WO2018059240A1 - 一种定位的方法和设备 - Google Patents

一种定位的方法和设备 Download PDF

Info

Publication number
WO2018059240A1
WO2018059240A1 PCT/CN2017/101651 CN2017101651W WO2018059240A1 WO 2018059240 A1 WO2018059240 A1 WO 2018059240A1 CN 2017101651 W CN2017101651 W CN 2017101651W WO 2018059240 A1 WO2018059240 A1 WO 2018059240A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
symbol group
frequency resource
symbol
index
Prior art date
Application number
PCT/CN2017/101651
Other languages
English (en)
French (fr)
Inventor
刘锟
戴博
鲁照华
陈宪明
杨维维
方惠英
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018059240A1 publication Critical patent/WO2018059240A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/04Scheduled access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present application relates to wireless communication technologies, and in particular, to a method and device for positioning.
  • the narrowband Internet of Things (NB-IoT) has the characteristics of wide coverage, many connections, low speed, low cost, low power consumption, and excellent architecture. Can be widely used in a variety of vertical industries, such as remote meter reading, asset tracking, intelligent parking, smart agriculture. Due to the large number of communication devices supported in the Internet of Things, there are many types of terminals supported. Therefore, it is necessary to effectively locate a large number of terminals in the Internet of Things, but currently there is no NB-IoT technology. An effective solution.
  • Embodiments of the present invention are directed to a method and apparatus for positioning that enables positioning of a large number of terminals in the NB-IoT technology.
  • an embodiment of the present invention provides a method for positioning, where the method includes:
  • the positioning reference signal is in the N Transmitted on a frequency band resource, where N is an integer not less than 1; the positioning reference signal occupies at least one symbol group, wherein each symbol group occupies the same subcarrier in the frequency domain, and each symbol group is in the time domain It consists of a cyclic prefix CP and at least one symbol.
  • the resources occupied by the symbol group 1 to the symbol group 4 are included in the first time-frequency resource block, and the symbol The resources occupied by group 5 to symbol group 8 are included in the second time-frequency resource block;
  • the time domain length of the first time-frequency resource block is a time domain length corresponding to four symbol groups, and the frequency domain length of the first time-frequency resource block is 12 sub-carriers and the index of the starting sub-carrier is k. , k is an integer greater than or equal to 0;
  • the time domain length of the second time-frequency resource block is a time domain length corresponding to the four symbol groups, and the frequency domain length of the second time-frequency resource block is 12 subcarriers, and the initial subcarrier index is k+D.
  • the D is a frequency domain interval between the first time-frequency resource block start subcarrier and the second time-frequency resource block start subcarrier;
  • the time domain interval between the first time-frequency resource block and the second time-frequency resource block is T time units, and T is greater than or equal to zero.
  • the time-frequency resources occupied by the eight symbol groups satisfy a preset first mapping relationship.
  • the positioning reference signal index selected in the symbol group 1 to the symbol group 4 is n, where 0 ⁇ n ⁇ 11;
  • the resources occupied by the symbol group 1 to the symbol group 4 are included in the first time-frequency resource block, and the symbol The resources occupied by group 5 to symbol group 8 are included in the second time-frequency resource block;
  • the first time-frequency resource block is composed of A first time-frequency resource sub-blocks, where A is greater than An integer equal to 1, the time domain length of the first time-frequency resource sub-block is a time domain length corresponding to 4 symbol groups, and the frequency domain length of the first time-frequency resource sub-block is 12 sub-carriers;
  • the second time-frequency resource block is composed of B second time-frequency resource sub-blocks, where B is an integer greater than or equal to 1, and the time-domain length of the second time-frequency resource sub-block is a time-domain length corresponding to four symbol groups.
  • the frequency domain length of the second time-frequency resource sub-block is 12 sub-carriers;
  • the first time-frequency resource block and the second time-frequency resource block are separated by T time units in the time domain, and T is greater than or equal to zero.
  • the symbol group 1 to the symbol group 4 are arranged in the same first time-frequency resource sub-block; the symbol group 5 to the symbol group 8 are arranged in the same second time-frequency resource sub-block.
  • the positioning reference signal index selected in the symbol group 1 to the symbol group 4 is n, where 0 ⁇ n ⁇ 11;
  • the structure of the first time-frequency resource sub-block satisfies a preset second mapping relationship.
  • the structure of the second time-frequency resource sub-block satisfies a preset third mapping relationship.
  • the first time-frequency resource block and the second time-frequency resource block are configured in a preset coverage enhancement level random access channel resource, or are configured in a preset coverage enhancement level and in one Random access channel resources on the band resources.
  • the random access channel resource of the preset coverage enhancement level, or the preset coverage enhancement level and the random access channel resource on one of the frequency band resources occupy consecutive in the frequency domain.
  • the random access channel resource of the preset coverage enhancement level, or the preset coverage enhancement level and the random access channel resource on one of the frequency band resources occupy consecutive channels in the frequency domain.
  • the random access channel resource of the preset coverage enhancement level, or the preset coverage enhancement level and the random access channel resource on one of the frequency band resources occupy consecutive channels in the frequency domain.
  • the random access channel resource of the preset coverage enhancement level, or the preset coverage enhancement level and the random access channel resource on one of the frequency band resources occupy consecutive channels in the frequency domain.
  • the resources occupied by the symbol group 1 to the symbol group 8 are included in the first time-frequency resource block, and the symbol The resources occupied by the group 9 to the symbol group 16 are included in the second time-frequency resource block;
  • the time domain length of the first time-frequency resource block is a time domain length corresponding to the eight symbol groups, and the frequency domain length of the first time-frequency resource block is 12 sub-carriers and the initial sub-carrier index is k.
  • the k is an integer greater than or equal to 0;
  • the time domain length of the second time-frequency resource block is a time domain length corresponding to the eight symbol groups, and the frequency domain length of the second time-frequency resource block is 12 subcarriers and the initial subcarrier index is k+D;
  • the first time-frequency resource block and the second time-frequency resource block are separated by T time units in the time domain, and T is greater than or equal to zero.
  • the time-frequency resources occupied by the 16 symbol groups satisfy a preset fourth mapping relationship.
  • the positioning reference signal index selected in the symbol group 1 to the symbol group 8 is n, where 0 ⁇ n ⁇ 11;
  • the positioning reference signal index selected in the symbol group 9 to the symbol group 16 is m, where 0 ⁇ m ⁇ 11;
  • the resources occupied by the symbol group 1 to the symbol group 8 are included in the first time-frequency resource block, and the symbol The resources occupied by the group 9 to the symbol group 16 are included in the second time-frequency resource block;
  • the first time-frequency resource block is composed of A first time-frequency resource sub-blocks, where A is an integer greater than or equal to 1, and the time-domain length of the first time-frequency resource sub-block is a time domain corresponding to 8 symbol groups. Length, the frequency domain length of the first time-frequency resource block is 12 subcarriers;
  • the second time-frequency resource block is composed of B second time-frequency resource sub-blocks, where B is an integer greater than or equal to 1, and the time-domain length of the second time-frequency resource sub-block is a time-domain length corresponding to 8 symbol groups.
  • the frequency domain length of the second time-frequency resource block is 12 subcarriers;
  • the first time-frequency resource block and the second time-frequency resource block are separated by T time units in the time domain, and T is greater than or equal to zero.
  • the symbol group 1 to the symbol group 8 are arranged in the same first time-frequency resource sub-block; the symbol group 9 to the symbol group 16 are arranged in the same second time-frequency resource sub-block.
  • the positioning reference signal index selected in the symbol group 1 to the symbol group 8 is n, where 0 ⁇ n ⁇ 11;
  • the structure of the first time-frequency resource sub-block satisfies a preset fifth mapping relationship.
  • the structure of the second time-frequency resource sub-block satisfies a preset sixth mapping relationship.
  • the frequency band resource includes P subcarrier sets, where P is greater than or equal to 1; each 4 symbol groups constitute one symbol group set, and the subcarriers occupied by the symbol groups in the same symbol group set belong to The same set of subcarriers, each subcarrier set includes 12 subcarriers.
  • the two sets of symbol groups adjacent in the time domain are different in the set of subcarriers occupied at the time of transmission.
  • the first and second symbol groups occupy the same subcarrier subset when transmitting; the third and fourth symbol groups are transmitted.
  • the sub-carrier subsets occupied are the same, and the sub-carrier subsets occupied by the first and second symbol groups are different from the sub-carrier subsets occupied by the third and fourth symbol groups when transmitting;
  • the one subcarrier set includes two subcarrier subsets, and each subcarrier subset includes six subcarriers.
  • the first and second symbol groups in the symbol group set are different in the subcarrier sub-set index occupied by the transmission; and the third and fourth symbol groups in the first symbol group set are occupied at the time of transmission.
  • the subcarrier sub-set index is different from the sub-carrier sub-set index occupied by the third and fourth symbol groups in the second symbol group set when transmitted.
  • the subcarrier sub-set index and the second occupied by the first and second symbol groups in the first symbol group set are transmitted.
  • the 3rd and 4th symbol groups in the set of symbol groups are the same in the subcarrier subset index occupied by the transmission; and the 3rd and 4th symbol groups in the first symbol group set are transmitted.
  • the occupied subcarrier sub-set index is the same as the sub-carrier sub-set index occupied by the first and second symbol groups in the second symbol group set.
  • an embodiment of the present invention provides a method for positioning, where the method includes:
  • the resource of the positioning reference signal is configured in a set of P time-frequency resources, and the index is p. Where 0 ⁇ p ⁇ P-1;
  • the P time-frequency resource sets are configured on N frequency band resources, where P is an integer not less than 1, and N is an integer not less than 1.
  • the time-frequency resource set is a random access channel resource that meets a preset coverage enhancement level
  • the time-frequency resource set is a random access channel resource that satisfies a preset coverage enhancement level and is on one of the frequency band resources.
  • the P time-frequency resource sets correspond to P different coverage enhancement levels.
  • the method before the first network element sends the positioning reference signal to the second network element, the method further includes:
  • the first network element selects G(p) symbol group sets from the set of time-frequency resources with index p as a transmission resource of a positioning reference signal;
  • a single symbol group set includes 4 symbol groups; each symbol group occupies the same subcarrier in the frequency domain.
  • the first network element selects a set of G(p) symbol groups from the set of time-frequency resources with index p as a transmission resource of the positioning reference signal, including:
  • the first network element selects R(p) sets of G(p) symbol groups arranged in the front of the set of symbol groups;
  • the first network element selects R(p) sets of G(p) symbol groups arranged in the last set of the symbol group set;
  • the first network element selects G(p) symbol group sets from R(p) of the symbol group sets according to a predetermined rule
  • the first network element selects a set of G(p) symbol groups from the set of time-frequency resources with index p as a transmission resource of the positioning reference signal, including:
  • A(p) ⁇ 1 R(p) is a repeated transmission of the random access channel supported on the random access channel resource with index p The number of delivery.
  • the resource of the positioning reference signal is configured in a non-contention random access channel resource of the random access channel resource.
  • the time domain locations of the P time-frequency resource sets do not overlap.
  • the P time-frequency resource set includes at least one of the following:
  • J time-frequency resource sets with coverage enhancement levels where j is the coverage enhancement level index, 0 ⁇ j ⁇ J-1, and the number of time-frequency resources with coverage enhancement level j is K, 2 ⁇ K ⁇ P; coverage enhancement level
  • the set of K time-frequency resources for j are located on different frequency band resources.
  • the method before the first network element sends the positioning reference signal to the second network element, the method further includes:
  • the first network element selects G(p) symbol group sets from the set of time-frequency resources with index p as a transmission resource of a positioning reference signal;
  • a single symbol group set includes 4 symbol groups; each symbol group occupies the same subcarrier in the frequency domain.
  • the first network element selects a set of G(p) symbol groups from the set of time-frequency resources with index p as a transmission resource of the positioning reference signal, including:
  • the first network element selects R(p) sets of G(p) symbol groups arranged in the front of the set of symbol groups;
  • the first network element selects R(p) sets of G(p) symbol groups arranged in the last set of the symbol group set;
  • the first network element selects G(p) symbol group sets from R(p) of the symbol group sets according to a predetermined rule
  • the first network element selects a set of G(p) symbol groups from the set of time-frequency resources with index p as a transmission resource of the positioning reference signal, including:
  • R(p) is the number of repeated transmissions of the random access channel supported on the random access channel resource with index p.
  • the resource of the positioning reference signal is configured in a non-contention random access channel resource of the random access channel resource.
  • the embodiment of the present invention provides a network element, where the network element includes a first sending module, configured to send a positioning reference signal to a peer network element, where the positioning reference signal is on N frequency band resources. Transmitting, wherein N is an integer not less than 1; the positioning reference signal occupies at least one symbol group, wherein each symbol group occupies the same subcarrier in the frequency domain, and each symbol group is cyclically prefixed in the time domain
  • the CP is composed of at least one symbol.
  • the resources occupied by the symbol group 1 to the symbol group 4 are included in the first time-frequency resource block, and the symbol The resources occupied by group 5 to symbol group 8 are included in the second time-frequency resource block;
  • the time domain length of the first time-frequency resource block is a time domain length corresponding to four symbol groups, and the frequency domain length of the first time-frequency resource block is 12 sub-carriers and the index of the starting sub-carrier is k. , k is an integer greater than or equal to 0;
  • the time domain length of the second time-frequency resource block is a time domain length corresponding to the four symbol groups, and the frequency domain length of the second time-frequency resource block is 12 subcarriers, and the initial subcarrier index is k+D.
  • the D is a frequency domain interval between the first time-frequency resource block start subcarrier and the second time-frequency resource block start subcarrier;
  • the time domain interval between the first time-frequency resource block and the second time-frequency resource block is T time units, and T is greater than or equal to zero.
  • the resources occupied by the symbol group 1 to the symbol group 4 are included in the first time-frequency resource block, and the symbol The resources occupied by group 5 to symbol group 8 are included in the second time-frequency resource block;
  • the first time-frequency resource block is composed of A first time-frequency resource sub-blocks, where A is an integer greater than or equal to 1, and the time-domain length of the first time-frequency resource sub-block is a time domain corresponding to four symbol groups. Length, the frequency domain length of the first time-frequency resource sub-block is 12 sub-carriers;
  • the second time-frequency resource block is composed of B second time-frequency resource sub-blocks, where B is an integer greater than or equal to 1, and the time-domain length of the second time-frequency resource sub-block is a time-domain length corresponding to four symbol groups.
  • the frequency domain length of the second time-frequency resource sub-block is 12 sub-carriers;
  • the first time-frequency resource block and the second time-frequency resource block are separated by T time units in the time domain, and T is greater than or equal to zero.
  • the resources occupied by the symbol group 1 to the symbol group 8 are included in the first time-frequency resource block, and the symbol The resources occupied by the group 9 to the symbol group 16 are included in the second time-frequency resource block;
  • the time domain length of the first time-frequency resource block is a time domain length corresponding to the eight symbol groups, and the frequency domain length of the first time-frequency resource block is 12 sub-carriers and the initial sub-carrier index is k.
  • the k is an integer greater than or equal to 0;
  • the time domain length of the second time-frequency resource block is a time domain length corresponding to the eight symbol groups, and the frequency domain length of the second time-frequency resource block is 12 subcarriers and the initial subcarrier index is k+D;
  • the first time-frequency resource block and the second time-frequency resource block are separated by T time units in the time domain, and T is greater than or equal to zero.
  • the resources occupied by the symbol group 1 to the symbol group 8 are included in the first time-frequency resource block, and the symbol The resources occupied by the group 9 to the symbol group 16 are included in the second time-frequency resource block;
  • the first time-frequency resource block is composed of A first time-frequency resource sub-blocks, where A is an integer greater than or equal to 1, and the time-domain length of the first time-frequency resource sub-block is a time domain corresponding to 8 symbol groups. Length, the frequency domain length of the first time-frequency resource block is 12 subcarriers;
  • the second time-frequency resource block is composed of B second time-frequency resource sub-blocks, where B is an integer greater than or equal to 1, and the time-domain length of the second time-frequency resource sub-block is a time-domain length corresponding to 8 symbol groups.
  • the frequency domain length of the second time-frequency resource block is 12 subcarriers;
  • the first time-frequency resource block and the second time-frequency resource block are separated by T time units in the time domain, and T is greater than Equal to 0.
  • the frequency band resource includes P subcarrier sets, where P is greater than or equal to 1; each 4 symbol groups constitute one symbol group set, and the subcarriers occupied by the symbol groups in the same symbol group set belong to The same set of subcarriers, each subcarrier set includes 12 subcarriers.
  • the embodiment of the present invention provides a network element, where the network element includes: a second sending module, configured to send a positioning reference signal to the peer network element;
  • the resource of the positioning reference signal is configured in a set of P time-frequency resources, and the index is p, where 0 ⁇ p ⁇ P-1;
  • the P time-frequency resource sets are configured on N frequency band resources, where P is an integer not less than 1, and N is an integer not less than 1.
  • the network element further includes a first selecting module, configured to select, from the set of time-frequency resources with index p, a set of G(p) symbol groups as a sending resource of the positioning reference signal;
  • a single symbol group set includes 4 symbol groups; each symbol group occupies the same subcarrier in the frequency domain, and each symbol group is composed of a cyclic prefix CP and 5 symbols in the time domain.
  • the first selection module is configured to:
  • G(p) sets of symbol groups are selected from R(p) of the set of symbol groups according to a predetermined rule; wherein G(p) is less than or equal to R(p).
  • the first selection module is configured to:
  • G(p) A(p) ⁇ R(p) sets of the symbol groups are selected. Where A(p) ⁇ 1, R(p) is the number of repeated transmissions of the random access channel supported on the random access channel resource with index p.
  • the P time-frequency resource set includes at least one of the following:
  • J time-frequency resource sets with coverage enhancement levels where j is the coverage enhancement level index, 0 ⁇ j ⁇ J-1, and the number of time-frequency resources with coverage enhancement level j is K, 2 ⁇ K ⁇ P; coverage enhancement level
  • the set of K time-frequency resources for j are located on different frequency band resources.
  • the network element further includes a second selection module, configured to select, from the set of time-frequency resources with index p, a set of G(p) symbol groups as a transmission resource of the positioning reference signal;
  • a single symbol group set includes 4 symbol groups; each symbol group occupies the same subcarrier in the frequency domain.
  • the second selection module is configured to:
  • A(p) ⁇ 1; R(p) is the number of repeated transmissions of the random access channel supported on the random access channel resource with index p.
  • embodiments of the present invention also provide a computer readable storage medium having stored thereon computer executable instructions that, when executed by a processor, implement any of the methods described above.
  • An embodiment of the present invention provides a method and a device for positioning, by using a first network element to send a positioning reference signal to a second network element, which can implement positioning of a huge number of terminals in the NB-IoT technology.
  • FIG. 1 is a schematic diagram of a method for positioning according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a symbol group according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of resource allocation of positioning reference signals according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a time-frequency resource sub-block according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another time-frequency resource sub-block according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a first time-frequency resource sub-block and a second time-frequency resource sub-block according to an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of another first time-frequency resource sub-block and a second time-frequency resource sub-block according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of another positioning reference signal resource allocation according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of still another time-frequency resource sub-block according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of still another time-frequency resource sub-block according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of still another first time-frequency resource sub-block and a second time-frequency resource sub-block according to an embodiment of the present disclosure
