WO2016029769A1 - 永磁电机转子的真空辅助树脂灌注防护覆层、系统及方法 - Google Patents

永磁电机转子的真空辅助树脂灌注防护覆层、系统及方法 Download PDF

Info

Publication number
WO2016029769A1
WO2016029769A1 PCT/CN2015/085220 CN2015085220W WO2016029769A1 WO 2016029769 A1 WO2016029769 A1 WO 2016029769A1 CN 2015085220 W CN2015085220 W CN 2015085220W WO 2016029769 A1 WO2016029769 A1 WO 2016029769A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum
resin
permanent magnet
magnet motor
motor rotor
Prior art date
Application number
PCT/CN2015/085220
Other languages
English (en)
French (fr)
Inventor
王栋
李斐斐
张国涛
Original Assignee
新疆金风科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新疆金风科技股份有限公司 filed Critical 新疆金风科技股份有限公司
Priority to AU2015309506A priority Critical patent/AU2015309506B2/en
Priority to KR1020177006962A priority patent/KR20170042690A/ko
Priority to US15/505,757 priority patent/US20170252985A1/en
Priority to EP15836539.5A priority patent/EP3196005B1/en
Priority to ES15836539T priority patent/ES2784309T3/es
Publication of WO2016029769A1 publication Critical patent/WO2016029769A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • B29C70/443Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding and impregnating by vacuum or injection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/78Moulding material on one side only of the preformed part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/36Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and impregnating by casting, e.g. vacuum casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/88Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced
    • B29C70/882Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced partly or totally electrically conductive, e.g. for EMI shielding
    • B29C70/885Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced partly or totally electrically conductive, e.g. for EMI shielding with incorporated metallic wires, nets, films or plates
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2063/00Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/748Machines or parts thereof not otherwise provided for
    • B29L2031/7498Rotors

