骤S404,所述M个资源块中至少存在两个资源块,资源子组与N份待发送的信息采用的映射函数不相同;
在一实施方式中,所述发送端在发送待发送的信息时,对每个资源块,资源子组与待发送信息所需的发送方式之间的第一绑定函数相同,资源子组与待发送的信息之间的映射函数不同;
在一实施方式中,所述发送端根据所述映射关系发送待发送的信息的示意图可以如图5所示;
从图5中,可以看出,对于发送节点A和发送节点B,每个发送周期内,每个资源块上资源子组对应的波束的都是相同的,资源块上资源子组对应的待发送的信息在每个发送周期内都是不同的,即资源子组与资源类型为空域资源的波束的绑定关系对于每个资源块都是不变的,改变的只是待发送的信息与资源子组的映射关系。
本实施例提供了一种信息传输方法,所述方法用于发送端,所述发送端确定M个资源块及M个资源块上的资源子组,所述发送端确定N份待发送的信息,对每个资源块,所述发送端根据第一类参数确定N份待发送的信息到资源子组的映射函数,所述发送端根据所述映射函数发送M个资源块上的N份待发送的信息,从而同时获取合并增益及较好的干扰随机化效果。
实施例二
参见图6,其示出了本发明实施例针对实施例一提供的一种信息传输方法,所述方法应用于接收端,所述方法包括:
S601:所述接收端确定资源块及资源块上的资源子组;
对于步骤S601,所述接收端确定资源块及资源块上的资源子组,包括:
所述接收端根据发送端与接收端之间的链路方式确定资源块及资源块上的资源子组;
在一实施方式中,所述资源块的资源类型包括时域资源、频域资源、空域资源、码域资源中至少一种或多种资源混合构成的资源类型;
在一实施方式中,所述时域资源包括时域符号,或者时隙,或者子帧,或者Time interval;所述频域资源包括子载波;所述空域资源包括波束,天线、扇区、端口中至少一种;所述码域资源包括序列;
在一实施方式中,所述发送端与接收端之间的链路方式包括:上行链路或者下行链路或者sidelink;
在一实施方式中,发送端与接收端之间的链路方式为上行链路时,发送端为终端,接收端为基站,资源块通常是预先配置的,终端根据基站发送的配置信令确定资源子组的划分;比如,资源块为时域资源,配置信令包括了周期、资源形式、时域偏置、资源块包含的时域符号以及时域符号资源子组的划分等;资源块为频域资源,则配置信令包含了频域的资源块的指示信息,频域资源块包含的子载波资源子组划分信息;资源块为码域资源,则配置信令包含了码序列的集合信息,序列资源子组的划分信息等;资源块为空域资源,则配置信令包含了天线端口信息、波束信息、天线端口资源子组、波束资源子组的划分信息;
或者,发送端与接收端之间的链路方式为下行链路时,发送端为基站,接收端为终端,资源块是基站根据当前的发送需求自行确定,并通过下行信令指示给终端资源块的位置以及资源子组的划分方式;
或者,发送端与接收端之间的链路方式为sidelink时,发送端为第一终端,接收端为第二终端,资源块涉及第一终端与第二终端之间的发送,资源块的位置以及资源子组的划分方式可以通过与第一终端和第二终端相关的宏基站的配置确定。
对于步骤S601,所述发送端与接收端可以通过空中接口建立链路,也可以采取其他的方式建立链路,本发明实施例不作限定。
S602:所述接收端根据第一类参数确定待接收的信息所在资源子组;
对于步骤S602,所述第一类参数包括配置指示参数、资源块所处位置索引、资源块索引、N的取值、Ni的取值、小区索引、UE索引、信息的类 型、载频频率中至少一种。
对于步骤S602,所述接收端待接收的信息与实施例一中发送端发送的待发送的信息为同一信息,所述第一类参数与实施例一中发送端对应的第一类参数为相同内容。
对于步骤S602,所述接收端根据第一类参数确定待接收的信息所在资源子组,包括:
所述接收端通过资源子组与第一类参数之间的资源子组选择函数确定待接收的信息所在资源子组。
所述资源子组选择函数用于表征第一类参数的不同可以改变待接收信息对应的资源子组;
在一实施方式中,所述资源子组选择函数实现示意图可以如图7所示;
从图7中,可以看出,通过一个与第一类参数相关的资源子组选择函数可以确定待接收信息所在的资源子组;
比如,所述第一类参数表示UE ID时,所述接收端根据资源子组选择函数中第一类参数为UE ID,获取待接收的信息所在的资源子组。
S603:所述接收端在所述待接收的信息所在资源子组上接收信息。
对于步骤S603,所述接收端可以应用于多种信息的接收,比如:N组广播信息,所述广播信息为指示寻呼信息的广播信息,或者指示SIB,信息的广播信息;
或者,N组同步信号,所述N组同步信号为N组辅同步信号,或者N组扩展同步信号;
或者,N组控制信息,所述控制信息为指示寻呼信息的控制信息,或者指示SIB信息的控制信息,或者信道状态信息CSI、ACK/NACK信息、SR信息中至少一种;
或者,N组随机接入前导信息;
或者,N组测量导频信息,所述测量导频信息为下行测量导频 CSI-RS,或者波束参考导频BRS,或者更精细化的波束测量导频BRRS,或者上行探测导频SRS,或者DRS,也可以是一些其他的测量导频如解调参考信号等,还可以是上行测量导频。
本实施例提供了一种信息传输方法,所述信息传输方法用于接收端,接收端确定资源块及资源块上的资源子组,所述接收端通过资源子组与第一类参数之间的资源子组选择函数确定待接收的信息所在资源子组,所述接收端在所述待接收的信息所在资源子组上接收信息,在保证节点之间的随机化干扰效果的前提下,保证了接收端准确的接收来自发送端的信息,避免合并增益损失。
实施例三
参见图8,其示出了本发明实施例提供的另一种信息传输方法,所述方法应用于发送端,所述方法包括:
S801:所述发送端确定M个资源块及M个资源块上的资源子组;其中,第i个资源块上包括Ni个资源子组,所述M、Ni为正整数,i为整数,并且M为不小于2的整数;
对于步骤S801,所述发送端确定M个资源块及M个资源块上的资源子组,包括:
所述发送端根据发送端与接收端的链路方式确定M个资源块及M个资源块上的资源子组;
在一实施方式中,所述资源块的资源类型包括时域资源、频域资源、码域资源中至少一种或多种资源混合构成的资源类型;
在一实施方式中,所述时域资源为时域符号,或者时隙,或者子帧,或者Time interval;所述频域资源包括子载波;所述码域资源包括序列;
在一实施方式中,所述发送端与接收端之间的链路方式包括:上行链路或者下行链路或者sidelink;
在一实施方式中,发送端与接收端之间的链路方式为上行链路时,发送端为终端,接收端为基站,资源块通常是预先配置的,终端根据基站发送的配置信令确定资源子组的划分;比如,资源块为时域资源,配置信令 包括了周期、资源形式、时域偏置、资源块包含的时域符号以及时域符号资源子组的划分等;资源块为频域资源,则配置信令包含了频域的资源块的指示信息,频域资源块包含的子载波资源子组划分信息;资源块为码域资源,则配置信令包含了码序列的集合信息,序列资源子组的划分信息等;资源块为空域资源,则配置信令包含了天线端口信息、波束信息、天线端口资源子组、波束资源子组的划分信息;
或者,发送端与接收端之间的链路方式为下行链路时,发送端为基站,接收端为终端,资源块是基站根据当前的发送需求自行确定,并通过下行信令指示给终端资源块的位置以及资源子组的划分方式;
或者,发送端与接收端之间的链路方式为sidelink时,发送端为第一终端,接收端为第二终端,资源块涉及第一终端与第二终端之间的发送,资源块的位置以及资源子组的划分方式可以通过与第一终端和第二终端相关的宏基站的配置确定。
对于步骤S801,所述发送端与接收端可以通过空中接口建立链路,也可以采取其他的方式建立链路,本发明实施例不作限定。
S802:所述发送端确定N组发送方式;其中,N为不超过Ni的整数;
对于步骤S802,如果所述发送方式的组数N超过资源子组的数量Ni,则发送方式的组数N等于资源子组的数量Ni;
所述发送方式包括:发送功率,或者发送波束、发送天线、发送端口、发送扇区中至少一种;
比如,发送方式可以包括:一组波束[波束1,波束2……波束N];
或者,一组天线与波束的组合[天线1的波束1,天线2的波束1,天线1的波束2,天线2的波束2……天线1的波束N/2,天线2的波束N/2];
或者,一组功率[功率1,功率2……功率N];
S803:对每个资源块,所述发送端根据第一类参数确定资源子组与所述N组发送方式之间的第一绑定函数;
