WO2018059228A1 - 一种上行控制信息发送、接收方法及设备 - Google Patents

一种上行控制信息发送、接收方法及设备 Download PDF

Info

Publication number
WO2018059228A1
WO2018059228A1 PCT/CN2017/101406 CN2017101406W WO2018059228A1 WO 2018059228 A1 WO2018059228 A1 WO 2018059228A1 CN 2017101406 W CN2017101406 W CN 2017101406W WO 2018059228 A1 WO2018059228 A1 WO 2018059228A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission time
control information
uplink control
time unit
user equipment
Prior art date
Application number
PCT/CN2017/101406
Other languages
English (en)
French (fr)
Inventor
唐浩
栗忠峰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17854678.4A priority Critical patent/EP3512278B1/en
Publication of WO2018059228A1 publication Critical patent/WO2018059228A1/zh
Priority to US16/369,578 priority patent/US11252702B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and a device for transmitting and receiving uplink control information.
  • a new subframe type that is, a self-contained subframe
  • the first type of subframe and/or the second type of subframe may be included.
  • the first type of subframe is simply referred to as an S1 subframe
  • the second type of subframe is simply referred to as an S2 subframe.
  • the S1 subframe and the S2 subframe each include a symbol for downlink transmission, a guard interval (GP), and a symbol for uplink transmission.
  • GP guard interval
  • the symbols used for downlink transmission in the S1 subframe are mainly used for transmitting downlink control information and downlink data
  • the symbols for uplink transmission are mainly used for transmitting uplink control information (UCI) and sounding reference signals (Sounding Reference). Signal, SRS).
  • UCI uplink control information
  • SRS Sounding Reference Signal
  • the number of symbols used for downlink transmission, the symbols occupied by the GP, and the symbols used for uplink transmission included in the S1 subframe have not been determined, but it is basically determined that the number of symbols used for uplink transmission is not too large. For example, if the S1 subframe includes a total of 14 symbols, the symbols used for uplink transmission may be 1 or 2, and so on.
  • the physical uplink control channel occupies 14 symbols in the time domain, that is, 14 symbols in one subframe can be used.
  • the UCI is transmitted, and according to the above description, the number of symbols used to transmit UCI in the S1 subframe is small. Therefore, compared to LTE, the coverage of the PUCCH in the S1 subframe is poor, and it is likely that some uplink control information cannot be transmitted.
  • the embodiment of the invention provides a method and a device for transmitting and receiving uplink control information, which are used to improve coverage of a PUCCH by a subframe in a 5G system.
  • a method for transmitting uplink control information is provided, which is performed by a user equipment.
  • the method includes: the user equipment acquires uplink control information, and the user equipment maps the uplink control information to at least two transmission time units and sends the information to the network device.
  • the user equipment may map the uplink control information to the at least two transmission time units, so that the uplink control information may occupy more symbols, and the coverage for the PUCCH is improved, especially when the uplink control needs to be transmitted.
  • the uplink control information may occupy more symbols, and the coverage for the PUCCH is improved, especially when the uplink control needs to be transmitted.
  • the user equipment by mapping the uplink control information to the at least two transmission time units and sending the information to the network device, may be implemented by: Part of the information is mapped to the last M symbols of the first transmission time unit, and the remaining information in the uplink control information is mapped to the first N symbols of the second transmission time unit to transmit the uplink control information to the network device.
  • the first transmission time unit and the second transmission time unit are consecutive transmission time units, and M and N are positive integers.
  • the user equipment maps the uplink control information to the first transmission time unit and the second transmission time unit, respectively, so that the uplink control information can occupy the uplink symbol in the two transmission time units, and the number of symbols that can be occupied is large, which can enable the uplink control.
  • the information is fully transmitted, and the situation that the uplink control information cannot be transmitted due to the limited uplink transmission resources is avoided as much as possible.
  • the first transmission time unit and the second transmission time unit are consecutive transmission time units, and the user equipment maps partial information of the uplink control information to the last M symbols of the first transmission time unit, and the remaining information in the uplink control information
  • the information is mapped to the first N symbols of the second transmission time unit, and the uplink control information can be continuously transmitted as much as possible to improve the data transmission quality.
  • the user equipment since the user equipment is to send part of the information of the uplink control information in the first transmission time unit, it is necessary to know The frequency domain location occupied by the partial information of the uplink control information in the first transmission time unit.
  • the user equipment determines the frequency domain location of the uplink control information in the first transmission time unit, including but not limited to the following two modes: the user equipment further receives control signaling sent by the network device, and determines uplink control information according to the control signaling.
  • the partial information is in the frequency domain position in the first transmission time unit; or the user equipment determines the downlink control information corresponding to the received downlink data, and the partial information is calculated according to the number of the first control channel unit of the downlink control information.
  • the frequency domain location of the uplink control information in the first transmission time unit may be notified by the network device to the user equipment, or may be calculated by the user equipment in a flexible manner, and may be determined according to actual conditions.
  • the partial information of the uplink control information is in the frequency domain position in the first transmission time unit.
  • the user equipment sends the uplink control information in the second transmission time unit.
  • the remaining information then it is necessary to know the frequency domain position occupied by the remaining information in the uplink control information in the second transmission time unit.
  • the frequency domain location occupied by the uplink control information in the second transmission time unit is the same as the frequency domain location occupied by the uplink control information in the first transmission time unit; or the uplink control information is occupied in the second transmission time unit.
  • the frequency domain location differs from the frequency domain location occupied by the uplink control information in the first transmission time unit by a first offset.
  • the frequency domain position occupied by the uplink control information in the second transmission time unit may be different, and may be set according to the system condition.
  • the frequency domain location occupied by the uplink control information in the second transmission time unit may be notified by the network device to the user equipment, for example, the network device notifies the user equipment in the control signaling, or may be calculated by the user equipment. flexible.
  • the first offset may be It is sent to the user equipment by the network device, or may be pre-defined by a protocol or a standard, which is not limited by the embodiment of the present invention.
  • the frequency domain location occupied by the uplink control information in the second transmission time unit It is a continuous P subcarriers.
  • the P subcarriers include the subcarriers with the lowest number of the uplink time-frequency resources allocated to the user equipment in the second transmission time unit, or the uplink time-frequency resources allocated to the user equipment in the second transmission time unit.
  • the highest numbered subcarrier, P is a positive integer.
  • the remaining information in the uplink control information can occupy consecutive P subcarriers in the second transmission time unit to achieve continuous transmission.
  • the remaining information in the uplink control information is distributed in the frequency domain edge position as much as possible in the second transmission time unit, and the frequency domain center position of the second transmission time unit is ensured to be continuous.
  • the uplink data is not limited to be carried on the P subcarriers, that is, the remaining information in the uplink control information may be sent together with the uplink data to be transmitted in the second transmission time unit, thereby improving the resource multiplexing rate.
  • the user equipment is configured to map the uplink control information to the at least two transmission time units and send the information to the network device, where the user equipment implements uplink control.
  • the information is repeatedly mapped into at least two transmission time units to transmit at least two uplink control information to the network device.
  • at least two transmission time units are consecutive transmission time units, or at least two transmission time units are discontinuous transmission time units.
  • the user equipment is equivalent to repeatedly sending uplink control information to the network device, and the network device should receive at least two uplink control information.
  • the repeated transmission method can ensure that the network equipment can successfully receive uplink control information and improve the success rate of uplink control information transmission.
  • the transmission time The unit includes one or more subframes, or the transmission time unit includes one or more time slots, or the transmission time unit includes one or more symbols.
  • the transmission time unit may be a subframe in a conventional sense, or may be a transmission interval to be used in a 5G system or a next generation communication system, or may have other definitions.
  • the uplink control The information includes: an acknowledgment acknowledgment/negative acknowledgment for hybrid automatic repeat request, and/or channel state information.
  • the uplink control information in the embodiment of the present invention may include the uplink control information in the traditional sense, such as the ACK/NACK in the HARQ technology, the CSI, etc., and the content that is specifically included in the uplink control information is not limited in the embodiment of the present invention, and may refer to the prior art.
  • the content included in the uplink control information and also includes control information of possible uplink directions in the future communication system.
  • a method for receiving uplink control information is provided, which is performed by a network device.
  • the method includes: the network device sends a control signaling to the user equipment, where the control signaling is used to indicate that the user equipment maps the uplink control information to the at least two transmission time units and sends the information to the network device.
  • the network device receives uplink control information sent by the user equipment in at least two transmission time units.
  • the network device may instruct the user equipment to map the uplink control information to the at least two transmission time units, so that the uplink control information may occupy more symbols, and the coverage of the PUCCH is improved, especially when the transmission needs to be performed.
  • the network device may instruct the user equipment to map the uplink control information to the at least two transmission time units, so that the uplink control information may occupy more symbols, and the coverage of the PUCCH is improved, especially when the transmission needs to be performed.
  • it can effectively avoid the situation that the uplink control information cannot be transmitted because there is no resource.
  • the control signaling further indicates that the user equipment maps part information of the uplink control information to the last M symbols of the first transmission time unit, and The remaining information in the control information is mapped onto the first N symbols of the second transmission time unit.
  • the first transmission time unit and the second transmission time unit are consecutive transmission time units, and M and N are positive integers.
  • the network device receives the uplink control information sent by the user equipment in at least two transmission time units, by implementing the part of the network device receiving the uplink control information on the last M symbols of the first transmission time unit. The information, and the remaining information in the uplink control information are received on the first N symbols of the second transmission time.
  • the network device instructs the user equipment to send the uplink control information to the two transmission time units, so that the uplink control information can occupy the uplink symbol in the two transmission time units, and the uplink control information can occupy more uplink symbols. Increased coverage of upstream resources.
  • the user equipment implements continuous mapping of uplink control information through two consecutive transmission time units, and the network device can also implement continuous reception, thereby improving data transmission quality and data reception quality.
  • control signaling further indicates a frequency domain location of the partial information of the uplink control information in the first transmission time unit; Or the control signaling further indicates that the user equipment calculates the frequency domain location of the partial information of the uplink control information in the first transmission time unit according to the number of the first control channel unit of the downlink control information corresponding to the received downlink data.
  • the network device can directly inform the user equipment of the part of the uplink control information in the frequency domain of the first transmission time unit by using the control signaling, and the user equipment can directly obtain the part of the uplink control information after receiving the control signaling.
  • the frequency domain location in the transmission time unit is relatively simple. Or the network device can notify the user equipment to calculate the frequency domain location of the uplink control information in the first transmission time unit, and the user equipment can obtain the frequency of the partial information of the uplink control information in the first transmission time unit by calculation. The location of the domain reduces the amount of data for control signaling and saves transmission resources.
  • the information about the partial information of the uplink control information is notified by the network device to the user equipment in the frequency domain position in the first transmission time unit. In other implementation manners, the user equipment may also obtain the uplink according to the predefined definition of the protocol or standard.
  • the frequency domain location of the first information in the first transmission time unit is not limited in the embodiment of the present invention.
  • the control signaling further indicates that the uplink control information is in the second transmission time unit.
  • the occupied frequency domain location is the same as the frequency domain location occupied by the uplink control information in the first transmission time unit; or the control signaling further indicates that the frequency domain location occupied by the uplink control information in the second transmission time unit and the uplink control information are The frequency domain positions occupied in the first transmission time unit differ by a first offset.
  • the network device may also indicate to the user equipment the frequency domain location of the information remaining in the uplink control information in the second transmission time unit.
  • the part of the information of the uplink control information in the first transmission time unit and the frequency information in the uplink control information may be the same in the frequency domain of the second transmission time unit, and the network device directly informs the user equipment.
  • the frequency domain location of the partial information of the uplink control information in the first transmission time unit and the frequency domain location of the information in the uplink control information may be different by a first offset in the second transmission time unit, then the user equipment As long as the frequency domain position of the partial information of the uplink control information in the first transmission time unit and the first offset amount are obtained, the frequency domain position of the information remaining in the uplink control information in the second transmission time unit can be obtained.
  • the first offset may be sent by the network device to the user equipment through control signaling, or may be predefined by a protocol or a standard.
  • the user equipment may also determine, by using a pre-defined protocol or standard, that the frequency information of the remaining information in the uplink control information in the second transmission time unit is part of the information of the uplink control information.
  • the frequency domain locations in the transmission time unit are the same or differ by a first offset, and the first offset may be sent by the network device to the user equipment, or may also be obtained by the user equipment according to a pre-defined protocol or standard. That is to say, the user equipment obtains more information about the frequency domain location in the second transmission time unit in the uplink control information, and may select different manners according to the situation.
  • the control signaling further indicates that the uplink control information is in the second transmission time unit.
  • the occupied frequency domain locations are consecutive P subcarriers.
  • the P subcarriers include the subcarriers with the lowest number of the uplink time-frequency resources allocated to the user equipment in the second transmission time unit, or the uplink time-frequency resources allocated to the user equipment in the second transmission time unit.
  • the highest numbered subcarrier, P is a positive integer.
  • the remaining information in the uplink control information occupies a continuous frequency domain position in the second transmission time unit, so that continuous mapping can be performed to improve the transmission quality.
  • the remaining information in the uplink control information may occupy the position of the frequency domain edge as much as possible in the second transmission time unit, so that the central frequency domain position of the second transmission time unit is as continuous as possible.
  • the network device in the at least two transmission time units, the uplink control information that is sent by the user equipment, includes: the network device is in the at least two transmission times The unit receives at least two uplink control information.
  • at least two transmission time units are consecutive transmission time units, or at least two transmission time units are discontinuous transmission time units.
  • the user equipment repeatedly sends uplink control information to the network device, and the network device can receive at least two uplink control information, which improves the transmission success rate and the receiving success rate of the uplink control information.
  • the network device can receive uplink control information as much as possible to avoid loss of uplink control information.
  • the transmission time The unit includes one or more subframes, or the transmission time unit includes one or more time slots, or the transmission time unit includes one or more symbols.
  • the uplink control The information includes: an acknowledgment acknowledgment/negative acknowledgment for hybrid automatic repeat request, and/or channel state information.
  • a method for transmitting uplink control information is provided, where the method is performed by a user equipment.
  • the method includes: acquiring, by the user equipment, uplink control information.
  • the user equipment sends uplink control information to the network device in the first transmission time unit.
  • the user equipment maps the uplink control information to all symbols or partial symbols in the symbol set included in the first transmission time unit.
  • the set of symbols includes the last M symbols of the first transmission time unit, and M is a positive integer.
  • a plurality of symbols for transmitting uplink control information may be included, and the symbol set includes, for example, a symbol for transmitting uplink control information in the first transmission time unit.
  • the user equipment may map the uplink control information to all the symbols in the symbol set, so that the uplink control information has sufficient uplink transmission resources, or the uplink control information may be mapped to the symbol set. The part of the symbol is sent on the way, the way is more flexible.
  • the user equipment maps the uplink control information to the partial symbol in the symbol set included in the first transmission time unit, the user equipment is in the symbol set.
  • the reference signal may also be sent to the network device on the symbol on which the uplink control information is not mapped.
  • the user equipment mapping uplink control information only occupies part of the symbols in the symbol set.
  • other information of the network device such as a reference signal, may be mapped on the symbol of the symbol set in which the uplink control information is not mapped. In this way, as much information as possible can be sent to the network device through limited transmission resources.
  • a method for receiving uplink control information is provided, where the method is performed by a network device.
  • the method includes: the network device sends control signaling to the user equipment, where the control signaling is used to indicate that the user equipment maps the uplink control information to all symbols or part of symbols in the symbol set included in the first transmission time unit, and sends the information to the network. device.
  • the symbol set includes the last M symbols of the first transmission time unit, and M is a positive integer.
  • the network device receives the uplink control information on all symbols in the symbol set; or, if the control signal And the user equipment is used to indicate that the user equipment maps the uplink control information to a part of the symbol in the symbol set, and the network device is in the symbol set.
  • the uplink control information is received on part of the symbol.
  • a plurality of symbols for transmitting uplink control information may be included, and the symbol set includes, for example, a symbol for transmitting uplink control information in the first transmission time unit.
  • the network device may instruct the user equipment to map the uplink control information to all symbols in the symbol set, so that the uplink control information has sufficient uplink transmission resources, or the uplink control information may be mapped to some symbols in the symbol set.
  • the network device can indicate which symbols the user equipment maps to the uplink control information according to different factors such as the network condition and the type of the user equipment, and is flexible.
  • the control signaling is used to indicate that the user equipment maps the uplink control information to the partial symbol in the symbol set, and sends the information to the network device
  • the control signaling is performed.
  • the user equipment is also instructed to transmit a reference signal to the network device on a symbol of the set of symbols that does not map the uplink control information.
  • the network device may also receive the reference signal on the symbol of the symbol set in which the uplink control information is not mapped.
  • the network device may instruct the user equipment to map other information on the symbol of the unmapped uplink control information in the symbol set, for example, reference. Signals so that network devices can receive as much information as possible through limited transmission resources.
  • a downlink information sending method is provided, which is performed by a network device.
  • the method includes: the network device acquiring downlink information.
  • the network device sends the downlink information to the user equipment in the first transmission time unit.
  • the symbol occupied by the network device in the first transmission time unit for transmitting the downlink information does not include the last K symbols used for transmitting the downlink information in the first transmission time unit, and K is a positive integer.
  • the downlink information may include at least one of downlink control information and downlink data.
  • the network device performs downlink data transmission on the downlink symbol of the subframe n, and the user equipment sends an ACK/NACK for the downlink data received in the subframe n to the network device on the uplink symbol of the subframe n. . If the network device maps the downlink data to the last K symbols included in the first transmission time unit for transmitting the downlink data symbols, the user equipment needs to immediately decode and determine the ACK/NACK for the downlink data after receiving the downlink data.
  • the network device does not send downlink data to the user equipment by using the last K symbols, and the user equipment has sufficient time to decode the downlink data received in the subframe n, thereby The ACK/NACK may be sent to the network device in subframe n to reduce the data processing delay.
  • the last K symbols used by the network device to send the downlink information in the first transmission time unit may send the reference signal to the user equipment.
  • the network device may send other information, such as a reference signal, on the last K symbols, so that the network device can pass the limited transmission resource. Send as much information as possible.
  • the first transmission time unit includes the first L symbols for transmitting downlink information, and the guard interval The occupied symbols, and the last M symbols used to send the uplink information.
  • the last K symbols are the last K symbols in the first L symbols
  • L is an integer greater than or equal to K
  • M is a positive integer.
  • This implementation gives the structure of a first transmission time unit.
  • a sixth aspect provides a user equipment, where the user equipment includes a processor and a communication interface, where the processor is configured to acquire uplink control information, map the uplink control information to at least two transmission time units, and send the information to the communication interface.
  • the user equipment includes a processor and a communication interface, where the processor is configured to acquire uplink control information, map the uplink control information to at least two transmission time units, and send the information to the communication interface.
  • Internet equipment Internet equipment.
  • the processor is configured to map the uplink control information to the at least two transmission time units, and send the information to the network device by using the communication interface, by: Part of the information of the uplink control information is mapped to the last M symbols of the first transmission time unit, and the remaining information in the uplink control information is mapped to the first N symbols of the second transmission time unit to perform uplink control through the communication interface. Information is sent to the network device.
  • the first transmission time unit and the second transmission time unit are consecutive transmission time units, and M and N are positive integers.
  • the communication interface is further configured to receive control signaling sent by the network device, and the processor is further configured to use the control signaling Determining a frequency domain location of the uplink control information in the first transmission time unit; or the processor is further configured to: determine downlink control information corresponding to the received downlink data, according to the first control channel unit of the downlink control information The numbering calculates the frequency domain position of the partial information in the first transmission time unit.
  • the uplink control information is occupied by the second transmission time unit
  • the frequency domain location is the same as the frequency domain location occupied by the uplink control information in the first transmission time unit; or the frequency domain location occupied by the uplink control information in the second transmission time unit and the uplink control information in the first transmission time unit
  • the occupied frequency domain positions differ by a first offset.
  • the uplink control information is occupied by the second transmission time unit
  • the frequency domain location is a continuous P subcarriers.
  • the P subcarriers include the subcarriers with the lowest number of the uplink time-frequency resources allocated to the user equipment in the second transmission time unit, or the uplink time-frequency resources allocated to the user equipment in the second transmission time unit.
  • the highest numbered subcarrier, P is a positive integer.
  • the processor is configured to map the uplink control information to the at least two transmission time units, and send the information to the network device by using the communication interface, by:
  • the uplink control information is repeatedly mapped into at least two transmission time units to transmit at least two uplink control information to the network device through the communication interface.
  • at least two transmission time units are consecutive transmission time units, or at least two transmission time units are discontinuous transmission time units.
  • the time unit includes one or more subframes, or the transmission time unit includes one or more time slots, or the transmission time unit includes one or more symbols.
