WO2018059225A1 - 磁极部件、纤维增强材料及其试验装置、控制方法 - Google Patents

磁极部件、纤维增强材料及其试验装置、控制方法 Download PDF

Info

Publication number
WO2018059225A1
WO2018059225A1 PCT/CN2017/101347 CN2017101347W WO2018059225A1 WO 2018059225 A1 WO2018059225 A1 WO 2018059225A1 CN 2017101347 W CN2017101347 W CN 2017101347W WO 2018059225 A1 WO2018059225 A1 WO 2018059225A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
adhesive
tested
temperature
magnetic pole
Prior art date
Application number
PCT/CN2017/101347
Other languages
English (en)
French (fr)
Inventor
马盛骏
马万顺
Original Assignee
北京金风科创风电设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京金风科创风电设备有限公司 filed Critical 北京金风科创风电设备有限公司
Priority to AU2017333529A priority Critical patent/AU2017333529B2/en
Priority to ES17854675T priority patent/ES2967912T3/es
Priority to EP17854675.0A priority patent/EP3431961B1/en
Priority to US16/088,305 priority patent/US11193869B2/en
Publication of WO2018059225A1 publication Critical patent/WO2018059225A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N13/00Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
    • G01N13/02Investigating surface tension of liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N13/00Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N13/00Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
    • G01N13/04Investigating osmotic effects
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N2011/006Determining flow properties indirectly by measuring other parameters of the system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N13/00Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
    • G01N13/02Investigating surface tension of liquids
    • G01N2013/0208Investigating surface tension of liquids by measuring contact angle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of adhesive filling and solidification technology in the production process of a magnetic pole protection forming process of a permanent magnet motor, in particular to a magnetic pole component, a fiber reinforced material, a testing device thereof and a control method thereof.
  • the permanent magnet motor is an electromagnetic device that converts mechanical energy and electrical energy into each other by using a magnetic field as a medium, and is widely used in various places. Among them, the permanent magnet material magnetism of permanent magnet motor is one of the important factors affecting the power generation performance of permanent magnet motor.
  • FIG. 1 is a partial structural diagram of a permanent magnet pole of a permanent magnet motor.
  • the permanent magnet pole of the permanent magnet motor comprises a yoke wall 1, a bead 2, a magnetic pole part 3, the yoke wall 1 is generally a cylindrical wall, and the pre-formed bead 2 is mounted on the yoke wall 1 using a fastener such as a bolt 4
  • the inner peripheral wall, the bead 2 extends in the axial direction, and a plurality of bead 2 are evenly distributed in the circumferential direction.
  • the magnetic pole member 3 After the position of the bead 2 is fixed, the magnetic pole member 3 is axially pushed to the corresponding position between the adjacent bead 2, and the cross section of the bead 2 is Generally, the trapezoidal shape, that is, the two side walls of the bead 2 are trapezoidal inclined surfaces, and the radial magnetic pole members 3 are confined inside the trapezoidal space formed by the adjacent bead 2.
  • the magnetic pole member 3 is a permanent magnet material, and the main component of the permanent magnet material is neodymium iron boron.
  • the iron and niobium in the neodymium iron boron are relatively easily oxidized, causing a change in magnetic properties, so in order to avoid the influence of the external environment on the magnetic properties of the magnetic pole member 3 as much as possible.
  • a protective coating 6 is cast on the surface of the magnetic pole member 3. The specific process is described in detail below.
  • a vacuum bag is mounted on the inner wall of the yoke wall 1, the vacuum bag forms a cavity with the yoke wall 1, and the bead 2 and the magnetic pole member 3 are covered inside the cavity.
  • the bead 2 In order to increase the strength of the protective cover 6, the bead 2
  • the surface is also pre-laid with a layer of fiber reinforced material.
  • the cavity is evacuated by a vacuum pump so that the reinforcing material is compacted on the surface of the bead 2 and the magnetic pole member 3, and the residual air between the surface of the magnetic pole member 3 and the yoke wall 1 is taken out, and the adhesive (resin Vacuum infusion of the cavity, the resin is impregnated with fiber reinforcement and filled from one end of the cavity into the axial direction to the other end a gap between the magnetic pole member 3 and the yoke wall 1, a gap between the magnetic pole member 3 and the bead 2, covering the bead 2 and the surface of the magnetic pole member 3, and after the adhesive fills the entire cavity and the gap and the gap, the infiltrated and impregnated mold
  • the contact surface of the cavity with the solid forms a protective coating of the resin-based reinforcing material to control the curing process.
  • the protective covering layer 6 has a good protection effect on the magnetic pole member 3 to a certain extent, in the long-term use process, the moisture of the surrounding environment can cause chemical changes of the fiber and the adhesive matrix, causing the performance of the fiber and the matrix.
  • the interface between the protective coating 6 and the bead 2 and the magnetic pole member 3 can be entered, causing the interface of the mutually bonded interface to peel off, resulting in a decrease in the mechanical properties of the material.
  • the adhesive will cause mismatch deformation and mismatch stress due to expansion and contraction, which will affect the deformation of the structure and cause damage to the material.
  • microcracks there are many defects such as microcracks in the bonding interface during the molding process.
  • the state of opening and closing of each microcrack is different during temperature expansion and temperature reduction, which causes the thermal expansion coefficient to rise and cool.
  • the inconsistency, crack or peeling layer will gradually increase, reducing the mechanical properties of the protective coating 6.
  • water molecules firstly invade the free space inside the protective coating 6 and microscopic defects such as holes, bubbles, microcracks, etc., so that the initial moisture absorption is faster.
  • the present invention provides a test apparatus for component infiltration research, comprising the following components:
  • a container having an adhesive placement chamber for holding an adhesive inside
  • a positioning component for positioning the component to be tested in an adhesive placement cavity of the container to place a portion of the component to be tested in the adhesive
  • An adhesive heating member disposed inside or outside the adhesive placing chamber for heating the adhesive
  • An adhesive temperature sensor for measuring a temperature of the adhesive inside the adhesive placement chamber
  • An collecting component configured to obtain meniscus information formed between the tested component and the adhesive
  • a controller for controlling the operation of the adhesive heating member to make the adhesive at different temperatures, and calculating corresponding contact between the tested component and the adhesive according to the obtained meniscus information at different temperatures Angle and obtain the minimum contact angle for the adhesive temperature.
  • the test component such as the fiber reinforcement material or the magnetic pole component can be placed in the proper position of the adhesive placement cavity through the positioning component, and the adhesive can be placed inside the cavity to hold a certain amount.
  • Adhesive, adhesive temperature sensor can feedback the real-time temperature of the adhesive to the controller.
  • the controller can control the adhesive heating component to open or close to make the adhesive at different temperatures, and the collecting component can obtain different temperatures. Under the condition, the meniscus information is calculated and the corresponding contact angle is calculated, and finally the adhesive temperature corresponding to the minimum contact angle is displayed.
  • the contact angle of the member to be tested and the adhesive at different adhesive temperatures can be obtained by the test device. Tests have shown that the contact angles of the same tested part with the adhesive are different at different adhesive temperatures, and the contact angles of the different tested parts at the same adhesive temperature are also different. According to the test device, the temperature of the adhesive which obtains the optimum contact angle of a certain tested component can be determined. It is generally believed that the smaller the contact angle, the better the wetting effect of the liquid on the solid.
  • the optimum bonding temperature of the fiber reinforcing material and the magnetic pole component in the injection molding process of the permanent magnet motor magnetic pole forming molding process can be obtained in advance by the testing device provided by the invention, which is beneficial to obtaining the molding quality control of the protective coating. Data on key influencing factors.
  • the present invention also provides a magnetic pole component comprising a magnet body, further comprising the following components:
  • a component heater disposed inside the magnet body for heating the magnet body
  • a component temperature sensor for measuring a surface temperature of the magnet body.
  • FIG. 1 is a schematic view showing a partial structure of a permanent magnet magnetic pole of a permanent magnet motor
  • FIG. 2 is a schematic structural view of a test apparatus for component infiltration research in an embodiment of the present invention
  • Figure 3 is a graph showing the variation of the weight components with time at different adhesive temperatures
  • Figure 4 is a schematic structural view of a magnetic pole member
  • FIG. 5 is a schematic structural view of a testing device according to another embodiment of the present invention.
  • Figure 6 is an enlarged view of A in Figure 5;
  • Figure 7 is a schematic view showing the flow direction when the adhesive agent is mixed when the top wall is a dome
  • Figure 8 is a schematic structural view of the test device
  • FIG. 9 is a flowchart of a control method provided by the present invention.
  • Container 10 bottom wall 101, peripheral wall 102, top wall 103, outer casing 104, inlet 104a, outlet 104b, inner casing 105;
  • Adhesive heating member 12 heating net 121, terminal 121a, heating wire 122;
  • Fiber reinforcement material 13 transverse fiber 131, longitudinal fiber 132;
  • Suspension skeleton 14 lower positioning rib 141, intermediate positioning rib 142, upper positioning rib 143;
  • thermocouple wire 161 thermocouple temperature sensing section 162;
  • Magnetic pole member 40 magnet body 41
  • the protective covering layer is mainly formed by an injection molding process and a curing process, wherein the equipment used in the injection molding process mainly includes: a vacuum pump, a vacuum pump pressure regulating valve, a buffer tank (adhesive collector), an adhesive storage tank, and a connection. hose.
  • the equipment used in the injection molding process mainly includes: a vacuum pump, a vacuum pump pressure regulating valve, a buffer tank (adhesive collector), an adhesive storage tank, and a connection. hose.
  • the adhesive in the adhesive storage tank is gradually filled into the inside of the vacuum bag through the hose.
  • the adhesive (resin) is vacuum-infused into the cavity, and the resin is impregnated from the one end of the vacuum bag while flowing in the axial direction to the other end while impregnating the fiber reinforcing material, filling the gap between the magnetic pole member and the yoke wall, and the magnetic pole.
  • the present invention has found that in addition to the bonding agent self-mixing factor, there are other factors affecting the molding quality of the protective covering layer, such as the temperature of the adhesive, the fiber reinforcing material inside the vacuum bag, the magnetic pole member, and the like, and the temperature of the contact member with the adhesive. , materials, etc. all affect the formation of the protective cover layer.
  • FIG. 2 is a schematic structural view of a testing device for component infiltration research according to an embodiment of the present invention.
  • Embodiments of the present invention provide a test apparatus for component infiltration research, comprising a container 10, which may have a cavity enclosing a closed structure, the inside of the container 10 having an adhesive placement cavity, and the adhesive placement cavity
  • the adhesive placement chamber may be part of the internal cavity of the container 10, or may be independent of the container 10, that is, the adhesive placement chamber is formed by a separate component and placed in the cavity of the container 10.