Definitions

  • the present invention relates to a resin infusion protective coating, system and method, and more particularly to a vacuum assisted resin infusion protective coating, system and method for a permanent magnet motor rotor.
  • the pole protection of permanent magnet motors and permanent magnet generators is critical for their safe operation, especially for wind turbines.
  • wind turbines have become larger and larger, the mechanical strength requirements are getting higher and higher, and the use environment is becoming more and more demanding.
  • the marine environment, high altitude, high humidity and high cold environment will give wind power.
  • the normal operation and service life of the generator pose challenges, especially for units operating in harsh climates such as coastal hot and humid salt spray.
  • the mechanical fatigue and the corrosion of the unit life caused by magnetic pole corrosion are very deadly.
  • the magnetic pole needs strict corrosion protection, which is manifested in the requirement that the generator can not let the environment during the life span. Corrosion to the magnetic pole. At present, the existing rotor production process is more inclined to strengthen the mechanical properties, but it ignores the corrosion protection requirements, which is not conducive to prolonging the service life of the wind turbine.
  • the inventors have conceived the idea of using a resin coating to seal the rotor magnetic poles, but the inventors have found that the existing resin molding processes are generally an integral molding process, and they are not a coating process. Can not be used directly in the protection of the rotor pole.
  • the existing hand lay-up or resin transfer mold forming process also has many disadvantages, the hand lay-up molding method is not easy to process control, and the anti-corrosion effect is poor, and the resin transfer mold forming method needs to increase the mold cost, the process is complicated, and the resin Large amount of anti-corrosion effect.
  • the surface structure required to be covered by the resin coating is complicated, the magnetic pole and the rotor yoke surface are not flat, and there are many gaps and voids, which is difficult to fully rely on the prior art. Filling these pores does not provide good corrosion protection for the rotor poles. Therefore, how to achieve a better resin coating is another technical problem to be solved.
  • An object of the present invention is to provide a vacuum assisted resin infusion protective coating for a permanent magnet motor rotor which is easy to control the thickness of a resin coating, and another object of the present invention is to provide a mechanical property which can be used to strengthen the rotor magnetic pole and improve A vacuum assisted resin infusion system for a permanent magnet motor rotor of an anticorrosion grade, and a further object of the present invention is to provide a vacuum assisted resin infusion method for a permanent magnet motor rotor capable of enhancing the mechanical properties of a rotor pole and improving its corrosion resistance level .
  • the present invention provides a vacuum assisted resin infusion protective coating for a permanent magnet motor rotor, comprising a reinforcing phase, a release cloth and a flow guiding net which are sequentially laid on the magnetic pole surface of the rotor, in which the diversion is carried out
  • An end portion of the glue injection pipe and an end portion of the air suction pipe are respectively fixed outside the net, and a vacuum insulation film is sealingly connected to the rotor, and the vacuum insulation film covers the reinforcement phase, the release cloth, the flow guide net, and the injection The end of the glue line and the end of the suction tube.
  • the invention also provides a vacuum assisted resin infusion system for a permanent magnet motor rotor, comprising the protective coating of any of the above permanent magnet motor rotors, further comprising a resin pretreatment device, an inlet pump device and a vacuum generating device;
  • the resin pretreatment apparatus includes a resin stirring defoaming device for agitating and defoaming a two-component resin, and a resin agitating device for agitating the defoaming device by stirring
  • An outlet pipe is connected to the resin liquid storage tank;
  • the resin liquid storage tank is connected to the liquid inlet pump device through a pump inlet pipe, and the inlet liquid pump device is configured to control a flow rate of the resin flowing through the liquid inlet pump device;
  • the liquid inlet pump device is connected to the glue injection line, and the air suction pipe is connected to the vacuum generating device, and a valve is connected to the air suction pipe.
  • the invention also provides a vacuum assisted resin infusion method for a permanent magnet motor rotor, comprising the following steps:
  • the step of constructing a protective coating constructing a protective coating of any of the above permanent magnet motor rotors on a magnetic pole of the rotor;
  • a step of pretreating the resin stirring and defoaming the two-component resin, and storing the defoamed resin;
  • Vacuum holding step vacuuming the space between the vacuum separator and the magnetic pole of the rotor and maintaining the vacuum in the space;
  • Vacuum infusion step injecting the stored resin uniformly between the vacuum isolation membrane and the magnetic pole of the rotor;
  • the step of curing the resin heating the resin between the vacuum isolation membrane and the magnetic pole of the rotor to heat and solidify the resin;
  • the step of removing the auxiliary material removing the release cloth and the auxiliary material outside the release cloth.
  • the main beneficial effect of the vacuum assisted resin infusion protective coating of the above permanent magnet motor rotor provided by the present invention is that the vacuum assisted resin infusion molding process device is applied to the magnetic pole protection of the permanent magnet motor rotor, which can be used in the permanent magnet motor
  • the surface of the magnetic pole of the rotor is formed with a resin coating, and the thickness control of the resin coating on the surface of the magnetic pole is easily realized, and the tooling tooling is not required.
  • the main beneficial effects of the vacuum assisted resin infusion system of the above permanent magnet motor rotor and the vacuum assisted resin infusion method of the above permanent magnet motor rotor are that the vacuum assisted resin infusion molding process and the device thereof are applied to the permanent magnet In the magnetic pole protection of the rotor of the motor, it can be used to form a resin coating on the magnetic pole surface of the permanent magnet motor rotor, which is easy to realize the magnetic pole surface.
  • the thickness of the resin coating is controlled, and at the same time, a good perfusion effect can be achieved, which is used to strengthen the mechanical properties of the rotor pole and improve its corrosion resistance level.
  • FIG. 1 is a schematic structural view of a vacuum assisted resin infusion protective coating for a permanent magnet motor rotor according to an embodiment of the present invention, showing a rotor wall, and the entire rotor is not shown;
  • Figure 2 is a partial enlarged view of the area A in Figure 1;
  • FIG. 3 is a schematic structural view of a vacuum assisted resin infusion system of a permanent magnet motor rotor according to an embodiment of the present invention
  • FIG. 4 is a schematic flow chart of a vacuum assisted resin infusion method for a permanent magnet motor rotor according to an embodiment of the present invention.
  • 1-resin pretreatment device 11-resin stirring defoaming device; 111-first component inlet pipe; 112-second component inlet pipe; 113-sealed stirring tank; 1131-stirring device; 114-sealing stirring Tank vacuuming device; 12-resin liquid storage tank; 13-stirring degassing device outlet pipe; 2-inlet pump device; 21-pump; 22-flow meter; 3-vacuum permanent magnet motor rotor vacuum-assisted resin infusion protection Cladding; 31-rotor; 311-magnetic pole; 32-reinforced phase; 33-release cloth; 34-flow diversion net; 35-injection line; 36-exhaust pipe; 361-valve; 37-vacuum insulation film; - semi-permeable membrane; 39-temperature sensor; 4-vacuum generating device; 41-vacuum pump; 42-vacuum tank; 421-first pressure gauge; 43-vacuum valve; 44-buffer tank; 441-second pressure gauge; -
  • the vacuum assisted resin infusion protective cover 3 of the permanent magnet motor rotor of the present embodiment includes a reinforcing phase 32, a release sheet 33, and a laminate phase which are sequentially laid on the surface of the rotor 31 with the magnetic poles 311.
  • the flow guiding net 34 is fixed to the end of the injection molding line 35 outside the flow guiding net 34 and
  • the end of the air suction pipe 36 is sealed and connected with a vacuum insulation film 37 on the rotor 31.
  • the vacuum insulation film 37 covers the reinforcing phase 32, the release cloth 33, the flow guiding net 34, the end of the injection molding pipe 35, and the exhaust pipe 36. Ends.
  • the vacuum assisted resin infusion protective coating 3 of the permanent magnet motor rotor provided by the embodiment of the present invention applies the vacuum assisted resin infusion molding process equipment to the magnetic pole protection of the permanent magnet motor rotor, and can be used on the surface of the magnetic pole 311 of the permanent magnet motor rotor.
  • a resin coating is formed, and the thickness control of the resin coating on the surface of the magnetic pole 311 is easily realized, and the tooling tooling is not required.
  • the vacuum isolation film 37 is sealingly connected to the rotor 31 to provide a resin infusion space covering the surface of the magnetic pole 311, and a resin is injected into the perfusion space. After the resin is cured, a part of the resin is molded on the inner side of the release cloth 33 (ie, the release cloth 33 and the magnetic pole).
  • a part of the resin is formed on the outer side of the release cloth 33, so that the release cloth 33 can remove the resin other than the release cloth 33 and the auxiliary material such as the flow-guiding net 34 and retain it.
  • the resin on the inner side of the mold cloth 33 is easy to control the thickness of the reinforcing layer 32 to be laid, and therefore the thickness control of the resin coating layer is also easy.
  • the resin filling space here utilizes the rotor 31 as one side and the vacuum isolating film 37 as the other side, it is essentially a coating process which is different from the integral molding process in the prior art.
  • the tooling tooling is not required, it also has the advantage of low cost, because the tooling tooling is generally made of metal, the design and processing cost is relatively expensive, and the tooling tooling is relatively cumbersome, and the utility model additionally brings manpower operation. Cost, but also brings operational safety risks.
  • the operator can observe the resin infusion condition through the vacuum isolation film 37 in real time without being blocked by the die set tool, and can clearly see the flow direction and flow rate of the resin, and also facilitate the operator to achieve quality control during the process.
  • the reinforcing phase 32 may comprise at least one layer of fiber cloth, the thickness of the reinforcing phase 32 being easily controlled by laying a layered fiber cloth, such as the number of layers of the fiber cloth and the thickness of each layer of fiber cloth to control the thickness of the reinforcing phase 32.
  • the fiber cloth may be an organic fiber cloth or an inorganic fiber cloth.
  • the fiber cloth may be glass fiber cloth, carbon fiber cloth or burlap, glass fiber cloth, carbon fiber cloth or burlap.
  • the fiber cloth may be a uniaxial fiber cloth or a biaxial fiber cloth, and the uniaxial fiber cloth or the biaxial fiber cloth makes the resin more easily permeated.
  • a semi-permeable membrane 38 may be provided between the vacuum insulation membrane 37 and the flow guide 34 (ie That is, the VAP film), the end of the injection line 35 is located between the flow guide 34 and the semi-permeable membrane 38, and the end of the suction tube 36 is located outside the semi-permeable membrane 38, so that the semi-permeable membrane 38 can isolate the inside and outside of the semi-permeable membrane 38.
  • the axis of the rotor 31 may be disposed in a vertical direction, the end of the glue injection line 35 is located at the lower end of the magnetic pole 311, and the end of the air suction pipe 36 is located above the magnetic pole 311, so that the resin will be injected from the lower side of the resin filling space. Due to the action of gravity, the injected resin gradually infiltrates from bottom to top.
  • the "permanent magnet motor rotor" referred to in this embodiment may be a rotor of a permanent magnet motor or a rotor of a permanent magnet generator.
  • the permanent magnet motor rotor may be an outer rotor of a direct drive permanent magnet wind power generator.