  • the uplink The control information includes: an acknowledgment response/negative acknowledgment for hybrid automatic repeat request, and/or channel state information.
  • a network device comprising a processor and a communication interface.
  • the processor is configured to generate a control instruction, where the control signaling is used to indicate that the user equipment maps the uplink control information to the at least two transmission time units and sends the information to the network device.
  • the communication interface is configured to send the control signaling to the user equipment, and receive the uplink control information sent by the user equipment in the at least two transmission time units.
  • the control signaling further indicates that the user equipment maps part information of the uplink control information to the last M symbols of the first transmission time unit, and The remaining information in the control information is mapped onto the first N symbols of the second transmission time unit.
  • the first transmission time unit and the first The two transmission time units are continuous transmission time units, and M and N are positive integers.
  • the communication interface is configured to receive the uplink control information sent by the user equipment in the at least two transmission time units, by: receiving part of the uplink control information on the last M symbols of the first transmission time unit, and The remaining information in the uplink control information is received on the first N symbols of the second transmission time.
  • control signaling further indicates a frequency domain location of the partial information of the uplink control information in the first transmission time unit; Or the control signaling further indicates that the user equipment calculates the frequency domain location of the partial information of the uplink control information in the first transmission time unit according to the number of the first control channel unit of the downlink control information corresponding to the received downlink data.
  • the control signaling further indicates that the uplink control information is in the second transmission time unit.
  • the occupied frequency domain location is the same as the frequency domain location occupied by the uplink control information in the first transmission time unit; or the control signaling further indicates that the frequency domain location occupied by the uplink control information in the second transmission time unit and the uplink control information are The frequency domain positions occupied in the first transmission time unit differ by a first offset.
  • the control signaling further indicates that the uplink control information is in the second transmission time unit.
  • the occupied frequency domain locations are consecutive P subcarriers.
  • the P subcarriers include the subcarriers with the lowest number of the uplink time-frequency resources allocated to the user equipment in the second transmission time unit, or the uplink time-frequency resources allocated to the user equipment in the second transmission time unit.
  • the highest numbered subcarrier, P is a positive integer.
  • the communications interface is configured to receive the uplink control information sent by the user equipment in the at least two transmission time units, by implementing the following manner: At least two uplink control information are received in the time unit. Wherein at least two transmission time units are consecutive transmission time units, or at least two transmission time units are discontinuous transmission time units.
  • the transmission time The unit includes one or more subframes, or the transmission time unit includes one or more time slots, or the transmission time unit includes one or more symbols.
  • the uplink control The information includes: an acknowledgment acknowledgment/negative acknowledgment for hybrid automatic repeat request, and/or channel state information.
  • a user equipment comprising a processor and a communication interface.
  • the processor is configured to acquire uplink control information.
  • the communication interface is configured to send the uplink control information to the network device at the first transmission time unit.
  • the user equipment maps the uplink control information to all symbols or partial symbols in the symbol set included in the first transmission time unit.
  • the set of symbols includes the last M symbols of the first transmission time unit, and M is a positive integer.
  • the communication interface is further configured to: A reference signal is transmitted to the network device on a symbol of the symbol set in which the uplink control information is not mapped.
  • a network device comprising a processor and a communication interface.
  • the processor is configured to generate a control instruction, where the control signaling is used to indicate that the user equipment maps the uplink control information to all or a part of the symbol set included in the first transmission time unit, and sends the information to the network device.
  • the symbol set includes the last M symbols of the first transmission time unit, and M is a positive integer.
  • the communication interface is configured to: send the control signaling to the user equipment; and if the control signaling is used to indicate that the user equipment maps the uplink control information to all symbols in the symbol set Sending to the network device, receiving uplink control information on all symbols in the symbol set, or if the control signaling is used to indicate that the user equipment maps the uplink control information to a part of the symbols in the symbol set and sends the information to the network device, The uplink control information is received on a part of the symbols in the symbol set.
  • the control signaling is used to indicate that the user equipment maps the uplink control information to the partial symbol in the symbol set and sends the information to the network device
  • the control signaling is The user equipment is also instructed to transmit a reference signal to the network device on a symbol of the set of symbols that does not map the uplink control information.
  • the communication interface is further configured to: receive the reference signal on the symbol of the symbol set in which the uplink control information is not mapped.
  • a network device comprising a processor and a communication interface.
  • the processor is configured to obtain downlink information.
  • the communication interface is configured to send the downlink information to the user equipment at the first transmission time unit.
  • the symbol occupied by the network device in the first transmission time unit for transmitting the downlink information does not include the last K symbols used for transmitting the downlink information in the first transmission time unit, and K is a positive integer.
  • the communication interface is further configured to: send, by using the last K symbols used for transmitting the downlink information in the first transmission time unit, the reference signal to the user equipment.
  • the first transmission time unit includes the first L symbols for transmitting downlink information, and the guard interval The occupied symbols, and the last M symbols used to send the uplink information.
  • the last K symbols are the last K symbols in the first L symbols
  • L is an integer greater than or equal to K
  • M is a positive integer.
  • a user equipment comprising functional units for performing the method provided by the first aspect or any of the possible implementations of the first aspect.
  • a network device comprising a functional unit for performing the method provided by the second aspect or any of the possible implementations of the second aspect.
  • a user equipment comprising functional units for performing the method provided by the third aspect or any of the possible implementations of the third aspect.
  • a network device comprising a functional unit for performing the method provided by the fourth aspect or any one of the possible implementations of the fourth aspect.
  • a network device comprising a functional unit for performing the method provided by the fifth aspect or any one of the possible implementations of the fifth aspect.
  • a computer storage medium for storing computer software instructions for use in the user equipment, including any of the possible implementations for performing the first aspect or the first aspect, designed for a user equipment program of.
  • a computer storage medium for storing computer software instructions for use in the network device, including any of the possible implementations for performing the second aspect or the second aspect, which are designed for a network device program of.
  • a computer storage medium for storing computer software instructions for use in the user equipment, including any possible implementation for performing the third aspect or the third aspect, designed for the user equipment program of.
  • a computer storage medium for storing computer software instructions for use in the network device, including any possible implementation for performing the fourth aspect or the fourth aspect, which is designed for a network device program of.
  • a computer storage medium for storing computer software used for the network device
  • An instruction comprising a program designed to perform a network device in any one of the possible implementations of the fifth or fifth aspect.
  • the user equipment may map the uplink control information to the at least two transmission time units, so that the uplink control information may occupy more symbols, and the coverage for the PUCCH is improved.
  • FIG. 1A is a schematic structural diagram of a frame of an S1 subframe according to an embodiment of the present invention.
  • FIG. 1B is a schematic structural diagram of a frame of an S2 subframe according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an application scenario according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a method for sending uplink control information according to an embodiment of the present invention
  • FIG. 4 is a flowchart of a method for sending uplink control information according to an embodiment of the present invention
  • FIG. 5 is a flowchart of a downlink information sending method according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a computer device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a user equipment according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a user equipment according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • User equipment which is a device that provides voice and/or data connectivity to a user, for example, may include a handheld device with wireless connectivity, or a processing device connected to a wireless modem.
  • the user equipment can communicate with the core network via a Radio Access Network (RAN) to exchange voice and/or data with the RAN.
  • the user equipment may include a UE, a wireless terminal device, a mobile terminal device, a Subscriber Unit, a Subscriber Station, a Mobile Station, a Mobile Station, a Remote Station, and a Pickup Station.
  • Access Point AP
  • Remote Terminal Access Terminal
  • User Terminal User Agent
  • User Device etc.
  • a mobile phone or "cellular” phone
  • a computer with a mobile terminal device
  • a portable, pocket, handheld, computer built-in or in-vehicle mobile device For example, Personal Communication Service (PCS) phones, cordless phones, Session Initiation Protocol (SIP) phones, Wireless Local Loop (WLL) stations, Personal Digital Assistants (PDAs), etc. .
  • PCS Personal Communication Service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDAs Personal Digital Assistants
  • a network device for example comprising a base station (e.g., an access point), may refer to an access network that passes over the air interface.
  • the base station can be used to convert the received air frame to an Internet Protocol (IP) packet as a router between the wireless terminal device and the rest of the access network, wherein the remainder of the access network can include an IP network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may include a Radio Network Controller (RNC) or a Base Station Controller (BSC), or may also include an evolved base station in an evolved LTE system (LTE-Advanced, LTE-A). (NodeB or eNB or e-NodeB, evolutional Node B), or may also include the next generation node B (NG-NB) in the 5G system, which is not limited in the embodiment of the present invention.
  • RNC Radio Network Controller
  • BSC Base Station Controller
  • the uplink control information may include UCI, and the UCI includes an acknowledgement acknowledgement (ACK)/negative acknowledgement (NACK) in the Hybrid Automatic Repeat ReQuest (HARQ), and may also include other uplink directions.
  • Control information such as Channel State Information (CSI).
  • system and “network” in the embodiments of the present invention may be used interchangeably.
  • Multiple means two or more, and in view of this, "a plurality” may also be understood as “at least two” in the embodiment of the present invention.
  • and/or describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character "/” unless otherwise specified, generally indicates that the contextual object is an "or" relationship.
  • FIG. 1A is a schematic diagram of a frame structure of an S1 subframe.
  • S1 sub-frame there are 11 symbols for downlink transmission (shown as a box with a slash in FIG. 1A) and a GP with a length of 1 symbol (as shown by the blank box in FIG. 1A).
  • 2 symbols for uplink transmission (as shown by the box drawn in the horizontal line in Figure 1A).
  • the symbols for downlink transmission include symbols for physical downlink control channel (PDCCH) transmission and symbols for physical downlink shared channel (PDSCH) transmission.
  • symbols are generally used for physical downlink control channel (PDCCH) transmission.
  • the symbols used for PDCCH transmission are located before the symbols used for PDSCH transmission.
  • the two symbols in the S1 subframe for uplink transmission may be symbols for PUCCH transmission.
  • FIG. 1B is a schematic diagram of a frame structure of an S2 subframe.
  • this S2 subframe there are two symbols for downlink transmission (shown as a box with a slash in FIG. 1B) and a GP with a length of one symbol (as shown by the blank box in FIG. 1B).
  • 11 symbols for uplink transmission (as shown by the box drawn in the horizontal line in Figure 1B).
  • two symbols for downlink transmission include symbols for PDCCH transmission
  • 11 symbols for uplink transmission include symbols for physical uplink shared channel (PUSCH) transmission and for PUCCH transmission. symbol.
  • PUSCH physical uplink shared channel
  • FIG. 1B is an example of a symbol including for PUCCH transmission.
  • FIG. 2 includes a network device and a user equipment, where the network device takes a base station as an example, and the base station provides services for the user equipment.
  • the network device takes a base station as an example, and the base station provides services for the user equipment.
  • the HARQ technology is adopted, if the base station transmits downlink data to the user equipment by using the symbol for downlink transmission included in the S1 subframe, the user equipment may continue to use the uplink transmission included in the S1 subframe.
  • the symbol sends an ACK/NACK for the downlink data to the base station, and the user equipment may further send other uplink control information to the base station by using the symbol for uplink transmission included in the S1 subframe.
  • the number of symbols included in the uplink transmission for the S1 subframe is not too large.
  • the S1 subframe shown in FIG. 1A is used. In this S1 subframe, only two symbols for uplink transmission are included. Obviously, the number is relatively small. If the user equipment needs to send more uplink control information, such as user equipment at the edge of the cell, generally more symbols are needed for transmitting uplink control information, then transmission resources may occur. Insufficient situation, resulting in an uplink control letter Interest cannot be sent.
  • the user equipment may map the uplink control information to the at least two transmission time units, so that the uplink control information may occupy more symbols, and improve the coverage of the PUCCH, especially when the uplink control information needs to be transmitted. When there are many, it can effectively avoid the situation that the uplink control information cannot be transmitted because there is no resource.
  • the technical solution provided by the embodiments of the present invention can be used not only for a 5G system and a next-generation communication system, but also for a communication system such as a third-generation mobile communication system (3G) system or a fourth-generation mobile communication system (4G) system.
  • a communication system such as a third-generation mobile communication system (3G) system or a fourth-generation mobile communication system (4G) system.
  • the technical solution provided by the embodiment of the present invention may be applied to the LTE system, and the embodiment of the present invention is not limited.
  • one transmission time unit may include one or more time slots, or may include one or more subframes, or may include one or more symbols.
  • one transmission time unit may be one subframe, such as an S1 subframe or an S2 subframe in a 5G system, or a subframe in a 3G system or a 4G system, such as a subframe in an LTE system, by using an embodiment of the present invention.
  • the provided technical solutions can increase the coverage of the PUCCH.
  • the transmission time unit is mostly a subframe.
  • an embodiment of the present invention provides a method for transmitting uplink control information, and a flow of the method is as follows.
  • the base station sends control signaling to the user equipment, where the control signaling is used to indicate that the user equipment maps the uplink control information to the at least two transmission time units and sends the control signaling to the base station, where the user equipment receives the control signaling.
  • the base station schedules the user equipment by sending control signaling, and the control signaling may indicate the manner in which the user equipment maps the uplink control information.
  • the control signaling may be Downlink Control Information (DCI), or may be high-level signaling, such as Radio Resource Control (RRC) signaling, which is not limited in the embodiment of the present invention.
  • DCI Downlink Control Information
  • RRC Radio Resource Control
  • the base station sends downlink data to the user equipment, and the user equipment receives the downlink data sent by the base station.
  • the base station may send downlink data to the user equipment through the S1 subframe, or may send downlink data to the user equipment through the S2 subframe, or may also send downlink data to the user equipment by using other types of transmission time units. If in a 3G system or a 4G system, the base station can send downlink data to the user equipment through a subframe that is common in the corresponding system.
  • the base station sends the downlink data to the user equipment through the S1 subframe, which is of course not limited to the actual application.
  • the base station may send downlink data to the user equipment by using the symbol for PDSCH transmission in the S1 subframe, because the S1 subframe includes a symbol for downlink transmission.
  • the symbol for uplink transmission is also included, so the user equipment can continue to send uplink information to the base station through the symbol for uplink transmission in the S1 subframe.
  • a symbol for uplink transmission is referred to as an uplink symbol
  • a symbol for downlink transmission is referred to as a downlink symbol.
  • the uplink symbol includes a symbol for transmitting uplink control information and a symbol for transmitting uplink data
  • the downlink symbol includes a symbol for transmitting downlink control information and a symbol for transmitting downlink data.
  • S32 is an optional execution step, so the arrow for indicating S32 is drawn as a broken line in FIG. 3 to distinguish it from the mandatory step.
  • the user equipment acquires uplink control information to be sent to the base station.
  • the base station sends downlink data to the user equipment, and after receiving the downlink data, the user equipment may be configured for downlink data.
  • the receiving situation determines whether to reply ACK or NACK to the base station, that is, the uplink control information that the user equipment wants to send to the base station may include ACK/NACK.
  • the user equipment may also send other uplink control information, such as CSI, to the base station, which is not limited in the embodiment of the present invention.
  • the user equipment maps the acquired uplink control information to the at least two transmission time units and sends the uplink control information to the base station, where the base station receives the uplink control information sent by the user equipment in the at least two transmission time units.
  • the user equipment maps the acquired uplink control information to two consecutive transmission time units and sends the uplink control information to the base station, and the base station receives the uplink control information on the two consecutive transmission time units.
  • first transmission time unit Two consecutive transmission time units are referred to as a first transmission time unit and a second transmission time unit, respectively.
  • the first transmission time unit may be an S1 subframe and the second transmission time unit may be an uplink dedicated subframe.
  • the uplink dedicated subframe may be an uplink UL subframe, and all symbols of the UL subframe are used for transmitting uplink information. All the symbols of the UL subframe may be used for transmitting uplink control information, or may be used for transmitting uplink data, or may be partially used for transmitting uplink control information, and the remaining part is used for transmitting uplink data.
  • the uplink dedicated subframe as the second transmission time unit in the embodiment of the present invention is obviously an uplink dedicated subframe used for transmitting uplink control information, or partially used for transmitting uplink control information, and the remaining part is used for transmitting uplink data. Uplink dedicated subframe.
  • the user equipment maps partial information of the uplink control information to the first transmission time unit, and maps the remaining information in the uplink control information to the second transmission time unit, thereby the first transmission time unit and the first
  • the uplink control information is sent to the base station on the second transmission time unit.
  • the base station receives part of the uplink control information on the first transmission time unit, and receives the remaining information in the uplink control information on the second transmission time unit, thereby receiving the complete uplink control information. That is, the uplink control information can occupy the uplink symbol in the second transmission time unit in addition to the uplink symbol in the first transmission time unit, and obviously improves the coverage of the PUCCH by the transmission time unit, so that the uplink control information can be sufficient. Get the transfer.
  • the partial information of the uplink control information may be mapped to the last last M symbols of the first transmission time unit, and the remaining information in the uplink control information may be mapped to the second transmission.
  • the base station receives partial information of the uplink control information on the last M symbols of the first transmission time unit, and receives uplink control information on the first N symbols of the second transmission time unit. The remaining information.
  • continuous mapping can be implemented during mapping, and the base station can also receive continuously when receiving, so that the transmission performance and the reception performance are better.
  • the front and the back here are all in terms of time, that is, before and after in chronological order.
  • M and N are positive integers, and the range of values of M and N is related to the structure of the transmission time unit, which is not limited in the embodiment of the present invention.
  • the first transmission time unit is an S1 subframe, and then the possible values of M include 1, 2, or 3, and the like.
  • part of the information of the uplink control information is mapped to which symbols of the first transmission time unit, and the remaining information of the uplink control information is mapped to which symbols of the second transmission time unit, that is, at the time of mapping M and N
  • the value of the value may be predefined by a protocol or a standard, or the base station may also notify the user equipment through the control signaling in S31.
  • mapping the uplink control information in addition to knowing the time domain location occupied by the uplink control information in the transmission time unit, it is also necessary to know the frequency domain location occupied by the uplink control information in the transmission time unit. Introduced below.
  • the frequency domain location occupied by the partial information of the uplink control information in the first transmission time unit may be notified by the base station to the user equipment, for example, the base station indicates, by using the control information in S31, the uplink control information in the first transmission.
  • the frequency domain location occupied by the user may be calculated by the user equipment.
  • One calculation method is: the user equipment determines the downlink control information corresponding to the received downlink data, and the first control channel element (Control Channel Element, according to the downlink control information, The number of CCE) calculates the frequency domain position of the partial information of the uplink control information in the first transmission time unit.
  • the downlink data corresponding to the downlink control information used for calculating the frequency domain location may be downlink data received by the user equipment in the first transmission time unit, or may be several of the user equipment before the first transmission time unit.
  • the base station may instruct the user equipment to calculate part of the uplink control information by using the control information in S31 at the first transmission time.
  • the frequency domain location occupied by the unit, or the user equipment determines, according to the predefined definition of the protocol or the standard, the frequency domain location occupied by the part of the uplink control information in the first transmission time unit according to the CCE number.
  • the previous section describes how the user equipment knows the frequency domain location occupied by the part of the uplink control information in the first transmission time unit.
  • the following describes how the user equipment knows the frequency of the remaining information in the uplink control information occupied by the second transmission time unit. Domain location.
  • the frequency domain location occupied by the remaining information in the uplink control information in the second transmission time unit is related to whether the user equipment is to send uplink data in the second transmission time unit.
  • the frequency domain location occupied by the remaining information in the uplink control information in the second transmission time unit may also be notified by the base station to the user equipment.
  • the base station indicates to the user equipment, by using the control information in S31, the frequency domain location occupied by the uplink control information in the second transmission time unit.
  • the base station may directly notify the user equipment to indicate the frequency domain location that the uplink control information specifically occupies in the second transmission time unit, or the base station may also notify the user equipment that the uplink control information is occupied by the frequency domain location in the second transmission time unit.
  • the part of the information of the uplink control information is the same in the frequency domain of the first transmission time unit; or the frequency information of the remaining information in the uplink control information in the second transmission time unit and the part of the uplink control information are in the The frequency domain positions occupied by the transmission time unit may be different by the first offset.
  • the base station may indicate the user equipment by using the control signaling in S31, where the two frequency domain positions are different by the first offset, and the user equipment is obtained.
  • the uplink control may be obtained according to the frequency domain position occupied by the first transmission time unit and the first offset according to the partial information of the uplink control information.
  • the first offset may be the base station notifying the user equipment, or may be predefined by a standard or a protocol, or may be calculated by the user equipment according to the number of the first transmission time unit, or may be the user equipment according to the second The number of the transmission time unit is calculated.
  • the frequency domain location occupied by a transmission time unit and the remaining information in the uplink control information may be the same or different in the frequency domain location occupied by the second transmission time unit. In different cases, one possible implementation manner is two. The difference is the first offset.
  • the frequency domain position occupied by the remaining information in the uplink control information in the second transmission time unit may be consecutive P subcarriers in the second transmission time unit, where The P subcarriers include the subcarriers with the lowest number among the uplink time-frequency resources allocated to the user equipment in the second transmission time unit, or the P subcarriers include the uplink time-frequency resources allocated to the user equipment in the second transmission time unit.
  • the highest numbered subcarrier, P is a positive integer.
  • the subcarriers are the subcarriers of the uplink time-frequency resources allocated to the user equipment in the second transmission time unit, and may be notified by the base station to the user equipment, for example, the base station notifies the user equipment through the control signaling in S31, or may Predefined by agreement or standard.