对于步骤S803,所述第一类参数包括配置指示参数、资源块所处位置索引、资源块索引、N的取值、Ni的取值、小区索引、UE索引、信息的类 型、载频频率中至少一种。
所述第一绑定函数由发送端和接收端端进行约定,或者由发送端进行配置,或者由接收端进行配置;
在一实施方式中,所述第一绑定函数的自变量中至少存在一个自变量根据第一类参数确定。
示例性地,对于步骤S803,资源子组的编号为x=1……Ni,第一类发送资源的编号为y=1……N,N个第一类发送资源绑定到Ni个资源子组所得的绑定函数可以表示为y=f(x,q),其中,f是绑定函数,绑定函数f由发送端和接收端进行约定或者由发送端/接收端进行配置,q为第一类参数中的一种数值信息,q可以根据N和/或Ni的取值确定,例如较少的N或Ni时,q可以为0,或者是N远远小于Ni时,q可以为0,q也可以由UE ID确定,例如q可以表示UE ID,q还可以由小区ID确定,或者由配置指示参数确定,或者由资源块所处位置索引或资源块索引确定,或者由信息的类型确定,比如测量导频和同步信号的q的取值不同,也可以是载波频率确定,不同载波频率的q的取值不同,或者q也可以是由上述多个第一类参数联合确定;
绑定函数可以表示为一个简单的形式y=Mod(x+q,N),其中,y=Mod(x+q,N)表示编号为x的资源子组与第一类参数对应的数值q之和对N个第一类发送资源取余得到的y值即为与资源子组绑定的第一类发送资源的编号。
绑定函数还可以是y=f(x,q1,q2),q1和q2分别由第一类参数中的不同参数确定,本发明实施例关注的并不是这个绑定函数的实际形式,而是这个绑定函数的可变特性,并且绑定函数f也可以很容易的扩展到更多参数的情况。
S804:所述发送端根据所述第一绑定函数发送M个资源块上的待发送的信息。
对于步骤S804,所述待发送的信息为N组广播信息,所述广播信息为指示寻呼信息的广播信息,或者指示SIB,信息的广播信息;
或者,N组同步信号,所述N组同步信号为N组辅同步信号,或者N组扩展同步信号;
或者,N组控制信息,所述控制信息为指示寻呼信息的控制信息,或者指示SIB信息的控制信息,或者信道状态信息CSI、ACK/NACK信息、SR信息中至少一种;
或者,N组随机接入前导信息;
或者,N组测量导频信息,所述测量导频信息为下行测量导频CSI-RS,或者波束参考导频BRS,或者更精细化的波束测量导频BRRS,或者上行探测导频SRS,或者DRS,也可以是一些其他的测量导频如解调参考信号等,还可以是上行测量导频。
对于步骤S804,所述M个资源块中至少存在两个资源块,资源子组与N组发送方式的第一绑定函数不相同;
在一实施方式中,所述发送端在发送待发送的信息时,对于每个资源块,资源子组与待发送的信息之间的映射函数相同,资源子组与发送方式之间的第一绑定函数不同;
在一实施方式中,所述发送端根据所述第一绑定函数发送M个资源块上的待发送的信息的示意图可以如图9所示;
从图9中,可以看出,对于发送节点A和发送节点B,每个发送周期内,每个资源块上资源子组对应的待发送的信息在每个发送周期内都是相同的,资源块上资源子组对应的波束的都是不同的,即每个发送周期内对于每个资源块,待发送的信息与资源子组的映射关系都是不变的,改变的只是资源子组与波束的绑定关系。
本实施例提供了另一种信息传输方法,所述信息传输方法用于发送端,所述发送端确定M个资源块及M个资源块上的资源子组,所述发送端确定N组发送方式,对每个资源块,所述发送端根据第一类参数确定资源子组与所述N组发送方式之间的第一绑定函数,所述发送端根据所述第一绑定函数发送M个资源块上的待发送的信息,从而同时获取合并增益及较好的干扰随机化效果。
实施例四
参见图10,其示出了本发明实施例针对实施例三提供的一种信息传输方法,所述方法应用于接收端,所述方法包括:
S1001:所述接收端确定M个资源块及M个资源块上的资源子组;其中,第i个资源块包括Ni个资源子组;
对于步骤S1001,所述接收端确定M个资源块及M个资源块上的资源子组,可包括:
所述接收端根据发送端与接收端的链路方式确定M个资源块及M个资源块上的资源子组;
在一实施方式中,所述资源块的资源类型包括时域资源、频域资源、码域资源中至少一种或多种资源混合构成的资源类型;
在一实施方式中,所述时域资源为时域符号,或者时隙,或者子帧,或者Time interval;所述频域资源包括子载波;所述码域资源包括序列;
在一实施方式中,所述发送端与接收端之间的链路方式包括:上行链路或者下行链路或者sidelink;
在一实施方式中,发送端与接收端之间的链路方式为上行链路时,发送端为终端,接收端为基站,资源块通常是预先配置的,终端根据基站发送的配置信令确定资源子组的划分;比如,资源块为时域资源,配置信令包括了周期、资源形式、时域偏置、资源块包含的时域符号以及时域符号资源子组的划分等;资源块为频域资源,则配置信令包含了频域的资源块的指示信息,频域资源块包含的子载波资源子组划分信息;资源块为码域资源,则配置信令包含了码序列的集合信息,序列资源子组的划分信息等;资源块为空域资源,则配置信令包含了天线端口信息、波束信息、天线端口资源子组、波束资源子组的划分信息;
或者,发送端与接收端之间的链路方式为下行链路时,发送端为基站,接收端为终端,资源块是基站根据当前的发送需求自行确定,并通过下行信令指示给终端资源块的位置以及资源子组的划分方式;
或者,发送端与接收端之间的链路方式为sidelink时,发送端为第一终 端,接收端为第二终端,资源块涉及第一终端与第二终端之间的发送,资源块的位置以及资源子组的划分方式可以通过与第一终端和第二终端相关的宏基站的配置确定。
对于步骤S1001,所述发送端与接收端可以通过空中接口建立链路,也可以采取其他的方式建立链路,本发明实施例不作限定。
S1002:所述接收端确定N组接收方式;其中,N为不超过Ni的整数;
对于步骤S1002,如果所述接收方式的组数N超过资源子组的数量Ni,则接收方式的组数N等于资源子组的数量Ni;
所述接收方式包括接收波束、接收天线、接收端口、接收扇区中的至少一种。
S1003:对每个资源块,所述接收端根据第一类参数确定资源子组与所述N组接收方式之间的第二绑定函数;
对于步骤S1003,所述第一类参数包括配置指示参数、资源块所处位置索引、资源块索引、N的取值、Ni的取值、小区索引、UE索引、信息的类型、载频频率中至少一种。
所述第二绑定函数由发送端和接收端端进行约定,或者由发送端进行配置,或者由接收端进行配置;
在一实施方式中,所述第一绑定函数的自变量中至少存在一个自变量根据第一类参数确定。
示例性地,对于步骤S1003,资源子组的编号为x=1……Ni,第一类接收资源的编号为y=1……N,N个第一类接收资源绑定到Ni个资源子组所得的绑定函数可以表示为y=f(x,q),其中,f是绑定函数,绑定函数f由发送端和接收端进行约定或者由发送端/接收端进行配置,q为第一类参数中的一种数值信息,q可以根据N和/或Ni的取值确定,例如较少的N或Ni时,q可以为0,或者是N远远小于Ni时,q可以为0,q也可以由UE ID确定,例如q可以表示UE ID,q还可以由小区ID确定,或者由配置指示参数确定,或者由资源块所处位置索引或资源块索引确定,或者由信息的类型确定,比如测量导频和同步信号的q的取值不同,也可以是载波频率确定, 不同载波频率的q的取值不同,或者q也可以是由上述多个第一类参数联合确定;
绑定函数可以表示为一个简单的形式y=Mod(x+q,N),其中,y=Mod(x+q,N)表示编号为x的资源子组与第一类参数对应的数值q之和对N个第一类接收资源取余得到的y值即为与资源子组绑定的第一类接收资源的编号。
绑定函数还可以是y=f(x,q1,q2),q1和q2分别由第一类参数中的不同参数确定,本发明实施例关注的并不是这个绑定函数的实际形式,而是这个绑定函数的可变特性,并且绑定函数f也可以很容易的扩展到更多参数的情况。
对于步骤S1003,所述第一类参数与实施例三中发送端对应的第一类参数为相同内容。
S1004:所述接收端根据所述第二绑定函数确定资源子组对应接收方式;
对于步骤S1004,所述M个资源块中至少存在两个资源块,资源子组与N组发送方式的第二绑定函数不相同;
在一实施方式中,所述第二绑定关系和实施例三中第一绑定关系的实现过程相同。
S1005:所述接收端根据所述资源子组对应的接收方式在M个资源块上的接收信息。