  • FIG. 12 is a schematic diagram of a symbol group set resource allocation according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of another method for positioning according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of resource allocation of a random access channel according to an embodiment of the present invention.
  • FIG. 15 is a schematic diagram of another random access channel resource allocation according to an embodiment of the present invention.
  • FIG. 16 is a schematic diagram of another random access channel resource allocation according to an embodiment of the present invention.
  • FIG. 17 is a schematic structural diagram of a network element according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic structural diagram of another network element according to an embodiment of the present disclosure.
  • FIG. 19 is a schematic structural diagram of still another network element according to an embodiment of the present disclosure.
  • FIG. 20 is a schematic structural diagram of still another network element according to an embodiment of the present invention.
  • a method for positioning provided by an embodiment of the present invention may be included, which may include:
  • the first network element sends a positioning reference signal to the second network element.
  • the positioning reference signal is transmitted on N frequency band resources, where N is an integer not less than 1; the positioning reference signal occupies at least one symbol group, wherein each symbol group occupies the same subcarrier in the frequency domain And each symbol group is composed of a cyclic prefix CP and at least one symbol in the time domain.
  • the first network element may be a terminal or a base station, and accordingly, when the first network element is a terminal, the second network element is a base station; when the first network element is a base station, the second network element is a terminal. That is, the positioning reference signal can be sent by the base station to the terminal, or the positioning reference signal can also be sent by the terminal to the base station.
  • the function is to enable the terminal or the base station to measure the positioning reference signal, thereby completing the positioning process of the terminal position.
  • One band resource is configured in the NB-IoT system, and the band resource size is 180 kHz.
  • the first network element is set to be a terminal
  • the second network element is a base station
  • the positioning reference signal occupies one or more symbol groups.
  • Each symbol group occupies the same subcarriers in the frequency domain and the positioning reference signal subcarrier spacing ⁇ f is 3.75 kHz.
  • the time domain of the symbol group The length is 1.6ms.
  • the numbering symbol group 1 to the symbol group 8 are taken as an example, in which the symbol group 1 to the symbol group 4 occupy
  • the resources are included in the time-frequency resource block 1, and the resources occupied by the symbol group 5 to the symbol group 8 are included in the time-frequency resource block 2.
  • the positioning reference signal can include more than one 8 symbol groups.
  • the eight symbol groups in this example may be 8 symbol groups at the transmission start end of the positioning reference signal, or 8 symbol groups subsequent to the transmission start end of the positioning reference signal, and so on.
  • the time domain length of the time-frequency resource block 1 is 4 symbol group lengths, and the frequency domain length of the time-frequency resource block 1 is 12 sub-carriers and the starting sub-carrier index is k (k is an integer greater than or equal to 0);
  • the time domain length of the time-frequency resource block 2 is 4 symbol group lengths, and the frequency domain length of the time-frequency resource block 2 is 12 sub-carriers and the starting sub-carrier index is k+D (k is an integer greater than or equal to 0);
  • the D is a frequency domain interval between the first time-frequency resource block and the second time-frequency resource block, and may take a positive integer or a negative integer or 0;
  • time-frequency resource block 1 and the time-frequency resource block 2 are separated by T time units in the time domain.
  • T 0; the meaning of the time unit includes at least one of the following: seconds, milliseconds, microseconds, The nanosecond, the time domain length of the subframe, the time domain length of the transmitted symbol, etc.; this example and subsequent examples are not specifically limited thereto;
  • FIG. 3 is a schematic diagram of time-frequency resources occupied by the eight symbol groups when the first network element sends the positioning reference signal in the present example, and selected in the symbol group 1 to the symbol group 4 in the figure.
  • the positioning reference signal index is 0, and the positioning reference signal index selected in the symbol group 5 to the symbol group 8 is 0; it is understood that the time-frequency resources occupied by the eight symbol groups satisfy a preset first mapping relationship,
  • the first mapping relationship can be:
  • the positioning reference signal with index 0 the first symbol group occupies the subcarrier index k
  • the second symbol group occupies the subcarrier index k+1
  • the third symbol group occupies the subcarrier index k+7
  • the fourth symbol group The subcarrier index is occupied by k+6
  • the fifth symbol group occupies the subcarrier index k+D+6
  • the sixth symbol group occupies the subcarrier index k+D+7
  • the seventh symbol group occupies the subcarrier index k+D +1
  • the 8th symbol group occupies the subcarrier index k+D;
  • the positioning reference signal with index 1 is, the first symbol group occupies the subcarrier index k+1, the second symbol group occupies the subcarrier index k, the third symbol group occupies the subcarrier index k+6, and the fourth symbol group
  • the subcarrier index k+7 is occupied, the fifth symbol group occupies the subcarrier index k+D+7, the sixth symbol group occupies the subcarrier index k+D+6, and the seventh symbol group occupies the subcarrier index k+D
  • the eighth symbol group occupies the subcarrier index k+D+1;
  • the positioning reference signal with index 2 the first symbol group occupies the subcarrier index k+2, the second symbol group occupies the subcarrier index k+3, and the third symbol group occupies the subcarrier index k+9, the fourth The symbol group occupies the subcarrier index k+8, the fifth symbol group occupies the subcarrier index k+D+8, the sixth symbol group occupies the subcarrier index k+D+9, and the seventh symbol group occupies the subcarrier index k +D+3, the 8th symbol group occupies the subcarrier index k+D+4;
  • the positioning reference signal with index 3 the first symbol group occupies the subcarrier index k+3, the second symbol group occupies the subcarrier index k+2, and the third symbol group occupies the subcarrier index k+8, the fourth The symbol group occupies the subcarrier index k+9, the fifth symbol group occupies the subcarrier index k+D+9, the sixth symbol group occupies the subcarrier index k+D+8, and the seventh symbol group occupies the subcarrier index k +D+4, the 8th symbol group occupies the subcarrier index k+D+3;
  • the positioning reference signal with index 4 the first symbol group occupies the subcarrier index k+4, the second symbol group occupies the subcarrier index k+5, the third symbol group occupies the subcarrier index k+11, the fourth The symbol group occupies the subcarrier index k+10, the fifth symbol group occupies the subcarrier index k+D+10, the sixth symbol group occupies the subcarrier index k+D+11, and the seventh symbol group occupies the subcarrier index k +D+5, the 8th symbol group occupies the subcarrier index k+D+4;
  • the positioning reference signal with index 5 the first symbol group occupies the subcarrier index k+5, the second symbol group occupies the subcarrier index k+4, the third symbol group occupies the subcarrier index k+10, the fourth The symbol group occupies the subcarrier index k+11, the fifth symbol group occupies the subcarrier index k+D+11, the sixth symbol group occupies the subcarrier index k+D+10, and the seventh symbol group occupies the subcarrier index k +D+4, the 8th symbol group occupies the subcarrier index k+D+5;
  • the positioning reference signal with index 6 is, the first symbol group occupies the subcarrier index k+6, the second symbol group occupies the subcarrier index k+7, and the third symbol group occupies the subcarrier index k+1, the fourth The symbol group occupies the subcarrier index k, the fifth symbol group occupies the subcarrier index k+D, the sixth symbol group occupies the subcarrier index k+D+1, and the seventh symbol group occupies the subcarrier index k+D+7 , the 8th symbol The group occupies the subcarrier index k+D+6;
  • the positioning reference signal with index of 7 the first symbol group occupies the subcarrier index k+7, the second symbol group occupies the subcarrier index k+6, the third symbol group occupies the subcarrier index k, and the fourth symbol group
  • the subcarrier index k+1 is occupied, the fifth symbol group occupies the subcarrier index k+D+1, the sixth symbol group occupies the subcarrier index k+D, and the seventh symbol group occupies the subcarrier index k+D+6
  • the eighth symbol group occupies the subcarrier index k+D+7;
  • the positioning reference signal with an index of 8 the first symbol group occupies the subcarrier index k+8, the second symbol group occupies the subcarrier index k+9, and the third symbol group occupies the subcarrier index k+3, the fourth The symbol group occupies the subcarrier index k+2, the fifth symbol group occupies the subcarrier index k+D+2, the sixth symbol group occupies the subcarrier index k+D+3, and the seventh symbol group occupies the subcarrier index k +D+9, the 8th symbol group occupies the subcarrier index k+D+8;
  • the positioning reference signal with index 9 is, the first symbol group occupies the subcarrier index k+9, the second symbol group occupies the subcarrier index k+8, and the third symbol group occupies the subcarrier index k+2, the fourth The symbol group occupies the subcarrier index k+3, the fifth symbol group occupies the subcarrier index k+D+3, the sixth symbol group occupies the subcarrier index k+D+2, and the seventh symbol group occupies the subcarrier index k +D+8, the 8th symbol group occupies the subcarrier index k+D+9;
  • the positioning reference signal with index 10 the first symbol group occupies the subcarrier index k+10, the second symbol group occupies the subcarrier index k+11, and the third symbol group occupies the subcarrier index k+5, the fourth The symbol group occupies the subcarrier index k+4, the fifth symbol group occupies the subcarrier index k+D+4, the sixth symbol group occupies the subcarrier index k+D+5, and the seventh symbol group occupies the subcarrier index k +D+11, the 8th symbol group occupies the subcarrier index k+D+10;
  • the positioning reference signal with index 11 is, the first symbol group occupies the subcarrier index k+11, the second symbol group occupies the subcarrier index k+10, and the third symbol group occupies the subcarrier index k+4, the fourth The symbol group occupies the subcarrier index k+5, the fifth symbol group occupies the subcarrier index k+D+5, the sixth symbol group occupies the subcarrier index k+D+4, and the seventh symbol group occupies the subcarrier index k +D+10, the 8th symbol group occupies the subcarrier index k+D+11.
  • the fifth symbol group occupies the subcarrier index k+D+8
  • the sixth symbol group occupies the subcarrier index k+D+9
  • the seventh symbol group occupies the subcarrier index k+D+3
  • the eighth symbol group occupies the subcarrier index k+D+2.
  • the numbering symbol group 1 to the symbol group 8 are taken as an example, in which the symbol group 1 to the symbol group 4 occupy
  • the resources are included in the time-frequency resource block 1, and the resources occupied by the symbol group 5 to the symbol group 8 are included in the time-frequency resource block 2.
  • the positioning reference signal can include more than one 8 symbol groups.
  • the eight symbol groups in this example may be 8 symbol groups at the transmission start end of the positioning reference signal, or 8 symbol groups subsequent to the transmission start end of the positioning reference signal, and so on.
  • the structure of the time-frequency resource sub-block 1 is as shown in FIG.
  • the starting subcarrier index is k (k is an integer greater than or equal to 0);
  • B time-frequency resource sub-blocks 2
  • the structure of time-frequency resource sub-block 2 is as shown in FIG. 5.
  • the starting subcarrier index is q (q is an integer greater than or equal to 0);
  • D is the interval between the time-frequency resource sub-block 1 and the start sub-carrier of the time-frequency resource sub-block 2.
  • the structure satisfies a preset second mapping relationship, and the preset second mapping relationship may be:
  • the positioning reference signal with index 0 the first symbol group occupies the subcarrier index k, the second symbol group occupies the subcarrier index k+1, the third symbol group occupies the subcarrier index k+7, the fourth symbol group Occupy subcarrier index k+6;
  • the positioning reference signal with index 1 is, the first symbol group occupies the subcarrier index k+1, the second symbol group occupies the subcarrier index k, the third symbol group occupies the subcarrier index k+6, and the fourth symbol group Occupy subcarrier index k+7;
  • the positioning reference signal with index 2 the first symbol group occupies the subcarrier index k+2, the second symbol group occupies the subcarrier index k+3, and the third symbol group occupies the subcarrier index k+9, the fourth The symbol group occupies the subcarrier index k+8;
  • the positioning reference signal with index 3 the first symbol group occupies the subcarrier index k+3, the second symbol group occupies the subcarrier index k+2, and the third symbol group occupies the subcarrier index k+8, the fourth The symbol group occupies the subcarrier index k+9;
  • the positioning reference signal with index 4 the first symbol group occupies the subcarrier index k+4, the second symbol group occupies the subcarrier index k+5, the third symbol group occupies the subcarrier index k+11, the fourth The symbol group occupies the subcarrier index k+10;
  • the positioning reference signal with index 5 the first symbol group occupies the subcarrier index k+5, the second symbol group occupies the subcarrier index k+4, the third symbol group occupies the subcarrier index k+10, the fourth The symbol group occupies the subcarrier index k+11;
  • the positioning reference signal with index 6 is, the first symbol group occupies the subcarrier index k+6, the second symbol group occupies the subcarrier index k+7, and the third symbol group occupies the subcarrier index k+1, the fourth The symbol group occupies the subcarrier index k;
  • the positioning reference signal with an index of 8 the first symbol group occupies the subcarrier index k+8, the second symbol group occupies the subcarrier index k+9, and the third symbol group occupies the subcarrier index k+3, the fourth The symbol group occupies the subcarrier index k+2;
  • the positioning reference signal with index 9 is, the first symbol group occupies the subcarrier index k+9, the second symbol group occupies the subcarrier index k+8, and the third symbol group occupies the subcarrier index k+2, the fourth The symbol group occupies the subcarrier index k+3;
  • the positioning reference signal with index 10 the first symbol group occupies the subcarrier index k+10, the second The symbol group occupies the subcarrier index k+11, the third symbol group occupies the subcarrier index k+5, and the fourth symbol group occupies the subcarrier index k+4;
  • the positioning reference signal with index 11 is, the first symbol group occupies the subcarrier index k+11, the second symbol group occupies the subcarrier index k+10, and the third symbol group occupies the subcarrier index k+4, the fourth The symbol group occupies the subcarrier index k+5.
  • the structure satisfies a preset third mapping relationship, and the preset third mapping relationship may be:
  • the positioning reference signal with index 0 the 5th symbol group occupies the subcarrier index q+6, the 6th symbol group occupies the subcarrier index q+7, and the 7th symbol group occupies the subcarrier index q+1, the 8th The symbol group occupies the subcarrier index q;
  • the positioning reference signal with index 1 is, the 5th symbol group occupies the subcarrier index q+7, the 6th symbol group occupies the subcarrier index q+6, the 7th symbol group occupies the subcarrier index q, the 8th symbol group Occupy subcarrier index q+1;
  • the positioning reference signal with index 2 the 5th symbol group occupies the subcarrier index q+8, the 6th symbol group occupies the subcarrier index q+9, the 7th symbol group occupies the subcarrier index q+3, the 8th The symbol group occupies the subcarrier index q+4;
  • the positioning reference signal with index 3 the 5th symbol group occupies the subcarrier index q+9, the 6th symbol group occupies the subcarrier index q+8, the 7th symbol group occupies the subcarrier index q+4, the 8th The symbol group occupies the subcarrier index q+3;
  • the positioning reference signal with index 4 the fifth symbol group occupies the subcarrier index q+10, the sixth symbol group occupies the subcarrier index q+11, and the seventh symbol group occupies the subcarrier index q+5, the eighth The symbol group occupies the subcarrier index q+4;
  • the positioning reference signal with index 5 the 5th symbol group occupies the subcarrier index q+11, the 6th symbol group occupies the subcarrier index q+10, and the 7th symbol group occupies the subcarrier index q+4, the 8th The symbol group occupies the subcarrier index q+5;
  • the positioning reference signal with index 6 is, the 5th symbol group occupies the subcarrier index q, the 6th symbol group occupies the subcarrier index q+1, the 7th symbol group occupies the subcarrier index q+7, the 8th symbol group Occupy subcarrier index q+6;
  • the fifth symbol group occupies the subcarrier index q+1
  • the sixth symbol group occupies the subcarrier index q
  • the seventh symbol group occupies the subcarrier index q+6, the eighth symbol group Occupy subcarrier index q+7;
  • the positioning reference signal with an index of 8 the fifth symbol group occupies the subcarrier index q+2, the sixth symbol group occupies the subcarrier index q+3, and the seventh symbol group occupies the subcarrier index q+9, the eighth The symbol group occupies the subcarrier index q+8;
  • the positioning reference signal with index 9 is, the 5th symbol group occupies the subcarrier index q+3, the 6th symbol group occupies the subcarrier index q+2, and the 7th symbol group occupies the subcarrier index q+8, the 8th The symbol group occupies the subcarrier index q+9;
  • the positioning reference signal with index 10 the 5th symbol group occupies the subcarrier index q+4, the 6th symbol group occupies the subcarrier index q+5, and the 7th symbol group occupies the subcarrier index q+11, the 8th The symbol group occupies the subcarrier index q+10;
  • the index is 11 for the positioning reference signal
  • the fifth symbol group occupies the subcarrier index q+5
  • the sixth symbol group occupies the subcarrier index q+4
  • the seventh symbol group occupies the subcarrier index q+10
  • the eighth The symbol group occupies the subcarrier index q+11.
  • symbol group 1 to symbol group 4 are arranged in the same time-frequency resource sub-block 1
  • symbol group 5 to symbol group 8 are arranged in the same time-frequency resource sub-block 2.
  • the third symbol group occupies the subcarrier index k+7
  • the fourth symbol group occupies the subcarrier index k+6
  • the fifth symbol group occupies the subcarrier index q+9
  • the sixth symbol group occupies the subcarrier index q+ 8
  • the seventh symbol group occupies the subcarrier index q+2
  • the eighth symbol group occupies the subcarrier index q+3;
  • the structure diagram of the time-frequency resource sub-block 1 and the time-frequency resource sub-block 2 is as shown in FIG. 6.
  • the third symbol group occupies the subcarrier index 7
  • the fourth symbol group occupies the subcarrier index 6
  • the fifth symbol group occupies the subcarrier index 21
  • the sixth symbol group occupies the subcarrier index 20
  • the seventh The symbol group occupies the subcarrier index 14, and the eighth symbol group occupies the subcarrier index 15;
  • the structure diagram of the time-frequency resource sub-block 1 and the time-frequency resource sub-block 2 is as shown in FIG. 7.
  • the first symbol group occupies the subcarrier index 0
  • the second symbol group occupies the subcarrier index 1
  • the third symbol group The subcarrier index 7 is occupied
  • the fourth symbol group occupies the subcarrier index 6
  • the fifth symbol group occupies the subcarrier index 45
  • the sixth symbol group occupies the subcarrier index 44
  • the seventh symbol group occupies the subcarrier index 38.
  • the eighth symbol group occupies the subcarrier index 39.
  • first time-frequency resource block and the second time-frequency resource block are configured in a preset coverage enhancement level random access channel resource, or are configured in a preset coverage enhancement level and in one of the frequency bands. Random access channel resources on resources.
  • the preset coverage enhancement level random access channel resource may include a random access channel resource configured in the 3GPP Rel-13 version standard to one coverage enhancement level in the NB-IoT system; or configured in the 3GPP Rel-14 version standard to the NB - A coverage level access random access channel resource in the IoT system. a preset coverage enhancement level and random access channel resources on one of the frequency band resources, including a randomization level configured in the 3GPP Rel-14 version standard to a coverage enhancement level in the NB-IoT system and on one of the frequency band resources Access channel resources.
  • the random access channel resource of the preset coverage enhancement level, or the preset coverage enhancement level and the random access channel resource on one of the frequency band resources may occupy consecutive channels in the frequency domain.
  • the random access channel resource of the preset coverage enhancement level, or a preset coverage enhancement level, and a random access channel resource on one of the frequency band resources may be occupied in a frequency domain.
  • the random access channel resource of the preset coverage enhancement level, or a preset coverage enhancement level, and a random access channel resource on one of the frequency band resources may be occupied in a frequency domain.
  • the symbol group 1 to the symbol group 8 occupy The resources are included in the time-frequency resource block 1, and the resources occupied by the symbol group 9 to the symbol group 16 are included in the time-frequency resource block 2.
  • the positioning reference signal can include more than one 16 symbol groups.
  • the 16 symbol groups in this example may be 16 symbol groups at the transmission start end of the positioning reference signal, or 16 symbol groups subsequent to the transmission start end of the positioning reference signal, and so on.
  • the time domain length of the time-frequency resource block 1 is 8 symbol group lengths, and the frequency domain length of the time-frequency resource block 1 is 12 sub-carriers and the starting sub-carrier index is k (k is an integer greater than or equal to 0);
  • the time domain length of time-frequency resource block 2 is 8 symbol group lengths, and the frequency domain length of time-frequency resource block 2 is 12 sub-carriers and the starting sub-carrier index is k+D (k is an integer greater than or equal to 0);
  • the D is a frequency domain interval between the first time-frequency resource block and the second time-frequency resource block, and may take a positive integer or a negative integer or 0;
  • the time-frequency resource occupied by the above 16 symbol groups when the positioning reference signal is transmitted is shown.
  • the positioning reference signal index selected in the symbol group 1 to the symbol group 8 is 0, and the symbol group 9 The index of the positioning reference signal selected in the symbol group 16 is 0. It can be understood that the time-frequency resource occupied by the 16 symbol groups satisfies a preset fourth mapping relationship, and the fourth mapping relationship may be:
  • the positioning reference signal with index 0 the first symbol group occupies the subcarrier index k
  • the second character The number group occupies the subcarrier index k+1
  • the third symbol group occupies the subcarrier index k+7
  • the fourth symbol group occupies the subcarrier index k+6, and the fifth symbol group occupies the subcarrier index k
  • the sixth The symbol group occupies the subcarrier index k+1
  • the seventh symbol group occupies the subcarrier index k+7