  • the uplink control information may be sent together while transmitting the data, which does not affect the data transmission, and increases the number of symbols for transmitting the uplink control information.
  • the number of subcarriers occupied by the partial information of the uplink control information in the first transmission time unit and the number of subcarriers occupied by the remaining information in the uplink control information are the same, for example, Both occupy 6 subcarriers or occupy 12 subcarriers.
  • the user equipment repeatedly maps the uplink control information to the at least two transmission time units to send the at least two uplink control information to the base station, that is, the uplink control information is repeatedly sent to the base station.
  • the at least two transmission time units may be consecutive transmission time units, or may be discontinuous transmission time units.
  • at least two transmission time units may be of the same type, for example, the same as the S1 subframe or the same S2 sub-frame.
  • the frame, or the type of at least two transmission time units may also be different, for example, one of the transmission time units is an S1 subframe, and the other transmission time unit is a UL subframe, and so on.
  • part of the uplink control information is transmitted through one transmission time unit, and the base station receives a complete uplink control information on two consecutive transmission time units.
  • the complete uplink control information is transmitted by one transmission time unit, and the base station receives at least two complete uplink control information on at least two transmission time units, that is, the base station passes each transmission time unit. Both can receive a complete uplink control information, which is equivalent to repeated transmission.
  • the uplink control information may be mapped to the uplink symbol in the transmission time unit for transmission, and the mapping manner is not described.
  • the transmission time unit is at least two transmission time units
  • the base station may notify the user equipment, for example, the base station informs the user equipment of the number of the at least two transmission time units by using control signaling in S31, or may Pre-defined by the protocol or the standard, the base station only needs to notify the user equipment of the mapping mode by using the control signaling in S31. If the mapping mode shown in the second embodiment is adopted, the user equipment knows according to the predefined information. How to select at least two transmission time units. For example, the first S1 subframe after the S1 subframe is repeatedly sent with uplink control information.
  • the number of repeated transmissions may be notified by the base station to the user equipment, for example, the base station informs the user equipment through control signaling in S31, or may be predefined by a protocol or a standard, for example, Pre-defined, as long as the method of repeated transmission is used, the number of repeated transmissions is 2 times.
  • the type of the subframe that is allowed to be repeatedly transmitted may be notified by the base station to the user equipment, for example, the base station informs the user equipment by using control signaling in S31, or may be predefined by a protocol or a standard, for example, a predefined S1 subframe, Both the S2 subframe and the UL subframe can participate in repeated transmission.
  • the uplink control information may be repeatedly sent in at least two transmission time units to improve the coverage of the PUCCH.
  • the transmission success rate of the uplink control information can be improved by repeating the transmission a plurality of times.
  • the number of symbols used for transmitting the uplink control information may be increased, and the coverage of the PUCCH is improved.
  • a plurality of symbols for transmitting uplink control information may be included, for example, 2 or 3 may be included in the S1 subframe. Then, when the user equipment sends the uplink control information, it involves the problem of how to map, that is, it needs to know which symbols to specifically transmit the uplink control information to. To solve the technical problem, an embodiment of the present invention provides a method for transmitting uplink control information, which is shown in FIG. 4.
  • the base station sends control signaling to the user equipment, where the control signaling is used to indicate that the user equipment maps the uplink control information to all the symbols or part of the symbols included in the first transmission time unit, and then sends the information to the base station.
  • the device receives the control signaling.
  • the symbol set includes the last M symbols of the first transmission time unit, and M is a positive integer.
  • the first transmission time unit is an S1 subframe
  • the last M symbols may be all symbols included in the S1 subframe for transmitting uplink control information.
  • the base station schedules the user equipment by sending control signaling, and the control signaling may indicate the manner in which the user equipment maps the uplink control information.
  • the control signaling may be a DCI, or may be a high-level signaling, such as RRC signaling, which is not limited in the embodiment of the present invention.
  • the user equipment acquires uplink control information to be sent to the base station.
  • the base station sends the downlink data to the user equipment, and after receiving the downlink data, the user equipment may determine whether to reply the ACK or the NACK to the base station, that is, the uplink control information that the user equipment sends to the base station may include the ACK. /NACK.
  • the user equipment may also send other uplink control information, such as CSI, to the base station, which is not limited in the embodiment of the present invention.
  • the user equipment maps the acquired uplink control information to all the symbols in the symbol set of the first transmission time unit, and the base station receives the uplink control information on all symbols in the symbol set of the first transmission time unit. Or, the user equipment maps the uplink control information to a part of the symbols in the symbol set of the first transmission time unit, and the base station receives the uplink control information on the partial symbol in the symbol set of the first transmission time unit.
  • the user equipment is mapped according to the manner indicated by the control signaling sent by the base station.
  • the first transmission time unit is an S1 subframe shown in FIG. 1A as an example.
  • the S1 subframe includes two symbols for transmitting uplink control information, that is, the last two symbols of the S1 subframe, and the symbol set of the S1 subframe may include the last two symbols of the S1 subframe.
  • the base station may indicate, by using the control signaling, that the user equipment maps the uplink control information to the penultimate symbol of the S1 subframe, or the base station may indicate, by using the control signaling, the user equipment, to map the uplink control information to the last one of the S1 subframes.
  • the base station may indicate that the user equipment maps the uplink control information to the last two symbols of the S1 subframe by using the control signaling, that is, the base station may indicate that the user equipment adopts different mapping manners according to different situations, which is flexible.
  • the base station can perform downlink data transmission on the downlink symbol of the subframe n, and the user equipment sends an ACK/NACK for the downlink data received in the subframe n to the base station on the uplink symbol of the subframe n, then, If the user equipment sends a NACK, it is generally desirable for the base station to perform data retransmission in subframe n+1.
  • the symbols included in the S1 subframe for transmitting uplink control information are located at the end of the S1 subframe, as shown in FIG. 1A. Then, if the user equipment maps uplink control information such as ACK/NACK to the S1 subframe. The last M symbols are sent to the base station.
  • the M is a positive integer, and the value range of the M is related to the structure of the transmission time unit, which is not limited in the embodiment of the present invention.
  • the possible values of M include 1, 2, or 3, and the like.
  • the base station can determine which mapping should be used for different user equipments according to actual conditions. the way. For example, for some user equipments that are sensitive to delays, that is, user equipments with high latency requirements, such as user equipments for Ultra Reliable & Low Latency Communication (URLLC) services.
  • the user equipment generally needs the downlink data of the base station to retransmit the subframe n in the subframe n+1.
  • the base station may instruct the user equipment to map the uplink control information to the partial symbols in the symbol set included in the first transmission time unit, for example, the first transmission time unit includes M symbols for transmitting the uplink control information, and the M The symbol is the last M symbols of the first transmission time unit.
  • the base station indicates that the symbol of the uplink control information of such user equipment does not include the last H symbols of the first transmission time unit, and H is a positive integer smaller than M. That is to say, the uplink control information is not transmitted through the last H symbols of the first transmission time unit, and the base station is given a relatively sufficient decoding time, so as to ensure that the base station can retransmit the downlink data in the subframe n in the subframe n+1.
  • the first transmission time unit is the S1 subframe shown in FIG. 1A
  • M 2
  • the base station is not required to retransmit the downlink data in subframe n in subframe n+1. Then, the base station may instruct the user equipment to map the uplink control information to all symbols or partial symbols in the symbol set included in the first transmission time unit, and if it is mapped to the partial symbols, it does not limit which symbols.
  • eMBB enhanced mobile broadband
  • the first transmission time unit includes M symbols for transmitting uplink control information, and the M symbols are the last M symbols of the first transmission time unit, and then the base station indicates that the symbol of the uplink control information of the user equipment mapping is Any one or more of these M symbols.
  • the base station indicates that the symbol of the uplink control information of the user equipment mapping is Any one or more of these M symbols.
  • the first transmission time unit is the S1 subframe shown in FIG. 1A
  • M 2
  • the user equipment may map the uplink control information to the second-to-last symbol of the S1 subframe, and send the data to the base station, or the user.
  • the device may map the uplink control information to the last symbol of the S1 subframe to the base station, or the user equipment may map the uplink control information to the last two symbols of the S1 subframe and send the uplink control information to the base station.
  • the base station instructs the user equipment to map the uplink control information to the partial symbol of the first transmission time unit
  • the part of the symbol for transmitting the uplink control information included in the first transmission time unit may not be mapped with the uplink control information. If this part of the symbol does not carry any information, it is also a waste of resources. Therefore, in the embodiment of the present invention, if the base station instructs the user equipment to map the uplink control information to the partial symbol of the first transmission time unit, the base station may further indicate, by using the control signaling in S41, the user equipment at the first transmission time. The symbol of the unsigned uplink control information in the symbol set of the unit is sent to the base station, so that the symbols of the first transmission time unit can be fully utilized to avoid waste of resources.
  • the reference signal here may be a Sounding Reference Signal (SRS), and of course other possible reference signals.
  • SRS Sounding Reference Signal
  • the user equipment may determine that the symbol set in the first transmission time unit is not determined according to a standard or protocol predefined rule.
  • the reference signal is transmitted to the base station on the symbol mapping the uplink control information without additional indication from the base station.
  • the frequency domain location occupied by the reference signal in the first transmission time unit may be the same as the frequency domain location occupied by the uplink control information, or the reference signal in the first transmission time unit may occupy the first transmission in the frequency domain.
  • the user equipment maps the uplink control information to the second-to-last symbol of the S1 subframe according to the indication of the base station, and sends the uplink control information to the base station.
  • User equipment can also According to the indication of the base station or according to a predefined rule of the protocol or the standard, the reference signal is mapped to the last symbol of the S1 subframe and sent to the base station, and each symbol of the S1 subframe can be effectively utilized, that is, Transfer as much information as possible with as few transmission time units as possible.
  • the user may use the reasonable mapping manner to map the uplink control information, and for some user equipments sensitive to the delay, the base station may be initially transmitted in the subframe n, and the base station is retransmitted in the subframe.
  • n+1 which satisfies the delay requirement, and can also avoid the waste of time-frequency resources.
  • the base station can perform downlink data transmission on the downlink symbol of the subframe n, and the user equipment sends an ACK/NACK for the downlink data received in the subframe n to the base station on the uplink symbol of the subframe n.
  • the base station maps the downlink data to the last K symbols included in the S1 subframe for transmitting the downlink data symbols, the user equipment needs to decode and determine immediately after receiving the downlink data.
  • the downlink data received on the last K symbols of the subframe n may not be transmitted before the first symbol of the subframe n for transmitting the uplink control information. Since decoding is performed, ACK/NACK cannot be transmitted to the base station in subframe n.
  • K is a positive integer, and K may be less than or equal to the number of symbols included in the S1 subframe for transmitting downlink data.
  • an embodiment of the present invention provides a downlink information sending method, which is shown in FIG. 5.
  • the base station acquires downlink information to be sent to the user equipment.
  • the downlink information that the base station sends to the user equipment may include downlink data, and may also include downlink control information.
  • the base station sends the downlink information to the user equipment in the first transmission time unit.
  • the base station may send the downlink information to the user equipment by using the first L symbols, but if the base station occupies the last K symbols in the first L symbols when transmitting the downlink information, the user equipment may receive the downlink information on the last K symbols. It is too late to decode, so that the uplink control information for the downlink information may not be fed back to the base station on the last M symbols of the first transmission time unit.
  • K is a positive integer and L is an integer greater than or equal to K. Therefore, in the embodiment of the present invention, when the base station sends the downlink information to the user equipment, the base station may not send the last K symbols in the first L symbols, that is, the uplink control information is not mapped to the last K symbols in the first L symbols.
  • the user equipment may have more time to decode after receiving the downlink information, so that the first transmission time can be Uplink control information for the downlink information is sent to the base station on the last M symbols of the unit.
  • the value of K is related to the structure of the transmission time unit, and is related to the decoding capability of the user equipment, and may be notified by the base station to the user equipment, or may be predefined by a protocol or a standard, which is not limited in the embodiment of the present invention.
  • the first 11 symbols of the S1 subframe are used to send downlink information, and when the downlink data is mapped, the base station selects not to map the downlink data to the last one of the 11 symbols, and after receiving the downlink data, the user equipment may There is sufficient time to decode and determine the ACK/NACK for the received downlink data, so that the ACK/NACK can be sent to the base station on the last 2 symbols of the S1 subframe, thereby realizing timely feedback and facilitating the base station as soon as possible. Determine whether to continue to pass new data or retransmit.
  • the base station may also map the reference signal on the last K symbols, such that The symbols of the first transmission time unit can be fully utilized to avoid waste of resources.
  • the reference signal here may be a Channel State Information Reference Signal (CSI-RS), and of course other possible reference signals.
  • the technical solution provided by the embodiment of the present invention can implement the base station transmission in the subframe n, and the user equipment feedback is also in the subframe n, and the waste of the time-frequency resource can be avoided as much as possible.
  • FIG. 6 is a schematic diagram of a computer device 600 according to an embodiment of the present invention.
  • Computer device 600 includes at least one processor 601, a communication bus 602, a memory 603, and at least one communication interface 604.
  • the computer device 600 shown in FIG. 6 can be used to implement the network device described in the embodiment shown in any one of FIG. 3 to FIG. 5, and can also be used to implement FIG.
  • the processor 601 can be a general purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the program of the present invention.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Communication bus 602 can include a path for communicating information between the components described above.
  • Communication interface 604 using any type of transceiver, for communicating with other devices or communication networks, such as Ethernet, Radio Access Network (RAN), Wireless Local Area Networks (WLAN), and the like.
  • RAN Radio Access Network
  • WLAN Wireless Local Area Networks
  • the memory 603 can be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (RAM) or other type that can store information and instructions.
  • the dynamic storage device can also be an Electrically Erasable Programmable Read-Only Memory (EEPROM), a Compact Disc Read-Only Memory (CD-ROM) or other optical disc storage, and a disc storage device. (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be Any other media accessed, but not limited to this.
  • the memory 603 may be independent and connected to the processor 601 via a bus.
  • the memory 603 can also be integrated with the processor 601.
  • the memory 603 is used to store application code for executing the solution of the present invention, and is controlled by the processor 601 for execution.
  • the processor 601 is configured to execute application code stored in the memory 603. If the signaling processing network element, the control plane network element, or the user plane network element is implemented by the computer device 600, one or more of the signaling processing network element, the control plane network element, or the user plane network element memory 603 may be stored.
  • the software module, the signaling processing network element, the control plane network element, or the user plane network element may implement the stored software module through the processor 601 and the program code in the memory 603 to implement the determination or processing of the fault.
  • the processor 601 may include one or more CPUs, such as CPU0 and CPU1 in FIG.
  • the computer device 600 may include a plurality of processors 601, such as the first processor 6011 and the second processor 6012 in FIG. 6, wherein the first processor 6011 and the second process The 6012 is named differently and the reference numerals are different, just to distinguish the plurality of processors 601.
  • processors 601 may be a single-CPU processor 601 or a multi-core processor. 601.
  • Processor 601 herein may refer to one or more devices, circuits, and/or processing cores for processing data, such as computer program instructions.
  • the computer device 600 described above can be a general purpose computer device or a special purpose computer device.
  • the computer device 600 can be a desktop computer, a portable computer, a network server, a personal digital assistant (PDA), a mobile phone, a tablet, a wireless terminal device, a communication device, an embedded device, or have FIG. A device of similar structure.
  • Embodiments of the invention do not limit the type of computer device 600.
  • an embodiment of the present invention provides a user equipment, where the user equipment includes an obtaining unit 701 and a mapping unit 702.
  • the user equipment may further include a receiving unit 703 and a computing unit 704, both of which are shown together in FIG. 7.
  • the receiving unit 703 and the calculating unit 704 are optional functional units, they are drawn in the form of a broken line in FIG. 7 to distinguish them from the required functional units.
  • the physical device corresponding to the receiving unit 703 may be the communication interface 604 in FIG. 6, and the physical device corresponding to the obtaining unit 701, the mapping unit 702, and the computing unit 704 may be the processor 601 in FIG. It can be considered that when the user equipment is implemented by the computer device 600 shown in FIG. 6, in the communication interface 604 in FIG. 6, some communication interfaces 604 implement the function of the receiving unit 703, and some communication interfaces 604 can realize the transmission of data. The function, or it can be considered that in the communication interface 604 in FIG. 6, it is possible that each communication interface 604 can implement both the function of the receiving unit 703 and the function of transmitting data.
  • the user equipment may be used to perform the method provided by the embodiment shown in FIG. 3 above, and may be, for example, a user equipment as described above. Therefore, for the functions and the like implemented by the units in the user equipment, reference may be made to the description of the previous method part, and details are not described herein.
  • an embodiment of the present invention provides a network device, where the network device includes a sending unit 801 and a receiving unit 802.
  • the sending unit 801 is configured to send control signaling to the user equipment
  • the receiving unit 802 is configured to receive uplink control information sent by the user equipment in the at least two transmission time units.
  • the network device may further include a processing unit 803, configured to generate control signaling.
  • the processing unit 803 is also shown together in FIG. Wherein, because the processing unit 803 is an optional functional unit, it is drawn in the form of a dashed line in FIG. 8 to distinguish it from a mandatory functional unit.
  • the physical device corresponding to the sending unit 801 and the receiving unit 802 may be the communication interface 604 in FIG. 6, and the physical device corresponding to the processing unit 803 may be the processor 601 in FIG.
  • the network device is implemented by the computer device 600 shown in FIG. 6, in the communication interface 604 in FIG. 6, some communication interfaces 604 implement the functions of the receiving unit 802, and some communication interfaces 604 implement the transmitting unit 801.
  • the network device may be used to perform the method provided by the embodiment shown in FIG. 3 above, for example, may be a base station as described above. Therefore, for the functions and the like implemented by the units in the network device, reference may be made to the description of the previous method part, and details are not described herein.
  • an embodiment of the present invention provides a user equipment, where the user equipment includes a processing unit 901 and a sending unit 902.
  • the physical device corresponding to the sending unit 902 may be the communication interface 604 in FIG. 6, and the physical device corresponding to the processing unit 901 may be the processor 601 in FIG. It can be considered that when the user equipment is implemented by the computer device 600 shown in FIG. 6, some of the communication interfaces 604 in FIG. 6 implement the function of receiving data, and Some communication interfaces 604 implement the functions of the transmitting unit 902, or it can be considered that in the communication interface 604 in FIG. 6, each of the communication interfaces 604 or the partial communication interfaces 604 can implement both the function of receiving data and the transmitting unit 902. The function.
  • the user equipment may be used to perform the method provided by the embodiment shown in FIG. 4 above, and may be, for example, a user equipment as described above. Therefore, for the functions and the like implemented by the units in the user equipment, reference may be made to the description of the previous method part, and details are not described herein.
  • an embodiment of the present invention provides a network device, where the network device includes a sending unit 1001 and a receiving unit 1002.
  • the sending unit 1001 is configured to send control signaling to the user equipment
  • the receiving unit 1002 is configured to receive, according to the indication of the control signaling, all or a part of the symbol set included in the first transmission time unit, the user equipment sends the Uplink control information.
  • the network device may further include a processing unit 1003, configured to generate control signaling.
  • the processing unit 1003 is also shown together in FIG. Wherein, because the processing unit 1003 is an optional functional unit, it is drawn in the form of a dashed line in FIG. 10 to distinguish it from a mandatory functional unit.
  • the physical device corresponding to the sending unit 1001 and the receiving unit 1002 may be the communication interface 604 in FIG. 6, and the physical device corresponding to the processing unit 1003 may be the processor 601 in FIG.
  • the network device is implemented by the computer device 600 shown in FIG. 6, in the communication interface 604 in FIG. 6, some communication interfaces 604 implement the function of the receiving unit 1002, and some communication interfaces 604 implement the transmitting unit 1001.
  • the network device may be used to perform the method provided by the embodiment shown in FIG. 4 above, for example, may be a base station as described above. Therefore, for the functions and the like implemented by the units in the network device, reference may be made to the description of the previous method part, and details are not described herein.
  • an embodiment of the present invention provides a network device, where the network device includes a processing unit 1101 and a sending unit 1102.
  • the physical device corresponding to the sending unit 1102 may be the communication interface 604 in FIG. 6, and the physical device corresponding to the processing unit 1101 may be the processor 601 in FIG. It can be considered that when the network device is implemented by the computer device 600 shown in FIG. 6, some of the communication interfaces 604 in FIG. 6 implement the function of receiving data, and the communication interface 604 implements the sending unit 1102. Function, or it can be considered that in the communication interface 604 in FIG. 6, it is possible that each communication interface 604 or part of the communication interface 604 can implement both the function of receiving data and the function of the transmitting unit 1102.
  • the network device may be used to perform the method provided by the embodiment shown in FIG. 5 above, and may be, for example, a base station as described above. Therefore, for the functions and the like implemented by the units in the network device, reference may be made to the description of the previous method part, and details are not described herein.
  • the user equipment may map the uplink control information to the at least two transmission time units, so that the uplink control information may occupy more symbols, and the coverage for the PUCCH is improved, especially when the uplink control needs to be transmitted.
  • the uplink control information may occupy more symbols, and the coverage for the PUCCH is improved, especially when the uplink control needs to be transmitted.
  • the disclosed apparatus and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit or unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
  • Another point that is shown or discussed between each other The coupling or direct coupling or communication connection may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical or other form.
  • the embodiment of the present invention further provides a computer storage medium, wherein the computer storage medium may store a program, where the program includes some or all of the bandwidth adjustment method in any one of the video communication processes described in the foregoing method embodiments. step.
  • the functional units in the embodiments of the present invention may be integrated into one processing unit, or each unit may also be an independent physical module.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • all or part of the technical solution of the present invention may be embodied in the form of a software product stored in a storage medium, including a plurality of instructions for causing a computer device, such as a personal computer. , a server, or a network device or the like, or a processor performs all or part of the steps of the method of the various embodiments of the present invention.
  • the foregoing storage medium includes: a universal serial bus flash drive, a removable hard disk, a ROM, a RAM, a magnetic disk, or an optical disk, and the like, which can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种上行控制信息发送、接收方法及设备,用于提高5G系统里的子帧对于PUCCH的覆盖。其中,一种上行控制信息发送方法包括:用户设备获取上行控制信息;所述用户设备将所述上行控制信息映射到至少两个传输时间单元中发送给网络设备。

