WO2018059251A1 - 资源分配方法及装置 - Google Patents

资源分配方法及装置 Download PDF

Info

Publication number
WO2018059251A1
WO2018059251A1 PCT/CN2017/101911 CN2017101911W WO2018059251A1 WO 2018059251 A1 WO2018059251 A1 WO 2018059251A1 CN 2017101911 W CN2017101911 W CN 2017101911W WO 2018059251 A1 WO2018059251 A1 WO 2018059251A1
Authority
WO
WIPO (PCT)
Prior art keywords
narrowband
resource
bandwidth
resource allocation
index
Prior art date
Application number
PCT/CN2017/101911
Other languages
English (en)
French (fr)
Inventor
方惠英
杨维维
戴博
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP17854701.4A priority Critical patent/EP3544322A4/en
Publication of WO2018059251A1 publication Critical patent/WO2018059251A1/zh
Priority to US16/367,112 priority patent/US11356990B2/en
Priority to US17/662,417 priority patent/US11765742B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the embodiments of the present invention relate to the field of communications, and in particular, to a resource allocation method and apparatus.
  • Machine Type Communications also known as Machine to Machine (M2M)
  • MTC Machine Type Communications
  • M2M Machine to Machine
  • GSM Global System of Mobile communication
  • LTE Long Time Evolution
  • LTE-A Advanced Long Time Evolution
  • MTC multi-class data services based on LTE/LTE-A will also be more attractive.
  • the MTC terminal supports a narrowband of up to 1.4 MHz.
  • the user equipment (UE) needs to support new functions; one of them supports a larger physical downlink shared channel (Physical Downlink Shared).
  • Physical Downlink Shared Physical Downlink Shared
  • Channel referred to as PDSCH
  • PUSCH Physical Uplink Shared Channel
  • the resource allocation of PDSCH/PUSCH channel in the prior art is designed with 1.4MHz narrowband bandwidth limitation, resulting in terminal Unable to support higher data rate MTC applications.
  • the maximum channel bandwidth requirement of the PDSCH/PUSCH is 5 MHz, and the resource allocation in this case is insufficient.
  • the embodiments of the present invention provide a resource allocation method and apparatus, so as to at least solve the related problem that the resource allocation of the PDSCH/PUSCH channel in the related art only considers the 1.4 MHz narrowband bandwidth limitation, and the UE cannot Support for higher data rate MTC applications.
  • a resource allocation method including: a base station sending a resource allocation parameter to a terminal by using a signaling, where the resource allocation parameter includes: a starting narrowband index, a resource location, and the starting The narrowband index is used to instruct the terminal to establish narrowband resources and/or broadband resources of the physical shared channel.
  • the resource allocation parameter further includes: bandwidth indication information, where the bandwidth indication information is used to indicate bandwidth information of the resource location.
  • bandwidth indication information is 1 bit, indicating whether the resource location is a broadband or a narrowband
  • bandwidth indication information is 2 bits, indicating a narrowband quantity included in a bandwidth where the resource location is located.
  • the broadband is composed of M narrowbands, where M is an integer greater than or equal to 2 and less than or equal to 16, and the narrowband is composed of at least 6 consecutive physical resource blocks (PRBs).
  • PRBs physical resource blocks
  • the maximum channel bandwidth supported by the physical shared channel includes one of the following: 5 MHz, 10 MHz, or 20 MHz.
  • the broadband when the bandwidth of the broadband is 5 MHz, the broadband includes 24 or 25 PRBs.
  • the starting narrowband index is used to: start location information indicating a resource location; identify a broadband index, where the broadband includes a starting narrowband, and the initial narrowband is a narrowband index within a broadband The smallest narrow band; identifies the narrowband index.
  • the initial narrowband index is used to identify The broadband at which the narrowband is located; when the bandwidth indication information indicates that the current resource allocation is in the narrowband mode, the initial narrowband index is used to identify the current narrowband.
  • the sending, by the base station, the resource allocation parameter to the terminal by using the signaling includes: sending, by the base station, the resource allocation parameter to the terminal by using high layer signaling and/or downlink control information DCI.
  • the sending, by the base station, the resource allocation parameter to the terminal by using the high layer signaling and/or the downlink control information DCI includes: sending, by the base station, the initial narrowband index to the terminal by using high layer signaling and/or DCI. And/or bandwidth indication information; the base station transmits a resource location within the broadband or narrowband to the terminal through the DCI.
  • the resource granularity indicating the resource location in the broadband is one of the following: 1 PRB, 2 PRB, 3 PRB, 4 PRB, 6 PRB.
  • the resource location is indicated by: direct indication by a specific resource indication domain, or by a resource allocation manner indication domain and a specific resource indication domain joint indication.
  • the resource allocation mode corresponding to the specific resource indication domain is predefined or fixed or semi-statically configured.
  • the resource allocation mode corresponding to the specific resource indication domain is determined by the resource allocation mode indication domain.
  • the initial narrowband index, resource location, and/or bandwidth indication information are separately encoded.
  • the initial narrowband index and the bandwidth indication information adopt a joint coding indication, and the resource location is independently coded.
  • the initial narrowband index, resource location, and/or bandwidth indication information is jointly encoded by a bit field of length N.
  • the initial narrowband index when the initial narrowband index adopts independent coding, the initial narrowband index is sent by fixed length or variable length information.
  • the maximum is adopted.
  • the starting narrowband index is sent with an information field length of four.
  • variable length information when the initial narrowband index is sent by using variable length information, one of the following is included:
  • the starting narrowband index For a system bandwidth greater than or equal to 5 MHz, if the starting narrowband index is used to identify the starting location information of a wideband having a size of 5 MHz, the starting narrowband index requires x bits:
  • the starting narrowband index is used to identify a narrowband position or a wideband start position information having a bandwidth of less than 5 MHz or a wideband start position information having a bandwidth equal to 5 MHz, the initial narrowband index Need y bit:
  • the starting narrowband index For a system bandwidth greater than or equal to 5 MHz, if the starting narrowband index is used to identify the starting location information of the broadband greater than 5 MHz, the starting narrowband index requires z bits, z ⁇ x;
  • another resource allocation method including: receiving, by a terminal, a resource allocation parameter, where the resource allocation parameter includes: a starting narrowband index, a resource location; and the starting narrowband index is used to Indicating the establishment of a narrowband resource and/or a broadband resource of a physical shared channel.
  • the resource allocation parameter further includes: bandwidth indication information, where the bandwidth indication information is used to indicate bandwidth information of the resource location.
  • bandwidth indication information is 1 bit, indicating whether the resource location is a broadband or a narrowband
  • bandwidth indication information is 2 bits, indicating a narrowband quantity included in a bandwidth where the resource location is located.
  • the broadband is composed of M narrow bands, where M is greater than or equal to 2 and less than or equal to An integer of 16, the narrow band consisting of at least 6 consecutive physical resource blocks PRB.
  • the maximum channel bandwidth supported by the physical shared channel includes one of the following: 5 MHz, 10 MHz, or 20 MHz.
  • the broadband when the bandwidth of the broadband is 5 MHz, the broadband includes 24 or 25 PRBs.
  • the starting narrowband index is used to: start location information indicating a resource location; identify a broadband index, where the broadband includes a starting narrowband, and the initial narrowband is a narrowband index within a broadband The smallest narrow band; identifies the narrowband index.
  • a resource allocation apparatus which is applied to a base station, and includes: a sending module, configured to send a resource allocation parameter to a machine type communication terminal by using a signaling, where the resource allocation parameter includes: And starting a narrowband index, a resource location, where the initial narrowband index is used to indicate that the terminal establishes a narrowband resource and/or a broadband resource of a physical shared channel.
  • the resource allocation parameter further includes: bandwidth indication information, where the bandwidth indication information is used to indicate bandwidth information of the resource location.
  • bandwidth indication information is 1 bit, indicating whether the resource location is a broadband or a narrowband
  • bandwidth indication information is 2 bits, indicating a narrowband quantity included in a bandwidth where the resource location is located.
  • the starting narrowband index is used to: start location information indicating a resource location; identify a broadband index, where the broadband includes a starting narrowband, and the initial narrowband is a narrowband index within a broadband The smallest narrow band; identifies the narrowband index.
  • another resource allocation apparatus which is applied to a terminal, and includes: a receiving module, configured to receive a resource allocation parameter, where the resource allocation parameter includes: a starting narrowband index, a resource location
  • the starting narrowband index is used to indicate the narrowband resources and/or broadband resources that establish the physical shared channel.
  • the resource allocation parameter further includes: bandwidth indication information, where the bandwidth indication information is used to indicate bandwidth information of the resource location.
  • bandwidth indication information is 1 bit, indicating whether the resource location is a broadband or a narrowband
  • bandwidth indication information is 2 bits, indicating a narrowband quantity included in a bandwidth where the resource location is located.
  • the broadband is composed of M narrowbands, where M is an integer greater than or equal to 2 and less than or equal to 16, and the narrowband is composed of at least 6 consecutive physical resource blocks PRB.
  • the maximum channel bandwidth supported by the physical shared channel includes one of the following: 5 MHz, 10 MHz, or 20 MHz.
  • the broadband when the bandwidth of the broadband is 5 MHz, the broadband includes 24 or 25 PRBs.
  • the starting narrowband index is used to: start location information indicating a resource location; identify a broadband index, where the broadband includes a starting narrowband, and the initial narrowband is a narrowband index within a broadband The smallest narrow band; identifies the narrowband index.
  • a storage medium is also provided.
  • the storage medium is arranged to store program code for performing the following steps:
  • a resource allocation parameter includes: a starting narrowband index, a resource location, where the initial narrowband index is used to indicate that the terminal establishes a narrowband resource and/or a broadband of the physical shared channel. Resources.
  • the base station transmits the configuration resource for the physical shared channel of the terminal through the resource allocation parameter, and sends the resource allocation parameter to the terminal, which solves the related problem that the resource allocation of the PDSCH/PUSCH channel in the related art only considers the 1.4 MHz narrowband bandwidth limitation.
  • the problem of higher data rate MTC applications cannot be supported, and the effect of supporting higher data rate MTC services is achieved.
  • FIG. 1 is a flow chart of a resource allocation method according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of another resource allocation method according to an embodiment of the present invention.
  • FIG. 3 is a structural block diagram of a resource allocation apparatus according to an embodiment of the present invention.
  • FIG. 4 is a structural block diagram of another resource allocation apparatus according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a resource allocation method according to Embodiment 3 of the present invention.
  • 6(a)-6(d) are schematic diagrams showing the MTC narrowband definition in the case where the bandwidth of the related art 3GPP LTE system is 5/10/15/20 MHz, respectively;
  • FIG. 7 is a schematic diagram of broadband division of a system bandwidth of 5 MHz according to an embodiment of the present invention.
  • 8(a)-8(c) are schematic diagrams of broadband division of a system bandwidth of 10 MHz according to an embodiment of the present invention.
  • 9(a)-9(b) are schematic diagrams of broadband division of a system bandwidth of 15 MHz according to an embodiment of the present invention.
  • 10(a) to 10(b) are schematic diagrams of broadband division of a system bandwidth of 20 MHz according to an embodiment of the present invention.
  • FIG. 1 is a diagram according to an embodiment of the present invention.
  • a flow chart of a resource allocation method, as shown in FIG. 1, the process includes the following steps:
  • Step S102 The base station sends a resource allocation parameter to the terminal, where the resource allocation parameter includes: a starting narrowband index, a resource location, and a starting narrowband index is used to indicate that the terminal establishes a narrowband resource and/or a broadband resource of the physical shared channel.
  • the resource allocation parameter includes: a starting narrowband index, a resource location, and a starting narrowband index is used to indicate that the terminal establishes a narrowband resource and/or a broadband resource of the physical shared channel.
  • the method may further include: Step S104: Receive a request message of the terminal, where the request message is used to request the base station to allocate a resource allocation parameter.
  • the base station transmits the configuration resource to the physical shared channel of the terminal by using the resource allocation parameter, and sends the resource allocation parameter to the terminal, which solves the related problem that the resource allocation of the PDSCH/PUSCH channel in the related art only considers the 1.4 MHz narrowband bandwidth limitation.
  • the problem of higher data rate MTC applications cannot be supported, and the effect of supporting higher data rate MTC services is achieved.
