WO2018058809A1 - 线性振动马达 - Google Patents

线性振动马达 Download PDF

Info

Publication number
WO2018058809A1
WO2018058809A1 PCT/CN2016/110777 CN2016110777W WO2018058809A1 WO 2018058809 A1 WO2018058809 A1 WO 2018058809A1 CN 2016110777 W CN2016110777 W CN 2016110777W WO 2018058809 A1 WO2018058809 A1 WO 2018058809A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
assembly
pole core
permanent magnet
vibration motor
Prior art date
Application number
PCT/CN2016/110777
Other languages
English (en)
French (fr)
Inventor
朱跃光
臧伟晔
王斌
刘春发
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Priority to KR1020177034673A priority Critical patent/KR20180050605A/ko
Priority to US15/746,737 priority patent/US20190006926A1/en
Publication of WO2018058809A1 publication Critical patent/WO2018058809A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/02Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moved one way by energisation of a single coil system and returned by mechanical force, e.g. by springs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/12Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moving in alternate directions by alternate energisation of two coil systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/18Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with coil systems moving upon intermittent or reversed energisation thereof by interaction with a fixed field system, e.g. permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/24Casings; Enclosures; Supports specially adapted for suppression or reduction of noise or vibrations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2211/00Specific aspects not provided for in the other groups of this subclass relating to measuring or protective devices or electric components
    • H02K2211/03Machines characterised by circuit boards, e.g. pcb