Description

一种上行控制信息发送、接收方法及设备
本申请要求在2016年9月30日提交中国专利局、申请号为201610874921.X、发明名称为“一种上行控制信息发送、接收方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,特别涉及一种上行控制信息发送、接收方法及设备。
背景技术
在未来的第五代移动通信系统(5G)中,为了能够快速传输和快速控制信息反馈,可能会引入新的子帧类型,即自包含子帧(Self-contained Subframe),该自包含子帧可以包括第一类型的子帧和/或第二类型的子帧,下文中将第一类型的子帧简称为S1子帧,将第二类型的子帧简称为S2子帧。S1子帧和S2子帧中均包括用于下行传输的符号、保护间隔(Guard Period,GP)和用于上行传输的符号。
其中,S1子帧中用于下行传输的符号主要用于传输下行控制信息和下行数据,用于上行传输的符号主要用于传输上行控制信息(Uplink Control Information,UCI)和探测参考信号(Sounding Reference Signal,SRS)。目前,对于S1子帧中包括的用于下行传输的符号、GP所占用的符号和用于上行传输的符号的数量还没有确定,但基本确定的是用于上行传输的符号的数量不会太多,例如,若S1子帧共包括14个符号,那么用于上行传输的符号可能为1个或2个等。
现有的长期演进(Long Term Evolution,LTE)系统中,物理上行控制信道(Physical Uplink Control Channel,PUCCH)在时域上需占用14个符号,也就是一个子帧里有14个符号可以用于传输UCI,而根据以上介绍可知,S1子帧中用于传输UCI的符号数量较少。因此相比LTE,S1子帧中对于PUCCH的覆盖较差,很可能导致有些上行控制信息无法传输。
发明内容
本发明实施例提供一种上行控制信息发送、接收方法及设备,用于提高5G系统里的子帧对于PUCCH的覆盖。
第一方面,提供一种上行控制信息发送方法,该方法由用户设备执行。该方法包括:用户设备获取上行控制信息,用户设备将上行控制信息映射到至少两个传输时间单元中发送给网络设备。
本发明实施例中,用户设备可以将上行控制信息映射到至少两个传输时间单元中发送,这样上行控制信息可以占用较多的符号,提高了对于PUCCH的覆盖,特别是当需要传输的上行控制信息较多时,可以有效避免因为没有资源而导致上行控制信息无法传输的情况。
结合第一方面,在第一方面的第一种可能的实现方式中,用户设备将上行控制信息映射到至少两个传输时间单元中发送给网络设备,可以通过以下方式实现:用户设备将上行控制信息的部分信息映射到第一传输时间单元的最后M个符号上,以及将上行控制信息中剩余的信息映射到第二传输时间单元的前N个符号上,以将上行控制信息发送给网络设备。 其中,第一传输时间单元和第二传输时间单元为连续的传输时间单元,M、N均为正整数。
用户设备将上行控制信息分别映射到第一传输时间单元和第二传输时间单元中,这样上行控制信息可以占用两个传输时间单元中的上行符号,能够占用的符号数较多,可以使得上行控制信息得到充分传输,尽量避免出现因上行传输资源有限导致上行控制信息无法传输的情况。且第一传输时间单元和第二传输时间单元为连续的传输时间单元,用户设备将上行控制信息的部分信息映射到第一传输时间单元的最后M个符号上,以及将上行控制信息中剩余的信息映射到第二传输时间单元的前N个符号上,尽量保证上行控制信息能够连续传输,提高数据传输质量。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,既然用户设备要在第一传输时间单元中发送上行控制信息的部分信息,那么就需要知道上行控制信息的部分信息在第一传输时间单元中所占据的频域位置。用户设备确定上行控制信息的部分信息在第一传输时间单元中的频域位置,包括但不限于以下两种方式:用户设备还接收网络设备发送的控制信令,根据控制信令确定上行控制信息的部分信息在第一传输时间单元中的频域位置;或,用户设备确定接收的下行数据对应的下行控制信息,根据下行控制信息的第一个控制信道单元的编号计算得到部分信息在第一传输时间单元中的频域位置。
即,上行控制信息的部分信息在第一传输时间单元中的频域位置可以由网络设备通知用户设备,或者也可以由用户设备自行计算,方式较为灵活,可以根据实际情况来选择不同的方式确定上行控制信息的部分信息在第一传输时间单元中的频域位置。
结合第一方面的第一种可能的实现方式或第二种可能的实现方式,在第一方面的第三种可能的实现方式中,既然用户设备要在第二传输时间单元中发送上行控制信息中剩余的信息,那么就需要知道上行控制信息中剩余的信息在第二传输时间单元中所占据的频域位置。其中,上行控制信息在第二传输时间单元中占据的频域位置与上行控制信息在所述第一传输时间单元中占据的频域位置相同;或,上行控制信息在第二传输时间单元中占据的频域位置与上行控制信息在第一传输时间单元中占据的频域位置之间相差第一偏移量。
本发明实施例中,上行控制信息在第二传输时间单元中占据的频域位置可以有不同的情况,可根据系统情况进行设置。其中,上行控制信息在第二传输时间单元中占据的频域位置可以由网络设备通知用户设备,例如网络设备在控制信令中一并通知用户设备,或者也可以由用户设备自行计算,方式较为灵活。那么,如果上行控制信息在第二传输时间单元中占据的频域位置与上行控制信息在第一传输时间单元中占据的频域位置之间相差第一偏移量,则第一偏移量可以由网络设备发送给用户设备,或者也可以通过协议或标准预定义,本发明实施例不作限制。
结合第一方面的第一种可能的实现方式或第二种可能的实现方式,在第一方面的第四种可能的实现方式中,上行控制信息在第二传输时间单元中占据的频域位置为连续的P个子载波。其中,P个子载波中包括在第二传输时间单元分配给用户设备的上行时频资源中编号最小的子载波,或P个子载波中包括在第二传输时间单元分配给用户设备的上行时频资源中编号最大的子载波,P为正整数。
也就是说,上行控制信息中剩余的信息在第二传输时间单元中可以占据连续的P个子载波,以实现连续发送。另外,上行控制信息中剩余的信息在第二传输时间单元中尽量分布在频域边缘位置,尽量保证第二传输时间单元的频域中心位置是连续的。在这种实施方 式中,不限制P个子载波上是否承载了上行数据,也就是说,可以将上行控制信息中剩余的信息与第二传输时间单元中应该传输的上行数据一并发送,提高资源复用率。
结合第一方面,在第一方面的第五种可能的实现方式中,用户设备将上行控制信息映射到至少两个传输时间单元中发送给网络设备,可以通过以下方式实现:用户设备将上行控制信息重复映射到至少两个传输时间单元中,以将至少两个上行控制信息发送给网络设备。其中,至少两个传输时间单元为连续的传输时间单元,或至少两个传输时间单元为不连续的传输时间单元。
在这种实现方式中,用户设备相当于向网络设备重复发送上行控制信息,网络设备应该收到的是至少两个上行控制信息。特别是对于覆盖比较差或网络质量比较差的用户设备,通过这种重复发送的方式可以尽量保证网络设备能够成功接收上行控制信息,提高上行控制信息发送的成功率。
结合第一方面或第一方面的第一种可能的实现方式至第五种可能的实现方式中的任一种可能的实现方式,在第一方面的第六种可能的实现方式中,传输时间单元包括一个或多个子帧,或传输时间单元包括一个或多个时隙,或传输时间单元包括一个或多个符号。
本发明实施例中,传输时间单元可以是传统意义上的子帧,或者也可能是在5G系统或下一代通信系统里将会使用的传输间隔,或者也可能有其他的定义。
结合第一方面或第一方面的第一种可能的实现方式至第六种可能的实现方式中的任一种可能的实现方式,在第一方面的第七种可能的实现方式中,上行控制信息包括:用于混合自动重传请求的确认应答/否定应答,和/或,信道状态信息。
本发明实施例中的上行控制信息可以包括传统意义的上行控制信息,例如HARQ技术中的ACK/NACK,CSI等,对于上行控制信息具体包括的内容本发明实施例不作限制,可参考现有技术中上行控制信息所包括的内容,以及还包括今后的通信系统中可能的上行方向的控制信息。
第二方面,提供一种上行控制信息接收方法,该方法由网络设备执行。该方法包括:网络设备向用户设备发送控制信令,该控制信令用于指示用户设备将上行控制信息映射到至少两个传输时间单元中发送给网络设备。网络设备在至少两个传输时间单元中接收用户设备发送的上行控制信息。
本发明实施例中,网络设备可以指示用户设备将上行控制信息映射到至少两个传输时间单元中发送,这样上行控制信息可以占用较多的符号,提高了对于PUCCH的覆盖,特别是当需要传输的上行控制信息较多时,可以有效避免因为没有资源而导致上行控制信息无法传输的情况。
结合第二方面,在第二方面的第一种可能的实现方式中,控制信令还指示用户设备将上行控制信息的部分信息映射到第一传输时间单元的最后M个符号上,以及将上行控制信息中剩余的信息映射到第二传输时间单元的前N个符号上。其中,第一传输时间单元和所述第二传输时间单元为连续的传输时间单元,M、N均为正整数。在这种情况下,网络设备在至少两个传输时间单元中接收用户设备发送的上行控制信息,通过以下方式实现:网络设备在第一传输时间单元的最后M个符号上接收上行控制信息的部分信息,以及在第二传输时间的前N个符号上接收上行控制信息中剩余的信息。
网络设备指示用户设备将上行控制信息放到两个传输时间单元里发送,使得上行控制信息可以占用两个传输时间单元中的上行符号,上行控制信息可以占用的上行符号数较多, 提高了上行资源的覆盖。另外用户设备通过两个连续的传输时间单元实现上行控制信息的连续映射,网络设备也可以实现连续接收,提高数据发送质量以及数据接收质量。
结合第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,控制信令还指示上行控制信息的部分信息在第一传输时间单元中的频域位置;或,控制信令还指示用户设备,根据在接收的下行数据对应的下行控制信息的第一个控制信道单元的编号计算上行控制信息的部分信息在第一传输时间单元中的频域位置。
网络设备通过控制信令可以直接将上行控制信息的部分信息在第一传输时间单元中的频域位置告知用户设备,用户设备接收控制信令后就可以直接获得上行控制信息的部分信息在第一传输时间单元中的频域位置,方式较为简单。或者网络设备可以通知用户设备自行计算上行控制信息的部分信息在第一传输时间单元中的频域位置,那么用户设备通过计算就可以获得上行控制信息的部分信息在第一传输时间单元中的频域位置,减少了控制信令的数据量,节省传输资源。当然这里介绍的是上行控制信息的部分信息在第一传输时间单元中的频域位置由网络设备通知用户设备的情况,在其他实现方式中,用户设备也可以根据协议或标准的预定义获得上行控制信息的部分信息在第一传输时间单元中的频域位置,本发明实施例不作限制。
结合第二方面的第一种可能的实现方式或第二种可能的实现方式,在第二方面的第三种可能的实现方式中,控制信令还指示上行控制信息在第二传输时间单元中占据的频域位置与上行控制信息在第一传输时间单元中占据的频域位置相同;或,控制信令还指示上行控制信息在第二传输时间单元中占据的频域位置与上行控制信息在第一传输时间单元中占据的频域位置之间相差第一偏移量。
网络设备除了可以指示上行控制信息的部分信息在第一传输时间单元中的频域位置外,还可以向用户设备指示上行控制信息中剩余的信息在第二传输时间单元中的频域位置。其中,上行控制信息的部分信息在第一传输时间单元中的频域位置与上行控制信息中剩余的信息在第二传输时间单元中的频域位置可以相同,那么网络设备直接告知用户设备即可,或者,上行控制信息的部分信息在第一传输时间单元中的频域位置与上行控制信息中剩余的信息在第二传输时间单元中的频域位置可以相差第一偏移量,那么用户设备只要获得了上行控制信息的部分信息在第一传输时间单元中的频域位置以及第一偏移量,就可以得到上行控制信息中剩余的信息在第二传输时间单元中的频域位置。其中,第一偏移量可以由网络设备通过控制信令一并发送给用户设备,或者也可以通过协议或标准预定义。另外,在其他的实现方式中,用户设备也可以通过协议或标准的预定义确定上行控制信息中剩余的信息在第二传输时间单元中的频域位置究竟与上行控制信息的部分信息在第一传输时间单元中的频域位置相同还是相差第一偏移量,以及第一偏移量可以由网络设备发送给用户设备,或者也可以由用户设备根据协议或标准的预定义获得。也就是说,用户设备获得上行控制信息中剩余的信息在第二传输时间单元中的频域位置的方式较多,可以根据情况选择不同的方式。
结合第二方面的第一种可能的实现方式或第二种可能的实现方式,在第二方面的第四种可能的实现方式中,控制信令还指示上行控制信息在第二传输时间单元中占据的频域位置为连续的P个子载波。其中,P个子载波中包括在第二传输时间单元分配给用户设备的上行时频资源中编号最小的子载波,或P个子载波中包括在第二传输时间单元分配给用户设备的上行时频资源中编号最大的子载波,P为正整数。
也就是尽量使得上行控制信息中剩余的信息在第二传输时间单元中占据连续的频域位置,得以进行连续映射,提高发送质量。以及,上行控制信息中剩余的信息在第二传输时间单元中可以尽量占据频域边缘的位置,使得第二传输时间单元的中心频域位置尽量连续。
结合第二方面,在第二方面的第五种可能的实现方式中,网络设备在至少两个传输时间单元中接收用户设备发送的所述上行控制信息,包括:网络设备在至少两个传输时间单元中接收至少两个上行控制信息。其中,至少两个传输时间单元为连续的传输时间单元,或至少两个传输时间单元为不连续的传输时间单元。
在这种实现方式下,用户设备是重复向网络设备发送上行控制信息,那么网络设备可以接收至少两个上行控制信息,提高了上行控制信息的发送成功率和接收成功率。特别是对于覆盖比较差的用户设备或网络质量比较差的用户设备,通过这种重复发送的方式,可以使得网络设备尽量能够接收上行控制信息,避免上行控制信息丢失。
结合第二方面或第二方面的第一种可能的实现方式至第五种可能的实现方式中的任一种可能的实现方式,在第二方面的第六种可能的实现方式中,传输时间单元包括一个或多个子帧,或传输时间单元包括一个或多个时隙,或传输时间单元包括一个或多个符号。
结合第二方面或第二方面的第一种可能的实现方式至第六种可能的实现方式中的任一种可能的实现方式,在第二方面的第七种可能的实现方式中,上行控制信息包括:用于混合自动重传请求的确认应答/否定应答,和/或,信道状态信息。
第三方面,提供一种上行控制信息发送方法,该方法由用户设备执行。该方法包括:用户设备获取上行控制信息。用户设备在第一传输时间单元向网络设备发送上行控制信息。其中,用户设备将上行控制信息映射到第一传输时间单元包括的符号集合中的全部符号上或部分符号上。符号集合包括第一传输时间单元的最后M个符号,M为正整数。
在传输时间单元中,可能包括多个用于传输上行控制信息的符号,符号集合中例如包括用于第一传输时间单元里用于传输上行控制信息的符号。那么用户设备在发送上行控制信息时,可以将上行控制信息映射到符号集合里的全部符号上发送,使得上行控制信息有较为充足的上行传输资源可用,或者也可以将上行控制信息映射到符号集合里的部分符号上发送,方式较为灵活。
结合第三方面,在第三方面的第一种可能的实现方式中,若用户设备将上行控制信息映射到第一传输时间单元包括的符号集合中的部分符号上,则用户设备在符号集合中未映射上行控制信息的符号上还可以向网络设备发送参考信号。
也就是说,用户设备映射上行控制信息只占用了符号集合中的部分符号,为了提高传输资源的利用率,可以在符号集合中未映射上行控制信息的符号上映射网络设备其他信息,例如参考信号,这样可以通过有限的传输资源向网络设备发送尽可能多的信息。
第四方面,提供一种上行控制信息接收方法,该方法由网络设备执行。该方法包括:网络设备向用户设备发送控制信令,该控制信令用于指示用户设备将上行控制信息映射到第一传输时间单元包括的符号集合中的全部符号上或部分符号上发送给网络设备。其中,符号集合包括第一传输时间单元的最后M个符号,M为正整数。那么,若控制信令用于指示用户设备将上行控制信息映射到符号集合中的全部符号上发送给网络设备,则网络设备在符号集合中的全部符号上接收上行控制信息;或,若控制信令用于指示用户设备将上行控制信息映射到符号集合中的部分符号上发送给网络设备,则网络设备在符号集合中的 部分符号上接收上行控制信息。
在传输时间单元中,可能包括多个用于传输上行控制信息的符号,符号集合中例如包括用于第一传输时间单元里用于传输上行控制信息的符号。那么网络设备可以指示用户设备将上行控制信息映射到符号集合里的全部符号上发送,使得上行控制信息有较为充足的上行传输资源可用,或者也可以将上行控制信息映射到符号集合里的部分符号上发送,网络设备可以根据网络情况、用户设备的类型等不同因素来指示用户设备究竟将上行控制信息映射到哪些符号上,较为灵活。
结合第四方面,在第四方面的第一种可能的实现方式中,若控制信令用于指示用户设备将上行控制信息映射到符号集合中的部分符号上发送给网络设备,则控制信令还指示用户设备在符号集合中未映射上行控制信息的符号上向网络设备发送参考信号。在这种情况下,网络设备还可以在符号集合中未映射上行控制信息的符号上接收参考信号。