  • the executor of the foregoing steps may be a base station or the like, but is not limited thereto.
  • the terminal in this embodiment may be, but is not limited to, an MTC terminal.
  • the resource allocation parameter further includes: bandwidth indication information, where the bandwidth indication information is used to indicate bandwidth information of the resource location.
  • the bandwidth indication information identifies the bandwidth information of the resource location, and includes one of the following features:
  • the bandwidth indication information is 1 bit, indicating whether the resource location is broadband or narrowband.
  • the bandwidth indication information is 2 bits, indicating the number of narrowbands included in the bandwidth of the resource location.
  • the wideband consists of M narrowbands. Where M is an integer greater than or equal to 2 and less than or equal to 16.
  • the narrowband consists of six consecutive physical resource blocks (PRBs).
  • PRBs physical resource blocks
  • the maximum channel bandwidth supported by the PDSCH/PUSCH channel includes, but is not limited to, the following bandwidth: 5 MHz, 10 MHz, or 20 MHz.
  • the broadband includes 24 or 25 physical resource blocks (PRBs).
  • PRBs physical resource blocks
  • the starting narrowband index is used to identify one of the following:
  • the starting narrowband index indicates the starting location information of the resource location.
  • the starting narrowband index is used to identify
  • the broadband index is specifically: the broadband includes a starting narrowband, and the initial narrowband is a narrowband with a narrowest narrowband index in the wideband; and the narrowband index is identified.
  • the bandwidth indication information indicates that the current resource allocation is the broadband mode
  • the initial narrowband index is used to identify the broadband where the initial narrowband is located
  • the bandwidth indication information indicates that the current resource allocation is the narrowband mode
  • the starting narrowband index only identifies the current narrowband.
  • the base station sends the resource allocation parameter to the terminal by using the high layer signaling and/or the downlink control information DCI.
  • the sending, by the base station, the resource allocation parameter to the terminal by using the high layer signaling and/or the downlink control information DCI includes: the base station sending the initial narrowband index to the terminal by using the high layer signaling and/or the DCI.
  • the sending, by the base station, the resource allocation parameter to the terminal by using the high layer signaling and/or the downlink control information DCI includes: the base station indicating the information to the bandwidth by using the high layer signaling and/or the DCI.
  • the sending, by the base station, the resource allocation parameter to the terminal by using the high layer signaling and/or the downlink control information DCI includes: sending, by the DCI, the resource location in the broadband or in the narrowband to the terminal by using the DCI.
  • the resource location indicating the location of the resource within the broadband and the location of the resource within the narrowband may be the same or different.
  • the resource granularity indicating the resource location in the broadband is at least one of the following: 1 PRB, 2 PRB, 3 PRB, 4 PRB, 6 PRB, and the like.
  • the resource location may be directly indicated by the specific resource indication domain, or may be jointly indicated by the resource allocation mode indication domain + the specific resource indication domain.
  • the resource allocation mode corresponding to the specific resource indication domain is predefined or fixed or semi-statically configured.
  • the resource allocation mode corresponding to the specific resource indication domain is determined by the resource allocation mode indication domain.
  • the initial narrowband index, the bandwidth indication information, and the resource location are independently coded, respectively Instructing; initial narrowband index and bandwidth indication information joint coding indication, resource location indication respectively; initial narrowband index, bandwidth indication information, and resource location are jointly encoded by a bit field of length N.
  • the starting narrowband index can be transmitted by fixed length or variable length information. If the initial narrowband index is transmitted with a fixed length of information, the maximum length of the information field is 4.
  • the starting narrowband index is sent by using variable length information, including:
  • the starting narrowband index For a system bandwidth greater than or equal to 5 MHz, if the starting narrowband index is used to identify the starting location information of a wideband having a size of 5 MHz, the starting narrowband index requires x bits:
  • PRBs downlink physical resource blocks
  • the initial narrowband index is used to identify a narrowband position or a wideband start position information with a bandwidth less than 5 MHz or a wideband start position information with a bandwidth equal to 5 MHz.
  • the starting narrowband index requires y bits.
  • the starting narrowband index is used to identify the starting position information of the broadband greater than 5 MHz, the starting narrowband index requires z bits, z ⁇ x.
  • FIG. 2 is a flowchart of another resource allocation method according to an embodiment of the present invention. As shown in FIG. 2, the process includes the following steps:
  • Step S202 The terminal receives the resource allocation parameter, where the resource allocation parameter includes: a starting narrowband index and a resource location; and the starting narrowband index is used to indicate that a narrowband resource and/or a broadband resource of the physical shared channel is established;
  • the method further includes the step S204, the terminal receiving or transmitting the physical shared channel on the resources (PRBs) determined by the resource allocation parameter.
  • the terminal receives on the PRB determined by the resource allocation parameter, and for the uplink shared channel, the terminal transmits on the PRB determined by the resource allocation parameter.
  • the resource allocation parameter further includes: bandwidth indication information, where the bandwidth indication information is used to indicate bandwidth information of the resource location.
  • bandwidth indication information is 1 bit, indicating whether the resource location is a broadband or a narrowband
  • bandwidth indication information is 2 bits, indicating a narrowband quantity included in a bandwidth where the resource location is located.
  • the broadband is composed of M narrowbands, where M is an integer greater than or equal to 2 and less than or equal to 16, and the narrowband is composed of at least 6 consecutive physical resource blocks PRB.
  • the maximum channel bandwidth supported by the physical shared channel includes one of the following: 5 MHz, 10 MHz, or 20 MHz.
  • the bandwidth of the broadband is 5 MHz
  • the bandwidth includes 24 or 25 PRBs.
  • the initial narrowband index is specifically used to: start location information indicating a resource location; identify a broadband index, where the broadband includes a starting narrowband, and the initial narrowband is a narrowband with a narrowest narrowband index in the broadband; Narrowband index.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • a resource allocation device is also provided, which is used to implement the above implementation.
  • the examples and preferred embodiments have not been described again.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 3 is a structural block diagram of a resource allocation apparatus according to an embodiment of the present invention, which is applied to a base station. As shown in FIG. 3, the apparatus includes:
  • the sending module 30 is configured to send, by using signaling, a resource allocation parameter, where the resource allocation parameter includes: a starting narrowband index, a resource location, and a starting narrowband index is used to indicate that the terminal establishes a narrowband resource and/or a broadband of the physical shared channel. Resources.
  • the device further includes: a receiving module, configured to: before the sending module 30 sends the resource allocation parameter to the terminal, receive a request message of the terminal, where the request message is used to request the base station to allocate a resource allocation parameter thereto.
  • a receiving module configured to: before the sending module 30 sends the resource allocation parameter to the terminal, receive a request message of the terminal, where the request message is used to request the base station to allocate a resource allocation parameter thereto.
  • the resource allocation parameter further includes: bandwidth indication information, where the bandwidth indication information is used to indicate bandwidth information of the resource location.
  • bandwidth indication information is 1 bit, indicating whether the resource location is a broadband or a narrowband
  • bandwidth indication information is 2 bits, indicating a narrowband quantity included in a bandwidth where the resource location is located.
  • the initial narrowband index is used for one of: initial location information indicating a location of the broadband resource; and a broadband index, where the broadband includes a starting narrowband, and the initial narrowband is a narrowband with a narrowest narrowband index within the broadband; Narrowband index.
  • FIG. 4 is a structural block diagram of another resource allocation apparatus according to an embodiment of the present invention. As shown in FIG. 4, the application is applied to a terminal, specifically, an MTC terminal, and the apparatus includes:
  • the receiving module 40 is configured to receive a resource allocation parameter, where the resource allocation parameter includes: a starting narrowband index, a resource location; and a starting narrowband index is used to indicate a narrowband resource and/or a broadband resource that establishes a physical shared channel.
  • the apparatus may further include: an establishing module 42, configured to establish a physical shared channel according to at least the initial narrowband index and the resource location.
  • an establishing module 42 configured to establish a physical shared channel according to at least the initial narrowband index and the resource location.
  • the terminal receives on the PRB determined by the resource allocation parameter, and for the uplink shared channel, the terminal determines in the resource allocation parameter Send on the fixed PRB.
  • the resource allocation parameter further includes: bandwidth indication information, where the bandwidth indication information is used to indicate bandwidth information of the resource location.
  • bandwidth indication information is 1 bit, indicating whether the resource location is a broadband or a narrowband
  • bandwidth indication information is 2 bits, indicating a narrowband quantity included in a bandwidth where the resource location is located.
  • the broadband is composed of M narrowbands, where M is an integer greater than or equal to 2 and less than or equal to 16, and the narrowband is composed of at least 6 consecutive physical resource blocks PRB.
  • the maximum channel bandwidth supported by the physical shared channel includes one of the following: 5 MHz, 10 MHz, or 20 MHz.
  • the bandwidth of the broadband is 5 MHz
  • the bandwidth includes 24 or 25 PRBs.
  • the initial narrowband index may be specifically used to: start location information indicating a resource location; identify a broadband index, where the broadband includes a starting narrowband, and the initial narrowband is a narrowband with a narrowest narrowband index in the broadband; Identify the narrowband index.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • This embodiment is an optional embodiment of the present invention.
  • the present application is described in detail in conjunction with different examples and scenarios, and includes multiple specific embodiments:
  • FIG. 5 is a flowchart of a resource allocation method according to Embodiment 3 of the present invention
  • FIG. 5 is a flowchart of a resource allocation method according to an embodiment of the present invention, where the process includes The following steps:
  • Step 501 The base station transmits a configuration resource for the physical shared channel of the terminal by using a resource allocation parameter.
  • Step 502 The base station sends a resource allocation parameter to the terminal by using signaling.
  • the resource allocation parameters include: a starting narrowband index, and a resource location within the broadband.
  • the broadband is the maximum bandwidth of the PDSCH/PUSCH channel supported by the terminal.
  • the maximum channel bandwidth of the broadband is 5 MHz
  • the broadband includes an integer multiple of narrowband, specifically, four narrowbands, and the size is 24 or 25.
  • PRB PRB.
  • the base station sends a starting narrowband index to the terminal through DCI. 6(a)-6(d) are diagrams showing the MTC narrowband definition in the case where the bandwidth of the related art 3GPP LTE system is 5/10/15/20 MHz, respectively.
  • the transmission start narrowband index requires x bits. among them The number of downlink PRBs corresponding to the system bandwidth.
  • FIG. 7 is a schematic diagram of broadband division with a system bandwidth of 5 MHz according to an embodiment of the present invention. As shown in FIG. 7, for a system bandwidth of 5 MHz, since only one possible wideband PDSCH/PUSCH channel bandwidth position is included, in this case There is no need to send a starting narrowband index to the terminal to indicate broadband information.
  • FIG. 8(a)-8(c) are schematic diagrams of broadband division of a system bandwidth of 10 MHz according to an embodiment of the present invention, wherein FIG. 8(a) to FIG. 8(c) correspond to three types of broadband divisions, respectively, and 5M bandwidths respectively.
  • Divided into 2, 3, and 5 broadband, as shown in Figure 8(a) - Figure 8(c) for a 10MHz system bandwidth, since it may contain 2-5 possible wideband PDSCH/PUSCH channel bandwidth positions,
  • the maximum value of the initial narrowband index is narrowband #4. In this case, 3 bits are required to transmit a starting narrowband index to the terminal to indicate the information of the wideband PDSCH/PUSCH channel bandwidth.
  • FIG. 9(a)-9(b) are schematic diagrams of broadband division of a system bandwidth of 15 MHz according to an embodiment of the present invention, wherein for the 15M bandwidth, FIG. 9(a) and FIG. 9(b) respectively show two types.
  • Broadband partitioning as shown in Figure 9(a)- Figure 9(b), for a 15MHz system bandwidth, the maximum starting-band narrowband index may be included because it may contain 3-9 possible wideband PDSCH/PUSCH channel bandwidth locations.