  • the container 10 includes a bottom wall 101, a peripheral wall 102, and a top wall 103. The three are surrounded by a cavity for holding the adhesive 100, and the adhesive placement cavity is a portion of the cavity.
  • the test device further includes a positioning member for positioning the member to be tested at a corresponding position inside the container 10, and the portion of the member to be tested is placed in the adhesive placement chamber during the test The part is in contact with the adhesive.
  • the test apparatus further includes an adhesive heating member 12, an adhesive temperature sensor 11, an acquisition member, and a controller 22.
  • the adhesive heating member 12 is disposed inside the adhesive placement chamber or outside the adhesive placement chamber for heating the adhesive 100. That is, the adhesive heating member 12 may be provided inside the adhesive placing chamber to directly heat the adhesive 100, or may be provided outside the adhesive placing chamber to indirectly heat the adhesive 100.
  • the adhesive temperature sensor 11 is for measuring the temperature of the adhesive 100 inside the adhesive placement chamber, and the adhesive temperature sensor 11 may be disposed on the bottom wall 101 of the adhesive placement chamber.
  • the collecting part is used for acquiring the meniscus information formed between the tested component and the adhesive, the meniscus is formed at the contact interface between the tested component and the adhesive, and the partial adhesive is from the liquid surface of the adhesive The surface on which the surface of the part being tested climbs upward.
  • the angle between the tangential direction of the meniscus and the vertical line is the contact angle.
  • the controller 22 is configured to control the operation of the adhesive heating member 12 so that the adhesive is at different temperatures, and calculate the contact angle between the corresponding tested component and the adhesive according to the obtained meniscus information at different temperatures. And obtain the adhesive temperature corresponding to the minimum contact angle.
  • the test member such as the fiber reinforcement material 13 (for example, the glass fiber reinforcement material) or the magnetic pole member 40 can be placed in the appropriate position of the adhesive placement chamber through the positioning member.
  • the inside of the agent placement chamber may contain a certain amount of adhesive 100, and the adhesive temperature sensor 11 may feed back the real-time temperature of the adhesive 100 to the controller 22, and the controller 22 may further control the adhesive heating unit to be turned on or off.
  • the adhesive is placed at different temperatures, and the collecting part can obtain the meniscus information under different temperature conditions and calculate the corresponding contact angle, and finally obtain the adhesive temperature corresponding to the minimum contact angle.
  • the contact angle of the member to be tested and the adhesive 100 at different adhesive temperatures can be obtained by the test device. Tests have shown that the contact angles of the same tested part with the adhesive 100 are different at different adhesive temperatures, and the contact angles of the different tested parts at the same adhesive temperature are also different. According to the test device, the temperature of the adhesive which obtains the optimum contact angle of a certain tested component can be determined. It is generally believed that the smaller the contact angle, the better the wetting effect.
  • the optimum bonding temperature of the fiber reinforced material 13 and the magnetic pole member 40 in the permanent magnetic pole protection molding injection molding process of the permanent magnet motor can be obtained in advance by the testing device provided by the invention, which is advantageous for obtaining the molding quality of the protective coating. .
  • the present invention further finds that the temperature of the fiber reinforcement and the temperature of the magnetic pole member 40 are controlled during the wetting, so that the temperature of the coating material (tested component) and the adhesive 100 are well matched, and further The contact angle of the adhesive 100 with the component to be tested is optimized. Therefore, the present invention has further improved the test apparatus.
  • the testing device may further include a component heater and a component temperature sensor 16; a component heater disposed inside the component to be tested for heating the coated surface of the component to be tested; the component heater is preferably pre-buried in a heating wire 15 of the component to be tested, the heating wire 15 is used for heating the component to be tested, for example, the glass fiber reinforced material comprises a fiber body and a heating wire 15, and the fiber body further comprises a longitudinal direction.
  • the fiber 132 and the transverse fiber 131, the longitudinal fiber 132, the transverse fiber 131 and the heating wire 15 are woven together to form a glass fiber reinforced material, and the heating wire 15 can be evenly coated inside the glass fiber reinforced material, and the access terminal 15a of the electrical terminal The upper portion of the glass fiber reinforced material is extended to facilitate connection to an external circuit.
  • the heating wire 15 is wrapped inside the fiber, that is, the plurality of fibers wrap the heating wire 15, so that the heating wire is not exposed, does not directly contact the adhesive, and does not change the surface property of the reinforcing material, that is, the roughness and density of the surface. Further, the heating wire does not affect the contact state between the entire fiber reinforcing material and the adhesive.
  • FIG. 4 is a schematic structural view of the magnetic pole member 40.
  • the magnetic pole component 40 can embed the component heater inside the magnetic pole material during prefabrication.
  • the magnetic pole member 40 may include a magnet body 41 which is mainly made of a metallurgical powder, which is the same as that of the prior art magnetic steel, and will not be described too much herein.
  • the magnetic pole member 40 in the present invention further includes a component heater and a component temperature sensor as described above, and the component heater is disposed inside the magnet body 41 for heating the magnet body 41.
  • the component heater can be a heating wire or a heating rod or a heating tube.
  • the heating wire or the heating tube can be uniformly molded inside the magnet body 41 and disposed close to the surface of the magnet body 41, which is also advantageous for quickly heating the magnet body 41.
  • the access terminal 15a of the electrical or liquid conduit extends from the interior of the magnet body 41 to an external connection to an external heat source.
  • the component heater is formed as a continuous electric heating element inside the magnet body 41, which is favorable for uniform heat distribution.
  • the component heater is a mesh structure composed of an electric heating element inside the magnet body 41, and the mesh structure has a high heat generation start-up speed and is favorable for uniform heat generation distribution.
  • the mesh structure can constitute multiple parallels.
  • the outer surface of the component heater may be wrapped with an insulating material to prevent the component heater from being electrically conductive with the magnet body 41.
  • the inside of the pole body 41 further includes a humidity sensor.
  • the moisture sensitive member of the humidity sensor is molded on the surface of the magnet body 41, and the moisture sensing member of the humidity sensor is formed inside the magnet body 41.
  • the wire is molded inside without changing the surface condition of the magnet body.
  • the component temperature sensor 16 is used to measure the surface temperature of the component to be tested, and the component temperature sensor 16 may be disposed on the surface of the component to be tested or may be embedded in the interior of the component to be tested.
  • the component temperature sensor is used to measure the surface temperature component of the fiber body or magnet body 41.
  • the temperature sensor includes a temperature sensing portion and a conductive portion, and the temperature sensing portion is used for temperature measurement, and at least partially abuts against the outer surface of the fiber body or the magnet body 41; the conductive portion is embedded in the magnet body 41, and one end is connected to the temperature sensing unit. The other end is exposed outside the magnet body 41.
  • the controller 22 further controls the component heaters to operate such that the components to be tested are at different temperatures, and the obtained bonding layer between the tested component and the adhesive is in different temperature gradients, according to the meniscus.
  • the surface information calculates the corresponding contact angle, and the temperature of the tested component and the adhesive temperature corresponding to the minimum contact angle are obtained.
  • the end portion of the conductive portion of the component temperature sensor connected to the outside may be passed out from the inside of the member to be tested to be connected to the controller 22.
  • the component temperature sensor 16 may be a thermocouple sensor including a thermocouple wire 161 and a thermocouple temperature sensing section 162 that measures the surface temperature of the component under test located inside the adhesive.
  • the component temperature sensor 16 can transfer the surface temperature of the component under test to the controller 22, and the controller 22 can control the component heater embedded in the component to be tested to heat the component under test.
  • Tests have shown that the same tested part has different surface temperatures at the same adhesive temperature and the contact angles are different.
  • the tested parts are glass fiber reinforced materials
  • the following table shows the contact angle of the glass fiber reinforced material with the adhesive 100 at the same coating temperature at the same coating temperature:
  • the testing apparatus of each of the above embodiments may further include an internal temperature sensor 23 disposed inside the component to be tested for detecting the internal temperature of the component to be tested.
  • the signal output end of the signal line 23a of the internal temperature sensor 23 can be connected to the signal input end of the controller, and the controller displays the temperature detected by the internal temperature sensor on the display screen, so that the tester can further facilitate the temperature detected by the internal temperature sensor. Understanding the relationship between the heating power of the component heater and the heating power of the component heater and the surface temperature of the component to be tested facilitates obtaining the rate of thermal diffusion from the inside to the outside of the component to be tested, as well as the temperature of the external adhesive. The extent of the impact.
  • the positioning member in the present invention may include a lever 19, and the lever 19 is rotatable about a fixed fulcrum.
  • One end of the lever 19 is suspended with a member to be tested located in the adhesive placement chamber, and the other end is provided with a weight member. 17.
  • the weight member 17 is used to balance the force of the member to be tested so that the lever 19 is in the equilibrium position.
  • the lever in the present invention is preferably an equal arm lever 19, which facilitates the convenience of subsequent calculations.
  • the force of the tested component in the adhesive placement cavity includes gravity and the adhesive 100 imparts upward buoyancy.
  • the weight of the weight component 17 is tested when the lever 19 is balanced. The vector sum of the buoyancy and wetting forces of the part.
  • the weight member 17 can be a weight block labeled with a specific value.
  • a suspension skeleton is generally additionally provided, and the fiber reinforcement 13 is flatly positioned on the suspension skeleton 14, and the upper end of the suspension skeleton 14 is connected with the lever 19.
  • the suspension frame 14 includes at least an upper positioning rib 143, a lower positioning rib 141, and an intermediate positioning rib 142, and the fiber reinforced material 13 is flatly positioned by the positioning ribs.
  • the surface contact section of the fiber reinforcement 13 and the adhesive 100 is located between the lower end positioning rib 141 and the intermediate positioning rib 142, that is, the lower end positioning rib 141 is generally submerged inside the adhesive 100 at the end of the fiber reinforcement 13.
  • FIG. 3 is a graph showing the regularity of the weight components with time at different adhesive temperatures.
  • the curve S1 in the figure is the adhesive temperature T.