若用户设备映射上行控制信息只占用了符号集合中的部分符号,为了提高传输资源的利用率,则网络设备可以指示用户设备在符号集合中未映射上行控制信息的符号上映射其他信息,例如参考信号,这样网络设备可以通过有限的传输资源接收尽可能多的信息。
第五方面,提供一种下行信息发送方法,该方法由网络设备执行。该方法包括:网络设备获取下行信息。网络设备在第一传输时间单元向用户设备发送该下行信息。其中,网络设备为发送下行信息在第一传输时间单元中占用的符号不包括第一传输时间单元中用于发送下行信息的最后K个符号,K为正整数。
下行信息可以包括下行控制信息以及下行数据中的至少一种。为了减小时延,一般希望实现网络设备在子帧n的下行符号上进行下行数据传输,用户设备在子帧n的上行符号上向网络设备发送针对在子帧n接收的下行数据的ACK/NACK。如果网络设备将下行数据映射到第一传输时间单元包括的用于传输下行数据符号中的最后K个符号上,则用户设备接收下行数据后需要立即解码并确定针对该下行数据的ACK/NACK,由于用户设备的处理时延,可能在子帧n的第一个用于传输上行控制信息的符号之前无法对子帧n的最后K个符号上接收的下行数据进行解码,所以无法在子帧n向基站发送ACK/NACK。那么为解决该技术问题,本发明实施例中网络设备不通过该最后K个符号向用户设备发送下行数据,那么用户设备就有较为充足的时间对在子帧n接收的下行数据进行解码,从而可以在子帧n向网络设备发送ACK/NACK,减小数据处理时延。
结合第五方面,在第五方面的第一种可能的实现方式中,网络设备在第一传输时间单元中用于发送下行信息的最后K个符号可以向用户设备发送参考信号。
若网络设备发送下行数据未占用该最后K个符号,为了提高传输资源的利用率,则网络设备可以在该最后K个符号上发送其他信息,例如参考信号,这样网络设备可以通过有限的传输资源发送尽可能多的信息。
结合第五方面或第五方面的第一种可能的实现方式,在第五方面的第二种可能的实现方式中,第一传输时间单元包括前L个用于发送下行信息的符号、保护间隔占用的符号、以及后M个用于发送上行信息的符号。其中,最后K个符号为前L个符号中的最后K个符号,L为大于等于K的整数,M为正整数。
该实现方式给出了一种第一传输时间单元的结构。
第六方面,提供一种用户设备,该用户设备包括处理器和通信接口,该处理器用于获取上行控制信息,将上行控制信息映射到至少两个传输时间单元中,通过通信接口发送给 网络设备。
结合第六方面,在第六方面的第一种可能的实现方式中,处理器用于将上行控制信息映射到至少两个传输时间单元中,通过通信接口发送给网络设备,通过以下方式实现:将上行控制信息的部分信息映射到第一传输时间单元的最后M个符号上,以及将上行控制信息中剩余的信息映射到第二传输时间单元的前N个符号上,以通过通信接口将上行控制信息发送给网络设备。其中,第一传输时间单元和第二传输时间单元为连续的传输时间单元,M、N均为正整数。
结合第六方面的第一种可能的实现方式,在第六方面的第二种可能的实现方式中,通信接口还用于接收网络设备发送的控制信令,处理器还用于根据控制信令确定上行控制信息的部分信息在第一传输时间单元中的频域位置;或,处理器还用于:确定接收的下行数据对应的下行控制信息,根据下行控制信息的第一个控制信道单元的编号计算得到部分信息在第一传输时间单元中的频域位置。
结合第六方面的第一种可能的实现方式或第六方面的第二种可能的实现方式,在第六方面的第三种可能的实现方式中,上行控制信息在第二传输时间单元中占据的频域位置与上行控制信息在第一传输时间单元中占据的频域位置相同;或,上行控制信息在第二传输时间单元中占据的频域位置与上行控制信息在第一传输时间单元中占据的频域位置之间相差第一偏移量。
结合第六方面的第一种可能的实现方式或第六方面的第二种可能的实现方式,在第六方面的第四种可能的实现方式中,上行控制信息在第二传输时间单元中占据的频域位置为连续的P个子载波。其中,P个子载波中包括在第二传输时间单元分配给用户设备的上行时频资源中编号最小的子载波,或P个子载波中包括在第二传输时间单元分配给用户设备的上行时频资源中编号最大的子载波,P为正整数。
结合第六方面,在第六方面的第五种可能的实现方式中,处理器用于将上行控制信息映射到至少两个传输时间单元中,通过通信接口发送给网络设备,通过以下方式实现:将上行控制信息重复映射到至少两个传输时间单元中,以通过通信接口将至少两个上行控制信息发送给网络设备。其中,至少两个传输时间单元为连续的传输时间单元,或至少两个传输时间单元为不连续的传输时间单元。
结合第六方面或第六方面的第一种可能的实现方式至第五种可能的实现方式中的任一种可能的实现方式中,在第六方面的第六种可能的实现方式中,传输时间单元包括一个或多个子帧,或传输时间单元包括一个或多个时隙,或传输时间单元包括一个或多个符号。
结合第六方面或第六方面的第一种可能的实现方式至第六种可能的实现方式中的任一种可能的实现方式中,在第六方面的第七种可能的实现方式中,上行控制信息包括:用于混合自动重传请求的确认应答/否定应答,和/或,信道状态信息。
第七方面,提供一种网络设备,该网络设备包括处理器和通信接口。其中,处理器用于生成控制指令,该控制信令用于指示用户设备将上行控制信息映射到至少两个传输时间单元中发送给网络设备。通信接口用于向用户设备发送该控制信令,以及在至少两个传输时间单元中接收用户设备发送的上行控制信息。
结合第七方面,在第七方面的第一种可能的实现方式中,控制信令还指示用户设备将上行控制信息的部分信息映射到第一传输时间单元的最后M个符号上,以及将上行控制信息中剩余的信息映射到第二传输时间单元的前N个符号上。其中,第一传输时间单元和第 二传输时间单元为连续的传输时间单元,M、N均为正整数。则,通信接口用于在至少两个传输时间单元中接收用户设备发送的上行控制信息,通过以下方式实现:在第一传输时间单元的最后M个符号上接收上行控制信息的部分信息,以及在第二传输时间的前N个符号上接收上行控制信息中剩余的信息。
结合第七方面的第一种可能的实现方式,在第七方面的第二种可能的实现方式中,控制信令还指示上行控制信息的部分信息在第一传输时间单元中的频域位置;或,控制信令还指示用户设备,根据在接收的下行数据对应的下行控制信息的第一个控制信道单元的编号计算上行控制信息的部分信息在第一传输时间单元中的频域位置。
结合第七方面的第一种可能的实现方式或第二种可能的实现方式,在第七方面的第三种可能的实现方式中,控制信令还指示上行控制信息在第二传输时间单元中占据的频域位置与上行控制信息在第一传输时间单元中占据的频域位置相同;或,控制信令还指示上行控制信息在第二传输时间单元中占据的频域位置与上行控制信息在第一传输时间单元中占据的频域位置之间相差第一偏移量。
结合第七方面的第一种可能的实现方式或第二种可能的实现方式,在第七方面的第四种可能的实现方式中,控制信令还指示上行控制信息在第二传输时间单元中占据的频域位置为连续的P个子载波。其中,P个子载波中包括在第二传输时间单元分配给用户设备的上行时频资源中编号最小的子载波,或P个子载波中包括在第二传输时间单元分配给用户设备的上行时频资源中编号最大的子载波,P为正整数。
结合第七方面,在第七方面的第五种可能的实现方式中,通信接口用于在至少两个传输时间单元中接收用户设备发送的上行控制信息,通过以下方式实现:在至少两个传输时间单元中接收至少两个上行控制信息。其中,至少两个传输时间单元为连续的传输时间单元,或至少两个传输时间单元为不连续的传输时间单元。
结合第七方面或第七方面的第一种可能的实现方式至第五种可能的实现方式中的任一种可能的实现方式,在第七方面的第六种可能的实现方式中,传输时间单元包括一个或多个子帧,或传输时间单元包括一个或多个时隙,或传输时间单元包括一个或多个符号。
结合第七方面或第七方面的第一种可能的实现方式至第六种可能的实现方式中的任一种可能的实现方式,在第七方面的第七种可能的实现方式中,上行控制信息包括:用于混合自动重传请求的确认应答/否定应答,和/或,信道状态信息。
第八方面,提供一种用户设备,该用户设备包括处理器和通信接口。其中,处理器用于获取上行控制信息。通信接口用于在第一传输时间单元向网络设备发送该上行控制信息。其中,用户设备将上行控制信息映射到第一传输时间单元包括的符号集合中的全部符号上或部分符号上。符号集合包括第一传输时间单元的最后M个符号,M为正整数。
结合第八方面,在第八方面的第一种可能的实现方式中,若用户设备将上行控制信息映射到第一传输时间单元包括的符号集合中的部分符号上,则通信接口还用于:在符号集合中未映射上行控制信息的符号上向网络设备发送参考信号。
第九方面,提供一种网络设备,该网络设备包括处理器和通信接口。其中,处理器用于生成控制指令,该控制信令用于指示用户设备将上行控制信息映射到第一传输时间单元包括的符号集合中的全部符号上或部分符号上发送给网络设备。其中,符号集合包括第一传输时间单元的最后M个符号,M为正整数。通信接口用于:向用户设备发送该控制信令;以及,若控制信令用于指示用户设备将上行控制信息映射到符号集合中的全部符号上 发送给网络设备,则在符号集合中的全部符号上接收上行控制信息,或,若控制信令用于指示用户设备将上行控制信息映射到符号集合中的部分符号上发送给网络设备,则在符号集合中的部分符号上接收上行控制信息。
结合第九方面,在第九方面的第一种可能的实现方式中,若控制信令用于指示用户设备将上行控制信息映射到符号集合中的部分符号上发送给网络设备,则控制信令还指示用户设备在符号集合中未映射上行控制信息的符号上向网络设备发送参考信号。那么,通信接口还用于:在符号集合中未映射上行控制信息的符号上接收参考信号。
第十方面,提供一种网络设备,该网络设备包括处理器和通信接口。其中,处理器用于获取下行信息。通信接口用于在第一传输时间单元向用户设备发送该下行信息。其中,网络设备为发送下行信息在第一传输时间单元中占用的符号不包括第一传输时间单元中用于发送下行信息的最后K个符号,K为正整数。
结合第十方面,在第十方面的第一种可能的实现方式中,通信接口还用于:在第一传输时间单元中用于发送下行信息的最后K个符号向用户设备发送参考信号。
结合第十方面或第十方面的第一种可能的实现方式,在第十方面的第二种可能的实现方式中,第一传输时间单元包括前L个用于发送下行信息的符号、保护间隔占用的符号、以及后M个用于发送上行信息的符号。其中,最后K个符号为前L个符号中的最后K个符号,L为大于等于K的整数,M为正整数。
第十一方面,提供一种用户设备,该用户设备包括用于执行第一方面或第一方面的任一种可能的实现方式所提供的方法的功能单元。
第十二方面,提供一种网络设备,该网络设备包括用于执行第二方面或第二方面的任一种可能的实现方式所提供的方法的功能单元。
第十三方面,提供一种用户设备,该用户设备包括用于执行第三方面或第三方面的任一种可能的实现方式所提供的方法的功能单元。
第十四方面,提供一种网络设备,该网络设备包括用于执行第四方面或第四方面的任一种可能的实现方式所提供的方法的功能单元。
第十五方面,提供一种网络设备,该网络设备包括用于执行第五方面或第五方面的任一种可能的实现方式所提供的方法的功能单元。
第十六方面,提供一种计算机存储介质,用于储存为上述用户设备所用的计算机软件指令,其包含用于执行第一方面或第一方面的任一种可能的实现方式为用户设备所设计的程序。
第十七方面,提供一种计算机存储介质,用于储存为上述网络设备所用的计算机软件指令,其包含用于执行第二方面或第二方面的任一种可能的实现方式为网络设备所设计的程序。
第十八方面,提供一种计算机存储介质,用于储存为上述用户设备所用的计算机软件指令,其包含用于执行第三方面或第三方面的任一种可能的实现方式为用户设备所设计的程序。
第十九方面,提供一种计算机存储介质,用于储存为上述网络设备所用的计算机软件指令,其包含用于执行第四方面或第四方面的任一种可能的实现方式为网络设备所设计的程序。
第二十方面,提供一种计算机存储介质,用于储存为上述网络设备所用的计算机软件 指令,其包含用于执行第五方面或第五方面的任一种可能的实现方式为网络设备所设计的程序。
本发明实施例中,用户设备可以将上行控制信息映射到至少两个传输时间单元中发送,这样上行控制信息可以占用较多的符号,提高了对于PUCCH的覆盖。
附图说明
图1A为本发明实施例中的S1子帧的帧结构示意图;
图1B为本发明实施例中的S2子帧的帧结构示意图;
图2为本发明实施例的一种应用场景示意图;
图3为本发明实施例提供的一种上行控制信息发送方法的流程图;
图4为本发明实施例提供的一种上行控制信息发送方法的流程图;
图5为本发明实施例提供的一种下行信息发送方法的流程图;
图6为本发明实施例提供的一种计算机设备的结构示意图;
图7为本发明实施例提供的一种用户设备的结构示意图;
图8为本发明实施例提供的一种网络设备的结构示意图;
图9为本发明实施例提供的一种用户设备的结构示意图;
图10为本发明实施例提供的一种网络设备的结构示意图;
图11为本发明实施例提供的一种网络设备的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明实施例保护的范围。
以下,对本发明实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)用户设备,是指向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该用户设备可以经无线接入网(Radio Access Network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该用户设备可以包括UE、无线终端设备、移动终端设备、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point,AP)、远程终端设备(Remote Terminal)、接入终端设备(Access Terminal)、用户终端设备(User Terminal)、用户代理(User Agent)、或用户装备(User Device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。
2)网络设备,例如包括基站(例如,接入点),可以是指接入网中在空中接口上通过 一个或多个扇区与无线终端设备通信的设备。基站可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。基站还可协调对空中接口的属性管理。例如,基站可以包括无线网络控制器(Radio Network Controller,RNC)或基站控制器(Base Station Controller,BSC),或者也可以包括演进的LTE系统(LTE-Advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括5G系统中的下一代节点B(next generation node B,NG-NB),本发明实施例并不限定。
3)上行控制信息,可以包括UCI,UCI中包括确认混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)中的确认应答(ACK)/否定应答(NACK),还可以包括其他的一些上行方向的控制信息,例如信道状态信息(Channel State Information,CSI)等。
4)本发明实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本发明实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
首先介绍5G系统中引入的S1子帧和S2子帧的帧结构。
请参见图1A,为一种S1子帧的帧结构示意图。在这种S1子帧中,包括11个用于下行传输的符号(如图1A中画斜线的方框所示)、时长为1个符号的GP(如图1A中空白的方框所示)以及2个用于上行传输的符号(如图1A中画横线的方框所示)。其中11个用于下行传输的符号中包括用于物理下行控制信道(Physical Downlink Control Channel,PDCCH)传输的符号以及用于物理下行共享信道(Physical Downlink Shared Channel,PDSCH)传输的符号,一般来说用于PDCCH传输的符号位于用于PDSCH传输的符号之前。该S1子帧中的2个用于上行传输的符号可以是用于PUCCH传输的符号。
请参见图1B,为一种S2子帧的帧结构示意图。在这种S2子帧中,包括2个用于下行传输的符号(如图1B中画斜线的方框所示)、时长为1个符号的GP(如图1B中空白的方框所示)以及11个用于上行传输的符号(如图1B中画横线的方框所示)。其中,2个用于下行传输的符号中包括用于PDCCH传输的符号,11个用于上行传输的符号包括用于物理上行共享信道(Physical Uplink Shared Channel,PUSCH)传输的符号以及用于PUCCH传输的符号。或者,很可能S2子帧中不包括用于PUCCH传输的符号,图1B是以包括用于PUCCH传输的符号为例。