  • the value is narrowband #8. In this case, 4 bits are required to transmit a starting narrowband index to the terminal to indicate the information of the wideband PDSCH/PUSCH channel bandwidth.
  • FIG. 10(a)-10(b) are schematic diagrams of broadband division of a system bandwidth of 20 MHz according to an embodiment of the present invention, wherein for the 20M bandwidth, FIG. 10(a) and FIG. 10(b) respectively show two types.
  • Broadband division as shown in Figure 10(a)- Figure 10(b), for 20MHz system bandwidth, by The maximum value of the starting narrowband index is narrowband #12 for a PDSCH/PUSCH channel bandwidth location that may contain 4-13 possible widebands. In this case, 4 bits are required to transmit a starting narrowband index to the terminal to indicate the information of the wideband PDSCH/PUSCH channel bandwidth.
  • the base station transmits the resource location in the broadband to the terminal through the DCI.
  • the resource granularity indicating the resource location in the broadband is at least one of the following: 1 PRB, 2 PRB, 3 PRB, 4 PRB, 6 PRB.
  • the resource location may be directly indicated by the specific resource indication domain, or may be jointly indicated by the resource allocation mode indication domain + the specific resource indication domain.
  • the resource allocation mode corresponding to the specific resource indication domain is predefined or fixed or semi-statically configured.
  • the resource allocation mode corresponding to the specific resource indication domain is determined by the resource allocation mode indication domain.
  • the starting narrowband index and the resource location in the DCI respectively indicate independent coding.
  • a resource allocation method is provided in this embodiment, and the flow is the same as that of the specific embodiment 1.
  • the process includes the following steps:
  • Step 501 The base station transmits a configuration resource for the physical shared channel of the terminal by using a resource allocation parameter.
  • Step 502 The base station sends a resource allocation parameter to the terminal by using signaling.
  • the resource allocation parameter includes at least one of the following: a starting narrowband index, bandwidth indication information, and a resource location.
  • the broadband is the maximum bandwidth of the PDSCH/PUSCH channel supported by the terminal. In this embodiment, the maximum channel bandwidth of the broadband is 5 MHz, and the broadband includes an integer multiple of narrowband, specifically, four narrowbands, and the size is 24 or 25. Physical resource blocks (PRBs).
  • PRBs Physical resource blocks
  • the bandwidth indication information is 1 bit, and the base station sends the bandwidth indication information to the terminal through the DCI.
  • Table 1 shows the meaning when the bandwidth indication information is 1 bit:
  • the initial narrowband index identifies a broadband, and the initial narrowband index requires x bits.
  • the base station sends the initial narrowband index to the terminal through DCI, where The number of downlink PRBs corresponding to the system bandwidth.
  • the starting narrowband index is used to identify a narrowband, the starting narrowband index requires y bits.
  • the base station sends the resource location to the terminal through the DCI. If the bandwidth indication information indicates broadband, the resource location sent to the terminal is a resource location within the broadband. If the indicated bandwidth indication information indicates a narrowband, the resource location addressed to the terminal is a resource location within the narrowband.
  • the resource location may be directly indicated by the specific resource indication domain, or may be jointly indicated by the resource allocation mode indication domain + the specific resource indication domain.
  • the resource allocation mode corresponding to the specific resource indication domain is predefined or fixed or semi-statically configured.
  • the resource allocation mode corresponding to the specific resource indication domain is determined by the resource allocation mode indication domain.
  • the resource granularity indicating the resource location in the broadband or narrowband is at least one of the following: 1 PRB, 2 PRB, 3 PRB, 4 PRB, 6 PRB.
  • the starting narrowband index and the resource location in the DCI respectively indicate independent coding.
  • a resource allocation method is provided in this embodiment, and the flow is the same as that of the specific embodiment 1.
  • the process includes the following steps:
  • Step 501 The base station transmits a configuration resource for the physical shared channel of the terminal by using a resource allocation parameter.
  • Step 502 The base station sends a resource allocation parameter to the terminal by using signaling.
  • the resource allocation parameter includes at least one of the following: a starting narrowband index, bandwidth indication information, and a resource location.
  • the broadband is the maximum bandwidth of the PDSCH/PUSCH channel supported by the terminal. In this embodiment, the maximum channel bandwidth of the broadband is 5 MHz, and the broadband includes an integer multiple of narrowband, specifically, four narrowbands, and the size is 24 or 25. Physical resource blocks (PRBs).
  • PRBs Physical resource blocks
  • the bandwidth indication information is 1 bit or 2 bits, and the base station transmits the bandwidth indication information to the terminal through the DCI.
  • Table 2 shows the meaning of the bandwidth indication information when it is 1 and 2 bits:
  • the initial narrowband index identifies the bandwidth.
  • the starting narrowband index identifies a narrowband.
  • the base station sends the resource location to the terminal through the DCI. If the bandwidth indication information indicates broadband, the resource location sent to the terminal is a resource location within the broadband. If the indicated bandwidth indication information indicates a narrowband, the resource location addressed to the terminal is a resource location within the narrowband.
  • the resource granularity indicating the resource location in the narrowband or the broadband is at least one of the following: 1 PRB, 2 PRB, 3 PRB, 4 PRB, 6 PRB.
  • the starting narrowband index and the bandwidth indication information in the DCI are indicated by a bit field of length N1, and jointly encoded.
  • N1 5:
  • the base station sends the resource location to the terminal through the DCI.
  • the resource location is transmitted through a bit field of length N2.
  • the resource granularities indicating resource locations within the narrowband or wideband are 1 PRB, 2PRB, 3PRB, 4PRB, and 6PRB, respectively.
  • the resource granularity of the resource location in the narrowband is 1 PRB
  • the resource granularity of the resource location in the broadband formed by the two adjacent narrowbands is 2 PRB, indicating the resource granularity of the resource location in the broadband composed of three adjacent narrowbands.
  • the resource granularity of the resource location in the broadband formed by the four adjacent narrowbands is 4PRB, indicating that the resource granularity of the resource locations in the broadband composed of four adjacent narrowbands is 6 PRB.
  • a resource allocation method is provided in this embodiment, and the flow is the same as that of the specific embodiment 1.
  • the process includes the following steps:
  • Step 501 The base station transmits a configuration resource for the physical shared channel of the terminal by using a resource allocation parameter.
  • Step 502 The base station sends a resource allocation parameter to the terminal by using signaling.
  • the resource allocation parameter includes at least the following information: a starting narrowband index and a resource location.
  • the base station sends the initial narrowband index and resource location information to the terminal through the DCI.
  • the initial narrowband index and resource location information joint indication are characterized by joint coding.
  • the base station sends the bit length to the terminal by jointly coding the bit field of length N Start narrowband index and resource location information.
  • Broadband information (broadband index) + resource location information within the broadband, that is, resource allocation information within a certain broadband (5 MHz); the bandwidth is the maximum bandwidth of the PDSCH/PUSCH channel supported by the terminal, and the bandwidth is 5 MHz in this embodiment.
  • the broadband includes an integer multiple of a narrow band, specifically including four narrow bands, and has a size of 24 or 25 physical resource blocks (PRBs).
  • PRBs physical resource blocks
  • Narrowband index + resource location information in a narrowband that is, resource allocation information in a narrowband (1.4 MHz)
  • Table 4 is the meaning when the number of bits is 10:
  • the present invention provides a resource allocation method and apparatus to solve the problem that the resource allocation of the PDSCH/PUSCH channel in the related art only considers the 1.4 MHz narrowband bandwidth limitation, and the terminal cannot Support for higher data rate MTC applications.
  • a resource allocation method is provided in this embodiment, and the flow is the same as that of the specific embodiment 1.
  • the process includes the following steps:
  • Step 501 The base station transmits a configuration resource for the physical shared channel of the terminal by using a resource allocation parameter.
  • Step 502 The base station sends a resource allocation parameter to the terminal by using signaling.
  • the resource allocation parameter includes at least the following information: a starting narrowband index and a resource location.
  • the base station sends the initial narrowband index and resource location information to the terminal by using DCI.
  • the starting narrowband index is encoded separately.
  • the resource location information sends specific PRB location information to the terminal through a bit field of length N1, and represents one of the following resource allocation parameters:
  • a resource block with a resource size of 1 PRB A resource block with a resource size of 1 PRB.
  • a resource block with a resource size of 2PRB is a resource block with a resource size of 2PRB.
  • a resource block with a resource size of 3PRB is a resource block with a resource size of 3PRB.
  • a resource block with a resource size of 6 PRB A resource block with a resource size of 6 PRB.
  • a resource block with a resource size of 12 PRB is a resource block with a resource size of 12 PRB.
  • a resource block with a resource size of 24PRB is a resource block with a resource size of 24PRB.
  • a resource allocation method is provided in this embodiment, and the flow is the same as that of the specific embodiment 1.
  • the process includes the following steps:
  • Step 501 The base station transmits a configuration resource for the physical shared channel of the terminal by using a resource allocation parameter.
  • Step 502 The base station sends a resource allocation parameter to the terminal by using signaling.
  • the resource allocation parameter includes at least the following information: a starting narrowband index, a bandwidth indication, and a resource location.
  • the base station sends the initial narrowband index, the bandwidth indication, and the resource location information to the terminal by using the DCI.
  • the starting narrowband index is separately encoded, identifying a narrowband index or a wideband index.
  • the bandwidth indication and the resource location information send specific PRB location information to the terminal through a bit field of length N2, and represent one of the following resource allocation parameters:
  • Resource allocation under narrowband where resource allocation is resource allocation for any continuous PRB within a narrow band.
  • a resource allocation method is provided in this embodiment, and the flow is the same as that of the specific embodiment 1.
  • the process includes the following steps:
  • Step 501 The base station transmits a configuration resource for the physical shared channel of the terminal by using a resource allocation parameter.
  • Step 502 The base station sends a resource allocation parameter to the terminal by using signaling.
  • the resource allocation parameter includes at least the following information: a starting narrowband index, a bandwidth indication, and a resource location.
  • the base station sends the initial narrowband index, the bandwidth indication, and the resource location information to the terminal by using the DCI.
  • the starting narrowband index is separately encoded, identifying a narrowband index or a wideband index.
  • the bandwidth indication and the resource location information send resource allocation information to the terminal through a bit field of length N3, and represent one of the following resource allocation parameters:
  • Resource allocation under broadband where the resource allocation mode is four narrowband narrowband bitmaps in the broadband + PRB resource allocation in the narrowband. If the narrowband bitmap is 1001, it indicates that the resource allocation corresponds to the resource allocation in the narrowband 0 and the narrowband 3. The resource allocation in the narrowband corresponds to the resource allocation on the narrowband bitmap, and the PRB resource allocation in all narrowbands with the bitmap of 1 is the same.
  • Resource allocation under broadband resource allocation directly indicates any continuous PRB resource allocation within the broadband.
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • the resource allocation parameter is sent to the terminal by using the signaling, where the resource allocation parameter includes: a starting narrowband index, a resource location, where the initial narrowband index is used to indicate that the terminal establishes a narrowband resource of the physical shared channel and/or Or broadband resources.
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • the processor sends, according to the stored program code in the storage medium, the resource allocation parameter to the terminal by using signaling, where the resource allocation parameter includes: a starting narrowband index, a resource location, The initial narrowband index is used to indicate that the terminal establishes a narrowband resource and/or a broadband resource of a physical shared channel.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the base station transmits the configuration resource for the physical shared channel of the terminal through the resource allocation parameter, and sends the resource allocation parameter to the terminal, thereby solving the correlation.
  • the resource allocation of the PDSCH/PUSCH channel only considers the 1.4MHz narrowband bandwidth limitation, which causes the UE to fail to support the higher data rate MTC application, and achieves the effect of supporting the higher data rate MTC service.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种资源分配方法及装置,其中,该方法包括:基站向终端发送资源分配参数,其中,所述资源分配参数包括:起始窄带索引、资源位置,所述起始窄带索引用于指示所述终端建立物理共享信道的窄带资源和/或宽带资源。通过本发明实施例,解决了相关技术中PDSCH/PUSCH信道的资源分配只考虑1.4MHz窄带带宽限制导致UE无法支持更高数据速率MTC应用的问题,达到了能够支持更高数据速率MTC业务的效果。