  • the eighth symbol group occupies the subcarrier index k+6,
  • the ninth symbol group occupies the subcarrier index k+D+6
  • the 10th symbol group occupies the subcarrier index k+D+7
  • the 11th symbol group occupies the subcarrier index k+D+1
  • the 12th symbol group occupies the subcarrier index k+D
  • the 13th symbol group occupies Subcarrier index k+D+6,
  • the 14th symbol group occupies the subcarrier index k+D+7
  • the positioning reference signal with index 1 is, the first symbol group occupies the subcarrier index k+1, the second symbol group occupies the subcarrier index k, the third symbol group occupies the subcarrier index k+6, and the fourth symbol group
  • the subcarrier index k+7 is occupied
  • the fifth symbol group occupies the subcarrier index k+1
  • the sixth symbol group occupies the subcarrier index k
  • the seventh symbol group occupies the subcarrier index k+6,
  • the eighth symbol group The subcarrier index is occupied by k+7
  • the ninth symbol group occupies the subcarrier index k+D+7
  • the tenth symbol group occupies the subcarrier index k+D+6, and the eleventh symbol group occupies the subcarrier index k+D
  • the 12th symbol group occupies the subcarrier index k+D+1
  • the 13th symbol group occupies the subcarrier index k+D+7
  • the 14th symbol group occupies the subcarrier index k+D+
  • the positioning reference signal with index 2 the first symbol group occupies the subcarrier index k+2, the second symbol group occupies the subcarrier index k+3, and the third symbol group occupies the subcarrier index k+9, the fourth The symbol group occupies the subcarrier index k+8, the fifth symbol group occupies the subcarrier index k+2, the sixth symbol group occupies the subcarrier index k+3, and the seventh symbol group occupies the subcarrier index k+9,
  • the 8 symbol groups occupy the subcarrier index k+8, the ninth symbol group occupies the subcarrier index k+D+8, the 10th symbol group occupies the subcarrier index k+D+9, and the 11th symbol group occupies the subcarrier Index k+D+3, the 12th symbol group occupies the subcarrier index k+D+4, the 13th symbol group occupies the subcarrier index k+D+8, and the 14th symbol group occupies the subcarrier index k+D+ 9, the 15th symbol group occupies the subcar
  • the positioning reference signal with index 3 the first symbol group occupies the subcarrier index k+3, the second symbol group occupies the subcarrier index k+2, and the third symbol group occupies the subcarrier index k+8, the fourth The symbol group occupies the subcarrier index k+9, and the fifth symbol group occupies the subcarrier index k+3, the sixth symbol The group occupies the subcarrier index k+2, the seventh symbol group occupies the subcarrier index k+8, the eighth symbol group occupies the subcarrier index k+9, and the ninth symbol group occupies the subcarrier index k+D+9, The 10th symbol group occupies the subcarrier index k+D+8, the 11th symbol group occupies the subcarrier index k+D+4, and the 12th symbol group occupies the subcarrier index k+D+3, the 13th symbol group The subcarrier index is occupied by k+D+9, the 14th symbol group occupies the subcarrier index k+D+8, the 15th symbol group occupies the
  • the positioning reference signal with index 4 the first symbol group occupies the subcarrier index k+4, the second symbol group occupies the subcarrier index k+5, the third symbol group occupies the subcarrier index k+11, the fourth The symbol group occupies the subcarrier index k+10, the fifth symbol group occupies the subcarrier index k+4, the sixth symbol group occupies the subcarrier index k+5, and the seventh symbol group occupies the subcarrier index k+11, the first The 8 symbol groups occupy the subcarrier index k+10, the ninth symbol group occupies the subcarrier index k+D+10, the 10th symbol group occupies the subcarrier index k+D+11, and the 11th symbol group occupies the subcarrier Index k+D+5, the 12th symbol group occupies the subcarrier index k+D+4, the 13th symbol group occupies the subcarrier index k+D+10, and the 14th symbol group occupies the subcarrier index k+D+ 11, the 15th symbol group occupies the subcar
  • the positioning reference signal with index 5 the first symbol group occupies the subcarrier index k+5, the second symbol group occupies the subcarrier index k+4, the third symbol group occupies the subcarrier index k+10, the fourth The symbol group occupies the subcarrier index k+11, the fifth symbol group occupies the subcarrier index k+5, the sixth symbol group occupies the subcarrier index k+4, and the seventh symbol group occupies the subcarrier index k+10,
  • the 8 symbol groups occupy the subcarrier index k+11, the ninth symbol group occupies the subcarrier index k+D+11, the 10th symbol group occupies the subcarrier index k+D+10, and the 11th symbol group occupies the subcarrier Index k+D+4, the 12th symbol group occupies the subcarrier index k+D+5, the 13th symbol group occupies the subcarrier index k+D+11, and the 14th symbol group occupies the subcarrier index k+D+ 10, the 15th symbol group occupies the subcarrier
  • the positioning reference signal with index 6 is, the first symbol group occupies the subcarrier index k+6, the second symbol group occupies the subcarrier index k+7, and the third symbol group occupies the subcarrier index k+1, the fourth The symbol group occupies the subcarrier index k, the fifth symbol group occupies the subcarrier index k+6, the sixth symbol group occupies the subcarrier index k+7, and the seventh symbol group occupies the subcarrier index k+1, the eighth The symbol group occupies the subcarrier index k, the ninth symbol group occupies the subcarrier index k+D, and the tenth symbol group occupies Subcarrier index k+D+1, the 11th symbol group occupies the subcarrier index k+D+7, the 12th symbol group occupies the subcarrier index k+D+6, and the 13th symbol group occupies the subcarrier index k+ D, the 14th symbol group occupies the subcarrier index k+D+1, the 15th symbol group occupies the subcarrier index
  • the eighth symbol group The subcarrier index k+1 is occupied
  • the tenth symbol group occupies the subcarrier index k+D
  • the eleventh symbol group occupies the subcarrier index k+D+6
  • the 15th symbol group occupies Carrier index
  • the positioning reference signal with an index of 8 the first symbol group occupies the subcarrier index k+8, the second symbol group occupies the subcarrier index k+9, and the third symbol group occupies the subcarrier index k+3, the fourth The symbol group occupies the subcarrier index k+2, the fifth symbol group occupies the subcarrier index k+8, the sixth symbol group occupies the subcarrier index k+9, and the seventh symbol group occupies the subcarrier index k+3,
  • the 8 symbol groups occupy the subcarrier index k+2, the ninth symbol group occupies the subcarrier index k+D+2, the 10th symbol group occupies the subcarrier index k+D+3, and the 11th symbol group occupies the subcarrier Index k+D+9, the 12th symbol group occupies the subcarrier index k+D+8, the 13th symbol group occupies the subcarrier index k+D+8, and the 14th symbol group occupies the subcarrier index k+D+ 3, the 15th symbol group occupies the
  • the positioning reference signal with index 9 is, the first symbol group occupies the subcarrier index k+9, the second symbol group occupies the subcarrier index k+8, and the third symbol group occupies the subcarrier index k+2, the fourth The symbol group occupies the subcarrier index k+3, the fifth symbol group occupies the subcarrier index k+9, the sixth symbol group occupies the subcarrier index k+8, and the seventh symbol group occupies the subcarrier index k+2, The 8 symbol groups occupy the subcarrier index k+3, the ninth symbol group occupies the subcarrier index k+D+3, the 10th symbol group occupies the subcarrier index k+D+2, and the 11th symbol group occupies the subcarrier Index k+D+8, the 12th symbol group occupies the subcarrier index k+D+9, and the 13th symbol group occupies the subcarrier index k+D+3, The 14th symbol group occupies the subcarrier index k+D+2, the 15th symbol group occupies the subcar
  • the positioning reference signal with index 10 the first symbol group occupies the subcarrier index k+10, the second symbol group occupies the subcarrier index k+11, and the third symbol group occupies the subcarrier index k+5, the fourth The symbol group occupies the subcarrier index k+4, the fifth symbol group occupies the subcarrier index k+10, the sixth symbol group occupies the subcarrier index k+11, and the seventh symbol group occupies the subcarrier index k+5,
  • the 8 symbol groups occupy the subcarrier index k+4, the ninth symbol group occupies the subcarrier index k+D+4, the 10th symbol group occupies the subcarrier index k+D+5, and the 11th symbol group occupies the subcarrier Index k+D+11, the 12th symbol group occupies the subcarrier index k+D+10, the 13th symbol group occupies the subcarrier index k+D+4, and the 14th symbol group occupies the subcarrier index k+D+ 5, the 15th symbol group occupies the subcar
  • the positioning reference signal with index 11 is, the first symbol group occupies the subcarrier index k+11, the second symbol group occupies the subcarrier index k+10, and the third symbol group occupies the subcarrier index k+4, the fourth The symbol group occupies the subcarrier index k+5, the fifth symbol group occupies the subcarrier index k+11, the sixth symbol group occupies the subcarrier index k+10, and the seventh symbol group occupies the subcarrier index k+4, the first The 8 symbol groups occupy the subcarrier index k+5, the ninth symbol group occupies the subcarrier index k+D+5, the 10th symbol group occupies the subcarrier index k+D+4, and the 11th symbol group occupies the subcarrier Index k+D+10, the 12th symbol group occupies the subcarrier index k+D+11, the 13th symbol group occupies the subcarrier index k+D+5, and the 14th symbol group occupies the subcarrier index k+D+ 4.
  • the 15th symbol group occupie
  • the delta is a random number.
  • delta 2
  • the first symbol group occupies the subcarrier index k
  • the second symbol group occupies the subcarrier index k+1
  • the third symbol group occupies the subcarrier index k+7
  • the fourth symbol group occupies the subcarrier index k+6
  • the fifth symbol group occupies the subcarrier index k
  • the sixth symbol group occupies the subcarrier index k+1
  • the seventh symbol group occupies the subcarrier index k+7
  • the eighth symbol group occupies the subcarrier index k+6
  • the ninth symbol group occupies the subcarrier index k+D+8,
  • the ninth symbol group occupies the subcarrier index k+D+9
  • the eleventh symbol group occupies the subcarrier index k+D+3
  • the ninth The symbol group occupies the subcarrier index k+D+2
  • the 13th symbol group occupies the subcarrier index k+D+8
  • the 14th symbol group occupies the subcarrier index k+D+9
  • the 15th symbol group occupie
  • the symbol group 1 to the symbol group 8 occupy The resources are included in the time-frequency resource block 1, and the resources occupied by the symbol group 9 to the symbol group 16 are included in the time-frequency resource block 2.
  • the positioning reference signal can include more than one 16 symbol groups.
  • the 16 symbol groups in this example may be 16 symbol groups at the transmission start end of the positioning reference signal, or 16 symbol groups subsequent to the transmission start end of the positioning reference signal, and so on.
  • the domain length is 12 subcarriers, and the structure of the time-frequency resource sub-block 1 is as shown in FIG. 9.
  • B time-frequency resource sub-blocks 2
  • the structure of the time-frequency resource sub-block 2 is as shown in FIG.
  • the structure satisfies a preset fifth mapping relationship, and the preset fifth mapping relationship may be:
  • the positioning reference signal with index 0 the first symbol group occupies the subcarrier index k
  • the second symbol group occupies the subcarrier index k+1
  • the third symbol group occupies the subcarrier index k+7
  • the fourth symbol group The subcarrier index is occupied by k+6, the fifth symbol group occupies the subcarrier index k, and the sixth symbol group occupies Using the subcarrier index k+1, the seventh symbol group occupies the subcarrier index k+7, and the eighth symbol group occupies the subcarrier index k+6;
  • the positioning reference signal with index 1 is, the first symbol group occupies the subcarrier index k+1, the second symbol group occupies the subcarrier index k, the third symbol group occupies the subcarrier index k+6, and the fourth symbol group
  • the subcarrier index k+7 is occupied, the fifth symbol group occupies the subcarrier index k+1, the sixth symbol group occupies the subcarrier index k, the seventh symbol group occupies the subcarrier index k+6, and the eighth symbol group Occupy subcarrier index k+7;
  • the positioning reference signal with index 2 the first symbol group occupies the subcarrier index k+2, the second symbol group occupies the subcarrier index k+3, and the third symbol group occupies the subcarrier index k+9, the fourth The symbol group occupies the subcarrier index k+8, the fifth symbol group occupies the subcarrier index k+2, the sixth symbol group occupies the subcarrier index k+3, and the seventh symbol group occupies the subcarrier index k+9, 8 symbol groups occupy subcarrier index k+8;
  • the positioning reference signal with index 3 the first symbol group occupies the subcarrier index k+3, the second symbol group occupies the subcarrier index k+2, and the third symbol group occupies the subcarrier index k+8, the fourth The symbol group occupies the subcarrier index k+9, the fifth symbol group occupies the subcarrier index k+3, the sixth symbol group occupies the subcarrier index k+2, and the seventh symbol group occupies the subcarrier index k+8, 8 symbol groups occupy subcarrier index k+9;
  • the positioning reference signal with index 4 the first symbol group occupies the subcarrier index k+4, the second symbol group occupies the subcarrier index k+5, the third symbol group occupies the subcarrier index k+11, the fourth The symbol group occupies the subcarrier index k+10, the fifth symbol group occupies the subcarrier index k+4, the sixth symbol group occupies the subcarrier index k+5, and the seventh symbol group occupies the subcarrier index k+11, the first 8 symbol groups occupy subcarrier index k+10;
  • the positioning reference signal with index 5 the first symbol group occupies the subcarrier index k+5, the second symbol group occupies the subcarrier index k+4, the third symbol group occupies the subcarrier index k+10, the fourth The symbol group occupies the subcarrier index k+11, the fifth symbol group occupies the subcarrier index k+5, the sixth symbol group occupies the subcarrier index k+4, and the seventh symbol group occupies the subcarrier index k+10, 8 symbol groups occupy subcarrier index k+11;
  • the positioning reference signal with index 6 is, the first symbol group occupies the subcarrier index k+6, the second symbol group occupies the subcarrier index k+7, and the third symbol group occupies the subcarrier index k+1, the fourth Symbol The number group occupies the subcarrier index k, the fifth symbol group occupies the subcarrier index k+6, the sixth symbol group occupies the subcarrier index k+7, and the seventh symbol group occupies the subcarrier index k+1, the eighth The symbol group occupies the subcarrier index k;
  • the positioning reference signal with index of 7 the first symbol group occupies the subcarrier index k+7, the second symbol group occupies the subcarrier index k+6, the third symbol group occupies the subcarrier index k, and the fourth symbol group
  • the subcarrier index k+1 is occupied, the fifth symbol group occupies the subcarrier index k+7, the sixth symbol group occupies the subcarrier index k+6, the seventh symbol group occupies the subcarrier index k, and the eighth symbol group Occupying the subcarrier index k+1;
  • the positioning reference signal with an index of 8 the first symbol group occupies the subcarrier index k+8, the second symbol group occupies the subcarrier index k+9, and the third symbol group occupies the subcarrier index k+3, the fourth The symbol group occupies the subcarrier index k+2, the fifth symbol group occupies the subcarrier index k+8, the sixth symbol group occupies the subcarrier index k+9, and the seventh symbol group occupies the subcarrier index k+3, 8 symbol groups occupy subcarrier index k+2;
  • the positioning reference signal with index 9 is, the first symbol group occupies the subcarrier index k+9, the second symbol group occupies the subcarrier index k+8, and the third symbol group occupies the subcarrier index k+2, the fourth The symbol group occupies the subcarrier index k+3, the fifth symbol group occupies the subcarrier index k+9, the sixth symbol group occupies the subcarrier index k+8, and the seventh symbol group occupies the subcarrier index k+2, 8 symbol groups occupy subcarrier index k+3;
  • the positioning reference signal with index 10 the first symbol group occupies the subcarrier index k+10, the second symbol group occupies the subcarrier index k+11, and the third symbol group occupies the subcarrier index k+5, the fourth The symbol group occupies the subcarrier index k+4, the fifth symbol group occupies the subcarrier index k+10, the sixth symbol group occupies the subcarrier index k+11, and the seventh symbol group occupies the subcarrier index k+5, 8 symbol groups occupy subcarrier index k+4;
  • the positioning reference signal with index 11 is, the first symbol group occupies the subcarrier index k+11, the second symbol group occupies the subcarrier index k+10, and the third symbol group occupies the subcarrier index k+4, the fourth The symbol group occupies the subcarrier index k+5, the fifth symbol group occupies the subcarrier index k+11, the sixth symbol group occupies the subcarrier index k+10, and the seventh symbol group occupies the subcarrier index k+4, the first The 8 symbol groups occupy the subcarrier index k+5.
  • the preset sixth mapping relationship may be:
  • the positioning reference signal with index 0 the ninth symbol group occupies the subcarrier index q+6, the tenth symbol group occupies the subcarrier index q+7, and the eleventh symbol group occupies the subcarrier index q+1, the twelfth The symbol group occupies the subcarrier index q, the 13th symbol group occupies the subcarrier index q+6, the 14th symbol group occupies the subcarrier index q+7, and the 15th symbol group occupies the subcarrier index q+1, the 16th The symbol group occupies the subcarrier index q;
  • the positioning reference signal with index 1 is, the 9th symbol group occupies the subcarrier index q+7, the 10th symbol group occupies the subcarrier index q+6, the 11th symbol group occupies the subcarrier index q, the 12th symbol group The subcarrier index q+1 is occupied, the 13th symbol group occupies the subcarrier index q+7, the 14th symbol group occupies the subcarrier index q+6, the 15th symbol group occupies the subcarrier index q, and the 16th symbol group Occupy subcarrier index q+1;
  • the positioning reference signal with index 2 the ninth symbol group occupies the subcarrier index q+8, the tenth symbol group occupies the subcarrier index q+9, the eleventh symbol group occupies the subcarrier index q+3, the twelfth The symbol group occupies the subcarrier index q+4, the 13th symbol group occupies the subcarrier index q+8, the 14th symbol group occupies the subcarrier index q+9, and the 15th symbol group occupies the subcarrier index q+3, 16 symbol groups occupy subcarrier index q+4;
  • the positioning reference signal with index 3 the ninth symbol group occupies the subcarrier index q+9, the tenth symbol group occupies the subcarrier index q+8, the eleventh symbol group occupies the subcarrier index q+4, the twelfth The symbol group occupies the subcarrier index q+3, the 13th symbol group occupies the subcarrier index q+9, the 14th symbol group occupies the subcarrier index q+8, and the 15th symbol group occupies the subcarrier index q+4, the 16 symbol groups occupy subcarrier index q+3;
  • the positioning reference signal with index 4 the ninth symbol group occupies the subcarrier index q+10, the tenth symbol group occupies the subcarrier index q+11, and the eleventh symbol group occupies the subcarrier index q+5, the twelfth The symbol group occupies the subcarrier index q+4, the 13th symbol group occupies the subcarrier index q+10, the 14th symbol group occupies the subcarrier index q+11, and the 15th symbol group occupies the subcarrier index q+5, the first 16 symbol groups occupy subcarrier index q+4;
  • the positioning reference signal with index 5 the 9th symbol group occupies the subcarrier index q+11, the 10th symbol group occupies the subcarrier index q+10, and the 11th symbol group occupies the subcarrier index q+4, the 12th The symbol group occupies the subcarrier index q+5, and the thirteenth symbol group occupies the subcarrier index q+11, the 14th The symbol group occupies the subcarrier index q+10, the 15th symbol group occupies the subcarrier index q+4, and the 16th symbol group occupies the subcarrier index q+5;
  • the ninth symbol group occupies the subcarrier index q
  • the tenth symbol group occupies the subcarrier index q+1
  • the eleventh symbol group occupies the subcarrier index q+7
  • the twelfth symbol group The subcarrier index is occupied by q+6, the 13th symbol group occupies the subcarrier index q, the 14th symbol group occupies the subcarrier index q+1, and the 15th symbol group occupies the subcarrier index q+7, the 16th symbol group Occupy subcarrier index q+6;
  • the positioning reference signal with index of 7 the ninth symbol group occupies the subcarrier index q+1, the tenth symbol group occupies the subcarrier index q, the eleventh symbol group occupies the subcarrier index q+6, the twelfth symbol group
  • the 13th symbol group occupying the subcarrier index q+7 occupies the subcarrier index q+1, the 14th symbol group occupies the subcarrier index q, the 15th symbol group occupies the subcarrier index q+6, and the 16th symbol group occupies Subcarrier index q+7;
  • the indexing reference signal of index 8 the ninth symbol group occupies the subcarrier index q+2, the tenth symbol group occupies the subcarrier index q+3, and the eleventh symbol group occupies the subcarrier index q+9, the twelfth The symbol group occupies the subcarrier index q+8, the 13th symbol group occupies the subcarrier index q+2, the 14th symbol group occupies the subcarrier index q+3, and the 15th symbol group occupies the subcarrier index q+9, the first 16 symbol groups occupy subcarrier index q+8;
  • the positioning reference signal with index 9 is, the ninth symbol group occupies the subcarrier index q+3, the tenth symbol group occupies the subcarrier index q+2, and the eleventh symbol group occupies the subcarrier index q+8, the twelfth The symbol group occupies the subcarrier index q+9, the 13th symbol group occupies the subcarrier index q+3, the 14th symbol group occupies the subcarrier index q+2, and the 15th symbol group occupies the subcarrier index q+8, the 16 symbol groups occupy subcarrier index q+9;
  • the ninth symbol group occupies the subcarrier index q+4, the tenth symbol group occupies the subcarrier index q+5, the eleventh symbol group occupies the subcarrier index q+11, the twelfth The symbol group occupies the subcarrier index q+10, the 13th symbol group occupies the subcarrier index q+4, the 14th symbol group occupies the subcarrier index q+5, and the 15th symbol group occupies the subcarrier index q+11, 16 symbol groups occupy subcarrier index q+10;
  • the positioning reference signal with index 11 is, the ninth symbol group occupies the subcarrier index q+5, the tenth symbol group occupies the subcarrier index q+4, and the eleventh symbol group occupies the subcarrier index q+10, the twelfth The symbol group occupies the subcarrier index q+11, the 13th symbol group occupies the subcarrier index q+5, the 14th symbol group occupies the subcarrier index q+4, and the 15th symbol group occupies the subcarrier index q+10, The 16th symbol group occupies the subcarrier index q+11.
  • the resources occupied by the symbol group 1 to the symbol group 8 are included in the first time-frequency resource sub-block 1 of the time-frequency resource block 1, and the resources occupied by the symbol group 9 to the symbol group 16 are included in the time-frequency resource block 2
  • the structure diagram of the time-frequency resource sub-block 1 and the time-frequency resource sub-block 2 is as shown in FIG. 11.
  • the first symbol group occupies the subcarrier index 0, the second symbol group occupies the subcarrier index 1, and the third symbol group
  • the subcarrier index 7 is occupied
  • the fourth symbol group occupies the subcarrier index 6
  • the fifth symbol group occupies the subcarrier index 1
  • the sixth symbol group occupies the subcarrier index 1
  • the seventh symbol group occupies the subcarrier index 7
  • the 8th symbol group occupies the subcarrier index 6
  • the ninth symbol group occupies the subcarrier index 33
  • the 10th symbol group occupies the subcarrier index 32
  • the 11th symbol group occupies the subcarrier index 26
  • the 12th symbol group occupies Subcarrier index 27
  • the 13th symbol group occupies the subcarrier index 33
  • the 14th symbol group occupies the subcarrier index 32