  • the curve corresponding to B ; curve S2 is the curve corresponding to the temperature of the adhesive T A , where T A is greater than T B .
  • the weight of the weight member 17 is first reduced and then gradually increased until it becomes a constant value. That is, the viscosity of the adhesive 100 in the adhesive placement chamber is varied, taking the curve S1 as an example. During the process from 0 to ⁇ 0 , the viscosity is lowered, wherein the viscosity of the adhesive is reduced to a minimum.
  • the testing device may further include a bracket 18 supported on the ground or the test stand.
  • the fixed fulcrum of the lever 19 is formed on the top of the bracket 18, that is, the lever 19 is supported on the top of the bracket 18 and surrounds the bracket. 18 top rotation.
  • the lever 19 bracket 18 is disposed outside the adhesive placing chamber, and is convenient to install.
  • the lever 19 can be connected to the component to be tested by a drawstring or a tie rod member, that is, the lower end of the drawstring or the pull rod is connected to the upper end portion of the test component, and the upper end is passed through the corresponding end of the through hole connection lever 19 opened by the top wall of the adhesive placement chamber. .
  • the test apparatus of each of the above embodiments may further include a power component for driving the container 10 to rotate about its central vertical axis.
  • a power component for driving the container 10 to rotate about its central vertical axis.
  • the bottom wall 101 of the container 10 can be fixed to the platform, and the power component drives the platform to rotate, thereby realizing the rotation of the container 10.
  • the power component can be a motor. Because the test device is small in size, the power of the motor is relatively low, and can be driven by the battery.
  • the power components can also be hydraulic pumps, motors, etc. for power components.
  • the specific structural form of the present invention is not specifically limited as long as the rotation of the container 10 can be achieved. Although only the rotating shaft 21 connected to the power component is shown in FIG. 2, the power component is not shown, but the understanding of the technical solution of the present invention is not hindered by those skilled in the art.
  • the container 10 in the initial state, the container 10 can be rotated by the power member, the adhesive 100 inside the container 10 and the curing agent can be uniformly mixed, and then the member to be tested can be positioned at a suitable position in the adhesive placement chamber to perform an infiltration test.
  • FIG. 7 is a schematic view showing the flow direction when the adhesive 100 is mixed when the top wall is a dome.
  • the inner surface of the top wall of the container 10 is of a ⁇ type.
  • the 100 flow pattern has a circumferential rotation and superimposed up and down reciprocating tumbling, which facilitates the rapid mixing of the adhesive and the curing agent.
  • the adhesive heating component 12 is a heating mesh that is evenly disposed within the interior of the adhesive placement chamber, which facilitates uniform and rapid heating of the adhesive 100.
  • the adhesive heating member 12 may also be a heating wire 122 built into the inner wall of the container 10, and the terminal end of the heating wire 122 and the terminal 121a of the heating wire 121 are exposed to the outside of the container 10.
  • the heating net 121 disposed inside the adhesive placing chamber and the heating wire 122 disposed on the inner wall of the container 10 may be disposed alternatively or both, thereby complementing each other.
  • the meniscus information acquired by the collecting component of the testing device in each of the above embodiments may be a meniscus image or video, and the signal output port of the collecting component is connected to the signal input end of the controller 22 to transmit the meniscus image or video.
  • the controller 22 performs image processing or video processing on the meniscus image or video to obtain a contact angle between the adhesive and the member to be tested.
  • the collecting component can accurately and quickly obtain the contact angle, thereby improving the test efficiency and the accuracy of the test result analysis.
  • FIG. 5 is a schematic structural view of another embodiment of the present invention.
  • FIG. 6 is an enlarged view of FIG.
  • the acquisition component includes an imaging device 33, a microscope 31, and an image capture card 32.
  • the imaging device 33 is configured to acquire a meniscus image;
  • the microscope 31 is configured to amplify the meniscus image acquired by the imaging device 33, which may be a stereo microscope;
  • the image capturing card 32 receives The meniscus image magnified by the microscope 31 and the meniscus image are clearly displayed on the display screen according to the sampling rate set by the controller 22.
  • the image capture card 32 can be a high speed image capture card, the camera device can be a CCD camera, and the microscope 31 can be a stereo microscope.
  • the CCD camera of the high-speed CCD image acquisition system is connected to the stereo microscope 31 and docked with the thermal insulation cavity to observe the test process in the recording cavity.
  • the image acquisition card 32 microscopically enlarges the adhesive 100 (resin)-air meniscus.
  • the image or video is transmitted to the controller 22, and the controller 22 is provided with real-time display and acquisition by the self-programming software.
  • the magnification of the image can be adjusted according to the test requirements, and the dynamic contact angle is obtained by directly measuring the angle of the meniscus.
  • the static contact angle ⁇ a and the static contact angle ⁇ b , the liquid surface tensions ⁇ a and ⁇ b of the magnetic pole member 40 at temperatures T A and T B are shown in FIG.
  • the static contact angle is: the solid tested component stands vertically in the liquid, and the capillary action causes the meniscus to appear on both sides of the solid tested component, and the angle between the tangent of the meniscus and the vertical direction.
  • the corresponding contact angle is the dynamic contact angle; the dynamic contact angle is greater than the static contact angle, and increases with the speed v of the sheet Big and big.
  • the width of the side surface (left side surface, right side surface) of the magnetic pole member 40 is 10 times or more of the width of the front surface (or the back surface), and the front surface (or back surface) of the magnetic pole member 40 faces the side surface (left side surface and right side surface) of the magnetic pole member 40.
  • the effect of the meniscus is negligible.
  • the left side surface and the right side surface of the magnetic pole member are defined with reference to the position of the member in Fig. 4, and the left side surface and the right side surface are the surfaces having the largest surface area.
  • the magnetic pole member 40 is partially immersed in the adhesive 100 (resin and curing agent), and the other end of the magnetic pole member 40 is hung on the lever 19, and the maximum pulling force required for the magnetic pole member 40 to be out of the liquid surface is measured, which is equal to the magnetic member in the air.
  • Mg is the gravity of the magnetic pole member 40, and the unit is Newton (symbol N);
  • F b buoyancy, the unit is Newton (symbol N);
  • L is the wetted perimeter of the solid to be tested, and the unit is meter (symbol m);
  • is the contact angle and the unit is the angle
  • is the surface tension of the liquid in Newtons/meter (symbol N/m);
  • is the liquid density in kilograms per cubic meter (symbol kg/m3)
  • S is the solid bottom area, in square meters (symbol is m 2 );
  • H is the depth at which the solid is immersed in the liquid in meters (symbol m).
  • the contact angle is thus calculated by the force measurement method.
  • the weight can be made smaller and can be added or reduced at a constant rate.
  • the container 10 of the above test apparatus has a casing 104 and an inner casing 105, and an adhesive placement chamber is formed inside the inner casing 105, and a heat insulating cavity is formed between the outer casing 104 and the inner casing 105.
  • the insulated chamber is filled with insulating material.
  • the outer casing 104 is provided with an inlet 104a and an outlet 104b that communicate with the insulated chamber.
  • the inlet 104a and the outlet 104b may be connected to an external insulating medium circuit.
  • the insulating medium in the outer insulating medium circuit may be a gas or a liquid.
  • Insulation or insulation media helps to isolate the inner casing and the external environment. Insulation and insulation media can effectively block the heat transfer between the inner and outer environments of the inner casing, especially when the test device is used in a relatively low temperature environment. At the time, the container 10 can greatly improve the test efficiency.
  • the adhesive placement chamber of the container 10 may further include an air cavity located around the adhesive placement cavity or above the adhesive placement cavity, the air cavity being used to fill the gas satisfying the test condition, such that The air chamber is filled with humid gas or dry gas to simulate the actual process environment.
  • the air chamber is filled with humid gas or dry gas to simulate the actual process environment.
  • the container 10 may be partially or entirely made of a transparent material.
  • the inner wall of the adhesive placing chamber may be provided with a layer 20 of debonding material formed of a debonding material.
  • the test apparatus in the present invention can adjust the surface energy of the material to be tested by heating the member to be tested (for example, the glass fiber reinforced material and the magnetic pole member 40), and can also adjust the temperature of the liquid such as the adhesive in contact with the member to be tested. , viscosity and surface energy, seeking the adhesive 100 to infiltrate the temperature of the tested part. That is, the test apparatus provided in the present invention can actively control the temperature difference of the solid-liquid contact surface when the magnetic pole member 40 and the glass fiber reinforced material are individually or collectively in contact with the adhesive.
  • the adhesive which adheres to the member to be tested is an adhesive which is within a predetermined pitch of the coated surface, and the adhesive in the predetermined pitch range is defined as the adhesive layer c in the art.
  • FIG. 8 is a schematic structural diagram of the test device.
  • the adhesive temperature sensor 11 may be disposed at a boundary between the adhesive and the adhesive layer c formed by the member to be tested. This allows an accurate determination of the temperature gradient formed by both the part being tested and the adhesive.
  • the temperature gradient is the ratio of the difference between the surface temperature of the tested component and the adhesive temperature to the thickness of the bonding layer.
  • the thickness of the bonding layer is on the order of millimeters, for example, within 2 mm.
  • FIG. 9 is a flowchart of a control method provided by the present invention.
  • control method which specifically includes:
  • S2 obtains a contact angle formed between the adhesive and the tested component under different temperature gradients; and controls the temperature of the tested component and the adhesive temperature corresponding to the minimum contact angle as a protective coating parameter.
  • the adhesive temperature corresponding to the minimum static contact angle and the contact interface temperature of the member to be tested are selected as the internal glue temperature of the injected vacuum bag and the surface temperature of the glass fiber reinforced material or the magnetic pole member 40 in the actual injection molding condition.
  • the contact angle at each temperature gradient as described above can be obtained by acquiring the meniscus information formed between the member to be tested and the adhesive, and calculating the contact angle based on the meniscus information.
  • results of the experimental research in this paper have a guiding significance for the magnetic pole protective coating forming process of the permanent magnet motor, that is, the above-mentioned test method is used to find the fiber reinforcing material 13 and the magnetic pole member 40 (magnetic steel) which are most suitable for the mutual temperature of the adhesive 100 infiltration and Measuring new methods, dryness (or relative humidity) creates an adjustable surface state of the objective material necessary for the test conditions.
  • the tested component is the magnetic pole component 40 and the fiber reinforcing material 13, and the beneficial effects of the testing device are described.
  • the testing device provided by the present invention can also be applied to other tested components.