Description

资源分配方法及装置 技术领域
本发明实施例涉及通信领域,具体而言,涉及一种资源分配方法及装置。
背景技术
机器类型通信(Machine Type Communications,简称为MTC),又称机器到机器(Machine to Machine,简称为M2M)是现阶段物联网的主要应用形式。目前市场上部署的MTC设备主要基于全球移动通信(Global System of Mobile communication,简称为GSM)系统。近年来,由于长期演进(Long Time Evolution,简称为LTE)/升级版长期演进(Advanced Long Time Evolution,简称为LTE-A)的频谱效率高,越来越多的移动运营商选择LTE/LTE-A作为未来宽带无线通信系统的演进方向。基于LTE/LTE-A的MTC多种类数据业务也将更具吸引力。
相关技术中MTC终端支持最大1.4MHz的窄带,为了支持更高数据速率MTC的应用,终端(User Equipment,简称UE)需要支持新的功能;其中一个就是支持更大物理下行共享信道(Physical Downlink Shared Channel,简称为PDSCH)/物理上行共享信道(Physical Uplink Shared Channel,简称为PUSCH)信道带宽,而现有技术中PDSCH/PUSCH信道的资源分配都是考虑1.4MHz窄带带宽限制设计的,从而导致终端无法支持更高数据速率MTC的应用。目前PDSCH/PUSCH的最大信道带宽要求达到5MHz,这种情况下的资源分配不足。
针对相关技术中存在的上述问题,目前尚未发现有效的解决方案。
发明内容
本发明实施例提供了一种资源分配方法及装置,以至少解决相关技术中PDSCH/PUSCH信道的资源分配只考虑1.4MHz窄带带宽限制导致UE无法 支持更高数据速率MTC应用的问题。
根据本发明的一个实施例,提供了一种资源分配方法,包括:基站通过信令向终端发送资源分配参数,其中,所述资源分配参数包括:起始窄带索引、资源位置,所述起始窄带索引用于指示所述终端建立物理共享信道的窄带资源和/或宽带资源。
可选地,所述资源分配参数还包括:带宽指示信息,其中,所述带宽指示信息用于指示所述资源位置的带宽信息。
可选地,在所述带宽指示信息为1比特时,指示所述资源位置是宽带还是窄带,在所述带宽指示信息为2比特时,指示所述资源位置所在带宽包含的窄带数量。
可选地,所述宽带由M个窄带组成,其中,M为大于等于2小于等于16的整数,所述窄带由至少6个连续的物理资源块(physical resource block,简称为PRB)组成。
可选地,所述物理共享信道支持的最大信道带宽包括以下之一:5MHz,10MHz,或20MHz。
可选地,在所述宽带的带宽为5MHz时,所述宽带包含24或25个PRB。
可选地,所述起始窄带索引用于以下之一:指示资源位置的起始位置信息;标识宽带索引,其中,所述宽带包含起始窄带,所述起始窄带为宽带内的窄带索引最小的窄带;标识窄带索引。
可选地,在所述资源分配参数包含所述带宽指示信息和所述起始窄带索引时,在所述带宽指示信息指示当前资源分配为宽带模式时,所述起始窄带索引用于标识起始窄带所在的宽带;在所述带宽指示信息指示当前资源分配为窄带模式时,所述起始窄带索引用于标识当前窄带。
可选地,基站通过信令向所述终端发送所述资源分配参数包括:基站通过高层信令和/或下行控制信息DCI向所述终端发送所述资源分配参数。
可选地,基站通过高层信令和/或下行控制信息DCI向所述终端发送所述资源分配参数包括:所述基站通过高层信令和/或DCI向所述终端发送所述起始窄带索引和/或带宽指示信息;所述基站通过DCI向所述终端发送宽带内或窄带内的资源位置。
可选地,所述指示宽带内的资源位置的资源粒度为以下之一:1PRB,2PRB,3PRB,4PRB,6PRB。
可选地,所述资源位置通过以下方式指示:直接由具体资源指示域指示,或,由资源分配方式指示域和具体资源指示域联合指示。
如果所述资源位置由具体资源指示域指示,则具体资源指示域对应的资源分配方式为预定义的或固定的或半静态配置的。
如果所述资源位置由资源分配方式+具体资源指示域联合指示,则具体资源指示域对应的资源分配方式由资源分配方式指示域确定。
可选地,所述起始窄带索引、资源位置和/或带宽指示信息分别通过独立编码。
可选地,所述起始窄带索引和带宽指示信息采用联合编码指示,所述资源位置采用独立编码。
可选地,所述起始窄带索引、资源位置和/或带宽指示信息通过长度为N的比特域联合编码指示。
可选地,在所述起始窄带索引采用独立编码时,通过固定长度或可变长度的信息发送所述起始窄带索引。
可选地,在采用固定长度的信息发送所述起始窄带索引时,采用最大 值为4的信息域长度发送所述起始窄带索引。
可选地,在采用可变长度的信息发送所述起始窄带索引时,包括以下之一:
对于大于等于5MHz的系统带宽,如果所述起始窄带索引用于标识大小为5MHz的宽带的起始位置信息,则所述起始窄带索引需要x比特:
Figure PCTCN2017101911-appb-000001
或,
对于大于等于5MHz的系统带宽,如果所述起始窄带索引用于标识窄带位置或带宽小于5MHz的宽带的起始位置信息或带宽等于5MHz的宽带的起始位置信息,则所述起始窄带索引需要y比特:
Figure PCTCN2017101911-appb-000002
或,
对于大于等于5MHz的系统带宽,如果所述起始窄带索引用于标识大于5MHz的宽带的起始位置信息,则所述起始窄带索引需要z比特,z<x;
其中
Figure PCTCN2017101911-appb-000003
为系统带宽对应的下行PRB的数目。
根据本发明的一个实施例,提供了另一种资源分配方法,包括:终端接收资源分配参数,其中,所述资源分配参数包括:起始窄带索引、资源位置;所述起始窄带索引用于指示所述建立物理共享信道的窄带资源和/或宽带资源。
可选地,所述资源分配参数还包括:带宽指示信息,其中,所述带宽指示信息用于指示所述资源位置的带宽信息。
可选地,在所述带宽指示信息为1比特时,指示所述资源位置是宽带还是窄带,在所述带宽指示信息为2比特时,指示所述资源位置所在带宽包含的窄带数量。
可选地,所述宽带由M个窄带组成,其中,M为大于等于2小于等于 16的整数,所述窄带由至少6个连续的物理资源块PRB组成。
可选地,所述物理共享信道支持的最大信道带宽包括以下之一:5MHz,10MHz,或20MHz。
可选地,在所述宽带的带宽为5MHz时,所述宽带包含24或25个PRB。
可选地,所述起始窄带索引用于以下之一:指示资源位置的起始位置信息;标识宽带索引,其中,所述宽带包含起始窄带,所述起始窄带为宽带内的窄带索引最小的窄带;标识窄带索引。
根据本发明的另一个实施例,提供了一种资源分配装置,应用在基站,包括:发送模块,设置为通过信令向机器类型通信终端发送资源分配参数,其中,所述资源分配参数包括:起始窄带索引、资源位置,所述起始窄带索引用于指示所述终端建立物理共享信道的窄带资源和/或宽带资源。
可选地,所述资源分配参数还包括:带宽指示信息,其中,所述带宽指示信息用于指示所述资源位置的带宽信息。
可选地,在所述带宽指示信息为1比特时,指示所述资源位置是宽带还是窄带,在所述带宽指示信息为2比特时,指示所述资源位置所在带宽包含的窄带数量。
可选地,所述起始窄带索引用于以下之一:指示资源位置的起始位置信息;标识宽带索引,其中,所述宽带包含起始窄带,所述起始窄带为宽带内的窄带索引最小的窄带;标识窄带索引。
根据本发明的另一个实施例,提供了另一种资源分配装置,应用在终端,包括:接收模块,设置为接收资源分配参数,其中,所述资源分配参数包括:起始窄带索引、资源位置;所述起始窄带索引用于指示所述建立物理共享信道的窄带资源和/或宽带资源。
可选地,所述资源分配参数还包括:带宽指示信息,其中,所述带宽指示信息用于指示所述资源位置的带宽信息。
可选地,在所述带宽指示信息为1比特时,指示所述资源位置是宽带还是窄带,在所述带宽指示信息为2比特时,指示所述资源位置所在带宽包含的窄带数量。
可选地,所述宽带由M个窄带组成,其中,M为大于等于2小于等于16的整数,所述窄带由至少6个连续的物理资源块PRB组成。
可选地,所述物理共享信道支持的最大信道带宽包括以下之一:5MHz,10MHz,或20MHz。
可选地,在所述宽带的带宽为5MHz时,所述宽带包含24或25个PRB。
可选地,所述起始窄带索引用于以下之一:指示资源位置的起始位置信息;标识宽带索引,其中,所述宽带包含起始窄带,所述起始窄带为宽带内的窄带索引最小的窄带;标识窄带索引。
根据本发明的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:
通过信令向终端发送资源分配参数,其中,所述资源分配参数包括:起始窄带索引、资源位置,所述起始窄带索引用于指示所述终端建立物理共享信道的窄带资源和/或宽带资源。
通过本发明,基站通过资源分配参数为终端的物理共享信道传输配置资源,并将该资源分配参数发送到终端,解决了相关技术中PDSCH/PUSCH信道的资源分配只考虑1.4MHz窄带带宽限制导致UE无法支持更高数据速率MTC应用的问题,达到了能够支持更高数据速率MTC业务的效果。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的一种资源分配方法的流程图;
图2是根据本发明实施例的另一种资源分配方法的流程图;
图3是根据本发明实施例的一种资源分配装置的结构框图;
图4是根据本发明实施例的另一种资源分配装置的结构框图;
图5是本发明实施例3提供的一种资源分配方法的流程图;
图6(a)-图6(d)是相关技术3GPP LTE系统带宽分别为5/10/15/20MHz情况下的MTC窄带定义的示意图;
图7是根据本发明实施例的系统带宽为5MHz的宽带划分示意图;
图8(a)-图8(c)是根据本发明实施例的系统带宽为10MHz的宽带划分示意图;
图9(a)-图9(b)是根据本发明实施例的系统带宽为15MHz的宽带划分示意图;
图10(a)-图10(b)是根据本发明实施例的系统带宽为20MHz的宽带划分示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
在本实施例中提供了一种资源分配方法,图1是根据本发明实施例的 一种资源分配方法的流程图,如图1所示,该流程包括如下步骤:
步骤S102,基站向终端发送资源分配参数,其中,资源分配参数包括:起始窄带索引、资源位置,起始窄带索引用于指示终端建立物理共享信道的窄带资源和/或宽带资源。
可选的,在S102基站向终端发送资源分配参数之前,还可以包括,步骤S104,接收终端的请求消息,请求消息用于请求基站为其分配资源分配参数。