  • the 15th symbol group occupies the subcarrier index 26
  • the 16th symbol group occupies the subcarrier index 27;
  • each subcarrier set includes 12 subcarriers.
  • the first and second symbol groups in the symbol group set group occupy the same sub-carrier subset when transmitted; the third and fourth symbol groups in the symbol group set group occupy the same sub-carrier subset when transmitted.
  • the subcarrier subsets occupied by the 1st and 2nd symbol groups are different from the subcarrier subsets occupied by the 3rd and 4th symbol groups.
  • Schematic diagram of symbol group collection resource allocation is shown in Figure 12, where Figure 12
  • the described subcarrier indices 0-11 are indices in one subcarrier subset and do not represent the index of the subcarriers of the subcarriers in the band resources.
  • the two sets of symbol groups adjacent to each other in the time domain are different in the set of subcarriers.
  • the first set of symbol groups in the two sets of symbol groups adjacent in the time domain occupy the subcarrier set 1
  • the second The set of symbol groups occupies a set of subcarriers 4.
  • the sub-carrier sub-set index occupied by the first and second symbol groups in the first first symbol group set in the two first symbol group sets adjacent to each other in the time domain is 0, the second The sub-carrier sub-set index occupied by the first and second symbol groups in the first symbol group set is 1; the third and fourth symbol groups in the first first symbol group set are occupied when transmitting The subcarrier sub-set index is 1, and the sub-carrier sub-set index occupied by the third and fourth symbol groups in the second first symbol group set is 0.
  • An embodiment of the present invention further provides a method for positioning.
  • the method may include:
  • the first network element sends a positioning reference signal to the second network element.
  • the resource of the positioning reference signal is configured in a set of P time-frequency resources, and the index is p, where 0 ⁇ p ⁇ P-1;
  • the P time-frequency resource sets are configured on N frequency band resources, where P is an integer not less than 1, and N is an integer not less than 1.
  • the time-frequency resource set is a random access channel resource that meets a preset coverage enhancement level
  • the time-frequency resource set is a random access channel resource that satisfies a preset coverage enhancement level and is on one of the frequency band resources.
  • the preset coverage enhancement level random access channel resource may include: a random access channel resource configured to a coverage enhancement level in the NB-IoT system in the 3GPP Rel-13 version standard; or.
  • the 3GPP Rel-14 version standard configures a coverage enhancement level random access channel resource in the NB-IoT system.
  • the preset coverage enhancement level and the random access channel resources on one of the frequency band resources may include: one coverage enhancement level configured in the 3GPP Rel-14 version standard to the NB-IoT system and on one of the frequency band resources Random access channel resources.
  • the P time-frequency resource sets correspond to P different coverage enhancement levels.
  • the method before the first network element sends the positioning reference signal to the second network element, the method further includes:
  • the first network element selects G(p) symbol group sets from the set of time-frequency resources with index p as a transmission resource of a positioning reference signal;
  • a single symbol group set includes 4 symbol groups; each symbol group occupies the same subcarrier in the frequency domain, and each symbol group is composed of a cyclic prefix CP and 5 symbols in the time domain.
  • G(p) can be at least one of the following:
  • G(p) in the P time-frequency resource sets are the same, the value is G and the G is configured by the base station;
  • R(p) is the number of repeated transmissions of the random access channel supported on the random access channel resource with index p, and the number of repeated transmissions supported by the random access channel resource with index p is R ( a random access channel transmission of p); a rule for selecting R(p) of the symbol group sets from the random access channel resources indexed by p is configured by the 3GPP Rel-13 version standard or by the 3GPP Rel-14 version A standard configuration, wherein the transmission of one of the set of symbol groups is defined as one transmission of the random access channel.
  • the first network element may select the G(p) symbol group set as the transmission resource of the positioning reference signal from the time-frequency resource set with the index p, which may include:
  • the first network element selects R(p) sets of G(p) symbol groups arranged in the front of the set of symbol groups;
  • the first network element selects R(p) sets of G(p) symbol groups arranged in the last set of the symbol group set;
  • the first network element selects G(p) symbol group sets from R(p) of the symbol group sets according to a predetermined rule; wherein G(p) is less than or equal to R(p).
  • the first network element selects G(p) from the set of time-frequency resources with index p.
  • the symbol group set is used as a sending resource of the positioning reference signal, and may include:
  • the A(p) corresponding to the time-frequency resource set of the different index p is the same; the A(p) corresponding to the time-frequency resource set of the different index p is independently configured.
  • the resource of the positioning reference signal is configured in a non-contention random access resource of the random access channel resource.
  • the frequency domain locations of the P time-frequency resource sets are different.
  • the time domain locations of the P time-frequency resource sets do not overlap.
  • the P time-frequency resource set includes at least one of the following:
  • J time-frequency resource sets with coverage enhancement levels where j is the coverage enhancement level index, 0 ⁇ j ⁇ J-1, and the number of time-frequency resources with coverage enhancement level j is K, 2 ⁇ K ⁇ P; coverage enhancement level
  • the set of K time-frequency resources for j are located on different frequency band resources.
  • the method before the first network element sends the positioning reference signal to the second network element, the method further includes:
  • the first network element selects G(p) symbol group sets from the set of time-frequency resources with index p as a transmission resource of a positioning reference signal;
  • a single symbol group set includes 4 symbol groups; each symbol group occupies the same subcarrier in the frequency domain.
  • the first network element selects G from the set of time-frequency resources with index p (p) a set of symbol groups as a transmission resource of the positioning reference signal, which may include:
  • the first network element selects R(p) sets of G(p) symbol groups arranged in the front of the set of symbol groups;
  • the first network element selects R(p) sets of G(p) symbol groups arranged in the last set of the symbol group set;
  • the first network element selects G(p) symbol group sets from R(p) of the symbol group sets according to a predetermined rule
  • the first network element may select, by using the G(p) symbol group set as the transmission resource of the positioning reference signal, from the set of the time-frequency resources with the index p, which may include:
  • R(p) is the number of repeated transmissions of the random access channel supported on the random access channel resource with index p.
  • the resources of the positioning reference signal may be configured in a non-contention random access channel resource of the random access channel resource.
  • the A(p) corresponding to the time-frequency resource set of the different index p is the same; the A(p) corresponding to the time-frequency resource set of the different index p is independently configured.
  • one band resource is configured in the NB-IoT system, the band resource size is 180 kHz, and the system is a random access resource structure configured by coverage enhancement level 0 (CEL0) and coverage enhancement level 1 (CEL1).
  • CEL0 coverage enhancement level 0
  • CEL1 coverage enhancement level 1
  • the one transmission of the random access channel can occupy 4 symbol groups, and we define 4 symbol groups as one symbol group set.
  • a small rectangular block represents a symbol group, and a number in a rectangular block of a symbol group represents an index of a random access channel to which the symbol group is assigned.
  • CEL0 supports 12 random access channels
  • CEL1 supports 12 random access channels
  • CEL0 and CEL1 configure the same random access resource configuration period.
  • the 3GPP Rel-13NB-IoT version standard specifies that the index of the random access channel selected by the terminal when transmitting the random access signal can be reselected between two adjacent sets of symbol groups, and the method of reselection is performed by 3GPP Rel-13NB. -IoT version standard.
  • the eight symbol group indexes of the CEL0 random access channel resources are sequentially ⁇ 11, 11, 11, 11, 2, 2, 2, 2 ⁇ configured as non-competitive random connections.
  • the 16 symbol group indexes in the random access channel resources of CEL1 are ⁇ 11,11,11,11,2,2,2,2,6,6,6,6,3,3,3,3 ⁇ is configured as a non-contention random access channel.
  • the terminal 1 transmits a positioning reference signal, wherein the resources of the positioning reference signal are configured in a non-contention random access channel in the random access channel resources of CEL0 and CEL1.
  • the period in which the terminal 1 sends the positioning reference signal is the same as the configuration period of the random access resource, which is 40 ms, and the index occupying the CEL0 is 8 symbols of ⁇ 11, 11, 11, 11, 2, 2, 2, 2 ⁇ .
  • the group and the 8 symbol groups occupying CEL1 with an index of ⁇ 11, 11, 11, 11, 2, 2, 2, 2 ⁇ are used to transmit the positioning reference signal.
  • the random access resource structure configured by the system for coverage enhancement level 0 is as shown in FIG. 15.
  • the random access resources of CEL0 are respectively configured on two frequency band resources, which are band resource 1 and band resource 2, respectively.
  • the CEL0 random access resource configuration period is 40 ms, the subcarrier index occupied by one band resource is 0 to 11, and the random access channel of CEL0 is repeatedly sent twice;
  • the one transmission of the random access channel can occupy 4 symbol groups, and we define 4 symbol groups as one symbol group set.
  • Each symbol group occupies the same subcarriers in the frequency domain and the positioning reference signal subcarrier spacing ⁇ f is 3.75 kHz.
  • the CP length is set to 0.2667 ms
  • the time domain length of the symbol group is 1.6 ms.
  • a small rectangular block represents a symbol group, and a number in a rectangular block of a symbol group represents an index of a random access channel to which the symbol group is assigned.
  • CEL0 supports 12 random access channels on one band resource, and CEL0 on band resource 1 and band resource 2 configures the configuration period of the same random access resource.
  • the 3GPP Rel-13NB-IoT version standard specifies that the index of the random access channel selected by the terminal when transmitting the random access signal can be reselected between two adjacent sets of symbol groups, and the method of reselection is performed by 3GPP Rel-13NB. -IoT version standard.
  • the eight symbol group indexes of the CEL0 random access channel resources of the band resource 1 are sequentially configured as ⁇ 11, 11, 11, 11, 2, 2, 2, 2 ⁇ .
  • the random access channel of the competition the eight symbol group indexes of the CEL0 random access channel resources of the band resource 1 are sequentially ⁇ 11, 11, 11, 11, 2, 2, 2, 2, ⁇ , which are configured to be non-competitive. Random access channel.
  • the terminal 1 transmits a positioning reference signal, wherein the resource of the positioning reference signal is configured in a non-contention random access channel in the random access channel resource of CEL0.
  • the terminal 1 transmits the positioning reference signal twice as long as the configuration period of the random access resource of CEL0, that is, 80 ms. As shown in FIG. 15, the terminal 1 first transmits a positioning reference on 8 symbol groups ⁇ 11, 11, 11, 11, 2, 2, 2, 2 ⁇ of the first CEL0 random access channel resource of the band resource 1. The signal is then transmitted by the terminal 1 on the eight symbol groups ⁇ 11, 11, 11, 11, 2, 2, 2, 2 ⁇ of the second CEL0 random access channel resource of the band resource 2.
  • the random access resource structure of level 0 (CEL0) and coverage enhancement level 1 (CEL1) configuration is as shown in FIG. 19, the random access resource of CEL0 is configured on the frequency band resource 1, and the random access resource of the CEL1 is configured in the frequency band resource 2 on.
  • the CEL0 random access resource configuration period is 40 ms, the subcarrier index occupied by one band resource is 0 to 11, the CEL0 random access channel is repeatedly transmitted once; the CEL1 random access resource configuration period is 40 ms.
  • the subcarrier index occupied by one band resource is 0 to 11, and the random access channel of CEL1 is repeatedly transmitted twice.
  • the one transmission of the random access channel can occupy 4 symbol groups, and we define 4 symbol groups as one symbol group set.
  • Each symbol group occupies the same subcarriers in the frequency domain and the positioning reference signal subcarrier spacing ⁇ f is 3.75 kHz.
  • the CP length is set to 0.2667 ms
  • the time domain length of the symbol group is 1.6 ms.
  • a small rectangular block represents a symbol group, and a number in a rectangular block of the symbol group represents an index of a random access channel to which the symbol group is assigned.
  • CEL0 supports 12 random access channels
  • CEL1 supports 12 random access channels
  • CEL0 and CEL1 are configured with the same configuration period of random access resources.
  • the 3GPP Rel-13NB-IoT version standard specifies that the index of the random access channel selected by the terminal when transmitting the random access signal can be reselected between two adjacent sets of symbol groups, and the method of reselection is performed by 3GPP Rel-13NB. -IoT version standard.
  • the four symbol group indexes of the CEL0 random access channel resources of the band resource 1 are sequentially configured as ⁇ 11, 11, 11, 11 ⁇ as non-contention random access channels.
  • the 8 symbol group indexes of the CEL1 random access channel resources of the band resource 2 are sequentially ⁇ 11, 11, 11, 11, 2, 2, 2, 2, ⁇ configured as non-contention random access channels.
  • the terminal 1 transmits a positioning reference signal, wherein the resources of the positioning reference signal are configured in a non-contention random access channel in the random access channel resources of CEL0 and CEL1.
  • the period in which the terminal 1 transmits the positioning reference signal is 80 ms. As shown in FIG. 16, the terminal 1 firstly uses four symbol groups ⁇ 11, 11, 11, 11 ⁇ in the random access channel resource of the first CEL0 of the band resource 1. Sending a positioning reference signal, and then the terminal 1 transmits a positioning reference signal on 8 symbol groups ⁇ 11, 11, 11, 11, 2, 2, 2, 2 ⁇ of the second CEL1 random access channel resource of the band resource 2 .
  • the network element 17 includes a first sending module 171 configured to send a positioning to a peer network element.
  • a reference signal configured to send a positioning to a peer network element.
  • the positioning reference signal is transmitted on N frequency band resources, wherein N is an integer not less than 1; the positioning reference signal occupies at least one symbol group, wherein each symbol group occupies the same frequency domain
  • the subcarriers, and each symbol group is composed of a cyclic prefix CP and at least one symbol in the time domain.
  • the resources occupied by the symbol group 1 to the symbol group 4 are included in the first time-frequency resource block, the symbol group The resources occupied by 5 to symbol group 8 are included in the second time-frequency resource block;
  • the time domain length of the first time-frequency resource block is a time domain length corresponding to four symbol groups, and the frequency domain length of the first time-frequency resource block is 12 sub-carriers and the index of the starting sub-carrier is k. , k is an integer greater than or equal to 0;
  • the time domain length of the second time-frequency resource block is a time domain length corresponding to the four symbol groups, and the frequency domain length of the second time-frequency resource block is 12 subcarriers, and the initial subcarrier index is k+D.
  • the D is a frequency domain interval between the first time-frequency resource block start subcarrier and the second time-frequency resource block start subcarrier;
  • the time domain interval between the first time-frequency resource block and the second time-frequency resource block is T time units, and T is greater than or equal to zero.
  • the time domain upper phase in the positioning reference signal sent by the first sending module 171 The adjacent eight symbol groups, the resources occupied by the symbol group 1 to the symbol group 4 are included in the first time-frequency resource block, and the resources occupied by the symbol group 5 to the symbol group 8 are included in the second time-frequency resource block;
  • the first time-frequency resource block is composed of A first time-frequency resource sub-blocks, where A is an integer greater than or equal to 1, and the time-domain length of the first time-frequency resource sub-block is a time domain corresponding to four symbol groups. Length, the frequency domain length of the first time-frequency resource sub-block is 12 sub-carriers;
  • the second time-frequency resource block is composed of B second time-frequency resource sub-blocks, where B is an integer greater than or equal to 1, and the time-domain length of the second time-frequency resource sub-block is a time-domain length corresponding to four symbol groups.
  • the frequency domain length of the second time-frequency resource sub-block is 12 sub-carriers;
  • the first time-frequency resource block and the second time-frequency resource block are separated by T time units in the time domain, and T is greater than or equal to zero.
  • the resources occupied by the symbol group 1 to the symbol group 8 are included in the first time-frequency resource block
  • the symbol The resources occupied by the group 9 to the symbol group 16 are included in the second time-frequency resource block.
  • the time domain length of the first time-frequency resource block is a time domain length corresponding to the eight symbol groups, and the frequency domain length of the first time-frequency resource block is 12 sub-carriers and the initial sub-carrier index is k.
  • the k is an integer greater than or equal to 0;
  • the time domain length of the second time-frequency resource block is a time domain length corresponding to the eight symbol groups, and the frequency domain length of the second time-frequency resource block is 12 subcarriers and the initial subcarrier index is k+D;
  • the first time-frequency resource block and the second time-frequency resource block are separated by T time units in the time domain, and T is greater than or equal to zero.
  • the resources occupied by the symbol group 1 to the symbol group 8 are included in the first time-frequency resource block, the symbol The resources occupied by the group 9 to the symbol group 16 are included in the second time-frequency resource block;
  • the first time-frequency resource block is composed of A first time-frequency resource sub-blocks, where A is an integer greater than or equal to 1, and the time-domain length of the first time-frequency resource sub-block is a time domain corresponding to 8 symbol groups. Length, the frequency domain length of the first time-frequency resource block is 12 subcarriers;
  • the second time-frequency resource block is composed of B second time-frequency resource sub-blocks, where B is an integer greater than or equal to 1, and the time-domain length of the second time-frequency resource sub-block is a time-domain length corresponding to 8 symbol groups.
  • B is an integer greater than or equal to 1
  • the time-domain length of the second time-frequency resource sub-block is a time-domain length corresponding to 8 symbol groups.
  • Second The frequency domain length of the time-frequency resource block is 12 subcarriers;
  • the first time-frequency resource block and the second time-frequency resource block are separated by T time units in the time domain, and T is greater than or equal to zero.
  • the frequency band resource includes P subcarrier sets, where P is greater than or equal to 1; every 4 symbol groups constitute one symbol group set, and the symbol groups in the same symbol group set occupy the same subcarriers when transmitting A set of subcarriers, each of which includes 12 subcarriers.
  • the network element 18 includes a second sending module 181 configured to send a positioning to the peer network element.
  • the resource of the positioning reference signal is configured in a set of P time-frequency resources, and the index is p, where 0 ⁇ p ⁇ P-1;
  • the P time-frequency resource sets are configured on N frequency band resources, where P is an integer not less than 1, and N is an integer not less than 1.
  • the network element 18 further includes a first selection module 182 configured to select a set of G(p) symbol groups from the set of time-frequency resources with index p as a transmission of a positioning reference signal.
  • a first selection module 182 configured to select a set of G(p) symbol groups from the set of time-frequency resources with index p as a transmission of a positioning reference signal.
  • a single symbol group set includes 4 symbol groups; each symbol group occupies the same subcarrier in the frequency domain, and each symbol group is composed of a cyclic prefix CP and 5 symbols in the time domain.
  • the first selection module 182 is configured to:
  • G(p) sets of symbol groups are selected from R(p) of the set of symbol groups according to a predetermined rule; wherein G(p) is less than or equal to R(p).
  • the first selection module 182 is configured to:
  • G(p) A(p) ⁇ R(p) sets of the symbol groups are selected. Where A(p) ⁇ 1 and R(p) are indexed as The number of repeated transmissions of the random access channel supported on the random access channel resource of p.
  • the P time-frequency resource set includes at least one of the following:
  • J time-frequency resource sets with coverage enhancement levels where j is the coverage enhancement level index, 0 ⁇ j ⁇ J-1, and the number of time-frequency resources with coverage enhancement level j is K, 2 ⁇ K ⁇ P; coverage enhancement level
  • the set of K time-frequency resources for j are located on different frequency band resources.
  • the network element 18 further includes a second selection module 183, configured to select G(p) symbol group sets from the set of time-frequency resources with index p as a transmission resource of the positioning reference signal;
  • a single symbol group set includes 4 symbol groups; each symbol group occupies the same subcarrier in the frequency domain.
  • the second selection module 183 is configured to:
  • A(p) ⁇ 1; R(p) is the number of repeated transmissions of the random access channel supported on the random access channel resource with index p.
  • an embodiment of the present invention further provides a computer readable storage medium, where a calculation is stored
  • the machine executable instructions that, when executed by a processor, implement any of the methods described above.
  • computer storage medium includes volatile and nonvolatile, implemented in any method or technology for storing information, such as computer readable instructions, data structures, program modules or other data. Sex, removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical disc storage, magnetic cartridge, magnetic tape, magnetic disk storage or other magnetic storage device, or may Any other medium used to store the desired information and that can be accessed by the computer.
  • communication media typically includes computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and can include any information delivery media. .
  • An embodiment of the present invention provides a method and a device for positioning, by using a first network element to send a positioning reference signal to a second network element, which can implement positioning of a huge number of terminals in the NB-IoT technology. Therefore, the present invention has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了一种定位的方法和设备。该方法可以包括:第一网元向第二网元发送定位参考信号;其中,所述定位参考信号在N个频带资源上发送,其中N为不小于1的整数;所述定位参考信号占用至少一个符号组,其中,每个符号组在频域上占用相同的子载波,并且每个符号组在时域上由循环前缀CP和至少一个符号构成。