Landscapes

  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Moulding By Coating Moulds (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

一种磁极部件、纤维增强材料及其试验装置、控制方法,该试验装置包括:容器(10)具有内部设有用于盛装粘接剂的粘接剂放置腔;定位部件用于将被测试部件定位于所述容器(10)内部并部分位于所述粘接剂放置腔内部;粘接剂加热部件(12)用于对粘接剂进行加热;粘接剂温度传感器(11),用于测量粘接剂的温度;控制器(22),根据所述粘接剂温度传感器(11)所检测的温度信号开启或者关闭所述粘接剂加热部件(12),以维持所述粘接剂放置腔中粘接剂处于预设温度;该试验装置可以提前获得永磁电机磁极防护成型注胶工艺中玻璃纤维增强材料或磁极部件与粘接剂两者的最佳配合温度组合,有利于获得防护覆层成型质量控制的关键影响因素的数据。

Description

磁极部件、纤维增强材料及其试验装置、控制方法
本申请要求于2016年09月30日提交中国专利局、申请号为201610877233.9、发明名称为“磁极部件、纤维增强材料及其试验装置、控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及永磁电机磁极防护成型工艺生产过程粘接剂填充固化技术领域,特别涉及一种磁极部件、纤维增强材料及其试验装置、控制方法。
背景技术
永磁电机是以磁场为媒介进行机械能和电能相互转换的电磁装置,其广泛应用于各种场所。其中永磁电机的永磁材料磁性是影响永磁电机发电性能的重要因素之一。
请参考图1,图1为永磁电机的永磁磁极局部结构示意图。
永磁电机的永磁磁极包括磁轭壁1、压条2、磁极部件3,磁轭壁1一般为圆筒壁,预加工好的压条2使用螺栓4等紧固件安装于磁轭壁1的内周壁,压条2沿轴向延伸,并且沿周向均布有若干压条2,压条2的位置固定后,再将磁极部件3沿轴向推至相邻压条2之间相应位置,压条2的横截面一般为梯形,即压条2的两侧壁为梯形斜面,沿径向磁极部件3被限位于相邻压条2形成的梯形空间内部。磁极部件3为永磁材料,永磁材料的主要成分为钕铁硼,钕铁硼中的铁和钕比较容易氧化,引起磁性能变化,故为了尽量避免外界环境对于磁极部件3磁性能的影响,一般在磁极部件3的表面浇注一层防护覆层6,具体工艺详见以下描述。
首先,安装真空袋于磁轭壁1的内壁,真空袋与磁轭壁1形成模腔,压条2、磁极部件3被包覆于模腔内部,一般为了增加防护覆层6的强度,压条2表面还预先铺设有一层纤维增强材料。其次,利用真空泵对模腔抽真空以使增强材料被压实在压条2和磁极部件3表面,并引出磁极部件3表面和磁轭壁1之间的残余空气,再将粘接剂(树脂类)真空灌注模腔,树脂自模腔一端进入沿轴向向另一端流动的同时浸渍纤维增强材料、填充 磁极部件3与磁轭壁1之间缝隙、磁极部件3与压条2之间缝隙、覆盖压条2以及磁极部件3表面,待粘接剂充满整个模腔和空隙、缝隙后,再浸润、浸渍模腔内与固体的接触面以控制固化工艺过程形成树脂基增强材料防护覆盖层。
防护覆盖层6虽然在一定程度上对磁极部件3起到很好的保护作用,但是在长期使用过程中,周围环境的水分能够导致纤维及粘接剂基体发生化学变化,引起纤维及基体的性能下降,水分通过扩散可进入防护覆层6与压条2、磁极部件3之间的界面,引起相互粘接的界面剥离,导致材料力学性能的下降。粘接剂在温度和湿度改变的环境下会因胀缩而产生失配变形和失配应力,影响结构的变形和造成材料的损伤。
粘接的界面在模塑形成过程中不可避免存在许多微裂纹等缺陷,在升温膨胀和降温收缩时每个微裂纹的张开、闭合的状态不同,造成了热胀系数的升温、降温过程中的不一致性,裂纹或剥离层面会逐渐增大,降低了防护覆层6的机械性能。并且在使用过程中水分子首先容易侵入防护覆层6内部的自由空间以及孔洞、气泡、微裂纹等微观缺陷处,故初期吸湿较快。
因此,如何提高电机磁极部件表面防护覆层的使用寿命,是本领域内技术人员亟待解决的技术问题。
发明内容
为解决上述技术问题,本发明提供一种用于部件浸润研究的试验装置,包括以下部件:
容器,内部设有用于盛装粘接剂的粘接剂放置腔;
定位部件,用于将被测试部件定位于所述容器的粘接剂放置腔以使所述被测试部件的部分置于粘接剂中;
粘接剂加热部件,设置于所述粘接剂放置腔内部或者外部,用于对粘接剂进行加热;
粘接剂温度传感器,用于测量所述粘接剂放置腔内部粘接剂的温度;
采集部件,用于获取所述被测试部件与粘接剂之间形成的弯月面信息;
控制器,用于控制所述粘接剂加热部件工作,使粘接剂处于不同温度,根据获取的不同温度下的弯月面信息计算相应的所述被测试部件与粘接剂之间的接触角,并获得最小接触角对应的粘接剂温度。
这样,本发明所提供的试验装置在使用时,可以先将纤维增强材料或磁极部件等被测试部件通过定位部件置于粘接剂放置腔的适当位置,粘接剂放置腔内部可以盛装一定量的粘接剂,粘接剂温度传感器可以将粘接剂的实时温度反馈至控制器,控制器可以控制粘接剂加热部件开启或关闭使粘接剂处于不同温度,同时采集部件可以获取不同温度条件下弯月面信息并计算相应接触角,最后显示最小接触角所对应的粘接剂温度。
通过该试验装置可以获取不同粘接剂温度下被测试部件与粘接剂的接触角。试验证实,不同粘接剂温度下,同一被测试部件与粘接剂的接触角是不相同的,并且不同被测试部件在同一粘接剂温度下其接触角也是不一样的。根据本试验装置可以确定获得某一被测试部件最佳接触角的粘接剂温度。一般认为,接触角越小,液体对固体的浸润效果越好。
即通过本发明所提供的试验装置可以提前获得永磁电机磁极防护成型工艺生产过程注胶工艺中纤维增强材料和磁极部件的最佳粘接剂温度,有利于获得防护覆层的成型质量控制的关键影响因素的数据。
另外,本发明还提供了一种磁极部件,包括磁体本体,还包括以下部件:
部件加热器,设置于所述磁体本体的内部,用于对所述磁体本体进行加热;
部件温度传感器,用于测量所述磁体本体的表面温度。
附图说明
图1为永磁电机的永磁磁极局部结构示意图;
图2为本发明一种实施例中用于部件浸润研究的试验装置的结构示意图;
图3为不同粘接剂温度下配重部件随时间变化规律曲线;
图4为磁极部件的结构示意图;
图5为本发明另一种实施例中试验装置的结构示意图;
图6为图5中A处放大图;
图7为顶壁为穹顶时粘接剂混合时的流动方向示意图;
图8为试验装置的结构简图;
图9为本发明提供的一种控制方法的流程图。
其中,图1中:
磁轭壁1、压条2、磁极部件3、螺栓4、防护覆层6;
图2至图8中:
容器10、底壁101、周壁102、顶壁103、外壳104、进口104a、出口104b、内壳105;
粘接剂温度传感器11;
粘接剂加热部件12、加热网121、接线端121a、加热丝122;
纤维增强材料13、横向纤维131、纵向纤维132;
悬吊骨架14、下端定位筋141、中间定位筋142、上端定位筋143;
加热丝15、电接线端或液体管路的接入端15a;
部件温度传感器16、热电偶丝161、热电偶感温段162;
配重部件17;
支架18;杠杆19;
脱粘材料层20;
旋转轴21;
控制器22;
内部温度传感器23、信号线23a;
立体显微镜31、图像采集卡32、摄像装置33;
磁极部件40、磁体本体41;
粘接剂100。
具体实施方式
针对背景技术中指出的“在实际模塑形成过程中存在许多微裂纹等缺 陷导致防护覆层的机械性能降低”技术问题,本发明对防护覆层形成的各个阶段进行了深入研究和探索。
防护覆盖层主要通过注胶工艺和固化工艺成型,其中在注胶工艺中所使用的设备主要包括:真空泵、真空泵压力调节阀、缓冲罐(粘接剂收集器)、粘接剂储存罐和连接软管。在真空泵的作用下,粘接剂储存罐中粘接剂通过软管逐渐充注至真空袋的内部。如背景技术所述,粘接剂(树脂类)真空灌注模腔,树脂自真空袋一端进入沿轴向向另一端流动的同时浸渍纤维增强材料、填充磁极部件与磁轭壁之间缝隙、磁极部件与压条之间缝隙、覆盖压条以及磁极部件表面,待粘接剂充满整个模腔和空隙、缝隙后,再浸润、浸渍模腔内与固体的接触面以控制固化工艺过程形成树脂基增强材料防护覆盖层。
本发明发现影响防护覆盖层成型质量除粘接剂自身配比因素外,还有其他因素,例如粘接剂的温度、真空袋内部的纤维增强材料、磁极部件等与粘接剂接触部件的温度、材质等均影响防护覆盖层成型。
如何根据具体纤维增强材料、磁极部件,设定合适的粘接剂温度,以进一步提高防护覆盖层的成型质量,本发明进行了深入研究,并在研究的基础上提出了以下技术方案。
为了使本领域的技术人员更好地理解本发明的技术方案,下面结合附图和具体实施例对本发明作进一步的详细说明。
请参考图2,图2为本发明一种实施例中用于部件浸润研究的试验装置的结构示意图。
本发明的实施例提供了一种用于部件浸润研究的试验装置,包括容器10,容器10可以具有围成封闭结构的容腔,容器10内部具有粘接剂放置腔,粘接剂放置腔用于盛装液体粘接剂100,粘接剂放置腔可以为容器10内部容腔的一部分,也可以相对容器10独立,即粘接剂放置腔由独立部件形成,放置于容器10的容腔中。一般地,容器10包括底壁101、周壁102和顶壁103,三者围成盛装粘接剂100的容腔,粘接剂放置腔为容腔的部分空间。