通过上述步骤,基站通过资源分配参数为终端的物理共享信道传输配置资源,并将该资源分配参数发送到终端,解决了相关技术中PDSCH/PUSCH信道的资源分配只考虑1.4MHz窄带带宽限制导致UE无法支持更高数据速率MTC应用的问题,达到了能够支持更高数据速率MTC业务的效果。
可选地,上述步骤的执行主体可以为基站等,但不限于此,本实施例中的终端可以但不限于为MTC终端。
可选的,资源分配参数还包括:带宽指示信息,其中,带宽指示信息用于指示资源位置的带宽信息。
可选的,带宽指示信息标识资源位置的带宽信息,包含以下特征之一:
带宽指示信息为1比特,指示资源位置是宽带还是窄带。
带宽指示信息为2比特,指示资源位置所在带宽包含的窄带数量。
宽带由M个窄带组成。其中,M为大于等于2小于等于16的整数。窄带由6个连续的物理资源块(PRB)组成。PDSCH/PUSCH信道支持的最大信道带宽包括但不局限为以下带宽:5MHz,10MHz,或20MHz。
可选的,如果宽带的带宽为5MHz,则宽带包含24或25个物理资源块(PRB)。
可选的,起始窄带索引用于标识以下之一:
起始窄带索引指示资源位置的起始位置信息。起始窄带索引用于标识 宽带索引,具体为:宽带包含述起始窄带,起始窄带为宽带内的窄带索引最小的窄带;标识窄带索引。
可选的,当资源分配参数包含带宽指示信息,带宽指示信息指示当前资源分配为宽带模式,起始窄带索引用于标识起始窄带所在的宽带;当带宽指示信息指示当前资源分配为窄带模式,起始窄带索引只标识当前窄带。
可选的,基站通过信令向终端发送资源分配参数包括:基站通过高层信令和/或下行控制信息DCI向终端发送资源分配参数。
可选的,基站通过高层信令和/或下行控制信息DCI向终端发送资源分配参数包括:基站通过高层信令和/或DCI向终端发送起始窄带索引。
可选的,基站通过高层信令和/或下行控制信息DCI向终端发送资源分配参数包括:基站通过高层信令和/或DCI向带宽指示信息。
可选的,基站通过高层信令和/或下行控制信息DCI向终端发送资源分配参数包括:基站通过DCI向终端发送宽带内或窄带内的资源位置。
可选的,指示宽带内的资源位置和指示窄带内的资源位置的资源粒度可相同或不同。
可选的,指示宽带内的资源位置的资源粒度至少为以下之一:1PRB,2PRB,3PRB,4PRB,6PRB等。
进一步的,资源位置可直接由具体资源指示域指示,或,由资源分配方式指示域+具体资源指示域联合指示。
如果所述资源位置由具体资源指示域指示,则具体资源指示域对应的资源分配方式为预定义的或固定的或半静态配置的。
如果所述资源位置由资源分配方式+具体资源指示域联合指示,则具体资源指示域对应的资源分配方式由资源分配方式指示域确定。
可选的,起始窄带索引、带宽指示信息、资源位置为独立编码,分别 指示;起始窄带索引和带宽指示信息联合编码指示,资源位置分别指示;起始窄带索引、带宽指示信息、资源位置通过长度为N的比特域(bitmap)联合编码指示。
更进一步地,如果起始窄带索引独立编码,则可通过固定长度或可变长度的信息发送起始窄带索引。若采用固定长度的信息发送起始窄带索引,信息域长度最大值为4。
可选的,在采用可变长度的信息发送起始窄带索引,具体包括:
第一种,对于大于等于5MHz的系统带宽,如果所述起始窄带索引用于标识大小为5MHz的宽带的起始位置信息,则所述起始窄带索引需要x比特:
Figure PCTCN2017101911-appb-000004
其中
Figure PCTCN2017101911-appb-000005
为系统带宽对应的下行物理资源块(PRB)的数目。
第二种,对于大于等于5MHz的系统带宽,如果所述起始窄带索引用于标识窄带位置或带宽小于5MHz的宽带的起始位置信息或带宽等于5MHz的宽带的起始位置信息,则所述起始窄带索引需要y比特,
Figure PCTCN2017101911-appb-000006
第三种,对于大于等于5MHz的系统带宽,如果所述起始窄带索引用于标识大于5MHz的宽带的起始位置信息,则所述起始窄带索引需要z比特,z<x。
在本实施例中提供了另一种资源分配方法,图2是根据本发明实施例的另一种资源分配方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202,终端接收资源分配参数,其中,资源分配参数包括:起始窄带索引、资源位置;起始窄带索引用于指示建立物理共享信道的窄带资源和/或宽带资源;
可选的,还包括步骤S204,终端在资源分配参数所确定的资源(PRBs)上接收或发送物理共享信道。对于下行共享信道,终端在资源分配参数所确定的PRB上接收,对于上行共享信道,终端在资源分配参数所确定的PRB上发送。
可选的,资源分配参数还包括:带宽指示信息,其中,带宽指示信息用于指示资源位置的带宽信息。
可选的,在带宽指示信息为1比特时,指示资源位置是宽带还是窄带,在带宽指示信息为2比特时,指示资源位置所在带宽包含的窄带数量。
可选的,宽带由M个窄带组成,其中,M为大于等于2小于等于16的整数,窄带由至少6个连续的物理资源块PRB组成。
可选的,物理共享信道支持的最大信道带宽包括以下之一:5MHz,10MHz,或20MHz。
可选的,在宽带的带宽为5MHz时,宽带包含24或25个PRB。
可选的,起始窄带索引具体用于以下之一:指示资源位置的起始位置信息;标识宽带索引,其中,宽带包含起始窄带,起始窄带为宽带内的窄带索引最小的窄带;标识窄带索引。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
实施例2
在本实施例中还提供了一种资源分配装置,该装置用于实现上述实施 例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图3是根据本发明实施例的一种资源分配装置的结构框图,应用在基站,如图3所示,该装置包括:
发送模块30,设置为通过信令向终端发送资源分配参数,其中,资源分配参数包括:起始窄带索引、资源位置,起始窄带索引用于指示终端建立物理共享信道的窄带资源和/或宽带资源。
可选的,该装置还包括:接收模块,设置为在发送模块30向终端发送资源分配参数之前,接收终端的请求消息,请求消息用于请求基站为其分配资源分配参数。
可选的,资源分配参数还包括:带宽指示信息,其中,带宽指示信息用于指示资源位置的带宽信息。
可选的,在带宽指示信息为1比特时,指示资源位置是宽带还是窄带,在带宽指示信息为2比特时,指示资源位置所在带宽包含的窄带数量。
可选的,起始窄带索引用于以下之一:指示宽带资源位置的起始位置信息;标识宽带索引,其中,宽带包含起始窄带,起始窄带为宽带内的窄带索引最小的窄带;标识窄带索引。
图4是根据本发明实施例的另一种资源分配装置的结构框图,如图4所示,应用在终端,具体可以是MTC终端,该装置包括:
接收模块40,设置为接收资源分配参数,其中,资源分配参数包括:起始窄带索引、资源位置;起始窄带索引用于指示建立物理共享信道的窄带资源和/或宽带资源。
可选的,该装置还可以包括:建立模块42,用于至少根据起始窄带索引和资源位置建立物理共享信道。对于下行共享信道,终端在资源分配参数所确定的PRB上接收,对于上行共享信道,终端在资源分配参数所确 定的PRB上发送。
可选的,资源分配参数还包括:带宽指示信息,其中,带宽指示信息用于指示资源位置的带宽信息。
可选的,在带宽指示信息为1比特时,指示资源位置是宽带还是窄带,在带宽指示信息为2比特时,指示资源位置所在带宽包含的窄带数量。
可选的,宽带由M个窄带组成,其中,M为大于等于2小于等于16的整数,窄带由至少6个连续的物理资源块PRB组成。
可选的,物理共享信道支持的最大信道带宽包括以下之一:5MHz,10MHz,或20MHz。
可选的,在宽带的带宽为5MHz时,宽带包含24或25个PRB。
可选的,起始窄带索引具体可以用于以下之一:指示资源位置的起始位置信息;标识宽带索引,其中,宽带包含起始窄带,起始窄带为宽带内的窄带索引最小的窄带;标识窄带索引。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例3
本实施例是本发明的可选实施例,用于结合不同的实例和场景对本申请进行详细说明,包括多个具体实施例:
具体实施例1
在本实施例中提供了一种资源分配方法,图5是本发明实施例3提供的一种资源分配方法的流程图,图5是根据本发明实施例的资源分配方法的流程,该流程包括如下步骤:
步骤501:基站通过资源分配参数为终端的物理共享信道传输配置资源;
步骤502:基站通过信令向终端发送资源分配参数;
其中,资源分配参数包括:起始窄带索引、宽带内的资源位置。所述宽带是终端支持的PDSCH/PUSCH信道的最大带宽,在本实施例中宽带的最大信道带宽为5MHz,所述宽带包含整数倍的窄带,具体地为包含4个窄带,大小为24或25个PRB。所述基站通过DCI将起始窄带索引发送给终端。图6(a)-图6(d)是相关技术3GPP LTE系统带宽分别为5/10/15/20MHz情况下的MTC窄带定义的示意图。
对于大于等于5MHz的系统带宽,所述发送起始窄带索引需要x比特。
Figure PCTCN2017101911-appb-000007
其中
Figure PCTCN2017101911-appb-000008
为系统带宽对应的下行PRB的数目。
图7是根据本发明实施例的系统带宽为5MHz的宽带划分示意图,如图7所示,对于5MHz的系统带宽,由于只包含一种可能的宽带的PDSCH/PUSCH信道带宽位置,在这个情况下不需要向终端发送起始窄带索引来指示宽带的信息。
图8(a)-图8(c)是根据本发明实施例的系统带宽为10MHz的宽带划分示意图,其中,图8(a)-图8(c)对应三种宽带划分,分别将5M带宽划分为2,3,5个宽带,如图8(a)-图8(c)所示,对于10MHz的系统带宽,由于可能包含2-5种可能的宽带的PDSCH/PUSCH信道带宽位置,起始窄带索引的最大值是窄带#4。在这个情况下需要3比特向终端发送起始窄带索引来指示宽带的PDSCH/PUSCH信道带宽的信息。
图9(a)-图9(b)是根据本发明实施例的系统带宽为15MHz的宽带划分示意图,其中,对于15M带宽,图9(a),图9(b)分别给出了两种宽带的划分方式,如图9(a)-图9(b)所示,对于15MHz的系统带宽,由于可能包含3-9种可能的宽带的PDSCH/PUSCH信道带宽位置,起始窄带索引的最大值是窄带#8。在这个情况下需要4比特向终端发送起始窄带索引来指示宽带的PDSCH/PUSCH信道带宽的信息。
图10(a)-图10(b)是根据本发明实施例的系统带宽为20MHz的宽带划分示意图,其中,对于20M带宽,图10(a),图10(b)分别给出了两种宽带的划分方式,如图10(a)-图10(b)所示,对于20MHz的系统带宽,由 于可能包含4-13种可能的宽带的PDSCH/PUSCH信道带宽位置,起始窄带索引的最大值是窄带#12。在这个情况下需要4比特向终端发送起始窄带索引来指示宽带的PDSCH/PUSCH信道带宽的信息。