Description

一种定位的方法和设备
相关申请的交叉引用
本申请基于申请号为201610878992.7、申请日为2016年09月30日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及无线通信技术,尤其涉及一种定位的方法和设备。
背景技术
当前适用于物联网(Internet Of Things)的技术当中,窄带物联网(NB-IoT,NarrowBand Internet Of Things)具有覆盖广、连接多、速率低、成本低、功耗低、架构优等特点,使其可以广泛应用于多种垂直行业,如远程抄表、资产跟踪、智能停车、智慧农业等。由于物联网中所支持的通信设备的数量庞大,所支持的终端类型也会非常多,因此,需要对物联网中的巨量终端进行有效的定位,但是目前NB-IoT技术对此并没有一个有效的解决方案。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例期望提供一种定位的方法和设备,能够在NB-IoT技术中实现对巨量终端的定位。
本发明实施例的方案是这样实现的:
第一方面,本发明实施例提供了一种定位的方法,所述方法包括:
第一网元向第二网元发送定位参考信号;其中,所述定位参考信号在N 个频带资源上发送,其中N为不小于1的整数;所述定位参考信号占用至少一个符号组,其中,每个符号组在频域上占用相同的子载波,并且每个符号组在时域上由循环前缀CP和至少一个符号构成。
在上述方案中,对于所述第一网元发送的定位参考信号中时域上相邻的八个符号组,符号组1至符号组4占用的资源包含在第一时频资源块中,符号组5至符号组8占用的资源包含在第二时频资源块中;
其中,所述第一时频资源块的时域长度为4个符号组对应的时域长度,所述第一时频资源块的频域长度为12个子载波且起始子载波的索引为k,所述k为大于等于0的整数;
所述第二时频资源块的时域长度为4个符号组对应的时域长度,所述第二时频资源块的频域长度为12个子载波且起始子载波索引为k+D,所述D为所述第一时频资源块起始子载波与所述第二时频资源块起始子载波之间的频域间隔;
所述第一时频资源块和所述第二时频资源块之间的时域间隔为T个时间单位,T大于等于0。
在上述方案中,所述八个符号组所占用的时频资源满足预设的第一映射关系。
在上述方案中,所述符号组1至符号组4中选择的定位参考信号索引为n,其中,0≤n≤11;所述符号组5至符号组8中选择的定位参考信号索引为m,其中,0≤m≤11;并且m=n。
在上述方案中,所述符号组1至符号组4中选择的定位参考信号索引为n,其中,0≤n≤11;所述符号组5至符号组8中选择的定位参考信号索引为m,其中,0≤m≤11;其中m=n+delta或m=mod((n+delta),12),delta为一个随机数值或者一个固定值,mod为取余计算。
在上述方案中,对于所述第一网元发送的定位参考信号中时域上相邻的八个符号组,符号组1至符号组4占用的资源包含在第一时频资源块中,符号组5至符号组8占用的资源包含在第二时频资源块中;
其中,第一时频资源块由A个第一时频资源子块构成,其中,A为大于 等于1的整数,第一时频资源子块的时域长度为4个符号组对应的时域长度,第一时频资源子块的频域长度为12个子载波;
第二时频资源块由B个第二时频资源子块构成,其中,B为大于等于1的整数,第二时频资源子块的时域长度为4个符号组对应的时域长度,第二时频资源子块的频域长度为12个子载波;
第一时频资源块和第二时频资源块在时域上间隔T个时间单位,T大于等于0。
在上述方案中,所述符号组1至符号组4配置在同一个第一时频资源子块中;所述符号组5至符号组8配置在同一个第二时频资源子块中。
在上述方案中,所述符号组1至符号组4中选择的定位参考信号索引为n,其中,0≤n≤11;所述符号组5至符号组8中选择的定位参考信号索引为m,其中,0≤m≤11;并且m=n。
在上述方案中,所述符号组1至符号组4中选择的定位参考信号索引为n,其中,0≤n≤11;所述符号组5至符号组8中选择的定位参考信号索引为m,其中,0≤m≤11;其中m=n+delta或m=mod((n+delta),12),delta为一个随机数值或者一个固定值,mod为取余计算。
在上述方案中,所述第一时频资源子块的结构满足预设的第二映射关系。
在上述方案中,所述第二时频资源子块的结构满足预设的第三映射关系。
在上述方案中,所述第一时频资源子块的起始子载波索引k与所述第二时频资源子块的起始子载波索引q之间满足q=k+D,其中,D为整数。
在上述方案中,所述第一时频资源块和所述第二时频资源块配置在预设的覆盖增强等级的随机接入信道资源,或者,配置在预设的覆盖增强等级且在一个所述频带资源上的随机接入信道资源。
在上述方案中,对于所述预设的覆盖增强等级的随机接入信道资源,或者预设的覆盖增强等级且在一个所述频带资源上的随机接入信道资源,在频域上占用连续的24个子载波且起始子载波索引均为k,且A=B=1,D=12。
在上述方案中,对于所述预设的覆盖增强等级的随机接入信道资源,或者,预设的覆盖增强等级且在一个所述频带资源上的随机接入信道资源,在频域上占用连续的36个子载波且起始子载波索引同样为k,且A=B=1,D=24。
在上述方案中,对于所述预设的覆盖增强等级的随机接入信道资源,或者,预设的覆盖增强等级且在一个所述频带资源上的随机接入信道资源,在频域上占用连续的48个子载波且起始子载波索引同样为k,且A=B=1,D=36。
在上述方案中,对于所述预设的覆盖增强等级的随机接入信道资源,或者,预设的覆盖增强等级且在一个所述频带资源上的随机接入信道资源,在频域上占用连续的48个子载波且起始子载波索引同样为k,且A=B=2,D=24。
在上述方案中,对于所述第一网元发送的定位参考信号中时域上相邻的16个符号组,符号组1至符号组8占用的资源包含在第一时频资源块中,符号组9至符号组16占用的资源包含在第二时频资源块中;
其中,所述第一时频资源块的时域长度为8个符号组对应的时域长度,所述第一时频资源块的频域长度为12个子载波且起始子载波索引为k,所述k为大于等于0的整数;
所述第二时频资源块的时域长度为8个符号组对应的时域长度,所述第二时频资源块的频域长度为12个子载波且起始子载波索引为k+D;
所述第一时频资源块和所述第二时频资源块在时域上间隔T个时间单位,T大于等于0。
在上述方案中,所述16个符号组所占用的时频资源满足预设的第四映射关系。
在上述方案中,所述符号组1至符号组8中选择的定位参考信号索引为n,其中,0≤n≤11;所述符号组9至符号组16中选择的定位参考信号索引为m,其中,0≤m≤11;并且m=n。
在上述方案中,所述符号组1至符号组8中选择的定位参考信号索引为 n,其中,0≤n≤11;所述符号组9至符号组16中选择的定位参考信号索引为m,其中,0≤m≤11;其中m=n+delta或m=mod((n+delta),12),delta为一个随机数值或者一个固定值,mod为取余计算。
在上述方案中,对于所述第一网元发送的定位参考信号中时域上相邻的16个符号组,符号组1至符号组8占用的资源包含在第一时频资源块中,符号组9至符号组16占用的资源包含在第二时频资源块中;
其中,第一时频资源块由A个第一时频资源子块构成,其中,A为大于等于1的整数,第一时频资源子块的时域长度为8个符号组对应的时域长度,第一时频资源块的频域长度为12个子载波;
第二时频资源块由B个第二时频资源子块构成,其中,B为大于等于1的整数,第二时频资源子块的时域长度为8个符号组对应的时域长度,第二时频资源块的频域长度为12个子载波;
第一时频资源块和第二时频资源块在时域上间隔T个时间单位,T大于等于0。
在上述方案中,所述符号组1至符号组8配置在同一个第一时频资源子块中;所述符号组9至符号组16配置在同一个第二时频资源子块中。
在上述方案中,所述符号组1至符号组8中选择的定位参考信号索引为n,其中,0≤n≤11;所述符号组9至符号组16中选择的定位参考信号索引为m,其中,0≤m≤11;并且m=n。
在上述方案中,所述符号组1至符号组8中选择的定位参考信号索引为n,其中,0≤n≤11;所述符号组9至符号组16中选择的定位参考信号索引为m,其中,0≤m≤11;其中m=n+delta或m=mod((n+delta),12),delta为一个随机数值或者一个固定值,mod为取余计算。
在上述方案中,所述第一时频资源子块的结构满足预设的第五映射关系。
在上述方案中,所述第二时频资源子块的结构满足预设的第六映射关系。
在上述方案中,所述第一时频资源子块的起始子载波索引k与所述第二 时频资源子块的起始子载波索引q之间满足q=k+D,其中,D为整数。
在上述方案中,所述频带资源包括P个子载波集合,其中,P大于等于1;每4个符号组组成一个符号组集合,相同符号组集合中的符号组在发送时所占用的子载波属于相同的子载波集合,每个子载波集合中包括12个子载波。
在上述方案中,时域相邻的两个符号组集合在发送时所占用的子载波集合不同。
在上述方案中,在单个符号组集合的4个符号组中,第1个和第2个符号组在发送时所占用的子载波子集合相同;第3个和第4个符号组在发送时所占用的子载波子集合相同,第1个和第2个符号组在发送时所占用的子载波子集合与第3个和第4个符号组在发送时所占用的子载波子集合不同;其中,1个所述子载波集合中包含2个子载波子集合,每个子载波子集合中包括6个子载波。
在上述方案中,在时域上相邻的两个符号组集合中,第一个符号组集合中第1个和第2个符号组在发送时所占用的子载波子集合索引与第二个符号组集合中第1个和第2个符号组在发送时所占用的子载波子集合索引不同;并且,第一个符号组集合中第3个和第4个符号组在发送时所占用的子载波子集合索引与第二个符号组集合中第3个和第4个符号组在发送时所占用的子载波子集合索引不同。
在上述方案中,在时域上相邻的两个符号组集合中,第一个符号组集合中的第1个和第2个符号组在发送时所占用的子载波子集合索引与第二个符号组集合中的第3个和第4个符号组在发送时所占用的子载波子集合索引相同;并且,第一个符号组集合中的第3个和第4个符号组在发送时所占用的子载波子集合索引与第二个符号组集合中的第1个和第2个符号组在发送时所占用的子载波子集合索引相同。
第二方面,本发明实施例提供了一种定位的方法,所述方法包括:
第一网元向第二网元发送定位参考信号;
其中,所述定位参考信号的资源配置在P个时频资源集合中,索引为p, 其中,0≤p≤P-1;
所述P个时频资源集合配置在N个频带资源上,其中,P为不小于1的整数,N为不小于1的整数。
在上述方案中,所述时频资源集合为满足预设的覆盖增强等级的随机接入信道资源;或者,
所述时频资源集合为满足预设的覆盖增强等级且在一个所述频带资源上的随机接入信道资源。
在上述方案中,所述P个时频资源集合对应P个不同的覆盖增强等级。
在上述方案中,在第一网元向第二网元发送定位参考信号之前,所述方法还包括:
所述第一网元从索引为p的所述时频资源集合中选择G(p)个符号组集合作为定位参考信号的发送资源;
其中,单个符号组集合中包括4个符号组;每个符号组在频域上占用相同的子载波。
在上述方案中,所述第一网元从索引为p的所述时频资源集合中选择G(p)个符号组集合作为定位参考信号的发送资源,包括:
所述第一网元选择R(p)个所述符号组集合中排列在最前面的G(p)个符号组集合;或,
所述第一网元选择R(p)个所述符号组集合中排列在最后面的G(p)个符号组集合;或,
所述第一网元从R(p)个所述符号组集合中按照预定规则选择G(p)个符号组集合;
其中,G(p)小于等于R(p)。
在上述方案中,所述第一网元从索引为p的所述时频资源集合中选择G(p)个符号组集合作为定位参考信号的发送资源,包括:
所述第一网元选择G(p)=A(p)×R(p)个所述符号组集合。其中,A(p)≥1,R(p)为索引为p的所述随机接入信道资源上支持的随机接入信道的重复发 送次数。
在上述方案中,所述定位参考信号的资源配置在所述随机接入信道资源的非竞争随机接入信道资源中。
在上述方案中,所述P个时频资源集合的频域位置不同;
或者,所述P个时频资源集合的时域位置不重叠。
在上述方案中,所述P个时频资源集合中包括以下至少之一:
覆盖增强等级相同的Kj个时频资源集合;其中,j为覆盖增强等级索引,Kj≥2;且所述Kj个时频资源集合位于不同频带资源上;
覆盖增强等级不相同的C个时频资源集合;其中,c大于等于2;所述C个时频资源集合位于相同频带资源上;
J个覆盖增强等级的时频资源集合,其中,j为覆盖增强等级索引,0≤j≤J-1,覆盖增强等级为j的时频资源数量为K,2≤K≤P;覆盖增强等级为j的K个时频资源集合位于不同的频带资源上。
在上述方案中,在第一网元向第二网元发送定位参考信号之前,所述方法还包括:
所述第一网元从索引为p的所述时频资源集合中选择G(p)个符号组集合作为定位参考信号的发送资源;
其中,单个符号组集合中包括4个符号组;每个符号组在频域上占用相同的子载波。
在上述方案中,所述第一网元从索引为p的所述时频资源集合中选择G(p)个符号组集合作为定位参考信号的发送资源,包括:
所述第一网元选择R(p)个所述符号组集合中排列在最前面的G(p)个符号组集合;或,
所述第一网元选择R(p)个所述符号组集合中排列在最后面的G(p)个符号组集合;或,
所述第一网元从R(p)个所述符号组集合中按照预定规则选择G(p)个符号组集合;
其中,G(p)小于等于R(p)。
在上述方案中,所述第一网元从索引为p的所述时频资源集合中选择G(p)个符号组集合作为定位参考信号的发送资源,包括:
所述第一网元选择G(p)=A(p)×R(p)个所述符号组集合。其中,A(p)≥1;R(p)为索引为p的所述随机接入信道资源上支持的随机接入信道的重复发送次数。
在上述方案中,所述定位参考信号的资源配置在所述随机接入信道资源的非竞争随机接入信道资源中。
第三方面,本发明实施例提供了一种网元,所述网元包括第一发送模块,配置为向对端网元发送定位参考信号;其中,所述定位参考信号在N个频带资源上发送,其中N为不小于1的整数;所述定位参考信号占用至少一个符号组,其中,每个符号组在频域上占用相同的子载波,并且每个符号组在时域上由循环前缀CP和至少一个符号构成。
在上述方案中,对于所述第一发送模块发送的定位参考信号中时域上相邻的八个符号组,符号组1至符号组4占用的资源包含在第一时频资源块中,符号组5至符号组8占用的资源包含在第二时频资源块中;
其中,所述第一时频资源块的时域长度为4个符号组对应的时域长度,所述第一时频资源块的频域长度为12个子载波且起始子载波的索引为k,所述k为大于等于0的整数;
所述第二时频资源块的时域长度为4个符号组对应的时域长度,所述第二时频资源块的频域长度为12个子载波且起始子载波索引为k+D,所述D为所述第一时频资源块起始子载波与所述第二时频资源块起始子载波之间的频域间隔;
所述第一时频资源块和所述第二时频资源块之间的时域间隔为T个时间单位,T大于等于0。
在上述方案中,对于所述第一发送模块发送的定位参考信号中时域上相邻的八个符号组,符号组1至符号组4占用的资源包含在第一时频资源块中,符号组5至符号组8占用的资源包含在第二时频资源块中;
其中,第一时频资源块由A个第一时频资源子块构成,其中,A为大于等于1的整数,第一时频资源子块的时域长度为4个符号组对应的时域长度,第一时频资源子块的频域长度为12个子载波;
第二时频资源块由B个第二时频资源子块构成,其中,B为大于等于1的整数,第二时频资源子块的时域长度为4个符号组对应的时域长度,第二时频资源子块的频域长度为12个子载波;
第一时频资源块和第二时频资源块在时域上间隔T个时间单位,T大于等于0。
在上述方案中,对于所述第一发送模块发送的定位参考信号中时域上相邻的16个符号组,符号组1至符号组8占用的资源包含在第一时频资源块中,符号组9至符号组16占用的资源包含在第二时频资源块中;
其中,所述第一时频资源块的时域长度为8个符号组对应的时域长度,所述第一时频资源块的频域长度为12个子载波且起始子载波索引为k,所述k为大于等于0的整数;
所述第二时频资源块的时域长度为8个符号组对应的时域长度,所述第二时频资源块的频域长度为12个子载波且起始子载波索引为k+D;
所述第一时频资源块和所述第二时频资源块在时域上间隔T个时间单位,T大于等于0。
在上述方案中,对于所述第一发送模块发送的定位参考信号中时域上相邻的16个符号组,符号组1至符号组8占用的资源包含在第一时频资源块中,符号组9至符号组16占用的资源包含在第二时频资源块中;
其中,第一时频资源块由A个第一时频资源子块构成,其中,A为大于等于1的整数,第一时频资源子块的时域长度为8个符号组对应的时域长度,第一时频资源块的频域长度为12个子载波;
第二时频资源块由B个第二时频资源子块构成,其中,B为大于等于1的整数,第二时频资源子块的时域长度为8个符号组对应的时域长度,第二时频资源块的频域长度为12个子载波;
第一时频资源块和第二时频资源块在时域上间隔T个时间单位,T大于 等于0。
在上述方案中,所述频带资源包括P个子载波集合,其中,P大于等于1;每4个符号组组成一个符号组集合,相同符号组集合中的符号组在发送时所占用的子载波属于相同的子载波集合,每个子载波集合中包括12个子载波。
第四方面,本发明实施例提供了一种网元,所述网元包括:第二发送模块,配置为向对端网元发送定位参考信号;
其中,所述定位参考信号的资源配置在P个时频资源集合中,索引为p,其中,0≤p≤P-1;
所述P个时频资源集合配置在N个频带资源上,其中,P为不小于1的整数,N为不小于1的整数。
在上述方案中,所述网元还包括第一选取模块,配置为从索引为p的所述时频资源集合中选择G(p)个符号组集合作为定位参考信号的发送资源;
其中,单个符号组集合中包括4个符号组;每个符号组在频域上占用相同的子载波,并且每个符号组在时域上由循环前缀CP和5个符号构成。
在上述方案中,所述第一选取模块配置为:
选择R(p)个所述符号组集合中排列在最前面的G(p)个符号组集合;或,
选择R(p)个所述符号组集合中排列在最后面的G(p)个符号组集合;或,
从R(p)个所述符号组集合中按照预定规则选择G(p)个符号组集合;其中,G(p)小于等于R(p)。
在上述方案中,所述第一选取模块配置为:
选择G(p)=A(p)×R(p)个所述符号组集合。其中,A(p)≥1,R(p)为索引为p的所述随机接入信道资源上支持的随机接入信道的重复发送次数。
在上述方案中,所述P个时频资源集合中包括以下至少之一:
覆盖增强等级相同的Kj个时频资源集合;其中,j为覆盖增强等级索引, Kj≥2;且所述Kj个时频资源集合位于不同频带资源上;
覆盖增强等级不相同的C个时频资源集合;其中,c大于等于2;所述C个时频资源集合位于相同频带资源上;
J个覆盖增强等级的时频资源集合,其中,j为覆盖增强等级索引,0≤j≤J-1,覆盖增强等级为j的时频资源数量为K,2≤K≤P;覆盖增强等级为j的K个时频资源集合位于不同的频带资源上。
在上述方案中,所述网元还包括第二选取模块,配置为从索引为p的所述时频资源集合中选择G(p)个符号组集合作为定位参考信号的发送资源;
其中,单个符号组集合中包括4个符号组;每个符号组在频域上占用相同的子载波。
在上述方案中,所述第二选取模块配置为:
选择R(p)个所述符号组集合中排列在最前面的G(p)个符号组集合;或,
选择R(p)个所述符号组集合中排列在最后面的G(p)个符号组集合;或,
从R(p)个所述符号组集合中按照预定规则选择G(p)个符号组集合;
其中,G(p)小于等于R(p)。
在上述方案中,所述第二选取模块配置为选择G(p)=A(p)×R(p)个所述符号组集合。其中,A(p)≥1;R(p)为索引为p的所述随机接入信道资源上支持的随机接入信道的重复发送次数。
此外,本发明实施例还提供一种计算机可读存储介质,其上存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现任一以上描述过的方法。
本发明实施例提供了一种定位的方法和设备,通过第一网元向第二网元发送定位参考信号,能够在NB-IoT技术中实现对巨量终端的定位。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
图1为本发明实施例提供的一种定位的方法示意图;
图2为本发明实施例提供的一种符号组结构示意图;
图3为本发明实施例提供的一种定位参考信号资源分配示意图;
图4为本发明实施例提供的一种时频资源子块的结构示意图;
图5为本发明实施例提供的另一种时频资源子块的结构示意图;
图6为本发明实施例提供的一种第一时频资源子块和第二时频资源子块的结构示意图;
图7为本发明实施例提供的另一种第一时频资源子块和第二时频资源子块的结构示意图;
图8为本发明实施例提供的另一种定位参考信号资源分配示意图;
图9为本发明实施例提供的又一种时频资源子块的结构示意图;
图10为本发明实施例提供的再一种时频资源子块的结构示意图;
图11为本发明实施例提供的又一种第一时频资源子块和第二时频资源子块的结构示意图;
图12为本发明实施例提供的一种符号组集合资源分配示意图;
图13为本发明实施例提供的另一种定位的方法示意图;
图14为本发明实施例提供的一种随机接入信道资源分配示意图;
图15为本发明实施例提供的另一种随机接入信道资源分配示意图;
图16为本发明实施例提供的又一种随机接入信道资源分配示意图
图17为本发明实施例提供的一种网元的结构示意图;
图18为本发明实施例提供的另一种网元的结构示意图;
图19为本发明实施例提供的又一种网元的结构示意图;
图20为本发明实施例提供的再一种网元的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的方案进行清楚、完整地描述。
参见图1,其示出了本发明实施例提供的一种定位的方法,可以包括:
S101:第一网元向第二网元发送定位参考信号;
其中,所述定位参考信号在N个频带资源上发送,其中N为不小于1的整数;所述定位参考信号占用至少一个符号组,其中,每个符号组在频域上占用相同的子载波,并且每个符号组在时域上由循环前缀CP和至少一个符号构成。
在图1中,第一网元可以是终端或者基站,那么相应地,当第一网元是终端时,第二网元是基站;当第一网元是基站时,第二网元是终端;也就是说,定位参考信号可以由基站发送给终端,或者定位参考信号也可以由终端发送给基站。而对于定位参考信号来说,其作用是让终端或者基站对所述定位参考信号进行测量,进而完成终端位置的定位过程。
对于图1的方案,本实施例通过以下示例进行详细说明,下述示例中的场景如下:
NB-IoT系统中配置了1个频带资源,且频带资源大小为180kHz。设定第一网元是终端,第二网元是基站,而定位参考信号占用一个或多个符号组(symbol group)。每个符号组在频域上占用的子载波相同且定位参考信号子载波间隔Δf为3.75kHz。每个符号组在时域上由一个循环前缀(CP,Cyclic Prefix)和K=5个符号(symbol)构成,如图2所示。
由于定位参考信号子载波间隔Δf为3.75kHz,一个符号长度
Figure PCTCN2017101651-appb-000001
当CP长度为0.2667ms时,每个符号组时域长度为0.2667+0.2667×5=1.6ms;
当CP长度为0.0667ms时,每个符号组时域长度为0.0667+0.2667×5=1.4ms;
在本实施例的以下示例中,设定CP长度为0.2667ms,则符号组的时域 长度为1.6ms。
示例一
在本示例中,对于定位参考信号中时域上相邻的8个符号组,以编号符号组1至符号组8为例,在这8个符号组中,符号组1至符号组4占用的资源包含在时频资源块1中,符号组5至符号组8占用的资源包含在时频资源块2中。定位参考信号可以包括不止一个的8个符号组。本示例中的8个符号组,可以是处于定位参考信号的发送开始端的8个符号组,或者是定位参考信号的发送开始端后续的8个符号组,依次类推。
其中,时频资源块1的时域长度为4个符号组长度,时频资源块1的频域长度为12个子载波且起始子载波索引为k(k为大于等于0的整数);
时频资源块2的时域长度为4个符号组长度,时频资源块2的频域长度为12个子载波且起始子载波索引为k+D(k为大于等于0的整数);其中,所述D为所述第一时频资源块与所述第二时频资源块之间的频域间隔,可以取正整数或负整数或0;
并且时频资源块1和时频资源块2在时域上间隔时间为T个时间单位,在本示例中,T=0;时间单位的含义包括以下至少之一:秒,毫秒,微秒,纳秒,子帧(subframe)的时域长度,发送符号的时域长度等;本示例以及后续示例对此均不作具体限定;
参见图3,其示出了本示例中第一网元在发送定位参考信号时,所述八个符号组所占用的时频资源示意图,在图中,符号组1至符号组4中选择的定位参考信号索引为0,符号组5至符号组8中选择的定位参考信号索引为0;可以理解地,所述八个符号组所占用的时频资源满足预设的第一映射关系,该第一映射关系可以为:
索引为0的定位参考信号,第1个符号组占用子载波索引k,第2个符号组占用子载波索引k+1,第3个符号组占用子载波索引k+7,第4个符号组占用子载波索引k+6,第5个符号组占用子载波索引k+D+6,第6个符号组占用子载波索引k+D+7,第7个符号组占用子载波索引k+D+1,第8个符号组占用子载波索引k+D;
索引为1的定位参考信号,第1个符号组占用子载波索引k+1,第2个符号组占用子载波索引k,第3个符号组占用子载波索引k+6,第4个符号组占用子载波索引k+7,第5个符号组占用子载波索引k+D+7,第6个符号组占用子载波索引k+D+6,第7个符号组占用子载波索引k+D,第8个符号组占用子载波索引k+D+1;
索引为2的定位参考信号,第1个符号组占用子载波索引k+2,第2个符号组占用子载波索引k+3,第3个符号组占用子载波索引k+9,第4个符号组占用子载波索引k+8,第5个符号组占用子载波索引k+D+8,第6个符号组占用子载波索引k+D+9,第7个符号组占用子载波索引k+D+3,第8个符号组占用子载波索引k+D+4;
索引为3的定位参考信号,第1个符号组占用子载波索引k+3,第2个符号组占用子载波索引k+2,第3个符号组占用子载波索引k+8,第4个符号组占用子载波索引k+9,第5个符号组占用子载波索引k+D+9,第6个符号组占用子载波索引k+D+8,第7个符号组占用子载波索引k+D+4,第8个符号组占用子载波索引k+D+3;
索引为4的定位参考信号,第1个符号组占用子载波索引k+4,第2个符号组占用子载波索引k+5,第3个符号组占用子载波索引k+11,第4个符号组占用子载波索引k+10,第5个符号组占用子载波索引k+D+10,第6个符号组占用子载波索引k+D+11,第7个符号组占用子载波索引k+D+5,第8个符号组占用子载波索引k+D+4;
索引为5的定位参考信号,第1个符号组占用子载波索引k+5,第2个符号组占用子载波索引k+4,第3个符号组占用子载波索引k+10,第4个符号组占用子载波索引k+11,第5个符号组占用子载波索引k+D+11,第6个符号组占用子载波索引k+D+10,第7个符号组占用子载波索引k+D+4,第8个符号组占用子载波索引k+D+5;
索引为6的定位参考信号,第1个符号组占用子载波索引k+6,第2个符号组占用子载波索引k+7,第3个符号组占用子载波索引k+1,第4个符号组占用子载波索引k,第5个符号组占用子载波索引k+D,第6个符号组占用子载波索引k+D+1,第7个符号组占用子载波索引k+D+7,第8个符号 组占用子载波索引k+D+6;