试验装置还包括定位部件,定位部件用于将被测试部件定位于容器10内部的相应位置,并且进行试验时被测试部件的部分位于粘接剂放置腔内 部与粘接剂接触。
试验装置还包括粘接剂加热部件12、粘接剂温度传感器11、采集部件和控制器22。粘接剂加热部件12设置于粘接剂放置腔内部或者粘接剂放置腔外部,用于对粘接剂100进行加热。即粘接剂加热部件12可以设置于粘接剂放置腔的内部,直接对粘接剂100进行加热,也可以设置于粘接剂放置腔的外部,间接对粘接剂100进行加热。粘接剂温度传感器11用于测量粘接剂放置腔内部粘接剂100的温度,粘接剂温度传感器11可以设置于粘接剂放置腔的底壁101上。
采集部件用于获取被测试部件与粘接剂之间形成的弯月面信息,弯月面形成于被测试部件与粘接剂之间的接触界面,部分粘接剂自粘接剂的液面向被测试部件表面向上爬升的曲面。
其中,弯月面上缘切线方向与竖直线的夹角为接触角。
控制器22用于控制粘接剂加热部件12工作,使粘接剂处于不同温度,根据所获取的不同温度下的弯月面信息计算相应的被测试部件与粘接剂之间的接触角,并获得最小接触角对应的粘接剂温度。
这样,本发明所提供的试验装置在使用时,可以先将纤维增强材料13(例如玻璃纤维增强材料)或磁极部件40等被测试部件通过定位部件置于粘接剂放置腔的适当位置,粘接剂放置腔内部可以盛装一定量的粘接剂100,粘接剂温度传感器11可以将粘接剂100的实时温度反馈至控制器22,控制器22可以进一步控制粘接剂加热部件开启或关闭使粘接剂处于不同温度,同时采集部件可以获取不同温度条件下弯月面信息并计算相应接触角,最后获得最小接触角所对应的粘接剂温度。
通过该试验装置可以获取不同粘接剂温度下被测试部件与粘接剂100的接触角。试验证实,不同粘接剂温度下,同一被测试部件与粘接剂100的接触角是不相同的,并且不同被测试部件在同一粘接剂温度下其接触角也是不一样的。根据本试验装置可以确定获得某一被测试部件最佳接触角的粘接剂温度。一般认为,接触角越小,浸润效果越好。
即通过本发明所提供的试验装置可以提前获得永磁电机的永磁磁极防护成型注胶工艺中纤维增强材料13和磁极部件40的最佳粘接剂温度,有利于获得防护覆层的成型质量。
在上述研究的基础上,本发明进一步发现:浸润时控制纤维增强材料的温度和磁极部件40的温度,使被覆材料(被测试部件)与粘接剂100的温度达到较好的匹配,可以进一步优化粘接剂100与被测试部件的接触角。故本发明将试验装置进行了进一步改进。
进一步地,试验装置还可以包括部件加热器和部件温度传感器16;部件加热器,设置于被测试部件的内部,用于对该被测试部件的被覆表面进行加热;部件加热器优选为预先埋设于被测试部件的加热丝15,该加热丝15用于对被测试部件进行加热,以被测试部件为玻璃纤维增强材料为例,玻璃纤维增强材料包括纤维本体和加热丝15,纤维本体进一步包括纵向纤维132和横向纤维131,纵向纤维132、横向纤维131和加热丝15共同编织形成玻璃纤维增强材料,加热丝15可以均匀被包覆于玻璃纤维增强材料的内部,电接线端的接入端15a自玻璃纤维增强材料的上部伸出,以方便连接外部电路。
加热丝15包裹于纤维内部,即数根纤维包裹加热丝15,这样加热丝不被暴露,不会与粘接剂直接接触,不改变增强材料表面性状,即表面的粗糙程度、疏密程度,进而加热丝不影响纤维增强材料整体与粘接剂之间的接触状况。
请参考图4,图4为磁极部件40的结构示意图。
同理,当被测试部件为磁极部件40时,磁极部件40在预制时可以将部件加热器埋设于磁极材料内部。具体地,磁极部件40可以包括磁体本体41,磁体本体41主要由冶金粉末制作,与现有技术中磁钢的成分相同,在此不做过多介绍。本发明中的磁极部件40还包括如上所述的部件加热器和部件温度传感器,部件加热器设置于磁体本体41的内部,用于对磁体本体41进行加热。
部件加热器可以为加热丝,也可以为加热棒或加热管。在磁体本体41预制,即冶金粉末压制时,就将部件加热器埋设于磁体本体41的内部。
当然,为了使磁体本体41的外表面尽量受热均匀,加热丝或者加热管可以均匀成型于磁体本体41内部,并且靠近磁体本体41的表面设置,也有利于快速对磁体本体41进行加热。电接线端或液体管路的接入端15a自磁体本体41内部伸至外部连接外部加热源。
部件加热器在磁体本体41内部形成为一根连续的电热元件,有利于产热分布均匀。或者,部件加热器是在磁体本体41内部由电热元件构成的网状结构,网状结构产热启动速度快,且有利于产热分布均匀。网状结构可以构成多路并联。
部件加热器设置于磁体本体41内的方式很多,在此不做一一列举。
并且,部件加热器的外表面可以包裹有绝缘材料,避免部件加热器与磁体本体41导电。
进一步地,磁极本体41内部还包括湿度传感器,湿度传感器的感湿件成型于所述磁体本体41的表面,湿度传感器的感湿度件引线成型在所述磁体本体41的内部。引线成型于内部可以不改变磁体本体的表面状况。
同理,部件温度传感器16用于测量被测试部件的表面温度,部件温度传感器16可以设置于被测试部件的表面,也可以埋设于被测试部件的内部。
同样以纤维增强材料和磁极部件40为例,部件温度传感器用于测量纤维本体或磁体本体41的表面温度部件。具体地,温度传感器包括感温部和传导部,感温部用于测温,且至少部分贴靠纤维本体或磁体本体41的外表面;传导部埋设于磁体本体41内部,其一端连接感温部,另一端露置于磁体本体41外部。
控制器22还进一步控制部件加热器进行工作使被测试部件处于不同温度,获取的被测试部件和所述粘接剂之间的粘接层处于不同温度梯度下的弯月面信息,根据弯月面信息计算相应接触角,获得最小接触角对应的被测试部件温度和粘接剂温度。
具体地,上述部件温度传感器的传导部与外部连接的端部可以自被测试部件的内部穿出进而连接控制器22。具体地,部件温度传感器16可以为热电偶传感器,包括热电偶丝161和热电偶感温段162,热电偶感温段162测量位于粘接剂内部的被测试部件的表面温度。
该实施方式中,部件温度传感器16可以将被测试部件的表面温度传递至控制器22,控制器22可以控制埋设于被测试部件的部件加热器对被测试部件进行加热。试验证实,同一被测试部件在相同粘接剂温度下,其自身表面温度不同,接触角是不相同的。以被测试部件为玻璃纤维增强材 料为例,下表给出了同一粘接剂温度,不同被覆表面温度下,玻璃纤维增强材料与粘接剂100的接触角:
表1玻璃纤维增强材料和粘接剂不同温度下的接触角
玻璃纤维增强材料表面温度(℃) 20 30 40 50
粘接剂温度(℃) 30 30 30 30
接触角(°) 56 52 40 34
进一步地,上述各实施例的试验装置还可以包括内部温度传感器23,设置于被测试部件的内部,用于检测被测试部件的内部温度。内部温度传感器23的信号线23a的信号输出端可以与控制器的信号输入端连接,控制器将内部温度传感器检测的温度显示于显示屏,这样试验人员有利于进一步根据内部温度传感器所检测的温度了解部件加热器的加热功率及部件加热器的加热功率与被测试部件的表面温度之间的关系,有利于获得从被测试部件的内部到外表面的热扩散速率,以及受外部粘接剂温度的影响程度。
进一步地,本发明中的定位部件可以包括杠杆19,杠杆19可围绕一固定支点转动,杠杆19的一端部悬置有位于粘接剂放置腔内的被测试部件,另一端设置有配重部件17,配重部件17用于平衡被测试部件的受力以使杠杆19处于平衡位置。
本发明中的杠杆优选等臂杠杆19,这样便于后续计算的方便。需要说明的是,被测试部件在粘接剂放置腔中的受力包括重力和粘接剂100给予向上的浮力,对于等臂杠杆19,杠杆19平衡时配重部件17的重量即为被测试部件的浮力和润湿力的矢量和。配重部件17可以为标有具体数值的砝码块。
对于自身重量比较轻的被测试部件,一般还额外设置有悬吊骨架,纤维增强材料13平展定位于悬吊骨架14上,该悬吊骨架14的上端连接杠杆19。具体地,悬吊骨架14至少包括上端定位筋143、下端定位筋141、中间定位筋142,通过各定位筋将纤维增强材料13平展定位。在试验时,纤维增强材料13与粘接剂100表面接触段位于下端定位筋141和中间定位筋142之间,即下端定位筋141一般位于纤维增强材料13的末端淹没于粘接剂100内部。
请参考图3,图3为不同粘接剂温度下配重部件随时间变化规律曲线。
试验证实,被测试部件在逐渐浸润的过程中,杠杆19并非始终处于平衡,要维持杠杆19平衡配重部件17的变化规律如图3所示,其中图中曲线S1为粘接剂温度为TB所对应变化曲线;曲线S2为粘接剂温度为TA所对应变化曲线,其中TA大于TB。配重部件17的重量先减小,然后再逐渐上升直至变为定值。也就是说,粘接剂放置腔中的粘接剂100的粘度是变化的,以曲线S1为例,在0至τ0过程中,粘稠度下降,其中粘接剂粘度降低到最小值的时刻,适合流动的最好状态,也最利于浸渍和浸润增强材料的缝隙和磁性部件的表面;在τ0至τ1过程中,粘稠度上升。并且从图中可以看出当配重部件的质量重新达到m0后,配重部件的重量单位变化率加快,即粘接剂的粘度急剧增加。
并且,通过以上试验所绘制的曲线可以看出,τ2大于τ1,即曲线S2表达了粘接剂粘度降低到最小值的时刻要迟于S1,也就是说粘接剂温度越高,粘度降低到最小值的时刻。
