WO2018059057A1 - 一种适用于OvXDM系统的软值提取方法、装置及OvXDM系统 - Google Patents

一种适用于OvXDM系统的软值提取方法、装置及OvXDM系统 Download PDF

Info

Publication number
WO2018059057A1
WO2018059057A1 PCT/CN2017/091963 CN2017091963W WO2018059057A1 WO 2018059057 A1 WO2018059057 A1 WO 2018059057A1 CN 2017091963 W CN2017091963 W CN 2017091963W WO 2018059057 A1 WO2018059057 A1 WO 2018059057A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbol
value
soft
coding
ovxdm
Prior art date
Application number
PCT/CN2017/091963
Other languages
English (en)
French (fr)
Inventor
刘若鹏
季春霖
郑昊
张莎莎
Original Assignee
深圳超级数据链技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳超级数据链技术有限公司 filed Critical 深圳超级数据链技术有限公司
Priority to KR1020197011948A priority Critical patent/KR102239745B1/ko
Priority to JP2019516979A priority patent/JP6802914B2/ja
Priority to EP17854511.7A priority patent/EP3522410A4/en
Publication of WO2018059057A1 publication Critical patent/WO2018059057A1/zh
Priority to US16/362,400 priority patent/US10951338B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/06Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection
    • H04L25/067Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection providing soft decisions, i.e. decisions together with an estimate of reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • H04L1/0048Decoding adapted to other signal detection operation in conjunction with detection of multiuser or interfering signals, e.g. iteration between CDMA or MIMO detector and FEC decoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03178Arrangements involving sequence estimation techniques
    • H04L25/03248Arrangements for operating in conjunction with other apparatus
    • H04L25/03286Arrangements for operating in conjunction with other apparatus with channel-decoding circuitry
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03178Arrangements involving sequence estimation techniques
    • H04L25/03312Arrangements specific to the provision of output signals
    • H04L25/03318Provision of soft decisions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0054Maximum-likelihood or sequential decoding, e.g. Viterbi, Fano, ZJ algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0059Convolutional codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/497Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems by correlative coding, e.g. partial response coding or echo modulation coding transmitters and receivers for partial response systems