  • FIG. 3 is a schematic structural view of a vacuum assisted resin infusion system for a permanent magnet motor rotor according to an embodiment of the present invention, which includes the protective coating 3 of the permanent magnet motor rotor of any of the above embodiments, and further includes resin pretreatment.
  • the apparatus 1, the liquid inlet pump device 2, and the vacuum generating device 4, the resin pretreatment device 1 includes a resin stirring defoaming device 11 and a resin liquid storage tank 12, and the resin stirring defoaming device 11 is used for stirring and removing the two-component resin
  • the bubble stirring, resin stirring and defoaming device 11 is connected to the resin liquid storage tank 12 through the stirring and degassing device, and the resin liquid storage tank 12 is connected to the liquid inlet pump device 2 through the pump inlet pipe 5, and the liquid inlet pump device 2 is used.
  • the inlet pump device 2 is connected to the injection line 35, the suction pipe 36 is connected to the vacuum generation device 4, and the valve 361 is connected to the suction pipe 36.
  • the vacuum assisted resin infusion system of the permanent magnet motor rotor applies the vacuum assisted resin infusion molding process equipment to the magnetic pole protection of the permanent magnet motor rotor, and can be used to form a magnetic pole surface of the permanent magnet motor rotor.
  • the resin coating layer can easily realize the thickness control of the resin coating on the surface of the magnetic pole, and at the same time achieve a good perfusion effect, so as to facilitate the formation of a high quality coating.
  • the resin stirring and defoaming device 11 stirs and defoams the two-component resin to uniformly mix and remove the gas therein, and the defoamed resin is stored in the resin liquid storage tank 12 after being stirred and discharged from the liquid discharge pipe 13 of the defoaming device.
  • the liquid inlet pump device 2 can be used to defoam the resin Constantly injecting into the surface of the rotor poles, these devices cooperate to allow the resin to be sufficiently filled into the various pores in the vacuum assisted resin infusion protective coating 3 of the permanent magnet motor rotor with almost no bubbles, thereby achieving a good perfusion effect due to The porosity is greatly reduced and good perfusion is achieved, so it can be used to strengthen the mechanical properties of the rotor pole and improve its corrosion resistance.
  • the resin stirring defoaming device 11 may include a first component inlet pipe 111, a second component inlet pipe 112, a sealed agitation tank 113, and a sealed agitating tank evacuating device 114, the first component inlet pipe 111
  • the second component inlet pipe 112 is connected to the sealed agitating tank 113.
  • the agitating device 1131 is disposed in the sealed agitating tank 113.
  • the sealed agitating tank vacuuming device 114 and the sealed agitating tank 113 are connected through a defoaming suction pipe to seal the stirring tank.
  • 113 is connected to the agitating and degassing device outlet pipe 13.
  • the two components of the two-component resin can enter the sealed stirring tank 113 through the first component inlet pipe 111 and the second component inlet pipe 112, respectively, and the stirring device 1131 stirs the two components to make the mixture uniform.
  • the sealed agitating tank evacuating device 114 evacuates the sealed agitating tank 113 to lower the pressure therein to desorb bubbles existing in the resin, and then the resin is stored in the resin reservoir 12.
  • the height of the sealed agitating tank 113 may be higher than that of the resin liquid storage tank 12 so that the agitated defoamed resin can enter the resin liquid storage tank 12 by gravity.
  • the agitating and defoaming device outlet pipe 13 can be inserted into the resin liquid storage tank 12 and with the resin liquid storage tank. The inner walls of the 12 are in contact with each other, so that the resin defoamed by stirring can flow down the inner wall of the resin liquid storage tank 12.
  • the inlet pump device 2 can adopt an existing inlet pump device having a function of adjusting the flow rate, such as a peristaltic pump. As shown in FIG. 3, the inlet pump device 2 can also include an interconnected pump 21 and a flow meter 22. The flow meter 22 is connected to the pump inlet pipe 5, and the pump 21 is connected to the glue injection line 35.
  • the vacuum assisted resin infusion system of the permanent magnet motor rotor of the embodiment of the present invention further improves the vacuum generating device 4.
  • the vacuum generating device 4 may include a vacuum pump 41, a vacuum tank 42, and a vacuum valve 43 which are sequentially connected.
  • the buffer tank 44, the buffer tank 44 is connected to the air suction pipe 36, the first pressure gauge 421 is connected to the vacuum tank 42, and the second pressure gauge 441 is connected to the buffer tank 44.
  • the vacuum pump 41 and the vacuum tank 42 serve as a primary vacuuming device, and the buffer tank 44 serves as a secondary buffering system.
  • the secondary vacuum can make the vacuum of the vacuum assisted resin infusion protective coating 3 of the permanent magnet motor rotor smoother.
  • the second pressure gauge 441 in the secondary buffer system can be used to detect the rate of decrease of the vacuum, thereby It is convenient to detect whether there is a large sealing defect at a position such as a pipe joint in the entire perfusion system.
  • the glue injection line 35 may be first closed, the vacuum tank 42 and the buffer tank 44 may be evacuated by the vacuum pump 41, then the vacuum valve 43 is closed, and the second pressure gauge 441 is observed to change with time, and the second pressure gauge is calculated.
  • the value of 441 decreases with time to obtain a "vacuum rate of decline". According to the rate of decline of the vacuum, it is known whether the sealing of the system and the connection of the pipe are reliable.
  • the glue injection line 35 may be closed by closing the pump, or closing the valve connected to the glue injection line 35, or clamping the glue line 35 with a pipe clamp.
  • the vacuum assisted resin infusion system of the permanent magnet motor rotor of the embodiment of the present invention may further include a vacuum insulating film 37 and a rotor 31 for injection.
  • the heating device 6 for heating the resin is provided with a temperature sensor 39 on the rotor 31 for the purpose of measuring the heating temperature.
  • the heating device 6 can heat the rotor 31 and the resin in a non-contact manner, for example, the heating device 6 can be heated by means of radiation irradiation of the electric resistance wire, that is, the heating device 6 can be an infrared radiation heating device.
  • the infrared radiation heating device is used for heating, and the heating effect is more uniform.
  • the heating device 6 can also employ other heating devices that provide the desired ambient temperature.
  • the vacuum assisted resin infusion method of the permanent magnet motor rotor of the embodiment of the present invention can perform vacuum assisted resin infusion using the vacuum assisted resin infusion system of the permanent magnet motor rotor of the above embodiment.
  • FIG. 4 is a schematic flow chart of a vacuum assisted resin infusion method for a permanent magnet motor rotor according to an embodiment of the present invention.
  • FIGS. 1 to 3 are examples of a permanent magnet motor rotor according to an embodiment of the present invention.
  • a vacuum assisted resin infusion method comprising the steps of:
  • Step 101 of constructing a protective coating constructing a protective coating of the permanent magnet motor rotor of any of the above embodiments on the magnetic pole of the rotor;
  • Step 102 of pretreating the resin stirring and defoaming the two-component resin, and storing the defoamed resin;
  • Step 103 of vacuum holding vacuuming the space between the vacuum separator and the magnetic pole of the rotor and maintaining the vacuum in the space;
  • Step 104 of vacuum infusion injecting the stored resin uniformly between the vacuum isolation membrane and the magnetic pole of the rotor;
  • Step 105 of curing the resin resin addition between the vacuum isolation membrane and the magnetic pole of the rotor Heat to warm and cure the resin;
  • Step 106 of removing the auxiliary material removing the release cloth and the auxiliary material outside the release cloth.
  • the vacuum assisted resin infusion method of the permanent magnet motor rotor applies the vacuum assisted resin infusion molding method to the magnetic pole protection of the permanent magnet motor rotor, and can be used to form a magnetic pole surface of the permanent magnet motor rotor.
  • the resin coating layer can easily realize the thickness control of the resin coating on the surface of the magnetic pole, and at the same time, the resin can be sufficiently poured into various pores with almost no bubbles, thereby achieving a good perfusion effect, thereby facilitating the formation of a high quality coating. Since the porosity is greatly reduced and good perfusion is achieved, it can be used to enhance the mechanical properties of the rotor pole and improve its corrosion resistance.
  • the two-component resin may be stirred and defoamed with a resin stirring defoaming device, and the defoamed resin may be stored in a resin liquid storage tank.
  • the two-component resin may be stirred and mixed by means of a batch stirring of the stirring device and continuous stirring of the stirring device.
  • the step of defoaming may be carried out continuously with the stirring step, or the defoaming step may be carried out separately.
  • the two components in the two-component resin refer to the resin body and the corresponding curing agent, respectively.
  • the two-component resin may be a two-component polyurethane, a two-component epoxy resin or a two-component other resin.
  • the resin infusion space may be evacuated by a vacuum generating device.
  • the stored resin can be injected into the resin infusion space uniformly through the pump inlet pipe, the inlet pump device, and the injection line.
  • the step 102 of pretreating the resin and the step 103 of vacuum holding may be performed simultaneously and simultaneously.
  • the "step 101 of constructing the protective coating” may also be referred to as "the step of pre-treating the rotor magnetic pole", and the step 101 of constructing the protective coating and the step 102 of pre-treating the resin may also be carried out simultaneously without any order.
  • a step 103 of vacuum holding is performed, and after the pretreatment of the step 102 of pretreating the resin is completed and the step 103 of vacuum holding is performed, the step 104 of vacuum infusion is performed.
  • the step 101 of constructing a protective coating may include:
  • the vacuum separation membrane is connected to the rotor by covering the end of the reinforcing phase, the release cloth, the flow guiding net, the end of the injection line and the end of the suction pipe with a vacuum separator.
  • the step 101 of constructing a protective coating layer may include:
  • the reinforcing phase, the release cloth and the flow guiding net are sequentially laid and fixed on the surface of the magnetic pole, and the end of the injection molding pipeline is fixed outside the diversion net, and the semi-permeable membrane is fixed outside the diversion net to make the end of the injection pipeline Located between the flow guiding net and the semi-permeable membrane, the end of the suction tube is fixed outside the semi-permeable membrane;
  • the vacuum separation membrane is used to cover the reinforcing phase, the release cloth, the flow guiding net, the semi-permeable membrane, the end of the injection line, and the end of the suction pipe, and the vacuum insulation film is sealingly connected to the rotor.
  • the degree of vacuum used for defoaming the two-component resin is -40 to -99 kPa, and the time for defoaming is 5 to 30 minutes.
  • the degree of vacuum maintained in the resin infusion space is -45 to -85 kPa.
  • the flow rate of the resin injected into the resin infusion space is 200 to 1000 g/min.
  • step 104 of vacuum infusion the following steps may be further included between the step 104 of vacuum infusion and the step 105 of curing the resin:
  • the glue injection line is closed, and the vacuum in the suction pipe is maintained for 3 to 10 hours.
  • the criterion for the resin to fill the space between the vacuum separator and the rotor may be that the resin flows to the upper end of the magnetic pole and completely covers the upper end of the magnetic pole.
  • the resin may be heated to 40 to 90 ° C and maintained at this temperature for 4 to 12 hours.
  • vacuum degree means “relative pressure” or “relative vacuum degree”, that is, the difference between the pressure of the object to be measured and the atmospheric pressure of the measurement site.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