索引为7的定位参考信号,第1个符号组占用子载波索引k+7,第2个符号组占用子载波索引k+6,第3个符号组占用子载波索引k,第4个符号组占用子载波索引k+1,第5个符号组占用子载波索引k+D+1,第6个符号组占用子载波索引k+D,第7个符号组占用子载波索引k+D+6,第8个符号组占用子载波索引k+D+7;
索引为8的定位参考信号,第1个符号组占用子载波索引k+8,第2个符号组占用子载波索引k+9,第3个符号组占用子载波索引k+3,第4个符号组占用子载波索引k+2,第5个符号组占用子载波索引k+D+2,第6个符号组占用子载波索引k+D+3,第7个符号组占用子载波索引k+D+9,第8个符号组占用子载波索引k+D+8;
索引为9的定位参考信号,第1个符号组占用子载波索引k+9,第2个符号组占用子载波索引k+8,第3个符号组占用子载波索引k+2,第4个符号组占用子载波索引k+3,第5个符号组占用子载波索引k+D+3,第6个符号组占用子载波索引k+D+2,第7个符号组占用子载波索引k+D+8,第8个符号组占用子载波索引k+D+9;
索引为10的定位参考信号,第1个符号组占用子载波索引k+10,第2个符号组占用子载波索引k+11,第3个符号组占用子载波索引k+5,第4个符号组占用子载波索引k+4,第5个符号组占用子载波索引k+D+4,第6个符号组占用子载波索引k+D+5,第7个符号组占用子载波索引k+D+11,第8个符号组占用子载波索引k+D+10;
索引为11的定位参考信号,第1个符号组占用子载波索引k+11,第2个符号组占用子载波索引k+10,第3个符号组占用子载波索引k+4,第4个符号组占用子载波索引k+5,第5个符号组占用子载波索引k+D+5,第6个符号组占用子载波索引k+D+4,第7个符号组占用子载波索引k+D+10,第8个符号组占用子载波索引k+D+11。
另外,符号组1至符号组4中选择的定位参考信号索引为n=0,符号组5至符号组8中选择的定位参考信号索引为m=mod((n+delta),12);其中,delta为一个随机数,本实施例中delta=2,则符号组5至符号组8中选 择的定位参考信号索引为m=2。参见图3,即第1个符号组占用子载波索引k,第2个符号组占用子载波索引k+1,第3个符号组占用子载波索引k+7,第4个符号组占用子载波索引k+6,第5个符号组占用子载波索引k+D+8,第6个符号组占用子载波索引k+D+9,第7个符号组占用子载波索引k+D+3,第8个符号组占用子载波索引k+D+2。
示例二
在本示例中,对于定位参考信号中时域上相邻的8个符号组,以编号符号组1至符号组8为例,在这8个符号组中,符号组1至符号组4占用的资源包含在时频资源块1中,符号组5至符号组8占用的资源包含在时频资源块2中。定位参考信号可以包括不止一个的8个符号组。本示例中的8个符号组,可以是处于定位参考信号的发送开始端的8个符号组,或者是定位参考信号的发送开始端后续的8个符号组,依次类推。
时频资源块1由A(A=1)个时频资源子块1构成,其中,时频资源子块1的时域长度为4个符号组长度,时频资源子块1的频域长度为12个子载波,时频资源子块1的结构如图4所示。起始子载波索引为k(k为大于等于0的整数);
时频资源块2由B(B=1)个时频资源子块2构成,其中,时频资源子块2的时域长度为4个符号组长度,时频资源子块2的频域长度为12个子载波,时频资源子块2的结构如图5所示。起始子载波索引为q(q为大于等于0的整数);
时频资源块1和时频资源块2在时域上间隔时间为T,且本示例中T=0;
在本示例中,q=k+D,D为时频资源子块1和时频资源子块2的起始子载波之间的间隔。
对于图4所示的第一时频资源子块,其结构满足预设的第二映射关系,该预设的第二映射关系可以为:
索引为0的定位参考信号,第1个符号组占用子载波索引k,第2个符号组占用子载波索引k+1,第3个符号组占用子载波索引k+7,第4个符号组占用子载波索引k+6;
索引为1的定位参考信号,第1个符号组占用子载波索引k+1,第2个符号组占用子载波索引k,第3个符号组占用子载波索引k+6,第4个符号组占用子载波索引k+7;
索引为2的定位参考信号,第1个符号组占用子载波索引k+2,第2个符号组占用子载波索引k+3,第3个符号组占用子载波索引k+9,第4个符号组占用子载波索引k+8;
索引为3的定位参考信号,第1个符号组占用子载波索引k+3,第2个符号组占用子载波索引k+2,第3个符号组占用子载波索引k+8,第4个符号组占用子载波索引k+9;
索引为4的定位参考信号,第1个符号组占用子载波索引k+4,第2个符号组占用子载波索引k+5,第3个符号组占用子载波索引k+11,第4个符号组占用子载波索引k+10;
索引为5的定位参考信号,第1个符号组占用子载波索引k+5,第2个符号组占用子载波索引k+4,第3个符号组占用子载波索引k+10,第4个符号组占用子载波索引k+11;
索引为6的定位参考信号,第1个符号组占用子载波索引k+6,第2个符号组占用子载波索引k+7,第3个符号组占用子载波索引k+1,第4个符号组占用子载波索引k;
索引为7的定位参考信号,第1个符号组占用子载波索引k+7,第2个符号组占用子载波索引k+6,第3个符号组占用子载波索引k,第4个符号组占用子载波索引k+1;
索引为8的定位参考信号,第1个符号组占用子载波索引k+8,第2个符号组占用子载波索引k+9,第3个符号组占用子载波索引k+3,第4个符号组占用子载波索引k+2;
索引为9的定位参考信号,第1个符号组占用子载波索引k+9,第2个符号组占用子载波索引k+8,第3个符号组占用子载波索引k+2,第4个符号组占用子载波索引k+3;
索引为10的定位参考信号,第1个符号组占用子载波索引k+10,第2 个符号组占用子载波索引k+11,第3个符号组占用子载波索引k+5,第4个符号组占用子载波索引k+4;
索引为11的定位参考信号,第1个符号组占用子载波索引k+11,第2个符号组占用子载波索引k+10,第3个符号组占用子载波索引k+4,第4个符号组占用子载波索引k+5。
对于图5所示的第一时频资源子块,其结构满足预设的第三映射关系,该预设的第三映射关系可以为:
索引为0的定位参考信号,第5个符号组占用子载波索引q+6,第6个符号组占用子载波索引q+7,第7个符号组占用子载波索引q+1,第8个符号组占用子载波索引q;
索引为1的定位参考信号,第5个符号组占用子载波索引q+7,第6个符号组占用子载波索引q+6,第7个符号组占用子载波索引q,第8个符号组占用子载波索引q+1;
索引为2的定位参考信号,第5个符号组占用子载波索引q+8,第6个符号组占用子载波索引q+9,第7个符号组占用子载波索引q+3,第8个符号组占用子载波索引q+4;
索引为3的定位参考信号,第5个符号组占用子载波索引q+9,第6个符号组占用子载波索引q+8,第7个符号组占用子载波索引q+4,第8个符号组占用子载波索引q+3;
索引为4的定位参考信号,第5个符号组占用子载波索引q+10,第6个符号组占用子载波索引q+11,第7个符号组占用子载波索引q+5,第8个符号组占用子载波索引q+4;
索引为5的定位参考信号,第5个符号组占用子载波索引q+11,第6个符号组占用子载波索引q+10,第7个符号组占用子载波索引q+4,第8个符号组占用子载波索引q+5;
索引为6的定位参考信号,第5个符号组占用子载波索引q,第6个符号组占用子载波索引q+1,第7个符号组占用子载波索引q+7,第8个符号组占用子载波索引q+6;
索引为7的定位参考信号,第5个符号组占用子载波索引q+1,第6个符号组占用子载波索引q,第7个符号组占用子载波索引q+6,第8个符号组占用子载波索引q+7;
索引为8的定位参考信号,第5个符号组占用子载波索引q+2,第6个符号组占用子载波索引q+3,第7个符号组占用子载波索引q+9,第8个符号组占用子载波索引q+8;
索引为9的定位参考信号,第5个符号组占用子载波索引q+3,第6个符号组占用子载波索引q+2,第7个符号组占用子载波索引q+8,第8个符号组占用子载波索引q+9;
索引为10的定位参考信号,第5个符号组占用子载波索引q+4,第6个符号组占用子载波索引q+5,第7个符号组占用子载波索引q+11,第8个符号组占用子载波索引q+10;
索引为11的定位参考信号,第5个符号组占用子载波索引q+5,第6个符号组占用子载波索引q+4,第7个符号组占用子载波索引q+10,第8个符号组占用子载波索引q+11。
并且,符号组1至符号组4配置在相同的时频资源子块1中,符号组5至符号组8配置在相同的时频资源子块2中。本示例中,符号组1至符号组4中选择的定位参考信号索引为n(n=0),符号组5至符号组8中选择的定位参考信号索引为m=mod((n+delta),12),其中,delta为一个随机数,本实施例中delta=3,则m=3,即第1个符号组占用子载波索引k,第2个符号组占用子载波索引k+1,第3个符号组占用子载波索引k+7,第4个符号组占用子载波索引k+6,第5个符号组占用子载波索引q+9,第6个符号组占用子载波索引q+8,第7个符号组占用子载波索引q+2,第8个符号组占用子载波索引q+3;
本示例中,当k=0,D=12时,q=k+D=12,时频资源子块1和时频资源子块2的结构示意图如图6所示。符号组1至符号组4中选择的定位参考信号索引为n(n=0),符号组5至符号组8中选择的定位参考信号索引为m=mod((n+delta),12),其中,delta为一个随机数,本实施例中delta=3,则m=3,因此,第1个符号组占用子载波索引0,第2个符号组占用子载波索 引1,第3个符号组占用子载波索引7,第4个符号组占用子载波索引6,第5个符号组占用子载波索引21,第6个符号组占用子载波索引20,第7个符号组占用子载波索引14,第8个符号组占用子载波索引15;
另外,当k=0,D=36时,q=k+D=36,时频资源子块1和时频资源子块2的结构示意图如图7所示。符号组1至符号组4中选择的定位参考信号索引为n(n=0),符号组5至符号组8中选择的定位参考信号索引为m=mod((n+delta),12),其中,delta为一个随机数,本实施例中delta=3,则m=3,因此,第1个符号组占用子载波索引0,第2个符号组占用子载波索引1,第3个符号组占用子载波索引7,第4个符号组占用子载波索引6,第5个符号组占用子载波索引45,第6个符号组占用子载波索引44,第7个符号组占用子载波索引38,第8个符号组占用子载波索引39。
另外,所述第一时频资源块和所述第二时频资源块配置在预设的覆盖增强等级的随机接入信道资源,或者,配置在预设的覆盖增强等级且在一个所述频带资源上的随机接入信道资源。
预设的覆盖增强等级的随机接入信道资源可以包括3GPP Rel-13版本标准中配置给NB-IoT系统中一个覆盖增强等级的随机接入信道资源;或3GPP Rel-14版本标准中配置给NB-IoT系统中一个覆盖增强等级的随机接入信道资源。预设的覆盖增强等级且在一个所述频带资源上的随机接入信道资源,包括3GPP Rel-14版本标准中配置给NB-IoT系统中一个覆盖增强等级且在一个所述频带资源上的随机接入信道资源。
在实现方式中,对于所述预设的覆盖增强等级的随机接入信道资源,或者预设的覆盖增强等级且在一个所述频带资源上的随机接入信道资源,可以在频域上占用连续的24个子载波且起始子载波索引均为k,且A=B=1,D=12。
在实现方式中,对于所述预设的覆盖增强等级的随机接入信道资源,或者,预设的覆盖增强等级且在一个所述频带资源上的随机接入信道资源,可以在频域上占用连续的36个子载波且起始子载波索引同样为k,且A=B=1,D=24。
在实现方式中,对于所述预设的覆盖增强等级的随机接入信道资源,或 者,预设的覆盖增强等级且在一个所述频带资源上的随机接入信道资源,可以在频域上占用连续的48个子载波且起始子载波索引同样为k,且A=B=1,D=36。
在实现方式中,对于所述预设的覆盖增强等级的随机接入信道资源,或者,预设的覆盖增强等级且在一个所述频带资源上的随机接入信道资源,可以在频域上占用连续的48个子载波且起始子载波索引同样为k,且A=B=2,D=24。
示例三
在本示例中,对于定位参考信号中时域上相邻的16个符号组,以编号符号组1至符号组16为例,在这16个符号组中,符号组1至符号组8占用的资源包含在时频资源块1中,符号组9至符号组16占用的资源包含在时频资源块2中。定位参考信号可以包括不止一个的16个符号组。本示例中的16个符号组,可以是处于定位参考信号的发送开始端的16个符号组,或者是定位参考信号的发送开始端后续的16个符号组,依次类推。
其中,时频资源块1的时域长度为8个符号组长度,时频资源块1的频域长度为12个子载波且起始子载波索引为k(k为大于等于0的整数);
时频资源块2的时域长度为8个符号组长度,时频资源块2的频域长度为12个子载波且起始子载波索引为k+D(k为大于等于0的整数);其中,所述D为所述第一时频资源块与所述第二时频资源块之间的频域间隔,可以取正整数或负整数或0;
并且时频资源块1和时频资源块2在时域上间隔时间为T个时间单位,且本示例中T=0;
参见图8,其示出了定位参考信号发送时,上述16个符号组所占用的时频资源,在图中,符号组1至符号组8中选择的定位参考信号索引为0,符号组9至符号组16中选择的定位参考信号索引为0;可以理解地,所述16个符号组所占用的时频资源满足预设的第四映射关系,该第四映射关系可以为:
索引为0的定位参考信号,第1个符号组占用子载波索引k,第2个符 号组占用子载波索引k+1,第3个符号组占用子载波索引k+7,第4个符号组占用子载波索引k+6,第5个符号组占用子载波索引k,第6个符号组占用子载波索引k+1,第7个符号组占用子载波索引k+7,第8个符号组占用子载波索引k+6,第9个符号组占用子载波索引k+D+6,第10个符号组占用子载波索引k+D+7,第11个符号组占用子载波索引k+D+1,第12个符号组占用子载波索引k+D,第13个符号组占用子载波索引k+D+6,第14个符号组占用子载波索引k+D+7,第15个符号组占用子载波索引k+D+1,第16个符号组占用子载波索引k+D;
索引为1的定位参考信号,第1个符号组占用子载波索引k+1,第2个符号组占用子载波索引k,第3个符号组占用子载波索引k+6,第4个符号组占用子载波索引k+7,第5个符号组占用子载波索引k+1,第6个符号组占用子载波索引k,第7个符号组占用子载波索引k+6,第8个符号组占用子载波索引k+7,第9个符号组占用子载波索引k+D+7,第10个符号组占用子载波索引k+D+6,第11个符号组占用子载波索引k+D,第12个符号组占用子载波索引k+D+1,第13个符号组占用子载波索引k+D+7,第14个符号组占用子载波索引k+D+6,第15个符号组占用子载波索引k+D,第16个符号组占用子载波索引k+D+1;
索引为2的定位参考信号,第1个符号组占用子载波索引k+2,第2个符号组占用子载波索引k+3,第3个符号组占用子载波索引k+9,第4个符号组占用子载波索引k+8,第5个符号组占用子载波索引k+2,第6个符号组占用子载波索引k+3,第7个符号组占用子载波索引k+9,第8个符号组占用子载波索引k+8,第9个符号组占用子载波索引k+D+8,第10个符号组占用子载波索引k+D+9,第11个符号组占用子载波索引k+D+3,第12个符号组占用子载波索引k+D+4,第13个符号组占用子载波索引k+D+8,第14个符号组占用子载波索引k+D+9,第15个符号组占用子载波索引k+D+3,第16个符号组占用子载波索引k+D+4;
索引为3的定位参考信号,第1个符号组占用子载波索引k+3,第2个符号组占用子载波索引k+2,第3个符号组占用子载波索引k+8,第4个符号组占用子载波索引k+9,第5个符号组占用子载波索引k+3,第6个符号 组占用子载波索引k+2,第7个符号组占用子载波索引k+8,第8个符号组占用子载波索引k+9,第9个符号组占用子载波索引k+D+9,第10个符号组占用子载波索引k+D+8,第11个符号组占用子载波索引k+D+4,第12个符号组占用子载波索引k+D+3,第13个符号组占用子载波索引k+D+9,第14个符号组占用子载波索引k+D+8,第15个符号组占用子载波索引k+D+4,第16个符号组占用子载波索引k+D+3;
索引为4的定位参考信号,第1个符号组占用子载波索引k+4,第2个符号组占用子载波索引k+5,第3个符号组占用子载波索引k+11,第4个符号组占用子载波索引k+10,第5个符号组占用子载波索引k+4,第6个符号组占用子载波索引k+5,第7个符号组占用子载波索引k+11,第8个符号组占用子载波索引k+10,第9个符号组占用子载波索引k+D+10,第10个符号组占用子载波索引k+D+11,第11个符号组占用子载波索引k+D+5,第12个符号组占用子载波索引k+D+4,第13个符号组占用子载波索引k+D+10,第14个符号组占用子载波索引k+D+11,第15个符号组占用子载波索引k+D+5,第16个符号组占用子载波索引k+D+4;
索引为5的定位参考信号,第1个符号组占用子载波索引k+5,第2个符号组占用子载波索引k+4,第3个符号组占用子载波索引k+10,第4个符号组占用子载波索引k+11,第5个符号组占用子载波索引k+5,第6个符号组占用子载波索引k+4,第7个符号组占用子载波索引k+10,第8个符号组占用子载波索引k+11,第9个符号组占用子载波索引k+D+11,第10个符号组占用子载波索引k+D+10,第11个符号组占用子载波索引k+D+4,第12个符号组占用子载波索引k+D+5,第13个符号组占用子载波索引k+D+11,第14个符号组占用子载波索引k+D+10,第15个符号组占用子载波索引k+D+4,第16个符号组占用子载波索引k+D+5;
索引为6的定位参考信号,第1个符号组占用子载波索引k+6,第2个符号组占用子载波索引k+7,第3个符号组占用子载波索引k+1,第4个符号组占用子载波索引k,第5个符号组占用子载波索引k+6,第6个符号组占用子载波索引k+7,第7个符号组占用子载波索引k+1,第8个符号组占用子载波索引k,第9个符号组占用子载波索引k+D,第10个符号组占用 子载波索引k+D+1,第11个符号组占用子载波索引k+D+7,第12个符号组占用子载波索引k+D+6,第13个符号组占用子载波索引k+D,第14个符号组占用子载波索引k+D+1,第15个符号组占用子载波索引k+D+7,第16个符号组占用子载波索引k+D+6;
索引为7的定位参考信号,第1个符号组占用子载波索引k+7,第2个符号组占用子载波索引k+6,第3个符号组占用子载波索引k,第4个符号组占用子载波索引k+1,第5个符号组占用子载波索引k+7,第6个符号组占用子载波索引k+6,第7个符号组占用子载波索引k,第8个符号组占用子载波索引k+1,第9个符号组占用子载波索引k+D+1,第10个符号组占用子载波索引k+D,第11个符号组占用子载波索引k+D+6,第12个符号组占用子载波索引k+D+7第13个符号组占用子载波索引k+D+1,第14个符号组占用子载波索引k+D,第15个符号组占用子载波索引k+D+6,第16个符号组占用子载波索引k+D+7;
索引为8的定位参考信号,第1个符号组占用子载波索引k+8,第2个符号组占用子载波索引k+9,第3个符号组占用子载波索引k+3,第4个符号组占用子载波索引k+2,第5个符号组占用子载波索引k+8,第6个符号组占用子载波索引k+9,第7个符号组占用子载波索引k+3,第8个符号组占用子载波索引k+2,第9个符号组占用子载波索引k+D+2,第10个符号组占用子载波索引k+D+3,第11个符号组占用子载波索引k+D+9,第12个符号组占用子载波索引k+D+8,第13个符号组占用子载波索引k+D+2,第14个符号组占用子载波索引k+D+3,第15个符号组占用子载波索引k+D+9,第16个符号组占用子载波索引k+D+8;
索引为9的定位参考信号,第1个符号组占用子载波索引k+9,第2个符号组占用子载波索引k+8,第3个符号组占用子载波索引k+2,第4个符号组占用子载波索引k+3,第5个符号组占用子载波索引k+9,第6个符号组占用子载波索引k+8,第7个符号组占用子载波索引k+2,第8个符号组占用子载波索引k+3,第9个符号组占用子载波索引k+D+3,第10个符号组占用子载波索引k+D+2,第11个符号组占用子载波索引k+D+8,第12个符号组占用子载波索引k+D+9,第13个符号组占用子载波索引k+D+3, 第14个符号组占用子载波索引k+D+2,第15个符号组占用子载波索引k+D+8,第16个符号组占用子载波索引k+D+9;
索引为10的定位参考信号,第1个符号组占用子载波索引k+10,第2个符号组占用子载波索引k+11,第3个符号组占用子载波索引k+5,第4个符号组占用子载波索引k+4,第5个符号组占用子载波索引k+10,第6个符号组占用子载波索引k+11,第7个符号组占用子载波索引k+5,第8个符号组占用子载波索引k+4,第9个符号组占用子载波索引k+D+4,第10个符号组占用子载波索引k+D+5,第11个符号组占用子载波索引k+D+11,第12个符号组占用子载波索引k+D+10,第13个符号组占用子载波索引k+D+4,第14个符号组占用子载波索引k+D+5,第15个符号组占用子载波索引k+D+11,第16个符号组占用子载波索引k+D+10;
索引为11的定位参考信号,第1个符号组占用子载波索引k+11,第2个符号组占用子载波索引k+10,第3个符号组占用子载波索引k+4,第4个符号组占用子载波索引k+5,第5个符号组占用子载波索引k+11,第6个符号组占用子载波索引k+10,第7个符号组占用子载波索引k+4,第8个符号组占用子载波索引k+5,第9个符号组占用子载波索引k+D+5,第10个符号组占用子载波索引k+D+4,第11个符号组占用子载波索引k+D+10,第12个符号组占用子载波索引k+D+11,第13个符号组占用子载波索引k+D+5,第14个符号组占用子载波索引k+D+4,第15个符号组占用子载波索引k+D+10,第16个符号组占用子载波索引k+D+11。
另外,符号组1至符号组8中选择的定位参考信号索引为n=0,符号组9至符号组16中选择的定位参考信号索引为m=mod((n+delta),12);其中,delta为一个随机数,本实施例中delta=2,则符号组9至符号组16中选择的定位参考信号索引为m=2。即第1个符号组占用子载波索引k,第2个符号组占用子载波索引k+1,第3个符号组占用子载波索引k+7,第4个符号组占用子载波索引k+6,第5个符号组占用子载波索引k,第6个符号组占用子载波索引k+1,第7个符号组占用子载波索引k+7,第8个符号组占用子载波索引k+6,第9个符号组占用子载波索引k+D+8,第10个符号组占用子载波索引k+D+9,第11个符号组占用子载波索引k+D+3,第12 个符号组占用子载波索引k+D+2,第13个符号组占用子载波索引k+D+8,第14个符号组占用子载波索引k+D+9,第15个符号组占用子载波索引k+D+3,第16个符号组占用子载波索引k+D+2。
示例四
在本示例中,对于定位参考信号中时域上相邻的16个符号组,以编号符号组1至符号组16为例,在这16个符号组中,符号组1至符号组8占用的资源包含在时频资源块1中,符号组9至符号组16占用的资源包含在时频资源块2中。
定位参考信号可以包括不止一个的16个符号组。本示例中的16个符号组,可以是处于定位参考信号的发送开始端的16个符号组,或者是定位参考信号的发送开始端后续的16个符号组,依次类推。
其中,时频资源块1由A(A=2)个时频资源子块1构成,其中,时频资源子块1的时域长度为8个符号组长度,时频资源子块1的频域长度为12个子载波,时频资源子块1的结构如图9所示,第1个时频资源子块1的起始子载波索引为k=k1(k1为大于等于0的整数),第2个时频资源子块1的起始子载波索引为k=k1+12(k1为大于等于0的整数);
时频资源块2由B(B=2)个时频资源子块2构成,其中,时频资源子块2的时域长度为8个符号组长度,时频资源子块2的频域长度为12个子载波,时频资源子块2的结构如图10所示。第1个时频资源子块2的起始子载波索引为q=q1(q1为大于等于0的整数),第2个时频资源子块2的起始子载波索引为q=q1+12(q1为大于等于0的整数);
时频资源块1和时频资源块2在时域上间隔时间为T,T大于等于0,。且本实施例中T=0。
对于图9所示的时频资源子块1,其结构满足预设的第五映射关系,该预设的第五映射关系可以为:
索引为0的定位参考信号,第1个符号组占用子载波索引k,第2个符号组占用子载波索引k+1,第3个符号组占用子载波索引k+7,第4个符号组占用子载波索引k+6,第5个符号组占用子载波索引k,第6个符号组占 用子载波索引k+1,第7个符号组占用子载波索引k+7,第8个符号组占用子载波索引k+6;
索引为1的定位参考信号,第1个符号组占用子载波索引k+1,第2个符号组占用子载波索引k,第3个符号组占用子载波索引k+6,第4个符号组占用子载波索引k+7,第5个符号组占用子载波索引k+1,第6个符号组占用子载波索引k,第7个符号组占用子载波索引k+6,第8个符号组占用子载波索引k+7;
索引为2的定位参考信号,第1个符号组占用子载波索引k+2,第2个符号组占用子载波索引k+3,第3个符号组占用子载波索引k+9,第4个符号组占用子载波索引k+8,第5个符号组占用子载波索引k+2,第6个符号组占用子载波索引k+3,第7个符号组占用子载波索引k+9,第8个符号组占用子载波索引k+8;
索引为3的定位参考信号,第1个符号组占用子载波索引k+3,第2个符号组占用子载波索引k+2,第3个符号组占用子载波索引k+8,第4个符号组占用子载波索引k+9,第5个符号组占用子载波索引k+3,第6个符号组占用子载波索引k+2,第7个符号组占用子载波索引k+8,第8个符号组占用子载波索引k+9;
索引为4的定位参考信号,第1个符号组占用子载波索引k+4,第2个符号组占用子载波索引k+5,第3个符号组占用子载波索引k+11,第4个符号组占用子载波索引k+10,第5个符号组占用子载波索引k+4,第6个符号组占用子载波索引k+5,第7个符号组占用子载波索引k+11,第8个符号组占用子载波索引k+10;
索引为5的定位参考信号,第1个符号组占用子载波索引k+5,第2个符号组占用子载波索引k+4,第3个符号组占用子载波索引k+10,第4个符号组占用子载波索引k+11,第5个符号组占用子载波索引k+5,第6个符号组占用子载波索引k+4,第7个符号组占用子载波索引k+10,第8个符号组占用子载波索引k+11;
索引为6的定位参考信号,第1个符号组占用子载波索引k+6,第2个符号组占用子载波索引k+7,第3个符号组占用子载波索引k+1,第4个符 号组占用子载波索引k,第5个符号组占用子载波索引k+6,第6个符号组占用子载波索引k+7,第7个符号组占用子载波索引k+1,第8个符号组占用子载波索引k;
索引为7的定位参考信号,第1个符号组占用子载波索引k+7,第2个符号组占用子载波索引k+6,第3个符号组占用子载波索引k,第4个符号组占用子载波索引k+1,第5个符号组占用子载波索引k+7,第6个符号组占用子载波索引k+6,第7个符号组占用子载波索引k,第8个符号组占用子载波索引k+1;
索引为8的定位参考信号,第1个符号组占用子载波索引k+8,第2个符号组占用子载波索引k+9,第3个符号组占用子载波索引k+3,第4个符号组占用子载波索引k+2,第5个符号组占用子载波索引k+8,第6个符号组占用子载波索引k+9,第7个符号组占用子载波索引k+3,第8个符号组占用子载波索引k+2;