Definitions

  • the present application relates to the field of coding and decoding, and in particular, to a soft value extraction method and apparatus applicable to an OvXDM system, and an OvXDM system.
  • the whole process ends.
  • technicians combine OvXDM systems with common traditional communication technologies to improve overall system performance, such as cascading OvXDM systems, pre-encoded OvXDM systems, and more.
  • the error correction code has better error correction capability, which can improve the performance of the overall system and reduce the bit error rate, so most technicians will apply the error correction code to the OvXDM system.
  • the input information includes hard information and soft information, and the hard information represents real information or data.
  • the hard information can be expressed as ⁇ +1, -1 ⁇ ; soft information indicates the probability of possible value of each message.
  • the hard information is worse than the soft information, and the error correction code performance is poor, and there is a certain coding gain loss. Therefore, in order to improve the coding gain of the overall system, the soft information error correction code is mostly used.
  • the information obtained after waveform decoding is hard information, such as the commonly used Viterbi decoding method, in order to apply the soft information error correction code to the OvXDM system, the first problem to be solved is that it will be hard.
  • the soft information corresponding to the information is extracted.
  • the present application provides a soft value extraction method, apparatus, and OvXDM system suitable for an OvXDM system.
  • the present application provides a soft value extraction method suitable for an OvXDM system, including:
  • 2 ,z -1
  • the present application provides a soft value extraction apparatus suitable for an OvXDM system, including:
  • a prediction value calculation unit configured to perform waveform coding on all symbols in the decoded hard value sequence to obtain an overlaid predicted value
  • a flip symbol prediction value calculation unit configured to perform symbol-by-symbol flipping on the hard-value sequence, and then perform overlapping coding on each flipped symbol and its associated symbols before and after to obtain a predicted value of the inverted symbol;
  • 2, z -1
  • the present application proposes an OvXDM system, including the above-mentioned soft value extraction apparatus applicable to an OvXDM system, wherein the OvXDM system is an OvTDM system, an OvFDM system, an OvCDM system, an OvSDM system, or an OvHDM system.
  • the soft value extraction method, device and OvXDM system applicable to the OvXDM system the hard value obtained by decoding the OvXDM waveform is further processed, and the log likelihood function is used to extract the soft information of each symbol, thereby realizing
  • the soft value decoding improves the coding gain of the system; at the same time, it improves the flexibility of the OvXDM system design, so that the OvXDM system can be combined with the commonly used soft information error correction code to improve the coding gain of the overall system.
  • FIG. 1 is a schematic structural view of a transmitting end of a conventional OvTDM system
  • FIG. 2 is a schematic diagram of a parallelogram rule for overlapping multiplexing coding of input symbols by an OvTDM system
  • Figure 3 (a), (b) respectively, the preprocessing unit and the sequence detecting unit of the conventional OvTDM receiving end;
  • Figure 5 is a node state transition diagram of the corresponding system of Figure 4.
  • Figure 6 is a Trellis diagram of the corresponding system of Figure 4 or Figure 5;
  • FIG. 7 is a path in a soft value extraction method applicable to an OvXDM system according to an embodiment of the present application; A schematic diagram of path selection from a t-1 time to a time t;
  • FIG. 8 is a schematic flowchart of a soft value extraction method applicable to an OvXDM system according to an embodiment of the present application
  • FIG. 9 is a schematic diagram of a waveform coding equal quadrilateral for a soft value extraction method applicable to an OvXDM system according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a soft value extraction apparatus applicable to an OvXDM system according to an embodiment of the present application.
  • the commonly used decoding method is Soft In Soft Out (SISO), and the iterative method, that is, iterative decoding, sometimes called Turbo decoding.
  • SISO Soft In Soft Out
  • the soft-in soft-out decoding method can additionally increase a certain coding gain compared to the conventional channel coding algebra decoding method.
  • the precondition for the soft-in soft decoding method is the input of the soft information of the decoder.
  • the information obtained after the waveform decoding is hard information, such as the commonly used Viterbi decoding method, if Using the soft-in soft-out decoding method, it is first necessary to extract soft values from the OvXDM system.
  • the OvXDM system is an Overlapped Time Division Multiplexing (OvTDM) system, an Overlapped Frequency Division Multiplexing (OvFDM) system, and an Overlapped Code Division Multiplexing (OvCDM) system.
  • OvTDM Overlapped Time Division Multiplexing
  • OFDM Overlapped Frequency Division Multiplexing
  • OFCDM Overlapped Code Division Multiplexing
  • OFSDM Overlapped Space Division Multiplexing
  • OFDDM Overlapped Hybrid Division Multiplexing
  • the sending process of the OvTDM sender is as follows:
  • the respective waveforms to be transmitted formed by (3) are superposed by x i h(ti ⁇ ⁇ T) to form a waveform of the transmission signal.
  • the signal sent can be expressed as:
  • the overlapping multiplexing method follows the parallelogram rule as shown in FIG. 2.
  • the transmitting end transmits the coded and modulated signal through the antenna, and the signal is transmitted in the wireless channel, and the receiving end performs matching filtering on the received signal, and then separately samples and decodes the signal, and finally determines the output bit stream.
  • FIG. 3 it is a receiving process of the OvTDM receiving end, wherein FIG. 3(a) is a preprocessing unit of the OvTDM receiving end, and FIG. 3(b) is a sequence detecting unit of the OvTDM receiving end, and the specific steps are as follows:
  • the received signal is synchronized, including carrier synchronization, frame synchronization, symbol time synchronization, and the like.
  • the received signal in each frame is digitized.
  • the received waveform is cut according to the waveform transmission time interval.
  • FIG. 5 is a corresponding node state transition diagram of the system, and
  • FIG. 6 is a grid shape of the system. (Trellis) map.
  • the output result after waveform decoding and demodulation is hard information. Therefore, in order to adopt the soft-in soft-out decoding method, it is first necessary to extract soft information corresponding to each hard information from the above system, that is, a soft value.
  • This application further processes the hard values obtained by decoding the traditional OvXDM waveform, and uses the log likelihood function to extract the soft information of each symbol.
  • the specific principles are as follows:
  • y rx denote the overlapping multiplexed sequence sent by the system sender. If the channel is Additive White Gaussian Noise (AWGN), the two values corresponding to time t, the corresponding channel transition probability can be respectively Expressed as:
  • AWGN Additive White Gaussian Noise
  • the obtained LLR is the soft value corresponding to the hard value at the current time.
  • is the channel attenuation coefficient
  • OvXDM have an overlap of K and a data frame length of N.
  • the signal sent by the transmitting end through the OvXDM waveform encoding is y tx , and the signal is y rx after being transmitted through the real channel to the signal received by the receiving end.
  • the present application provides a soft value extraction method for the OvXDM system, including steps S05-S09. In an embodiment, steps S01 and S03 may also be included.
  • the OvXDM system is an OvTDM system, an OvFDM system, an OvCDM system, an OvSDM system, or an OvHDM system.
  • step S01 synchronization processing and channel equalization are performed on the received signal sequence y rx .