本发明提供了一种永磁电机转子的真空辅助树脂灌注防护覆层、系统及方法。该真空辅助树脂灌注防护覆层包括依次铺设在转子的磁极表面的增强相、脱模布和导流网,在导流网外分别固定有注胶管路的端部和抽气管的端部,在转子上密封连接有真空隔离膜,真空隔离膜覆盖增强相、脱模布、导流网、注胶管路的端部和抽气管的端部。本发明将真空辅助树脂灌注成型工艺设备应用在了永磁电机转子的磁极防护中,可以借以在永磁电机转子的磁极表面成型出一种树脂覆层,并且易于实现磁极表面的树脂覆层的厚度控制,不需要模套工装。本真空辅助树脂灌注系统及方法可实现良好的灌注效果,可用来强化转子磁极的机械性能、提高其防腐等级。

Description

永磁电机转子的真空辅助树脂灌注防护覆层、系统及方法 技术领域
本发明涉及树脂灌注防护覆层、系统及方法,尤其涉及永磁电机转子的真空辅助树脂灌注防护覆层、系统及方法。
背景技术
永磁电动机和永磁发电机的磁极防护对于其安全运行来说至关重要,尤其是风力发电机。近年来,随着风力发电行业的迅速发展,风力发电机逐步大型化,机械强度要求越来越高,使用环境也越来越苛刻,海洋环境、高海拔、高湿热以及高寒环境等会给风力发电机的正常运转和使用寿命带来挑战,尤其是在沿海湿热盐雾等恶劣气候环境下运行的机组,其机械疲劳和磁极腐蚀带来的机组寿命衰减都是十分致命的。
在面对上述问题的过程中,发明人发现其具体的机理在于:永磁型风力发电机在运行过程中,其转子会由于各种载荷出现微形变,进而导致转子上的磁极产生压缩或者拉伸变形;与此同时外界环境温度及湿度的变化,会对发电机转子及磁极造成腐蚀威胁,进而损害发电机性能和寿命,特别是磁极的腐蚀一般都是从点腐蚀开始的,进而在已有的腐蚀环境基础上加速腐蚀。因此,一方面需要强化磁极的机械性能,具体表现在满足发电机实际运转过程中的机械疲劳要求,另一方面,磁极需要严格的腐蚀防护,具体表现在要求发电机在寿命期内不能让环境对磁极造成腐蚀。而目前已有的转子生产工艺更倾向于强化机械性能,但却忽略了腐蚀防护要求,不利于延长风力发电机的使用寿命。
对此,发明人想到了使用树脂覆层对转子磁极进行密封防护的设想,但是发明人发现,目前现有的树脂成型工艺一般是一种整体成型的工艺,它们并不是一种覆层工艺,不能直接用在转子磁极的防护中。现有的手糊成型或者树脂传递模具法成型工艺也存在较多缺点,手糊成型方式不易于工艺控制,且防腐蚀效果差,而树脂传递模具法成型方式需要增加模具成本,工序复杂,树脂用量大,防腐蚀效果一般。
而对于永磁发电机和永磁电动机来说,使其转子与定子之间具有较佳的气隙是保障其效率的关键点之一,因此若用树脂覆层对转子磁极进行密封防护,则应当能够控制树脂覆层的厚度,以保障永磁发电机和永磁电动机的效率。
与此同时,特别是对于永磁风力发电机转子来说,其需要被树脂覆层覆盖的表面结构复杂,磁极和转子磁轭表面不平整,存在较多间隙和孔隙,依靠现有技术难以充分的填充这些孔隙,不能对转子磁极提供良好的防腐保护,因此,如何实现性能较佳的树脂覆层也是另外需要解决的技术问题。
发明内容
本发明的一个目的在于提供一种易于控制树脂覆层厚度的永磁电机转子的真空辅助树脂灌注防护覆层,本发明的另一个目的在于提供一种能够用来强化转子磁极的机械性能、提高其防腐等级的永磁电机转子的真空辅助树脂灌注系统,本发明的再一个目的是提供一种能够用来强化转子磁极的机械性能、提高其防腐等级的永磁电机转子的真空辅助树脂灌注方法。
为了实现上述目的,本发明提供了一种永磁电机转子的真空辅助树脂灌注防护覆层,其包括依次铺设在转子的磁极表面的增强相、脱模布和导流网,在所述导流网外分别固定有注胶管路的端部和抽气管的端部,在所述转子上密封连接有真空隔离膜,所述真空隔离膜覆盖所述增强相、脱模布、导流网、注胶管路的端部和抽气管的端部。
本发明还提供了一种永磁电机转子的真空辅助树脂灌注系统,其包括任一上述的永磁电机转子的防护覆层,还包括树脂预处理装置、进液泵装置和真空发生装置;
所述树脂预处理装置包括树脂搅拌脱泡装置和树脂储液罐,所述树脂搅拌脱泡装置用于对双组份树脂进行搅拌和脱泡,所述树脂搅拌脱泡装置通过搅拌脱泡装置出液管与所述树脂储液罐连接;
所述树脂储液罐通过泵进液管与所述进液泵装置连接,所述进液泵装置用于控制流过所述进液泵装置的树脂的流速;
所述进液泵装置与所述注胶管路连接,所述抽气管与所述真空发生装置连接,在所述抽气管上连接有阀门。
本发明还提供了一种永磁电机转子的真空辅助树脂灌注方法,其包括以下步骤:
构建防护覆层的步骤:在转子的磁极上构建任一上述的永磁电机转子的防护覆层;
预处理树脂的步骤:对双组份树脂进行搅拌和脱泡,存储脱泡后的树脂;
真空保压的步骤:对真空隔离膜与转子的磁极之间的空间抽真空并保持该空间内的真空度;
真空灌注的步骤:将存储的树脂匀速地注入到真空隔离膜与转子的磁极之间;
固化树脂的步骤:对注入真空隔离膜与转子的磁极之间的树脂加热,使树脂升温并固化;
去除辅材的步骤:将脱模布以及脱模布外的辅材去除。
本发明提供的上述永磁电机转子的真空辅助树脂灌注防护覆层的主要有益效果在于,其将真空辅助树脂灌注成型工艺设备应用在了永磁电机转子的磁极防护中,可以借以在永磁电机转子的磁极表面成型出一种树脂覆层,并且易于实现磁极表面的树脂覆层的厚度控制,不需要模套工装。
本发明提供的上述永磁电机转子的真空辅助树脂灌注系统及上述永磁电机转子的真空辅助树脂灌注方法的主要有益效果均在于,其将真空辅助树脂灌注成型工艺及其设备应用在了永磁电机转子的磁极防护中,可以用来在永磁电机转子的磁极表面成型出一种树脂覆层,易于实现磁极表面 的树脂覆层的厚度控制,同时可实现良好的灌注效果,用来强化转子磁极的机械性能、提高其防腐等级。
附图说明
图1为本发明实施例的永磁电机转子的真空辅助树脂灌注防护覆层的结构示意图,图中示出了转子壁,未示出整个转子;
图2为图1中A区域内的局部放大图;
图3为本发明实施例的永磁电机转子的真空辅助树脂灌注系统的结构示意图;
图4为本发明实施例的永磁电机转子的真空辅助树脂灌注方法的流程示意图。
附图标号说明:
1-树脂预处理装置;11-树脂搅拌脱泡装置;111-第一组份进液管;112-第二组份进液管;113-密封搅拌罐;1131-搅拌装置;114-密封搅拌罐抽真空装置;12-树脂储液罐;13-搅拌脱泡装置出液管;2-进液泵装置;21-泵;22-流速计;3-永磁电机转子的真空辅助树脂灌注防护覆层;31-转子;311-磁极;32-增强相;33-脱模布;34-导流网;35-注胶管路;36-抽气管;361-阀门;37-真空隔离膜;38-半渗透膜;39-温度传感器;4-真空发生装置;41-真空泵;42-真空罐;421-第一压力表;43-真空阀;44-缓冲罐;441-第二压力表;5-泵进液管;6-加热装置;101-构建防护覆层的步骤;102-预处理树脂的步骤;103-真空保压的步骤;104-真空灌注的步骤;105-固化树脂的步骤;106-去除辅材的步骤。
具体实施方式
如图1和图2所示,本实施例的永磁电机转子的真空辅助树脂灌注防护覆层3,其包括依次铺设在带有磁极311的转子31表面的增强相32、脱模布33和导流网34,在导流网34外分别固定有注胶管路35的端部和 抽气管36的端部,在转子31上密封连接有真空隔离膜37,真空隔离膜37覆盖增强相32、脱模布33、导流网34、注胶管路35的端部和抽气管36的端部。
本发明实施例提供的永磁电机转子的真空辅助树脂灌注防护覆层3将真空辅助树脂灌注成型工艺设备应用在了永磁电机转子的磁极防护中,可以借以在永磁电机转子的磁极311表面成型出一种树脂覆层,并且易于实现磁极311表面的树脂覆层的厚度控制,不需要模套工装。真空隔离膜37与转子31密封连接提供覆盖磁极311表面的树脂灌注空间,将树脂注入该灌注空间,使树脂固化之后,一部分树脂会成型在脱模布33的内侧(即脱模布33与磁极311表面之间的增强相32中),一部分树脂会成型在脱模布33的外侧,这样揭去脱模布33可以去除脱模布33外的树脂和导流网34等辅材而保留脱模布33内侧的树脂,由于容易控制所铺设的增强相32的厚度,因此也易于实现树脂覆层的厚度控制。
另外由于这里的树脂灌注空间利用了转子31作为一个侧面,利用真空隔离膜37作为另一个侧面,所以它本质上是一种覆层工艺,不同于现有技术中的整体成型工艺。由于不需要模套工装,也具有成本低的优点,因为模套工装一般都由金属制成,其设计和加工成本比较昂贵,且模套工装比较笨重,在使用时会额外带来人力操作的成本,同时也带来操作的安全风险。另外,操作人员可以不受模套工装的阻挡而透过真空隔离膜37实时观察树脂的灌注情况,可以清楚地看到树脂的流向和流速,也便于操作人员实现工艺过程中的质量控制。
具体地,还可以在注胶管路35的端部固定用于将树脂导引至导流网34的导流装置。
优选地,增强相32可以包括至少一层纤维布,通过铺设层状纤维布易于控制增强相32的厚度,如可以选择纤维布的层数和各层纤维布的厚度以控制增强相32的厚度。纤维布可以是有机纤维布或者无机纤维布,优选地,纤维布可以为玻璃纤维布、碳纤维布或麻布,玻璃纤维布、碳纤维布或麻布的性价比更高。优选地,纤维布可以为单轴纤维布或双轴纤维布,单轴纤维布或双轴纤维布使树脂更易于充分的浸透。