所述基站通过DCI将宽带内的资源位置发送给终端。所述指示宽带内的资源位置的资源粒度至少为以下之一:1PRB,2PRB,3PRB,4PRB,6PRB。
所述资源位置可直接由具体资源指示域指示,或,由资源分配方式指示域+具体资源指示域联合指示。
如果所述资源位置由具体资源指示域指示,则具体资源指示域对应的资源分配方式为预定义的或固定的或半静态配置的。
如果所述资源位置由资源分配方式+具体资源指示域联合指示,则具体资源指示域对应的资源分配方式由资源分配方式指示域确定。
进一步地,所述DCI中起始窄带索引和资源位置分别指示,独立编码。
具体实施例2
在本实施例中提供了一种资源分配方法,流程和具体实施例1相同。该流程包括如下步骤:
步骤501:基站通过资源分配参数为终端的物理共享信道传输配置资源;
步骤502:基站通过信令向终端发送资源分配参数;
其中,资源分配参数包括以下至少之一:起始窄带索引、带宽指示信息,资源位置。所述宽带是终端支持的PDSCH/PUSCH信道的最大带宽,在本实施例中宽带的最大信道带宽为5MHz,所述宽带包含整数倍的窄带,具体地为包含4个窄带,大小为24或25个物理资源块(PRB)。
带宽指示信息为1比特,基站通过DCI将带宽指示信息发送给终端。表1示意的是带宽指示信息为1比特时的含义:
表1
Figure PCTCN2017101911-appb-000009
对于大于等于5MHz的系统带宽,如果所述带宽指示信息指示为宽带,则所述起始窄带索引标识宽带,所述起始窄带索引需要x比特,
Figure PCTCN2017101911-appb-000010
基站通过DCI将起始窄带索引发送给终端,其中
Figure PCTCN2017101911-appb-000011
为系统带宽对应的下行PRB的数目。
如果所述起始窄带索引用于标识窄带,则所述起始窄带索引需要y比特,
Figure PCTCN2017101911-appb-000012
所述基站通过DCI将资源位置发送给终端。如果所述带宽指示信息指示为宽带,则发给终端的资源位置是宽带内的资源位置,如果所示带宽指示信息指示为窄带,则发给终端的资源位置是窄带内的资源位置。
所述资源位置可直接由具体资源指示域指示,或,由资源分配方式指示域+具体资源指示域联合指示。
如果所述资源位置由具体资源指示域指示,则具体资源指示域对应的资源分配方式为预定义的或固定的或半静态配置的。
如果所述资源位置由资源分配方式+具体资源指示域联合指示,则具体资源指示域对应的资源分配方式由资源分配方式指示域确定。
所述指示宽带或窄带内的资源位置的资源粒度至少为以下之一:1PRB,2PRB,3PRB,4PRB,6PRB。
进一步地,所述DCI中起始窄带索引和资源位置分别指示,独立编码。
具体实施例3
在本实施例中提供了一种资源分配方法,流程和具体实施例1相同。该流程包括如下步骤:
步骤501:基站通过资源分配参数为终端的物理共享信道传输配置资源;
步骤502:基站通过信令向终端发送资源分配参数;
其中,资源分配参数包括以下至少之一:起始窄带索引、带宽指示信息,资源位置。所述宽带是终端支持的PDSCH/PUSCH信道的最大带宽,在本实施例中宽带的最大信道带宽为5MHz,所述宽带包含整数倍的窄带,具体地为包含4个窄带,大小为24或25个物理资源块(PRB)。
带宽指示信息为1比特或2比特,基站通过DCI将带宽指示信息发送给终端。表2示意的是带宽指示信息为1和2比特时的含义:
表2
Figure PCTCN2017101911-appb-000013
对于大于等于5MHz的系统带宽,如果所述带宽指示信息指示资源位置的带宽为宽带,则所述起始窄带索引标识宽带。
如果所述起始窄带索引用于标识窄带,则所述起始窄带索引标识窄带。
所述基站通过DCI将资源位置发送给终端。如果所述带宽指示信息指示为宽带,则发给终端的资源位置是宽带内的资源位置,如果所示带宽指示信息指示为窄带,则发给终端的资源位置是窄带内的资源位置。
所述指示窄带或宽带内的资源位置的资源粒度至少为以下之一:1PRB,2PRB,3PRB,4PRB,6PRB。
进一步地,所述DCI中起始窄带索引和带宽指示信息通过长度为N1的比特域指示,联合编码。以图8(c)10MHz带宽为例,如表3例子所示N1=5:
表3
Figure PCTCN2017101911-appb-000014
Figure PCTCN2017101911-appb-000015
所述基站通过DCI将资源位置发送给终端。所述资源位置通过长度为N2的比特域发送。对应于上表中的不同窄带和宽带,所述指示窄带或宽带内的资源位置的资源粒度分别为1PRB,2PRB,3PRB,4PRB,和6PRB。具体为:指示窄带内的资源位置的资源粒度为1PRB,指示两个相邻窄带组成的宽带内的资源位置的资源粒度为2PRB,指示3个相邻窄带组成的宽带内的资源位置的资源粒度为3PRB,指示4个相邻窄带组成的宽带内的资源位置的资源粒度为4PRB,指示4个相邻窄带组成的宽带内的资源位置的资源粒度为6PRB。
具体实施例4
在本实施例中提供了一种资源分配方法,流程和具体实施例1相同。该流程包括如下步骤:
步骤501:基站通过资源分配参数为终端的物理共享信道传输配置资源;
步骤502:基站通过信令向终端发送资源分配参数;
其中,资源分配参数至少包括以下信息:起始窄带索引、资源位置。所述基站通过DCI将起始窄带索引和资源位置信息发送给终端。所述起始窄带索引和资源位置信息联合指示,通过联合编码表征。
所述基站通过联合编码后的长度为N的比特域(bitmap)向终端发送 起始窄带索引和资源位置信息。
所述长度为N的比特域表征以下资源分配参数之一:
宽带信息(宽带索引)+宽带内的资源位置信息,即某个宽带(5MHz)内的资源分配信息;所述宽带是终端支持的PDSCH/PUSCH信道的最大带宽,在本实施例中宽带为5MHz,所述宽带包含整数倍的窄带,具体地为包含4个窄带,大小为24或25个物理资源块(PRB)。
窄带索引+窄带内的资源位置信息,即某个窄带(1.4MHz)内的资源分配信息,表4为比特数为10时的含义:
表4
Figure PCTCN2017101911-appb-000016
Figure PCTCN2017101911-appb-000017
本发明提供了一种资源分配方法和装置,以解决相关技术中PDSCH/PUSCH信道的资源分配只考虑1.4MHz窄带带宽限制导致终端无法 支持更高数据速率MTC应用的问题。
具体实施例5
在本实施例中提供了一种资源分配方法,流程和具体实施例1相同。该流程包括如下步骤:
步骤501:基站通过资源分配参数为终端的物理共享信道传输配置资源;
步骤502:基站通过信令向终端发送资源分配参数;
其中,资源分配参数至少包括以下信息:起始窄带索引、资源位置。所述基站通过DCI将起始窄带索引、资源位置信息发送给终端。所述起始窄带索引单独编码。
所述资源位置信息通过长度为N1的比特域(bitmap)向终端发送具体的PRB位置信息,表征以下资源分配参数之一:
资源大小为1PRB的资源块。
资源大小为2PRB的资源块。
资源大小为3PRB的资源块。
资源大小为6PRB的资源块。
资源大小为12PRB的资源块。
资源大小为24PRB的资源块。
表5为比特数N1=6时的含义:
表5
Figure PCTCN2017101911-appb-000018
Figure PCTCN2017101911-appb-000019
具体实施例6
在本实施例中提供了一种资源分配方法,流程和具体实施例1相同。该流程包括如下步骤:
步骤501:基站通过资源分配参数为终端的物理共享信道传输配置资源;
步骤502:基站通过信令向终端发送资源分配参数;
其中,资源分配参数至少包括以下信息:起始窄带索引、带宽指示和资源位置。所述基站通过DCI将起始窄带索引、带宽指示和资源位置信息发送给终端。所述起始窄带索引单独编码,标识窄带索引或宽带索引。
所述带宽指示和资源位置信息通过长度为N2的比特域(bitmap)向终端发送具体的PRB位置信息,表征以下资源分配参数之一:
窄带下的资源分配,其中资源分配为窄带内的任意连续PRB的资源分配。
宽带下的资源分配,其中宽带的资源分配以6PRB和3PRB为资源分配粒度。
表6为比特数N2=6时的含义:
表6
Figure PCTCN2017101911-appb-000020
Figure PCTCN2017101911-appb-000021
具体实施例7
在本实施例中提供了一种资源分配方法,流程和具体实施例1相同。该流程包括如下步骤:
步骤501:基站通过资源分配参数为终端的物理共享信道传输配置资源;
步骤502:基站通过信令向终端发送资源分配参数;
其中,资源分配参数至少包括以下信息:起始窄带索引、带宽指示和资源位置。所述基站通过DCI将起始窄带索引、带宽指示和资源位置信息发送给终端。所述起始窄带索引单独编码,标识窄带索引或宽带索引。
所述带宽指示和资源位置信息通过长度为N3的比特域(bitmap)向终端发送资源分配信息,表征以下资源分配参数之一:
宽带下的资源分配,其中资源分配方式为宽带内4个窄带的窄带bitmap+窄带内的PRB资源分配。其中如果窄带bitmap为1001,表示资源分配对应窄带0和窄带3内的资源分配。窄带内的资源分配对应于窄带bitmap上的资源分配,bitmap为1的所有窄带内的PRB资源分配都相同。
宽带下的资源分配,资源分配直接指示宽带内的任意连续PRB资源分配。
表7为比特数N3=10时的含义:
表7
Figure PCTCN2017101911-appb-000022
实施例4
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,通过信令向终端发送资源分配参数,其中,所述资源分配参数包括:起始窄带索引、资源位置,所述起始窄带索引用于指示所述终端建立物理共享信道的窄带资源和/或宽带资源。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行通过信令向终端发送资源分配参数,其中,所述资源分配参数包括:起始窄带索引、资源位置,所述起始窄带索引用于指示所述终端建立物理共享信道的窄带资源和/或宽带资源。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
如上所述,本实施例提供的一种资源分配方法及装置,具有以下有益效果:基站通过资源分配参数为终端的物理共享信道传输配置资源,并将该资源分配参数发送到终端,解决了相关技术中PDSCH/PUSCH信道的资源分配只考虑1.4MHz窄带带宽限制导致UE无法支持更高数据速率MTC应用的问题,达到了能够支持更高数据速率MTC业务的效果。