对于步骤S1005,所述接收端待接收的信息与实施例三中发送端发送的待发送的信息为同一信息;
所述接收端可以应用于多种信息的接收,比如:N组广播信息,所述广播信息为指示寻呼信息的广播信息,或者指示SIB,信息的广播信息;
或者,N组同步信号,所述N组同步信号为N组辅同步信号,或者N组扩展同步信号;
或者,N组控制信息,所述控制信息为指示寻呼信息的控制信息,或者指示SIB信息的控制信息,或者信道状态信息CSI、ACK/NACK信息、 SR信息中至少一种;
或者,N组随机接入前导信息;
或者,N组测量导频信息,所述测量导频信息为下行测量导频CSI-RS,或者波束参考导频BRS,或者更精细化的波束测量导频BRRS,或者上行探测导频SRS,或者DRS,也可以是一些其他的测量导频如解调参考信号等,还可以是上行测量导频。
本实施例提供了另一种信息传输方法,所述方法用于接收端,所述接收端确定M个资源块及M个资源块上的资源子组,所述接收端确定N组接收方式,对每个资源块,所述接收端根据第一类参数确定资源子组与所述N组接收方式之间的第二绑定函数,所述接收端根据所述第二绑定函数接收M个资源块上的待接收的信息,避免合并增益损失。
实施例五
参见图11,其示出了本发明实施例的信息传输装置的第一发送端11,所述第一发送端包括:第一确定模块1101、第二确定模块1102、映射模块1103及第一发送模块1104,其中,
所述第一确定模块1101,设置为确定M个资源块及M个资源块上的资源子组;其中,第i个资源块上包括Ni个资源子组,所述M、Ni为正整数,i为整数,并且M为不小于2的整数;
所述第二确定模块1102,设置为确定N份待发送的信息;其中,N为不超过Ni的整数;
所述映射模块1103,设置为对每个资源块根据第一类参数确定N份待发送的信息到资源子组的映射函数;
所述第一发送模块1104,设置为根据所述映射函数发送M个资源块上的N份待发送的信息。
上述方案中,所述第一确定模块1101,设置为,
根据第一发送端与第一接收端的链路方式确定M个资源块及M个资源块上的资源子组的划分;
在一实施方式中,所述资源块的资源类型包括:资源块的资源类型包 括时域资源、频域资源、空域资源、码域资源中至少一种或多种资源混合构成的资源类型;
在一实施方式中,所述时域资源包括时域符号,或者时隙,或者子帧,或者Time interval;所述频域资源包括子载波;所述空域资源包括波束、天线、扇区、端口中至少一种;所述码域资源包括序列;
在一实施方式中,所述发送端与接收端之间的链路方式包括:上行链路或者下行链路或者sidelink;
在一实施方式中,发送端与接收端之间的链路方式为上行链路时,发送端为终端,接收端为基站,资源块通常是预先配置的,终端根据基站发送的配置信令确定资源子组的划分;比如,资源块为时域资源,配置信令包括了周期、资源形式、时域偏置、资源块包含的时域符号以及时域符号资源子组的划分等;资源块为频域资源,则配置信令包含了频域的资源块的指示信息,频域资源块包含的子载波资源子组划分信息;资源块为码域资源,则配置信令包含了码序列的集合信息,序列资源子组的划分信息等;资源块为空域资源,则配置信令包含了天线端口信息、波束信息、天线端口资源子组、波束资源子组的划分信息;
或者,发送端与接收端之间的链路方式为下行链路时,发送端为基站,接收端为终端,资源块是基站根据当前的发送需求自行确定,并通过下行信令指示给终端资源块的位置以及资源子组的划分方式;
或者,发送端与接收端之间的链路方式为sidelink时,发送端为第一终端,接收端为第二终端,资源块涉及第一终端与第二终端之间的发送,资源块的位置以及资源子组的划分方式可以通过与第一终端和第二终端相关的宏基站的配置确定。
对于第一确定模块1101,所述发送端与接收端可以通过空中接口建立链路,也可以采取其他的方式建立链路,本发明实施例不作限定。
对于所述第二确定模块1102,如果待发送的信息数量N大于资源子组数量Ni,则待发送的信息的数量N等于资源子组的数量Ni;
所述待发送的信息可以为多种类型的信息;
比如,所述待发送的信息可以为:
N组广播信息,所述广播信息为指示寻呼信息的广播信息,或者指示SIB,信息的广播信息;
或者,N组同步信号,所述N组同步信号为N组辅同步信号,或者N组扩展同步信号;
或者,N组控制信息,所述控制信息为指示寻呼信息的控制信息,或者指示SIB信息的控制信息,或者信道状态信息CSI、ACK/NACK信息、SR信息中至少一种;
或者,N组随机接入前导信息;
或者,N组测量导频信息,所述测量导频信息为下行测量导频CSI-RS,或者波束参考导频BRS,或者更精细化的波束测量导频BRRS,或者上行探测导频SRS,或者DRS,也可以是一些其他的测量导频如解调参考信号等,还可以是上行测量导频。
对于所述映射模块1103,所述第一类参数包括配置指示参数、资源块所处位置索引、资源块索引、信息的取值、资源子组的取值、小区索引、UE索引、信息的类型、载频频率中至少一种。
所述映射函数由接收端和发送端进行约定,或者由发送端进行配置,或者接收端进行配置;
在一实施方式中,所述映射函数的自变量中至少存在一个自变量根据第一类参数确定。
示例性地,对于所述映射模块1103,资源子组的编号为x=1……Ni,信息的编号为y=1……N,N份待发送的信息映射到Ni个资源子组所得的映射函数可以表示为y=F(x,q),其中,F是映射函数,映射函数F由发送端和接收端进行约定或者由发送端进行配置或者由接收端进行配置,q为第一类参数中的一种数值信息,q可以根据N和/或Ni的取值确定,例如较少的N或Ni时,q可以为0,或者是N远远小于Ni时,q可以为0,q也可以由UE ID确定,例如q可以表示UE ID,q还可以由小区ID确定,或者由配置指示参数确定,或者由资源块所处位置索引或资源块索引确定,或者由信 息的类型确定,比如测量导频和同步信号的q的取值不同,也可以是载波频率确定,不同载波频率的q的取值不同,或者q也可以是由上述多个第一类参数联合确定;
映射函数可以表示为一个简单的形式y=Mod(x+q,N),其中,y=Mod(x+q,N)表示编号为x的资源子组与第一类参数对应的数值q之和对待发送的N份信息取余得到的y值即为映射到资源子组的信息编号。
映射函数还可以是y=F(x,q1,q2),q1和q2分别由第一类参数中的不同参数确定,本发明实施例关注的并不是这个映射函数的实际形式,而是这个映射函数的可变特性,并且映射函数F也可以很容易的扩展到更多参数的情况。
其中,所述第一确定模块1101、第二确定模块1102及映射模块1103的功能可以通过所述第一发送端11的处理器调用存储器中的程序或预储数据进行实现,在实际应用中,上述处理器可以为特定用途集成电路(ASIC,Application Specific Integrated Circuit)、数字信号处理器(DSP,Digital Signal Processor)、数字信号处理装置(DSPD,Digital Signal Processing Device)、可编程逻辑装置(PLD,Programmable Logic Device)、现场可编程门阵列(FPGA,Field Programmable Gate Array)、中央处理器(CPU,Central Processing Unit)、控制器、微控制器、微处理器中的至少一种。可以理解地,对于不同的设备,用于实现上述处理器功能的电子器件还可以为其它,本发明实施例不作限定。
对于所述第一发送模块1104,所述M个资源块中至少存在两个资源块,资源子组与N份待发送的信息采用的映射函数不相同;
在一实施方式中,所述发送端在发送待发送的信息时,对每个资源块,资源子组与待发送信息所需的发送方式之间的第一绑定函数相同,资源子组与待发送的信息之间的映射函数不同。
在一实施方式中,所述第一发送模块1104的功能可以通过第一发送端11中的通信组件以实现和其他设备之间有线或无线方式的通信,该通信组件可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。比如,通信组件经由广播信道接收来自外部广播管理系统的广播信号 或广播相关信息;或者通信组件还可以包括近场通信(NFC,Near Field Communication)模块,以促进短程通信,例如,NFC模块可基于射频识别(RFID,Radio,Frequency Identification)技术,红外数据协会(IrDA,Infrared Data Association)技术,超宽带(UWB,Ultra Wide Band)技术,蓝牙(BT,Bluetooth)技术和其他技术来实现。可以理解地,对于不同的设备,用于实现上述通信功能的通讯组件还可以为其它,本发明实施例不作限定。