优选地,在真空隔离膜37和导流网34之间可以设有半渗透膜38(即 即VAP膜),注胶管路35的端部位于导流网34和半渗透膜38之间,抽气管36的端部位于半渗透膜38外,这样半渗透膜38可以隔离半渗透膜38内外的空间,树脂中可能存在的气泡能透过半渗透膜38,进入半渗透膜38与真空隔离膜37之间的空间,而树脂被阻挡在半渗透膜38与转子31之间的空间内,这样能使透过半渗透膜38的气体受到较小的阻力而更加顺利地从半渗透膜38与真空隔离膜37之间的空间中被抽走,使得树脂灌注效果更好。
优选地,转子31的轴线可以沿竖直方向设置,注胶管路35的端部位于磁极311的下端,抽气管36的端部位于磁极311的上方,这样树脂将从树脂灌注空间的下侧注入,由于受到重力作用,注入的树脂会自下而上地逐渐同步浸润。
本实施例中所说的“永磁电机转子”可以是永磁电动机的转子,也可以是永磁发电机的转子。优选地,永磁电机转子可以为直驱永磁风力发电机的外转子。
如图3所示,其为本发明实施例的永磁电机转子的真空辅助树脂灌注系统的结构示意图,其包括任一上述实施例的永磁电机转子的防护覆层3,还包括树脂预处理装置1、进液泵装置2和真空发生装置4,树脂预处理装置1包括树脂搅拌脱泡装置11和树脂储液罐12,树脂搅拌脱泡装置11用于对双组份树脂进行搅拌和脱泡,树脂搅拌脱泡装置11通过搅拌脱泡装置出液管13与树脂储液罐12连接,树脂储液罐12通过泵进液管5与进液泵装置2连接,进液泵装置2用于控制流过进液泵装置2的树脂的流速,进液泵装置2与注胶管路35连接,抽气管36与真空发生装置4连接,在抽气管36上连接有阀门361。
本发明实施例提供的永磁电机转子的真空辅助树脂灌注系统将真空辅助树脂灌注成型工艺设备应用在了永磁电机转子的磁极防护中,可以用来在永磁电机转子的磁极表面成型出一种树脂覆层,易于实现磁极表面的树脂覆层的厚度控制,同时可实现良好的灌注效果,以利于成型出高质量的覆层。树脂搅拌脱泡装置11对双组份树脂进行搅拌和脱泡可使其均匀混合并除去其中的气体,脱泡后的树脂经搅拌脱泡装置出液管13后存储在树脂储液罐12中,在注胶时,进液泵装置2可使经搅拌脱泡了的树脂 匀速地灌注到转子磁极表面,这些装置相互配合可以使得树脂几乎无气泡地充分灌注到永磁电机转子的真空辅助树脂灌注防护覆层3中的各种孔隙中,从而实现良好的灌注效果,由于极大地降低了孔隙率且实现了良好的灌注,所以可以用来强化转子磁极的机械性能、提高其防腐等级。
优选地,树脂搅拌脱泡装置11可以包括第一组份进液管111、第二组份进液管112、密封搅拌罐113和密封搅拌罐抽真空装置114,第一组份进液管111和第二组份进液管112与密封搅拌罐113相连,在密封搅拌罐113内设有搅拌装置1131,密封搅拌罐抽真空装置114与密封搅拌罐113通过脱泡抽气管连接,密封搅拌罐113与搅拌脱泡装置出液管13连接。双组份树脂的两种组份可以分别经过第一组份进液管111和第二组份进液管112进入密封搅拌罐113,搅拌装置1131对两种组份进行搅拌使其混合均匀,密封搅拌罐抽真空装置114对密封搅拌罐113抽气使其内的压力降低从而将树脂中存在的气泡脱出,之后树脂被存储在树脂储液罐12中。具体地,密封搅拌罐113的高度可以高于树脂储液罐12从而使搅拌脱泡后的树脂能依靠重力自行进入树脂储液罐12中。
为了避免树脂在流入树脂储液罐12中时溅落在液面上而再次产生和混入气泡,进一步地,搅拌脱泡装置出液管13可以伸入树脂储液罐12内并与树脂储液罐12的内壁相接触,这样经搅拌脱泡后的树脂可沿树脂储液罐12的内壁流下。
具体地,进液泵装置2可以采用现有的具备调节流速功能的进液泵装置,例如蠕动泵,如图3所示,进液泵装置2也可以包括相互连接的泵21和流速计22,流速计22与泵进液管5连接,泵21与注胶管路35连接。
本发明实施例的永磁电机转子的真空辅助树脂灌注系统还对真空发生装置4进行了改进,如图3所示,真空发生装置4可以包括依次连接的真空泵41、真空罐42、真空阀43和缓冲罐44,缓冲罐44与抽气管36连接,在真空罐42上连接有第一压力表421,在缓冲罐44上连接有第二压力表441。这样真空泵41和真空罐42作为一级抽真空装置,缓冲罐44作为二级缓冲系统,通过二级缓冲可以使得永磁电机转子的真空辅助树脂灌注防护覆层3中抽得的真空度更平稳,而且在关闭真空阀43后,利用二级缓冲系统中的第二压力表441可以用来检测真空度的下降速率,从而 可以方便地检测出整个灌注系统中的管道接口等位置处是否存在较大的密封缺陷。具体在检测时,可先封闭注胶管路35,用真空泵41对真空罐42和缓冲罐44抽真空,然后关闭真空阀43,观察第二压力表441随时间的变化,通过计算第二压力表441的值随时间的下降速度可以得出一个“真空度下降速率”,根据该真空度下降速率可知系统的密封及管道的连接是否可靠。具体地,封闭注胶管路35的方式可以是关闭泵,或者是关闭注胶管路35上连接的阀,或者用管卡卡紧注胶管路35。
为了在灌注之前对转子31进行预热且在灌注完成后对树脂进行加热,本发明实施例的永磁电机转子的真空辅助树脂灌注系统还可以包括用于对注入真空隔离膜37与转子31之间的树脂进行加热的加热装置6,为了便于测量加热温度,在转子31上设有温度传感器39。具体地,加热装置6可以以非接触的方式对转子31和树脂加热,如加热装置6可以采用电阻丝辐射照射的方式加热,即加热装置6可以为红外辐射加热装置。采用红外辐射加热装置进行加热,加热效果更均匀。加热装置6还可以采用其他能够提供需要的环境温度的加热装置。
本发明实施例的永磁电机转子的真空辅助树脂灌注方法可以使用上述实施例的永磁电机转子的真空辅助树脂灌注系统进行真空辅助树脂灌注。
如图4所示,其为本发明实施例的永磁电机转子的真空辅助树脂灌注方法的流程示意图,为了便于理解也可同时参见图1至图3,本发明实施例的永磁电机转子的真空辅助树脂灌注方法,其包括以下步骤:
构建防护覆层的步骤101:在转子的磁极上构建任一上述实施例的永磁电机转子的防护覆层;
预处理树脂的步骤102:对双组份树脂进行搅拌和脱泡,存储脱泡后的树脂;
真空保压的步骤103:对真空隔离膜与转子的磁极之间的空间抽真空并保持该空间内的真空度;
真空灌注的步骤104:将存储的树脂匀速地注入到真空隔离膜与转子的磁极之间;
固化树脂的步骤105:对注入真空隔离膜与转子的磁极之间的树脂加 热,使树脂升温并固化;
去除辅材的步骤106:将脱模布以及脱模布外的辅材去除。
本发明实施例提供的永磁电机转子的真空辅助树脂灌注方法将真空辅助树脂灌注成型工艺方法应用在了永磁电机转子的磁极防护中,可以用来在永磁电机转子的磁极表面成型出一种树脂覆层,易于实现磁极表面的树脂覆层的厚度控制,同时可使树脂几乎无气泡地充分灌注到各种孔隙中,从而实现良好的灌注效果,以利于成型出高质量的覆层。由于极大地降低了孔隙率且实现了良好的灌注,所以可以用来强化转子磁极的机械性能、提高其防腐等级。
具体地,在预处理树脂的步骤102中,可以用树脂搅拌脱泡装置对双组份树脂进行搅拌和脱泡,可以用树脂储液罐存储脱泡后的树脂。对双组份树脂进行搅拌而混合的方式可以是搅拌装置间歇式搅拌和搅拌装置连续式搅拌。脱泡的步骤可以与搅拌步骤连续进行,也可以脱泡步骤单独进行。而双组份树脂中的双组份分别指的是树脂本体和对应的固化剂,例如双组份树脂可以是双组份聚氨酯、双组份环氧树脂或者双组份其他树脂。在真空保压的步骤103中,可以用真空发生装置对树脂灌注空间抽真空。在真空灌注的步骤104中,可以将存储的树脂经泵进液管、进液泵装置和注胶管路匀速地注入到树脂灌注空间中。
具体地,预处理树脂的步骤102和真空保压的步骤103可以同时进行并同时完成。此外,“构建防护覆层的步骤101”也可以被称为“预处理转子磁极的步骤”,构建防护覆层的步骤101和预处理树脂的步骤102也可以没有先后顺序,可以同时进行,在完成构建防护覆层的步骤101后,则执行真空保压的步骤103,在完成预处理树脂的步骤102的预处理并执行真空保压的步骤103后,执行真空灌注的步骤104。
具体地,构建防护覆层的步骤101可以包括:
清理转子的磁轭表面、磁极表面以及磁极周围的附属物;
在磁极的表面依次铺设并固定增强相、脱模布和导流网,将注胶管路的端部和抽气管的端部分别固定在导流网外;
用真空隔离膜覆盖增强相、脱模布、导流网、注胶管路的端部和抽气管的端部,将真空隔离膜与转子密封连接。
优选地,构建防护覆层的步骤101可以包括:
清理转子的磁轭表面、磁极表面以及磁极周围的附属物;
在磁极的表面依次铺设并固定增强相、脱模布和导流网,将注胶管路的端部固定在导流网外,在导流网外固定半渗透膜,使注胶管路的端部位于导流网和半渗透膜之间,将抽气管的端部固定在半渗透膜外;
用真空隔离膜覆盖增强相、脱模布、导流网、半渗透膜、注胶管路的端部和抽气管的端部,将真空隔离膜与转子密封连接。