Definitions

  • the present invention relates to the field of vibration motor technology, and more particularly to a linear vibration motor.
  • Existing linear vibration motors generally include a vibrator, a stator, and a spring.
  • the vibrator includes a magnet, a weight, and a washer.
  • the stator includes a housing, a core, and a coil assembly.
  • the coil assembly is sleeved on the periphery of the core.
  • the role of the washer and the core is to concentrate the magnetic lines of force to increase the strength of the magnetic field.
  • magnetic lines of force pass through the coil assembly, creating a Lorentz force to drive the vibrator to vibrate.
  • the existing vibration motor has a technical problem of small driving force and slow vibration response.
  • a linear vibration motor includes:
  • a stator assembly including a housing, a pole core, and a coil assembly having a cavity inside the housing, the housing including a top and a bottom opposite the top, the pole core and the a coil assembly is disposed in the cavity, the pole core is disposed on the bottom, and the pole core includes a magnetic pole located at a middle portion of the pole core in a vibration direction and protruding from an outer surface of the pole core, The coil assembly is sleeved on an outer surface of the pole core, the coil assembly is separated by the magnetic pole into a first coil and a second coil, and the current direction of the first coil and the second coil is opposite;
  • a vibrator assembly including a permanent magnet disposed around the coil assembly, a weight portion disposed on the permanent magnet, the permanent magnet being axially magnetized, after the coil assembly is energized, Forming a magnetic force between the magnetic pole and the permanent magnet;
  • the housing includes upper and lower shells joined together, the top being located on the upper shell and the bottom being located on the lower shell.
  • one end of the pole core is coupled to the bottom, and the other end of the pole core is coupled to the top.
  • the elastic element is a spiral elastic piece located on a side of the vibrator assembly near the top or on a side of the vibrator assembly near the bottom.
  • the upper case and the lower case are magnetically permeable materials.
  • the upper shell and the lower shell are made of iron, cobalt or nickel.
  • a damping member is disposed on at least one of a position of the bottom portion corresponding to the weight portion and a position corresponding to the weight portion of the top portion.
  • the magnetic circuit system includes the coil assembly, the pole core, the permanent magnet and the washer, the coil assembly is sleeved on an outer side of the pole core, and the permanent magnet is disposed around the coil assembly And a gap is formed between the permanent magnet and the coil assembly, the washer is located at upper and lower ends of the permanent magnet, and the magnetic circuit system is configured to be square or circular.
  • a first end and a second end are disposed opposite to each other in an axial direction of the permanent magnet, a first washer is disposed at the first end, and a second washer is disposed at the second end.
  • an FPCB is further disposed on the bottom portion, and the coil component is electrically connected to an external circuit through the FPCB, and a relief groove for avoiding the FPCB is further disposed on the weight portion.
  • the inventors of the present invention have found that in the prior art, since the vibration of the vibration motor is realized only by the Lorentz force, there is a technical problem that the driving force is small and the vibration response is slow. Therefore, the technical task to be achieved by the present invention or the technical problem to be solved is not thought of or expected by those skilled in the art, so the present invention is a new technical solution.
  • the linear vibration motor of the present invention is provided with two coils, the currents of the two coils being opposite in direction, and the two coils being separated by magnetic poles located in the middle of the pole core.
  • the arrangement of the two coils increases the driving force of the vibrator assembly, making the vibration response of the linear vibration motor faster.
  • a magnetic force is formed between the pole core and the permanent magnet, and the direction of the magnetic force is the same as the direction of movement of the vibrator assembly, thereby further improving the driving force of the vibrator assembly.
  • the magnetic force between the pole core and the permanent magnet can effectively reduce the f 0 (lowest resonance frequency) of the linear vibration motor, improving the seismic experience.
  • Figure 1 is an exploded view of a linear vibration motor of an embodiment of the present invention.
  • Figure 2 is a cross-sectional view of a linear vibration motor of an embodiment of the present invention.
  • Figure 3 is a cross-sectional view showing another angle of the linear vibration motor of the embodiment of the present invention.
  • Fig. 4 is a schematic view showing the structure of a pole core according to an embodiment of the present invention.
  • Figure 5 is a cross-sectional view of another linear vibration motor of an embodiment of the present invention.
  • Figure 6 is a cross-sectional view of a circular linear vibration motor of an embodiment of the present invention.
  • Fig. 7 is a schematic view showing the structure of a square magnetic circuit system according to an embodiment of the present invention.
  • 11 upper shell; 12: spiral spring; 13: annular elastic pad; 14: tungsten steel block; 15: first washer; 16: first coil; 17: ring magnet; 18: pole core; Second Huasi; 20: FPCB; 21: flaky damping; 22: second coil; 23: magnetic pole; 24: avoidance slot; 25: lower case.
  • the present invention provides a linear vibration motor.
  • the linear vibration motor includes a stator assembly, a vibrator assembly, and a resilient member.
  • the stator assembly includes a housing, a pole core 18, and a coil assembly.
  • the interior of the housing has a cavity.
  • the housing includes a top and a bottom opposite the top.
  • the pole core 18 and the coil assembly are located within the cavity.
  • the pole core 18 is placed on the bottom.
  • the pole core 18 is disposed in the middle of the bottom portion so that the space within the chamber can be fully utilized.
  • the housing in order to facilitate the disassembly and assembly of the linear vibration motor, is configured to include an upper case 11 and a lower case 25.
  • the upper case 11 and the lower case 25 are connected to each other.
  • the two are connected to each other in a snap-fit manner. It is also possible, for example, to connect the two to each other with an adhesive.
  • a cavity is formed inside the upper case 11 and the lower case 25.
  • the top is located on the upper casing 11, and the bottom is on the lower casing 25.
  • FPCB20 Flexible Printed Circuit Board
  • the coil assembly is electrically connected to an external circuit through the FPCB 20.
  • the external circuit can also be electrically connected to the lead of the coil by means of a cable.
  • a relief groove 24 for avoiding the FPCB 20 is further disposed on the weight portion.
  • the pole core 18 is disposed in the middle of the lower case 25.