本实施例提供了一种第一发送端,所述第一确定模块1101设置为确定M个资源块及M个资源块上的资源子组,所述第二确定模块1102设置为确定N份待发送的信息,所述映射模块1103设置为根据第一类参数确定每个资源块中资源子组与待发送信息之间的映射函数,所述第一发送模块1104设置为根据所述映射关系发送待发送的信息,从而同时获取合并增益及较好的干扰随机化效果。
实施例六
本发明实施例针对实施例五提出了相应的第一接收端,参见图12,其示出了本发明实施例信息传输装置的第一接收端120,所述第一接收端包括:第三确定模块1201、第四确定模块1202及第一接收模块1203,其中,
所述第三确定模块1201,设置为确定资源块及资源块上的资源子组;
所述第四确定模块1202,设置为根据第一类参数确定待接收的信息所在资源子组;
所述第一接收模块1203,设置为在所述待接收的信息所在资源子组上接收信息。
上述方案中,所述第三确定模块1201,设置为,
所述接收端根据发送端与接收端之间的链路方式确定资源块及资源块上的资源子组;
在一实施方式中,所述资源块的资源类型包括时域资源、频域资源、空域资源、码域资源中至少一种或多种资源混合构成的资源类型;
在一实施方式中,所述时域资源包括正交频分复用技术时域符号,或 者时隙,或者子帧,或者Time interval;所述频域资源包括子载波;所述空域资源包括波束,天线、扇区、端口中至少一种;所述码域资源包括序列;
在一实施方式中,所述发送端与接收端之间的链路方式包括:上行链路或者下行链路或者sidelink;
在一实施方式中,发送端与接收端之间的链路方式为上行链路时,发送端为终端,接收端为基站,资源块通常是预先配置的,终端根据基站发送的配置信令确定资源子组的划分;比如,资源块为时域资源,配置信令包括了周期、资源形式、时域偏置、资源块包含的时域符号以及时域符号资源子组的划分等;资源块为频域资源,则配置信令包含了频域的资源块的指示信息,频域资源块包含的子载波资源子组划分信息;资源块为码域资源,则配置信令包含了码序列的集合信息,序列资源子组的划分信息等;资源块为空域资源,则配置信令包含了天线端口信息、波束信息、天线端口资源子组、波束资源子组的划分信息;
或者,发送端与接收端之间的链路方式为下行链路时,发送端为基站,接收端为终端,资源块是基站根据当前的发送需求自行确定,并通过下行信令指示给终端资源块的位置以及资源子组的划分方式;
或者,发送端与接收端之间的链路方式为sidelink时,发送端为第一终端,接收端为第二终端,资源块涉及第一终端与第二终端之间的发送,资源块的位置以及资源子组的划分方式可以通过与第一终端和第二终端相关的宏基站的配置确定。
对于所述第三确定模块1201,所述发送端与接收端可以通过空中接口建立链路,也可以采取其他的方式建立链路,本发明实施例不作限定。
对于所述第四确定模块1202,所述第一类参数包括配置指示参数、资源块所处位置索引、资源块索引、N的取值、Ni的取值、小区索引、UE索引、信息的类型、载频频率中至少一种。
对于所述第四确定模块1202,所述接收端待接收的信息与实施例五中发送端发送的待发送的信息为同一信息,所述第一类参数与实施例五中发 送端对应的第一类参数为相同内容。
所述第四确定模块1202,设置为,
所述接收端通过资源子组与第一类参数之间的资源子组选择函数确定待接收的信息所在资源子组;其中,所述资源子组选择函数用于表征第一类参数的不同可以改变待接收信息对应的资源子组。
在一实施方式中,所述第三确定模块1201及第四确定模块1202的功能可以通过所述第一接收端12的处理器调用存储器中的程序或预储数据进行实现,在实际应用中,上述处理器可以为ASIC、DSP、DSPD、PLD、FPGA、CPU、控制器、微控制器、微处理器中的至少一种。可以理解地,对于不同的设备,用于实现上述处理器功能的电子器件还可以为其它,本发明实施例不作限定。
对于所述第一接收模块1203,所述接收端可以应用于多种信息的接收,比如:N组广播信息,所述广播信息为指示寻呼信息的广播信息,或者指示SIB,信息的广播信息;
或者,N组同步信号,所述N组同步信号为N组辅同步信号,或者N组扩展同步信号;
或者,N组控制信息,所述控制信息为指示寻呼信息的控制信息,或者指示SIB信息的控制信息,或者信道状态信息CSI、ACK/NACK信息、SR信息中至少一种;
或者,N组随机接入前导信息;
或者,N组测量导频信息,所述测量导频信息为下行测量导频CSI-RS,或者波束参考导频BRS,或者更精细化的波束测量导频BRRS,或者上行探测导频SRS,或者DRS,也可以是一些其他的测量导频如解调参考信号等,还可以是上行测量导频。
在一实施方式中,所述第一接收模块1203的功能可以通过第一发送端11中的通信组件以实现和其他设备之间有线或无线方式的通信,该通信组件可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。比如,通信组件经由广播信道接收来自外部广播管理系统的广播信号 或广播相关信息;或者通信组件还可以包括NFC模块,以促进短程通信,例如,NFC模块可基于RFID技术,IrDA技术,UWB技术,BT技术和其他技术来实现。可以理解地,对于不同的设备,用于实现上述通信功能的通讯组件还可以为其它,本发明实施例不作限定。
本实施例提供了一种第一接收端,所述第三确定模块1201设置为确定资源块及资源块上的资源子组,所述第四确定模块1202设置为通过资源子组与第一类参数之间的资源子组选择函数确定待接收的信息所在资源子组,所述第一接收模块1203设置为在对应的资源子组上接收信息,在保证节点之间的随机化干扰效果的前提下,保证了第一接收端准确的接收来自第一发送端的信息,避免合并增益损失。
实施例七
参见图13,其示出了本发明实施例的另一种信息传输装置的第二发送端13,所述第二发送端包括:第五确定模块1301、第六确定模块1302、第一绑定模块1303及第二发送模块1304,其中,
所述第五确定模块1301,设置为确定M个资源块及M个资源块上的资源子组;其中,第i个资源块上包括Ni个资源子组,所述M、Ni为正整数,i为整数,并且M为不小于2的整数;
所述第六确定模块1302,设置为确定N组发送方式;其中,N为不超过Ni的整数;
所述第一绑定模块1303,设置为对每个资源块,根据第一类参数确定资源子组与所述N组发送方式之间的第一绑定函数;
所述第二发送模块1304,设置为根据所述第一绑定函数发送M个资源块上的待发送的信息。
上述方案中,所述第五确定模块1301,设置为,
根据发送端与接收端的链路方式确定M个资源块及M个资源块上的资源子组;
在一实施方式中,所述资源块的资源类型包括时域资源、频域资源、码域资源中至少一种或多种资源混合构成的资源类型;
在一实施方式中,所述时域资源为时域符号,或者时隙,或者子帧,或者Time interval;所述频域资源包括子载波;所述码域资源包括序列;
在一实施方式中,所述发送端与接收端之间的链路方式包括:上行链路或者下行链路或者sidelink;
在一实施方式中,发送端与接收端之间的链路方式为上行链路时,发送端为终端,接收端为基站,资源块通常是预先配置的,终端根据基站发送的配置信令确定资源子组的划分;比如,资源块为时域资源,配置信令包括了周期、资源形式、时域偏置、资源块包含的时域符号以及时域符号资源子组的划分等;资源块为频域资源,则配置信令包含了频域的资源块的指示信息,频域资源块包含的子载波资源子组划分信息;资源块为码域资源,则配置信令包含了码序列的集合信息,序列资源子组的划分信息等;资源块为空域资源,则配置信令包含了天线端口信息、波束信息、天线端口资源子组、波束资源子组的划分信息;
或者,发送端与接收端之间的链路方式为下行链路时,发送端为基站,接收端为终端,资源块是基站根据当前的发送需求自行确定,并通过下行信令指示给终端资源块的位置以及资源子组的划分方式;