下面介绍本发明实施例的应用场景,请参见图2。图2中包括一个网络设备和一个用户设备,其中网络设备以基站为例,基站为用户设备提供服务。在图2中,若采用HARQ技术,则,如果基站通过S1子帧包括的用于下行传输的符号向用户设备发送下行数据,那么用户设备可以继续通过该S1子帧包括的用于上行传输的符号向基站发送针对该下行数据的ACK/NACK,另外用户设备还可以通过该S1子帧包括的用于上行传输的符号向基站发送其他的上行控制信息。
然而S1子帧包括的用于上行传输的符号的数量不会太多,以图1A所示的S1子帧为例,在这种S1子帧中,就只包括2个用于上行传输的符号,显然数量比较少,若用户设备需发送的上行控制信息较多,例如处于小区边缘的用户设备,一般来说需要的用于传输上行控制信息的符号都比较多,那么就可能会出现传输资源不足的情况,导致上行控制信 息无法发送。
为解决该技术问题提出了本发明实施例的技术方案。本发明实施例中,用户设备可以将上行控制信息映射到至少两个传输时间单元中发送,这样上行控制信息可以占用较多的符号,提高了PUCCH的覆盖,特别是当需要传输的上行控制信息较多时,可以有效避免因为没有资源而导致上行控制信息无法传输的情况。
本发明实施例提供的技术方案不仅可以用于5G系统及下一代通信系统,也可以用于现在的第三代移动通信系统(3G)系统或第四代移动通信系统(4G)系统等通信系统,例如在LTE系统中也可以应用本发明实施例所提供的技术方案,本发明实施例不作限制。
本发明实施例中,一个传输时间单元可以包括一个或多个时隙,或可以包括一个或多个子帧,或可以包括一个或多个符号。例如,一个传输时间单元可以是一个子帧,如5G系统中的S1子帧或S2子帧,或为3G系统或4G系统里的子帧,例如LTE系统里的子帧,通过本发明实施例提供的技术方案都可以增加对于PUCCH的覆盖。在下文的描述过程中,多以传输时间单元是子帧为例。
下面结合说明书附图介绍本发明实施例提供的技术方案,在下面的介绍过程中,均以应用于图2所示的场景为例,以及均以网络设备是基站为例。
请参见图3,本发明一实施例提供一种上行控制信息发送方法,该方法的流程介绍如下。
S31、基站向用户设备发送控制信令,该控制信令用于指示用户设备将上行控制信息映射到至少两个传输时间单元中发送给基站,用户设备接收该控制信令。
基站通过发送控制信令来调度用户设备,该控制信令可以指示用户设备对于上行控制信息的映射方式。该控制信令可以是下行控制信息(Downlink Control Information,DCI),或者也可以是高层信令,例如无线资源控制(Radio Resource Control,RRC)信令,本发明实施例不作限制。
S32、基站向用户设备发送下行数据,则用户设备接收基站发送的下行数据。
若在5G系统中,则基站可以通过S1子帧向用户设备发送下行数据,或者可以通过S2子帧向用户设备发送下行数据,或者也可以通过其他类型的传输时间单元向用户设备发送下行数据。若在3G系统或4G系统中,则基站可以通过相应系统中通用的子帧向用户设备发送下行数据。
例如基站通过S1子帧向用户设备发送下行数据,当然在实际应用中不限于此。继续以图1A所示的S1子帧的帧结构为例,则基站可以通过S1子帧中用于PDSCH传输的符号向用户设备发送下行数据,因为S1子帧除了包括用于下行传输的符号之外,还包括用于上行传输的符号,因此用户设备可以继续通过该S1子帧中的用于上行传输的符号向基站发送上行信息。
另外下文中为了简洁,将用于上行传输的符号称为上行符号,将用于下行传输的符号称为下行符号。显然上行符号中包括用于传输上行控制信息的符号和用于传输上行数据的符号,下行符号中包括用于传输下行控制信息的符号和用于传输下行数据的符号。
其中,S32是可选执行的步骤,因此在图3中将用于表示S32的箭头画为虚线,以与必选步骤相区分。
S33、用户设备获取要向基站发送的上行控制信息。
基站向用户设备发送了下行数据,那么用户设备接收下行数据后,可以针对下行数据 的接收情况确定向基站回复ACK还是NACK,也就是说,用户设备要向基站发送的上行控制信息中可以包括ACK/NACK。当然,除了ACK/NACK之外,用户设备可能还会向基站发送其他的上行控制信息,例如CSI等,本发明实施例不作限制。
S34、用户设备将获取的上行控制信息映射到至少两个传输时间单元中发送给基站,那么基站在至少两个传输时间单元中接收用户设备发送的上行控制信息。
关于S34,包括但不限于如下两种实施方式:
1、用户设备将获取的上行控制信息映射到两个连续的传输时间单元中发送给基站,则基站在这两个连续的传输时间单元上接收该上行控制信息。
将两个连续的传输时间单元分别称为第一传输时间单元和第二传输时间单元。作为对这种实施方式的举例,第一传输时间单元可以是S1子帧,第二传输时间单元可以是上行专用子帧。上行专用子帧可以是上行(Uplink)UL子帧,UL子帧的所有符号均用于传输上行信息。其中,UL子帧的所有符号可以全部用于传输上行控制信息,或者可以全部用于传输上行数据,或者也可以部分用于传输上行控制信息,剩余部分用于传输上行数据。本发明实施例中作为第二传输时间单元的上行专用子帧,显然是全部用于传输上行控制信息的上行专用子帧,或者是部分用于传输上行控制信息,剩余部分用于传输上行数据的上行专用子帧。
在这种实施方式中,用户设备将上行控制信息的部分信息映射到第一传输时间单元,以及将上行控制信息中剩余的信息映射到第二传输时间单元,从而在第一传输时间单元和第二传输时间单元上将上行控制信息发送给基站。基站在第一传输时间单元上接收上行控制信息的部分信息,以及在第二传输时间单元上接收上行控制信息中剩余的信息,从而就接收了完整的上行控制信息。即,上行控制信息除了可以占用第一传输时间单元中的上行符号之外,还可以占用第二传输时间单元中的上行符号,显然提高了传输时间单元对于PUCCH的覆盖,使得上行控制信息能够充分得到传输。
优选的,为了使得上行控制信息得以连续传输,可以将上行控制信息的部分信息映射到第一传输时间单元的连续的最后M个符号上,以及将上行控制信息中剩余的信息映射到第二传输时间单元的连续的前N个符号上,则基站在第一传输时间单元的最后M个符号上接收上行控制信息的部分信息,以及在第二传输时间单元的前N个符号上接收上行控制信息中剩余的信息。这样在映射时可以实现连续映射,基站在接收时也可以连续接收,使得发送性能和接收性能都更好。这里的前、后,都是针对时间而言,即按时间顺序的前和后。M、N均为正整数,M和N的取值范围与传输时间单元的结构有关,本发明实施例不作限制。例如第一传输时间单元为S1子帧,那么M可能的取值包括1、2、或3等。其中,究竟将上行控制信息的部分信息映射到第一传输时间单元的哪些符号上,以及将上行控制信息中剩余的信息映射到第二传输时间单元的哪些符号上,即在映射时M和N的取值究竟是多少,可以由协议或标准预定义,或者也可以由基站通过S31中的控制信令通知用户设备。
在将上行控制信息进行映射时,除了需知道上行控制信息在传输时间单元中占用的时域位置外,还需要知道上行控制信息在传输时间单元中占用的频域位置。下面进行介绍。
本发明实施例中,上行控制信息的部分信息在第一传输时间单元中占用的频域位置可以由基站告知用户设备,例如基站通过S31中的控制信息向用户设备指示上行控制信息在第一传输时间单元中占用的频域位置,或者,上行控制信息的部分信息在第一传输时间单 元中占用的频域位置可以由用户设备自行计算,一种计算方式为:用户设备确定接收的下行数据对应的下行控制信息,根据该下行控制信息的第一个控制信道单元(Control Channel Element,CCE)的编号计算得到上行控制信息的部分信息在第一传输时间单元中的频域位置。其中,用于计算频域位置的下行控制信息对应的下行数据,可以是用户设备在第一传输时间单元中接收的下行数据,或者也可能是用户设备在该第一传输时间单元之前的几个传输时间单元中接收的下行数据。如果上行控制信息的部分信息在第一传输时间单元中占用的频域位置需用户设备自行计算,那么基站可以通过S31中的控制信息指示用户设备自行计算上行控制信息的部分信息在第一传输时间单元中占用的频域位置,或者用户设备根据协议或标准的预定义确定需自行按照CCE的编号计算上行控制信息的部分信息在第一传输时间单元中占用的频域位置。
上一段介绍了用户设备如何获知上行控制信息的部分信息在第一传输时间单元中占用的频域位置,以下介绍用户设备如何获知上行控制信息中剩余的信息在第二传输时间单元中占用的频域位置。本发明实施例中,上行控制信息中剩余的信息在第二传输时间单元中占用的频域位置与用户设备是否要在第二传输时间单元中发送上行数据有关。
如果用户设备不在第二传输时间单元中发送上行数据,那么上行控制信息中剩余的信息在第二传输时间单元中占用的频域位置也可以由基站告知用户设备。例如基站通过S31中的控制信息向用户设备指示上行控制信息在第二传输时间单元中占用的频域位置。其中,基站可以直接告知用户设备指示上行控制信息在第二传输时间单元中具体占用的频域位置,或者基站也可以告知用户设备,上行控制信息在第二传输时间单元中占用的频域位置和上行控制信息的部分信息在第一传输时间单元中占用的频域位置相同;或者,上行控制信息中剩余的信息在第二传输时间单元中占用的频域位置与上行控制信息的部分信息在第一传输时间单元中占用的频域位置可以相差第一偏移量,那么,基站可以通过S31中的控制信令指示用户设备,两个频域位置相差第一偏移量,则用户设备在获得上行控制信息的部分信息在第一传输时间单元中占用的频域位置后,就可以根据上行控制信息的部分信息在第一传输时间单元中占用的频域位置和第一偏移量得到上行控制信息中剩余的信息在第二传输时间单元中占用的频域位置。其中,第一偏移量可以是基站告知用户设备的,或者可以是标准或协议预定义的,或者可以是用户设备根据第一传输时间单元的编号计算得到的,或者可以是用户设备根据第二传输时间单元的编号计算得到的。
无论用户设备如何获得上行控制信息中剩余的信息在第二传输时间单元中占用的频域位置,在用户设备不在第二传输时间单元中发送上行数据的情况下,上行控制信息的部分信息在第一传输时间单元中占用的频域位置和上行控制信息中剩余的信息在第二传输时间单元中占用的频域位置可以相同也可以不同,在不同的情况下,一种可能的实施方式为二者相差第一偏移量。
如果用户设备不在第二传输时间单元中发送上行数据,那么上行控制信息中剩余的信息在第二传输时间单元中占用的频域位置可以是第二传输时间单元中的连续的P个子载波,其中,P个子载波包括在第二传输时间单元中分配给用户设备的上行时频资源中编号最小的子载波,或P个子载波中包括在第二传输时间单元中分配给用户设备的上行时频资源中编号最大的子载波,P为正整数。可以理解为,将上行控制信息中剩余的信息映射到分配给用户设备的上行时频资源的频域边缘位置,尽量不占用中心频域位置,在保证上行控制信息中剩余的信息连续映射的同时尽量不影响其他上行信息在频域的连续映射。其中,P 个子载波究竟是在第二传输时间单元中分配给用户设备的上行时频资源中的哪些子载波,可以由基站通知用户设备,例如基站通过S31中的控制信令一并通知用户设备,或者可以由协议或标准预定义。这种情况下,如果用户设备要在第二传输时间单元的前N个符号中映射上行数据,这些上行数据在频域上占据P个子载波,那么上行控制信息中剩余的信息也就是携带在第二传输时间单元中的上行数据中一并发送的,在发送数据的同时可以一并发送上行控制信息,既不影响数据的发送,也增加了发送上行控制信息的符号数。
在本发明实施例中,上行控制信息的部分信息在第一传输时间单元中占用的子载波的数量和上行控制信息中剩余的信息在第二传输时间单元中占用的子载波的数量相同,例如都占用6个子载波或都占用12个子载波等。
2、用户设备将上行控制信息重复映射到至少两个传输时间单元中,以将至少两个上行控制信息发送给基站,也就是将上行控制信息重复发送给基站。其中,至少两个传输时间单元可以是连续的传输时间单元,也可以是不连续的传输时间单元,另外,至少两个传输时间单元的类型可以相同,例如同为S1子帧或同为S2子帧,或者至少两个传输时间单元的类型也可以不同,例如其中一个传输时间单元为S1子帧,其中另一个传输时间单元为UL子帧,等等。
也就是说,在如前介绍的第1种实施方式中,通过一个传输时间单元传输的是上行控制信息的部分信息,基站在两个连续的传输时间单元上接收一个完整的上行控制信息。而在第2种实施方式中,通过一个传输时间单元传输的是完整上行控制信息,基站在至少两个传输时间单元上接收至少两个完整的上行控制信息,也就是基站通过每个传输时间单元都可以接收一个完整的上行控制信息,相当于重复发送。
在这种方式下,可以将上行控制信息映射到传输时间单元中的上行符号中进行发送,映射方式不多赘述。
本发明实施例中,至少两个传输时间单元究竟是哪些传输时间单元,可以由基站通知用户设备,例如基站通过S31中的控制信令将至少两个传输时间单元的编号告知用户设备,或者可以由协议或标准预定义,那么基站只需通过S31中的控制信令告知用户设备采用哪种映射方式,若采用第2种实施方式所示的映射方式,则用户设备根据预定义的信息就知晓至少两个传输时间单元应如何选取。例如预定义,S1子帧后的第一个S1子帧重复发送上行控制信息。
本发明实施例中,重复发送的次数,也就是至少两个子帧的数量,可以由基站告知用户设备,例如基站通过S31中的控制信令告知用户设备,或者可以通过协议或标准预定义,例如预定义,只要采用重复发送的方式,则重复发送的次数为2次。
本发明实施例中,允许进行重复发送的子帧类型可以由基站告知用户设备,例如基站通过S31中的控制信令告知用户设备,或者可以通过协议或标准预定义,例如预定义S1子帧、S2子帧、以及UL子帧均可以参与重复发送。
在这种实施方式中,可以在至少两个传输时间单元重复发送上行控制信息,提升PUCCH的覆盖。特别是在信道状态比较差的情况下,通过多次重复发送也可以提高上行控制信息的发送成功率。
通过本发明实施例提供的技术方案,无论是通过连续的两个传输时间单元发送上行控制信息还是重复发送上行控制信息,都可以增加用于发送上行控制信息的符号数,提高PUCCH的覆盖。
在传输时间单元中,可能包括多个用于传输上行控制信息的符号,例如S1子帧里可能包括2个或3个。那么用户设备在发送上行控制信息时,涉及到如何映射的问题,即需要知道具体将上行控制信息映射到哪些符号上发送。为解决该技术问题,本发明一实施例提供一种上行控制信息发送方法,请参见图4。
S41、基站向用户设备发送控制信令,该控制信令用于指示用户设备将上行控制信息映射到第一传输时间单元包括的符号集合中的全部符号上或部分符号上发送给基站,则用户设备接收该控制信令。其中,该符号集合包括第一传输时间单元的最后M个符号,M为正整数。
例如第一传输时间单元为S1子帧,则最后M个符号可以是S1子帧包括的用于传输上行控制信息的全部符号。
基站通过发送控制信令来调度用户设备,该控制信令可以指示用户设备对于上行控制信息的映射方式。该控制信令可以是DCI,或者也可以是高层信令,例如RRC信令,本发明实施例不作限制。
S42、用户设备获取要向基站发送的上行控制信息。
基站向用户设备发送了下行数据,那么用户设备接收下行数据后,可以针对下行数据的接收情况确定向基站回复ACK还是NACK,也就是说,用户设备要向基站发送的上行控制信息中可以包括ACK/NACK。当然,除了ACK/NACK之外,用户设备可能还会向基站发送其他的上行控制信息,例如CSI等,本发明实施例不作限制。
S43、用户设备将获取的上行控制信息映射到第一传输时间单元的符号集合中的全部符号上发送给基站,则基站在第一传输时间单元的符号集合中的全部符号上接收上行控制信息。或,用户设备将上行控制信息映射到第一传输时间单元的符号集合中的部分符号上发送给基站,则基站在第一传输时间单元的符号集合中的部分符号上接收上行控制信息。其中,用户设备是根据基站发送的控制信令所指示的方式进行的映射。
以第一传输时间单元是图1A所示的S1子帧为例。该S1子帧包括2个用于发送上行控制信息的符号,即该S1子帧的最后2个符号,则该S1子帧的符号集合就可以包括该S1子帧的最后2个符号。那么,基站可以通过控制信令指示用户设备将上行控制信息映射到S1子帧的倒数第二个符号上,或者基站可以通过控制信令指示用户设备将上行控制信息映射到S1子帧的最后一个符号上,或者基站可以通过控制信令指示用户设备将上行控制信息映射到S1子帧的最后2个符号上,即,基站可以根据不同的情况指示用户设备采用不同的映射方式,较为灵活。
使用S1子帧,可以实现基站在子帧n的下行符号上进行下行数据传输,用户设备在子帧n的上行符号上向基站发送针对在子帧n接收的下行数据的ACK/NACK,那么,如果用户设备发送的是NACK,则一般希望基站能够在子帧n+1进行数据重传。一般来说,S1子帧包括的用于传输上行控制信息的符号都位于S1子帧的最后,可参见图1A所示,那么,如果用户设备将ACK/NACK等上行控制信息映射到S1子帧的最后M个符号上发送给基站,由于基站的处理时延,可能在子帧n+1的第一个符号之前无法对子帧n的最后M个符号上接收的ACK/NACK进行解码,所以无法在子帧n+1进行重传。其中,M为正整数,M的取值范围与传输时间单元的结构有关,本发明实施例不作限制。例如对于S1子帧,那么M可能的取值包括1、2、或3等。