索引为9的定位参考信号,第1个符号组占用子载波索引k+9,第2个符号组占用子载波索引k+8,第3个符号组占用子载波索引k+2,第4个符号组占用子载波索引k+3,第5个符号组占用子载波索引k+9,第6个符号组占用子载波索引k+8,第7个符号组占用子载波索引k+2,第8个符号组占用子载波索引k+3;
索引为10的定位参考信号,第1个符号组占用子载波索引k+10,第2个符号组占用子载波索引k+11,第3个符号组占用子载波索引k+5,第4个符号组占用子载波索引k+4,第5个符号组占用子载波索引k+10,第6个符号组占用子载波索引k+11,第7个符号组占用子载波索引k+5,第8个符号组占用子载波索引k+4;
索引为11的定位参考信号,第1个符号组占用子载波索引k+11,第2个符号组占用子载波索引k+10,第3个符号组占用子载波索引k+4,第4个符号组占用子载波索引k+5,第5个符号组占用子载波索引k+11,第6个符号组占用子载波索引k+10,第7个符号组占用子载波索引k+4,第8个符号组占用子载波索引k+5。
对于图10所示的时频资源子块2,其结构满足预设的第六映射关系, 该预设的第六映射关系可以为:
索引为0的定位参考信号,第9个符号组占用子载波索引q+6,第10个符号组占用子载波索引q+7,第11个符号组占用子载波索引q+1,第12个符号组占用子载波索引q,第13个符号组占用子载波索引q+6,第14个符号组占用子载波索引q+7,第15个符号组占用子载波索引q+1,第16个符号组占用子载波索引q;
索引为1的定位参考信号,第9个符号组占用子载波索引q+7,第10个符号组占用子载波索引q+6,第11个符号组占用子载波索引q,第12个符号组占用子载波索引q+1,第13个符号组占用子载波索引q+7,第14个符号组占用子载波索引q+6,第15个符号组占用子载波索引q,第16个符号组占用子载波索引q+1;
索引为2的定位参考信号,第9个符号组占用子载波索引q+8,第10个符号组占用子载波索引q+9,第11个符号组占用子载波索引q+3,第12个符号组占用子载波索引q+4,第13个符号组占用子载波索引q+8,第14个符号组占用子载波索引q+9,第15个符号组占用子载波索引q+3,第16个符号组占用子载波索引q+4;
索引为3的定位参考信号,第9个符号组占用子载波索引q+9,第10个符号组占用子载波索引q+8,第11个符号组占用子载波索引q+4,第12个符号组占用子载波索引q+3,第13个符号组占用子载波索引q+9,第14个符号组占用子载波索引q+8,第15个符号组占用子载波索引q+4,第16个符号组占用子载波索引q+3;
索引为4的定位参考信号,第9个符号组占用子载波索引q+10,第10个符号组占用子载波索引q+11,第11个符号组占用子载波索引q+5,第12个符号组占用子载波索引q+4,第13个符号组占用子载波索引q+10,第14个符号组占用子载波索引q+11,第15个符号组占用子载波索引q+5,第16个符号组占用子载波索引q+4;
索引为5的定位参考信号,第9个符号组占用子载波索引q+11,第10个符号组占用子载波索引q+10,第11个符号组占用子载波索引q+4,第12个符号组占用子载波索引q+5,第13个符号组占用子载波索引q+11,第14 个符号组占用子载波索引q+10,第15个符号组占用子载波索引q+4,第16个符号组占用子载波索引q+5;
索引为6的定位参考信号,第9个符号组占用子载波索引q,第10个符号组占用子载波索引q+1,第11个符号组占用子载波索引q+7,第12个符号组占用子载波索引q+6,第13个符号组占用子载波索引q,第14个符号组占用子载波索引q+1,第15个符号组占用子载波索引q+7,第16个符号组占用子载波索引q+6;
索引为7的定位参考信号,第9个符号组占用子载波索引q+1,第10个符号组占用子载波索引q,第11个符号组占用子载波索引q+6,第12个符号组占用子载波索引q+7第13个符号组占用子载波索引q+1,第14个符号组占用子载波索引q,第15个符号组占用子载波索引q+6,第16个符号组占用子载波索引q+7;
索引为8的定位参考信号,第9个符号组占用子载波索引q+2,第10个符号组占用子载波索引q+3,第11个符号组占用子载波索引q+9,第12个符号组占用子载波索引q+8,第13个符号组占用子载波索引q+2,第14个符号组占用子载波索引q+3,第15个符号组占用子载波索引q+9,第16个符号组占用子载波索引q+8;
索引为9的定位参考信号,第9个符号组占用子载波索引q+3,第10个符号组占用子载波索引q+2,第11个符号组占用子载波索引q+8,第12个符号组占用子载波索引q+9,第13个符号组占用子载波索引q+3,第14个符号组占用子载波索引q+2,第15个符号组占用子载波索引q+8,第16个符号组占用子载波索引q+9;
索引为10的定位参考信号,第9个符号组占用子载波索引q+4,第10个符号组占用子载波索引q+5,第11个符号组占用子载波索引q+11,第12个符号组占用子载波索引q+10,第13个符号组占用子载波索引q+4,第14个符号组占用子载波索引q+5,第15个符号组占用子载波索引q+11,第16个符号组占用子载波索引q+10;
索引为11的定位参考信号,第9个符号组占用子载波索引q+5,第10个符号组占用子载波索引q+4,第11个符号组占用子载波索引q+10,第12 个符号组占用子载波索引q+11,第13个符号组占用子载波索引q+5,第14个符号组占用子载波索引q+4,第15个符号组占用子载波索引q+10,第16个符号组占用子载波索引q+11。
本示例中,符号组1至符号组8占用的资源包含在时频资源块1的第1个时频资源子块1中,符号组9至符号组16占用的资源包含在时频资源块2的第1个时频资源子块2中,则第1个时频资源子块1的起始子载波索引为k=k1(k1为大于等于0的整数),第1个时频资源子块2的起始子载波索引为q=q1(q1为大于等于0的整数)。
当k=0,D=24时,q=k+D=24,时频资源子块1和时频资源子块2的结构示意图如图11所示。符号组1至符号组8中选择的定位参考信号索引为n(n=0),符号组9至符号组16中选择的定位参考信号索引为m=mod((n+delta),12),其中,delta为一个随机变量,本实施例中delta=3,则m=3,因此,第1个符号组占用子载波索引0,第2个符号组占用子载波索引1,第3个符号组占用子载波索引7,第4个符号组占用子载波索引6,第5个符号组占用子载波索引0,第6个符号组占用子载波索引1,第7个符号组占用子载波索引7,第8个符号组占用子载波索引6,第9个符号组占用子载波索引33,第10个符号组占用子载波索引32,第11个符号组占用子载波索引26,第12个符号组占用子载波索引27,第13个符号组占用子载波索引33,第14个符号组占用子载波索引32,第15个符号组占用子载波索引26,第16个符号组占用子载波索引27;
示例五
在本示例中,定义4个符号组为1个符号组集合,相同符号组集合发送时占用的子载波属于相同的子载波集合。180kHz的频带资源中配置4个子载波集合,分别为子载波集合1、子载波集合2、子载波集合3、子载波集合4。其中,每个子载波集合中包括12个子载波。
符号组集合组中第1个和第2个符号组发送时占用相同的子载波子集合;符号组集合组中第3个和第4个符号组发送时占用相同的子载波子集合。第1个和第2个符号组占用的子载波子集合与第3个和第4个符号组占用的子载波子集合不同。符号组集合资源分配示意图如图12所示,其中图12中 描述的子载波索引0~11是在一个子载波子集合中的索引,并不代表所述子载波在频带资源中的子载波的索引。
时域相邻的两个符号组集合发送时占用的子载波集合不同,本实施例中,时域相邻的两个符号组集合中第1个符号组集合占用子载波集合1,第2个符号组集合占用子载波集合4。
在本示例中,时域相邻的两个第一符号组集合中第1个第一符号组集合中第1个和第2个符号组发送时占用的子载波子集合索引为0,第2个第一符号组集合中第1个和第2个符号组发送时占用的子载波子集合索引为1;第1个第一符号组集合中第3个和第4个符号组发送时占用的子载波子集合索引为1,则第2个第一符号组集合中第3个和第4个符号组发送时占用的子载波子集合索引为0。
本发明实施例还提供了一种定位的方法,参见图13,该方法可以包括:
S1301:第一网元向第二网元发送定位参考信号;
其中,所述定位参考信号的资源配置在P个时频资源集合中,索引为p,其中,0≤p≤P-1;
所述P个时频资源集合配置在N个频带资源上,其中,P为不小于1的整数,N为不小于1的整数。
示例性地,所述时频资源集合为满足预设的覆盖增强等级的随机接入信道资源;或者,
所述时频资源集合为满足预设的覆盖增强等级且在一个所述频带资源上的随机接入信道资源。
预设的覆盖增强等级的随机接入信道资源可以包括:3GPP Rel-13版本标准中配置给NB-IoT系统中一个覆盖增强等级的随机接入信道资源;或。
3GPP Rel-14版本标准中配置给NB-IoT系统中一个覆盖增强等级的随机接入信道资源。
预设的覆盖增强等级且在一个所述频带资源上的随机接入信道资源,可以包括:3GPP Rel-14版本标准中配置给NB-IoT系统中一个覆盖增强等级且在一个所述频带资源上的随机接入信道资源。
另外,所述P个时频资源集合对应P个不同的覆盖增强等级。
示例性地,在第一网元向第二网元发送定位参考信号之前,所述方法还包括:
所述第一网元从索引为p的所述时频资源集合中选择G(p)个符号组集合作为定位参考信号的发送资源;
其中,单个符号组集合中包括4个符号组;每个符号组在频域上占用相同的子载波,并且每个符号组在时域上由循环前缀CP和5个符号构成。
G(p)的取值可以为以下至少之一:
由基站配置
P个时频资源集合中G(p)取值相同,取值为G且G由基站配置;
为P个R(p)中最小值;
而且,不同的覆盖增强等级对应的G(p)独立配置;
R(p)为索引为p的所述随机接入信道资源上支持的随机接入信道的重复发送次数,且索引为p的所述随机接入信道资源上支持多个重复发送次数为R(p)的随机接入信道发送;从索引为p的所述随机接入信道资源中选择R(p)个所述符号组集合的规则由3GPP Rel-13版本标准配置或由3GPP Rel-14版本标准配置,其中,一个所述符号组集合的发送定义为所述随机接入信道的1次发送。
另外,所述第一网元从索引为p的所述时频资源集合中选择G(p)个符号组集合作为定位参考信号的发送资源,可以包括:
所述第一网元选择R(p)个所述符号组集合中排列在最前面的G(p)个符号组集合;或,
所述第一网元选择R(p)个所述符号组集合中排列在最后面的G(p)个符号组集合;或,
所述第一网元从R(p)个所述符号组集合中按照预定规则选择的G(p)个符号组集合;其中,G(p)小于等于R(p)。
另外,所述第一网元从索引为p的所述时频资源集合中选择G(p)个 符号组集合作为定位参考信号的发送资源,可以包括:
所述第一网元选择G(p)=A(p)×R(p)个所述符号组集合。其中,A(p)≥1,R(p)为索引为p的所述随机接入信道资源上支持的随机接入信道的重复发送次数。
对于A(p)来说,不同索引p的所述时频资源集合对应的A(p)相同;不同索引p的所述时频资源集合对应的A(p)独立配置。
示例性地,所述定位参考信号的资源配置在所述随机接入信道资源的非竞争随机接入资源中。
示例性地,所述P个时频资源集合的频域位置不同。
或者,所述P个时频资源集合的时域位置不重叠。
示例性地,所述P个时频资源集合中包括以下至少之一:
覆盖增强等级相同的Kj个时频资源集合;其中,j为覆盖增强等级索引,Kj≥2;且所述Kj个时频资源集合位于不同频带资源上;
覆盖增强等级不相同的C个时频资源集合;其中,c大于等于2;所述C个时频资源集合位于相同频带资源上;
J个覆盖增强等级的时频资源集合,其中,j为覆盖增强等级索引,0≤j≤J-1,覆盖增强等级为j的时频资源数量为K,2≤K≤P;覆盖增强等级为j的K个时频资源集合位于不同的频带资源上。J个覆盖增强等级的时频资源数量均为K,也就是说索引为j=0,1,2,…J-1的覆盖增强等级的时频资源数量都是K。
对于上述示例,在第一网元向第二网元发送定位参考信号之前,所述方法还包括:
所述第一网元从索引为p的所述时频资源集合中选择G(p)个符号组集合作为定位参考信号的发送资源;
其中,单个符号组集合中包括4个符号组;每个符号组在频域上占用相同的子载波。
对于上述示例,所述第一网元从索引为p的所述时频资源集合中选择G (p)个符号组集合作为定位参考信号的发送资源,可以包括:
所述第一网元选择R(p)个所述符号组集合中排列在最前面的G(p)个符号组集合;或,
所述第一网元选择R(p)个所述符号组集合中排列在最后面的G(p)个符号组集合;或,
所述第一网元从R(p)个所述符号组集合中按照预定规则选择G(p)个符号组集合;
其中,G(p)小于等于R(p)。
对于上述示例,所述第一网元从索引为p的所述时频资源集合中选择G(p)个符号组集合作为定位参考信号的发送资源,可以包括:
所述第一网元选择G(p)=A(p)×R(p)个所述符号组集合。其中,A(p)≥1;R(p)为索引为p的所述随机接入信道资源上支持的随机接入信道的重复发送次数。
对于上述示例,所述定位参考信号的资源可以配置在所述随机接入信道资源的非竞争随机接入信道资源中。
对于A(p)来说,不同索引p的所述时频资源集合对应的A(p)相同;不同索引p的所述时频资源集合对应的A(p)独立配置。
对于本实施例中的上述方案,示例如下:
示例一
3GPP Rel-13版本标准中,NB-IoT系统中配置了1个频带资源,频带资源大小为180kHz,系统为覆盖增强等级0(CEL0)和覆盖增强等级1(CEL1)配置的随机接入资源结构如图14所示,其中,CEL0的随机接入资源配置周期为40ms,占用的子载波索引为12至23,CEL0的随机接入信道重复发送次数为2次;CEL1的随机接入资源配置周期为40ms,占用的子载波索引为36至47,CEL1的随机接入信道重复发送次数为4次;
其中,随机接入信道的1次发送可以占用4个符号组,我们定义4个符号组为一个符号组集合。
参见图14,一个小的矩形块代表一个符号组,且符号组的矩形块中的数字代表该符号组分配到的随机接入信道的索引。图14中CEL0支持12条随机接入信道,CEL1支持12条随机接入信道,且CEL0和CEL1配置了相同的随机接入资源的配置周期。
3GPP Rel-13NB-IoT版本标准规定,终端在发送随机接入信号时选择的随机接入信道的索引在相邻的两个符号组集合之间可以重新选择,重新选择的方法由3GPP Rel-13NB-IoT版本标准规定。
本示例中,如图14所示,CEL0的随机接入信道资源中8个符号组索引依次为{11,11,11,11,2,2,2,2}被配置为非竞争的随机接入信道,CEL1的随机接入信道资源中16个符号组索引依次为{11,11,11,11,2,2,2,2,6,6,6,6,3,3,3,3}被配置为非竞争的随机接入信道。
终端1发送定位参考信号,其中,定位参考信号的资源配置在CEL0和CEL1的随机接入信道资源中的非竞争的随机接入信道中。
终端1发送定位参考信号的周期与随机接入资源的配置周期相同,都为40ms,且占用CEL0的索引依次为{11,11,11,11,2,2,2,2}的8个符号组以及占用CEL1的索引为{11,11,11,11,2,2,2,2}的8个符号组用来发送定位参考信号。
示例二
3GPP NB-IoT系统中1个频带资源大小为180kHz。系统为覆盖增强等级0(CEL0)配置的随机接入资源结构如图15所示,CEL0的随机接入资源分别配置在2个频带资源上,分别为频带资源1和频带资源2。其中,CEL0的随机接入资源配置周期为40ms,在一个频带资源占用的子载波索引为0至11,CEL0的随机接入信道重复发送次数为2次;
其中,随机接入信道的1次发送可以占用4个符号组,我们定义4个符号组为一个符号组集合。每个符号组在频域上占用的子载波相同且定位参考信号子载波间隔Δf为3.75kHz。每个符号组在时域上由一个循环前缀(CP,Cyclic Prefix)和K=5个符号(symbol)构成,如图2所示。
由于定位参考信号子载波间隔Δf为3.75kHz,一个符号长度
Figure PCTCN2017101651-appb-000002
当CP长度为0.2667ms时,每个符号组时域长度为0.2667+0.2667×5=1.6ms;
当CP长度为0.0667ms时,每个符号组时域长度为0.0667+0.2667×5=1.4ms;
在本实施例的以下示例中,设定CP长度为0.2667ms,则符号组的时域长度为1.6ms。
参见图15,一个小的矩形块代表一个符号组,且符号组的矩形块中的数字代表该符号组分配到的随机接入信道的索引。图15中,在一个频带资源上CEL0支持12条随机接入信道,且频带资源1和频带资源2上的CEL0配置了相同的随机接入资源的配置周期。
3GPP Rel-13NB-IoT版本标准规定,终端在发送随机接入信号时选择的随机接入信道的索引在相邻的两个符号组集合之间可以重新选择,重新选择的方法由3GPP Rel-13NB-IoT版本标准规定。
本示例中,如图15所示,频带资源1的CEL0的随机接入信道资源中8个符号组索引依次为{11,11,11,11,2,2,2,2}被配置为非竞争的随机接入信道,频带资源1的CEL0的随机接入信道资源中8个符号组索引依次为{11,11,11,11,2,2,2,2,}被配置为非竞争的随机接入信道。
终端1发送定位参考信号,其中,定位参考信号的资源配置在CEL0的随机接入信道资源中的非竞争的随机接入信道中。
终端1发送定位参考信号的周期为CEL0的随机接入资源的配置周期的两倍,即80ms。如图15所示,终端1首先在频带资源1的第1个CEL0的随机接入信道资源中8个符号组{11,11,11,11,2,2,2,2}上发送定位参考信号,然后终端1在频带资源2的第2个CEL0的随机接入信道资源中8个符号组{11,11,11,11,2,2,2,2}上发送定位参考信号。
示例三
3GPP NB-IoT系统中1个频带资源大小为180kHz。系统为覆盖增强等 级0(CEL0)和覆盖增强等级1(CEL1)配置的随机接入资源结构如图19所示,CEL0的随机接入资源配置在频带资源1上,CEL1的随机接入资源配置在频带资源2上。其中,CEL0的随机接入资源配置周期为40ms,在一个频带资源占用的子载波索引为0至11,CEL0的随机接入信道重复发送次数为1次;CEL1的随机接入资源配置周期为40ms,在一个频带资源占用的子载波索引为0至11,CEL1的随机接入信道重复发送次数为2次。
其中,随机接入信道的1次发送可以占用4个符号组,我们定义4个符号组为一个符号组集合。每个符号组在频域上占用的子载波相同且定位参考信号子载波间隔Δf为3.75kHz。每个符号组在时域上由一个循环前缀(CP,Cyclic Prefix)和K=5个符号(symbol)构成,如图2所示。
由于定位参考信号子载波间隔Δf为3.75kHz,一个符号长度
Figure PCTCN2017101651-appb-000003
当CP长度为0.2667ms时,每个符号组时域长度为0.2667+0.2667×5=1.6ms;
当CP长度为0.0667ms时,每个符号组时域长度为0.0667+0.2667×5=1.4ms;
在本实施例的以下示例中,设定CP长度为0.2667ms,则符号组的时域长度为1.6ms。
参见图16,一个小的矩形块代表一个符号组,且符号组的矩形块中的数字代表该符号组分配到的随机接入信道的索引。图16中,CEL0支持12条随机接入信道,CEL1支持12条随机接入信道,且CEL0和CEL1配置了相同的随机接入资源的配置周期。
3GPP Rel-13NB-IoT版本标准规定,终端在发送随机接入信号时选择的随机接入信道的索引在相邻的两个符号组集合之间可以重新选择,重新选择的方法由3GPP Rel-13NB-IoT版本标准规定。
本示例中,如图16所示,频带资源1的CEL0的随机接入信道资源中4个符号组索引依次为{11,11,11,11}被配置为非竞争的随机接入信道, 频带资源2的CEL1的随机接入信道资源中8个符号组索引依次为{11,11,11,11,2,2,2,2,}被配置为非竞争的随机接入信道。
终端1发送定位参考信号,其中,定位参考信号的资源配置在CEL0和CEL1的随机接入信道资源中的非竞争的随机接入信道中。
终端1发送定位参考信号的周期为80ms,如图16所示,终端1首先在频带资源1的第1个CEL0的随机接入信道资源中4个符号组{11,11,11,11}上发送定位参考信号,然后终端1在频带资源2的第2个CEL1的随机接入信道资源中8个符号组{11,11,11,11,2,2,2,2}上发送定位参考信号。
基于前述实施例类似的技术构思,参见图17,其示出了本发明实施例提供的一种网元17,所述网元17包括第一发送模块171,配置为向对端网元发送定位参考信号;其中,所述定位参考信号在N个频带资源上发送,其中N为不小于1的整数;所述定位参考信号占用至少一个符号组,其中,每个符号组在频域上占用相同的子载波,并且每个符号组在时域上由循环前缀CP和至少一个符号构成。
示例性地,对于所述第一发送模块发送的定位参考信号中时域上相邻的八个符号组,符号组1至符号组4占用的资源包含在第一时频资源块中,符号组5至符号组8占用的资源包含在第二时频资源块中;
其中,所述第一时频资源块的时域长度为4个符号组对应的时域长度,所述第一时频资源块的频域长度为12个子载波且起始子载波的索引为k,所述k为大于等于0的整数;
所述第二时频资源块的时域长度为4个符号组对应的时域长度,所述第二时频资源块的频域长度为12个子载波且起始子载波索引为k+D,所述D为所述第一时频资源块起始子载波与所述第二时频资源块起始子载波之间的频域间隔;
所述第一时频资源块和所述第二时频资源块之间的时域间隔为T个时间单位,T大于等于0。
示例性地,对于所述第一发送模块171发送的定位参考信号中时域上相 邻的八个符号组,符号组1至符号组4占用的资源包含在第一时频资源块中,符号组5至符号组8占用的资源包含在第二时频资源块中;
其中,第一时频资源块由A个第一时频资源子块构成,其中,A为大于等于1的整数,第一时频资源子块的时域长度为4个符号组对应的时域长度,第一时频资源子块的频域长度为12个子载波;
第二时频资源块由B个第二时频资源子块构成,其中,B为大于等于1的整数,第二时频资源子块的时域长度为4个符号组对应的时域长度,第二时频资源子块的频域长度为12个子载波;
第一时频资源块和第二时频资源块在时域上间隔T个时间单位,T大于等于0。
示例性地,对于所述第一发送模块171发送的定位参考信号中时域上相邻的16个符号组,符号组1至符号组8占用的资源包含在第一时频资源块中,符号组9至符号组16占用的资源包含在第二时频资源块中。
其中,所述第一时频资源块的时域长度为8个符号组对应的时域长度,所述第一时频资源块的频域长度为12个子载波且起始子载波索引为k,所述k为大于等于0的整数;
所述第二时频资源块的时域长度为8个符号组对应的时域长度,所述第二时频资源块的频域长度为12个子载波且起始子载波索引为k+D;
所述第一时频资源块和所述第二时频资源块在时域上间隔T个时间单位,T大于等于0。
示例性地,对于所述第一发送模块171发送的定位参考信号中时域上相邻的16个符号组,符号组1至符号组8占用的资源包含在第一时频资源块中,符号组9至符号组16占用的资源包含在第二时频资源块中;
其中,第一时频资源块由A个第一时频资源子块构成,其中,A为大于等于1的整数,第一时频资源子块的时域长度为8个符号组对应的时域长度,第一时频资源块的频域长度为12个子载波;
第二时频资源块由B个第二时频资源子块构成,其中,B为大于等于1的整数,第二时频资源子块的时域长度为8个符号组对应的时域长度,第二 时频资源块的频域长度为12个子载波;
第一时频资源块和第二时频资源块在时域上间隔T个时间单位,T大于等于0。
示例性地,所述频带资源包括P个子载波集合,其中,P大于等于1;每4个符号组组成一个符号组集合,相同符号组集合中的符号组在发送时所占用的子载波属于相同的子载波集合,每个子载波集合中包括12个子载波。
基于前述实施例类似的技术构思,参见图18,其示出了本发明实施例提供的一种网元18,所述网元18包括第二发送模块181,配置为向对端网元发送定位参考信号;
其中,所述定位参考信号的资源配置在P个时频资源集合中,索引为p,其中,0≤p≤P-1;
所述P个时频资源集合配置在N个频带资源上,其中,P为不小于1的整数,N为不小于1的整数。
示例性地,参见图19,所述网元18还包括第一选取模块182,配置为从索引为p的所述时频资源集合中选择G(p)个符号组集合作为定位参考信号的发送资源;
其中,单个符号组集合中包括4个符号组;每个符号组在频域上占用相同的子载波,并且每个符号组在时域上由循环前缀CP和5个符号构成。
另外,所述第一选取模块182配置为:
选择R(p)个所述符号组集合中排列在最前面的G(p)个符号组集合;或,
选择R(p)个所述符号组集合中排列在最后面的G(p)个符号组集合;或,
从R(p)个所述符号组集合中按照预定规则选择G(p)个符号组集合;其中,G(p)小于等于R(p)。
另外,所述第一选取模块182配置为:
选择G(p)=A(p)×R(p)个所述符号组集合。其中,A(p)≥1,R(p)为索引为 p的所述随机接入信道资源上支持的随机接入信道的重复发送次数。
示例性地,所述P个时频资源集合中包括以下至少之一:
覆盖增强等级相同的Kj个时频资源集合;其中,j为覆盖增强等级索引,Kj≥2;且所述Kj个时频资源集合位于不同频带资源上;
覆盖增强等级不相同的C个时频资源集合;其中,c大于等于2;所述C个时频资源集合位于相同频带资源上;
J个覆盖增强等级的时频资源集合,其中,j为覆盖增强等级索引,0≤j≤J-1,覆盖增强等级为j的时频资源数量为K,2≤K≤P;覆盖增强等级为j的K个时频资源集合位于不同的频带资源上。J个覆盖增强等级的时频资源数量均为K,也就是说索引为j=0,1,2,…J-1的覆盖增强等级的时频资源数量都是K。
另外,参见图20,所述网元18还包括第二选取模块183,配置为从索引为p的所述时频资源集合中选择G(p)个符号组集合作为定位参考信号的发送资源;
其中,单个符号组集合中包括4个符号组;每个符号组在频域上占用相同的子载波。
另外,所述第二选取模块183配置为:
选择R(p)个所述符号组集合中排列在最前面的G(p)个符号组集合;或,
选择R(p)个所述符号组集合中排列在最后面的G(p)个符号组集合;或,
从R(p)个所述符号组集合中按照预定规则选择G(p)个符号组集合;
其中,G(p)小于等于R(p)。
另外,所述第二选取模块183配置为选择G(p)=A(p)×R(p)个所述符号组集合。其中,A(p)≥1;R(p)为索引为p的所述随机接入信道资源上支持的随机接入信道的重复发送次数。
此外,本发明实施例还提供一种计算机可读存储介质,其上存储有计算 机可执行指令,所述计算机可执行指令被处理器执行时实现任一以上描述过的方法。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上所述,仅为本申请的示例性的实施例而已,并非用于限定本申请的保护范围。
工业实用性
本发明实施例提供了一种定位的方法和设备,通过第一网元向第二网元发送定位参考信号,能够在NB-IoT技术中实现对巨量终端的定位。因此本发明具有工业实用性。