  • the pole core 18 can be fixed to the middle of the lower case 25 by bonding.
  • the pole core 18 is used to concentrate the electromagnetic field generated by the coil assembly.
  • the pole core 18 includes a magnetic pole 23 located at a central portion of the pole core 18 in the vibration direction and protruding from the outer surface of the pole core 18.
  • the shape of the pole core 18 is similar to a cross shape.
  • the magnetic pole 23 is used to overflow the electromagnetic field after the coil assembly is energized.
  • the direction of vibration is the direction in which the vibrator assembly operates.
  • the axial direction of the pole core 18 and the coil assembly is parallel to the direction of vibration.
  • the coil assembly is sleeved over the outer surface of the pole core 18.
  • the coil assembly generates an electromagnetic field in response to an electrical signal from an external circuit.
  • the coil assembly is divided by the magnetic pole 23 into a first coil 16 and a second coil 22.
  • the current directions of the first coil 16 and the second coil 22 are opposite.
  • the first coil 16 and the second coil 22 are wound from the same wire.
  • the first coil 16 is wound clockwise and the second coil 22 is wound counterclockwise (top view from the top).
  • the first coil 16 and the second coil 22 are connected in series. The two coils share a pair of leads.
  • first coil 16 and the second coil 22 are respectively wound, as long as they are guaranteed
  • the two coils can be wound in opposite directions.
  • the leads of the first coil 16 and the second coil 22 are connected to the FPCB 20, respectively.
  • the number of turns of the first coil 16 and the second coil 22 are equal. This configuration allows the strengths of the electromagnetic fields generated by the two coils to be equal and the magnetic forces of the two coils to be equal.
  • the vibrator assembly includes a washer, a permanent magnet, and a weight portion disposed about the permanent magnet.
  • the weight portion is used to increase the inertia of the vibrator assembly to increase the amplitude of the vibration motor.
  • the weight portion may be, but not limited to, a tungsten steel block 14.
  • Permanent magnets are used to form a uniform magnetic field.
  • the permanent magnets may be, but are not limited to, ferrite magnets and neodymium iron boron magnets.
  • the permanent magnet in order to increase the strength of the magnetic field and make the strength of the magnetic field uniform, is configured as a ring magnet 17.
  • the permanent magnet is also composed of a plurality of discrete magnets.
  • a plurality of magnets are evenly distributed around the coil assembly to ensure equalization of the magnetic field forces received by the coil assembly.
  • a plurality of magnets have the same polarity. For example, one end of the plurality of magnets close to the upper case 11 is an N pole, and one end near the lower case 25 is an S pole.
  • the permanent magnet includes a first end and a second end which are disposed opposite to each other in the axial direction.
  • the direction of the axis is parallel to the direction of vibration.
  • a first washer 15 is disposed at the first end.
  • a second washer 19 is disposed at the second end. The first washer 15 and the second washer 19 are used to form a magnetic shield to concentrate the magnetic lines of the permanent magnet to further increase the strength of the magnetic field.
  • the permanent magnet is axially magnetized.
  • the axial magnetization that is, the direction of the magnetic lines of force, is along the axis of the permanent magnet.
  • one end of the ring magnet 17 near the upper case 11 is an N pole
  • one end of the ring magnet 17 near the lower case 25 is an S pole.
  • the polarity of the washer is the same as the polarity of the permanent magnet that is close to it. It can be seen that the polarity of the first washer 15 is N pole, and the polarity of the second washer 19 is S pole.
  • the permanent magnets are placed around the coil assembly. There is a gap between the permanent magnet and the coil assembly. It is preferable that the middle portion of the permanent magnet in the vibration direction corresponds to the position of the magnetic pole 23. Since the middle portion of the permanent magnet corresponds to the position of the magnetic pole 23, when the coil assembly is energized, the attraction of the first washer 15 to which the magnetic pole 23 is received is equal to the attraction force of the second washer 19 to which the magnetic pole 23 is received. The two attractive forces are equal in magnitude and opposite in direction so that the vibrator assembly is balanced.
  • An elastic element is used to support the vibrator assembly to suspend the vibrator assembly in the cavity.
  • the resilient element is also used to provide spring force to the vibrator assembly.
  • the elastic force is in the direction of vibration.
  • the spring force returns the vibrator assembly to an initial position relative to the stator assembly, and the spring force limits the amplitude of the vibrator assembly to prevent The damper assembly collides with the housing.
  • the elastic member has a third end and a fourth end in the vibration direction.
  • the third end is attached to either the top or the bottom.
  • the fourth end is connected to the vibrator assembly.
  • the elastic element is a helical shrapnel 12.
  • the spiral spring 12 is located on the side of the vibrator assembly near the top or on the side of the vibrator assembly near the bottom.
  • the spiral shrapnel 12 is located on the side of the vibrator assembly near the bottom, which can make full use of the space between the FPCB 20 and the vibrator assembly, so that the linear vibrating motor can be made thinner.
  • the spiral elastic piece 12 has the characteristics of firm structure and uniform elastic deformation.
  • the spiral spring piece 12 can be joined to the housing and the vibrator assembly by through-hole welding or bonding.
  • the fourth end of the spiral shrapnel 12 can be welded to the tungsten steel block 14. It should be noted that it is considered that high temperature may adversely affect the magnetic properties of the permanent magnet during the welding process.
  • the tungsten steel block 14 and the spiral elastic piece 12 may be welded first, and then the tungsten steel block 14 is connected to the permanent magnet.
  • the third end of the spiral spring 12 can be welded to the top of the upper casing 11.
  • the magnetic pole 23 of the pole core 18 is also subjected to the magnetic force from the permanent magnet.
  • the linear vibration motor includes two coils.
  • the first coil 16 is a clockwise current
  • the second coil 22 is a counterclockwise current (top view from the top) as an example.
  • the first coil 16 is subjected to a downward Lorentz force. Since the first coil 16 is fixed to the lower casing 25 and cannot move, the vibrator assembly is subjected to a reaction force to move upward.
  • the second coil 22 is subjected to the downward Lorentz force. Since the second coil 22 is fixed to the lower casing 25 and cannot move, the vibrator assembly is subjected to a reaction force to move upward. It can be seen that the two coils are subjected to the Lorentz force in the same direction, so that the reaction force received by the vibrator assembly is greatly increased, that is, the driving force of the vibrator assembly is greatly increased. In turn, the vibrator assembly is made shorter from the standstill to the normal amplitude, ie the vibration response speed is faster.
  • the two coils are sleeved on the pole core 18.
  • a first washer 15 is provided at the upper end of the ring magnet 17.
  • the polarity of the first washer 15 is N pole by the polarization of the ring magnet 17.
  • a second washer 19 is provided at the lower end of the ring magnet 17.
  • the polarity of the second washer 19 is S pole by the polarization of the ring magnet 17. Since the first coil 16 is wound clockwise, when the current is clockwise At the time of the strike (from the top), the lower end of the first coil 16 is N pole and the upper end is S pole.
  • the second coil 22 is wound counterclockwise. When the current is running counterclockwise (from the top), the upper end of the second coil 22 is N pole and the lower end is S pole.
  • the lower end of the first coil 16 and the upper end of the second coil 22 are located on the magnetic pole 23 of the pole core 18.
  • the magnetic field is concentrated by the pole core 18.
  • the magnetic pole 23 is an overflow end of a magnetic line, that is, an N pole.
  • the polarity of the magnetic pole 23 is N pole. Since the first washer 15 is also an N pole, the magnetic pole 23 forms a repulsive force with the first washer 15 which has the same direction as the Lorentz force, which causes the vibrator assembly to move upward, further increasing the coil assembly.
  • the driving force is also an N pole.
  • the magnetic pole 23 forms an attractive force with the second washer 19, and the direction of the attraction is the same as the direction of the Lorentz force, causing the vibrator assembly to move upward.
  • the magnetic force between the N pole and the S pole of the ring magnet 17 and the magnetic pole 23 provides a driving force for the vibrator assembly.
  • the magnetic force between the magnetic pole 23 and the ring magnet 17 (through the first washer 15 and the second washer 19) further increases the driving force to which the vibrator assembly is subjected, that is, the magnetic force makes the response speed of the linear vibration motor faster.
  • the distance between the first washer 15 and the magnetic pole 23 is shortened, and the attraction between the two is further increased.
  • the force between the pole 23 and the ring magnet 17 (through the first washer 15 and the second washer 19) is similar to the spring force, i.e., forms a "magnet spring.”
  • the direction of the elastic force of the "magnetic spring” is opposite to the direction of the elastic force of the spiral elastic piece 12.
  • the elastic modulus of the spiral elastic piece 12 is reduced, thereby reducing the f 0 (lowest resonance frequency) of the linear vibration motor, improving the sensitivity of the vibration and improving the seismic experience.
  • the strength of the annular elastic piece can be increased by increasing the thickness of the annular elastic piece while keeping f 0 constant, thereby improving the stability of the linear vibration motor and prolonging the service life of the linear vibration motor.
  • the upper case 11 and the lower case 25 are magnetically permeable materials.
  • the upper case 11 and the lower case 25 are made of iron, cobalt or nickel.
  • a magnetically conductive material is a material that is easily magnetized by a permanent magnet.
  • the vibrator assembly is up When moving, as the distance between the ring magnet 17 and the upper casing 11 decreases, the attraction between the two increases. Thereby, the driving force for vibrating the vibrator assembly upward is further increased.
  • the lower case 25 and the ring magnet 17 also have an attractive force.
  • the vibrator assembly moves downward, as the distance between the ring magnet 17 and the lower casing 25 decreases, the attraction between the two increases. Thereby, the driving force for vibrating the vibrator assembly downward is further increased.
  • the vibrator assembly is in the initial position, the vibrator assembly is subjected to the same magnitude of attraction of the upper shell 11 and the lower shell 25 in opposite directions.
  • the attraction force between the upper case 11 and the ring magnet 17 and the lower case 25 and the ring magnet 17 is opposite to the direction of the elastic force of the spiral elastic piece 12.
  • a "magnetic spring” is formed between the upper case 11, the lower case 25, and the ring magnet 17.
  • the “magnet spring” further reduces the spring constant of the spiral spring piece 12, thereby further reducing the f 0 (lowest resonance frequency) of the linear vibration motor, improving the sensitivity of the vibration and improving the seismic experience.
  • one end of the pole core 18 is connected to the bottom, and the other end of the pole core 18 is connected to the top.
  • the pole core 18 functions as a support housing to make the structure of the linear vibration motor more stable.
  • a damping member is provided at a position corresponding to the weight portion (for example, the tungsten steel block 14) at the bottom.
  • the damping member can be, but not limited to, rubber, silicone, sponge or foam.
  • the tungsten steel block 14 is square. The four sides of the tungsten steel block 14 protrude from the lower surface.
  • the damping member can then be, for example, four sheet dampings 21.
  • the sheet damping 21 is provided on the lower case 25 by bonding. Four sheet dampings 21 are respectively disposed at positions corresponding to the four corners of the tungsten steel block 14.
  • the region of the tungsten steel block 14 that is joined to the permanent magnets forms a flange-like annular projection.
  • the annular projection is located on the upper surface of the tungsten steel block 14.
  • the damper member is configured as an annular spring pad 13 and is disposed on the annular projection.
  • the annular spacer may also be disposed at a position of the upper casing 11 corresponding to the annular projection.
  • the damper member is arranged to effectively buffer the impact force of the vibrator assembly and the housing, thereby improving the service life of the linear vibration motor. And the damper member can effectively reduce the noise caused by the collision.
  • the magnetic circuit system includes a coil assembly, a pole core 18, a permanent magnet, and a washer.
  • a coil assembly such as the first coil 16 and the second coil 22, is sleeved on the outside of the pole core 18.
  • Permanent magnet such as a ring magnet 17 is set around the coil assembly. There is a gap between the ring magnet 17 and the coil assembly.
  • the washer is located at the upper and lower ends of the ring magnet 17 in the axial direction, wherein the first washer 15 is located at the upper end and the second washer 19 is located at the lower end.
  • the magnetic circuit system is configured to be square or circular in order to adapt to different installation environments.
  • the square structure occupies the same assembly space as the circular structure. However, the square structure allows the vibrator assembly to have a greater mass and can effectively increase the amplitude.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

一种线性振动马达,该马达包括:定子组件包括壳体、极芯(18)以及线圈组件,在壳体的内部具有腔体,极芯被设置在底部上,极芯包括位于极芯的沿振动方向的中部且凸出于极芯的外表面的磁极(23),线圈组件被磁极分隔为第一线圈(16)和第二线圈(22),第一线圈与第二线圈的电流方向相反;振子组件包括围绕线圈组件设置的永磁体、被设置在永磁体上的配重部,永磁体为轴向充磁;以及弹性元件,振子组件通过弹性元件悬置在腔体内,弹性元件被配置为用于使振子组件回复至初始位置。

Description

线性振动马达 技术领域
本发明涉及振动马达技术领域,更具体地,涉及一种线性振动马达。
背景技术
现有的线性振动马达一般包括振子、定子和弹片。振子包括磁铁、配重部和华司。定子包括壳体、铁芯和线圈组件。线圈组件套设在铁芯外围。华司以及铁芯的作用是集中磁力线以提高磁场强度。工作时,磁力线穿过线圈组件,产生洛伦兹力来驱动振子振动。现有振动马达存在驱动力小、振动响应慢的技术问题。
发明内容
本发明的一个目的是提供一种线性振动马达的新技术方案。
根据本发明的第一方面,提供了一种线性振动马达。该马达包括:
定子组件,所述定子组件包括壳体、极芯以及线圈组件,在所述壳体的内部具有腔体,所述壳体包括顶部和与所述顶部相对的底部,所述极芯和所述线圈组件位于所述腔体内,所述极芯被设置在所述底部上,所述极芯包括位于所述极芯的沿振动方向的中部且凸出于所述极芯的外表面的磁极,所述线圈组件被套设在所述极芯的外表面上,所述线圈组件被所述磁极分隔为第一线圈和第二线圈,所述第一线圈与所述第二线圈的电流方向相反;
振子组件,所述振子组件包括围绕所述线圈组件设置的永磁体、被设置在所述永磁体上的的配重部,所述永磁体为轴向充磁,在所述线圈组件通电后,所述磁极与所述永磁体之间形成磁力;以及
弹性元件,所述振子组件通过所述弹性元件悬置在所述腔体内,所述弹性元件被配置为用于使所述振子组件回复至初始位置。
可选地,所述壳体包括连接在一起的上壳和下壳,所述顶部位于所述上壳上,所述底部位于所述下壳上。
可选地,所述极芯的一端与所述底部连接在一起,所述极芯的另一端与所述顶部连接在一起。
可选地,所述弹性元件为螺旋弹片,所述螺旋弹片位于所述振子组件的靠近所述顶部的一侧或者位于所述振子组件的靠近所述底部的一侧。
可选地,所述上壳和所述下壳为导磁性材料。
可选地,所述上壳和所述下壳的材质为铁、钴或者镍。
可选地,在所述底部的与所述配重部相对应的位置和在所述顶部的与所述配重部相对应的位置中的至少之一上设置有阻尼件。
可选地,磁路系统包括所述线圈组件、所述极芯、所述永磁体和华司,所述线圈组件套设在所述极芯的外侧,所述永磁体围绕所述线圈组件设置,并且所述永磁体与所述线圈组件之间有间隙,所述华司位于所述永磁体的上、下两端,所述磁路系统被配置为方形或者圆形。
可选地,在所述永磁体的轴向具有相对设置的第一端和第二端,在所述第一端设置有第一华司,在所述第二端设置有第二华司。
可选地,在所述底部上还设置有FPCB,所述线圈组件通过FPCB与外部电路电性连接,在所述配重部上还设置有用于避让所述FPCB的避让槽。
本发明的发明人发现,在现有技术中,由于振动马达的振动仅仅依靠洛伦兹力来实现,存在驱动力小、振动响应慢的技术问题。因此,本发明所要实现的技术任务或者所要解决的技术问题是本领域技术人员从未想到的或者没有预期到的,故本发明是一种新的技术方案。
本发明的提供的线性振动马达设置有两个线圈,两个线圈的电流方向相反,两个线圈被位于极芯中部的磁极分隔开。两个线圈的设置方式提高了振子组件的驱动力,使线性振动马达的振动响应更快。
此外,极芯和永磁体之间形成磁力,该磁力的方向与振子组件的运动方向相同,从而进一步提高了振子组件的驱动力。
此外,极芯和永磁体之间的磁力,可以有效降低线性振动马达的f0(最低共振频率),提高了震感体验。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。
图1:本发明实施例的线性振动马达的分解图。
图2:本发明实施例的线性振动马达的剖视图。
图3:本发明实施例的线性振动马达的另一个角度的剖视图。
图4:本发明实施例的极芯的结构示意图。
图5:本发明实施例的另一种线性振动马达的剖视图。
图6:本发明实施例的圆形线性振动马达的剖视图。
图7:本发明实施例的方形磁路系统的结构示意图。
图中,11:上壳;12:螺旋弹片;13:环形弹垫;14:钨钢块;15:第一华司;16:第一线圈;17:环形磁铁;18:极芯;19:第二华司;20:FPCB;21:片状阻尼;22:第二线圈;23:磁极;24:避让槽;25:下壳。
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一 旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
本发明提供了一种线性振动马达。如图1和2所示,该线性振动马达包括定子组件、振子组件和弹性元件。定子组件包括壳体、极芯18以及线圈组件。壳体的内部具有腔体。壳体包括顶部和与顶部相对的底部。极芯18和线圈组件位于腔体内。极芯18被设置在底部上。优选的是,极芯18被设置在底部的中部,这样可以充分利用腔体内的空间。
在一个例子中,如图1和2所示,为了使线性振动马达的拆装方便,壳体被配置为包括上壳11和下壳25。上壳11和下壳25相互连接在一起。例如,采用扣合的方式将二者相互连接。还可以是,例如,采用粘结剂将二者相互连接。在上壳11和下壳25的内部形成腔体。顶部位于上壳11上,底部为与下壳25上。在底部上还设置有FPCB20(柔性线路板,Flexible Printed Circuit Board)。线圈组件通过FPCB20与外部电路电性连接。当然,也可以采用线缆的方式将外部电路与线圈的引线电性连接。此外,为了避免振子组件,尤其是配重部在振动时碰撞FPCB20板而造成FPCB20板的损坏,在配重部上还设置有用于避让FPCB20的避让槽24。
如图2和3所示,极芯18被设置在下壳25的中部。例如,可以通过粘接的方式,将极芯18固定在下壳25的中部。极芯18用于集中线圈组件产生的电磁场。如图4所示,极芯18包括位于极芯18的沿振动方向的中部且凸出于极芯18的外表面的磁极23。极芯18的形状类似于十字形。该磁极23用于在线圈组件通电后使电磁场溢出。振动方向即振子组件工作时的方向。极芯18和线圈组件的轴线方向与振动方向平行。
如图2和3所示,线圈组件被套设在极芯18的外表面上。线圈组件响应于来自外部电路的电信号而产生电磁场。线圈组件被磁极23分隔为第一线圈16和第二线圈22。第一线圈16与第二线圈22的电流方向相反。在一个例子中,第一线圈16和第二线圈22由同一根导线绕制而成。例如,第一线圈16为顺时针绕制,第二线圈22为逆时针绕制(从顶部俯视)。在这种情况下,第一线圈16和第二线圈22为串联。两个线圈共用一对引线。例如,还可以是第一线圈16和第二线圈22分别绕制而成,只要保证 两个线圈绕制方向相反即可。第一线圈16和第二线圈22的引线分别连接到FPCB20上。优选的是,第一线圈16和第二线圈22的匝数相等。这种配置方式可以使两个线圈产生的电磁场的强度大小相等,并且两个线圈受到的磁场力大小相等。
如图1和2所示,振子组件包括华司、永磁体以及围绕永磁体设置的配重部。配重部用于增大振子组件的惯性,以增大振动马达的振幅。配重部可以是但不局限于钨钢块14。
永磁体用于形成匀强磁场。永磁体可以是但不局限于铁氧体磁铁和钕铁硼磁铁。在一个例子中,为了提高磁场强度并使磁场强度均匀,永磁体被配置为环形磁铁17。当然,永磁体也由多个离散的磁铁组成。优选的是,多个磁铁围绕线圈组件均匀分布,以保证线圈组件收到的磁场力均衡。在该结构中,多个磁铁具有相同的极性。例如,多个磁铁的靠近上壳11的一端均为N极,靠近下壳25的一端均为S极。
如图2或者3所示,永磁体包括沿轴线方向上且相对设置的第一端和第二端。轴线方向与振动方向平行。在第一端设置有第一华司15。在第二端设置有第二华司19。第一华司15和第二华司19用于形成磁屏蔽,以将永磁体的磁力线进行集中,使磁场强度进一步提高。在本发明中,永磁体为轴向充磁。轴向充磁即磁力线的方向沿永磁体的轴线方向。例如,环形磁铁17的靠近上壳11的一端为N极,环形磁铁17的靠近下壳25的一端为S极。华司的极性和与其靠近的永磁体的极性相同。由此可知,第一华司15的极性为N极,第二华司19的极性为S极。
永磁体围绕线圈组件设置。永磁体与线圈组件之间具有间隙。优选的是,永磁体的沿振动方向上的中部与磁极23的位置相对应。由于永磁体的中部与磁极23的位置相对应,因此当线圈组件通电时,磁极23受到的第一华司15的吸引力等于磁极23受到的第二华司19的吸引力。该两个吸引力大小相等,方向相反,这样振子组件受力平衡。
弹性元件用于支承振子组件,以使振子组件悬置在腔体中。弹性元件还用于向振子组件提供弹力。该弹力沿振动方向。该弹力使振子组件返回到相对于定子组件的初始位置,并且该弹力限制了振子组件的振幅,以防 止振子组件碰撞到壳体上。
在本发明中,弹性元件具有沿振动方向上的第三端和第四端。第三端被连接在顶部或者底部的任意之一上。第四端被连接在振子组件上。在一个例子中,弹性元件为螺旋弹片12。如图3和5所示,例如,螺旋弹片12位于振子组件的靠近顶部的一侧或者位于振子组件的靠近底部的一侧。螺旋弹片12位于振子组件的靠近底部的一侧,可以充分利用FPCB20与振子组件之间的空间,使得线性振动马达可以做的更薄。螺旋弹片12具有结构牢固、弹性形变均匀的特点。可以通孔焊接或者粘接的方式将螺旋弹片12与壳体和振子组件连接。例如,可以将螺旋弹片12的第四端焊接到钨钢块14上。需要注意的是,考虑到在焊接过程中,高温有可能对永磁体的磁性产生不利影响。在焊接时,可以先将钨钢块14与螺旋弹片12焊接完毕,再将钨钢块14与永磁体相连接。同样地,可以将螺旋弹片12的第三端焊接到上壳11的顶部上。
本发明提供的线性振动马达,在振动过程中,振子组件除了会受到弹性元件的弹力和磁场的洛伦兹力的作用外,极芯18的磁极23还会受到来自永磁体的磁力的作用。
具体地,如图2所示,该线性振动马达包括两个线圈。以第一线圈16为顺时针电流,第二线圈22为逆时针电流(从顶部俯视)为例。
一方面,在线圈组件通电后,第一线圈16受到向下的洛伦兹力的作用。由于第一线圈16固定在下壳25上无法移动,则会使振子组件受到反作用力而向上移动。同时,第二线圈22受到向下的洛伦兹力的作用。由于第二线圈22固定在下壳25上无法移动,则会使振子组件受到反作用力而向上移动。由此可见,两个线圈受到相同方向的洛伦兹力的作用,从而使振子组件受到的反作用力大大增加,即振子组件的驱动力大大增加。进而使振子组件由静止到达到正常振幅的时间更短,即振动响应速度更快。
另一方面,两个线圈套设在极芯18上。在环形磁铁17的上端设置第一华司15。受到环形磁铁17的极化作用,第一华司15的极性为N极。在环形磁铁17的下端设置第二华司19。受到环形磁铁17的极化作用,第二华司19的极性为S极。由于第一线圈16为顺时针绕制,当电流为顺时针 走向时(从顶部俯视),第一线圈16的下端为N极,上端为S极。第二线圈22为逆时针绕制,当电流为逆时针走向时(从顶部俯视),第二线圈22的上端为N极,下端为S极。第一线圈16的下端和第二线圈22的上端位于极芯18的磁极23上。磁场被极芯18集中。并且,磁极23为磁力线的溢出端,即N极。由此可见,磁极23的极性为N极。由于第一华司15也为N极,因此磁极23会与第一华司15形成斥力,该斥力的方向与洛伦兹力的方向相同,会使振子组件向上移动,进一步增大了线圈组件的驱动力。同时,由于第二华司19为S极,因此磁极23会与第二华司19形成吸引力,该吸引力的方向与洛伦兹力的方向相同,会使振子组件向上移动。由此可见,环形磁铁17的N极和S极与磁极23之间的磁力为振子组件提供了驱动力。磁极23与环形磁铁17(通过第一华司15和第二华司19)之间的磁力使得振子组件受到的驱动力进一步增加,即该磁力使线性振动马达的响应速度更快。
此外,随着磁极23偏离原始位置越多,第一华司15与磁极23之间距离的会缩短,二者之间的吸引力会进一步增大。磁极23与环形磁铁17(通过第一华司15和第二华司19)之间的力类似于弹簧力,即形成“磁弹簧”。“磁弹簧”的弹力的方向与螺旋弹片12的弹力的方向相反。相当于“磁弹簧”使螺旋弹片12的弹性系数变小了,进而降低了线性振动马达的f0(最低共振频率),提高了振动的灵敏度,提升了震感体验。此外,还可以在保持f0不变的情况下,通过增加环形弹片的厚度来提高环形弹片的强度,进而提升线性振动马达的稳定性,延长线性振动马达的使用寿命。
本领域技术人员可以理解的是,当第一线圈16和第二线圈22的电流方向发生变化时,即第一线圈16的电流方向为逆时针方向,第二线圈22的电流方向为顺时针,振子组件受到的洛伦兹力的方向以及受到“磁弹簧”的力的方向与前述的方向相反。
为了进一步提高线性振动马达的振动效果,在本发明的一种优选的实施方式中,上壳11和下壳25为导磁性材料。例如,上壳11和下壳25由铁、钴或者镍制作而成。导磁性材料即容易被永磁体磁化的材料。在该实施方式中,上壳11与环形磁铁17之间具有吸引力。并且当振子组件向上 移动时,随着环形磁铁17与上壳11之间距离的减小,二者之间的吸引力增加。从而进一步增大了振子组件向上振动的驱动力。下壳25与环形磁铁17之间也具有吸引力。当振子组件向下移动时,随着环形磁铁17与下壳25之间距离的减小,二者之间的吸引力增加。从而进一步增大了振子组件向下振动的驱动力。当振子组件位于初始位置时,振子组件受到的上壳11和下壳25吸引力大小相等方向相反。
此外,上壳11与环形磁铁17以及下壳25与环形磁铁17之间的吸引力与螺旋弹片12的弹力的方向相反。相当于上壳11、下壳25与环形磁铁17之间形成了“磁弹簧”。该“磁弹簧”使螺旋弹片12的弹性系数进一步变小了,进而进一步降低了线性振动马达的f0(最低共振频率),提高了振动的灵敏度,提升了震感体验。同理,也可以在保持f0不变的情况下,通过增加环形弹片的厚度来提高环形弹片的强度,进而提升线性振动马达的稳定性。延长线性振动马达的使用寿命。
为了使振动马达的结构稳固,在一个例子中,极芯18的一端与底部相连接,极芯18的另一端与顶部相连接。这样,极芯18起到了支撑壳体的作用,使线性振动马达的结构更稳固。
为了缓冲振子组件的振动,以防止振子组件与壳体发生碰撞,在一个例子中,在底部的与配重部(例如钨钢块14)相对应的位置设置有阻尼件。阻尼件可以是但不局限于橡胶、硅胶、海绵或者泡棉。例如,钨钢块14为方形。钨钢块14的四个边凸出于下表面。则阻尼件可以是,例如四个片状阻尼21。片状阻尼21通过粘接的方式设置在下壳25上。4个片状阻尼21分别设置在与钨钢块14的四个角相对应的位置上。例如,钨钢块14的与永磁体连接的区域形成法兰状的环形凸起。该环形凸起位于钨钢块14的上表面。例如,阻尼件被配置为环形弹垫13,且设置在环形凸起上。当然,环形垫片也可以设置在上壳11的与环形凸起相对应的位置上。阻尼件的设置可以有效地缓冲振子组件与壳体的碰撞力,进而提高线性振动马达的使用寿命。并且阻尼件可以有效地降低由碰撞带来的噪音。
磁路系统包括线圈组件、极芯18、永磁体和华司。线圈组件,例如第一线圈16和第二线圈22套设在极芯18的外侧。永磁体,例如环形磁铁 17围绕线圈组件设置。环形磁铁17与线圈组件之间有间隙。华司位于环形磁铁17的沿轴向的上、下两端,其中第一华司15位于上端,第二华司19位于下端。如图6或者7所示,为了适应不同的安装环境,磁路系统被配置为方形或者圆形。方形的结构与圆形的结构相比占用的装配空间相同。然而,方形的结构可以使振子组件具有更大的质量,可以有效地提升振幅。
虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。

Claims (10)

  1. 一种线性振动马达,其特征在于,包括:
    定子组件,所述定子组件包括壳体、极芯(18)以及线圈组件,在所述壳体的内部具有腔体,所述壳体包括顶部和与所述顶部相对的底部,所述极芯(18)和所述线圈组件位于所述腔体内,所述极芯(18)被设置在所述底部上,所述极芯(18)包括位于所述极芯(18)的沿振动方向的中部且凸出于所述极芯(18)的外表面的磁极(23),所述线圈组件被套设在所述极芯(18)的外表面上,所述线圈组件被所述磁极(23)分隔为第一线圈(16)和第二线圈(22),所述第一线圈(16)与所述第二线圈(22)的电流方向相反;
    振子组件,所述振子组件包括围绕所述线圈组件设置的永磁体、被设置在所述永磁体上的的配重部,所述永磁体为轴向充磁,在所述线圈组件通电后,所述磁极与所述永磁体之间形成磁力;以及
    弹性元件,所述振子组件通过所述弹性元件悬置在所述腔体内,所述弹性元件被配置为用于使所述振子组件回复至初始位置。
  2. 根据权利要求1所述的线性振动马达,其特征在于,所述壳体包括连接在一起的上壳(11)和下壳(25),所述顶部位于所述上壳(11)上,所述底部位于所述下壳(25)上。
  3. 根据权利要求2或者3所述的线性振动马达,其特征在于,所述极芯(18)的一端与所述底部连接在一起,所述极芯(18)的另一端与所述顶部连接在一起。
  4. 根据权利要求1-3中的任意一项所述的线性振动马达,其特征在于,所述弹性元件为螺旋弹片(12),所述螺旋弹片(12)位于所述振子组件的靠近所述顶部的一侧或者位于所述振子组件的靠近所述底部的一侧。
  5. 根据权利要求1-4中的任意一项所述的线性振动马达,其特征在于,所述上壳(11)和所述下壳(25)为导磁性材料。
  6. 根据权利要求1-5中的任意一项所述的线性振动马达,其特征在于,所述上壳(11)和所述下壳(25)的材质为铁、钴或者镍。
  7. 根据权利要求1-6中的任意一项所述的线性振动马达,其特征在于,在所述底部的与所述配重部相对应的位置和在所述顶部的与所述配重部相对应的位置中的至少之一上设置有阻尼件。
  8. 根据权利要求1-7中的任意一项所述的线性振动马达,其特征在于,磁路系统包括所述线圈组件、所述极芯、所述永磁体和华司,所述线圈组件套设在所述极芯的外侧,所述永磁体围绕所述线圈组件设置,并且所述永磁体与所述线圈组件之间有间隙,所述华司位于所述永磁体的上、下两端,所述磁路系统被配置为方形或者圆形。
  9. 根据权利要求1-8中的任意一项所述的线性振动马达,其特征在于,在所述永磁体的轴向具有相对设置的第一端和第二端,在所述第一端设置有第一华司,在所述第二端设置有第二华司。
  10. 根据权利要求1-9中的任意一项所述的线性振动马达,其特征在于,在所述底部上还设置有FPCB(20),所述线圈组件通过FPCB(20)与外部电路电性连接,在所述配重部上还设置有用于避让所述FPCB(20)的避让槽(24)。
PCT/CN2016/110777 2016-09-30 2016-12-19 线性振动马达 WO2018058809A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020177034673A KR20180050605A (ko) 2016-09-30 2016-12-19 선형 진동모터
US15/746,737 US20190006926A1 (en) 2016-09-30 2016-12-19 Linear vibration motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610872750.7 2016-09-30
CN201610872750.7A CN106329870A (zh) 2016-09-30 2016-09-30 线性振动马达