Claims (37)

  1. 一种资源分配方法,包括:
    基站向终端发送资源分配参数,其中,所述资源分配参数包括:起始窄带索引、资源位置,所述起始窄带索引用于指示所述终端建立物理共享信道的窄带资源和/或宽带资源。
  2. 根据权利要求1所述的方法,其中,所述资源分配参数还包括:带宽指示信息,其中,所述带宽指示信息用于指示所述资源位置的带宽信息。
  3. 根据权利要求2所述的方法,其中,在所述带宽指示信息为1比特时,指示所述资源位置是宽带还是窄带,在所述带宽指示信息为2比特时,指示所述资源位置所在带宽包含的窄带数量。
  4. 根据权利要求1或2或3所述的方法,其中,所述宽带由M个窄带组成,其中,M为大于等于2小于等于16的整数。
  5. 根据权利要求1所述的方法,其中,所述物理共享信道支持的最大信道带宽包括以下之一:5MHz,10MHz,或20MHz。
  6. 根据权利要求1或4所述的方法,其中,在所述宽带的带宽为5MHz时,所述宽带包含24或25个PRB。
  7. 根据权利要求1所述的方法,其中,所述起始窄带索引用于以下之一:
    指示资源位置的起始位置信息;
    标识宽带索引,其中,所述宽带包含起始窄带,所述起始窄带为宽带内的窄带索引最小的窄带;
    标识窄带索引。
  8. 根据权利要求2所述的方法,其中,在所述资源分配参数包含所述带宽指示信息和所述起始窄带索引时,在所述带宽指示信息指示当前资源分配为宽带模式时,所述起始窄带索引用于标识起始窄带所在的宽带;在所述带宽指示信息指示当前资源分配为窄带模式时,所述起始窄带索引用于标识当前窄带。
  9. 根据权利要求1或2所述的方法,其中,基站向所述终端发送所述资源分配参数包括:
    基站通过高层信令和/或下行控制信息DCI向所述终端发送所述资源分配参数。
  10. 根据权利要求9所述的方法,其中,基站通过高层信令和/或下行控制信息DCI向所述终端发送所述资源分配参数包括:
    所述基站通过高层信令和/或DCI向所述终端发送所述起始窄带索引和/或带宽指示信息;
    所述基站通过DCI向所述终端发送宽带内或窄带内的资源位置。
  11. 根据权利要求1所述的方法,其中,指示资源位置的资源粒度为以下之一:1PRB,2PRB,3PRB,4PRB,6PRB。
  12. 根据权利要求1或11所述的方法,其中,所述资源位置通过以下方式指示:直接由具体资源指示域指示,或,由资源分配方式指示域和具体资源指示域联合指示。
  13. 根据权利要求12所述的方法,其中,
    所述资源位置由具体资源指示域指示,则具体资源指示域对应的资源分配方式为预定义的或固定的或半静态配置的,或,
    所述资源位置由资源分配方式+具体资源指示域联合指示,则具 体资源指示域对应的资源分配方式由资源分配方式指示域确定。
  14. 根据权利要求1或2所述的方法,其中,所述起始窄带索引、资源位置和/或带宽指示信息分别通过独立编码。
  15. 根据权利要求2所述的方法,其中,所述起始窄带索引和带宽指示信息采用联合编码指示,所述资源位置采用独立编码。
  16. 根据权利要求1或2所述的方法,其中,所述起始窄带索引、资源位置和/或带宽指示信息通过长度为N的比特域联合编码指示。
  17. 根据权利要求14所述的方法,其中,在所述起始窄带索引采用独立编码时,通过固定长度或可变长度的信息发送所述起始窄带索引。
  18. 根据权利要求17所述的方法,其中,在采用固定长度的信息发送所述起始窄带索引时,采用最大值为4的信息域长度发送所述起始窄带索引。
  19. 根据权利要求17所述的方法,其中,在采用可变长度的信息发送所述起始窄带索引时,包括以下之一:
    对于大于等于5MHz的系统带宽,如果所述起始窄带索引用于标识大小为5MHz的宽带的起始位置信息,则所述起始窄带索引需要x比特:
    Figure PCTCN2017101911-appb-100001
    或,
    对于大于等于5MHz的系统带宽,如果所述起始窄带索引用于标识窄带位置或带宽小于5MHz的宽带的起始位置信息或带宽等于5MHz的宽带的起始位置信息,则所述起始窄带索引需要y比特:
    Figure PCTCN2017101911-appb-100002
    或,
    对于大于等于5MHz的系统带宽,如果所述起始窄带索引用于标识大于5MHz的宽带的起始位置信息,则所述起始窄带索引需要z比特,z<x;
    其中为系统带宽对应的下行PRB的数目。
  20. 一种资源分配装置,应用在基站,包括:
    发送模块,设置为通过信令向终端发送资源分配参数,其中,所述资源分配参数包括:起始窄带索引、资源位置,所述起始窄带索引用于指示所述终端建立物理共享信道的窄带资源和/或宽带资源。
  21. 根据权利要求20所述的装置,其中,所述资源分配参数还包括:带宽指示信息,其中,所述带宽指示信息用于指示所述资源位置的带宽信息。
  22. 根据权利要求21所述的装置,其中,在所述带宽指示信息为1比特时,指示所述资源位置是宽带还是窄带,在所述带宽指示信息为2比特时,指示所述资源位置所在带宽包含的窄带数量。
  23. 根据权利要求20所述的装置,其中,所述起始窄带索引用于以下之一:
    指示资源位置的起始位置信息;
    标识宽带索引,其中,所述宽带包含起始窄带,所述起始窄带为宽带内的窄带索引最小的窄带;
    标识窄带索引。
  24. 一种资源分配方法,包括:
    终端接收资源分配参数,其中,所述资源分配参数包括:起始窄带索引、资源位置;所述起始窄带索引用于指示所述建立物理共享信道的窄带资源和/或宽带资源。
  25. 根据权利要求24所述的方法,其中,所述资源分配参数还包括:带宽指示信息,其中,所述带宽指示信息用于指示所述资源位置的带宽信息。
  26. 根据权利要求25所述的方法,其中,在所述带宽指示信息为1比特时,指示所述资源位置是宽带还是窄带,在所述带宽指示信息为2比特时,指示所述资源位置所在带宽包含的窄带数量。
  27. 根据权利要求24或26所述的方法,其中,所述宽带由M个窄带组成,其中,M为大于等于2小于等于16的整数,所述窄带由至少6个连续的物理资源块PRB组成。
  28. 根据权利要求24所述的方法,其中,所述物理共享信道支持的最大信道带宽包括以下之一:5MHz,10MHz,或20MHz。
  29. 根据权利要求24或27所述的方法,其中,在所述宽带的带宽为5MHz时,所述宽带包含24或25个PRB。
  30. 根据权利要求24所述的方法,其中,所述起始窄带索引用于以下之一:
    指示资源位置的起始位置信息;
    标识宽带索引,其中,所述宽带包含起始窄带,所述起始窄带为宽带内的窄带索引最小的窄带;
    标识窄带索引。
  31. 一种资源分配装置,应用在终端,包括:
    接收模块,设置为接收资源分配参数,其中,所述资源分配参数包括:起始窄带索引、资源位置;所述起始窄带索引用于指示所述建立物理共享信道的窄带资源和/或宽带资源。
  32. 根据权利要求31所述的装置,其中,所述资源分配参数还包括:带宽指示信息,其中,所述带宽指示信息用于指示所述资源位置的带宽信息。
  33. 根据权利要求32所述的装置,其中,在所述带宽指示信息为1比特时,指示所述资源位置是宽带还是窄带,在所述带宽指示信息为2比特时,指示所述资源位置所在带宽包含的窄带数量。
  34. 根据权利要求33所述的装置,其中,所述宽带由M个窄带组成,其中,M为大于等于2小于等于16的整数,所述窄带由至少6个连续的物理资源块PRB组成。
  35. 根据权利要求31所述的装置,其中,所述物理共享信道支持的最大信道带宽包括以下之一:5MHz,10MHz,或20MHz。
  36. 根据权利要求35所述的装置,其中,在所述宽带的带宽为5MHz时,所述宽带包含24或25个PRB。
  37. 根据权利要求31所述的装置,其中,所述起始窄带索引用于以下之一:
    指示资源位置的起始位置信息;
    标识宽带索引,其中,所述宽带包含起始窄带,所述起始窄带为宽带内的窄带索引最小的窄带;
    标识窄带索引。
PCT/CN2017/101911 2016-09-27 2017-09-15 资源分配方法及装置 WO2018059251A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17854701.4A EP3544322A4 (en) 2016-09-27 2017-09-15 METHOD AND DEVICE FOR RESOURCE ALLOCATION
US16/367,112 US11356990B2 (en) 2016-09-27 2019-03-27 Method and device for resource allocation
US17/662,417 US11765742B2 (en) 2016-09-27 2022-05-06 Method and device for resource allocation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610855034.8 2016-09-27
CN201610855034.8A CN107872779B (zh) 2016-09-27 2016-09-27 资源分配方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/367,112 Continuation US11356990B2 (en) 2016-09-27 2019-03-27 Method and device for resource allocation