或者,发送端与接收端之间的链路方式为sidelink时,发送端为第一终端,接收端为第二终端,资源块涉及第一终端与第二终端之间的发送,资源块的位置以及资源子组的划分方式可以通过与第一终端和第二终端相关的宏基站的配置确定。
对于所述第五确定模块1301,所述发送端与接收端可以通过空中接口建立链路,也可以采取其他的方式建立链路,本发明实施例不作限定。
对于所述第六确定模块1302,如果所述发送方式的组数N超过资源子组的数量Ni,则发送方式的组数N等于资源子组的数量Ni;
所述发送方式包括:发送功率,或者发送波束、发送天线、发送端口、发送扇区中至少一种;
比如,发送方式可以包括:一组波束[波束1,波束2……波束N];
或者,一组天线与波束的组合[天线1的波束1,天线2的波束1,天线 1的波束2,天线2的波束2……天线1的波束N/2,天线2的波束N/2];
或者,一组功率[功率1,功率2……功率N];
对于所述第一绑定模块1303,所述第一类参数包括配置指示参数、资源块所处位置索引或资源块索引、N和/或Ni的取值、小区索引、UE索引、信息的类型、载频频率中至少一种;
以及,所述第一绑定函数由发送端和接收端端进行约定,或者由发送端进行配置,或者由接收端进行配置;
在一实施方式中,所述第一绑定函数的自变量中至少存在一个自变量根据第一类参数确定。
示例性地,对于所述第一绑定模块1303,资源子组的编号为x=1……Ni,第一类发送资源的编号为y=1……N,N个第一类发送资源绑定到Ni个资源子组所得的绑定函数可以表示为y=f(x,q),其中,f是绑定函数,绑定函数f由发送端和接收端进行约定或者由发送端/接收端进行配置,q为第一类参数中的一种数值信息,q可以根据N和/或Ni的取值确定,例如较少的N或Ni时,q可以为0,或者是N远远小于Ni时,q可以为0,q也可以由UE ID确定,例如q可以表示UE ID,q还可以由小区ID确定,或者由配置指示参数确定,或者由资源块所处位置索引或资源块索引确定,或者由信息的类型确定,比如测量导频和同步信号的q的取值不同,也可以是载波频率确定,不同载波频率的q的取值不同,或者q也可以是由上述多个第一类参数联合确定;
绑定函数可以表示为一个简单的形式y=Mod(x+q,N),其中,y=Mod(x+q,N)表示编号为x的资源子组与第一类参数对应的数值q之和对N个第一类发送资源取余得到的y值即为与资源子组绑定的第一类发送资源的编号。
绑定函数还可以是y=f(x,q1,q2),q1和q2分别由第一类参数中的不同参数确定,本发明实施例关注的并不是这个绑定函数的实际形式,而是这个绑定函数的可变特性,并且绑定函数f也可以很容易的扩展到更多参数的情况。
在一实施方式中,所述第五确定模块1301、第六确定模块1302及第一绑定模块1303的功能可以通过所述第二发送端13的处理器调用存储器中的程序或预储数据进行实现,在实际应用中,上述处理器可以为ASIC、DSP、DSPD、PLD、FPGA、CPU、控制器、微控制器、微处理器中的至少一种。可以理解地,对于不同的设备,用于实现上述处理器功能的电子器件还可以为其它,本发明实施例不作限定。
对于所述第二发送模块1304,所述待发送的信息为N组广播信息,所述广播信息为指示寻呼信息的广播信息,或者指示SIB,信息的广播信息;
或者,N组同步信号,所述N组同步信号为N组辅同步信号,或者N组扩展同步信号;
或者,N组控制信息,所述控制信息为指示寻呼信息的控制信息,或者指示SIB信息的控制信息,或者信道状态信息CSI、ACK/NACK信息、SR信息中至少一种;
或者,N组随机接入前导信息;
或者,N组测量导频信息,所述测量导频信息为下行测量导频CSI-RS,或者波束参考导频BRS,或者更精细化的波束测量导频BRRS,或者上行探测导频SRS,或者DRS,也可以是一些其他的测量导频如解调参考信号等,还可以是上行测量导频。
对于所述第二发送模块1304,所述M个资源块中至少存在两个资源块,资源子组与N组发送方式的第一绑定函数不相同;
在一实施方式中,所述发送端在发送待发送的信息时,对于每个资源块,资源子组与待发送的信息之间的映射函数相同,资源子组与发送方式之间的第一绑定函数不同。
在一实施方式中,所述第一接收模块1304的功能可以通过第一发送端11中的通信组件以实现和其他设备之间有线或无线方式的通信,该通信组件可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。比如,通信组件经由广播信道接收来自外部广播管理系统的广播信号 或广播相关信息;或者所述第二发送端13配置的通信组件还可以包括NFC模块,以促进短程通信,例如,NFC模块可基于RFID技术,IrDA技术,UWB技术,BT技术和其他技术来实现。可以理解地,对于不同的设备,用于实现上述通信功能的通讯组件还可以为其它,本发明实施例不作限定。
本实施例提供了一种第二发送端,第五确定模块1301设置为确定资源块、资源子组,第六确定模块1302设置为确定发送方式,第一绑定模块1303设置为根据第一类参数确定每个资源块中资源子组与发送方式之间的第一绑定函数,第二发送模块1304设置为根据所述第一绑定函数发送待发送的信息,从而同时获取合并增益及较好的干扰随机化效果。
实施例八
本发明实施例针对实施例七提出了相应的第二接收端,参见图14,其示出了本发明实施例信息传输装置的第二接收端14,所述第二接收端包括:第七确定模块1401、第八确定模块1402、第二绑定模块1403、第九确定模块1404及第二接收模块1405,其中,
所述第七确定模块1401,设置为确定M个资源块及M个资源块上的资源子组;其中,第i个资源块包括Ni个资源子组;
所述第八确定模块1402,设置为确定N组接收方式;其中,N为不超过Ni的整数;
所述第二绑定模块1403,设置为对每个资源块,根据第一类参数确定资源子组与所述N组接收方式之间的第二绑定函数;
所述第九确定模块1404,设置为根据所述第二绑定函数确定资源子组对应接收方式;
所述第二接收模块1405,设置为根据所述第二绑定函数接收M个资源块上的待接收的信息。
上述方案中,所述第七确定模块1401,设置为,
根据发送端与接收端的链路方式确定M个资源块及M个资源块上的资源子组;
在一实施方式中,所述资源块的资源类型包括时域资源、频域资源、码域资源中至少一种或多种资源混合构成的资源类型;
在一实施方式中,所述时域资源为时域符号,或者时隙,或者子帧,或者Time interval;所述频域资源包括子载波;所述码域资源包括序列;
在一实施方式中,所述发送端与接收端之间的链路方式包括:上行链路或者下行链路或者sidelink;
在一实施方式中,发送端与接收端之间的链路方式为上行链路时,发送端为终端,接收端为基站,资源块通常是预先配置的,终端根据基站发送的配置信令确定资源子组的划分;比如,资源块为时域资源,配置信令包括了周期、资源形式、时域偏置、资源块包含的时域符号以及时域符号资源子组的划分等;资源块为频域资源,则配置信令包含了频域的资源块的指示信息,频域资源块包含的子载波资源子组划分信息;资源块为码域资源,则配置信令包含了码序列的集合信息,序列资源子组的划分信息等;资源块为空域资源,则配置信令包含了天线端口信息、波束信息、天线端口资源子组、波束资源子组的划分信息;
或者,发送端与接收端之间的链路方式为下行链路时,发送端为基站,接收端为终端,资源块是基站根据当前的发送需求自行确定,并通过下行信令指示给终端资源块的位置以及资源子组的划分方式;
或者,发送端与接收端之间的链路方式为sidelink时,发送端为第一终端,接收端为第二终端,资源块涉及第一终端与第二终端之间的发送,资源块的位置以及资源子组的划分方式可以通过与第一终端和第二终端相关的宏基站的配置确定。
对于所述第七确定模块1401,所述发送端与接收端可以通过空中接口建立链路,也可以采取其他的方式建立链路,本发明实施例不作限定。
对于所述第八确定模块1402,如果所述接收方式的组数N超过资源子组的数量Ni,则接收方式的组数N等于资源子组的数量Ni;
所述接收方式包括发送波束、发送天线、发送端口、发送扇区中的至少一种。
对于所述第二绑定模块1403,所述第一类参数包括配置指示参数、资源块所处位置索引、资源块索引、N的取值、Ni的取值、小区索引、UE索引、信息的类型、载频频率中至少一种。
所述第二绑定函数由发送端和接收端端进行约定,或者由发送端进行配置,或者由接收端进行配置;
在一实施方式中,所述第一绑定函数的自变量中至少存在一个自变量根据第一类参数确定。