为了解决该问题,基站可以根据实际情况来确定对于不同的用户设备应采用何种映射 方式。例如,对于一些对时延较敏感的用户设备,也就是对于时延的要求较高的用户设备,例如进行超高可靠性与超低时延业务(Ultra Reliable&Low Latency Communication,URLLC)业务的用户设备,这种用户设备一般都需要基站在子帧n+1重传子帧n中的下行数据。则基站可以指示此类用户设备将上行控制信息映射到第一传输时间单元包括的符号集合中的部分符号上,例如第一传输时间单元包括M个用于传输上行控制信息的符号,且这M个符号为第一传输时间单元的最后M个符号,则,基站指示此类用户设备映射上行控制信息的符号中不包括第一传输时间单元的最后H个符号,H为小于M的正整数。也就是说,不通过第一传输时间单元的最后H个符号发送上行控制信息,给予基站比较充分的解码时间,从而尽量保证基站能够在子帧n+1重传子帧n中的下行数据。以第一传输时间单元是图1A所示的S1子帧为例,则M=2,那么此时H=1,即用户设备将上行控制信息映射到该S1子帧的倒数第二个符号上发送给基站,而不映射到该S1子帧的最后一个符号上。
或者,对于一些对时延不敏感的用户设备,也就是对时延要求不高的用户设备,例如进行增强的移动宽带业务(enhanced Mobile BroadBand,eMBB)业务的用户设备,这种用户设备一般都不要求基站一定在子帧n+1重传子帧n中的下行数据。则基站可以指示此类用户设备将上行控制信息映射到第一传输时间单元包括的符号集合中的全部符号上或部分符号上,若映射到部分符号上,也不限制究竟是哪些符号。例如第一传输时间单元包括M个用于传输上行控制信息的符号,且这M个符号为第一传输时间单元的最后M个符号,则,基站指示此类用户设备映射上行控制信息的符号为这M个符号中的任意一个或多个符号。当然最好映射到连续的符号上,便于基站接收。以第一传输时间单元是图1A所示的S1子帧为例,则M=2,则用户设备可以将上行控制信息映射到该S1子帧的倒数第二个符号上发送给基站,或者用户设备可以将上行控制信息映射到该S1子帧的最后一个符号上发送给基站,或者用户设备可以将上行控制信息映射到该S1子帧的最后2个符号上发送给基站。
如果基站指示用户设备将上行控制信息映射到第一传输时间单元的部分符号上发送给基站,那么第一传输时间单元所包括的用于发送上行控制信息的符号中可能有一部分没有映射上行控制信息,如果这部分符号不承载任何信息,则也是资源的浪费。因此本发明实施例中,如果基站指示用户设备将上行控制信息映射到第一传输时间单元的部分符号上发送给基站,那么基站还可以通过S41中的控制信令指示用户设备在第一传输时间单元的符号集合中未映射上行控制信息的符号上向基站发送参考信号,这样使得第一传输时间单元的符号都能够得到充分利用,避免资源浪费。这里的参考信号可以是探测参考信号(Sounding Reference Signal,SRS),当然也可以是其他可能的参考信号。或者,如果基站指示用户设备将上行控制信息映射到第一传输时间单元的部分符号上发送给基站,则用户设备可以根据标准或协议预定义的规则确定在第一传输时间单元的符号集合中未映射上行控制信息的符号上向基站发送参考信号,无需基站额外指示。其中,第一传输时间单元中的参考信号所占用的频域位置可以与上行控制信息所占用的频域位置相同,或者第一传输时间单元中的参考信号在频域上可以占用在第一传输时间单元中为用户设备分配的整个上行频域资源。
以第一传输时间单元是图1A所示的S1子帧为例,则M=2,用户设备根据基站的指示,将上行控制信息映射到该S1子帧的倒数第二个符号上发送给基站,用户设备还可以 根据基站的指示或根据协议或标准预定义的规则,将参考信号映射到该S1子帧的最后一个符号上发送给基站,则S1子帧的各个符号都能得到有效利用,也就是说,可以通过尽量少的传输时间单元传输尽量多的信息。
通过本发明实施例提供的技术方案,用户可以采用合理的映射方式映射上行控制信息,且对于一些对时延敏感的用户设备,可以尽量实现基站初传在子帧n,基站重传在子帧n+1,满足时延需求,且还可以尽量避免时频资源的浪费。
使用S1子帧,可以实现基站在子帧n的下行符号上进行下行数据传输,用户设备在子帧n的上行符号上向基站发送针对在子帧n接收的下行数据的ACK/NACK。以图1A所示的S1子帧为例,如果基站将下行数据映射到S1子帧包括的用于传输下行数据符号中的最后K个符号上,则用户设备接收下行数据后需要立即解码并确定针对该下行数据的ACK/NACK,由于用户设备的处理时延,可能在子帧n的第一个用于传输上行控制信息的符号之前无法对子帧n的最后K个符号上接收的下行数据进行解码,所以无法在子帧n向基站发送ACK/NACK。其中,K为正整数,K可以小于等于S1子帧包括的用于传输下行数据的符号数。
为解决该技术问题,本发明一实施例提供一种下行信息发送方法,请参见图5。
S51、基站获取要向用户设备发送的下行信息。
基站要向用户设备发送的下行信息中可以包括下行数据,也可以包括下行控制信息。
S52、基站在第一传输时间单元向用户设备发送该下行信息。
其中,第一传输时间单元包括前L个用于发送下行信息的符号、GP占用的符号、以及后M个用于发送上行信息的符号,其中M为正整数。第一传输时间单元若以图1A所示的S1子帧为例,那么L=11,即S1子帧的前11个符号,GP占用的符号为1,M=2,也就是最后2个符号。
基站可以通过前L个符号向用户设备发送下行信息,但如果基站在发送下行信息时占用了前L个符号中的最后K个符号,则用户设备在接收最后K个符号上的下行信息后可能来不及解码,从而可能无法在第一传输时间单元的最后M个符号上向基站反馈针对该下行信息的上行控制信息。其中,K为正整数,L为大于等于K的整数。因此本发明实施例中,基站向用户设备发送下行信息时,可以不在前L个符号中的最后K个符号上发送,即,不将上行控制信息映射到前L个符号中的最后K个符号上,而只是通过前L个符号中除最后K个符号之外剩余的符号向用户设备发送下行信息,那么用户设备接收下行信息后可以有较为充足的时间进行解码,从而可以在第一传输时间单元的最后M个符号上向基站发送针对该下行信息的上行控制信息。其中K的取值与传输时间单元的结构有关,也与用户设备的解码能力等有关,可以由基站告知用户设备,或者也可以通过协议或标准预定义,本发明实施例不作限制。
以图1A所示的S1子帧为例,且以K=1为例。该S1子帧的前11个符号用于发送下行信息,则基站在映射下行数据时,选择不将下行数据映射到该11个符号中的最后一个符号上,则用户设备接收下行数据后,可以有较为充足的时间来解码,并确定针对接收的下行数据的ACK/NACK,从而可以在该S1子帧的最后2个符号上向基站发送该ACK/NACK,从而实现了及时反馈,便于基站尽快确定是继续传新数据还是重传。
如果基站在映射下行信息时不映射到第一传输时间单元的前L个符号的最后K个符号上,那么最后K个符号不会映射下行信息,可能就会处于空闲状态,如果这部分符号不承 载任何信息,则也是资源的浪费。因此本发明实施例中,如果基站在映射下行信息时不映射到第一传输时间单元的前L个符号的最后K个符号上,那么基站还可以在该最后K个符号上映射参考信号,这样使得第一传输时间单元的符号都能够得到充分利用,避免资源浪费。这里的参考信号可以是信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS),当然也可以是其他可能的参考信号。
通过本发明实施例提供的技术方案,可以实现基站传输在子帧n,用户设备反馈也在子帧n,且可以尽量避免时频资源的浪费。
下面结合附图介绍本发明实施例提供的设备。
图6所示为本发明一实施例提供的计算机设备600的示意图。计算机设备600包括至少一个处理器601,通信总线602,存储器603以及至少一个通信接口604。在本发明实施例中,图6所示的计算机设备600可用于实现如图3-图5中的任一个附图所示的实施例中所述的网络设备,也可用于实现如图3-图5中的任一个附图所示的实施例中所述的用户设备。
处理器601可以是通用中央处理器(CPU),微处理器,特定应用集成电路(Application-Specific Integrated Circuit,ASIC),或一个或多个用于控制本发明方案程序执行的集成电路。
通信总线602可包括一通路,在上述组件之间传送信息。通信接口604,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(RAN),无线局域网(Wireless Local Area Networks,WLAN)等。
存储器603可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器603可以是独立存在,通过总线与处理器601相连接。存储器603也可以和处理器601集成在一起。
其中,存储器603用于存储执行本发明方案的应用程序代码,并由处理器601来控制执行。处理器601用于执行存储器603中存储的应用程序代码。若信令处理网元、控制面网元、或用户面网元通过计算机设备600实现,则信令处理网元、控制面网元、或用户面网元的存储器603中可以存储一个或多个软件模块,信令处理网元、控制面网元、或用户面网元可以通过处理器601以及存储器603中的程序代码来实现存储的软件模块,以实现对于故障的确定或处理。
在具体实现中,作为一种实施例,处理器601可以包括一个或多个CPU,例如图6中的CPU0和CPU1。
在具体实现中,作为一种实施例,计算机设备600可以包括多个处理器601,例如图6中的第一处理器6011和第二处理器6012,其中,第一处理器6011和第二处理器6012之所以命名不同以及附图标记不同,只是为了区分多个处理器601。这些处理器601中的每一个可以是一个单核(single-CPU)处理器601,也可以是一个多核(multi-CPU)处理 器601。这里的处理器601可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
上述的计算机设备600可以是一个通用计算机设备或者是一个专用计算机设备。在具体实现中,计算机设备600可以是台式机、便携式电脑、网络服务器、掌上电脑(Personal Digital Assistant,PDA)、移动手机、平板电脑、无线终端设备、通信设备、嵌入式设备或有图10中类似结构的设备。本发明实施例不限定计算机设备600的类型。
请参见图7,本发明一实施例提供一种用户设备,该用户设备包括获取单元701和映射单元702。
可选的,该用户设备还可以包括接收单元703和计算单元704,均在图7中一并示出。其中,因为接收单元703和计算单元704是可选的功能单元,因此在图7中画为虚线形式,以与必选的功能单元相区分。
在实际应用中,接收单元703对应的实体设备可以是图6中的通信接口604,获取单元701、映射单元702、以及计算单元704对应的实体设备可以是图6中的处理器601。可以认为,在该用户设备通过图6所示的计算机设备600实现时,图6中的通信接口604中,有的通信接口604实现接收单元703的功能,还有的通信接口604能够实现发送数据的功能,或者可以认为,图6中的通信接口604中,可能每个通信接口604都既能实现接收单元703的功能也能实现发送数据的功能。
该用户设备可以用于执行上述图3所示的实施例所提供的方法,例如可以是如前所述的用户设备。因此,对于该用户设备中的各单元所实现的功能等,可参考如前方法部分的描述,不多赘述。
请参见图8,本发明一实施例提供一种网络设备,该网络设备包括发送单元801和接收单元802。其中,发送单元801用于向用户设备发送控制信令,接收单元802用于在至少两个传输时间单元中接收用户设备发送的上行控制信息。
可选的,该网络设备还可以包括处理单元803,用于生成控制信令。处理单元803也一并在图8中一并示出。其中,因为处理单元803是可选的功能单元,因此在图8中画为虚线形式,以与必选的功能单元相区分。
在实际应用中,发送单元801和接收单元802对应的实体设备可以是图6中的通信接口604,处理单元803对应的实体设备可以是图6中的处理器601。可以认为,在该网络设备通过图6所示的计算机设备600实现时,图6中的通信接口604中,有的通信接口604实现接收单元802的功能,还有的通信接口604实现发送单元801的功能,或者可以认为,图6中的通信接口604中,可能每个通信接口604或部分通信接口604都既能实现接收单元802的功能也能实现发送单元801的功能。
该网络设备可以用于执行上述图3所示的实施例所提供的方法,例如可以是如前所述的基站。因此,对于该网络设备中的各单元所实现的功能等,可参考如前方法部分的描述,不多赘述。
请参见图9,本发明一实施例提供一种用户设备,该用户设备包括处理单元901和发送单元902。
在实际应用中,发送单元902对应的实体设备可以是图6中的通信接口604,处理单元901对应的实体设备可以是图6中的处理器601。可以认为,在该用户设备通过图6所示的计算机设备600实现时,图6中的通信接口604中,有的通信接口604实现接收数据的功能,还 有的通信接口604实现发送单元902的功能,或者可以认为,图6中的通信接口604中,可能每个通信接口604或部分通信接口604都既能实现接收数据的功能也能实现发送单元902的功能。
该用户设备可以用于执行上述图4所示的实施例所提供的方法,例如可以是如前所述的用户设备。因此,对于该用户设备中的各单元所实现的功能等,可参考如前方法部分的描述,不多赘述。
请参见图10,本发明一实施例提供一种网络设备,该网络设备包括发送单元1001和接收单元1002。其中,发送单元1001用于向用户设备发送控制信令,接收单元1002用于根据控制信令的指示在第一传输时间单元包括的符号集合中的全部符号上或部分符号上接收用户设备发送的上行控制信息。
可选的,该网络设备还可以包括处理单元1003,用于生成控制信令。处理单元1003也一并在图10中一并示出。其中,因为处理单元1003是可选的功能单元,因此在图10中画为虚线形式,以与必选的功能单元相区分。
在实际应用中,发送单元1001和接收单元1002对应的实体设备可以是图6中的通信接口604,处理单元1003对应的实体设备可以是图6中的处理器601。可以认为,在该网络设备通过图6所示的计算机设备600实现时,图6中的通信接口604中,有的通信接口604实现接收单元1002的功能,还有的通信接口604实现发送单元1001的功能,或者可以认为,图6中的通信接口604中,可能每个通信接口604或部分通信接口604都既能实现接收单元1002的功能也能实现发送单元1001的功能。
该网络设备可以用于执行上述图4所示的实施例所提供的方法,例如可以是如前所述的基站。因此,对于该网络设备中的各单元所实现的功能等,可参考如前方法部分的描述,不多赘述。
请参见图11,本发明一实施例提供一种网络设备,该网络设备包括处理单元1101和发送单元1102。
在实际应用中,发送单元1102对应的实体设备可以是图6中的通信接口604,处理单元1101对应的实体设备可以是图6中的处理器601。可以认为,在该网络设备通过图6所示的计算机设备600实现时,图6中的通信接口604中,有的通信接口604实现接收数据的功能,还有的通信接口604实现发送单元1102的功能,或者可以认为,图6中的通信接口604中,可能每个通信接口604或部分通信接口604都既能实现接收数据的功能也能实现发送单元1102的功能。
该网络设备可以用于执行上述图5所示的实施例所提供的方法,例如可以是如前所述的基站。因此,对于该网络设备中的各单元所实现的功能等,可参考如前方法部分的描述,不多赘述。
本发明实施例中,用户设备可以将上行控制信息映射到至少两个传输时间单元中发送,这样上行控制信息可以占用较多的符号,提高了对于PUCCH的覆盖,特别是当需要传输的上行控制信息较多时,可以有效避免因为没有资源而导致上行控制信息无法传输的情况。
在本发明中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间 的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
本发明实施例还提供一种计算机存储介质,其中,该计算机存储介质可存储有程序,该程序执行时包括上述方法实施例中记载的任何一种视频通信过程中的带宽调整方法的部分或全部步骤。
在本发明实施例中的各功能单元可以集成在一个处理单元中,或者各个单元也可以均是独立的物理模块。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备,例如可以是个人计算机,服务器,或者网络设备等,或处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:通用串行总线闪存盘(Universal Serial Bus flash drive)、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以对本发明的技术方案进行了详细介绍,但以上实施例的说明只是用于帮助理解本发明实施例的方法,不应理解为对本发明实施例的限制。本技术领域的技术人员可轻易想到的变化或替换,都应涵盖在本发明实施例的保护范围之内。