Claims (60)

  1. 一种定位的方法,所述方法包括:
    第一网元向第二网元发送定位参考信号(S101);其中,所述定位参考信号在N个频带资源上发送,其中N为不小于1的整数;所述定位参考信号占用至少一个符号组,其中,每个符号组在频域上占用相同的子载波,并且每个符号组在时域上由循环前缀CP和至少一个符号构成。
  2. 根据权利要求1所述的方法,其中,对于所述第一网元发送的定位参考信号中时域上相邻的八个符号组,符号组1至符号组4占用的资源包含在第一时频资源块中,符号组5至符号组8占用的资源包含在第二时频资源块中;
    其中,所述第一时频资源块的时域长度为4个符号组对应的时域长度,所述第一时频资源块的频域长度为12个子载波且起始子载波的索引为k,所述k为大于等于0的整数;
    所述第二时频资源块的时域长度为4个符号组对应的时域长度,所述第二时频资源块的频域长度为12个子载波且起始子载波索引为k+D,所述D为所述第一时频资源块起始子载波与所述第二时频资源块起始子载波之间的频域间隔;
    所述第一时频资源块和所述第二时频资源块之间的时域间隔为T个时间单位,T大于等于0。
  3. 根据权利要求2所述的方法,其中,所述八个符号组所占用的时频资源满足预设的第一映射关系。
  4. 根据权利要求3所述的方法,其中,所述符号组1至符号组4中选择的定位参考信号索引为n,其中,0≤n≤11;所述符号组5至符号组8中选择的定位参考信号索引为m,其中,0≤m≤11;并且m=n。
  5. 根据权利要求3所述的方法,其中,所述符号组1至符号组4中选择的定位参考信号索引为n,其中,0≤n≤11;所述符号组5至符号组8中选择的定位参考信号索引为m,其中,0≤m≤11;其中m=n+delta或m=mod((n+delta),12),delta为一个随机数值或者一个固定值,mod为取余 计算。
  6. 根据权利要求1所述的方法,其中,对于所述第一网元发送的定位参考信号中时域上相邻的八个符号组,符号组1至符号组4占用的资源包含在第一时频资源块中,符号组5至符号组8占用的资源包含在第二时频资源块中;
    其中,第一时频资源块由A个第一时频资源子块构成,其中,A为大于等于1的整数,第一时频资源子块的时域长度为4个符号组对应的时域长度,第一时频资源子块的频域长度为12个子载波;
    第二时频资源块由B个第二时频资源子块构成,其中,B为大于等于1的整数,第二时频资源子块的时域长度为4个符号组对应的时域长度,第二时频资源子块的频域长度为12个子载波;
    第一时频资源块和第二时频资源块在时域上间隔T个时间单位,T大于等于0。
  7. 根据权利要求6所述的方法,其中,所述符号组1至符号组4配置在同一个第一时频资源子块中;所述符号组5至符号组8配置在同一个第二时频资源子块中。
  8. 根据权利要求7所述的方法,其中,所述符号组1至符号组4中选择的定位参考信号索引为n,其中,0≤n≤11;所述符号组5至符号组8中选择的定位参考信号索引为m,其中,0≤m≤11;并且m=n。
  9. 根据权利要求7所述的方法,其中,所述符号组1至符号组4中选择的定位参考信号索引为n,其中,0≤n≤11;所述符号组5至符号组8中选择的定位参考信号索引为m,其中,0≤m≤11;其中m=n+delta或m=mod((n+delta),12),delta为一个随机数值或者一个固定值,mod为取余计算。
  10. 根据权利要求7至9任一项所述的方法,其中,所述第一时频资源子块的结构满足预设的第二映射关系。
  11. 根据权利要求7至9任一项所述的方法,其中,所述第二时频资源子块的结构满足预设的第三映射关系。
  12. 根据权利要求10或11所述的方法,其中,所述第一时频资源子块的起始子载波索引k与所述第二时频资源子块的起始子载波索引q之间满足q=k+D,其中,D为整数。
  13. 根据权利要求6至12中任一项所述的方法,其中,所述第一时频资源块和所述第二时频资源块配置在预设的覆盖增强等级的随机接入信道资源,或者,配置在预设的覆盖增强等级且在一个所述频带资源上的随机接入信道资源。
  14. 根据权利要求13所述的方法,其中,对于所述预设的覆盖增强等级的随机接入信道资源,或者预设的覆盖增强等级且在一个所述频带资源上的随机接入信道资源,在频域上占用连续的24个子载波且起始子载波索引均为k,且A=B=1,D=12。
  15. 根据权利要求13所述的方法,其中,对于所述预设的覆盖增强等级的随机接入信道资源,或者,预设的覆盖增强等级且在一个所述频带资源上的随机接入信道资源,在频域上占用连续的36个子载波且起始子载波索引同样为k,且A=B=1,D=24。
  16. 根据权利要求13所述的方法,其中,对于所述预设的覆盖增强等级的随机接入信道资源,或者,预设的覆盖增强等级且在一个所述频带资源上的随机接入信道资源,在频域上占用连续的48个子载波且起始子载波索引同样为k,且A=B=1,D=36。
  17. 根据权利要求13所述的方法,其中,对于所述预设的覆盖增强等级的随机接入信道资源,或者,预设的覆盖增强等级且在一个所述频带资源上的随机接入信道资源,在频域上占用连续的48个子载波且起始子载波索引同样为k,且A=B=2,D=24。
  18. 根据权利要求1所述的方法,其中,对于所述第一网元发送的定位参考信号中时域上相邻的16个符号组,符号组1至符号组8占用的资源包含在第一时频资源块中,符号组9至符号组16占用的资源包含在第二时频资源块中;
    其中,所述第一时频资源块的时域长度为8个符号组对应的时域长度, 所述第一时频资源块的频域长度为12个子载波且起始子载波索引为k,所述k为大于等于0的整数;
    所述第二时频资源块的时域长度为8个符号组对应的时域长度,所述第二时频资源块的频域长度为12个子载波且起始子载波索引为k+D;
    所述第一时频资源块和所述第二时频资源块在时域上间隔T个时间单位,T大于等于0。
  19. 根据权利要求18所述的方法,其中,所述16个符号组所占用的时频资源满足预设的第四映射关系。
  20. 根据权利要求19所述的方法,其中,所述符号组1至符号组8中选择的定位参考信号索引为n,其中,0≤n≤11;所述符号组9至符号组16中选择的定位参考信号索引为m,其中,0≤m≤11;并且m=n。
  21. 根据权利要求19所述的方法,其中,所述符号组1至符号组8中选择的定位参考信号索引为n,其中,0≤n≤11;所述符号组9至符号组16中选择的定位参考信号索引为m,其中,0≤m≤11;其中m=n+delta或m=mod((n+delta),12),delta为一个随机数值或者一个固定值,mod为取余计算。
  22. 根据权利要求1所述的方法,其中,对于所述第一网元发送的定位参考信号中时域上相邻的16个符号组,符号组1至符号组8占用的资源包含在第一时频资源块中,符号组9至符号组16占用的资源包含在第二时频资源块中;
    其中,第一时频资源块由A个第一时频资源子块构成,其中,A为大于等于1的整数,第一时频资源子块的时域长度为8个符号组对应的时域长度,第一时频资源块的频域长度为12个子载波;
    第二时频资源块由B个第二时频资源子块构成,其中,B为大于等于1的整数,第二时频资源子块的时域长度为8个符号组对应的时域长度,第二时频资源块的频域长度为12个子载波;
    第一时频资源块和第二时频资源块在时域上间隔T个时间单位,T大于等于0。
  23. 根据权利要求22所述的方法,其中,所述符号组1至符号组8配置在同一个第一时频资源子块中;所述符号组9至符号组16配置在同一个第二时频资源子块中。
  24. 根据权利要求23所述的方法,其中,所述符号组1至符号组8中选择的定位参考信号索引为n,其中,0≤n≤11;所述符号组9至符号组16中选择的定位参考信号索引为m,其中,0≤m≤11;并且m=n。
  25. 根据权利要求23所述的方法,其中,所述符号组1至符号组8中选择的定位参考信号索引为n,其中,0≤n≤11;所述符号组9至符号组16中选择的定位参考信号索引为m,其中,0≤m≤11;其中m=n+delta或m=mod((n+delta),12),delta为一个随机数值或者一个固定值,mod为取余计算。
  26. 根据权利要求23至25任一项所述的方法,其中,所述第一时频资源子块的结构满足预设的第五映射关系。
  27. 根据权利要求23至25任一项所述的方法,其中,所述第二时频资源子块的结构满足预设的第六映射关系。
  28. 根据权利要求26或27所述的方法,其中,所述第一时频资源子块的起始子载波索引k与所述第二时频资源子块的起始子载波索引q之间满足q=k+D,其中,D为整数。
  29. 根据权利要求1所述的方法,其中,所述频带资源包括P个子载波集合,其中,P大于等于1;每4个符号组组成一个符号组集合,相同符号组集合中的符号组在发送时所占用的子载波属于相同的子载波集合,每个子载波集合中包括12个子载波。
  30. 根据权利要求24所述的方法,其中,时域相邻的两个符号组集合在发送时所占用的子载波集合不同。
  31. 根据权利要求29所述的方法,其中,在单个符号组集合的4个符号组中,第1个和第2个符号组在发送时所占用的子载波子集合相同;第3个和第4个符号组在发送时所占用的子载波子集合相同,第1个和第2个符号组在发送时所占用的子载波子集合与第3个和第4个符号组在发送时所占 用的子载波子集合不同;其中,1个所述子载波集合中包含2个子载波子集合,每个子载波子集合中包括6个子载波。
  32. 根据权利要求29所述的方法,其中,在时域上相邻的两个符号组集合中,第一个符号组集合中第1个和第2个符号组在发送时所占用的子载波子集合索引与第二个符号组集合中第1个和第2个符号组在发送时所占用的子载波子集合索引不同;并且,第一个符号组集合中第3个和第4个符号组在发送时所占用的子载波子集合索引与第二个符号组集合中第3个和第4个符号组在发送时所占用的子载波子集合索引不同。
  33. 根据权利要求29所述的方法,其中,在时域上相邻的两个符号组集合中,第一个符号组集合中的第1个和第2个符号组在发送时所占用的子载波子集合索引与第二个符号组集合中的第3个和第4个符号组在发送时所占用的子载波子集合索引相同;并且,第一个符号组集合中的第3个和第4个符号组在发送时所占用的子载波子集合索引与第二个符号组集合中的第1个和第2个符号组在发送时所占用的子载波子集合索引相同。
  34. 一种定位的方法,所述方法包括:
    第一网元向第二网元发送定位参考信号(S1301);
    其中,所述定位参考信号的资源配置在P个时频资源集合中,索引为p,其中,0≤p≤P-1;
    所述P个时频资源集合配置在N个频带资源上,其中,P为不小于1的整数,N为不小于1的整数。
  35. 根据权利要求34所述的方法,其中,所述时频资源集合为满足预设的覆盖增强等级的随机接入信道资源;或者,
    所述时频资源集合为满足预设的覆盖增强等级且在一个所述频带资源上的随机接入信道资源。
  36. 根据权利要求35所述的方法,其中,所述P个时频资源集合对应P个不同的覆盖增强等级。
  37. 根据权利要求35或36所述的方法,其中,在第一网元向第二网元发送定位参考信号之前,所述方法还包括:
    所述第一网元从索引为p的所述时频资源集合中选择G(p)个符号组集合作为定位参考信号的发送资源;
    其中,单个符号组集合中包括4个符号组;每个符号组在频域上占用相同的子载波。
  38. 根据权利要求37所述的方法,其中,所述第一网元从索引为p的所述时频资源集合中选择G(p)个符号组集合作为定位参考信号的发送资源,包括:
    所述第一网元选择R(p)个所述符号组集合中排列在最前面的G(p)个符号组集合;或,
    所述第一网元选择R(p)个所述符号组集合中排列在最后面的G(p)个符号组集合;或,
    所述第一网元从R(p)个所述符号组集合中按照预定规则选择G(p)个符号组集合;
    其中,G(p)小于等于R(p)。
  39. 根据权利要求37所述的方法,其中,所述第一网元从索引为p的所述时频资源集合中选择G(p)个符号组集合作为定位参考信号的发送资源,包括:
    所述第一网元选择G(p)=A(p)×R(p)个所述符号组集合,其中,A(p)≥1,R(p)为索引为p的所述随机接入信道资源上支持的随机接入信道的重复发送次数。
  40. 根据权利要求35至39任一项所述的方法,其中,所述定位参考信号的资源配置在所述随机接入信道资源的非竞争随机接入信道资源中。
  41. 根据权利要求34至39任一项所述的方法,其中,所述P个时频资源集合的频域位置不同;
    或者,所述P个时频资源集合的时域位置不重叠。
  42. 根据权利要求35所述的方法,其中,所述P个时频资源集合中包括以下至少之一:
    覆盖增强等级相同的Kj个时频资源集合;其中,j为覆盖增强等级索引,Kj≥2;且所述Kj个时频资源集合位于不同频带资源上;
    覆盖增强等级不相同的C个时频资源集合;其中,C大于等于2;所述C个时频资源集合位于相同频带资源上;
    J个覆盖增强等级的时频资源集合,其中,j为覆盖增强等级索引,0≤j≤J-1,覆盖增强等级为j的时频资源数量为K,2≤K≤P;覆盖增强等级为j的K个时频资源集合位于不同的频带资源上。
  43. 根据权利要求42所述的方法,其中,在第一网元向第二网元发送定位参考信号之前,所述方法还包括:
    所述第一网元从索引为p的所述时频资源集合中选择G(p)个符号组集合作为定位参考信号的发送资源;
    其中,单个符号组集合中包括4个符号组;每个符号组在频域上占用相同的子载波。
  44. 根据权利要求43所述的方法,其中,所述第一网元从索引为p的所述时频资源集合中选择G(p)个符号组集合作为定位参考信号的发送资源,包括:
    所述第一网元选择R(p)个所述符号组集合中排列在最前面的G(p)个符号组集合;或,
    所述第一网元选择R(p)个所述符号组集合中排列在最后面的G(p)个符号组集合;或,
    所述第一网元从R(p)个所述符号组集合中按照预定规则选择G(p)个符号组集合;
    其中,G(p)小于等于R(p)。
  45. 根据权利要求43所述的方法,其中,所述第一网元从索引为p的所述时频资源集合中选择G(p)个符号组集合作为定位参考信号的发送资源,包括:
    所述第一网元选择G(p)=A(p)×R(p)个所述符号组集合,其中,A(p)≥1;R(p)为索引为p的所述随机接入信道资源上支持的随机接入信道的重复发 送次数。
  46. 根据权利要求42至46任一项所述的方法,其中,所述定位参考信号的资源配置在所述随机接入信道资源的非竞争随机接入信道资源中。
  47. 一种网元(17),所述网元(17)包括第一发送模块(171),配置为向对端网元发送定位参考信号;其中,所述定位参考信号在N个频带资源上发送,其中N为不小于1的整数;所述定位参考信号占用至少一个符号组,其中,每个符号组在频域上占用相同的子载波,并且每个符号组在时域上由循环前缀CP和至少一个符号构成。
  48. 根据权利要求47所述的网元(17),其中,对于所述第一发送模块(171)发送的定位参考信号中时域上相邻的八个符号组,符号组1至符号组4占用的资源包含在第一时频资源块中,符号组5至符号组8占用的资源包含在第二时频资源块中;
    其中,所述第一时频资源块的时域长度为4个符号组对应的时域长度,所述第一时频资源块的频域长度为12个子载波且起始子载波的索引为k,所述k为大于等于0的整数;
    所述第二时频资源块的时域长度为4个符号组对应的时域长度,所述第二时频资源块的频域长度为12个子载波且起始子载波索引为k+D,所述D为所述第一时频资源块起始子载波与所述第二时频资源块起始子载波之间的频域间隔;
    所述第一时频资源块和所述第二时频资源块之间的时域间隔为T个时间单位,T大于等于0。
  49. 根据权利要求47所述的网元(17),其中,对于所述第一发送模块(171)发送的定位参考信号中时域上相邻的八个符号组,符号组1至符号组4占用的资源包含在第一时频资源块中,符号组5至符号组8占用的资源包含在第二时频资源块中;
    其中,第一时频资源块由A个第一时频资源子块构成,其中,A为大于等于1的整数,第一时频资源子块的时域长度为4个符号组对应的时域长度,第一时频资源子块的频域长度为12个子载波;
    第二时频资源块由B个第二时频资源子块构成,其中,B为大于等于1的整数,第二时频资源子块的时域长度为4个符号组对应的时域长度,第二时频资源子块的频域长度为12个子载波;
    第一时频资源块和第二时频资源块在时域上间隔T个时间单位,T大于等于0。
  50. 根据权利要求47所述的网元(17),其中,对于所述第一发送模块(171)发送的定位参考信号中时域上相邻的16个符号组,符号组1至符号组8占用的资源包含在第一时频资源块中,符号组9至符号组16占用的资源包含在第二时频资源块中;
    其中,所述第一时频资源块的时域长度为8个符号组对应的时域长度,所述第一时频资源块的频域长度为12个子载波且起始子载波索引为k,所述k为大于等于0的整数;
    所述第二时频资源块的时域长度为8个符号组对应的时域长度,所述第二时频资源块的频域长度为12个子载波且起始子载波索引为k+D;
    所述第一时频资源块和所述第二时频资源块在时域上间隔T个时间单位,T大于等于0。
  51. 根据权利要求47所述的网元(17),其中,对于所述第一发送模块(171)发送的定位参考信号中时域上相邻的16个符号组,符号组1至符号组8占用的资源包含在第一时频资源块中,符号组9至符号组16占用的资源包含在第二时频资源块中;
    其中,第一时频资源块由A个第一时频资源子块构成,其中,A为大于等于1的整数,第一时频资源子块的时域长度为8个符号组对应的时域长度,第一时频资源块的频域长度为12个子载波;
    第二时频资源块由B个第二时频资源子块构成,其中,B为大于等于1的整数,第二时频资源子块的时域长度为8个符号组对应的时域长度,第二时频资源块的频域长度为12个子载波;
    第一时频资源块和第二时频资源块在时域上间隔T个时间单位,T大于等于0。
  52. 根据权利要求47所述的网元(17),其中,所述频带资源包括P个子载波集合,其中,P大于等于1;每4个符号组组成一个符号组集合,相同符号组集合中的符号组在发送时所占用的子载波属于相同的子载波集合,每个子载波集合中包括12个子载波。
  53. 一种网元(18),所述网元(18)包括:第二发送模块(181),配置为向对端网元发送定位参考信号;
    其中,所述定位参考信号的资源配置在P个时频资源集合中,索引为p,其中,0≤p≤P-1;
    所述P个时频资源集合配置在N个频带资源上,其中,P为不小于1的整数,N为不小于1的整数。
  54. 根据权利要求53所述的网元(18),其中,所述网元(18)还包括第一选取模块(182),配置为从索引为p的所述时频资源集合中选择G(p)个符号组集合作为定位参考信号的发送资源;
    其中,单个符号组集合中包括4个符号组;每个符号组在频域上占用相同的子载波,并且每个符号组在时域上由循环前缀CP和5个符号构成。
  55. 根据权利要求54所述的网元(18),其中,所述第一选取模块(182)配置为:
    选择R(p)个所述符号组集合中排列在最前面的G(p)个符号组集合;或,
    选择R(p)个所述符号组集合中排列在最后面的G(p)个符号组集合;或,
    从R(p)个所述符号组集合中按照预定规则选择G(p)个符号组集合;其中,G(p)小于等于R(p)。
  56. 根据权利要求55所述的网元(18),其中,所述第一选取模块(182)配置为:
    选择G(p)=A(p)×R(p)个所述符号组集合,其中,A(p)≥1,R(p)为索引为p的所述随机接入信道资源上支持的随机接入信道的重复发送次数。
  57. 根据权利要求53所述的网元(18),其中,所述P个时频资源集合 中包括以下至少之一:
    覆盖增强等级相同的Kj个时频资源集合;其中,j为覆盖增强等级索引,Kj≥2;且所述Kj个时频资源集合位于不同频带资源上;
    覆盖增强等级不相同的C个时频资源集合;其中,C大于等于2;所述C个时频资源集合位于相同频带资源上;
    J个覆盖增强等级的时频资源集合,其中,j为覆盖增强等级索引,0≤j≤J-1,覆盖增强等级为j的时频资源数量为K,2≤K≤P;覆盖增强等级为j的K个时频资源集合位于不同的频带资源上。
  58. 根据权利要求57所述的网元(18),其中,所述网元(18)还包括第二选取模块(183),配置为从索引为p的所述时频资源集合中选择G(p)个符号组集合作为定位参考信号的发送资源;
    其中,单个符号组集合中包括4个符号组;每个符号组在频域上占用相同的子载波。
  59. 根据权利要求58所述的网元(18),其中,所述第二选取模块(183)配置为:
    选择R(p)个所述符号组集合中排列在最前面的G(p)个符号组集合;或,
    选择R(p)个所述符号组集合中排列在最后面的G(p)个符号组集合;或,
    从R(p)个所述符号组集合中按照预定规则选择G(p)个符号组集合;
    其中,G(p)小于等于R(p)。
  60. 根据权利要求58所述的网元(18),其中,所述第二选取模块(183)配置为选择G(p)=A(p)×R(p)个所述符号组集合,其中,A(p)≥1;R(p)为索引为p的所述随机接入信道资源上支持的随机接入信道的重复发送次数。
PCT/CN2017/101651 2016-09-30 2017-09-13 一种定位的方法和设备 WO2018059240A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610878992.7 2016-09-30
CN201610878992 2016-09-30
CN201610981532 2016-11-04
CN201610981532.7 2016-11-04

Publications (1)

Publication Number Publication Date
WO2018059240A1 true WO2018059240A1 (zh) 2018-04-05

Family

ID=61762532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/101651 WO2018059240A1 (zh) 2016-09-30 2017-09-13 一种定位的方法和设备

Country Status (2)

Country Link
CN (1) CN107889212B (zh)
WO (1) WO2018059240A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109802788B (zh) 2017-11-17 2022-02-25 中兴通讯股份有限公司 一种信号的生成与发送方法
CN110474757B (zh) * 2018-05-10 2022-08-12 中兴通讯股份有限公司 信号的发送方法及装置、存储介质、电子装置
CN110768761B (zh) * 2018-07-26 2022-07-15 中兴通讯股份有限公司 定位参考信号生成方法、装置、基站及可读存储介质
CN110856096B (zh) * 2018-07-30 2022-07-15 中兴通讯股份有限公司 定位参考信号生成方法、相关装置、通信系统及存储介质
US11290229B2 (en) * 2018-08-10 2022-03-29 Mediatek Inc. Reference signal design for NR downlink positioning: supplementary RS design
WO2023275047A2 (en) * 2021-06-30 2023-01-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for providing a modified ofdm frame structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101895813A (zh) * 2009-11-13 2010-11-24 北京三星通信技术研究有限公司 一种传输和接收定位参考信号的方法
CN102725649A (zh) * 2009-11-03 2012-10-10 瑞典爱立信有限公司 用于定义无线网络中的定位配置的方法、设备和系统
CN104243080A (zh) * 2009-04-10 2014-12-24 Lg电子株式会社 发射及接收定位参考信号的方法和用户设备
US20150018010A1 (en) * 2013-07-12 2015-01-15 Qualcomm Incorporated Providing otdoa prs assistance data
US20160065338A1 (en) * 2013-05-30 2016-03-03 Lg Electronics Inc. Method and device for decoding downlink data

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101534285B (zh) * 2009-04-09 2015-07-22 中兴通讯股份有限公司 一种参考信号的发送方法
CN101931862B (zh) * 2009-06-22 2013-11-06 华为技术有限公司 定位信息发送方法及其装置
CN101778068B (zh) * 2009-12-25 2014-01-01 中兴通讯股份有限公司 定位参考信号频域位置确定方法及装置
US20110230144A1 (en) * 2010-03-17 2011-09-22 Iana Siomina Method and Apparatus for Muting Signaling in a Wireless Communication Network
US8848638B2 (en) * 2011-06-27 2014-09-30 Telefonaktiebolaget L M Ericsson (Publ) Cellular communication system support for limited bandwidth communication devices
EP2999140B1 (en) * 2013-05-16 2021-08-11 LG Electronics Inc. Method for transmitting signal for improving coverage and apparatus for same
JP6535970B2 (ja) * 2014-02-26 2019-07-03 シャープ株式会社 基地局装置、端末装置、および、無線通信方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104243080A (zh) * 2009-04-10 2014-12-24 Lg电子株式会社 发射及接收定位参考信号的方法和用户设备
CN102725649A (zh) * 2009-11-03 2012-10-10 瑞典爱立信有限公司 用于定义无线网络中的定位配置的方法、设备和系统
CN101895813A (zh) * 2009-11-13 2010-11-24 北京三星通信技术研究有限公司 一种传输和接收定位参考信号的方法
US20160065338A1 (en) * 2013-05-30 2016-03-03 Lg Electronics Inc. Method and device for decoding downlink data
US20150018010A1 (en) * 2013-07-12 2015-01-15 Qualcomm Incorporated Providing otdoa prs assistance data

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE.: "Consideration on Coverage Enhancement Level Issues for NB-IoT", 3GPP TSG-RAN WG2 MEETING #92 R2-156270, 20 November 2015 (2015-11-20), XP051024493, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_92/Docs/> *

Also Published As

Publication number Publication date
CN107889212A (zh) 2018-04-06
CN107889212B (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
WO2018059240A1 (zh) 一种定位的方法和设备
JP7317824B2 (ja) 情報送受信方法および装置
KR102660235B1 (ko) 정보 전송 방법, 장치 및 기기
KR20220075385A (ko) 제2단계 sci의 송수신 방법 및 장치, 저장 매체, 송신 ue 및 수신 ue
CN108270711B (zh) 传输参考信号的方法、设备和系统
CA3089960A1 (en) Method for transmitting he-ltf sequence and apparatus
CN103430615B (zh) 无线通信系统及其通信方法
CN111466147B (zh) 混合参数集中的资源栅格偏移指示
CN110418411B (zh) Dmrs的指示方法、装置及网络设备
WO2009059517A1 (en) A method for mapping a physical downlink control format indicator channel to a physical resource
US10785002B2 (en) Reference signal transmitting method, reference signal receiving method, apparatus, and system
CN101765134A (zh) 用于载波聚合的srs配置参数的发送方法和系统
JP7463477B2 (ja) 系列に基づく信号処理方法および装置
TWI762531B (zh) 資源映射的方法和通訊設備
CN112787967A (zh) 参考信号的传输方法及装置
CN111726311A (zh) 数据信道的传输方法及装置
CN109150455B (zh) 一种指示方法、处理方法及装置
CN107197532B (zh) 接入处理方法及装置
EP1865679B1 (en) Multicarrier system with multiple null subcarriers in transmitted signal due to variable receive bandwidths and the resulting multiple potential dc subcarriers
JP7055874B2 (ja) 情報送信方法および装置
WO2018082450A1 (zh) 一种传输带宽的配置方法及发射节点
WO2018068552A1 (zh) 符号配置方法及装置、数据解调方法及装置
KR20190035610A (ko) 신호 전송 방법 및 기기
CN110299980B (zh) 一种传输参考信号的方法、装置和系统
CN111092691A (zh) 一种信号发送方法、装置、通讯节点及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854690

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17854690

Country of ref document: EP

Kind code of ref document: A1