示例性地,对于所述第二绑定模块1403,资源子组的编号为x=1……Ni,第一类接收资源的编号为y=1……N,N个第一类接收资源绑定到Ni个资源子组所得的绑定函数可以表示为y=f(x,q),其中,f是绑定函数,绑定函数f由发送端和接收端进行约定或者由发送端/接收端进行配置,q为第一类参数中的一种数值信息,q可以根据N和/或Ni的取值确定,例如较少的N或Ni时,q可以为0,或者是N远远小于Ni时,q可以为0,q也可以由UE ID确定,例如q可以表示UE ID,q还可以由小区ID确定,或者由配置指示参数确定,或者由资源块所处位置索引或资源块索引确定,或者由信息的类型确定,比如测量导频和同步信号的q的取值不同,也可以是载波频率确定,不同载波频率的q的取值不同,或者q也可以是由上述多个第一类参数联合确定;
绑定函数可以表示为一个简单的形式y=Mod(x+q,N),其中,y=Mod(x+q,N)表示编号为x的资源子组与第一类参数对应的数值q之和对N个第一类接收资源取余得到的y值即为与资源子组绑定的第一类接收资源的编号。
绑定函数还可以是y=f(x,q1,q2),q1和q2分别由第一类参数中的不同参数确定,本发明实施例关注的并不是这个绑定函数的实际形式,而是这个绑定函数的可变特性,并且绑定函数f也可以很容易的扩展到更多参数的情况。
对于第二绑定模块1403,所述第一类参数与实施例七中发送端对应的第一类参数相同。
对于第九确定模块1404,所述M个资源块中至少存在两个资源块,资源子组与N组发送方式的第二绑定函数不相同;
在一实施方式中,所述第二绑定关系和实施例七中第一绑定关系的实现过程相同。
在一实施方式中,所述第七确定模块1401、第八确定模块1402、第二绑定模块1403及第九确定模块1404的功能可以通过所述第二接收端14的处理器调用存储器中的程序或预储数据进行实现,在实际应用中,上述处理器可以为ASIC、DSP、DSPD、PLD、FPGA、CPU、控制器、微控制器、微处理器中的至少一种。可以理解地,对于不同的设备,用于实现上述处理器功能的电子器件还可以为其它,本发明实施例不作限定。
所述第二接收模块1405,所述接收端待接收的信息与实施例七中发送端发送的待发送的信息为同一信息;
在一实施方式中,所述第二接收模块1405,可以应用于多种信息的接收,比如:所述待发送的信息为N组广播信息,所述广播信息为指示寻呼信息的广播信息,或者指示SIB,信息的广播信息;
或者,N组同步信号,所述N组同步信号为N组辅同步信号,或者N组扩展同步信号;
或者,N组控制信息,所述控制信息为指示寻呼信息的控制信息,或者指示SIB信息的控制信息,或者信道状态信息CSI、ACK/NACK信息、SR信息中至少一种;
或者,N组随机接入前导信息;
或者,N组测量导频信息,所述测量导频信息为下行测量导频CSI-RS,或者波束参考导频BRS,或者更精细化的波束测量导频BRRS,或者上行探测导频SRS,或者DRS,也可以是一些其他的测量导频如解调参考信号等,还可以是上行测量导频。
在一实施方式中,所述第二接收模块1405的功能可以通过第一发送端11中的通信组件以实现和其他设备之间有线或无线方式的通信,该通信组件可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组 合。比如,通信组件经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息;或者所述第二接收端14配置的通信组件还可以包括NFC模块,以促进短程通信,例如,NFC模块可基于RFID技术,IrDA技术,UWB技术,BT技术和其他技术来实现。可以理解地,对于不同的设备,用于实现上述通信功能的通讯组件还可以为其它,本发明实施例不作限定。
本实施例提供了一种第二接收端,第七确定模块1401设置为确定资源块及资源块上的资源子组,第八确定模块1402设置为确定接收方式,第二绑定模块1403设置为通过第一类参数确定资源子组与接收方式之间的第二绑定函数,所述第九确定模块1404设置为根据所述第二绑定函数确定资源子组对应接收方式,第二接收模块1405根据所述第二绑定函数接收资源块上的待接收的信息,在保证节点之间的随机化干扰效果的前提下,保证了第二接收端准确的接收来自第二发送端的信息,避免合并增益损失。
此外,参见图15,本发明实施例还提供了一种信息传输系统15,该系统包括第一发送端11和第一接收端12,其中,
所述第一发送端,设置为确定M个资源块及M个资源块上的资源子组;其中,第i个资源块上包括Ni个资源子组,所述M、Ni为正整数,i为整数,并且M为不小于2的整数;
以及,设置为确定N份待发送的信息;其中,N为不超过Ni的整数;
以及,设置为对每个资源块根据第一类参数确定N份待发送的信息到资源子组的映射函数;
以及,设置为根据所述映射函数发送M个资源块上的N份待发送的信息;
所述第一接收端,设置为确定资源块及资源块上的资源子组;
以及,设置为根据第一类参数确定待接收的信息所在资源子组;
以及,设置为在所述待接收的信息所在资源子组上接收信息。
参见图16,本发明实施例还提供了另一种信息传输系统16,该系统包括第二发送端13和第二接收端14,其中,
所述第二发送端,设置为确定M个资源块及M个资源块上的资源子组;其中,第i个资源块上包括Ni个资源子组,所述M、Ni为正整数,i为整数,并且M为不小于2的整数;
以及,设置为确定N组发送方式;其中,N为不超过Ni的整数;
以及,设置为对每个资源块,根据第一类参数确定资源子组与所述N组发送方式之间的第一绑定函数;
以及,设置为根据所述第一绑定函数发送M个资源块上的待发送的信息;
所述第二接收端,设置为确定M个资源块及M个资源块上的资源子组;其中,第i个资源块包括Ni个资源子组;
以及,设置为确定待接收的信息所需的N组接收方式;其中,N为不超过Ni的整数;
以及,设置为对每个资源块,根据第一类参数确定资源子组与所述N组接收方式之间的第二绑定函数;
以及,设置为根据所述第二绑定函数确定资源子组对应接收方式;
以及,设置为根据所述资源子组对应的接收方式在M个资源块上的接收信息。
本发明的实施例可提供方法、系统、或者计算机程序产品。因此,本申请可采用硬件实施例、软件实施例、获结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含由计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请时参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现程序图和/或方框图中每一流程和/获方框、以及流程图和/或方框图中的流程和/或的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或者其他可编程数据处理设备的处理器易产生一个机器,是的通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在 流程图一个流程或多个流程和/或方框图一个方框或者多个方框中指定的功能的装置。
这些计算机程序指令也可以存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算及可读存储器中的指令产生包括指令装置的制造品。该指令装置实现在流程图中一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载在计算机或其他可编程处理设备上,使得在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上,仅为本发明的实施例而已,并非用于限定本申请的保护范围。
工业实用性
本发明实施例提供了一种信息传输方法及装置,针对每个资源块,发送端通过引入第一类参数来改变资源子组与待发送的信息之间的映射函数,或者发送端通过引入的第一类参数来改变资源子组与待发送的信息所需的发送方式之间的第一绑定函数,发送端通过所述改变后的映射函数或者第一绑定函数发送资源块上待发送的信息,接收端在接收待接收的信息时,通过引入的第一类参数确定待接收信息所在的资源子组,或者接收端通过第一类参数确定接收方式与资源子组的第二绑定函数,保证所述接收端准确的接收来自发送端的发送信息,从而同时获取合并增益及较好的干扰随机化效果。