  • Step S03 Perform waveform decoding on the received signal sequence after synchronization processing and channel equalization according to a predetermined decoding method to obtain a decoded hard value sequence.
  • Hard values in a hard-valued sequence can be expressed as i indicates a symbol index, ranging from 1 to N, where N is the data frame length.
  • the predetermined decoding method in step S03 may be an existing decoding method, such as a Viterbi decoding method, or a decoding method that may appear in the future.
  • Step S05 performing waveform coding on all symbols in the decoded hard value sequence to obtain the superimposed encoded prediction value.
  • the convolutional coding only affects its i-K+1 bits to i+K+1 bits. Therefore, when the re-waveform convolution is calculated after the symbol-forward flip in step S05, only the associated symbols are overlap-encoded, and all N symbols are not over-encoded.
  • the waveform convolutional coding process has a parallelogram shape.
  • the convolution of the K-1 bit symbol waveforms in the N symbols only affects the posterior or previous part of the symbol, and the process of calculating the overlap coding prediction value for the symbol flipping can be performed. It is divided into three parts, namely, 1 to K-1 bits, K to N-K+1 bits, and N-K+2 to N bits, as shown in FIG.
  • Step S07 Perform symbol-by-symbol flipping on the hard-value sequence, and then perform overlapping coding on each inverted symbol and its associated symbols to obtain a predicted value of the inverted symbol.
  • the OvXDM system overlaps by a large number K or the frame length N is long, the full-sequence overlap multiplexing coding for each bit flip is complicated, and a large delay is caused when the project is implemented.
  • the final LLR calculation process there is an operation of subtracting the measure after flipping the bit. Therefore, only the metric value of the relevant bit overlapping with the flip bit code can be calculated, and the difference between the sequences is compared, in other words, the difference between the measures is only here. Part of the metric is generated between.
  • 2, z -1
  • the channel type in step S01 is an additive white Gaussian noise channel
  • A is If the symbol obtained after waveform decoding is -1, A is
  • 2 , z -1
  • the calculated soft information may also be adjusted according to a specific situation, that is, multiplied by an adjustment factor ⁇ .
  • the soft value of the current symbol is adjusted to become ⁇ A ⁇ (z +1 -z -1 ), the value of the adjustment factor ⁇ is 0 to 1.
  • the value of ⁇ is smaller, that is, closer to 0; in step S09, each symbol in the data frame is corresponding.
  • the soft value these soft values can be used as the input information of the next level of soft-in and soft-out error correction code.
  • steps S01 and S03 are hard value decoding, and steps S05, S07 and S09 extract the corresponding soft information (soft value) from the hard value, and the extracted soft information is extracted.
  • the value can be used in the error correction code of the soft-in and soft-out of the next pole.
  • the soft value extraction method of the present application solves the problem that if the traditional OvXDM waveform decoding obtains a symbol hard value, when the OvXDM system is combined with the error correction code, the hard value error correction decoding has a certain coding gain compared with the soft value error correction decoding. Loss, when the receiving end uses a hard value as the input information of the error correcting code, the problem of the performance of the system is lowered.
  • the soft value extraction method of the present application further processes the hard values obtained by decoding the traditional OvXDM waveform, and uses the log likelihood function to extract the soft information of each symbol, thereby further implementing soft value decoding and improving the coding of the system.
  • the gain while increasing the flexibility of the OvXDM system design, allows the OvXDM system to be combined with commonly used soft information error correction codes to increase the overall system coding gain.
  • the present application also proposes an OvXDM system including a soft value extraction device suitable for an OvXDM system, wherein the OvXDM system is an OvTDM system, an OvFDM system, an OvCDM system, an OvSDM system, or an OvHDM system.
  • the soft value extracting apparatus applicable to the OvXDM system includes a predicted value calculating unit 05, a flipped symbol predicted value calculating unit 07, and a symbol soft value calculating unit 09.
  • the coefficient unit 11 is further included.
  • At least one of the channel attenuation unit 13 and the adjustment factor unit 15; in an embodiment, the pre-processing unit 01 and the decoding unit 03 may also be included.
  • the pre-processing unit 01 is configured to perform synchronization processing and channel equalization on the received signal sequence y rx .
  • the decoding unit 03 is configured to perform waveform decoding on the received signal sequence after synchronization processing and channel equalization according to a predetermined decoding method to obtain a decoded hard value sequence.
  • Hard values in a hard-valued sequence can be expressed as i indicates a symbol index, ranging from 1 to N, where N is the data frame length.
  • the predetermined decoding method in the decoding unit 03 may be an existing decoding method, such as a Viterbi decoding method, or a decoding method that will appear in the future.
  • the predicted value calculation unit 05 is configured to perform waveform coding on all the symbols in the hard value sequence to obtain a superimposed encoded predicted value. It should be noted that due to the correlation between OvXDM system symbols, the current symbol The convolutional coding only affects its i-K+1 bits to i+K+1 bits. Therefore, when the re-waveform convolution is calculated after the symbol-by-symbol flip in step S05, only the associated symbols are over-encoded, and all N symbols are not over-encoded. Taking the OvTDM system as an example, the waveform convolutional coding process has a parallelogram shape.
  • the convolution of the K-1 bit symbol waveforms in the N symbols only affects the posterior or previous part of the symbol, and the process of calculating the overlap coding prediction value for the symbol flipping can be performed. It is divided into three parts, namely, 1 to K-1 bits, K to N-K+1 bits, and N-K+2 to N bits, as shown in Figure 9 above.
  • the flip symbol prediction value calculation unit 07 is configured to perform symbol-by-symbol flipping on the hard-value sequence, and then perform overlapping coding on each inverted symbol and its associated symbols to obtain a predicted value of the inverted symbol.
  • the OvXDM system overlaps by a large number K or the frame length N is long, the full-sequence overlap multiplexing coding for each bit flip is complicated, and a large delay is caused when the project is implemented.
  • 2, z -1
  • the soft value corresponding to each symbol in the data frame is obtained by the symbol soft value calculation unit 09, and these soft values can be used as input information of the soft-in and soft-out error correction code of the next stage.
  • the coefficient unit 11 is used to assign the coefficient A in the symbol soft value calculation unit 09.
  • the channel type is an additive white Gaussian noise channel
  • A is assigned If the symbol obtained after waveform decoding is +1, A is assigned
  • ⁇ 2 is the mean square error of the channel, and the mean square error ⁇ 2 can be obtained by channel estimation;
  • 2 , z -1
  • the adjustment factor unit 15 is configured to introduce an adjustment factor ⁇ when the symbol soft value calculation unit calculates the soft value of the current symbol, so that the soft value of the current symbol is ⁇ A ⁇ (z +1 ⁇ z ⁇ 1 ), where
  • the adjustment factor ⁇ takes a value of 0 to 1. When the number of overlaps of the OvXDM system is larger, the value of ⁇ is smaller.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Artificial Intelligence (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Error Detection And Correction (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本申请公开了一种适用于OvXDM系统的软值提取方法、装置及OvXDM系统。所述方法中,对所述硬值序列中全部符号进行波形编码,得到重叠编码后的预测值;对所述硬值序列进行逐符号翻转,再对每次翻转的符号及其前后相关联的符号进行重叠编码,以得到翻转后的符号的预测值;对于硬值序列中每一个符号,根据A×(z+1-z-1)计算当前符号的软值,其中A为与所述信道类型相关的系数,z+1=||yrx-y+1||2,z-1=||yrx-y-1||2,其中若y+1为符号翻转前重叠编码的预测值,那么y-1为符号翻转后重叠编码的预测值;反之若y-1为符号翻转前重叠编码的预测值,那么y+1为符号翻转后重叠编码的预测值,yrx为接收信号序列。