Claims (30)

  1. 一种上行控制信息发送方法,其特征在于,包括:
    用户设备获取上行控制信息;
    所述用户设备将所述上行控制信息映射到至少两个传输时间单元中发送给网络设备。
  2. 如权利要求1所述的方法,其特征在于,所述用户设备将所述上行控制信息映射到至少两个传输时间单元中发送给网络设备,包括:
    所述用户设备将所述上行控制信息的部分信息映射到第一传输时间单元的最后M个符号上,以及将所述上行控制信息中剩余的信息映射到第二传输时间单元的前N个符号上,以将所述上行控制信息发送给所述网络设备;其中,所述第一传输时间单元和所述第二传输时间单元为连续的传输时间单元,M、N均为正整数。
  3. 如权利要求2所述的方法,其特征在于,所述方法还包括:
    所述用户设备接收所述网络设备发送的控制信令,根据所述控制信令确定所述上行控制信息的部分信息在所述第一传输时间单元中的频域位置;或
    所述用户设备确定接收的下行数据对应的下行控制信息,根据所述下行控制信息的第一个控制信道单元的编号计算得到所述部分信息在所述第一传输时间单元中的频域位置。
  4. 如权利要求2或3所述的方法,其特征在于,
    所述上行控制信息在所述第二传输时间单元中占据的频域位置与所述上行控制信息在所述第一传输时间单元中占据的频域位置相同;或
    所述上行控制信息在所述第二传输时间单元中占据的频域位置与所述上行控制信息在所述第一传输时间单元中占据的频域位置之间相差第一偏移量。
  5. 如权利要求2或3所述的方法,其特征在于,所述上行控制信息在所述第二传输时间单元中占据的频域位置为连续的P个子载波;其中,所述P个子载波中包括在所述第二传输时间单元分配给所述用户设备的上行时频资源中编号最小的子载波,或所述P个子载波中包括在所述第二传输时间单元分配给所述用户设备的上行时频资源中编号最大的子载波,P为正整数。
  6. 如权利要求1所述的方法,其特征在于,所述用户设备将所述上行控制信息映射到至少两个传输时间单元中发送给网络设备,包括:
    所述用户设备将所述上行控制信息重复映射到所述至少两个传输时间单元中,以将至少两个所述上行控制信息发送给所述网络设备;其中,所述至少两个传输时间单元为连续的传输时间单元,或所述至少两个传输时间单元为不连续的传输时间单元。
  7. 如权利要求1-6任一所述的方法,其特征在于,所述传输时间单元包括一个或多个子帧,或所述传输时间单元包括一个或多个时隙,或所述传输时间单元包括一个或多个符号。
  8. 如权利要求1-7任一所述的方法,其特征在于,所述上行控制信息包括:用于混合自动重传请求的确认应答/否定应答,和/或,信道状态信息。
  9. 一种上行控制信息接收方法,其特征在于,包括:
    网络设备向用户设备发送控制信令;所述控制信令用于指示所述用户设备将上行控制信息映射到至少两个传输时间单元中发送给所述网络设备;
    所述网络设备在至少两个传输时间单元中接收所述用户设备发送的所述上行控制信 息。
  10. 如权利要求9所述的方法,其特征在于,所述控制信令还指示所述用户设备将所述上行控制信息的部分信息映射到第一传输时间单元的最后M个符号上,以及将所述上行控制信息中剩余的信息映射到第二传输时间单元的前N个符号上;其中,所述第一传输时间单元和所述第二传输时间单元为连续的传输时间单元,M、N均为正整数;则,所述网络设备在至少两个传输时间单元中接收所述用户设备发送的所述上行控制信息,包括:
    所述网络设备在所述第一传输时间单元的所述最后M个符号上接收所述上行控制信息的部分信息,以及在所述第二传输时间的所述前N个符号上接收所述上行控制信息中剩余的信息。
  11. 如权利要求10所述的方法,其特征在于,
    所述控制信令还指示所述上行控制信息的部分信息在所述第一传输时间单元中的频域位置;或
    所述控制信令还指示所述用户设备,根据在接收的下行数据对应的下行控制信息的第一个控制信道单元的编号计算所述上行控制信息的部分信息在所述第一传输时间单元中的频域位置。
  12. 如权利要求10或11所述的方法,其特征在于,
    所述控制信令还指示所述上行控制信息在所述第二传输时间单元中占据的频域位置与所述上行控制信息在所述第一传输时间单元中占据的频域位置相同;或
    所述控制信令还指示所述上行控制信息在所述第二传输时间单元中占据的频域位置与所述上行控制信息在所述第一传输时间单元中占据的频域位置之间相差第一偏移量。
  13. 如权利要求10或11所述的方法,其特征在于,所述控制信令还指示所述上行控制信息在所述第二传输时间单元中占据的频域位置为连续的P个子载波;其中,所述P个子载波中包括在所述第二传输时间单元分配给所述用户设备的上行时频资源中编号最小的子载波,或所述P个子载波中包括在所述第二传输时间单元分配给所述用户设备的上行时频资源中编号最大的子载波,P为正整数。
  14. 如权利要求9所述的方法,其特征在于,所述网络设备在至少两个传输时间单元中接收所述用户设备发送的所述上行控制信息,包括:
    所述网络设备在所述至少两个传输时间单元中接收至少两个所述上行控制信息;其中,所述至少两个传输时间单元为连续的传输时间单元,或所述至少两个传输时间单元为不连续的传输时间单元。
  15. 如权利要求9-14任一所述的方法,其特征在于,所述传输时间单元包括一个或多个子帧,或所述传输时间单元包括一个或多个时隙,或所述传输时间单元包括一个或多个符号。
  16. 如权利要求9-15任一所述的方法,其特征在于,所述上行控制信息包括:用于混合自动重传请求的确认应答/否定应答,和/或,信道状态信息。
  17. 一种用户设备,其特征在于,包括:
    获取单元,用于获取上行控制信息;
    映射单元,用于将所述上行控制信息映射到至少两个传输时间单元中发送给网络设备。
  18. 如权利要求17所述的用户设备,其特征在于,所述映射单元用于:
    将所述上行控制信息的部分信息映射到第一传输时间单元的最后M个符号上,以及将 所述上行控制信息中剩余的信息映射到第二传输时间单元的前N个符号上,以将所述上行控制信息发送给所述网络设备;其中,所述第一传输时间单元和所述第二传输时间单元为连续的传输时间单元,M、N均为正整数。
  19. 如权利要求18所述的用户设备,其特征在于,所述用户设备还包括接收单元和计算单元;
    所述接收单元用于:接收所述网络设备发送的控制信令,根据所述控制信令确定所述上行控制信息的部分信息在所述第一传输时间单元中的频域位置;或
    所述计算单元用于:确定接收的下行数据对应的下行控制信息,根据所述下行控制信息的第一个控制信道单元的编号计算得到所述部分信息在所述第一传输时间单元中的频域位置。
  20. 如权利要求18或19所述的用户设备,其特征在于,
    所述上行控制信息在所述第二传输时间单元中占据的频域位置与所述上行控制信息在所述第一传输时间单元中占据的频域位置相同;或
    所述上行控制信息在所述第二传输时间单元中占据的频域位置与所述上行控制信息在所述第一传输时间单元中占据的频域位置之间相差第一偏移量。
  21. 如权利要求18或19所述的用户设备,其特征在于,所述上行控制信息在所述第二传输时间单元中占据的频域位置为连续的P个子载波;其中,所述P个子载波中包括在所述第二传输时间单元分配给所述用户设备的上行时频资源中编号最小的子载波,或所述P个子载波中包括在所述第二传输时间单元分配给所述用户设备的上行时频资源中编号最大的子载波,P为正整数。
  22. 如权利要求17所述的用户设备,其特征在于,所述映射单元用于:
    将所述上行控制信息重复映射到所述至少两个传输时间单元中,以将至少两个所述上行控制信息发送给所述网络设备;其中,所述至少两个传输时间单元为连续的传输时间单元,或所述至少两个传输时间单元为不连续的传输时间单元。
  23. 如权利要求17-22任一所述的用户设备,其特征在于,所述传输时间单元包括一个或多个子帧,或所述传输时间单元包括一个或多个时隙,或所述传输时间单元包括一个或多个符号。
  24. 一种网络设备,其特征在于,包括:
    发送单元,用于向用户设备发送控制信令;所述控制信令用于指示所述用户设备将上行控制信息映射到至少两个传输时间单元中发送给所述网络设备;
    接收单元,用于在至少两个传输时间单元中接收所述用户设备发送的所述上行控制信息。
  25. 如权利要求24所述的网络设备,其特征在于,所述控制信令还指示所述用户设备将所述上行控制信息的部分信息映射到第一传输时间单元的最后M个符号上,以及将所述上行控制信息中剩余的信息映射到第二传输时间单元的前N个符号上;其中,所述第一传输时间单元和所述第二传输时间单元为连续的传输时间单元,M、N均为正整数;则,所述接收单元用于:
    在所述第一传输时间单元的所述最后M个符号上接收所述上行控制信息的部分信息,以及在所述第二传输时间的所述前N个符号上接收所述上行控制信息中剩余的信息。
  26. 如权利要求25所述的网络设备,其特征在于,
    所述控制信令还指示所述上行控制信息的部分信息在所述第一传输时间单元中的频域位置;或
    所述控制信令还指示所述用户设备,根据在接收的下行数据对应的下行控制信息的第一个控制信道单元的编号计算所述上行控制信息的部分信息在所述第一传输时间单元中的频域位置。
  27. 如权利要求25或26所述的网络设备,其特征在于,
    所述控制信令还指示所述上行控制信息在所述第二传输时间单元中占据的频域位置与所述上行控制信息在所述第一传输时间单元中占据的频域位置相同;或
    所述控制信令还指示所述上行控制信息在所述第二传输时间单元中占据的频域位置与所述上行控制信息在所述第一传输时间单元中占据的频域位置之间相差第一偏移量。
  28. 如权利要求25或26所述的网络设备,其特征在于,所述控制信令还指示所述上行控制信息在所述第二传输时间单元中占据的频域位置为连续的P个子载波;其中,所述P个子载波中包括在所述第二传输时间单元分配给所述用户设备的上行时频资源中编号最小的子载波,或所述P个子载波中包括在所述第二传输时间单元分配给所述用户设备的上行时频资源中编号最大的子载波,P为正整数。
  29. 如权利要求24所述的网络设备,其特征在于,所述接收单元用于:
    在所述至少两个传输时间单元中接收至少两个所述上行控制信息;其中,所述至少两个传输时间单元为连续的传输时间单元,或所述至少两个传输时间单元为不连续的传输时间单元。
  30. 如权利要求24-29任一所述的网络设备,其特征在于,所述传输时间单元包括一个或多个子帧,或所述传输时间单元包括一个或多个时隙,或所述传输时间单元包括一个或多个符号。
PCT/CN2017/101406 2016-09-30 2017-09-12 一种上行控制信息发送、接收方法及设备 WO2018059228A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17854678.4A EP3512278B1 (en) 2016-09-30 2017-09-12 Methods and devices for sending and receiving uplink control information
US16/369,578 US11252702B2 (en) 2016-09-30 2019-03-29 Uplink control information sending method, uplink control information receiving method, and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610874921.XA CN107889239B (zh) 2016-09-30 2016-09-30 一种上行控制信息发送、接收方法及设备
CN201610874921.X 2016-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/369,578 Continuation US11252702B2 (en) 2016-09-30 2019-03-29 Uplink control information sending method, uplink control information receiving method, and device

Publications (1)

Publication Number Publication Date
WO2018059228A1 true WO2018059228A1 (zh) 2018-04-05

Family

ID=61762508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/101406 WO2018059228A1 (zh) 2016-09-30 2017-09-12 一种上行控制信息发送、接收方法及设备

Country Status (4)

Country Link
US (1) US11252702B2 (zh)
EP (1) EP3512278B1 (zh)
CN (1) CN107889239B (zh)
WO (1) WO2018059228A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109495981B (zh) * 2018-12-21 2021-03-09 北京神经元网络技术有限公司 基于ofdm的数据传输方法、装置、设备和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103427940A (zh) * 2012-05-20 2013-12-04 上海贝尔股份有限公司 传输上行控制信息的方法和装置
CN103476120A (zh) * 2012-06-07 2013-12-25 中兴通讯股份有限公司 物理上行控制信道的发送、处理方法及装置
US20140286255A1 (en) * 2013-03-25 2014-09-25 Samsung Electronics Co., Ltd. Uplink demodulation reference signals in advanced wireless communication systems
CN105245312A (zh) * 2009-06-19 2016-01-13 交互数字专利控股公司 在lte-a中用信号发送上行链路控制信息

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110205981A1 (en) * 2009-08-13 2011-08-25 Changsoo Koo Multiplexing uplink l1/l2 control and data
US20140016546A1 (en) * 2010-10-10 2014-01-16 Lg Electronics Inc. Method and device for transmitting uplink control information in wireless access system
KR101929780B1 (ko) * 2011-07-22 2018-12-17 엘지전자 주식회사 무선 통신 시스템에서 서브프레임을 설정하는 방법
CN103312446B (zh) * 2012-03-16 2017-06-20 华为技术有限公司 上行控制信息的传输方法、设备及系统
WO2014179964A1 (zh) * 2013-05-09 2014-11-13 富士通株式会社 上行控制信息的传输方法、用户设备以及基站
CN110149724B (zh) 2013-05-10 2023-04-07 北京三星通信技术研究有限公司 物理下行共享信道的多子帧调度的实现方法及装置
WO2014201614A1 (zh) * 2013-06-17 2014-12-24 华为技术有限公司 上行控制信息传输方法、用户设备和基站
CN105340346B (zh) 2013-09-26 2018-11-06 松下电器(美国)知识产权公司 基站装置、移动台装置及通信方法
EP3627750B1 (en) * 2015-01-20 2022-04-13 LG Electronics Inc. Method for transmitting uplink control information and apparatus therefor
WO2017105158A1 (ko) * 2015-12-18 2017-06-22 엘지전자 주식회사 상향링크 제어 정보 전송 방법 및 이를 수행하는 사용자 장치
EP3383111A4 (en) * 2015-12-25 2018-12-19 NTT DoCoMo, Inc. User terminal, wireless base station, and wireless communication method
US10855430B2 (en) * 2016-05-18 2020-12-01 Lg Electronics Inc. Method for transmitting uplink control information in wireless communication system, and device therefor
US11477766B2 (en) * 2016-05-24 2022-10-18 Qualcomm Incorporated Uplink control information reporting
US10306630B2 (en) * 2016-09-29 2019-05-28 Sharp Kabushiki Kaisha Systems and methods for determining frame structure and association timing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105245312A (zh) * 2009-06-19 2016-01-13 交互数字专利控股公司 在lte-a中用信号发送上行链路控制信息
CN103427940A (zh) * 2012-05-20 2013-12-04 上海贝尔股份有限公司 传输上行控制信息的方法和装置
CN103476120A (zh) * 2012-06-07 2013-12-25 中兴通讯股份有限公司 物理上行控制信道的发送、处理方法及装置
US20140286255A1 (en) * 2013-03-25 2014-09-25 Samsung Electronics Co., Ltd. Uplink demodulation reference signals in advanced wireless communication systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3512278A4 *

Also Published As

Publication number Publication date
CN107889239A (zh) 2018-04-06
EP3512278B1 (en) 2023-08-09
EP3512278A1 (en) 2019-07-17
US11252702B2 (en) 2022-02-15
EP3512278A4 (en) 2019-09-25
US20190230652A1 (en) 2019-07-25
CN107889239B (zh) 2020-10-16

Similar Documents

Publication Publication Date Title
JP6940914B2 (ja) Fdd‐tddジョイントキャリアアグリゲーションのためのアップリンク制御シグナリング
US10708889B2 (en) Method and apparatus for indicating subframes associated with a hybrid automatic repeat request feedback
US10277363B2 (en) Hybrid automatic repeat request acknowledgement transmission method, user equipment, and base station
WO2017050078A1 (zh) 上行控制信息的发送、获取方法及装置
US20180324810A1 (en) Method and Apparatus for Carrier Aggregation
WO2013104330A1 (zh) 传输上行控制信息的方法、用户设备和基站
EP3629651B1 (en) Method and apparatus for sending control information, and method and apparatus for receiving control information
JP2018110344A (ja) 無線通信装置、無線通信方法及びコンピュータプログラム
WO2015158004A1 (zh) 一种功率配置方法、用户设备及基站
EP3751763A1 (en) Indication method, network device and user equipment
WO2018201902A1 (zh) 一种数据传输方法及装置
WO2017175476A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
WO2017024569A1 (zh) 一种数据传输方法、用户设备和基站
US9986556B1 (en) Enhanced TTI bundling in TDD mode
WO2017015963A1 (zh) 一种通信方法及通信设备
WO2018121150A1 (zh) 一种信息传输方法及装置
WO2017045118A1 (zh) 一种信息传输装置、方法及系统
WO2017128512A1 (zh) 信息发送方法、信息接收方法、装置及系统
WO2018059228A1 (zh) 一种上行控制信息发送、接收方法及设备
WO2018228044A1 (zh) 一种上行控制信道传输方法、终端、基站及装置
WO2020156394A1 (zh) 一种反馈方法及装置
WO2018023501A1 (zh) 一种harq应答信息传输方法及设备
JP2020509637A (ja) 無線通信方法、端末装置とネットワーク装置
JP6577671B2 (ja) サービスフィードバック方法および通信デバイス
WO2018120475A1 (zh) 一种消息应答方法及无线网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854678

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017854678

Country of ref document: EP

Effective date: 20190409