Claims (28)

  1. 一种信息传输方法,所述传输方法应用于发送端,所述方法包括:
    所述发送端确定N份待发送的信息;
    对每个资源块,所述发送端根据第一类参数确定N份待发送的信息到资源子组的映射函数;
    所述发送端根据所述映射函数发送M个资源块上的N份待发送的信息;
    其中,所述M为不小于2的整数,N为整数。
  2. 根据权利要求1所述的方法,其中,所述发送端确定N份待发送的信息之前,还包括:
    所述发送端确定M个资源块及M个资源块上的资源子组;其中,第i个资源块上包括Ni个资源子组,所述Ni为正整数,i为整数,所述N不超过Ni。
  3. 根据权利要求2所述的方法,其中,所述第一类参数包括配置指示参数、资源块所处位置索引、资源块索引、N的取值、Ni的取值、小区索引、UE索引、信息的类型、载频频率中至少一种。
  4. 根据权利要求1或2所述的方法,其中,所述映射函数的自变量中至少存在一个自变量根据第一类参数确定。
  5. 根据权利要求1或2所述的方法,其中,所述M个资源块中至少存在两个资源块,资源子组与N份待发送的信息采用的映射函数不相同。
  6. 一种信息传输方法,所述传输方法应用于接收端,所述方法包括:
    所述接收端确定资源块及资源块上的资源子组;
    所述接收端根据第一类参数确定待接收的信息所在资源子组;
    所述接收端在所述待接收的信息所在资源子组上接收信息。
  7. 根据权利要求6所述的方法,其中,所述接收端根据第一类参数确定待接收的信息所在资源子组,包括:
    所述接收端通过资源子组与第一类参数之间的资源子组选择函数确定待接收的信息所在资源子组;其中,所述资源子组选择函数用于表征第一类 参数的不同可以改变待接收信息对应的资源子组。
  8. 一种信息传输方法,所述传输方法应用于发送端,所述方法包括:
    所述发送端确定N组发送方式;
    对每个资源块,所述发送端根据第一类参数确定资源子组与所述N组发送方式之间的第一绑定函数;
    所述发送端根据所述第一绑定函数发送M个资源块上的待发送的信息;
    其中,所述M为不小于2的整数,N为整数。
  9. 根据权利要求8所述的方法,其中,所述发送端确定N组发送方式之前,还包括:
    所述发送端确定M个资源块及M个资源块上的资源子组;其中,第i个资源块上包括Ni个资源子组,所述Ni为正整数,i为整数,所述N不超过Ni。
  10. 根据权利要求9所述的方法,其中,所述第一类参数包括配置指示参数、资源块所处位置索引、资源块索引、Ni的取值、Ni的取值、小区索引、UE索引、信息的类型、载频频率中至少一种。
  11. 根据权利要求8或9所述的方法,其中,所述第一绑定函数的自变量中至少存在一个自变量根据第一类参数确定。
  12. 根据权利要求8或9所述的方法,其中,所述M个资源块中至少存在两个资源块,资源子组与N组发送方式的第一绑定函数不相同。
  13. 一种信息传输方法,所述传输方法应用于接收端,所述方法包括:
    所述接收端确定N组接收方式;
    对每个资源块,所述接收端根据第一类参数确定资源子组与所述N组接收方式之间的第二绑定函数;
    所述接收端根据所述第二绑定函数确定资源子组对应接收方式;
    所述接收端根据所述资源子组对应的接收方式在M个资源块上的接收信息;
    其中,所述M为不小于2的整数,N为整数。
  14. 根据权利要求13所述的方法,其中,所述接收端确定N组接收方式之前,还包括:
    所述接收端确定M个资源块及M个资源块上的资源子组;其中,第i个资源块上包括Ni个资源子组,所述Ni为正整数,i为整数,所述N不超过Ni。
  15. 根据权利要求13或14所述的方法,其中,所述M个资源块中至少存在两个资源块,资源子组与N组发送方式的第二绑定函数不相同。
  16. 一种第一发送端,所述第一发送端包括:第二确定模块、映射模块及第一发送模块,其中,
    所述第二确定模块,设置为确定N份待发送的信息;
    所述映射确定模块,设置为对每个资源块,所述发送端根据第一类参数确定N份待发送的信息到资源子组的映射函数;
    所述第一发送模块,设置为根据所述映射函数发送M个资源块上的N份待发送的信息;
    其中,所述M为不小于2的整数,N为整数。
  17. 根据权利要求16所述的第一发送端,还包括:第一确定模块,
    所述第一确定模块,设置为确定M个资源块及M个资源块上的资源子组;其中,第i个资源块上包括Ni个资源子组,所述Ni为正整数,i为整数,所述N不超过Ni。
  18. 根据权利要求16或17所述的第一发送端,其中,所述映射函数的自变量中至少存在一个自变量根据第一类参数确定。
  19. 根据权利要求16或17所述的第一发送端,其中,所述M个资源块中至少存在两个资源块,资源子组与N份待发送的信息采用的映射函数不相同。
  20. 一种第一接收端,所述接收端包括:第三确定模块、第四确定模块及第一接收模块,其中,
    所述第三确定模块,设置为确定资源块及资源块上的资源子组;
    所述第四确定模块,设置为根据第一类参数确定待接收的信息所在资源子组;
    所述第一接收模块,设置为在所述待接收的信息所在资源子组上接收信息。
  21. 根据权利要求20所述的第一接收端,其中,所述第四确定模块,设置为,
    通过资源子组与第一类参数之间的资源子组选择函数确定待接收的信息所在资源子组;其中,所述资源子组选择函数用于表征第一类参数的不同可以改变待接收信息对应的资源子组。
  22. 一种第二发送端,所述发送端包括:第六确定模块、第一绑定模块及第二发送模块,其中,
    所述第六确定模块,设置为确定N组发送方式;
    所述第一绑定模块,设置为对每个资源块,根据第一类参数确定资源子组与所述N组发送方式之间的第一绑定函数;
    所述第二发送模块,设置为根据所述第一绑定函数发送M个资源块上的待发送的信息;
    其中,所述M为不小于2的整数,N为整数。
  23. 根据权利要求22所述的第二发送端,还包括:第五确定模块,
    所述第五确定模块,设置为确定M个资源块及M个资源块上的资源子组;其中,第i个资源块上包括Ni个资源子组,所述Ni为正整数,i为整数,所述N不超过Ni。
  24. 根据权利要求22或23所述的第二发送端,其中,所述第一绑定函数的自变量中至少存在一个自变量根据第一类参数确定。
  25. 根据权利要求22或23所述的第二发送端,其中,所述M个资源块中至少存在两个资源块,资源子组与N组发送方式的第一绑定函数不相同。
  26. 一种第二接收端,所述接收端包括:第八确定模块、第二绑定模块、第九确定模块及第二接收模块,其中,
    所述第八确定模块,设置为确定N组接收方式;
    所述第二绑定模块,对每个资源块,根据第一类参数确定资源子组与所述N组接收方式之间的第二绑定函数;
    所述第九确定模块,设置为根据所述第二绑定函数确定资源子组对应接收方式;
    所述第二接收端,设置为根据所述资源子组对应的接收方式在M个资源块上的接收信息;
    其中,所述M为不小于2的整数,N为整数。
  27. 根据权利要求26所述的第二接收端,还包括:第七确定模块;
    所述第七确定模块,设置为确定M个资源块及M个资源块上的资源子组;其中,第i个资源块上包括Ni个资源子组,所述Ni为正整数,i为整数,所述N不超过Ni。
  28. 根据权利要求26或27所述的第二接收端,其中,所述M个资源块中至少存在两个资源块,资源子组与N组发送方式的第二绑定函数不相同。
PCT/CN2017/103805 2016-09-29 2017-09-27 一种信息传输方法及装置 WO2018059461A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610872591.0 2016-09-29
CN201610872591.0A CN107889237B (zh) 2016-09-29 2016-09-29 一种信息传输方法及装置