Description

一种适用于OvXDM系统的软值提取方法、装置及OvXDM系统 技术领域
本申请涉及编译码领域,具体涉及一种适用于OvXDM系统的软值提取方法、装置及OvXDM系统。
背景技术
一般情况下,OvXDM系统在接收端完成波形译码后,整个过程就结束。稍复杂的情况,技术人员会将OvXDM系统与常见的传统通信技术相结合,以提高整体系统的性能,如级联OvXDM系统、预编码OvXDM系统等。而纠错码具有较好的纠错能力,能够提高整体系统的性能,降低误码率,所以大多数技术人员会将纠错码应用于OvXDM系统中。常用的纠错码译码方法中,输入信息包括硬信息和软信息,硬信息表示真实信息或数据,例如,在一个二元数据的OvXDM系统中,硬信息可以表示为{+1,-1};软信息表示每个信息的可能取值概率。实践证明,硬信息相较软信息而言,其纠错码性能差,且有一定的编码增益损失,因此,为了提高整体系统的编码增益,大多情况采用软信息纠错码。
然而在OvXDM系统中,如果波形译码后得到的信息为硬信息,比如常用的维特比译码方法,为了将软信息纠错码应用于OvXDM系统中,首先要解决的一个问题就是,将硬信息对应的软信息提取出来。
发明内容
为解决上述问题,本申请提供一种适用于OvXDM系统的软值提取方法、装置及OvXDM系统。
根据本申请的第一方面,本申请提供一种适用于OvXDM系统的软值提取方法,包括:
对译码得到的硬值序列中全部符号进行波形编码,得到重叠编码后的预测值;
对所述硬值序列进行逐符号翻转,再对每次翻转的符号及其前后相关联的符号进行重叠编码,以得到翻转后的符号的预测值;
对于硬值序列中每一个符号,根据A×(z+1-z-1)计算当前符号的软值,其中A为与信道类型相关的系数,z+1=||yrx-y+1||2,z-1=||yrx-y-1||2,其中若y+1为符号翻转前重叠编码的预测值,那么y-1为符号翻转后重叠编码的预测值;反之,若y-1 为符号翻转前重叠编码的预测值,那么y+1为符号翻转后重叠编码的预测值,yrx为接收信号序列。
根据本申请的第二方面,本申请提供一种适用于OvXDM系统的软值提取装置,包括:
预测值计算单元,用于对译码得到的硬值序列中全部符号进行波形编码,得到重叠编码后的预测值;
翻转符号预测值计算单元,用于对所述硬值序列进行逐符号翻转,再对每次翻转的符号及其前后相关联的符号进行重叠编码,以得到翻转后的符号的预测值;
符号软值计算单元,用于对于硬值序列中每一个符号,根据A*(z+1-z-1)计算当前符号的软值,其中A为与信道类型相关的系数,z+1=||yrx-y+1||2,z-1=||yrx-y-1||2,其中若y+1为符号翻转前重叠编码的预测值,那么y-1为符号翻转后重叠编码的预测值;反之若y-1为符号翻转前重叠编码的预测值,那么y+1为符号翻转后重叠编码的预测值,yrx为接收信号序列。
根据本申请的第三方面,本申请提出一种OvXDM系统,包括上述的适用于OvXDM系统的软值提取装置,其中OvXDM系统为OvTDM系统、OvFDM系统、OvCDM系统、OvSDM系统或OvHDM系统。
本申请的有益效果是:
依上述实施的适用于OvXDM系统的软值提取方法、装置及OvXDM系统,通过对OvXDM波形译码后得到的硬值进一步处理,采用对数似然函数提取每个符号的软信息,从而可实现软值译码,提高了系统的编码增益;同时也提高了OvXDM系统设计的灵活性,使得OvXDM系统可以和常用的软信息纠错码相结合,提高整体系统的编码增益。
附图说明
图1为传统OvTDM系统的发射端的结构示意图;
图2为OvTDM系统对输入符号进行重叠复用编码的平行四边形规则示意图;
图3(a)、(b)分别传统OvTDM接收端的预处理单元、序列检测单元;
图4为系统重叠复用次数K=3时,系统输入-输出码树图;
图5为图4相应的系统的节点状态转移图;
图6为图4或图5相应的系统的格状(Trellis)图;
图7为本申请一实施例中适用于OvXDM系统的软值提取方法中在路径中 的某个t-1时刻至t时刻的路径选择示意图;
图8为本申请一实施例中适用于OvXDM系统的软值提取方法的流程示意图;
图9为本申请一实施例中适用于OvXDM系统的软值提取方法的波形编码平等四边形示意图;
图10为本申请一实施例中适用于OvXDM系统的软值提取装置的结构示意图。
具体实施方式
下面通过具体实施方式结合附图对本申请作进一步详细说明。
现代信道编码方法中,常使用的译码方法为软入软出(Soft In Soft Out,SISO),再配合迭代的方法,即迭代译码,有时也称为Turbo译码。软入软出的译码方法相对于传统的信道编码代数译码的方法可额外提高一定的编码增益。但软入软出的译码方法前提条件是译码器软信息的输入,然而在OvXDM系统中,如果波形译码后得到的信息为硬信息,比如常用的维特比译码方法,,若想采用软入软出的译码方法,首先需要从OvXDM系统中提取出软值。
本申请中,OvXDM系统为重叠时分复用(OvTDM,Overlapped Time Division Multiplexing)系统、重叠频分复用(OvFDM,Overlapped Frequency Division Multiplexing)系统、重叠码分复用(OvCDM,Overlapped Code Division Multiplexing)系统、重叠空分复用(OvSDM,Overlapped Space Division Multiplexing)系统或重叠混合复用(OvHDM,Overlapped Hybrid Division Multiplexing)系统。
不妨以OvTDM系统为例,简要说明一下系统的收发端。
如图1所示,为OvTDM发送端的发送过程,具体步骤如下:
(1)首先设计生成发送信号的包络波形h(t)。
(2)将(1)中所设计的包络波形h(t)经特定时间移位后,形成其它各个时刻发送信号包络波形h(t-i×ΔT)。