Publications (1)

Publication Number Publication Date
WO2018059251A1 true WO2018059251A1 (zh) 2018-04-05

Family

ID=61751280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/101911 WO2018059251A1 (zh) 2016-09-27 2017-09-15 资源分配方法及装置

Country Status (4)

Country Link
US (2) US11356990B2 (zh)
EP (1) EP3544322A4 (zh)
CN (2) CN107872779B (zh)
WO (1) WO2018059251A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020029939A1 (en) * 2018-08-07 2020-02-13 Qualcomm Incorporated Methods and apparatus for flexible resource allocation

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6378279B2 (ja) * 2016-10-06 2018-08-22 株式会社Nttドコモ ユーザ装置、及び基地局
WO2018087734A1 (en) * 2016-11-14 2018-05-17 Telefonaktiebolaget L M Ericsson (Publ) Resource allocation for bandwidth limited operation
CN110169170B (zh) * 2017-01-25 2021-10-01 华为技术有限公司 一种资源分配的方法、装置及设备
KR102236645B1 (ko) * 2017-01-25 2021-04-06 후아웨이 테크놀러지 컴퍼니 리미티드 리소스 할당 방법, 제1 노드, 및 제2 노드
WO2019192001A1 (zh) 2018-04-04 2019-10-10 华为技术有限公司 一种信息传输方法和设备
WO2020000432A1 (en) * 2018-06-29 2020-01-02 Qualcomm Incorporated Flexible resource allocation for narrowband and wideband coexistence
EP3837869B1 (en) * 2018-08-23 2023-09-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and apparatus for determining frequency resource, and user equipment
WO2020154833A1 (zh) * 2019-01-28 2020-08-06 海能达通信股份有限公司 一种空口资源调度方法、装置及设备
CN111757490B (zh) * 2019-03-29 2023-05-05 大唐移动通信设备有限公司 数据信道传输带宽确定方法、装置、网络侧设备及终端
EP4192156A4 (en) * 2020-08-07 2023-09-13 Huawei Technologies Co., Ltd. INFORMATION TRANSMISSION METHOD AND COMMUNICATION DEVICE
CN117561769A (zh) * 2022-02-11 2024-02-13 中兴通讯股份有限公司 窄带通信的带宽配置
WO2023231036A1 (zh) * 2022-06-02 2023-12-07 北京小米移动软件有限公司 一种传输块的处理方法及其装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103220795A (zh) * 2012-01-21 2013-07-24 中兴通讯股份有限公司 下行控制信息的发送方法和基站

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101242662B (zh) * 2008-03-14 2012-02-29 中兴通讯股份有限公司 一种宽带资源配置方法
US9407403B2 (en) * 2012-02-29 2016-08-02 Lg Electronics Inc. Method and apparatus for transmitting downlink data
US9622230B2 (en) * 2012-05-17 2017-04-11 Qualcomm Incorporated Narrow band partitioning and efficient resource allocation for low cost user equipments
EP4287668A3 (en) * 2012-10-29 2024-01-03 Huawei Technologies Co., Ltd. Resource determining method, and base station
JP6298263B2 (ja) * 2013-09-26 2018-03-20 株式会社Nttドコモ 無線基地局、ユーザ端末及び無線通信方法
CN103581841B (zh) * 2013-11-28 2016-08-17 哈尔滨工业大学 基于窄带空口实现宽窄带资源动态分配的系统及方法
US11057921B2 (en) * 2014-10-01 2021-07-06 Samsung Electronics Co., Ltd. System and method for improving spectral efficiency and coverage for user equipments
US20160270038A1 (en) * 2015-03-11 2016-09-15 Samsung Electronics Co., Ltd Transmissions of downlink control channels for low cost ues
CN111953453B (zh) * 2015-03-30 2023-10-13 Lg电子株式会社 用于在无线通信系统中设计下行链路控制信息的方法和设备
WO2016159697A1 (en) * 2015-03-31 2016-10-06 Lg Electronics Inc. Method and apparatus for configuring frequency hopping pattern for mtc ue in wireless communication system
GB2552947A (en) * 2016-08-09 2018-02-21 Nec Corp Communication System
US10397924B2 (en) * 2016-08-10 2019-08-27 Apple Inc. Robust downlink control information with flexible resource assignments
CN107734692B (zh) * 2016-08-11 2021-10-08 株式会社Kt 在无线通信系统中分配数据信道资源的方法和装置
CN107733622B (zh) * 2016-08-12 2022-01-11 中兴通讯股份有限公司 资源分配和确定的方法及装置
US10887871B2 (en) * 2016-08-17 2021-01-05 Lenovo Innovations Limited (Hong Kong) Resource assignment indication for further eMTC

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103220795A (zh) * 2012-01-21 2013-07-24 中兴通讯股份有限公司 下行控制信息的发送方法和基站

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC: "Considerations on PUSCH for LAA", 3GPP TSG RAN WG1 MEETING #84 RL-160972, 19 February 2016 (2016-02-19), XP051054279 *
NEC.: "PDSCH/PUSCH Resource allocation schemes for Rel-13 MTC", 3GPPTSG RAN WG1 MEETING #83 RL-156684, 22 November 2015 (2015-11-22), XP051039915 *
NEC: "PDSCH/PUSCH Resource allocation schemes for Rel-13 MTC", 3GPPTSG RAN WG1 MEETING #82BIS RL-155291, 9 October 2015 (2015-10-09), XP051039622 *
TSG RAN WG1: "Status Report to TSG", 3GPP TSG RAN WG1 MEETING #73 RP-161462, 22 September 2016 (2016-09-22), XP051146774 *
ZTE: "Support of larger TBS and larger PDSCH/PUSCH bandwidth for MTC", 3GPP TSG RAN WG1 MEETING #86 RL-167319, 26 August 2016 (2016-08-26), XP051125838 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020029939A1 (en) * 2018-08-07 2020-02-13 Qualcomm Incorporated Methods and apparatus for flexible resource allocation
US11818725B2 (en) 2018-08-07 2023-11-14 Qualcomm Incorporated Methods and apparatus for flexible resource allocation

Also Published As

Publication number Publication date
US11765742B2 (en) 2023-09-19
CN112866959A (zh) 2021-05-28
CN107872779B (zh) 2020-12-01
US20190327718A1 (en) 2019-10-24
CN112866959B (zh) 2022-07-22
US20220264543A1 (en) 2022-08-18
US11356990B2 (en) 2022-06-07
CN107872779A (zh) 2018-04-03
EP3544322A4 (en) 2020-11-11
EP3544322A1 (en) 2019-09-25

Similar Documents

Publication Publication Date Title
WO2018059251A1 (zh) 资源分配方法及装置
US20170208610A1 (en) Data transmission method and device
EP2800432A1 (en) Mapping method and device for search space of downlink control channel
EP2757849B1 (en) Method and device for multicarrier scheduling
JP2017511668A (ja) 電力設定方法、ユーザ装置、及び基地局
WO2016138784A1 (zh) 一种调度方法及终端
JP2017537540A (ja) 物理下りリンク制御チャネル伝送方法、基地局装置およびユーザ機器
KR20190098990A (ko) 정보 전송 방법, 네트워크 기기 및 단말 기기
US20190394766A1 (en) Resource scheduling method, apparatus, and system
JP2023516489A (ja) 機能が縮小された新無線(nr)デバイスへのアクセスの有効化
US11171751B2 (en) Indicating contiguous resource allocation
CN110690944A (zh) 信道状态信息的优先级发送、确定方法及装置、存储介质、用户设备
US9554410B2 (en) Device-to-device user equipment for a wireless communication system and resource scheduling method thereof
CN105491675A (zh) 非对称上行载波聚合下的随机接入方法及装置
CN110603763A (zh) 数据反馈方法及相关设备
WO2018201947A1 (zh) 资源分配方法、装置及存储介质
WO2019114467A1 (zh) 一种信道资源集的指示方法及装置、计算机存储介质
JP2016039432A (ja) ユーザ装置及び能力情報報告方法
WO2017092625A1 (zh) 基于无线接入技术的数据处理方法及传输节点
US11595183B2 (en) Joint resource assigning method and device for allocating resources to terminal
KR102430394B1 (ko) 정보 전송 방법 및 디바이스
CN111699710B (zh) 一种信息指示方法及相关设备
JP2022110011A (ja) アップリンク制御情報を伝送するための方法、端末装置及びネットワーク装置
WO2016197722A1 (zh) 一种数据包拆分的方法、装置、演进型节点和计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017854701

Country of ref document: EP

Effective date: 20190429