从以上试验可以得出,一定粘接剂温度下,粘度由稀变稠、流动性降低到一定程度的时限范围,在允许的时限范围内完成粘接剂注入、缝隙填充、对玻璃纤维布的浸渍、对永磁磁极部件40的浸润,进而得出合理的注胶时间。
以上各实施例中,试验装置还可以包括支撑于地面或试验台的支架18,杠杆19的固定支点形成于支架18的顶部,也就是说,杠杆19支撑于支架18的顶部,并可围绕支架18顶部转动。
杠杆19支架18设置于粘接剂放置腔的外部,安装比较方便。杠杆19可以通过拉绳或者拉杆部件连接被测试部件,即拉绳或拉杆的下端连接被测试部件的上端部,上端穿过粘接剂放置腔顶壁开设的通孔连接杠杆19的相应端部。
上述各实施例的试验装置还可以包括动力部件,动力部件用于驱动容器10围绕其中心竖直轴线旋转。具体地,容器10的底壁101可以固定在平台上,动力部件驱动平台转动,从而实现容器10的旋转。动力部件可以为电机,因该试验装置的体积不大,电机的功率也相对比较低,可以通过蓄电池驱动。当然动力部件也可以为液压泵、马达等部件,对于动力部件 的具体结构形式本发明不做具体限定,只要能实现容器10的旋转即可。虽然图2中仅示出了与动力部件连接的旋转轴21,未示出动力部件,但是并不阻碍本领域内技术人员对本发明技术方案的理解。
这样,在初始状态,可以利用动力部件带动容器10旋转,将容器10内部的粘接剂100和固化剂混合均匀,然后再将被测试部件定位于粘接剂放置腔合适位置进行浸润试验。
请再次参考图2并结合图7,图7为顶壁为穹顶时粘接剂100混合时的流动方向示意图。
容器10的顶壁内表面为穹型,当粘接剂100混合物爬升至穹型内壁的预定位置时,在重力的作用下将会向下跌落至粘接剂放置腔的内部,即粘接剂100流动形态有圆周方向旋转又叠加有上下往复翻滚,有利于粘接剂和固化剂的快速混合。
在一种优选的实施方式中,粘接剂加热部件12为均布于粘接剂放置腔内部的加热网,这样有利于对粘接剂100进行均匀快速加热。
当然,粘接剂加热部件12还可以为内置于容器10内壁中的加热丝122,加热丝的122的接线端和加热网121的接线端121a露置于容器10的外部。
粘接剂放置腔内部布置加热网121和容器10内壁布置加热丝122可以择一设置,也可以两者均设置,起到相辅相成的作用。
上述各实施例中的试验装置的采集部件所获取的弯月面信息可以为弯月面图像或视频,采集部件的信号输出端口连接控制器22的信号输入端,将弯月面图像或视频传送到控制器22,控制器22对弯月面图像或视频进行图像处理或视频处理获得粘接剂与被测试部件之间的接触角。
该实施例中,采集部件可以精确、快速获得接触角,提高试验效率及试验结果分析的准确性。
请参考图5,图5为本发明另一种实施例中的结构示意图;图6为图5中A处放大图。
在一种具体实施例中,采集部件包括摄像装置33、显微镜31和图像采集卡32。摄像装置33用于获取弯月面图像;显微镜31用于将摄像装置33获取的弯月面图像进行放大,可以为立体显微镜;图像采集卡32接收 经显微镜31放大后的弯月面图像,并根据控制器22设定的采样速率将弯月面图像清晰显示于显示屏。
图像采集卡32可以为高速图像采集卡,摄像装置可以为CCD摄像头,显微镜31可以为立体显微镜。高速CCD图像采集系统的CCD摄像头与立体显微镜31相连并与隔热腔体对接,观察记录腔体内试验过程,图像采集卡32将粘接剂100(树脂)-空气弯月面显微放大后的图像或视频传输到控制器22,控制器22内设自编软件实时显示和采集,图像的放大倍数根据试验要求可调节,动态接触角采用对弯月面直接量角获得。
如图6示出了磁极部件40在TA和TB温度下静态接触角θa和静态接触角θb,液体表面张力σa和σb。其中静态接触角为:固体被测试部件竖直立于液体中,毛细作用使固体被测试部件的两侧出现弯月面,弯月面的切线与竖直方向的夹角。当薄板以恒定速度v向下插入(或相反)液槽弯月面将降低并最终保持稳定形状,相应接触角为动态接触角;动态接触角大于静态接触角,并随着薄板速度v的增大而增大。通常磁极部件40侧面(左侧面、右侧面)宽度是正面(或背面)宽度的10倍以上,磁极部件40正面(或背面)边界对磁极部件40侧面(左侧面、右侧面)弯月面的影响可忽略。
本发明中上述磁极部件的左侧面、右侧面是以图4中部件位置为参考而定义,左侧面和右侧面是两个表面积最大的面。
磁极部件40部分浸入到粘接剂100(树脂和固化剂)中,磁极部件40另一端挂在杠杆19上,测定磁极部件40脱离液面时所需的最大拉力,它等于磁部件在空气中的重量加上粘接剂100在磁极部件40表面产生的润湿力Lσcosθ,其中σ为液体表面张力。
图5中磁极部件40处于平衡状态时,F-Mg=Lσcosθ-Fb
其中,F为天平拉力,单位为牛顿(符号为N);
Mg为磁极部件40重力,单位为牛顿(符号为N);
Fb为浮力,单位为牛顿(符号为N);
Lσcosθ为润湿力,单位为牛顿(符号为N);
Fb=ρgSh,单位为牛顿(符号为N);
L为待测固体润湿周长,单位为米(符号为m);
θ为接触角,单位为角度;
σ为液体表面张力,单位为牛顿/米(符号为N/m);
ρ为液体密度,单位为千克每立方米(符号为kg/m3);
S为固体底面积,单位平方米(符号为m2);
H为固体浸入液体深度,单位为米(符号为m)。
由此通过测力的方法计算出接触角,当三相接触线以恒定的速率前进(均匀小质量增加砝码)和后退(均匀小质量减少砝码,)时,测量动态接触角为:θ=arcos[(F+Fb)/(L·σ)]。砝码质量可以制造的较小,可以做到匀速添加或减少。
为了尽量降低上述试验中能量的损失,上述试验装置的的容器10具有外壳104和内壳105,粘接剂放置腔形成于内壳105内部,外壳104和内壳105之间形成隔热腔,隔热腔盛装有隔热材料。
或者,外壳104设有连通隔热腔的进口104a和出口104b,进口104a和出口104b可连接于外部隔热介质回路,外部隔热介质回路中的隔热介质可以为气体,也可以为液体。
隔热材料或者隔热介质有利于隔离内壳和外部环境,隔热材料和隔热介质可以有效隔断内壳内部与外部环境之间的热量传递,尤其当该试验装置应用于温度比较低的环境时,该容器10可以大大提高试验效率。
另外,容器10的粘接剂放置腔还可以进一步包括气腔,气腔位于粘接剂放置腔的周围或者位于粘接剂放置腔的上方,气腔用于充注满足试验条件的气体,这样气腔中充注湿润气体或者干燥气体,以模拟实际工艺环境。尤其,可以模拟现实工艺条件磁极部件40从干燥存放环境进入安装工序后,安装环境湿度对粘接剂100影响的试验装置,验证潮湿环境对粘接附着力接触角影响。
为了便于试验人员直观观察容器10内粘接剂100与被测试部件的浸润情况,容器10可以局部或者全部使用透明材料制作。
当然,为了尽量降低粘接剂100混合物与粘接剂放置腔内壁的摩擦,粘接剂放置腔内壁还可以设置一层由脱粘材料形成的脱粘材料层20。
本发明中的试验装置可以通过对被测试部件(例如玻璃纤维增强材料和磁极部件40)加热,调节被测试材料的表面能,并且还可以调整与被测试部件接触的粘接剂等液体的温度、粘度和表面能,寻求粘接剂100浸润被测试部件效果好的温度。即本发明中所提供的试验装置能够主动控制磁极部件40、玻璃纤维增强材料单独或共同与粘接剂接触时的固—液接触面温差。
一般地,与被测试部件起粘接作用的粘接剂为处于被覆表面预定间距内的粘接剂,本领域内将该预定间距范围内的粘接剂定义为粘接层c。
请综合参考图8,图8为试验装置的结构简图。
上述各实施例中,粘接剂温度传感器11可以设置于粘接剂与被测试部件所形成的粘接层c边界位置。这样可以准确确定被测试部件和粘接剂二者形成的温度梯度。
需要说明的是,温度梯度为被测试部件表面温度与粘接剂温度之差与粘接层厚度的比值。粘接层厚度在毫米级,例如2mm以内。
请参考图9,图9为本发明提供的一种控制方法的流程图。
在上述试验装置的基础上,本发明还提出了一种控制方法,具体包括:
S1、控制粘接剂的温度和被测试部件的表面温度,从而控制所述粘接剂与所述被测试部件之间粘接层的温度梯度;
S2获取若干组在不同所述温度梯度下所述粘接剂与被测试部件之间形成的接触角;并以最小接触角对应的被测试部件温度和粘接剂温度作为形成防护覆层的控制参数。
一般地,选择最小静态接触角所对应的粘接剂温度和被测试部件的接触界面温度作为实际注胶工况的注入真空袋内部胶温度和玻璃纤维增强材料或磁极部件40的表面温度。
如上所述各温度梯度下接触角可以通过获取被测试部件和粘接剂之间形成的弯月面信息,根据弯月面信息计算接触角。
本文试验研究的结果对于永磁电机磁极防护覆层成型工艺具有指导意义,即借助上述试验方法寻求纤维增强材料13、磁极部件40(磁钢)最适合粘接剂100浸润的相互间温度及其测量新方法、干燥程度(或相对湿度)创造了试验条件必备的客观物质可调节的表面状态。
以上仅针对被测试部件为磁极部件40、纤维增强材料13为例,介绍了试验装置的有益效果,当然,本发明所提供的试验装置还可以应用于其他被测试部件。
以上对本发明所提供的一种磁极部件、纤维增强材料及其试验装置、控制方法进行了详细介绍。本发明中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (32)