Publications (1)

Publication Number Publication Date
WO2018058809A1 true WO2018058809A1 (zh) 2018-04-05

Family

ID=57820671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/110777 WO2018058809A1 (zh) 2016-09-30 2016-12-19 线性振动马达

Country Status (4)

Country Link
US (1) US20190006926A1 (zh)
KR (1) KR20180050605A (zh)
CN (1) CN106329870A (zh)
WO (1) WO2018058809A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110972042A (zh) * 2018-09-28 2020-04-07 哈曼国际工业有限公司 双线圈差分驱动触觉换能器

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107070160B (zh) * 2017-05-18 2023-08-04 歌尔股份有限公司 电磁驱动器
KR101884316B1 (ko) * 2018-02-01 2018-08-01 주식회사 엠플러스 4각 형상 판 스프링 및 이를 포함하는 선형 진동모터
JP7157305B2 (ja) * 2018-03-26 2022-10-20 ミツミ電機株式会社 振動アクチュエータ及び電子機器
CN208638230U (zh) * 2018-08-03 2019-03-22 瑞声科技(新加坡)有限公司 振动电机
CN208589896U (zh) * 2018-08-03 2019-03-08 瑞声科技(南京)有限公司 线性振动电机
KR102131846B1 (ko) * 2018-11-16 2020-07-09 부전전자 주식회사 선형 진동발생장치
WO2021097788A1 (zh) * 2019-11-22 2021-05-27 深圳市大疆创新科技有限公司 开关电机、快门装置及摄像装置
CN111313647B (zh) * 2020-03-02 2022-07-05 瑞声科技(新加坡)有限公司 线性马达
CN215186388U (zh) * 2020-12-28 2021-12-14 歌尔股份有限公司 一种线性振动马达
CN115347713A (zh) * 2021-05-14 2022-11-15 台达电子工业股份有限公司 震动马达
CN113783375B (zh) * 2021-11-15 2022-01-18 唐山市日兴电子科技有限公司 一种微型振动马达组装设备及其fpc板定位装置
CN117411268B (zh) * 2023-12-15 2024-03-26 瑞声光电科技(常州)有限公司 振动马达

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001352739A (ja) * 2000-06-07 2001-12-21 Matsushita Electric Works Ltd ステータの製造方法
CN102163904A (zh) * 2010-02-16 2011-08-24 三洋精密株式会社 振动发生装置
CN103348573A (zh) * 2011-05-10 2013-10-09 日本电产精密株式会社 振动产生装置
CN204967588U (zh) * 2015-09-23 2016-01-13 歌尔声学股份有限公司 线性振动马达
CN205544867U (zh) * 2015-07-06 2016-08-31 磁化电子株式会社 线性振动产生装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100898017B1 (ko) * 2009-02-23 2009-05-19 주식회사 블루콤 리니어 진동 디바이스
KR101163612B1 (ko) * 2010-12-01 2012-07-09 자화전자(주) 선형 진동 발생장치
US8872394B2 (en) * 2011-06-16 2014-10-28 Jahwa Electronics Co., Ltd. Linear vibration generating apparatus
KR101491456B1 (ko) * 2013-11-05 2015-02-23 주식회사 하이소닉 햅틱 엑추에이터

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001352739A (ja) * 2000-06-07 2001-12-21 Matsushita Electric Works Ltd ステータの製造方法
CN102163904A (zh) * 2010-02-16 2011-08-24 三洋精密株式会社 振动发生装置
CN103348573A (zh) * 2011-05-10 2013-10-09 日本电产精密株式会社 振动产生装置
CN205544867U (zh) * 2015-07-06 2016-08-31 磁化电子株式会社 线性振动产生装置
CN204967588U (zh) * 2015-09-23 2016-01-13 歌尔声学股份有限公司 线性振动马达

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110972042A (zh) * 2018-09-28 2020-04-07 哈曼国际工业有限公司 双线圈差分驱动触觉换能器
CN110972042B (zh) * 2018-09-28 2023-05-12 哈曼国际工业有限公司 双线圈差分驱动触觉换能器

Also Published As

Publication number Publication date
US20190006926A1 (en) 2019-01-03
CN106329870A (zh) 2017-01-11
KR20180050605A (ko) 2018-05-15

Similar Documents

Publication Publication Date Title
WO2018058809A1 (zh) 线性振动马达
WO2018058807A1 (zh) 线性振动马达
WO2018058808A1 (zh) 线性振动马达以及电子设备
US9815085B2 (en) Haptic actuator
CN109842701B (zh) 屏幕振动发声装置和电子产品
WO2018036037A1 (zh) 线性振动马达
KR101491456B1 (ko) 햅틱 엑추에이터
US10447129B2 (en) Vibration motor
KR101242525B1 (ko) 햅틱 액추에이터
US20180115231A1 (en) Linear Vibration Motor
CN109309892B (zh) 电磁激励器以及屏幕发声装置
US20140132089A1 (en) Linear vibration motor
US11025149B2 (en) Linear vibration motor and electronic device
WO2021121055A1 (zh) 一种振动装置
CN113873381A (zh) 一种振动装置、骨传导耳机、可穿戴设备及智能硬件设备
WO2018157509A1 (zh) 线性振动马达以及电子设备
WO2021128788A1 (zh) 一种振动装置及电子产品
US20200412228A1 (en) Vibration motor
US20170126109A1 (en) Vibration motor
US8552599B2 (en) Vibration generating device
WO2018171060A1 (zh) 线性振动马达
WO2018166090A1 (zh) 线性振动马达
CN114421730B (zh) 一种线性振动马达
CN216313372U (zh) 一种振动装置、骨传导耳机、可穿戴设备及智能硬件设备
KR101198077B1 (ko) 선형 진동 발생장치

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20177034673

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917554

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16917554

Country of ref document: EP

Kind code of ref document: A1