优选地,在预处理树脂的步骤102中,对双组份树脂进行脱泡所使用的真空度为-40~-99千帕,脱泡的时间为5~30分钟。
优选地,在真空保压的步骤103中,树脂灌注空间中保持的真空度为-45~-85千帕。
优选地,在真空灌注的步骤104中,注入树脂灌注空间中树脂的流速为200~1000克/分钟。
进一步地,在真空灌注的步骤104和固化树脂的步骤105之间还可以包括以下步骤:
待树脂注满真空隔离膜与转子之间的空间后,封闭注胶管路,在3~10小时内继续保持抽气管内的真空度。
这样在树脂固化之前通过保持抽气管内的真空度3~10小时,可以进一步使注入真空隔离膜与转子之间的树脂中所有可能存在的气泡被充分地排除在灌注体系之外,从而进一步降低树脂成型后的孔隙率。具体地,树脂注满真空隔离膜与转子之间的空间的标准可以是树脂流动到磁极的上端并将磁极的上端完全覆盖。
优选地,在固化树脂的步骤105中,可以使树脂升温至40~90℃,并保持该温度4~12小时。
关于以上实施例所说的“真空度”,均指“相对压力”或“相对真空度”,即指被测对象的压力与测量地点大气压的差值。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种永磁电机转子的真空辅助树脂灌注防护覆层,其特征在于,包括依次铺设在转子的磁极表面的增强相、脱模布和导流网,在所述导流网外分别固定有注胶管路的端部和抽气管的端部,在所述转子上密封连接有真空隔离膜,所述真空隔离膜覆盖所述增强相、脱模布、导流网、注胶管路的端部和抽气管的端部。
  2. 根据权利要求1所述的永磁电机转子的防护覆层,其特征在于,所述增强相包括至少一层纤维布。
  3. 根据权利要求2所述的永磁电机转子的防护覆层,其特征在于,所述纤维布为玻璃纤维布、碳纤维布或麻布。
  4. 根据权利要求2所述的永磁电机转子的防护覆层,其特征在于,所述纤维布为单轴纤维布或双轴纤维布。
  5. 根据权利要求1所述的永磁电机转子的防护覆层,其特征在于,所述转子的轴线沿竖直方向设置,所述注胶管路的端部位于所述磁极的下端,所述抽气管的端部位于所述磁极的上方。
  6. 根据权利要求1所述的永磁电机转子的防护覆层,其特征在于,在所述真空隔离膜和所述导流网之间设有半渗透膜,所述注胶管路的端部位于所述导流网和所述半渗透膜之间,所述抽气管的端部位于所述半渗透膜外。
  7. 一种永磁电机转子的真空辅助树脂灌注系统,其特征在于,包括权利要求1至6中任一权利要求所述的永磁电机转子的防护覆层,还包括树脂预处理装置、进液泵装置和真空发生装置;
    所述树脂预处理装置包括树脂搅拌脱泡装置和树脂储液罐,所述树脂搅拌脱泡装置用于对双组份树脂进行搅拌和脱泡,所述树脂搅拌脱泡装置通过搅拌脱泡装置出液管与所述树脂储液罐连接;
    所述树脂储液罐通过泵进液管与所述进液泵装置连接,所述进液泵装置用于控制流过所述进液泵装置的树脂的流速;
    所述进液泵装置与所述注胶管路连接,所述抽气管与所述真空发生装置连接,在所述抽气管上连接有阀门。
  8. 根据权利要求7所述的永磁电机转子的真空辅助树脂灌注系统,其特征在于,所述树脂搅拌脱泡装置包括第一组份进液管、第二组份进液管、密封搅拌罐和密封搅拌罐抽真空装置,所述第一组份进液管和第二组份进液管与所述密封搅拌罐相连,在所述密封搅拌罐内设有搅拌装置,所述密封搅拌罐抽真空装置与所述密封搅拌罐通过脱泡抽气管连接,所述密封搅拌罐与所述搅拌脱泡装置出液管连接。
  9. 根据权利要求7所述的永磁电机转子的真空辅助树脂灌注系统,其特征在于,所述进液泵装置包括相互连接的泵和流速计,所述流速计与所述泵进液管连接,所述泵与所述注胶管路连接。
  10. 根据权利要求7所述的永磁电机转子的真空辅助树脂灌注系统,其特征在于,所述真空发生装置包括依次连接的真空泵、真空罐、真空阀和缓冲罐,所述缓冲罐与所述抽气管连接,在所述真空罐上连接有第一压力表,在所述缓冲罐上连接有第二压力表。
  11. 根据权利要求7所述的永磁电机转子的真空辅助树脂灌注系统,其特征在于,还包括用于对注入所述真空隔离膜与所述转子之间的树脂进行加热的加热装置,在所述转子上设有温度传感器。
  12. 一种永磁电机转子的真空辅助树脂灌注方法,其特征在于,包括以下步骤:
    构建防护覆层的步骤:在转子的磁极上构建如权利要求1至6中任一权利要求所述的永磁电机转子的防护覆层;
    预处理树脂的步骤:对双组份树脂进行搅拌和脱泡,存储脱泡后的树脂;
    真空保压的步骤:对真空隔离膜与转子的磁极之间的空间抽真空并保持该空间内的真空度;
    真空灌注的步骤:将存储的树脂匀速地注入到真空隔离膜与转子的磁极之间;
    固化树脂的步骤:对注入真空隔离膜与转子的磁极之间的树脂加热,使树脂升温并固化;
    去除辅材的步骤:将脱模布以及脱模布外的辅材去除。
  13. 根据权利要求12所述的永磁电机转子的真空辅助树脂灌注方法,其特征在于,所述构建防护覆层的步骤包括:
    清理转子的磁轭表面、磁极表面以及磁极周围的附属物;
    在磁极的表面依次铺设并固定增强相、脱模布和导流网,将注胶管路的端部和抽气管的端部分别固定在导流网外;
    用真空隔离膜覆盖增强相、脱模布、导流网、注胶管路的端部和抽气管的端部,将真空隔离膜与转子密封连接。
  14. 根据权利要求12所述的永磁电机转子的真空辅助树脂灌注方法,其特征在于,所述构建防护覆层的步骤包括:
    清理转子的磁轭表面、磁极表面以及磁极周围的附属物;
    在磁极的表面依次铺设并固定增强相、脱模布和导流网,将注胶管路的端部固定在导流网外,在导流网外固定半渗透膜,使注胶管路的端部位于导流网和半渗透膜之间,将抽气管的端部固定在半渗透膜外;
    用真空隔离膜覆盖增强相、脱模布、导流网、半渗透膜、注胶管路的端部和抽气管的端部,将真空隔离膜与转子密封连接。
  15. 根据权利要求12所述的永磁电机转子的真空辅助树脂灌注方法,其特征在于,在所述预处理树脂的步骤中,对双组份树脂进行脱泡所使用 的真空度为-40~-99千帕,脱泡的时间为5~30分钟。
  16. 根据权利要求12所述的永磁电机转子的真空辅助树脂灌注方法,其特征在于,在所述真空保压的步骤中,真空隔离膜与转子之间的空间中保持的真空度为-45~-85千帕。
  17. 根据权利要求12所述的永磁电机转子的真空辅助树脂灌注方法,其特征在于,在所述真空灌注的步骤中,注入树脂的流速为200~1000克/分钟。
  18. 根据权利要求12所述的永磁电机转子的真空辅助树脂灌注方法,其特征在于,在所述真空灌注的步骤和固化树脂的步骤之间还包括以下步骤:
    待树脂注满真空隔离膜与转子之间的空间后,封闭注胶管路,在3~10小时内继续保持抽气管内的真空度。
  19. 根据权利要求12所述的永磁电机转子的真空辅助树脂灌注方法,其特征在于,在所述固化树脂的步骤中,使树脂升温至40~90℃,并保持该温度4~12小时。
PCT/CN2015/085220 2014-08-27 2015-07-27 永磁电机转子的真空辅助树脂灌注防护覆层、系统及方法 WO2016029769A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2015309506A AU2015309506B2 (en) 2014-08-27 2015-07-27 Vacuum assisted resin infusion protection coating, system and method for permanent magnet motor rotor
KR1020177006962A KR20170042690A (ko) 2014-08-27 2015-07-27 영구 자석 모터 회전자의 진공 보조 수지 주입 보호 코팅, 시스템 및 방법
US15/505,757 US20170252985A1 (en) 2014-08-27 2015-07-27 Vacuum assisted resin infusion protection coating, system and method for permanent magnet motor rotor
EP15836539.5A EP3196005B1 (en) 2014-08-27 2015-07-27 Vacuum assisted resin infusion protection coating, system and method for permanent magnet motor rotor
ES15836539T ES2784309T3 (es) 2014-08-27 2015-07-27 Sistema y método de recubrimiento de protección de infusión de resina asistido por vacío para rotor de motor de imán permanente

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410428379.6A CN104325657A (zh) 2014-08-27 2014-08-27 永磁电机转子的真空辅助树脂灌注防护覆层、系统及方法
CN201410428379.6 2014-08-27

Publications (1)

Publication Number Publication Date
WO2016029769A1 true WO2016029769A1 (zh) 2016-03-03

Family

ID=52400523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/085220 WO2016029769A1 (zh) 2014-08-27 2015-07-27 永磁电机转子的真空辅助树脂灌注防护覆层、系统及方法

Country Status (7)

Country Link
US (1) US20170252985A1 (zh)
EP (1) EP3196005B1 (zh)
KR (2) KR101721461B1 (zh)
CN (2) CN104325657A (zh)
AU (1) AU2015309506B2 (zh)
ES (1) ES2784309T3 (zh)
WO (1) WO2016029769A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3393017A4 (en) * 2016-10-31 2019-03-20 Beijing Goldwind Science & Creation Windpower Equipment Co., Ltd. DEORPTION, IMPREGNATION AND VACUUM CURING SYSTEM, APPARATUS AND METHOD FOR VACUUM DEORPTION FOR MAGNETIC PIPE COVERING
CN110091524A (zh) * 2018-01-31 2019-08-06 北京金风科创风电设备有限公司 用于磁极防护覆层固化成型的工艺装备

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104325657A (zh) * 2014-08-27 2015-02-04 新疆金风科技股份有限公司 永磁电机转子的真空辅助树脂灌注防护覆层、系统及方法
CN104786383A (zh) * 2015-03-30 2015-07-22 江苏南车电机有限公司 一种大型永磁直驱风力发电机树脂搅拌排泡工艺
CN106515043B (zh) * 2016-10-31 2018-10-23 北京金风科创风电设备有限公司 永磁电机磁极防护覆层成型工艺及工艺设备
CN106426978B (zh) * 2016-10-31 2018-06-12 北京金风科创风电设备有限公司 磁极防护层柔性模塑成型工艺及成型系统
CN106469964B (zh) * 2016-10-31 2018-05-08 北京金风科创风电设备有限公司 永磁电机磁极防护覆层成型工艺及工艺设备
CN106451860B (zh) * 2016-10-31 2018-01-26 北京金风科创风电设备有限公司 永磁电机永磁磁极的监测装置及永磁磁极的压条
CN108011481B (zh) * 2017-11-28 2019-06-18 北京金风科创风电设备有限公司 用于磁极防护覆层固化成型的工艺设备和方法
CN109067119B (zh) * 2018-08-24 2019-11-01 北京金风科创风电设备有限公司 利用液体介质填充电机部件的工艺装备和方法
CN109301102B (zh) * 2018-09-03 2021-07-02 淄博火炬能源有限责任公司 复合材料电池槽与电池盖的封合方法
CN109968694B (zh) * 2019-01-15 2023-09-29 北京金风科创风电设备有限公司 电机转子的真空辅助树脂灌注方法
CN109703062B (zh) * 2019-01-31 2021-08-13 上海材料研究所 采用真空辅助树脂扩散成型工艺制作发射箱端盖的方法
CN113702450A (zh) * 2020-05-22 2021-11-26 新疆金风科技股份有限公司 磁极覆层缺陷的检测方法及装置
CN112332625B (zh) * 2020-11-24 2021-10-12 盾石磁能科技有限责任公司 一种电机内定子的灌封工装及方法
CN112718414A (zh) * 2020-12-29 2021-04-30 深圳市苇渡智能科技有限公司 推进器的灌胶方法和灌胶组件
CN112893042A (zh) * 2021-02-03 2021-06-04 山西汾西重工有限责任公司 一种起爆装置线路板灌封方法及真空系统
US11909268B2 (en) 2021-03-11 2024-02-20 ZF Active Safety US Inc. Integrated rotor
CN112910203B (zh) * 2021-04-02 2022-10-21 威海锦阳电子有限公司 电机外转子的制造方法
CN114709992B (zh) * 2022-03-02 2022-11-22 华南泵业(赣州)有限公司 一种泵用电机定子、转子灌封工艺
KR102653256B1 (ko) * 2022-03-29 2024-04-01 주식회사 신라공업 스테이터의 에폭시 몰딩장치 및 이를 이용한 에폭시 몰딩방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101749194A (zh) * 2009-12-11 2010-06-23 重庆通用工业(集团)有限责任公司 一种大型风力发电机组风轮叶片及其成型方法
CN102013770A (zh) * 2010-09-30 2011-04-13 江苏新誉重工科技有限公司 外转子永磁电机永磁体的密封装置及密封方法
CN101976918B (zh) * 2010-09-30 2012-12-12 江苏新誉重工科技有限公司 内转子永磁电机永磁体的密封装置及密封方法
CN102166826B (zh) * 2011-01-19 2014-05-07 中国科学院宁波材料技术与工程研究所 一种纤维增强热塑性复合材料的成型工艺
CN104325657A (zh) * 2014-08-27 2015-02-04 新疆金风科技股份有限公司 永磁电机转子的真空辅助树脂灌注防护覆层、系统及方法
CN204160781U (zh) * 2014-08-27 2015-02-18 新疆金风科技股份有限公司 永磁电机转子的真空辅助树脂灌注防护覆层及系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2511320A (en) * 1948-05-25 1950-06-13 Benson Ben Steering head for motorcycles
JPS5925170B2 (ja) * 1978-07-08 1984-06-15 東洋製罐株式会社 密封容器の内圧検査法およびシステム回路装置
US6069421A (en) * 1999-08-30 2000-05-30 Electric Boat Corporation Electric motor having composite encapsulated stator and rotor
JP2003016988A (ja) * 2001-06-27 2003-01-17 Fujitsu Ltd フォーカストイオンビーム装置及びそれを利用したフォーカストイオンビーム加工方法
US6847145B2 (en) * 2002-05-29 2005-01-25 Electric Boat Corporation Encapsulated permanent magnet motor rotor
US7285890B2 (en) * 2005-03-30 2007-10-23 Comprehensive Power, Inc. Magnet retention on rotors
US20070005741A1 (en) * 2005-06-30 2007-01-04 Microsoft Corporation Facilitating radio communications in a mobile device
JP5298410B2 (ja) * 2006-07-12 2013-09-25 株式会社リコー 画像形成装置
EP2160286B2 (en) * 2007-06-29 2018-11-21 LM Wind Power A/S Method of using a formable core block for a resin impregnation process, method of forming a composite structure and composite structure obtained thereby
EP2019001B1 (en) * 2007-07-27 2012-06-13 Dalphi Metal España, S.A. Dual chamber airbag module with anti-return difuser.
US9114576B2 (en) * 2008-01-28 2015-08-25 North Carolina Agricultural And Technical State University Heat vacuum assisted resin transfer molding processes for manufacturing composite materials
EP2113986A1 (en) * 2008-04-29 2009-11-04 Siemens Aktiengesellschaft Method for encapsulating permanent magnets of a rotor of a generator
CN101585238B (zh) * 2009-07-02 2011-08-24 中国人民解放军国防科学技术大学 超大型复合材料构件整体成型工艺及成型系统
DK2647492T3 (en) * 2012-04-04 2016-01-11 Siemens Ag Resinstrømelement to a vacuum assisted resinoverførselsstøbeproces
CN103144312A (zh) * 2013-03-28 2013-06-12 重庆通用工业(集团)有限责任公司 一种叶片前后缘外补强真空灌注热固化成型工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101749194A (zh) * 2009-12-11 2010-06-23 重庆通用工业(集团)有限责任公司 一种大型风力发电机组风轮叶片及其成型方法
CN102013770A (zh) * 2010-09-30 2011-04-13 江苏新誉重工科技有限公司 外转子永磁电机永磁体的密封装置及密封方法
CN101976918B (zh) * 2010-09-30 2012-12-12 江苏新誉重工科技有限公司 内转子永磁电机永磁体的密封装置及密封方法
CN102166826B (zh) * 2011-01-19 2014-05-07 中国科学院宁波材料技术与工程研究所 一种纤维增强热塑性复合材料的成型工艺
CN104325657A (zh) * 2014-08-27 2015-02-04 新疆金风科技股份有限公司 永磁电机转子的真空辅助树脂灌注防护覆层、系统及方法
CN204160781U (zh) * 2014-08-27 2015-02-18 新疆金风科技股份有限公司 永磁电机转子的真空辅助树脂灌注防护覆层及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3196005A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3393017A4 (en) * 2016-10-31 2019-03-20 Beijing Goldwind Science & Creation Windpower Equipment Co., Ltd. DEORPTION, IMPREGNATION AND VACUUM CURING SYSTEM, APPARATUS AND METHOD FOR VACUUM DEORPTION FOR MAGNETIC PIPE COVERING
CN110091524A (zh) * 2018-01-31 2019-08-06 北京金风科创风电设备有限公司 用于磁极防护覆层固化成型的工艺装备

Also Published As

Publication number Publication date
EP3196005B1 (en) 2020-02-19
AU2015309506B2 (en) 2018-05-10
KR20170042690A (ko) 2017-04-19
ES2784309T3 (es) 2020-09-24
US20170252985A1 (en) 2017-09-07
EP3196005A1 (en) 2017-07-26
KR101721461B1 (ko) 2017-03-30
CN104325657A (zh) 2015-02-04
KR20160025442A (ko) 2016-03-08
AU2015309506A1 (en) 2017-03-16
CN108724764A (zh) 2018-11-02
EP3196005A4 (en) 2018-05-02

Similar Documents

Publication Publication Date Title
WO2016029769A1 (zh) 永磁电机转子的真空辅助树脂灌注防护覆层、系统及方法
EP3382866B1 (en) Process and process apparatus for forming protective coating on magnetic pole of permanent magnet motor
CN101830095B (zh) 具有表面功能层的复合材料构件vimp制备方法
WO2009103736A3 (en) Method and apparatus for detecting leak in a vartm process
CN101352925B (zh) 一种船用高立面复合材料制件真空辅助成型工艺方法
CN101804714B (zh) 具有表面功能层的复合材料构件的rtm制备方法
CN106507737B (zh) 潜用复合材料天线罩的压渗成型方法
WO2018076963A1 (zh) 磁极防护层柔性模塑成型工艺及成型系统
JP5754721B2 (ja) 樹脂の収容及び注入のためのシステムと方法
US7510385B2 (en) Resin infused acrylic shell
CN204160781U (zh) 永磁电机转子的真空辅助树脂灌注防护覆层及系统
CN112194496A (zh) 一种氮化硅复合材料的真空浸渍设备及方法
CN105655123B (zh) 使用制造耐高温线圈的装置的制造耐高温线圈的工艺
JP2008060290A (ja) 超伝導コイルの樹脂含浸方法
CN101307854A (zh) 一种免挖掘地下管道的修复方法
CN201989324U (zh) 复合材料风电叶片灌注树脂的脱泡装置
US10464743B2 (en) Tank made of a composite material
CN109968694B (zh) 电机转子的真空辅助树脂灌注方法
CN105130496A (zh) 一种用于高温超导磁体强固化的真空浸渍方法
CN109301102B (zh) 复合材料电池槽与电池盖的封合方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836539

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15505757

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015836539

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015836539

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177006962

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015309506

Country of ref document: AU

Date of ref document: 20150727

Kind code of ref document: A