  1. 一种用于部件浸润研究的试验装置,其特征在于,包括以下部件:
    容器(10),内部设有用于盛装粘接剂的粘接剂放置腔;
    定位部件,用于将被测试部件定位于所述容器(10)的粘接剂放置腔以使所述被测试部件的部分置于粘接剂中;
    粘接剂加热部件(12),设置于所述粘接剂放置腔内部或者外部,用于对粘接剂进行加热;
    粘接剂温度传感器(11),用于测量所述粘接剂放置腔内部粘接剂的温度;
    采集部件,用于获取所述被测试部件与粘接剂之间形成的弯月面信息;
    控制器(22),用于控制所述粘接剂加热部件(12)工作,使粘接剂处于不同温度,根据获取的不同温度下的弯月面信息计算相应的所述被测试部件与粘接剂之间的接触角,并获得最小接触角对应的粘接剂温度。
  2. 如权利要求1所述的试验装置,其特征在于,还包括部件加热器和部件温度传感器(16);
    所述部件加热器,设置于所述被测试部件的内部,用于对所述被测试部件的被覆表面进行加热;
    所述部件温度传感器(16),用于测量与粘接剂接触的所述被测试部件的表面温度;
    所述控制器(22)还进一步控制所述部件加热器进行工作,使被测试部件处于不同温度,获取所述被测试部件和所述粘接剂之间的粘接层处于不同温度梯度下的弯月面信息,根据所述弯月面信息计算相应接触角,获得最小接触角对应的被测试部件温度和粘接剂温度。
  3. 如权利要求2所述的试验装置,其特征在于,所述部件加热器预先埋设于所述被测试部件内部;所述部件温度传感器(16)包括感温部和传导部,所述感温部用于测温,且至少部分贴靠所述被测试部件的被覆表面;所述传导部埋设于所述被测试部件内部,其一端连接所述感温部,另一端穿出所述被测试部件内部连接所述控制器(22)。
  4. 如权利要求3所述的试验装置,其特征在于,还包括内部温度传感器,设置于所述被测试部件的内部,用于检测所述被测试部件的内部温度。
  5. 如权利要求2至4任一项所述的试验装置,其特征在于,所述定位部件包括以下部件:
    杠杆(19),可围绕一固定支点转动,所述杠杆(19)的一端部悬置有位于所述粘接剂放置腔内的被测试部件,另一端部设有配重部件(17),所述配重部件(17)用于平衡被测试部件的受力以使所述杠杆(19)处于平衡位置。
  6. 如权利要求5所述的试验装置,其特征在于,还包括支撑于地面或试验台的支架(18),所述杠杆(19)的固定支点形成于所述支架(18)的顶部。
  7. 如权利要求5所述的试验装置,其特征在于,所述容器(10)包括底壁(101)、周壁(102)和顶壁(103),所述底壁(101)、周壁(102)和顶壁(103)围合形成容腔,所述粘接剂放置腔为所述容腔的部分;还包括拉绳或拉杆,所述拉绳或拉杆的下端连接所述被测试部件的上端部,所述拉绳或拉杆的上端穿过所述顶壁开设的通孔连接所述杠杆(19)的相应端部。
  8. 如权利要求2所述的试验装置,其特征在于,还包括动力部件,所述动力部件用于驱动所述容器(10)绕其中心竖直轴线旋转。
  9. 如权利要求2所述的试验装置,其特征在于,所述粘接剂加热部件(12)为均布于所述粘接剂放置腔内部的加热网(121);或者/和,
    所述粘接剂加热部件(12)内置于所述容器(10)内壁中,所述粘接剂加热部件(12)的接线端露置于所述容器(10)的外部。
  10. 如权利要求2、3、4、8和9任一项所述的试验装置,其特征在于,所述采集部件所获取的弯月面信息为弯月面图像或视频,所述采集部件的信号输出端口连接所述控制器(22)的信号输入端,将所述弯月面图像或视频传送到所述控制器(22),所述控制器(22)对所述弯月面图像或视频进行图像处理或视频处理获得粘接剂与所述被测试部件之间的接触角。
  11. 如权利要求10所述的试验装置,其特征在于,所述采集部件包括摄像装置(33)、显微镜(31)和图像采集卡(32);
    所述摄像装置(33)用于获取弯月面图像;所述显微镜(31)用于将所述摄像装置(33)获取的弯月面图像进行放大;所述图像采集卡(32)接收经所述立体显微镜(31)放大后的弯月面图像,并根据所述控制器(22)设定的采样速率将弯月面图像显示于显示屏。
  12. 如权利要求5所述的试验装置,其特征在于,所述部件加热器为加热丝(15),所述被测试部件为纤维增强材料(13),其由所述加热丝(15)与若干根纤维共同编织形成,并且所述加热丝(15)包裹于纤维内部;所述试验装置还包括悬吊骨架(14),所述纤维增强材料(13)平展定位于所述悬吊骨架(14)上,所述悬吊骨架(14)的上端连接所杠杆(19)。
  13. 如权利要求2、3、4、8和9任一项所述的试验装置,其特征在于,所述被测试部件为磁极部件(40)。
  14. 如权利要求10所述的试验装置,其特征在于,所述容器(10)具有外壳(104)和内壳(105),所述粘接剂放置腔形成于所述内壳(105)内部,所述外壳(104)和所述内壳(105)之间形成隔热腔,所述隔热腔容纳有隔热材料;或,
    所述外壳(104)设有连通所述隔热腔的进口(104a)和出口(104b),所述进口(104a)和出口(104b)可连接于外部隔热介质回路。
  15. 如权利要求1至4、8和9任一项所述的试验装置,其特征在于,所述粘接剂温度传感器(11)设置于所述粘接剂与所述被测试部件所形成的粘接层边界位置。
  16. 如权利要求7所述的试验装置,其特征在于,所述容器(10)的容腔进一步包括气腔,所述气腔位于所述粘接剂放置腔的周围或者位于所述粘接剂放置腔的上方,所述气腔用于充注满足试验条件的气体。
  17. 一种权利要求2至16任一项所述试验装置的控制方法,其特征在于,包括:
    控制粘接剂的温度和被测试部件的表面温度,从而控制所述粘接剂与所述被测试部件之间粘接层的温度梯度;
    获取若干组在不同所述温度梯度下所述粘接剂与被测试部件之间形 成的接触角;并以最小接触角对应的被测试部件温度和粘接剂温度作为形成防护覆层的控制参数。
  18. 如权利要求17所述的控制方法,其特征在于,各所述温度梯度下的所述接触角通过以下方式获取:获取所述被测试部件和所述粘接剂之间形成的弯月面信息,根据所述弯月面信息计算接触角。
  19. 如权利要求18所述的控制方法,其特征在于,所述弯月面信息为通过摄像装置所获取的弯月面图像或视频。
  20. 一种磁极部件,包括磁体本体(41),其特征在于,还包括以下部件:
    部件加热器,设置于所述磁体本体(41)的内部,用于对所述磁体本体(41)进行加热;
    部件温度传感器,用于测量所述磁体本体(41)的表面温度。
  21. 如权利要求20所述的磁极部件,其特征在于,所述部件加热器均匀成型于所述磁体本体(41)内部,并且靠近所述磁体本体(41)的表面设置。
  22. 如权利要求21所述的磁极部件,其特征在于,所述部件加热器的外表面包裹有绝缘材料。
  23. 如权利要求21所述的磁极部件,其特征在于,所述部件加热器为加热丝或者加热棒,或者液体加热管路。
  24. 如权利要求21所述的磁极部件,其特征在于,所述部件加热器在磁体本体(41)内部形成为一根连续的电热元件,或者,是在磁体本体(41)内部由电热元件构成的网状结构。
  25. 如权利要求20至24任一项所述的磁极部件,其特征在于,所述部件温度传感器包括感温部和传导部,所述感温部用于测温,且至少部分贴靠所述磁体本体(41)的外表面;所述传导部埋设于所述磁体本体(41)内部,其一端连接所述感温部,另一端露置于所述磁体本体(41)外部。
  26. 如权利要求25所述的磁极部件,其特征在于,还包括内部温度传感器,设置于所述磁体本体(41)的内部,用于检测所述磁体本体(41)的内部温度。
  27. 如权利要求20所述的磁极部件,其特征在于,还包括湿度传感 器,所述湿度传感器的感湿件成型于所述磁体本体(41)的表面,所述湿度传感器的感湿度件引线成型在所述磁体本体(41)的内部。
  28. 一种纤维增强材料,包括纤维本体,其特征在于,还包括以下部件:
    部件加热器,设置于所述纤维本体的内部,用于对所述纤维本体进行加热;
    部件温度传感器,用于测量所述纤维本体的表面温度。
  29. 如权利要求28所述的纤维增强材料,其特征在于,所述部件加热器均匀包裹于所述纤维增强材料内部,并且靠近所述纤维增强材料的表面设置。
  30. 如权利要求29所述的纤维增强材料,其特征在于,所述部件加热器为加热丝(15),所述纤维本体包括若干根纤维,所述加热丝(15)与纤维共同编织形成纤维增强材料,并且所述加热丝(15)被纤维包裹。
  31. 如权利要求28至30任一项所述的纤维增强材料,其特征在于,所述部件温度传感器包括感温部和传导部,所述感温部用于测温,且至少部分贴靠纤维增强材料的外表面;所述传导部埋设于所述纤维本体内部,其一端连接所述感温部,另一端露置于所述纤维本体外部。
  32. 如权利要求31所述的纤维增强材料,其特征在于,还包括内部温度传感器,设置于所述纤维本体的内部,用于检测所述纤维本体的内部温度。
PCT/CN2017/101347 2016-09-30 2017-09-12 磁极部件、纤维增强材料及其试验装置、控制方法 WO2018059225A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2017333529A AU2017333529B2 (en) 2016-09-30 2017-09-12 Magnetic pole part, fiber-reinforced material, test apparatus therefor, and control method for test apparatus
ES17854675T ES2967912T3 (es) 2016-09-30 2017-09-12 Aparato de prueba y método de control para aparato de prueba
EP17854675.0A EP3431961B1 (en) 2016-09-30 2017-09-12 Test apparatus and control method for test apparatus
US16/088,305 US11193869B2 (en) 2016-09-30 2017-09-12 Magnetic pole part, fiber-reinforced material, test apparatus therefor, and control method for test apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610877233.9A CN106483044B (zh) 2016-09-30 2016-09-30 用于部件浸润研究的试验装置、控制方法
CN201610877233.9 2016-09-30