(3)将所要发送的符号xi与(2)生成的相应时刻的包络波形h(t-i×ΔT)相乘,得到各个时刻的待发送信号波形xih(t-i×ΔT)。
(4)将(3)所形成的各个待发送波形进行xih(t-i×ΔT)叠加,形成发射信号波形。发送的信号可以表示为:
Figure PCTCN2017091963-appb-000001
其中,重叠复用方法遵循如图2所示的平行四边形规则。
发送端将编码调制后的信号通过天线发射出去,信号在无线信道中传输,接收端对接收信号进行匹配滤波,再对信号分别进行抽样、译码,最终判决输出比特流。
如图3所示,为OvTDM接收端的接收过程,其中,图3(a)为OvTDM接收端的预处理单元,图3(b)为OvTDM接收端的序列检测单元,具体步骤如下:
(5)首先对接收信号进行同步,包括载波同步、帧同步、符号时间同步等。
(6)根据取样定理,对每一帧内的接收信号进行数字化处理。
(7)对接收到的波形按照波形发送时间间隔切割。
(8)按照一定的译码算法对切割后的波形进行译码。例如,以维特比译码进行译码。
其中,译码过程请参照图4~6,图4为重叠复用次数K=3时,系统输入-输出码树图,图5为系统相应的节点状态转移图,图6为系统的格状(Trellis)图。
经过波形译码和解调的输出结果为硬信息,因此,要想采用软入软出的译码方法,首先需要从上述系统中提取出各硬信息对应的软信息,也即软值。
本申请是通过对传统OvXDM波形译码后得到的硬值进一步处理,采用对数似然函数提取每个符号的软信息,具体原理如下:
经过波形译码后所有硬值均已值出,即在格状图中已找出所有时刻的最大似然结果。在路径中的某个t-1时刻至t时刻,在最优路径输出的基础上,分别有两个选择,分别是输入值为+1或输入值为-1,如附图7所示。
令z+1和z-1分别表示在t时刻进行相反符号取值的两路路径的总测试,令r表示t时刻的总接收信号序列,令y+1和y-1分别表示波形译码的结果经过重叠复用后所对应的预测值,其中y+1和y-1分别对应t时刻取+1和-1的情况,则此时相应的测试可表示为:
z+1=||r-y+1||2
z+1=||r-y-1||2
令yrx表示系统发送端发出的重叠复用后的序列,若信道为加性高斯白噪声(AWGN,Additive White Gaussian Noise),t时刻对应的两种取值,其相应的信道转移概率可分别表示为:
Figure PCTCN2017091963-appb-000002
Figure PCTCN2017091963-appb-000003
在基于维特比译码t-1时刻以前已经判断的结果的基础上,可知在t-1时刻到t时刻仅存两种路径转移可能。令st为t时刻的输出符号,因此,可将t-1时刻转移到t时刻的符号概率表示为:
Figure PCTCN2017091963-appb-000004
Figure PCTCN2017091963-appb-000005
对上面两式取对数似然比后,可得到:
Figure PCTCN2017091963-appb-000006
其中σ2为噪声方差。得到的LLR即为当前时刻硬值对应的软值。
在上述过程中,若还考虑信道衰减系数,则测度z+1和z-1的计算分别被调整如下:
Figure PCTCN2017091963-appb-000007
其中α为信道衰减系数。
以上为本申请的提取硬信息对应的软信息的构思及原理,下面对本申请进行详细说明。
不妨令OvXDM的重叠次数为K,数据帧长为N。发送端经过OvXDM波形编码发出去的信号为ytx,信号经过真实信道传输到达接收端收到的信号后为yrx。请参照图8,本申请提出一种适用于OvXDM系统的软值提取方法,包括步骤S05~S09,在一实施例中,还可以包括步骤S01和S03。在一实施例中,OvXDM系统为OvTDM系统、OvFDM系统、OvCDM系统、OvSDM系统或OvHDM系统。
步骤S01、对接收信号序列yrx进行同步处理和信道均衡。
步骤S03、对经过同步处理和信道均衡后的接收信号序列按照预定的译码方法进行波形译码,得到译码后的硬值序列。硬值序列中各硬值可表示为
Figure PCTCN2017091963-appb-000008
i表示符号索引,取值范围为1~N,N为数据帧长度。在一实施例中,步骤S03中的预定的译码方法可以是现有的译码方法,例如维特比译码方法,也可以是将来出现的译码方法。
步骤S05、对译码得到的硬值序列中全部符号进行波形编码,得到重叠编码后的预测值。需要说明的是,由于OvXDM系统符号之间的相关性,当前符号
Figure PCTCN2017091963-appb-000009
经过卷积编码只影响其i-K+1位到i+K+1位。因此步骤S05中逐符号翻转后计算重新波形卷积时,只需对关联的符号进行重叠编码,不用对全部N个符号进行重叠编码。不妨以OvTDM系统为例,波形卷积编码过程呈平行四边形状,N个符号中前后K-1位符号波形卷积只影响其后或前一部分符号,对符号翻转求重叠编码预测值的过程可分为三部分单独处理,即1至K-1位,K至N-K+1位、后N-K+2至N位,如图9所示。
步骤S07、对上述硬值序列进行逐符号翻转,再对每次翻转的符号及其前后相关联的符号进行重叠编码,以得到翻转后的符号的预测值。当OvXDM系统重叠次数K较大或帧长N较长时,重新对每一位比特翻转进行全序列的重叠复用编码复杂度较大,工程实现时会造成较大的时延,而由于在最后的LLR计算过程中,存在翻转比特后测度相减的操作,所以,可只计算与翻转比特编码发生重叠的相关比特的度量值,对比序列间的差异,换言之,测度之差也仅在此部分的度量值之间产生。
步骤S09、对于硬值序列中每一个符号,根据LLR=A×(z+1-z-1)计算当前符号的软值,其中A为与步骤S01中信道类型相关的系数,z+1=||yrx-y+1||2,z-1=||yrx-y-1||2,其中若y+1为符号翻转前重叠编码的预测值,那么y-1为符号翻转后重叠编码的预测值;反之,若y-1为符号翻转前重叠编码的预测值,那么y+1为符号翻转后重叠编码的预测值,yrx为接收信号序列。在一实施例中,当步骤S01中的信道类型为加性高斯白噪声信道时,如果波形译码后得到的符号为+1,A为
Figure PCTCN2017091963-appb-000010
如果波形译码后得到的符号为-1,A为
Figure PCTCN2017091963-appb-000011
其中σ2为信道均方差,信道均方差σ2可以通过信道估计得到;在一实施例中,若考虑信道衰减系数,则z+1和z-1的计算可被调整为z+1=||yrx-αy+1||2,z-1=||yrx-αy-1||2,其中α为信道衰减系数,其可以通过信道估计得到。在一实施例中,还可以根据具 体情况对计算得到的软信息进行调整,即乘以一个调整因子φ,换句话说,当前符号的软值被调整后变为φ×A×(z+1-z-1),调整因子φ的取值为0~1,当OvXDM系统的重叠次数K越大,φ的取值越小,也就是越靠近0;步骤S09中得到数据帧中各符号对应的软值,这些软值可作为下一级的软入软出纠错码的输入信息。
在本申请的适用于OvXDM系统的软值提取方法,步骤S01和S03为硬值译码,步骤S05、S07和S09是从硬值中提取其相应的软信息(软值),提取出的软值可被用于下一极的软入软出的纠错码中。
本申请的软值提取方法解决了如果传统OvXDM波形译码得到符号硬值,当OvXDM系统与纠错码相结合时,硬值纠错译码相较软值纠错译码有一定的编码增益损失,在接收端以硬值作为纠错码的输入信息时,降低了系统的性能的问题。本申请的软值提取方法通过对传统OvXDM波形译码后得到的硬值进一步处理,采用对数似然函数提取每个符号的软信息,从而可以进一步实现软值译码,提高了系统的编码增益,同时提高了OvXDM系统设计的灵活性,使得OvXDM系统可以和常用的软信息纠错码相结合,提高整体系统的编码增益。
相应地,本申请还提出一种OvXDM系统,其包括一种适用于OvXDM系统的软值提取装置,其中OvXDM系统为OvTDM系统、OvFDM系统、OvCDM系统、OvSDM系统或OvHDM系统。请参照图10,适用于OvXDM系统的软值提取装置包括预测值计算单元05、翻转符号预测值计算单元07和符号软值计算单元09,在一较优的实施例中,还包括系数单元11、信道衰减单元13和调整因子单元15中的至少一者;在一实施例中,还可以包括预处理单元01和译码单元03。
预处理单元01用于对接收信号序列yrx进行同步处理和信道均衡。
译码单元03用于对经过同步处理和信道均衡后的接收信号序列按照预定的译码方法进行波形译码,得到译码后的硬值序列。硬值序列中各硬值可表示为
Figure PCTCN2017091963-appb-000012
i表示符号索引,取值范围为1~N,N为数据帧长度。在一实施例中,译码单元03中的预定的译码方法可以是现有的译码方法,例如维特比译码方法,也可以是将来出现的译码方法。
预测值计算单元05用于对上述硬值序列中全部符号进行波形编码,得到重叠编码后的预测值。需要说明的是,由于OvXDM系统符号之间的相关性,当前符号
Figure PCTCN2017091963-appb-000013
经过卷积编码只影响其i-K+1位到i+K+1位。因此步骤S05中逐符号 翻转后计算重新波形卷积时,只需对关联的符号进行重叠编码,不用对全部N个符号进行重叠编码。不妨以OvTDM系统为例,波形卷积编码过程呈平行四边形状,N个符号中前后K-1位符号波形卷积只影响其后或前一部分符号,对符号翻转求重叠编码预测值的过程可分为三部分单独处理,即1至K-1位,K至N-K+1位、后N-K+2至N位,如前面图9所示。
翻转符号预测值计算单元07用于对上述硬值序列进行逐符号翻转,再对每次翻转的符号及其前后相关联的符号进行重叠编码,以得到翻转后的符号的预测值。当OvXDM系统重叠次数K较大或帧长N较长时,重新对每一位比特翻转进行全序列的重叠复用编码复杂度较大,工程实现时会造成较大的时延,而由于在最后的LLR计算过程中,存在翻转比特后测度相减的操作,所以,可只计算与翻转比特编码发生重叠的相关比特的度量值,对比序列间的差异,换言之,测度之差也仅在此部分的度量值之间产生。
符号软值计算单元09用于对于硬值序列中每一个符号,根据A×(z+1-z-1)计算当前符号的软值,其中A为与信道类型相关的系数,z+1=||yrx-y+1||2,z-1=||yrx-y-1||2,其中若y+1为符号翻转前重叠编码的预测值,那么y-1为符号翻转后重叠编码的预测值;反之,若y-1为符号翻转前重叠编码的预测值,那么y+1为符号翻转后重叠编码的预测值,yrx为当前时刻的接收信号序列。符号软值计算单元09中得到数据帧中各符号对应的软值,这些软值可作为下一级的软入软出纠错码的输入信息。
系数单元11用于对符号软值计算单元09中系数A进行赋值,当信道类型为加性高斯白噪声信道时,如果波形译码后得到的符号为+1,A被赋值为
Figure PCTCN2017091963-appb-000014
如果波形译码后得到的符号为-1,A被赋值为
Figure PCTCN2017091963-appb-000015
其中σ2为信道均方差,信道均方差σ2可以通过信道估计得到;
信道衰减单元13用于当符号软值计算单元计算当前符号的软值时,还引入信道衰减系数α,使得z+1=||yrx-αy+1||2,z-1=||yrx-αy-1||2,其中信道衰减系数α可以通过信道估计得到。
调整因子单元15用于当符号软值计算单元计算当前符号的软值时,还引入一个调整因子φ,使得当前符号的软值为φ×A×(z+1-z-1),其中所述调整因子φ的取值为0~1,当OvXDM系统的重叠次数越大,φ的取值越小。
以上内容是结合具体的实施方式对本申请所作的进一步详细说明,不能认定本申请的具体实施只局限于这些说明。对于本申请所属技术领域的普通技术人员来说,在不脱离本申请发明构思的前提下,还可以做出若干简单推演或替换。

Claims (10)

  1. 一种适用于OvXDM系统的软值提取方法,其特征在于,包括:
    对译码得到的硬值序列中全部符号进行波形编码,得到重叠编码后的预测值;
    对所述硬值序列进行逐符号翻转,再对每次翻转的符号及其前后相关联的符号进行重叠编码,以得到翻转后的符号的预测值;
    对于硬值序列中每一个符号,根据A×(z+1-z-1)计算当前符号的软值,其中A为与信道类型相关的系数,z+1=||yrx-y+1||2,z-1=||yrx-y-1||2
    其中若y+1为符号翻转前重叠编码的预测值,y-1为符号翻转后重叠编码的预测值;或者,y-1为符号翻转前重叠编码的预测值,y+1为符号翻转后重叠编码的预测值,yrx为接收信号序列。
  2. 如权利要求1所述的适用于OvXDM系统的软值提取方法,其特征在于,当所述信道为加性高斯白噪声信道时,如果波形译码后得到的符号为+1,A为
    Figure PCTCN2017091963-appb-100001
    如果波形译码后得到的符号为-1,A为
    Figure PCTCN2017091963-appb-100002
    其中σ2为信道均方差;
  3. 如权利要求2所述的适用于OvXDM系统的软值提取方法,其特征在于,根据A×(z+1-z-1)计算当前符号的软值时,还乘以一个调整因子φ,所述调整因子φ的取值为0~1,当OvXDM系统的重叠次数增大,φ的取值减小。
  4. 如权利要求1所述的OvXDM系统的软值提取方法,其特征在于,根据A×(z+1-z-1)计算当前符号的软值时,进行信道衰减,所述信道衰减系数为α,z+1=||yrx-αy+1||2,z-1=||yrx-αy-1||2
  5. 如权利要求1至4中任一项所述的适用于OvXDM系统的软值提取方法,其特征在于,所述OvXDM系统为OvTDM系统、OvFDM系统、OvCDM系统、OvSDM系统或OvHDM系统。
  6. 一种适用于OvXDM系统的软值提取装置,其特征在于,包括:
    预测值计算单元,用于对译码得到的硬值序列中全部符号进行波形编码,得到重叠编码后的预测值;
    翻转符号预测值计算单元,用于对所述硬值序列进行逐符号翻转,再对每次翻转的符号及其前后相关联的符号进行重叠编码,以得到翻转后的符号的预测值;
    符号软值计算单元,用于对于硬值序列中每一个符号,根据A×(z+1-z-1)计算当前符号的软值,其中A为与信道类型相关的系数,z+1=||yrx-y+1||2,z-1=||yrx-y-1||2
    其中,y+1为符号翻转前重叠编码的预测值,y-1为符号翻转后重叠编码的预测值;或者,y-1为符号翻转前重叠编码的预测值,y+1为符号翻转后重叠编码的预测值,yrx为接收信号序列。
  7. 如权利要求6所述的适用于OvXDM系统的软值提取装置,其特征在于,还包括系数单元,用于对符号软值计算单元中系数A进行赋值,当信道为加性高斯白噪声信道时,如果波形译码后得到的符号为+1,A被赋值为
    Figure PCTCN2017091963-appb-100003
    如果波形译码后得到的符号为-1,A为
    Figure PCTCN2017091963-appb-100004
    其中σ2为信道均方差。
  8. 如权利要求7所述的适用于OvXDM系统的软值提取装置,其特征在于,还包括调整因子单元,用于当符号软值计算单元计算当前符号的软值时,还引入一个调整因子φ,使得当前符号的软值为φ×A×(z+1-z-1),其中所述调整因子φ的取值为0~1,当OvXDM系统的重叠次数增大,φ的取值减小。
  9. 如权利要求6所述的适用于OvXDM系统的软值提取装置,其特征在于,还包括信道衰减单元,用于当符号软值计算单元计算当前符号的软值时,进行信道衰减,所述信道衰减的系数为α,使得z+1=||yrx-αy+1||2,z-1=||yrx-αy-1||2
  10. 一种OvXDM系统,其特征在于,包括如权利要求6至9中任一项所述的适用于OvXDM系统的软值提取装置,其中OvXDM系统为OvTDM系统、OvFDM系统、OvCDM系统、OvSDM系统或OvHDM系统。
PCT/CN2017/091963 2016-09-28 2017-07-06 一种适用于OvXDM系统的软值提取方法、装置及OvXDM系统 WO2018059057A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197011948A KR102239745B1 (ko) 2016-09-28 2017-07-06 OvXDM 시스템에 적용하는 일종의 소프트값 추출방법, 장치 및 OvXDM 시스템
JP2019516979A JP6802914B2 (ja) 2016-09-28 2017-07-06 OvXDMシステムに適用される一種類のソフトバリュー取得方法、装置及びOvXDMシステム
EP17854511.7A EP3522410A4 (en) 2016-09-28 2017-07-06 FLEXIBLE VALUE EXTRACTION METHOD AND DEVICE APPLICABLE TO OVXDM SYSTEM, AND OVXDM SYSTEM
US16/362,400 US10951338B2 (en) 2016-09-28 2019-03-22 Soft value extraction method and device applicable to OvXDM system, and OvXDM system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610865764.6 2016-09-28
CN201610865764.6A CN107872295B (zh) 2016-09-28 2016-09-28 一种适用于OvXDM系统的软值提取方法、装置及OvXDM系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/362,400 Continuation US10951338B2 (en) 2016-09-28 2019-03-22 Soft value extraction method and device applicable to OvXDM system, and OvXDM system

Publications (1)

Publication Number Publication Date
WO2018059057A1 true WO2018059057A1 (zh) 2018-04-05

Family

ID=61761982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091963 WO2018059057A1 (zh) 2016-09-28 2017-07-06 一种适用于OvXDM系统的软值提取方法、装置及OvXDM系统

Country Status (6)

Country Link
US (1) US10951338B2 (zh)
EP (1) EP3522410A4 (zh)
JP (1) JP6802914B2 (zh)
KR (1) KR102239745B1 (zh)
CN (1) CN107872295B (zh)
WO (1) WO2018059057A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101404564A (zh) * 2008-11-14 2009-04-08 南京航空航天大学 8psk格雷映射的一种软解调方法
US20090092196A1 (en) * 2007-10-05 2009-04-09 Innurvation, Inc. Data Transmission Via Multi-Path Channels Using Orthogonal Multi-Frequency Signals With Differential Phase Shift Keying Modulation
CN101431393A (zh) * 2007-11-05 2009-05-13 中国移动通信集团公司 重叠复用传输方法及基站与用户终端
CN101557364A (zh) * 2009-05-12 2009-10-14 山东大学 Turbo-OvCDM系统的联合迭代信道估计和译码方法
CN101895373A (zh) * 2010-07-21 2010-11-24 华为技术有限公司 信道译码方法、系统及装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6731700B1 (en) * 2001-01-04 2004-05-04 Comsys Communication & Signal Processing Ltd. Soft decision output generator
US7697604B2 (en) * 2006-04-17 2010-04-13 Techwell, Inc. Dual pDFE system with forward-backward viterbi
WO2008006246A1 (fr) * 2006-07-06 2008-01-17 Daoben Li Procédé et système de multiplexage temporel
CN101471689B (zh) * 2007-12-29 2013-03-20 中国移动通信集团公司 在通信系统中传送数据的方法、通信装置及通信系统
CN101262232A (zh) * 2008-04-28 2008-09-10 山东大学 一种针对重叠编码复用的译码算法
JP5502363B2 (ja) * 2009-04-28 2014-05-28 三菱電機株式会社 光伝送装置および光伝送方法
US20110141918A1 (en) * 2009-09-13 2011-06-16 Research Institute Of Tsinghua University In Shenzhen Time division multiplexing method and system
US20110075649A1 (en) * 2009-09-13 2011-03-31 Research Institute Of Tsinghua University In Shenzhen Method and system of frequency division multiplexing
US20110103236A1 (en) * 2009-09-13 2011-05-05 Research Institute Of Tsinghua University In Shenzhen Transmission method of code division multiplexing and multiple access
US20110182169A1 (en) * 2009-09-13 2011-07-28 Research Institute Of Tsinghua University In Shenzhen Code division multiplexing method and system
CN104811407B (zh) * 2015-03-25 2018-05-15 北京邮电大学 通信方法及系统、通信信号接收方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090092196A1 (en) * 2007-10-05 2009-04-09 Innurvation, Inc. Data Transmission Via Multi-Path Channels Using Orthogonal Multi-Frequency Signals With Differential Phase Shift Keying Modulation
CN101431393A (zh) * 2007-11-05 2009-05-13 中国移动通信集团公司 重叠复用传输方法及基站与用户终端
CN101404564A (zh) * 2008-11-14 2009-04-08 南京航空航天大学 8psk格雷映射的一种软解调方法
CN101557364A (zh) * 2009-05-12 2009-10-14 山东大学 Turbo-OvCDM系统的联合迭代信道估计和译码方法
CN101895373A (zh) * 2010-07-21 2010-11-24 华为技术有限公司 信道译码方法、系统及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3522410A4 *

Also Published As

Publication number Publication date
CN107872295A (zh) 2018-04-03
EP3522410A4 (en) 2020-06-17
EP3522410A1 (en) 2019-08-07
US20190222335A1 (en) 2019-07-18
KR102239745B1 (ko) 2021-04-12
US10951338B2 (en) 2021-03-16
JP2019531022A (ja) 2019-10-24
CN107872295B (zh) 2021-09-03
KR20190055203A (ko) 2019-05-22
JP6802914B2 (ja) 2020-12-23

Similar Documents

Publication Publication Date Title
US8397148B2 (en) Low complexity decoding algorithm for tail-biting convolutional codes
US6910170B2 (en) Pre-decoder for a turbo decoder, for recovering punctured parity symbols, and a method for recovering a turbo code
US6731700B1 (en) Soft decision output generator
JP3822249B2 (ja) 不均一エラー保護を有する通信信号の検出方法および手段
US9215102B2 (en) Hypotheses generation based on multidimensional slicing
JP4621683B2 (ja) ノイズ白色化フィルタリング方法および装置
US8229040B2 (en) Feedforward receiver and method for reducing inter-symbol interference by using joint soft values
US20140133608A1 (en) Hypotheses generation based on multidimensional slicing
US6269124B1 (en) Data transmission system, receiver, and recording medium
CN104584440B (zh) 接收机、发送机以及通信方法
EP1782543B1 (en) Soft decision enhancement
KR20180013411A (ko) Ftn 기반 신호 수신 장치 및 방법
US6476739B1 (en) Method and processing system for estimating likelihood ratios for input symbol values
WO2018059057A1 (zh) 一种适用于OvXDM系统的软值提取方法、装置及OvXDM系统
JP2001313571A (ja) 復調方法及び復調装置
WO2017157105A1 (zh) 一种调制方法和装置
JP5846601B2 (ja) 受信装置及び受信方法
EP3361659B1 (en) Dpsk receiver module
JP2015099950A (ja) 通信装置
JPH10262090A (ja) 最尤系列推定器及び最尤系列推定方法
JP3616956B2 (ja) ダイバーシチ受信装置
EP3545657B1 (en) Systems and methods for decoding of modulated symbols or compensating channel frequency response of the modulated symbols
Nguyen On the using M-BCJR demodulation for partial response signalling followed by decoding of LDPC codes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854511

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019516979

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197011948

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017854511

Country of ref document: EP

Effective date: 20190429