Publications (1)

Publication Number Publication Date
WO2018059461A1 true WO2018059461A1 (zh) 2018-04-05

Family

ID=61763174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103805 WO2018059461A1 (zh) 2016-09-29 2017-09-27 一种信息传输方法及装置

Country Status (2)

Country Link
CN (1) CN107889237B (zh)
WO (1) WO2018059461A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110784293B (zh) 2018-07-31 2022-08-26 维沃移动通信有限公司 信号传输方法和通信设备
CN110809323B (zh) * 2018-08-06 2023-06-16 华硕电脑股份有限公司 无线通信系统中处理多个装置间传送的方法和设备
CN111132318B (zh) * 2018-10-31 2022-07-19 华为技术有限公司 一种资源调度方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014098523A1 (en) * 2012-12-21 2014-06-26 Samsung Electronics Co., Ltd. Methods and apparatus for identification of small cells
CN103959853A (zh) * 2011-12-23 2014-07-30 富士通株式会社 下行控制信道的资源映射方法和装置
CN104363659A (zh) * 2014-10-24 2015-02-18 上海华为技术有限公司 一种资源分配装置、系统及方法
CN105790917A (zh) * 2016-04-15 2016-07-20 清华大学 一种基于资源图样的多用户上行接入方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9544776B2 (en) * 2008-03-25 2017-01-10 Qualcomm Incorporated Transmission and reception of dedicated reference signals
KR20100019947A (ko) * 2008-08-11 2010-02-19 엘지전자 주식회사 무선 통신 시스템에서 정보 전송 방법
US20100232384A1 (en) * 2009-03-13 2010-09-16 Qualcomm Incorporated Channel estimation based upon user specific and common reference signals
CN107809307B (zh) * 2012-09-18 2023-11-28 北京璟石知识产权管理有限公司 通信方法及终端、传输点
EP2916608B1 (en) * 2012-11-01 2017-12-06 Sharp Kabushiki Kaisha Mobile station apparatus, base station apparatus, communication method and integrated circuit
CN105392200B (zh) * 2014-08-25 2020-09-08 中兴通讯股份有限公司 干扰协调方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103959853A (zh) * 2011-12-23 2014-07-30 富士通株式会社 下行控制信道的资源映射方法和装置
WO2014098523A1 (en) * 2012-12-21 2014-06-26 Samsung Electronics Co., Ltd. Methods and apparatus for identification of small cells
CN104363659A (zh) * 2014-10-24 2015-02-18 上海华为技术有限公司 一种资源分配装置、系统及方法
CN105790917A (zh) * 2016-04-15 2016-07-20 清华大学 一种基于资源图样的多用户上行接入方法

Also Published As

Publication number Publication date
CN107889237A (zh) 2018-04-06
CN107889237B (zh) 2024-01-02

Similar Documents

Publication Publication Date Title
EP4054088B1 (en) Signal sending and receiving method, apparatus, and system
CN111511010B (zh) 发送和接收指示的方法和装置
WO2018228492A1 (zh) 参考信号、消息的传输方法、传输资源确定方法和装置
US11310015B2 (en) Method for transmitting and receiving reference signal and device therefor
CN109565821B (zh) 针对交错fdm上行链路dmrs的信令
US10397888B2 (en) Precoded CSI-RS for phase synchronization for reciprocity-based CoMP joint transmission
CN114762285A (zh) 用于发信号通知多个pdsch传输时机中的开始符号的系统和方法
US9999066B2 (en) Method and device of resource allocations for scheduling assignments in device to device communications
CN106664568A (zh) 用户终端、无线基站以及无线通信方法
CN112970214B (zh) 用于侧链路的反馈信令
CN103299680A (zh) 无线基站装置、移动终端装置,以及无线通信方法
CN108702783B (zh) 用于在无线通信系统中发射上行链路控制信息的方法和设备
TW201204140A (en) Method of performing uplink transmission and related communication device
CN114902769A (zh) 更新基于单pdcch的多trp pdsch或基于多pdcch的多trp pdsch的活动tci状态
WO2011127837A1 (zh) 多天线系统中的探测参考信号发送方法及装置
CN114697903A (zh) 副链路sl上的定位方法、终端及网络侧设备
CN110574347A (zh) 用于基于互易性的comp联合传输的越空相位同步
CN111464473B (zh) 配置信息的方法与装置
WO2018059461A1 (zh) 一种信息传输方法及装置
CN110402610A (zh) 无线通信系统中在终端和基站之间执行随机接入过程的方法和支持该方法的设备
CN103312444A (zh) 指示信息的发送和接收方法及装置
CN108353421A (zh) 用户终端、无线基站以及无线通信方法
CN112702155B (zh) 用于指示控制信道的方法与装置
EP4254845A1 (en) Method and device for generating aperiodic positioning reference signal in wireless communication system
WO2022116053A1 (zh) 一种参考信号的通信方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854911

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17854911

Country of ref document: EP

Kind code of ref document: A1