Publications (1)

Publication Number Publication Date
WO2018059225A1 true WO2018059225A1 (zh) 2018-04-05

Family

ID=58268579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/101347 WO2018059225A1 (zh) 2016-09-30 2017-09-12 磁极部件、纤维增强材料及其试验装置、控制方法

Country Status (6)

Country Link
US (1) US11193869B2 (zh)
EP (1) EP3431961B1 (zh)
CN (2) CN106483044B (zh)
AU (1) AU2017333529B2 (zh)
ES (1) ES2967912T3 (zh)
WO (1) WO2018059225A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106483044B (zh) 2016-09-30 2017-11-07 北京金风科创风电设备有限公司 用于部件浸润研究的试验装置、控制方法
CN107389512B (zh) * 2017-08-31 2023-09-01 天津泽希新材料有限公司 一种检验球形氧化铝流动性的装置及检测方法
CN109540963B (zh) * 2018-12-22 2023-08-18 浙江大学城市学院 一种基于管壁激励的强化换热实验系统
CN110208147A (zh) * 2019-06-24 2019-09-06 东北大学 一种索瑞特系数测量装置与方法
CN113791032B (zh) * 2021-09-08 2023-09-01 营口理工学院 一种物理参数测试装置和方法
CN117021622B (zh) * 2023-10-09 2024-02-13 太原理工大学 高压储氢容器固化过程中应变和温度的监测装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2443365Y (zh) * 2000-09-29 2001-08-15 中国科学院低温技术实验中心 用于扫描探针显微镜的可升温样品平台
CN202275039U (zh) * 2011-09-22 2012-06-13 东华大学 一种可直接用于接触角仪的控温平台装置
CN202421021U (zh) * 2012-01-13 2012-09-05 北京化学试剂研究所 电池电解液对电池材料浸润性的测量装置
US8858070B2 (en) * 2011-06-03 2014-10-14 The Aerospace Corporation System and method for measuring glass transition temperature
CN105334139A (zh) * 2015-11-25 2016-02-17 华南理工大学 一种测量饱和液体与固体表面接触角的仪器及测量方法
CN106483044A (zh) * 2016-09-30 2017-03-08 北京金风科创风电设备有限公司 磁极部件、纤维增强材料及其试验装置、控制方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH052053U (ja) 1991-01-23 1993-01-14 三菱電機株式会社 ぬれ性試験器
JPH0694594A (ja) * 1992-09-16 1994-04-05 Nippon Oil & Fats Co Ltd 樹脂表面特性の評価方法
JP2001074630A (ja) 1999-09-01 2001-03-23 Toshiba Corp はんだ濡れ性試験装置及びはんだ濡れ性試験方法
US7107864B2 (en) * 2003-01-15 2006-09-19 General Motors Corporation Quality control methods for gas diffusion media
CN102046864B (zh) 2008-05-28 2013-06-12 瑟尔瑞株式会社 导电垫及其制造方法
CN201282882Y (zh) * 2008-09-11 2009-08-05 王莉 无电磁波辐射的电热毯
CN102494967B (zh) * 2011-12-03 2013-12-11 重庆大学 测量铁矿粉湿容量、水接触角和料层孔隙率的系统及方法
ITMI20120621A1 (it) * 2012-04-17 2013-10-18 Tenacta Group Spa Dispositivo riscaldante con sistema di regolazione della temperatura migliorato
WO2015130597A1 (en) * 2014-02-25 2015-09-03 Arizona Board Of Regents On Behalf Of Arizona State University Systems and methods for generation and observation of pendant droplets by preferential condensation
CN104155217A (zh) * 2014-07-17 2014-11-19 天津大学 高温高压界面张力测量装置及测试方法
CN204165867U (zh) * 2014-09-04 2015-02-18 曹维信 自动恒温的界面张力测定仪
CN104337298A (zh) * 2014-10-14 2015-02-11 苏州德鲁森自动化系统有限公司 一种智能温控电热毯
CN104406892A (zh) * 2014-12-04 2015-03-11 上海梭伦信息科技有限公司 一种基于分析天平的界面张力和接触角测试装置和方法
CN205209917U (zh) * 2015-11-25 2016-05-04 华南理工大学 一种测量饱和液体与固体表面接触角的仪器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2443365Y (zh) * 2000-09-29 2001-08-15 中国科学院低温技术实验中心 用于扫描探针显微镜的可升温样品平台
US8858070B2 (en) * 2011-06-03 2014-10-14 The Aerospace Corporation System and method for measuring glass transition temperature
CN202275039U (zh) * 2011-09-22 2012-06-13 东华大学 一种可直接用于接触角仪的控温平台装置
CN202421021U (zh) * 2012-01-13 2012-09-05 北京化学试剂研究所 电池电解液对电池材料浸润性的测量装置
CN105334139A (zh) * 2015-11-25 2016-02-17 华南理工大学 一种测量饱和液体与固体表面接触角的仪器及测量方法
CN106483044A (zh) * 2016-09-30 2017-03-08 北京金风科创风电设备有限公司 磁极部件、纤维增强材料及其试验装置、控制方法

Also Published As

Publication number Publication date
ES2967912T3 (es) 2024-05-06
AU2017333529A1 (en) 2018-11-08
CN106483044B (zh) 2017-11-07
CN107462496B (zh) 2019-01-25
EP3431961A4 (en) 2019-05-01
US11193869B2 (en) 2021-12-07
AU2017333529B2 (en) 2020-04-30
CN106483044A (zh) 2017-03-08
EP3431961A1 (en) 2019-01-23
EP3431961B1 (en) 2023-10-18
CN107462496A (zh) 2017-12-12
US20200300742A1 (en) 2020-09-24
EP3431961C0 (en) 2023-10-18

Similar Documents

Publication Publication Date Title
WO2018059225A1 (zh) 磁极部件、纤维增强材料及其试验装置、控制方法
US10840783B2 (en) Process and process apparatus for forming protective coating on magnetic pole of permanent magnet motor
CN106533087B (zh) 磁极防护层真空脱附浸渍固化系统、真空脱附装置及工艺
WO2016029769A1 (zh) 永磁电机转子的真空辅助树脂灌注防护覆层、系统及方法
WO2018076959A1 (zh) 永磁电机磁极防护覆层成型工艺及工艺设备
CN110261579A (zh) 一种自动控制岩土干湿循环试验方法及装置
CN115824916A (zh) 一种光滑平行裂隙岩体渗流温度测量装置及其解译方法
CN109900406A (zh) 膨胀土层负摩阻力转换系数测量装置、设计方法及测量方法
CN108061698A (zh) 测量波动水流渗透拖曳力系数的全自动试验装置及其方法
CN210514029U (zh) 致密砂岩气藏水锁伤害评价实验装置
CN205808863U (zh) 冷却塔填料含水量测量装置
CN212568383U (zh) 一种透水混凝土透水系数的检测装置
CN109440836B (zh) 一种可调控基质吸力的挡土墙模型试验装置及方法
CN205620333U (zh) 水流量平板法测量耐火材料导热系数的装置
KR101479560B1 (ko) 전단응력 정밀제어가 가능한 왁스집적 유도장치
CN113654927A (zh) 一种通过净浆自由变形试验以判定混凝土抗开裂性能的方法
CN219777714U (zh) 一种超导磁体间隙填充材料流速测量装置
CN110702548A (zh) 便携式污染物侵蚀影响多功能试验仪以及一维固结和污染物侵蚀试验方法
CN220473478U (zh) 一种快速检测超滤膜组件封装用灌封胶性能的装置
CN215525452U (zh) 混凝土透水系数测定仪
CN113189303B (zh) 智能液限仪及液限测量方法
CN216132969U (zh) 一种水泥砂浆及混凝土干缩的快速测试设备
CN219038896U (zh) 用于测量流塑态混凝土热膨胀系数的装置
CN112504862B (zh) 采用动静三轴仪控制基质吸力和温度的测量控制方法
CN208704823U (zh) 一种用于材料加工的真体积测量装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017854675

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017854675

Country of ref document: EP

Effective date: 20181015

ENP Entry into the national phase

Ref document number: 2017333529

Country of ref document: AU

Date of ref document: 20170912

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE