WO2018058621A1 - 一种波束赋形传输的方法及装置 - Google Patents

一种波束赋形传输的方法及装置 Download PDF

Info

Publication number
WO2018058621A1
WO2018058621A1 PCT/CN2016/101288 CN2016101288W WO2018058621A1 WO 2018058621 A1 WO2018058621 A1 WO 2018058621A1 CN 2016101288 W CN2016101288 W CN 2016101288W WO 2018058621 A1 WO2018058621 A1 WO 2018058621A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
antenna ports
terminal
beamforming
channel state
Prior art date
Application number
PCT/CN2016/101288
Other languages
English (en)
French (fr)
Inventor
孙彦良
刘斌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680088456.5A priority Critical patent/CN109565479B/zh
Priority to EP16917371.3A priority patent/EP3512169B1/en
Priority to US16/338,641 priority patent/US10693543B2/en
Priority to PCT/CN2016/101288 priority patent/WO2018058621A1/zh
Publication of WO2018058621A1 publication Critical patent/WO2018058621A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0469Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking special antenna structures, e.g. cross polarized antennas into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • Embodiments of the present invention relate to the field of wireless communications technologies, and in particular, to a method and an apparatus for beamforming transmission.
  • LTE Long Term Evolution
  • FD-MIMO Full Dimensional Multiple Input and Output Antenna
  • These enhancements significantly increase cell capacity.
  • the two-dimensional beamforming makes the R13 precoded codebook significantly larger than the R12 (13th version), and the feedback process is more complicated. Therefore, the precoding feedback period of the R13 is long and often only works.
  • the open-loop-3D-MIMO scheme became an important topic discussed in the 14th edition of LTE.
  • TM2 transmission mode 2
  • SFBC spatial frequency block coding
  • TM3 transmission mode 3
  • LD-CDD Large delay cyclic delay diversity
  • the eNB (Evolved Node B) transmits the first reference signal on the N dual-polarized antenna ports, that is, the first antenna group, for the terminal to estimate the downlink channel state.
  • the terminal estimates the downlink channel state according to the first reference signal, and then selects a first beamforming codeword from the first codeword set, and further calculates a channel quality indicator.
  • Step 103 The base station determines the first beamforming codeword according to the feedback of the terminal, and performs beamforming on each polarization direction antenna group (N/2 antenna ports) to generate two antenna ports, that is, the second antenna port. Group; transmitting a second reference signal on the two antenna ports.
  • Step 105 The terminal estimates a downlink channel state on the two ports according to the second reference signal, and then decodes the data channel according to an inherent LD-CDD or SFBC encoding process.
  • the beamforming vector is derived from the first codeword set.
  • the first codeword set is the R13 codebook
  • only one beam is generated based on the beamforming of the R13 codebook, so that the spatial multipath feature cannot be utilized well.
  • the linear merged codebook of R14 is used, the multipath random phase combination caused by the combination of the fixed weights will aggravate the fading characteristics of the channel, which is contrary to the original intention of beamforming.
  • Embodiments of the present invention provide a method and a device for beamforming transmission.
  • a terminal can feed back multiple beamforming vectors, and fully utilizes the multipath characteristic of the channel. Based on the diversity of the channel multipath, the terminal can be maintained in a high speed motion scene. Robustness of communication.
  • a method for beamforming transmission including:
  • the terminal acquires the number M of the beamforming vectors to be reported by the terminal and the first reference signal, where the first reference signal is sent by the base station on the N dual-polarized antenna ports, and M and N are integers greater than 0;
  • the terminal estimates a downlink channel state on the N dual-polarized antenna ports according to the first reference signal
  • the terminal selects m first beamforming codewords according to the downlink channel state and the number M of beamforming vectors that are required to be reported by the base station; m ⁇ M;
  • the terminal feeds back the selected m first beamforming codewords and the rank of the downlink channel state to the base station.
  • the terminal selects m first beamforming codewords according to the downlink channel state and the number M of beamforming vectors that are required to be reported by the base station, and feeds back to the base station, which can fully utilize the multipath characteristic of the channel, based on the channel multipath
  • the diversity allows for robust communication in high-speed motion scenarios.
  • the terminal determines the number m of selected first beamforming codewords by the following steps:
  • the terminal determines the number M of beamforming vectors that are required to be reported by the base station to be the number m of selected first beamforming codewords.
  • the terminal determines the number m of selected first beamforming codewords by the following steps:
  • the terminal determines the number m of the selected first beamforming codewords according to the downlink channel state and the number M of the beamforming vectors that are required to be reported by the base station, so that the m optimal beam-emphasis vectors are jointly pre-coded.
  • Optimal channel quality
  • the terminal feeds back the value of m to the base station.
  • the m obtained by the terminal according to the downlink channel state and fed back to the base station can optimize the channel quality of the m optimal beam-formed vectors and the pre-coded channel, so that the communication robustness can be maintained in a high-speed motion scenario.
  • the m first beamforming codewords selected by the terminal are selected from the first codeword set, and the first codeword set is the first codeword set in the thirteenth version of Long Term Evolution (LTE).
  • LTE Long Term Evolution
  • a W1 codebook of rank 1 or a partial codeword in a W1 codebook of rank 1 in the 13th version of LTE is linearly weighted and added to obtain a set of new codebooks;
  • the first codeword set is a restricted set sent by the base station, and the restricted set is a set of codewords selected by the base station from the W1 codebook of rank 1 in the 13th version of LTE, or is the 13th base station from the LTE.
  • the partial codewords in the W1 codebook with rank 1 in the version are linearly weighted and added to obtain a set of codewords selected from the set of new codebooks.
  • the terminal selects m first beamforming codewords, including:
  • the terminal determines the optimal wave of m channel quality by estimating the transmission angle of the antenna of the base station. Beam shaping direction;
  • the terminal determines the direction angle value of the beamforming direction in which the m channel quality is optimal, and the direction angle value is a trigonometric function value of the direction angle or the direction angle.
  • the terminal after the terminal feeds the selected m first beamforming codewords and the rank of the downlink channel state to the base station, the terminal further includes:
  • the terminal calculates a channel quality indicator according to the selected first beamforming codeword and the rank of the downlink channel state, and feeds back the channel quality indication to the base station.
  • the method further includes:
  • the terminal acquires the second reference signal sent by the base station and the transmitted data, where the data is transmitted by the base station on the k antenna ports;
  • the terminal estimates the downlink channel state on the k antenna ports according to the second reference signal, and uses the precoding to decode the data channel according to the rank of the downlink channel state, where k is a positive integer greater than zero.
  • the terminal after the terminal feeds the selected m first beamforming codewords and the rank of the downlink channel state to the base station, the terminal further includes:
  • the terminal acquires a second reference signal sent by the base station, where the second reference signal is sent by the base station on the p antenna ports; the terminal estimates the downlink channel state on the p antenna ports according to the second reference signal, and according to the downlink channel status, q antenna ports are selected from the p antenna ports, and the channel quality indication is calculated, and the sequence numbers of the q antenna ports and the calculated channel quality indication are fed back to the base station; q ⁇ p, p is equal to m or p is equal to 2 m.
  • the terminal after the terminal returns the sequence number of the q antenna ports and the calculated channel quality indicator to the base station, the terminal further includes:
  • the terminal acquires a third reference signal sent by the base station and the transmitted data, where the data is transmitted by the base station on the k antenna ports; the terminal estimates the downlink channel state on the k antenna ports according to the third reference signal, and according to the downlink channel state,
  • the rank uses precoding to decode the data channel.
  • the precoding and decoding the data channel is used according to the rank of the downlink channel state, including:
  • the terminal uses the pre-coded decoding data channel of SFBC, otherwise the terminal uses large delay cyclic diversity precoding decoding. a data channel; when the rank of the downlink channel state is greater than 1, the terminal uses the open-loop space division multiplexing precoding to decode the data channel; or
  • the terminal uses the large delay cyclic diversity precoding to decode the data channel.
  • the terminal uses the open loop space division multiplexing precoding to decode the data channel.
  • a method of beamforming transmission including:
  • the base station acquires first feedback information of the terminal, where the first feedback information of the terminal includes m first beamforming codewords selected by the terminal;
  • the base station determines, according to the m first beamforming codewords selected by the terminal, m second beamforming codewords of the base station;
  • the base station performs beamforming on each polarization direction antenna group according to the m second beamforming codewords of the base station, and generates p antenna ports, wherein the polarization directions of the antennas in the polarization direction antenna group are the same; p is equal to m Or p equals 2m;
  • the base station transmits a second reference signal to the terminal on the p antenna ports.
  • the base station performs beamforming according to the selected m first beamforming codewords fed back by the terminal, and can fully utilize the multipath characteristic of the channel, and based on the diversity of the channel multipath, the communication can be maintained in a high-speed motion scenario. Great.
  • the first feedback information of the terminal further includes a rank of the downlink channel state and a channel quality indicator calculated by the terminal;
  • the method further includes:
  • the base station uses the precoding encoded data channel according to the rank of the downlink channel state on the p antenna ports, and generates k antenna ports; 0 ⁇ k ⁇ p;
  • the base station transmits data to the terminal through the encoded data channel on the k antenna ports.
  • the first feedback information of the terminal further includes a rank of a downlink channel state
  • the method further includes:
  • the base station acquires the second feedback information of the terminal, where the second feedback information includes the sequence numbers of the q antenna ports selected by the terminal and the calculated channel quality indicator;
  • the base station determines q beams according to the channel quality indicator and the sequence numbers of the q antenna ports, and performs beamforming on each polarization direction antenna group according to the q beams to generate s antenna ports; the base station is on the s antenna ports.
  • the method further includes:
  • the base station uses the precoded data channel on the s antenna ports according to the rank of the downlink channel state to generate k antenna ports; and transmits data to the terminal through the encoded data channel on the k antenna ports.
  • the base station uses the precoded data channel according to the rank of the downlink channel state, including:
  • the base station uses the pre-coded data channel of the SFBC, otherwise the base station uses the large delay cyclic diversity precoding encoded data channel; when the downlink channel state When the rank is greater than 1, the base station uses the open-loop space division multiplexing precoding encoded data channel; or
  • the base station uses the large delay cyclic diversity precoding encoded data channel, and when the rank of the downlink channel state is greater than 1, the base station uses the open loop space division multiplexing precoding encoded data channel.
  • the method before the base station acquires the first feedback information of the terminal, the method further includes:
  • the base station notifies the terminal of the number M of beamformings that the terminal needs to report;
  • the base station transmits a first reference signal to the terminal on the N dual-polarized antenna ports; N is a positive integer greater than zero.
  • the method before the base station acquires the first feedback information of the terminal, the method further includes:
  • the base station sends a restriction set to the terminal, where the restriction set is a set of codewords selected by the base station from the W1 codebook of rank 1 in the 13th version of LTE, or the rank of the base station from the 13th version of LTE is 1
  • the partial codewords in the W1 codebook are linearly weighted and added to obtain a set of codewords selected from the set of new codebooks.
  • a method for beamforming transmission including:
  • the terminal acquires the number M of beamforming vectors to be reported by the terminal transmitted by the base station and the first reference signal, where the first reference signal is sent by the base station on the L antenna ports, and M and L are greater than 0. Number, L>M;
  • the terminal estimates a downlink channel state on the L antenna ports according to the first reference signal
  • the terminal selects m antenna ports from the L antenna ports as the beamforming vector to be reported, and calculates a channel quality indicator according to the downlink channel state and the number M of beamforming vectors that are required to be reported by the base station, m ⁇ M;
  • the terminal feeds back the sequence number of the m antenna ports, the channel quality indicator, and the rank of the downlink channel state to the base station.
  • the terminal selects m antenna ports as the beamforming vector to be reported according to the downlink channel state and the number M of the beamforming vectors that are required to be reported by the base station, and feeds back to the base station, so that the multipath characteristics of the channel can be fully utilized. Based on channel multipath diversity, communication robustness can be maintained in high-speed motion scenarios.
  • the method further includes:
  • the terminal acquires the second reference signal sent by the base station and the transmitted data, where the data is transmitted by the base station on the k antenna ports;
  • the terminal estimates the downlink channel state on the k antenna ports according to the second reference signal, and uses the precoding to decode the data channel according to the rank of the downlink channel state, where k is a positive integer greater than zero.
  • the terminal uses the precoding to decode the data channel according to the rank of the downlink channel state, including:
  • the terminal uses the precoding of the SFBC to decode the data channel, otherwise the terminal uses the large delay cyclic diversity precoding to decode the data channel; when the downlink channel state When the rank is greater than 1, the terminal uses the open-loop space division multiplexing precoding to decode the data channel; or
  • the terminal uses the large delay cyclic diversity precoding to decode the data channel.
  • the terminal uses the open loop space division multiplexing precoding to decode the data channel.
  • the terminal determines the number of antenna ports selected from the L antenna ports by the following steps:
  • the terminal determines the number M of beamforming vectors to be reported by the base station to be the number m of antenna ports selected from the L antenna ports.
  • the terminal determines the number of antenna ports selected from the L antenna ports by the following steps:
  • the terminal determines the number m of selected antenna ports according to the downlink channel state and the number M of beamforming vectors that are required to be reported by the base station, so that the channel quality of the m optimal beam-formed vectors combined with the pre-coding is optimal. ;
  • the terminal feeds back the value of the selected m to the base station.
  • the terminal selects m antenna ports from the L antenna ports, including:
  • the terminal directly selects m antenna ports from the L antenna ports;
  • the terminal linearly weights the L antenna ports to obtain m antenna ports.
  • a method for beamforming transmission including:
  • the base station acquires feedback information of the terminal, where the feedback information of the terminal includes a sequence number of the m antenna ports selected by the terminal and a channel quality indicator.
  • the base station determines, according to the sequence numbers of the m antenna ports and the channel quality indicator, m first beamforming codewords
  • the base station performs beamforming on each of the polarization direction antenna groups according to the m first beamforming codewords, and generates p antenna ports, wherein the polarization directions of the antennas in the polarization direction antenna group are the same;
  • the base station transmits a second reference signal to the terminal on the p antenna ports, p equals m or p equals 2 m.
  • the base station performs beamforming based on the m antenna ports fed back by the terminal, and can fully utilize the multipath characteristics of the channel. Based on the diversity of the channel multipath, the communication robustness can be maintained in a high-speed motion scenario.
  • the method further includes:
  • the feedback information of the terminal further includes a rank of the downlink channel state
  • the base station uses the precoding encoded data channel according to the rank of the downlink channel state on the p antenna ports, and generates k antenna ports;
  • the base station transmits data to the terminal through the encoded data channel on the k antenna ports; 0 ⁇ k ⁇ p.
  • the base station uses the precoded data channel according to the rank of the downlink channel state, including:
  • the base station uses the pre-coded data channel of the SFBC, otherwise the base station uses the large delay cyclic diversity precoding encoded data channel; when the downlink channel state When the rank is greater than 1, the base station uses the open-loop space division multiplexing precoding encoded data channel; or
  • the base station uses the large delay cyclic diversity precoding encoded data channel, and when the rank of the downlink channel state is greater than 1, the base station uses the open loop space division multiplexing precoding encoded data channel.
  • the method before the base station acquires the feedback information of the terminal, the method further includes:
  • the base station notifies the terminal of the number M of beamformings that the terminal needs to report;
  • the base station performs beamforming on the N dual-polarized antenna ports, generates L antenna ports, and transmits a first reference signal to the terminal on the L antenna port; N is a positive integer greater than 0.
  • an apparatus for beamforming transmission includes:
  • the transceiver unit is configured to acquire the number M of beamforming vectors and the first reference signal that are sent by the terminal, and the first reference signal is sent by the base station on the N dual-polarized antenna ports, where M and N are greater than An integer of 0;
  • a processing unit configured to estimate, according to the first reference signal acquired by the transceiver unit, a downlink channel state on the N dual-polarized antenna ports; and select, according to the downlink channel state, and the number M of beamforming vectors that are required to be reported by the base station m first beamforming code words; m ⁇ M;
  • the transceiver unit is further configured to feed back the m first beamforming codewords selected by the processing unit and the rank of the downlink channel state to the base station.
  • processing unit is specifically configured to:
  • the number M of beamforming vectors to be reported that are transmitted by the base station is determined as the number m of selected first beamforming codewords.
  • the processing unit is configured to determine, according to the downlink channel state and the number M of the beamforming vectors that are required to be reported by the base station, the number m of the selected first beamforming codewords, so that m The optimal beam quality is combined with the pre-coded channel quality.
  • the value of m is fed back to the base station through the transceiver unit.
  • the selected m first beamforming codewords are selected from the first codeword set, and the first codeword set is the first codeword set in the thirteenth version of Long Term Evolution (LTE).
  • LTE Long Term Evolution
  • a W1 codebook of rank 1 or a partial codeword in a W1 codebook of rank 1 in the 13th version of LTE is linearly weighted and added to obtain a set of new codebooks;
  • the first codeword set is a restricted set sent by the base station, and the restricted set is a set of codewords selected by the base station from the W1 codebook of rank 1 in the 13th version of LTE, or is the 13th base station from the LTE.
  • the partial codewords in the W1 codebook with rank 1 in the version are linearly weighted and added to obtain a set of codewords selected from the set of new codebooks.
  • processing unit is specifically configured to:
  • the beamforming direction of the m channel quality is determined by estimating the transmission angle of the antenna of the base station;
  • the direction angle value of the beamforming direction in which the m channel quality is optimal is determined, and the direction angle value is a trigonometric function value of the direction angle or the direction angle.
  • processing unit is further configured to:
  • the channel quality indicator is calculated according to the selected first beamforming codeword and the rank of the downlink channel state, And transmitting, by the transceiver unit, a channel quality indicator to the base station.
  • processing unit is further configured to:
  • the second reference signal and the transmitted data sent by the base station are obtained by the transceiver unit, and the data is transmitted by the base station on the k antenna ports;
  • the downlink channel state on the k antenna ports is estimated according to the second reference signal, and the precoding decoded data channel is used according to the rank of the downlink channel state, where k is a positive integer greater than zero.
  • processing unit is further configured to:
  • the second reference signal sent by the base station is obtained by the transceiver unit, where the second reference signal is the base station at the p Sent on the antenna port;
  • processing unit is further configured to:
  • the third reference signal and the transmitted data sent by the base station are obtained by the transceiver unit, and the data is transmitted by the base station on the k antenna ports;
  • the downlink channel state on the k antenna ports is estimated according to the third reference signal, and the precoding decoded data channel is used according to the rank of the downlink channel state.
  • processing unit is specifically configured to:
  • the rank of the downlink channel state is 1, if the number of k antenna ports is even, the pre-coded data channel of the SFBC is used, otherwise the data channel is precoded and decoded using the large delay cyclic diversity; when the rank of the downlink channel state is greater than 1st, using open-loop space division multiplexing precoding to decode the data channel; or
  • the data channel is precoded and decoded using the large delay cyclic diversity, and when the rank of the downlink channel state is greater than 1, the data channel is precoded using the open loop space division multiplexing.
  • an apparatus for beamforming transmission includes:
  • a transceiver unit configured to acquire first feedback information of the terminal, where the first feedback information of the terminal includes m first beamforming codewords selected by the terminal;
  • a processing unit configured to determine, according to the m first beamforming codewords selected by the terminal, m second beamforming codewords of the base station; and according to the m second beamforming codewords of the base station
  • the polarization direction antenna group performs beamforming and generates p antenna ports, and the polarization directions of the antennas in the polarization direction antenna group are the same; p is equal to m or p is equal to 2 m;
  • the transceiver unit is further configured to send the second reference signal to the terminal on the p antenna ports.
  • the first feedback information of the terminal further includes a rank of the downlink channel state and a channel quality indicator calculated by the terminal;
  • the processing unit is also used to:
  • Data is transmitted to the terminal through the encoded data channel on the k antenna ports through the transceiver unit.
  • the first feedback information of the terminal further includes a rank of a downlink channel state
  • the processing unit is also used to:
  • the second feedback information of the terminal is obtained by the transceiver unit, where the second feedback information includes the sequence number of the q antenna ports selected by the terminal and the calculated channel quality indicator.
  • processing unit is further configured to:
  • the terminal After transmitting the third reference signal, using the precoded data channel according to the rank of the downlink channel state on the s antenna ports, generating k antenna ports; and transmitting the encoded data channel to the k antenna ports through the transceiver unit
  • the terminal After transmitting the third reference signal, using the precoded data channel according to the rank of the downlink channel state on the s antenna ports, generating k antenna ports; and transmitting the encoded data channel to the k antenna ports through the transceiver unit
  • the terminal After transmitting the third reference signal, using the precoded data channel according to the rank of the downlink channel state on the s antenna ports, generating k antenna ports; and transmitting the encoded data channel to the k antenna ports through the transceiver unit
  • the terminal After transmitting the third reference signal, using the precoded data channel according to the rank of the downlink channel state on the s antenna ports, generating k antenna ports; and transmitting the encoded data channel to the k antenna ports through the transceiver unit
  • processing unit is specifically configured to:
  • the pre-coded data channel of the SFBC is used, otherwise the pre-coded data channel is used by the large delay cyclic diversity; when the rank of the downlink channel state is greater than 1st, using an open-loop space division multiplexing precoding encoded data channel; or
  • the rank of the downlink channel state is 1, the large-delay cyclic diversity precoding encoded data channel is used, and when the rank of the downlink channel state is greater than 1, the open-loop space division multiplexing precoding the encoded data channel is used.
  • the transceiver unit is further configured to:
  • N is a positive integer greater than zero.
  • the transceiver unit is further configured to:
  • the restriction set is a set of code words selected from a W1 codebook of rank 1 in the 13th version of LTE, or is a set from the LTE
  • the partial codewords in the W1 codebook with rank 1 in the 13 versions are linearly weighted and added to obtain a set of codewords selected from the set of new codebooks.
  • an apparatus for beamforming transmission includes:
  • a transceiver unit configured to acquire a number M of beamforming vectors to be reported by the terminal sent by the base station, and a first reference signal, where the first reference signal is sent by the base station on the L antenna ports, and M and L are integers greater than 0. , L>M;
  • a processing unit configured to estimate a downlink channel state on the L antenna ports according to the first reference signal; and select, from the L antenna ports, according to the downlink channel state and the number M of beamforming vectors that are required to be reported by the base station m antenna ports are used as beamforming vectors for reporting, and channel quality indicators are calculated, m ⁇ M;
  • the transceiver unit is further configured to feed back the sequence number of the m antenna ports, the channel quality indicator, and the rank of the downlink channel state to the base station.
  • processing unit is further configured to:
  • the sequence number of the m antenna ports, the channel quality indicator, and the rank of the downlink channel state are fed back to the base station, the second reference signal and the transmitted data sent by the base station are obtained by the transceiver unit, and the data is transmitted by the base station on the k antenna ports. ;
  • the downlink channel state on the k antenna ports is estimated according to the second reference signal, and the precoding decoded data channel is used according to the rank of the downlink channel state, where k is a positive integer greater than zero.
  • processing unit is specifically configured to:
  • the rank of the downlink channel state is 1, if the number of k antenna ports is even, the pre-coded data channel of the SFBC is used, otherwise the data channel is precoded and decoded using the large delay cyclic diversity; when the rank of the downlink channel state is greater than 1st, using open-loop space division multiplexing precoding to decode the data channel; or
  • the data channel is precoded and decoded using the large delay cyclic diversity, and when the rank of the downlink channel state is greater than 1, the data channel is precoded using the open loop space division multiplexing.
  • processing unit is specifically configured to:
  • the number M of beamforming vectors to be reported that are transmitted by the base station is determined as the number m of antenna ports selected from the L antenna ports.
  • processing unit is specifically configured to:
  • the value of the selected m is fed back to the base station through the transceiver unit.
  • processing unit is specifically configured to:
  • the L antenna ports are linearly weighted to obtain m antenna ports.
  • an apparatus for beamforming transmission includes:
  • the transceiver unit is configured to obtain feedback information of the terminal, where the feedback information of the terminal includes a sequence number of the m antenna ports selected by the terminal and a channel quality indicator;
  • a processing unit configured to determine, according to the sequence number of the m antenna ports and the channel quality indicator, m first beamforming codewords; and perform beaming on each polarization direction antenna group according to the m first beamforming codewords Forming and generating p antenna ports, and the polarization directions of the antennas in the polarization direction antenna group are the same;
  • the transceiver unit is further configured to send a second reference signal to the terminal on the p antenna ports, where p is equal to m or p is equal to 2 m.
  • processing unit is further configured to:
  • the feedback information of the terminal further includes a rank of the downlink channel state
  • processing unit is specifically configured to:
  • the pre-coded data channel of the SFBC is used, otherwise the pre-coded data channel is used by the large delay cyclic diversity; when the rank of the downlink channel state is greater than 1st, using an open-loop space division multiplexing precoding encoded data channel; or
  • the rank of the downlink channel state is 1, the large-delay cyclic diversity precoding encoded data channel is used, and when the rank of the downlink channel state is greater than 1, the open-loop space division multiplexing precoding the encoded data channel is used.
  • the transceiver unit is further configured to:
  • N is a positive integer greater than zero.
  • a ninth aspect provides an apparatus for beamforming transmission, including: a transceiver, a processor, and a memory;
  • the transceiver obtains the number M of the beamforming vectors to be reported by the terminal transmitted by the base station, and the first reference signal, where the first reference signal is sent by the base station on the N dual-polarized antenna ports, and M and N are integers greater than 0. ;
  • the processing unit estimates the downlink channel state on the N dual-polarized antenna ports according to the first reference signal acquired by the transceiver; and selects m according to the downlink channel state and the number M of beamforming vectors that are required to be reported by the base station.
  • the transceiver feeds back the m first beamforming codewords selected by the processor and the rank of the downlink channel state to the base station.
  • the processor determines the number M of beamforming vectors that are required to be reported by the base station to be the number m of selected first beamforming codewords.
  • the processor determines, according to the downlink channel state and the number M of the beamforming vectors that are required to be reported by the base station, the number m of the selected first beamforming codewords, so that m optimal beam-specificity
  • the channel quality after vector joint precoding is optimal
  • the processor feeds back the value of m to the base station through the transceiver.
  • the selected m first beamforming codewords are selected from the first codeword set, and
  • the first codeword set is that the first codeword set is a W1 codebook of rank 1 in the thirteenth version of Long Term Evolution, or a partial codeword of the W1 codebook of rank 1 in the thirteenth version of LTE.
  • a linear weighted addition adds a set of new codebook components;
  • the first codeword set is a restricted set sent by the base station, and the restricted set is a set of codewords selected by the base station from the W1 codebook of rank 1 in the 13th version of LTE, or is the 13th base station from the LTE.
  • the partial codewords in the W1 codebook with rank 1 in the version are linearly weighted and added to obtain a set of codewords selected from the set of new codebooks.
  • the processor determines an optimal beamforming direction of the m channel quality by estimating an emission angle of the antenna of the base station, and determines a direction angle value of the beamforming direction in which the m channel quality is optimal,
  • the direction angle value is the value of the trigonometric function of the direction angle or direction angle.
  • the processor After the selected m first beamforming codewords and the rank of the downlink channel state are fed back to the base station, the processor according to the selected first beamforming codeword and the rank of the downlink channel state Calculating a channel quality indicator and feeding back a channel quality indication to the base station through the transceiver.
  • the processor acquires, by using the transceiver, a second reference signal sent by the base station and the transmitted data, where the data is transmitted by the base station on the k antenna ports; and the data is estimated according to the second reference signal.
  • the downlink channel state on the k antenna ports and uses the precoding to decode the data channel according to the rank of the downlink channel state, where k is a positive integer greater than zero.
  • the processor acquires the second reference signal sent by the base station by using the transceiver, where the second reference signal is the base station Transmitted on p antenna ports;
  • the processor estimates a downlink channel state on the p antenna ports according to the second reference signal, and selects q antenna ports from the p antenna ports according to the downlink channel state, and calculates a channel quality indicator, and uses q antenna ports
  • the sequence number and the calculated channel quality indication are fed back to the base station; q ⁇ p, p is equal to m or p is equal to 2 m.
  • the processor acquires, by using the transceiver, the third reference signal sent by the base station and the transmitted data. According to the base station transmitting on k antenna ports;
  • the processor estimates a downlink channel state on the k antenna ports according to the third reference signal, and uses the precoding to decode the data channel according to the rank of the downlink channel state.
  • the processor uses the pre-coded data channel of the SFBC, otherwise the processor uses the large delay cyclic diversity precoding to decode the data channel.
  • the processor uses the open-loop space division multiplexing precoding to decode the data channel; or
  • the processor uses the large delay cyclic diversity precoding to decode the data channel.
  • the processor uses the open loop space division multiplexing precoding to decode the data channel.
  • a tenth aspect provides a device for beamforming transmission, comprising: a transceiver, a processor, and a memory;
  • the transceiver obtains first feedback information of the terminal, where the first feedback information of the terminal includes m first beamforming codewords selected by the terminal;
  • the processor determines, according to the m first beamforming codewords selected by the terminal, the m second beamforming codewords of the base station; and according to the m second beamforming codewords of the base station, each polarization direction
  • the antenna group performs beamforming and generates p antenna ports, and the polarization directions of the antennas in the polarization direction antenna group are the same; p is equal to m or p is equal to 2 m;
  • the transceiver transmits a second reference signal to the terminal on the p antenna ports.
  • the first feedback information of the terminal further includes a rank of the downlink channel state and a channel quality indicator calculated by the terminal;
  • the processor After transmitting the second reference signal to the terminal, the processor uses the precoded data channel according to the rank of the downlink channel state on the p antenna ports, and generates k antenna ports; 0 ⁇ k ⁇ p; through the transceiver at k The data is transmitted to the terminal through the encoded data channel on the antenna port.
  • the first feedback information of the terminal further includes a rank of a downlink channel state
  • the processor acquires the second feedback information of the terminal by using the transceiver, where the second feedback information includes the serial number of the q antenna ports selected by the terminal and the calculated Channel quality indication;
  • the processor determines q beams according to the channel quality indicator and the sequence numbers of the q antenna ports, and performs beamforming on each polarization direction antenna group according to the q beams to generate s antenna ports;
  • a third reference signal is transmitted on the antenna port; q ⁇ p, s ⁇ q.
  • the processor uses the precoded data channel according to the rank of the downlink channel state on the s antenna ports to generate k antenna ports; and passes through the transceiver on the k antenna ports.
  • the encoded data channel transmits data to the terminal.
  • the processor uses the pre-coded data channel of the SFBC, otherwise the processor uses the large delay cyclic diversity precoding encoded data channel.
  • the processor uses the open-loop space division multiplexing precoding encoded data channel; or
  • the processor uses the large delay cyclic diversity precoding encoded data channel.
  • the processor uses the open loop space division multiplexing precoding encoded data channel.
  • the transceiver before acquiring the first feedback information of the terminal, notifies the terminal of the number M of beamformings that the terminal needs to report; and sends the first reference signal to the terminal on the N dual-polarized antenna ports; A positive integer greater than zero.
  • the transceiver before acquiring the first feedback information of the terminal, the transceiver sends a restriction set to the terminal, where the restriction set is a set of code words selected from the W1 codebook with a rank of 1 in the 13th version of the LTE.
  • the restriction set is a set of code words selected from the W1 codebook with a rank of 1 in the 13th version of the LTE.
  • the partial codewords in the W1 codebook of rank 1 from the 13th version of LTE are linearly weighted and added to obtain a set of codewords selected from the set of new codebooks.
  • an apparatus for beamforming transmission includes: a transceiver, a processor, and a memory;
  • the transceiver obtains the number M of the beamforming vectors reported by the terminal transmitted by the base station and the first reference signal, where the first reference signal is sent by the base station on the L antenna ports, and M and L are integers greater than 0, L> M;
  • the processor estimates a downlink channel state on the L antenna ports according to the first reference signal; and according to The downlink channel state and the number M of the beamforming vectors that are required to be reported by the base station, m antenna ports are selected from the L antenna ports as the beamforming vector to be reported, and the channel quality indicator is calculated, m ⁇ M;
  • the transceiver is further configured to feed back the sequence number of the m antenna ports, the channel quality indicator, and the rank of the downlink channel state to the base station.
  • the processor acquires, by using the transceiver, the second reference signal sent by the base station and the transmitted data, where the data is the base station at the k Transmitted on the antenna port;
  • the processor estimates a downlink channel state on the k antenna ports according to the second reference signal, and uses the precoding to decode the data channel according to the rank of the downlink channel state, where k is a positive integer greater than zero.
  • the processor uses the pre-coded data channel of the SFBC, otherwise the processor uses the large delay cyclic diversity precoding to decode the data channel.
  • the processor uses the open-loop space division multiplexing precoding to decode the data channel; or
  • the processor uses the large delay cyclic diversity precoding to decode the data channel.
  • the processor uses the open loop space division multiplexing precoding to decode the data channel.
  • the processor determines the number M of beamforming vectors that are required to be reported by the base station to be the number m of antenna ports selected from the L antenna ports.
  • the processor determines, according to the downlink channel state and the number M of the beamforming vectors that are required to be reported by the base station, the number m of the selected antenna ports, so that the m optimal beam-emphasis vectors are jointly pre-coded.
  • Optimal channel quality
  • the processor feeds back the value of the selected m to the base station through the transceiver.
  • the processor directly selects m antenna ports from the L antenna ports;
  • the processor linearly weights the L antenna ports to obtain m antenna ports.
  • a device for beamforming transmission includes: a transceiver, a processor, and a memory;
  • the transceiver obtains feedback information of the terminal, and the feedback information of the terminal includes a sequence number of the m antenna ports selected by the terminal and a channel quality indicator;
  • the processor determines, according to the sequence numbers of the m antenna ports and the channel quality indicator, m first beamforming codewords, and performs beamforming on each of the polarization direction antenna groups according to the m first beamforming codewords, And generating p antenna ports, wherein the polarization directions of the antennas in the polarization direction antenna group are the same;
  • the transceiver is further configured to transmit a second reference signal to the terminal on the p antenna ports, p equal to m or p equal to 2 m.
  • the feedback information of the terminal further includes a rank of the downlink channel state
  • the processor After transmitting the second reference signal to the terminal on the p antenna ports, the processor uses the precoding encoded data channel according to the rank of the downlink channel state on the p antenna ports, and generates k antenna ports;
  • the processor transmits data to the terminal through the encoded data channel on the k antenna ports through the transceiver; 0 ⁇ k ⁇ p.
  • the processor uses the pre-coded data channel of the SFBC, otherwise the processor uses the large delay cyclic diversity precoding encoded data channel.
  • the processor uses the open-loop space division multiplexing precoding encoded data channel; or
  • the processor uses the large delay cyclic diversity precoding encoded data channel.
  • the processor uses the open loop space division multiplexing precoding encoded data channel.
  • the transceiver before acquiring the feedback information of the terminal, notifies the terminal of the number M of beamformings that the terminal needs to report;
  • the transceiver performs beamforming on the N dual-polarized antenna ports, generates L antenna ports, and transmits a first reference signal to the terminal on the L antenna port; N is a positive integer greater than 0.
  • the embodiment of the present invention indicates that the terminal acquires the number M of the beamforming vectors and the first reference signal that are required to be reported by the terminal, and estimates the downlink channel state on the N dual-polarized antenna ports according to the first reference signal, according to The downlink channel state and the number of beamforming vectors required to be reported by the base station M select m first beamforming codewords, and then the selected m first beam assignments The shape code word and the rank of the downlink channel state are fed back to the base station.
  • the terminal selects m first beamforming codewords according to the downlink channel state and the number M of beamforming vectors that are required to be reported by the base station, and feeds back to the base station, which can fully utilize the multipath characteristic of the channel, based on the channel multipath
  • the diversity allows for robust communication in high-speed motion scenarios.
  • FIG. 1 is a schematic flow chart of a beamforming transmission in the prior art
  • FIG. 2 is a schematic diagram of a system architecture according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a method for beamforming transmission according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a method for beamforming transmission according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a method for beamforming transmission according to an embodiment of the present disclosure
  • FIG. 6 is a schematic flowchart diagram of a method for beamforming transmission according to an embodiment of the present disclosure
  • FIG. 7 is a schematic flowchart diagram of a method for beamforming transmission according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an apparatus for beamforming transmission according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of an apparatus for beamforming transmission according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of an apparatus for beamforming transmission according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of an apparatus for beamforming transmission according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a device for beamforming transmission according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a device for beamforming transmission according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a device for beamforming transmission according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of a device for beamforming transmission according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a system architecture applicable to an embodiment of the present invention.
  • the system of the beamforming transmission according to the embodiment of the present invention includes LTE (Long Term Evolution). , Long Term Evolution) Base station 201 and terminal 202.
  • LTE Long Term Evolution
  • Base station 201 Base station 201 and terminal 202.
  • the terminal 202 may be a device that provides voice and/or data connectivity to the user, including a wireless terminal.
  • the wireless terminal can be a handheld device with wireless connectivity, or other processing device connected to a wireless modem, and a mobile terminal that communicates with one or more core networks via a wireless access network.
  • the wireless terminal can be a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • the wireless terminal can also be a portable, pocket, handheld, computer built-in or in-vehicle mobile device.
  • the wireless terminal can be a part of a mobile station, an access point, or a user equipment (UE).
  • UE user equipment
  • the terminal 202 can communicate with the base station 201 through an air interface to implement a flow of beamforming transmission.
  • FIG. 3 shows a flow of a method for beamforming transmission provided by an embodiment of the present invention, which may be performed by a device for beamforming transmission.
  • the specific steps of the process include:
  • Step 301 The terminal acquires the number M of beamforming vectors and the first reference signal that are required to be reported by the terminal sent by the base station.
  • Step 302 The terminal estimates a downlink channel state on the N dual-polarized antenna ports according to the first reference signal, and selects m first beams according to the downlink channel state and the number M of beamforming vectors that are required to be reported by the base station. Shape codewords.
  • Step 303 The terminal feeds back the selected m first beamforming codewords and the rank of the downlink channel state to the base station.
  • Step 304 The base station acquires first feedback information of the terminal.
  • Step 305 The base station determines, according to the m first beamforming codewords selected by the terminal, m second beamforming codewords of the base station; and according to the m second beamforming codewords of the base station, each pole
  • the direction antenna group performs beamforming and generates p antenna ports, and the antennas in the polarization direction antenna group
  • the polarization direction is the same.
  • Step 306 The base station sends a second reference signal to the terminal on the p antenna ports.
  • Step 307 The terminal acquires the second reference signal and the transmitted data sent by the base station, and estimates a downlink channel state on the k antenna ports according to the second reference signal, and uses the precoding to decode the data channel according to the rank of the downlink channel state.
  • step 301 the first reference signal is sent by the base station on the N dual-polarized antenna ports, where M and N are integers greater than zero.
  • the base station Before the step 301, the base station also needs to notify the terminal of the number M of beamformings that the terminal needs to report, and send the first reference signal to the terminal on the N dual-polarized antenna ports.
  • the base station may determine according to the polarization direction of the antenna. For example, when different polarization forming vectors are used for the two polarization directions, the M may be determined. The minimum value is 2. When the same beamforming vector is used for both polarization directions, it can be determined that the minimum value of M is 1.
  • the base station can send the M to the terminal, so that the terminal reports the number of beamforming vectors.
  • the number M of the beamforming is transmitted by the base station through a system message or a radio resource control message.
  • step 302 after acquiring the first reference signal sent by the base station and the beamforming vector to be reported, the terminal estimates the downlink channel state on the N dual-polarized antenna ports according to the first reference signal. Then, m first beamforming codewords are selected according to the downlink channel state and the number M of beamforming vectors that are required to be reported by the base station, where m ⁇ M.
  • the terminal may determine the m value in the following manner in determining the number m of the first beamforming codewords to be selected.
  • the terminal determines the number M of the beamforming vectors to be reported by the base station as the number m of the selected first beamforming codewords, that is, how many beamforming vectors are reported by the base station, and the terminal does not process.
  • the number of beamforming required by the base station is reported directly to the base station.
  • the terminal determines the number m of the selected first beamforming codewords according to the estimated downlink channel state and the number M of beamforming vectors that are required to be reported by the base station, so that m optimal beams are obtained.
  • the channel quality of the pre-coded joint is optimal, and the terminal feeds back the value of m to the base station.
  • the terminal determines the number of downlink channels with the best channel quality as the number m of the first beamforming codewords to be selected according to the downlink channel state, so as to improve the quality of the beamforming transmission.
  • the terminal selects m first beamforming codewords according to the foregoing two methods for determining the m value. Specifically, the m first beamforming codewords selected by the terminal are selected from the first codeword set.
  • the first codeword set is that the first codeword set is the 13th version of LTE and the W1 codebook of rank 1 in the 14th version or the 13th version of LTE and the rank 1 of the 14th version
  • the partial codewords in the W1 codebook are linearly weighted and added to obtain a new set of codebooks.
  • the W1 codebook with a rank of 1 in the 13th and 14th versions of the LTE may be the 13th to 14th versions of LTE, defined as ⁇ 8, 12, 16, 20, 24, 28, 32 ⁇ W1 codebook with rank 1.
  • the first codeword set may also be a restriction set sent by the base station, where the restriction set may be a codeword selected by the base station from the 13th version of LTE and the W1 codebook of rank 1 in the 14th version.
  • the set of the components may also be formed by the base station from the 13th version of the LTE, the partial codewords in the W1 codebook of rank 1 are linearly weighted and added to obtain the codewords selected from the set of new codebooks. set.
  • the base station sorts the codewords in the W1 codebook of rank 1 in the 13th version and the 14th version of LTE, and then selects the codeword composition restriction set in the codeword set following the sorting label.
  • the W1 codebook with a rank of 1 in the 13th and 14th versions of the LTE may be the 13th to 14th versions of LTE, defined as ⁇ 8, 12, 16, 20, 24, 28, 32 ⁇ W1 codebook with rank 1.
  • the terminal can estimate the transmission angle of the antenna of the base station to determine the m channel quality.
  • the beamforming direction is excellent, and then the direction angle value of the beamforming direction of the m channel quality is determined, and the angle value of the direction may be a trigonometric function value of the direction angle or the direction angle, such as a sine value and a tangent
  • the value of the direction angle value of the beamforming direction in which the m channel quality is optimal is fed back to the base station as a feedback parameter for the base station to perform beamforming.
  • the terminal after the terminal returns the selected m first beamforming codewords and the rank of the downlink channel state to the base station, the terminal according to the selected first beamforming codeword and the downlink channel state.
  • the rank, the channel quality indicator is calculated, and the channel quality indication is fed back to the base station.
  • the terminal may acquire the second reference signal and the transmitted data sent by the base station, where the data is transmitted by the base station on the k antenna ports.
  • the terminal may estimate a downlink channel state on the k antenna ports according to the second reference signal, and then use a precoding to decode the data channel according to the rank of the downlink channel state, where k is a positive integer greater than 0, 0 ⁇ k ⁇ p .
  • the terminal acquires the second reference signal sent by the base station.
  • the second reference signal is sent by the base station on the p antenna ports, and then the terminal estimates the downlink channel state on the p antenna ports according to the second reference signal, and selects the p antenna ports according to the downlink channel state.
  • the terminal acquires the third reference signal sent by the base station and the transmitted data, where the data is transmitted by the base station on the k antenna ports.
  • the base station transmits data to the terminal on the encoded data channel after using the precoded data channel on the k antenna ports according to the rank of the downlink channel state fed back by the terminal.
  • the terminal estimates the downlink channel state on the k antenna ports according to the received third reference signal, and then uses the precoding to decode the data channel according to the rank of the downlink channel state.
  • the terminal can flexibly perform diversity and multiplexing in a high-speed motion scenario.
  • the data channel can be decoded in the following manners:
  • the terminal uses the precoding and decoding data channel of the SFBC;
  • the terminal uses the open-loop space division multiplexing precoding and decoding data.
  • the channel for example, the terminal uses layer 1 LD-CDD precoding.
  • the terminal uses a large delay cyclic diversity precoding to decode the data channel, for example, the terminal uses layer 1 LD-CDD precoding;
  • the terminal uses the open-loop space division multiplexing precoding to decode the data channel, for example, the terminal uses LD-CDD precoding.
  • the terminal uses the large delay cyclic diversity precoding to decode the data channel, for example, the terminal uses layer 1 LD-CDD precoding;
  • the terminal uses the open-loop space division multiplexing precoding to decode the data channel, for example, the terminal uses LD-CDD precoding.
  • the first feedback information includes m first beamforming codewords selected by the terminal, and the base station selects m first beamforming codes according to the terminal. Determining m second beamforming codewords of the base station, and then beamforming each polarization direction antenna group according to the m second beamforming codewords of the base station, and generating p antenna ports, each The polarization directions of the antennas in the polarization direction antenna group are the same, and there are N/2 antenna ports in each group.
  • the value of p is related to the number m of first beamforming vectors fed back by the terminal.
  • the base station transmits a second reference signal to the terminal on the p antenna ports.
  • the first feedback information of the terminal acquired by the base station further includes a rank of a downlink channel state and a channel quality indicator calculated by the terminal, where the base station generates the second reference signal after the base station sends the second reference signal to the terminal.
  • the precoding is used to encode the data channel, and k antenna ports are generated, and then the data is transmitted to the terminal through the encoded data channel on the k antenna ports.
  • the base station After the base station sends the second reference signal to the terminal, the base station acquires the second feedback information of the terminal, where the second feedback information includes the sequence numbers of the q antenna ports selected by the terminal and the calculated channel quality indicator.
  • the second feedback information is that the terminal estimates the downlink channel state on the p antenna ports according to the second reference signal sent by the received base station, and selects q antenna ports from the p antenna ports according to the downlink channel state. , sent after calculating the channel quality indication.
  • the base station determines q beams according to the obtained channel quality indicator and the sequence numbers of the q antenna ports, and performs beamforming on each polarization direction antenna group according to the q beams to generate s antenna ports; based on the s An antenna port, the base station transmitting a third reference signal on the s antenna ports, where q ⁇ p, s ⁇ q.
  • the third reference signal is available for the terminal to perform downlink channel state estimation.
  • the base station uses the precoded data channel according to the rank of the downlink channel state on the s antenna ports to generate k antenna ports, and at the k antenna ports
  • the data is transmitted to the terminal through the encoded data channel, and the terminal can use the precoding and decoding data channel according to the rank of the downlink channel state on the k antenna ports to obtain the data transmitted by the base station.
  • the data channel can be encoded in the following manners:
  • the base station uses the pre-coded data channel of the SFBC;
  • the base station uses the open-loop space division multiplexing precoding encoded data channel, for example, the base station uses layer 1 LD-CDD precoding.
  • the base station uses a large delay cyclic diversity precoding encoded data channel, for example, the base station uses layer 1 LD-CDD precoding;
  • the base station uses the open-loop space division multiplexing precoding encoded data channel, for example, the base station uses LD-CDD precoding.
  • the base station uses the large delay cyclic diversity precoding to encode the data channel, for example, the base station uses layer 1 LD-CDD precoding;
  • the base station uses the open-loop space division multiplexing precoding encoded data channel, for example, the base station uses LD-CDD precoding.
  • the terminal acquires the number M of the beamforming vectors that are required to be reported by the terminal, and the first reference signal, and estimates the downlink channel state on the N dual-polarized antenna ports according to the first reference signal, according to The downlink channel state and the number of beamforming vectors required to be reported by the base station M select m first beamforming codewords, and then select the m first beamforming codewords and the rank of the downlink channel state Feedback to the base station.
  • the terminal selects m first beamforming codewords according to the downlink channel state and the number M of beamforming vectors that are required to be reported by the base station, and feeds back to the base station, which can fully utilize the multipath characteristic of the channel, based on the channel multipath
  • the diversity can maintain the robustness of communication in high-speed motion scenarios, and more flexible multi-user pairing and space division multiplexing.
  • FIG. 4 shows a flow of a method for beamforming transmission provided by an embodiment of the present invention, which may be performed by a device for beamforming transmission.
  • the specific steps of the process include:
  • Step 401 The terminal acquires the number M of beamforming vectors and the first reference signal that are required to be reported by the terminal sent by the base station.
  • Step 402 The terminal estimates a downlink channel state on the L antenna ports according to the first reference information, and selects m from the L antenna ports according to the downlink channel state and the number M of beamforming vectors that are required to be reported by the base station.
  • the antenna ports are used as beamforming vectors for reporting, and channel quality indicators are calculated.
  • Step 403 The terminal feeds back the sequence number of the m antenna ports, the channel quality indicator, and the rank of the downlink channel state to the base station.
  • Step 404 The base station acquires feedback information of the terminal.
  • Step 405 The base station determines, according to the sequence numbers of the m antenna ports and the channel quality indicator, m first beamforming codewords, and according to the m first beamforming codewords, each polarization direction antenna group Beamforming is performed and p antenna ports are generated.
  • Step 406 The base station sends a second reference message to the terminal on the p antenna ports.
  • Step 407 The terminal acquires the second reference signal and the transmitted data sent by the base station, and estimates a downlink channel state on the k antenna ports according to the second reference signal, and uses the precoding to decode the data channel according to the rank of the downlink channel state.
  • step 401 the first reference signal is sent by the base station on the L antenna port, where M and L are integers greater than 0, L>M.
  • the base station Before the step 401, the base station also needs to notify the terminal of the number M of beamformings that the terminal needs to report, and the base station performs beamforming on the N dual-polarized antenna ports to generate L antenna ports, and is in the L antenna.
  • a first reference signal is sent to the terminal on the port, where N is a positive integer greater than zero.
  • the base station may determine according to the polarization direction of the antenna. For example, when different polarization forming vectors are used for the two polarization directions, the M may be determined. The minimum value is 2. When the same beamforming vector is used for both polarization directions, it can be determined that the minimum value of M is 1.
  • the base station can send the M to the terminal, so that the terminal reports the number of beamforming vectors.
  • the number M of the beamforming is transmitted by the base station through a system message or a radio resource control message.
  • step 402 after acquiring the first reference signal sent by the base station and the beamforming vector to be reported, the terminal estimates the downlink channel state on the L antenna ports according to the first reference information, and then according to the downlink channel.
  • the state and the number M of beamforming vectors that are required to be reported by the base station, m antenna ports are selected from the L antenna ports as the beamforming vector to be reported, and the channel quality indicator is calculated.
  • the terminal can determine the m value in the following manner.
  • the terminal determines the number M of the beamforming vectors to be reported by the base station as the number m of antenna ports selected from the L antenna ports, that is, how many beamforming vectors are reported by the base station, and the terminal does not perform Processing, directly reporting to the base station the antenna port selected from the L antenna ports quantity.
  • the terminal determines the number m of selected antenna ports according to the estimated downlink channel state and the number M of beamforming vectors that are required to be reported by the base station, so that the pre-coded channel quality is optimally used on the m antenna ports.
  • the terminal feeds back the value of m to the base station. Wherein, 0 ⁇ m ⁇ M, the terminal determines the number of downlink channels with the best channel quality as the number m of antenna ports to be selected according to the downlink channel state, so as to improve the quality of beamforming transmission.
  • the terminal when the terminal selects m antenna ports, the terminal can directly select m antenna ports from the L antenna ports, that is, randomly select m from the L antenna ports. Antenna ports. Alternatively, the terminal may linearly weight the L antenna ports to obtain m antenna ports.
  • the terminal After the terminal returns the sequence number of the m antenna ports, the channel quality indicator, and the rank of the downlink channel state to the base station, in step 407, the terminal acquires the second reference signal and the transmitted data sent by the base station, where the data is the base station. Transmitted on k antenna ports, the terminal then estimates the downlink channel state on the k antenna ports according to the second reference signal, and uses the precoding to decode the data channel according to the rank of the downlink channel state.
  • the k antenna ports are generated by the base station to perform beamforming on each polarization direction antenna group according to the m first beamforming codewords, and generate p antenna ports, and use the ranks of the downlink channel states on the p antenna ports.
  • k antenna ports generated after precoding the encoded data channel. k is a positive integer greater than 0, 0 ⁇ k ⁇ p.
  • the terminal can flexibly perform diversity and multiplexing in a high-speed motion scenario.
  • the data channel can be decoded in the following manners:
  • the terminal uses the precoding and decoding data channel of the SFBC;
  • the terminal uses the open-loop space division multiplexing precoding to decode the data channel, for example, the terminal uses layer 1 LD-CDD precoding.
  • the terminal uses a large delay cyclic diversity precoding to decode the data channel, for example, the terminal uses layer 1 LD-CDD precoding;
  • the terminal uses the open-loop space division multiplexing precoding to decode the data channel, for example, the terminal uses LD-CDD precoding.
  • the terminal uses the large delay cyclic diversity precoding to decode the data channel, for example, the terminal uses layer 1 LD-CDD precoding;
  • the terminal uses the open-loop space division multiplexing precoding to decode the data channel, for example, the terminal uses LD-CDD precoding.
  • the feedback information of the terminal includes the sequence numbers of the m antenna ports selected by the terminal and the channel quality indication, and the base station determines according to the sequence numbers of the m antenna ports and the channel quality indicator.
  • M first beamforming codewords are generated, and each polarization direction antenna group is beamformed according to the m first beamforming codewords, and p antenna ports are generated.
  • the polarization directions of the antennas in each polarization direction antenna group are the same, and there are N/2 antenna ports in each group.
  • the value of p is related to the number m of first beamforming vectors fed back by the terminal.
  • the base station transmits a second reference signal to the terminal on the p antenna ports.
  • the feedback information of the terminal further includes a rank of a downlink channel state
  • the base station uses the precoding encoded data channel according to the rank of the downlink channel state on the p antenna ports, and generates k antenna ports, and then the base station is at the k Data is transmitted to the terminal through the encoded data channel on the antenna ports.
  • the data channel can be encoded in the following manners:
  • the base station uses the pre-coded data channel of the SFBC;
  • the base station uses the open-loop space division multiplexing precoding encoded data channel, for example, the base station uses layer 1 LD-CDD precoding.
  • the base station uses a large delay cyclic diversity precoding encoded data channel, for example, the base station uses layer 1 LD-CDD precoding;
  • the base station uses the open-loop space division multiplexing precoding encoded data channel, for example, the base station uses LD-CDD precoding.
  • the base station uses the large delay cyclic diversity precoding to encode the data channel, for example, the base station uses layer 1 LD-CDD precoding;
  • the base station uses the open-loop space division multiplexing precoding encoded data channel, for example, the base station uses LD-CDD precoding.
  • the terminal acquires the number M of beamforming vectors that are required to be reported by the terminal, and the first reference signal, and estimates the downlink channel state on the L antenna ports according to the first reference information, according to the downlink channel state and The number M of beamforming vectors to be reported by the base station, m antenna ports selected from the L antenna ports as beamforming vectors to be reported, and channel quality indicators calculated, m antenna ports The sequence number, the channel quality indicator, and the rank of the downlink channel state are fed back to the base station.
  • the terminal selects m antenna ports as the beamforming vector to be reported according to the downlink channel state and the number M of the beamforming vectors that are required to be reported by the base station, and feeds back to the base station, so that the multipath characteristics of the channel can be fully utilized. Based on channel multipath diversity, communication robustness can be maintained in high-speed motion scenarios, and multi-user pairing and space division multiplexing can be realized flexibly.
  • the specific steps of the process include:
  • Step 501 The base station informs the terminal of the number M of beamforming vectors that are required to be reported by using a system message or a radio resource control message.
  • Step 502 The base station sends a first reference signal on the N dual-polarized antenna ports.
  • Step 503 The terminal estimates the downlink channel state according to the first reference signal, and further selects m first beamforming codewords from the first codeword set, and further calculates and feeds back the channel quality indicator.
  • Step 504 The base station determines, according to feedback of the terminal, m first beamforming codewords, performs beamforming on each polarization direction antenna group, generates p antenna ports, and sends a second antenna on the p antenna ports. Reference signal.
  • Step 506 The terminal estimates, according to the second reference signal, a downlink channel state on the k ports, and then decodes the data channel according to an inherent LD-CDD or SFBC encoding process.
  • the specific steps of the process include:
  • Step 601 The base station informs the terminal of the number M of beamforming vectors that are required to be reported by using a system message or a radio resource control message.
  • Step 602 The base station sends a first reference signal on the N dual-polarized antenna ports.
  • Step 603 The terminal estimates a downlink channel state according to the first reference signal, and further selects m first beamforming codewords from the first codeword set.
  • Step 604 The base station determines, according to feedback of the terminal, m first beamforming codewords, performs beamforming on each polarization direction antenna group, generates p antenna ports, and sends a second antenna on the p antenna ports. Reference signal.
  • Step 605 The terminal receives the second reference signal at the p antenna ports, estimates the channel state, and then selects q antenna ports from the second antenna port group, and feeds the sequence number to the base station, and calculates and reverses Feed channel quality indication.
  • Step 606 The base station determines q beams according to the feedback of the terminal, performs beamforming on each polarization direction antenna group, generates s antenna ports, and sends a third reference signal on the s antenna ports.
  • Step 608 The terminal estimates a downlink channel state on the k ports according to the third reference signal, and then decodes the data channel according to an inherent LD-CDD or SFBC encoding process.
  • the specific steps of the process include:
  • Step 701 The base station informs the terminal of the number M of beamforming vectors that are required to be reported by using a system message or a radio resource control message.
  • Step 702 The base station performs beamforming on the N dual-polarized antenna ports, generates L beams, and regards them as L antenna ports, and sends a first reference signal on the L antenna ports.
  • Step 703 The terminal estimates a downlink channel state according to the first reference signal, and then selects m antenna ports from the L antenna ports, feeds the sequence number thereof to the base station, and further calculates a channel quality indicator.
  • Step 704 The base station determines, according to feedback of the terminal, a first beamforming codeword, performs beamforming on each polarization direction antenna group, generates p antenna ports, and sends a second reference signal on the p antenna ports. .
  • Step 706 The terminal estimates, according to the second reference signal, a downlink channel state on the k ports, and then decodes the data channel according to an inherent LD-CDD or SFBC coding process.
  • FIG. 8 shows an apparatus for providing beamforming transmission according to an embodiment of the present invention.
  • the apparatus may perform a process of beamforming, and the apparatus may be located in the terminal, or may be located in the terminal. It is the terminal.
  • the device specifically includes:
  • the transceiver unit 801 is configured to acquire, by the base station, the number M of beamforming vectors that are required to be reported by the terminal, and the first reference signal, where the first reference signal is sent by the base station on the N dual-polarized antenna ports, where N is an integer greater than 0;
  • the processing unit 802 is configured to estimate, according to the first reference signal acquired by the transceiver unit 801, a downlink channel state on the N dual-polarized antenna ports; and according to the downlink channel state and a required report sent by the base station
  • the number of beamforming vectors M selects m first beamforming codewords; m ⁇ M;
  • the transceiver unit 801 is further configured to feed back the m first beamforming codewords selected by the processing unit and the rank of the downlink channel state to the base station.
  • processing unit 802 is specifically configured to:
  • the number M of beamforming vectors to be reported that are transmitted by the base station is determined as the number m of the selected first beamforming codewords.
  • the processing unit 802 is specifically configured to determine, according to the downlink channel state and the number M of beamforming vectors that are required to be reported by the base station, to determine the selected first beamforming codeword.
  • the quantity m is such that the channel quality of the m optimal beam-potential vectors combined with the pre-coding is optimal;
  • the value of the m is fed back to the base station by the transceiver unit 801.
  • the selected m first beamforming codewords are selected from a first codeword set, and the first codeword set is the first codeword set is Long Term Evolution (LTE)
  • LTE Long Term Evolution
  • the W1 codebook with rank 1 or the partial codeword in the W1 codebook with rank 1 in the 13th version of LTE is linearly weighted and added to obtain a set of new codebooks;
  • the first codeword set is a restricted set sent by the base station, where the restricted set is a set of codewords selected by a base station from a W1 codebook of rank 1 in the 13th version of the LTE, or The base station obtains a set of codewords selected from the set of new codebooks by linearly weighting the partial codewords in the W1 codebook of rank 1 from the 13th version of the LTE.
  • processing unit 802 is specifically configured to:
  • the beamforming direction of the m channel quality is determined by estimating the transmission angle of the antenna of the base station;
  • a direction angle value of the beamforming direction in which the m channel quality is optimal is determined, and the direction angle value is a trigonometric function value of the direction angle or the direction angle.
  • processing unit 802 is further configured to:
  • the base station After feeding the selected m first beamforming codewords and the rank of the downlink channel state to the base station, calculating, according to the selected first beamforming codeword and the rank of the downlink channel state, Channel quality indication, and the channel quality indication is fed back to the base station by the transceiver unit 801.
  • processing unit 802 is further configured to:
  • the second reference signal sent by the base station and the transmitted data are obtained by the transceiver unit 801, where the data is transmitted by the base station on k antenna ports;
  • processing unit 802 is further configured to:
  • the second reference signal sent by the base station is acquired by the transceiver unit 801, and the second reference signal is obtained. Transmitted for the base station on p antenna ports;
  • processing unit 802 is further configured to:
  • the third reference signal and the transmission sent by the base station are acquired by the transceiver unit 801 Data transmitted by the base station on k antenna ports;
  • processing unit 802 is specifically configured to:
  • the rank of the downlink channel state is 1, if the number of the k antenna ports is even, the pre-coded data channel of the SFBC is used, otherwise the data channel is precoded and decoded using the large delay cyclic diversity; when the downlink channel state is When the rank is greater than 1, the open-loop space division multiplexing precoding the data channel is used; or
  • the data channel is precoded and decoded using the large delay cyclic diversity, and when the rank of the downlink channel state is greater than 1, the data channel is precoded using the open loop space division multiplexing.
  • FIG. 9 shows an apparatus for providing beamforming transmission according to an embodiment of the present invention.
  • the apparatus may perform a process of beamforming, and the apparatus may be located in a base station or may be a base station.
  • the device specifically includes:
  • the transceiver unit 901 is configured to acquire first feedback information of the terminal, where the first feedback information of the terminal includes m first beamforming codewords selected by the terminal;
  • the processing unit 902 is configured to determine, according to the m first beamforming codewords selected by the terminal, m second beamforming codewords of the base station; and shape the m second beams according to the base station
  • the codeword performs beamforming on each polarization direction antenna group, and generates p antenna ports, wherein the polarization directions of the antennas in the polarization direction antenna group are the same; p is equal to m or p is equal to 2 m;
  • the transceiver unit 901 is further configured to send a second reference signal to the terminal on the p antenna ports.
  • the first feedback information of the terminal further includes a rank of a downlink channel state and a channel quality indicator calculated by the terminal;
  • the processing unit 902 is further configured to:
  • Data is transmitted to the terminal through the encoded data channel on the k antenna ports by the transceiver unit 901.
  • the first feedback information of the terminal further includes a rank of a downlink channel state
  • the processing unit 902 is further configured to:
  • the second feedback information of the terminal is obtained by the transceiver unit 901, where the second feedback information includes the sequence number and calculation of the q antenna ports selected by the terminal.
  • processing unit 902 is further configured to:
  • the transceiver unit 901 After transmitting the third reference signal, using the precoded data channel according to the rank of the downlink channel state on the s antenna ports, generating k antenna ports; and transmitting, by the transceiver unit 901, the k antenna ports Data is transmitted to the terminal through the encoded data channel.
  • processing unit 902 is specifically configured to:
  • the rank of the downlink channel state is 1, if the number of the k antenna ports is an even number, the pre-coded data channel of the SFBC is used, otherwise the pre-coded data channel is encoded using a large delay cyclic diversity; when the downlink channel state is When the rank is greater than 1, the open-loop space division multiplexing precoding the encoded data channel is used; or
  • the rank of the downlink channel state is 1, the large-delay cyclic diversity precoding encoded data channel is used, and when the rank of the downlink channel state is greater than 1, the open-loop space division multiplexing precoding the encoded data channel is used.
  • the transceiver unit 901 is further configured to:
  • N is a positive integer greater than zero.
  • the transceiver unit 901 is further configured to:
  • the restriction set is a set of code words selected from a W1 codebook with a rank of 1 in the 13th version of the LTE, Or, the partial codewords in the W1 codebook of rank 1 from the 13th version of the LTE are linearly weighted and added to obtain a set of codewords selected from the set of new codebooks.
  • FIG. 10 shows an apparatus for providing beamforming transmission according to an embodiment of the present invention.
  • the apparatus may perform a process of beamforming, and the apparatus may be located in the terminal or may be the terminal.
  • the device specifically includes:
  • the transceiver unit 1001 is configured to acquire the number M of beamforming vectors and the first reference signal that are sent by the terminal, and the first reference signal is sent by the base station on the L antenna ports, where M and L are greater than An integer of 0, L>M;
  • the processing unit 1002 is configured to estimate, according to the first reference signal, a downlink channel state on the L antenna ports; and according to the downlink channel state and a number M of beamforming vectors that are required to be reported by the base station, Selecting m antenna ports from the L antenna ports as beamforming vectors to be reported, and calculating channel quality indicators, m ⁇ M;
  • the transceiver unit 1001 is further configured to feed back the sequence numbers of the m antenna ports, the channel quality indicator, and the rank of the downlink channel state to the base station.
  • processing unit 1002 is further configured to:
  • the channel quality indicator, and the rank of the downlink channel state are fed back to the base station, acquiring, by the transceiver unit 1001, the second reference signal sent by the base station and the transmitted Data, the data is transmitted by the base station on k antenna ports;
  • processing unit 1002 is specifically configured to:
  • the rank of the downlink channel state is 1, if the number of the k antenna ports is even, the pre-coded data channel of the SFBC is used, otherwise the data channel is precoded and decoded using the large delay cyclic diversity; when the downlink channel state is When the rank is greater than 1, the open-loop space division multiplexing precoding and decoding data is used. Road; or
  • the data channel is precoded and decoded using the large delay cyclic diversity, and when the rank of the downlink channel state is greater than 1, the data channel is precoded using the open loop space division multiplexing.
  • processing unit 1002 is specifically configured to:
  • the number M of beamforming vectors to be reported that are transmitted by the base station is determined as the number m of antenna ports selected from the L antenna ports.
  • processing unit 1002 is specifically configured to:
  • the value of the selected m is fed back to the base station by the transceiver unit 1001.
  • processing unit 1002 is specifically configured to:
  • the L antenna ports are linearly weighted to obtain m antenna ports.
  • FIG. 11 shows an apparatus for providing beamforming transmission according to an embodiment of the present invention.
  • the apparatus may perform a process of beamforming, and the apparatus may be located in a base station or may be a base station.
  • the device specifically includes:
  • the transceiver unit 1101 is configured to obtain feedback information of the terminal, where the feedback information of the terminal includes a sequence number of the m antenna ports selected by the terminal and a channel quality indicator.
  • the processing unit 1102 is configured to determine, according to the sequence numbers of the m antenna ports and the channel quality indicator, m first beamforming codewords, and according to the m first beamforming codewords for each polarization
  • the directional antenna group performs beamforming and generates p antenna ports, wherein the polarization directions of the antennas in the polarization direction antenna group are the same;
  • the transceiver unit 1101 is further configured to send a second reference signal to the terminal on the p antenna ports, where p is equal to m or p is equal to 2 m.
  • processing unit 1102 is further configured to:
  • the feedback information of the terminal further includes a rank of a downlink channel state
  • processing unit 1102 is specifically configured to:
  • the rank of the downlink channel state is 1, if the number of the k antenna ports is an even number, the pre-coded data channel of the SFBC is used, otherwise the pre-coded data channel is encoded using a large delay cyclic diversity; when the downlink channel state is When the rank is greater than 1, the open-loop space division multiplexing precoding the encoded data channel is used; or
  • the rank of the downlink channel state is 1, the large-delay cyclic diversity precoding encoded data channel is used, and when the rank of the downlink channel state is greater than 1, the open-loop space division multiplexing precoding the encoded data channel is used.
  • the transceiver unit 1101 is further configured to:
  • N is a positive integer greater than zero.
  • the beamforming transmission device 1200 can perform the steps or functions performed by the receiver in the various embodiments described above.
  • the apparatus 1200 for beamforming transmission can include a transceiver 1201, a processor 1202, and a memory 1203.
  • the processor 1202 is for controlling the operation of the device 1200 for beamforming transmission;
  • the memory 1203 can include a read only memory and a random access memory that stores instructions and data that the processor 1202 can execute.
  • a portion of the memory 1203 may also include non-volatile line random access memory (NVRAM).
  • the components such as the transceiver 1201, the processor 1202, and the memory 1203 are connected by a bus 1209.
  • the bus 1209 may include a power bus, a control bus, and a status signal bus in addition to the data bus. But for the sake of clarity, the various totals in the picture The lines are all labeled as bus 1209.
  • a method of beamforming transmission disclosed in the embodiments of the present invention may be applied to the processor 1202 or implemented by the processor 1202.
  • each step of the processing flow may be completed by an integrated logic circuit of hardware in the processor 1202 or an instruction in the form of software.
  • the processor 1202 can be a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and can implement or perform the embodiments of the present invention.
  • a general purpose processor can be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 1203, and the processor 1202 reads the information stored in the memory 1203, in conjunction with its hardware, the steps of a method of beamforming transmission.
  • the transceiver 1201 acquires the number M of beamforming vectors that are required to be reported by the terminal, and the first reference signal, where the first reference signal is sent by the base station on the N dual-polarized antenna ports, where M and N are greater than An integer of 0;
  • the processor 1202 estimates, according to the first reference signal acquired by the transceiver 1201, the downlink channel state on the N dual-polarized antenna ports; and according to the downlink channel state and the required reported beam sent by the base station
  • the number M of shape vectors selects m first beamforming code words; m ⁇ M;
  • the transceiver 1201 feeds back the m first beamforming codewords selected by the processor 1202 and the rank of the downlink channel state to the base station.
  • the processor 1202 determines the number M of beamforming vectors that are required to be reported by the base station to be the number m of the selected first beamforming codewords.
  • the processor 1202 determines, according to the downlink channel state and the number M of beamforming vectors that are required to be reported by the base station, the number m of selected first beamforming codewords, so that The optimal channel quality of the m optimal beam-potential vectors combined with pre-coding is optimal;
  • the processor 1202 feeds back the value of the m to the base station through the transceiver 1201.
  • the selected m first beamforming codewords are selected from a first codeword set, and the first codeword set is the first codeword set is Long Term Evolution (LTE)
  • LTE Long Term Evolution
  • the W1 codebook with rank 1 or the partial codeword in the W1 codebook with rank 1 in the 13th version of LTE is linearly weighted and added to obtain a set of new codebooks;
  • the first codeword set is a restricted set sent by the base station, where the restricted set is a set of codewords selected by a base station from a W1 codebook of rank 1 in the 13th version of the LTE, or The base station obtains a set of codewords selected from the set of new codebooks by linearly weighting the partial codewords in the W1 codebook of rank 1 from the 13th version of the LTE.
  • the processor 1202 determines, by using an estimation of an emission angle of an antenna of the base station, a beamforming direction that is optimal for the m channel qualities; and determines a beamforming direction that is optimal for the m channel qualities.
  • the direction angle value which is a trigonometric value of the direction angle or the direction angle.
  • the processor 1202 is configured according to the selected first beamforming codeword, and The rank of the downlink channel state is calculated, and the channel quality indicator is calculated and fed back to the base station by the transceiver 1201.
  • the processor 1202 acquires, by using the transceiver 1201, a second reference signal sent by the base station and the transmitted data, where the data is a base station at the k Transmitted on the antenna ports; estimate the downlink channel state on the k antenna ports according to the second reference signal, and use the precoding to decode the data channel according to the rank of the downlink channel state, where k is a positive integer greater than zero.
  • the processor 1202 acquires the second sent by the base station by using the transceiver 1201. a reference signal, the second reference signal is sent by the base station on p antenna ports;
  • the processor 1202 estimates a downlink channel state on the p antenna ports according to the second reference signal, and selects q antenna ports from the p antenna ports according to the downlink channel state, and calculates channel quality. Instructing, serializing the q antenna ports and the calculated channel The quality indication is fed back to the base station; q ⁇ p, p is equal to m or p is equal to 2 m.
  • the processor 1202 acquires a third reference sent by the base station by using the transceiver 1201. a signal and transmitted data, the data being transmitted by the base station on k antenna ports;
  • the processor 1202 estimates a downlink channel state on the k antenna ports according to the third reference signal, and uses a precoding to decode the data channel according to the rank of the downlink channel state.
  • the processor 1202 uses the precoding of the SFBC to decode the data channel, otherwise the processor 1202 uses the large time. Deriving the cyclically diversity precoding and decoding data channel; when the rank of the downlink channel state is greater than 1, the processor 1202 uses the open loop spatial division multiplexing precoding to decode the data channel; or
  • the processor 1202 uses the large delay cyclic diversity precoding to decode the data channel, and when the rank of the downlink channel state is greater than 1, the processor 1202 uses the open loop space division multiplexing pre Coded data channel.
  • the beamforming transmission device 1300 can perform the steps or functions performed by the receiver in the various embodiments described above.
  • the apparatus 1300 for beamforming transmission may include a transceiver 1301, a processor 1302, and a memory 1303.
  • the processor 1302 is for controlling the operation of the device 1300 for beamforming transmission;
  • the memory 1303 can include a read only memory and a random access memory that stores instructions and data that the processor 1302 can execute.
  • a portion of the memory 1303 may also include non-volatile line random access memory (NVRAM).
  • the components such as the transceiver 1301, the processor 1302, and the memory 1303 are connected by a bus 1309.
  • the bus 1309 may include a power bus, a control bus, and a status signal bus in addition to the data bus. However, for clarity of description, various buses are labeled as bus 1309 in the figure.
  • a method of beamforming transmission disclosed in the embodiment of the present invention may be applied to the processor 1302 or implemented by the processor 1302.
  • each step of the processing flow may be completed by an integrated logic circuit of hardware in the processor 1302 or an instruction in the form of software.
  • Processor 1302 It can be a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and can implement or perform the disclosure in the embodiments of the present invention. Methods, steps, and logic blocks.
  • a general purpose processor can be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 1303, and the processor 1302 reads the information stored in the memory 1303, in conjunction with its hardware, to perform the steps of a beamforming transmission method.
  • the transceiver 1301 acquires first feedback information of the terminal, where the first feedback information of the terminal includes m first beamforming codewords selected by the terminal;
  • the processor 1302 determines, according to the m first beamforming codewords selected by the terminal, m second beamforming codewords of the base station; and according to the m second beamforming codeword pairs of the base station
  • Each polarization direction antenna group performs beamforming and generates p antenna ports, wherein the polarization directions of the antennas in the antenna group are the same; p is equal to m or p is equal to 2 m;
  • the transceiver 1301 transmits a second reference signal to the terminal on the p antenna ports.
  • the first feedback information of the terminal further includes a rank of a downlink channel state and a channel quality indicator calculated by the terminal;
  • the processor 1302 After transmitting the second reference signal to the terminal, the processor 1302 uses the precoding encoded data channel according to the rank of the downlink channel state on the p antenna ports, and generates k antenna ports; 0 ⁇ k ⁇ p; data is transmitted to the terminal through the encoded data channel on the k antenna ports by the transceiver 1301.
  • the first feedback information of the terminal further includes a rank of a downlink channel state
  • the processor 1302 obtains second feedback information of the terminal by using the transceiver 1301, where the second feedback information includes q antennas selected by the terminal.
  • the processor 1302 determines, according to the channel quality indicator and the sequence number of the q antenna ports, Defining q beams, and beamforming each of the polarization direction antenna groups according to the q beams to generate s antenna ports; transmitting, by the transceiver 1301, the third reference on the s antenna ports Signal; q ⁇ p, s ⁇ q.
  • the processor 1302 uses the precoded data channel according to the rank of the downlink channel state on the s antenna ports to generate k antenna ports; and passes the transceiver 1301 transmits data to the terminal through the encoded data channel on the k antenna ports.
  • the processor 1302 uses the pre-coded data channel of the SFBC, otherwise the processor 1302 uses the large time.
  • the processor 1302 uses the large-latency cyclic diversity precoding encoded data channel, and when the rank of the downlink channel state is greater than 1, the processor 1302 uses the open-loop space division multiplexing pre- Encoded coded data channel.
  • the transceiver 1301 before acquiring the first feedback information of the terminal, notifies the terminal of the number M of beamformings that the terminal needs to report; and the N dual-polarized antenna ports are The terminal transmits a first reference signal; N is a positive integer greater than zero.
  • the transceiver 1301 sends a restriction set to the terminal, where the restriction set is a W1 codebook with a rank of 1 from the 13th version of the LTE. a set of selected codewords, or a set of new codebooks obtained by linearly weighting the partial codewords in the W1 codebook of rank 1 in the 13th version of the LTE A collection of codewords.
  • the beamforming transmission device 1400 can perform the steps or functions performed by the receiver in the various embodiments described above.
  • the beamforming transmission device 1400 can include a transceiver 1401, a processor 1402, and a memory 1403.
  • the processor 1402 is configured to control the operation of the device 1400 for beamforming transmission;
  • the memory 1403 may include a read only memory and a random access memory, and the processor is stored 1402 can execute instructions and data.
  • a portion of the memory 1403 may also include non-volatile line random access memory (NVRAM).
  • the components such as the transceiver 1401, the processor 1402, and the memory 1403 are connected by a bus 1409.
  • the bus 1409 may include a power bus, a control bus, and a status signal bus in addition to the data bus. However, for clarity of description, various buses are labeled as bus 1409 in the figure.
  • a method of beamforming transmission disclosed in the embodiment of the present invention may be applied to the processor 1402 or implemented by the processor 1402.
  • each step of the processing flow may be completed by an integrated logic circuit of hardware in the processor 1402 or an instruction in the form of software.
  • the processor 1402 can be a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and can implement or perform the embodiments of the present invention.
  • a general purpose processor can be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 1403, and the processor 1402 reads the information stored in the memory 1403, in conjunction with its hardware, to perform the steps of a beamforming transmission method.
  • the transceiver 1401 acquires the number M of beamforming vectors that are required to be reported by the terminal and the first reference signal, where the first reference signal is sent by the base station on L antenna ports, and M and L are integers greater than 0. , L>M;
  • the processor 1402 estimates a downlink channel state on the L antenna ports according to the first reference signal; and according to the downlink channel state and the number M of beamforming vectors that are required to be reported by the base station, Selecting m antenna ports from the L antenna ports as the beamforming vector to be reported, and calculating the channel quality indicator, m ⁇ M;
  • the transceiver 1401 is further configured to feed back the sequence numbers of the m antenna ports, the channel quality indicator, and the rank of the downlink channel state to the base station.
  • the processor 1402 acquires, by using the transceiver 1401, the second reference signal sent by the base station and the transmitted data, where the data is transmitted by the base station on the k antenna ports. of;
  • the processor 1402 estimates a downlink channel state on the k antenna ports according to the second reference signal, and uses a precoded data channel according to the rank of the downlink channel state, where k is a positive integer greater than zero.
  • the processor 1402 uses a precoding of the SFBC to decode the data channel, otherwise the processor 1402 uses a large time. Deriving a cyclically diversity precoded data channel; when the rank of the downlink channel state is greater than 1, the processor 1402 uses an open loop space division multiplexing precoding to decode the data channel; or
  • the processor 1402 uses the large delay cyclic diversity precoding to decode the data channel, and when the rank of the downlink channel state is greater than 1, the processor 1402 uses the open loop space division multiplexing pre Coded data channel.
  • the processor 1402 determines the number M of beamforming vectors that are required to be reported by the base station to be the number m of antenna ports selected from the L antenna ports.
  • the processor 1402 determines, according to the downlink channel state and the number M of beamforming vectors that are required to be reported by the base station, the number m of selected antenna ports, so that m optimal The channel quality of the beam-formed vector combined with pre-coding is optimal;
  • the processor 1402 feeds back the value of the selected m to the base station through the transceiver 1401.
  • the processor 1402 directly selects m antenna ports from the L antenna ports; or
  • the processor 1402 linearly weights the L antenna ports to obtain m antenna ports.
  • the apparatus 1500 for beamforming transmission may include a transceiver 1501, a processor 1502, and a memory 1503.
  • the processor 1502 is configured to control the operation of the device 1500 for beamforming transmission;
  • the memory 1503 may include a read only memory and a random access memory, and the processor is stored 1502 instructions and data that can be executed.
  • a portion of the memory 1503 may also include non-volatile line random access memory (NVRAM).
  • the components such as the transceiver 1501, the processor 1502, and the memory 1503 are connected by a bus 1509.
  • the bus 1509 may include a power bus, a control bus, and a status signal bus in addition to the data bus. However, for clarity of description, various buses are labeled as bus 1509 in the figure.
  • a method of beamforming transmission disclosed in the embodiment of the present invention may be applied to the processor 1502 or implemented by the processor 1502.
  • each step of the processing flow may be completed by an integrated logic circuit of hardware in the processor 1502 or an instruction in the form of software.
  • the processor 1502 can be a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and can implement or perform the embodiments of the present invention.
  • a general purpose processor can be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 1503, and the processor 1502 reads the information stored in the memory 1503, in conjunction with its hardware, to perform the steps of a beamforming transmission method.
  • the transceiver 1501 obtains feedback information of the terminal, where the feedback information of the terminal includes a sequence number of the m antenna ports selected by the terminal and a channel quality indicator.
  • the processor 1502 determines, according to the sequence numbers of the m antenna ports and the channel quality indicator, m first beamforming codewords, and according to the m first beamforming codewords, each polarization direction antenna group Performing beamforming and generating p antenna ports, wherein the polarization directions of the antennas in the polarization direction antenna group are the same;
  • the transceiver 1501 is further configured to send a second reference signal to the terminal on the p antenna ports, where p is equal to m or p is equal to 2m.
  • the feedback information of the terminal further includes a rank of a downlink channel state
  • the processor 1502 After transmitting the second reference signal to the terminal on the p antenna ports, the processor 1502 using a precoding encoded data channel according to the rank of the downlink channel state on the p antenna ports, and generating k antenna ports;
  • the processor 1502 transmits data to the terminal through the encoded data channel on the k antenna ports through the transceiver 1501; 0 ⁇ k ⁇ p.
  • the processor 1502 uses the pre-coded data channel of the SFBC, otherwise the processor 1502 uses a large time.
  • the processor 1502 uses the large delay cyclic diversity precoding encoded data channel, and when the rank of the downlink channel state is greater than 1, the processor 1502 uses the open loop space division multiplexing pre Encoded coded data channel.
  • the transceiver 1501 before acquiring the feedback information of the terminal, notifies the terminal of the number M of beamformings that the terminal needs to report;
  • the transceiver 1501 performs beamforming on the N dual-polarized antenna ports, generates L antenna ports, and transmits a first reference signal to the terminal on the L antenna port; N is a positive integer greater than 0.
  • embodiments of the present invention can be provided as a method, or a computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus is implemented in a block or blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing functions in one or more blocks of a flow or a flow and/or block diagram of a flowchart.

Abstract

一种波束赋形传输的方法及装置,该方法包括终端获取基站发送的所终端所需上报的波束赋形矢量的数目M以及第一参考信号,根据第一参考信号估计N个双极化天线端口上的下行信道状态,根据下行信道状态以及基站发送的所需上报的波束赋形矢量的数目M选出m个第一波束赋形码字,之后将选出的m个第一波束赋形码字以及下行信道状态的秩反馈给基站。终端根据下行信道状态以及基站发送的所需上报的波束赋形矢量的数目M选出m个第一波束赋形码字,并反馈给基站,可以充分利用信道的多径特性,基于信道多径的分集,可以在高速运动场景下,保持通信的鲁棒性。

Description

一种波束赋形传输的方法及装置 技术领域
本发明实施例涉及无线通信技术领域,尤其涉及一种波束赋形传输的方法及装置。
背景技术
LTE(Long Term evolution,长期演进)作为一项长期演进的标准,使得陆地移动通信网络的新技术研究与商用能够平滑的进行。在LTE的R12(第13个版本)中,引入了FD-MIMO(Full dimensional MIMO,全维度多输入输出天线)技术,即在基站端借助二维天线阵列,同时进行水平维度和垂直维度波束赋形,并据此进行相应的预编码码本增强、反馈流程增强等等。这些增强,显著地提升了小区容量。但二维波束赋形,造成R13预编码的码本较R12(第13个版本)而言显著增大,反馈流程也更加复杂,因此,R13的预编码反馈周期较长,往往也只能工作在相对静态的环境内。对于高速运动场景,定义一套类似的波束赋形传输方案,即开环-3D-MIMO方案,成为了LTE第14个版本讨论的一个重要议题。
LTE标准中,在R8(第5个版本)里,事实上就定义过一些针对于开环高速运动场景的传输模式,如传输模式2(TM2)SFBC(Spatial frequency block coding,空频块编码)发射分集和传输模式3(TM3)LD-CDD(Large delay cyclic delay diversity,大时延循环延迟分集)传输。由于信道估计依赖于小区级的参考信号,故而在上述两种传输模式中,最大只允许4个天线的信号发射,无法有效地进行波束赋形来提升小区容量。
而在现有技术中存在一种如图1所示的关于开环-FD-MIMO的方案,其具体步骤为:
步骤101,eNB(Evolved Node B,演进型基站)在N个双极化天线端口,即第一天线组上,发送第一参考信号,供终端估计下行信道状态。步骤102, 终端根据第一参考信号,估计下行信道状态,进而从第一码字集合中,选出一个第一波束赋形码字,并进而计算信道质量指示。步骤103,基站根据终端的反馈,决定第一波束赋形码字,对于每一极化方向天线组(N/2个天线端口)进行波束赋形,生成2个天线端口,即第二天线端口组;在这2个天线端口上,发送第二参考信号。步骤104,在2个天线端口上进行LD-CDD预编码(rank(秩)=2)或SFBC(rank=1),生成2个或1个新的端口,即第三天线端口组,用于进行数据传输。步骤105,终端根据第二参考信号,估计这两个端口上的下行信道状态,进而依据固有的LD-CDD或SFBC编码流程,解码数据信道。
通过上述步骤可以看出,现有技术中仅仅是针对每一极化方向天线组,进行了一组波束赋形,波束赋形的矢量来源于所述第一码字集合。当第一码字集合为R13码本时,基于R13码本的波束赋形仅仅生成了一个波束,这样无法较好地利用空间多径特征。即便使用R14的线性合并码本,由于合并权值固定,由此带来的多径随机相位合并,将加剧信道的衰落特性,违背了进行波束赋形的初衷。
发明内容
本发明实施例提供一种波束赋形传输的方法及装置,终端可以反馈多个波束赋形矢量,充分利用了信道的多径特性,基于信道多径的分集,可以在高速运动场景下,保持通信的鲁棒性。
第一方面,提供的一种波束赋形传输的方法,包括:
终端获取基站发送的终端所需上报的波束赋形矢量的数目M以及第一参考信号,第一参考信号为基站在N个双极化天线端口上发送的,M、N为大于0的整数;
终端根据第一参考信号估计N个双极化天线端口上的下行信道状态;
终端根据下行信道状态以及基站发送的所需上报的波束赋形矢量的数目M选出m个第一波束赋形码字;m≤M;
终端将选出的m个第一波束赋形码字以及下行信道状态的秩反馈给基站。
终端根据下行信道状态以及基站发送的所需上报的波束赋形矢量的数目M选出m个第一波束赋形码字,并反馈给基站,可以充分利用信道的多径特性,基于信道多径的分集,可以在高速运动场景下,保持通信的鲁棒性。
可选地,终端通过下述步骤确定选出的第一波束赋形码字的数量m:
终端将基站发送的所需上报的波束赋形矢量的数目M确定为选出的第一波束赋形码字的数量m。
可选地,终端通过下述步骤确定选出的第一波束赋形码字的数量m:
终端根据下行信道状态以及基站发送的所需上报的波束赋形矢量的数目M,确定出选出的第一波束赋形码字的数量m,使得m个最优的波束赋性矢量联合预编码后的信道质量最优;
终端将m的取值反馈给基站。
终端根据下行信道状态得到的m,并反馈给基站,可以使得m个最优的波束赋性矢量联合预编码后的信道质量最优,从而可以在高速运动场景下,保持通信的鲁棒性。
可选地,终端选出的m个第一波束赋形码字是从第一码字集合中选出,且第一码字集合为第一码字集合为长期演进LTE的第13个版本中秩为1的W1码本或为LTE的第13个版本中秩为1的W1码本中的部分码字经过线性加权相加后得到新的码本组成的集合;
第一码字集合为基站发送的限制集,限制集为基站从LTE的第13个版本中秩为1的W1码本中选出的码字组成的集合,或为基站从LTE的第13个版本中秩为1的W1码本中的部分码字经过线性加权相加后得到新的码本组成的集合中选出的码字组成的集合。
可选地,终端选出m个第一波束赋形码字,包括:
终端通过对基站的天线的发射角的估算,确定出m个信道质量最优的波 束赋形方向;
终端确定出m个信道质量最优的波束赋形方向的方向角度值,方向角度值为方向角度或方向角度的三角函数值。
可选地,在终端将选出的m个第一波束赋形码字以及下行信道状态的秩反馈给基站之后,还包括:
终端根据所选出的第一波束赋型码字,以及下行信道状态的秩,计算信道质量指示,并向基站反馈信道质量指示。
可选地,终端向基站反馈信道质量指示之后,还包括:
终端获取基站发送的第二参考信号以及传输的数据,数据是基站在k个天线端口上传输的;
终端根据第二参考信号估计在k个天线端口上的下行信道状态,并根据下行信道状态的秩使用预编码解码数据信道,k为大于0的正整数。
可选地,在终端将选出的m个第一波束赋形码字以及下行信道状态的秩反馈给基站之后,还包括:
终端获取基站发送的第二参考信号,第二参考信号为基站在p个天线端口上发送的;终端根据第二参考信号估计在p个天线端口上的下行信道状态,并根据该下行信道状态从p个天线端口中选出q个天线端口,以及计算出信道质量指示,将q个天线端口的序号和计算出的信道质量指示反馈给基站;q≤p,p等于m或p等于2m。
可选地,终端在将q个天线端口的序号和计算出的信道质量指示反馈给基站之后,还包括:
终端获取基站发送的第三参考信号以及传输的数据,数据是基站在k个天线端口上传输的;终端根据第三参考信号估计在k个天线端口上的下行信道状态,并根据下行信道状态的秩使用预编码解码数据信道。
可选地,根据下行信道状态的秩使用预编码解码数据信道,包括:
当下行信道状态的秩为1时,若k个天线端口的数量为偶数,则终端使用SFBC的预编码解码数据信道,否则终端使用大时延循环分集预编码解码 数据信道;当下行信道状态的秩大于1时,终端使用开环空分复用预编码解码数据信道;或
当下行信道状态的秩为1时,终端使用大时延循环分集预编码解码数据信道,当下行信道状态的秩大于1时,终端使用开环空分复用预编码解码数据信道。
第二方面,提供一种波束赋形传输的方法,包括:
基站获取终端的第一反馈信息,终端的第一反馈信息中包括终端选出的m个第一波束赋形码字;
基站根据终端选出的m个第一波束赋形码字,确定出基站的m个第二波束赋形码字;
基站根据基站的m个第二波束赋形码字对每个极化方向天线组进行波束赋形,并生成p个天线端口,极化方向天线组中的天线的极化方向相同;p等于m或p等于2m;
基站在p个天线端口上向终端发送第二参考信号。
基站根据终端反馈的选出的m个第一波束赋形码字,进行波束赋形,可以充分利用信道的多径特性,基于信道多径的分集,可以在高速运动场景下,保持通信的鲁棒性。
可选地,终端的第一反馈信息还包括下行信道状态的秩以及终端计算的信道质量指示;
在基站向终端发送第二参考信号之后,还包括:
基站在p个天线端口上根据下行信道状态的秩使用预编码编码数据信道,并生成k个天线端口;0<k≤p;
基站在k个天线端口上通过编码后的数据信道向终端传输数据。
可选地,终端的第一反馈信息还包括下行信道状态的秩;
在基站向终端发送第二参考信号之后,还包括:
基站获取终端的第二反馈信息,第二反馈信息中包括终端选出的q个天线端口的序号以及计算出的信道质量指示;
基站根据信道质量指示和q个天线端口的序号,确定出q个波束,并根据q个波束对每个极化方向天线组进行波束赋形,生成s个天线端口;基站在s个天线端口上发送第三参考信号;q≤p,s≤q。
可选地,在基站发送第三参考信号之后,还包括:
基站在s个天线端口上根据下行信道状态的秩使用预编码编码数据信道,生成k个天线端口;并在k个天线端口上通过编码后的数据信道向终端传输数据。
可选地,基站根据下行信道状态的秩使用预编码编码数据信道,包括:
当下行信道状态的秩为1时,若k个天线端口的数量为偶数,则基站使用SFBC的预编码编码数据信道,否则基站使用大时延循环分集预编码编码数据信道;当下行信道状态的秩大于1时,基站使用开环空分复用预编码编码数据信道;或
当下行信道状态的秩为1时,基站使用大时延循环分集预编码编码数据信道,当下行信道状态的秩大于1时,基站使用开环空分复用预编码编码数据信道。
可选地,在基站获取终端的第一反馈信息之前,还包括:
基站向终端通知终端所需上报的波束赋形的数目M;
基站在N个双极化天线端口上向终端发送第一参考信号;N为大于0的正整数。
可选地,在基站获取终端的第一反馈信息之前,还包括:
基站向终端发送限制集,限制集为基站从LTE的第13个版本中秩为1的W1码本中选出的码字组成的集合,或为基站从LTE的第13个版本中秩为1的W1码本中的部分码字经过线性加权相加后得到新的码本组成的集合中选出的码字组成的集合。
第三方面,提供一种波束赋形传输的方法,包括:
终端获取基站发送的终端所需上报的波束赋形矢量的数目M以及第一参考信号,第一参考信号为基站在L个天线端口上发送的,M、L为大于0的整 数,L>M;
终端根据第一参考信号估计L个天线端口上的下行信道状态;
终端根据下行信道状态以及基站发送的所需上报的波束赋形矢量的数目M,从L个天线端口中选出m个天线端口作为所需上报的波束赋型矢量,以及计算出信道质量指示,m≤M;
终端将m个天线端口的序号、信道质量指示以及下行信道状态的秩反馈给基站。
终端根据下行信道状态以及基站发送的所需上报的波束赋形矢量的数目M选出m个天线端口作为所需上报的波束赋型矢量,并反馈给基站,可以充分利用信道的多径特性,基于信道多径的分集,可以在高速运动场景下,保持通信的鲁棒性。
可选地,在终端将m个天线端口的序号、信道质量指示以及下行信道状态的秩反馈给基站之后,还包括:
终端获取基站发送的第二参考信号以及传输的数据,数据是基站在k个天线端口上传输的;
终端根据第二参考信号估计在k个天线端口上的下行信道状态,并根据下行信道状态的秩使用预编码解码数据信道,k为大于0的正整数。
可选地,终端根据下行信道状态的秩使用预编码解码数据信道,包括:
当下行信道状态的秩为1时,若k个天线端口的数量为偶数,则终端使用SFBC的预编码解码数据信道,否则终端使用大时延循环分集预编码解码数据信道;当下行信道状态的秩大于1时,终端使用开环空分复用预编码解码数据信道;或
当下行信道状态的秩为1时,终端使用大时延循环分集预编码解码数据信道,当下行信道状态的秩大于1时,终端使用开环空分复用预编码解码数据信道。
可选地,终端通过下述步骤确定从L个天线端口中选出的天线端口的数量m:
终端将基站发送的所需上报的波束赋形矢量的数目M确定为从L个天线端口中选出的天线端口的数量m。
可选地,终端通过下述步骤确定从L个天线端口中选出的天线端口的数量m:
终端根据下行信道状态以及基站发送的所需上报的波束赋形矢量的数目M,确定出选出的天线端口的数量m,使得m个最优的波束赋性矢量联合预编码后的信道质量最优;
终端将选出的m的值反馈给基站。
可选地,终端从L个天线端口中选出m个天线端口,包括:
终端直接从L个天线端口中选出m个天线端口;或
终端将L个天线端口进行线性加权,得到m个天线端口。
第四方面,提供一种波束赋形传输的方法,包括:
基站获取终端的反馈信息,终端的反馈信息中包括终端选出的m个天线端口的序号以及信道质量指示;
基站根据m个天线端口的序号以及信道质量指示,确定出m个第一波束赋形码字;
基站根据m个第一波束赋形码字对每个极化方向天线组进行波束赋形,并生成p个天线端口,极化方向天线组中的天线的极化方向相同;
基站在p个天线端口上向终端发送第二参考信号,p等于m或p等于2m。
基站根据终端反馈的m个天线端口,进行波束赋形,可以充分利用信道的多径特性,基于信道多径的分集,可以在高速运动场景下,保持通信的鲁棒性。
可选地,基站在p个天线端口上向终端发送第二参考信号之后,还包括:
终端的反馈信息还包括下行信道状态的秩;
基站在p个天线端口上根据下行信道状态的秩使用预编码编码数据信道,并生成k个天线端口;
基站在k个天线端口上通过编码后的数据信道向终端传输数据;0<k≤p。
可选地,基站根据下行信道状态的秩使用预编码编码数据信道,包括:
当下行信道状态的秩为1时,若k个天线端口的数量为偶数,则基站使用SFBC的预编码编码数据信道,否则基站使用大时延循环分集预编码编码数据信道;当下行信道状态的秩大于1时,基站使用开环空分复用预编码编码数据信道;或
当下行信道状态的秩为1时,基站使用大时延循环分集预编码编码数据信道,当下行信道状态的秩大于1时,基站使用开环空分复用预编码编码数据信道。
可选地,在基站获取终端的反馈信息之前,还包括:
基站向终端通知终端所需上报的波束赋形的数目M;
基站在N个双极化天线端口上进行波束赋形,生成L个天线端口,并在L天线端口上向终端发送第一参考信号;N为大于0的正整数。
第五方面,提供一种波束赋形传输的装置,包括:
收发单元,用于获取基站发送的终端所需上报的波束赋形矢量的数目M以及第一参考信号,第一参考信号为基站在N个双极化天线端口上发送的,M、N为大于0的整数;
处理单元,用于根据收发单元获取的第一参考信号估计N个双极化天线端口上的下行信道状态;并根据下行信道状态以及基站发送的所需上报的波束赋形矢量的数目M选出m个第一波束赋形码字;m≤M;
收发单元还用于将处理单元选出的m个第一波束赋形码字以及下行信道状态的秩反馈给基站。
可选地,处理单元具体用于:
将基站发送的所需上报的波束赋形矢量的数目M确定为选出的第一波束赋形码字的数量m。
可选地,处理单元具体用于:根据下行信道状态以及基站发送的所需上报的波束赋形矢量的数目M,确定出选出的第一波束赋形码字的数量m,使得m个最优的波束赋性矢量联合预编码后的信道质量最优;
通过收发单元将m的取值反馈给基站。
可选地,选出的m个第一波束赋形码字是从第一码字集合中选出的,且第一码字集合为第一码字集合为长期演进LTE的第13个版本中秩为1的W1码本或为LTE的第13个版本中秩为1的W1码本中的部分码字经过线性加权相加后得到新的码本组成的集合;
第一码字集合为基站发送的限制集,限制集为基站从LTE的第13个版本中秩为1的W1码本中选出的码字组成的集合,或为基站从LTE的第13个版本中秩为1的W1码本中的部分码字经过线性加权相加后得到新的码本组成的集合中选出的码字组成的集合。
可选地,处理单元具体用于:
通过对基站的天线的发射角的估算,确定出m个信道质量最优的波束赋形方向;
确定出m个信道质量最优的波束赋形方向的方向角度值,方向角度值为方向角度或方向角度的三角函数值。
可选地,处理单元还用于:
在将选出的m个第一波束赋形码字以及下行信道状态的秩反馈给基站之后,根据所选出的第一波束赋型码字,以及下行信道状态的秩,计算信道质量指示,并通过收发单元向基站反馈信道质量指示。
可选地,处理单元还用于:
在向基站反馈信道质量指示之后,通过收发单元获取基站发送的第二参考信号以及传输的数据,数据是基站在k个天线端口上传输的;
根据第二参考信号估计在k个天线端口上的下行信道状态,并根据下行信道状态的秩使用预编码解码数据信道,k为大于0的正整数。
可选地,处理单元还用于:
在将选出的m个第一波束赋形码字以及下行信道状态的秩反馈给基站之后,通过收发单元获取基站发送的第二参考信号,第二参考信号为基站在p 个天线端口上发送的;
根据第二参考信号估计在p个天线端口上的下行信道状态,并根据该下行信道状态从p个天线端口中选出q个天线端口,以及计算出信道质量指示,将q个天线端口的序号和计算出的信道质量指示反馈给基站;q≤p,p等于m或p等于2m。
可选地,处理单元还用于:
在将q个天线端口的序号和计算出的信道质量指示反馈给基站之后,通过收发单元获取基站发送的第三参考信号以及传输的数据,数据是基站在k个天线端口上传输的;
根据第三参考信号估计在k个天线端口上的下行信道状态,并根据下行信道状态的秩使用预编码解码数据信道。
可选地,处理单元具体用于:
当下行信道状态的秩为1时,若k个天线端口的数量为偶数,则使用SFBC的预编码解码数据信道,否则使用大时延循环分集预编码解码数据信道;当下行信道状态的秩大于1时,使用开环空分复用预编码解码数据信道;或
当下行信道状态的秩为1时,使用大时延循环分集预编码解码数据信道,当下行信道状态的秩大于1时,使用开环空分复用预编码解码数据信道。
第六方面,提供一种波束赋形传输的装置,包括:
收发单元,用于获取终端的第一反馈信息,终端的第一反馈信息中包括终端选出的m个第一波束赋形码字;
处理单元,用于根据终端选出的m个第一波束赋形码字,确定出基站的m个第二波束赋形码字;并根据基站的m个第二波束赋形码字对每个极化方向天线组进行波束赋形,并生成p个天线端口,极化方向天线组中的天线的极化方向相同;p等于m或p等于2m;
收发单元还用于在p个天线端口上向终端发送第二参考信号。
可选地,终端的第一反馈信息还包括下行信道状态的秩以及终端计算的信道质量指示;
处理单元还用于:
在向终端发送第二参考信号之后,在p个天线端口上根据下行信道状态的秩使用预编码编码数据信道,并生成k个天线端口;0<k≤p;
通过收发单元在k个天线端口上通过编码后的数据信道向终端传输数据。
可选地,终端的第一反馈信息还包括下行信道状态的秩;
处理单元还用于:
在向终端发送第二参考信号之后,通过收发单元获取终端的第二反馈信息,第二反馈信息中包括终端选出的q个天线端口的序号以及计算出的信道质量指示;
根据信道质量指示和q个天线端口的序号,确定出q个波束,并根据q个波束对每个极化方向天线组进行波束赋形,生成s个天线端口;在s个天线端口上发送第三参考信号;q≤p,s≤q。
可选地,处理单元还用于:
在发送第三参考信号之后,在s个天线端口上根据下行信道状态的秩使用预编码编码数据信道,生成k个天线端口;并通过收发单元在k个天线端口上通过编码后的数据信道向终端传输数据。
可选地,处理单元具体用于:
当下行信道状态的秩为1时,若k个天线端口的数量为偶数,则使用SFBC的预编码编码数据信道,否则使用大时延循环分集预编码编码数据信道;当下行信道状态的秩大于1时,使用开环空分复用预编码编码数据信道;或
当下行信道状态的秩为1时,使用大时延循环分集预编码编码数据信道,当下行信道状态的秩大于1时,使用开环空分复用预编码编码数据信道。
可选地,收发单元还用于:
在获取终端的第一反馈信息之前,向终端通知终端所需上报的波束赋形的数目M;
在N个双极化天线端口上向终端发送第一参考信号;N为大于0的正整数。
可选地,收发单元还用于:
在获取终端的第一反馈信息之前,向终端发送限制集,限制集为从LTE的第13个版本中秩为1的W1码本中选出的码字组成的集合,或为从LTE的第13个版本中秩为1的W1码本中的部分码字经过线性加权相加后得到新的码本组成的集合中选出的码字组成的集合。
第七方面,提供一种波束赋形传输的装置,包括:
收发单元,用于获取基站发送的终端所需上报的波束赋形矢量的数目M以及第一参考信号,第一参考信号为基站在L个天线端口上发送的,M、L为大于0的整数,L>M;
处理单元,用于根据第一参考信号估计L个天线端口上的下行信道状态;并根据下行信道状态以及基站发送的所需上报的波束赋形矢量的数目M,从L个天线端口中选出m个天线端口作为所需上报的波束赋型矢量,以及计算出信道质量指示,m≤M;
收发单元还用于将m个天线端口的序号、信道质量指示以及下行信道状态的秩反馈给基站。
可选地,处理单元还用于:
在将m个天线端口的序号、信道质量指示以及下行信道状态的秩反馈给基站之后,通过收发单元获取基站发送的第二参考信号以及传输的数据,数据是基站在k个天线端口上传输的;
根据第二参考信号估计在k个天线端口上的下行信道状态,并根据下行信道状态的秩使用预编码解码数据信道,k为大于0的正整数。
可选地,处理单元具体用于:
当下行信道状态的秩为1时,若k个天线端口的数量为偶数,则使用SFBC的预编码解码数据信道,否则使用大时延循环分集预编码解码数据信道;当下行信道状态的秩大于1时,使用开环空分复用预编码解码数据信道;或
当下行信道状态的秩为1时,使用大时延循环分集预编码解码数据信道,当下行信道状态的秩大于1时,使用开环空分复用预编码解码数据信道。
可选地,处理单元具体用于:
将基站发送的所需上报的波束赋形矢量的数目M确定为从L个天线端口中选出的天线端口的数量m。
可选地,处理单元具体用于:
根据下行信道状态以及基站发送的所需上报的波束赋形矢量的数目M,确定出选出的天线端口的数量m,使得m个最优的波束赋性矢量联合预编码后的信道质量最优;
通过收发单元将选出的m的值反馈给基站。
可选地,处理单元具体用于:
直接从L个天线端口中选出m个天线端口;或
将L个天线端口进行线性加权,得到m个天线端口。
第八方面,提供一种波束赋形传输的装置,包括:
收发单元,用于获取终端的反馈信息,终端的反馈信息中包括终端选出的m个天线端口的序号以及信道质量指示;
处理单元,用于根据m个天线端口的序号以及信道质量指示,确定出m个第一波束赋形码字;并根据m个第一波束赋形码字对每个极化方向天线组进行波束赋形,并生成p个天线端口,极化方向天线组中的天线的极化方向相同;
收发单元还用于在p个天线端口上向终端发送第二参考信号,p等于m或p等于2m。
可选地,处理单元还用于:
终端的反馈信息还包括下行信道状态的秩;
在p个天线端口上向终端发送第二参考信号之后,在p个天线端口上根据下行信道状态的秩使用预编码编码数据信道,并生成k个天线端口;
通过收发单元在k个天线端口上通过编码后的数据信道向终端传输数据;0<k≤p。
可选地,处理单元具体用于:
当下行信道状态的秩为1时,若k个天线端口的数量为偶数,则使用SFBC的预编码编码数据信道,否则使用大时延循环分集预编码编码数据信道;当下行信道状态的秩大于1时,使用开环空分复用预编码编码数据信道;或
当下行信道状态的秩为1时,使用大时延循环分集预编码编码数据信道,当下行信道状态的秩大于1时,使用开环空分复用预编码编码数据信道。
可选地,收发单元还用于:
在获取终端的反馈信息之前,向终端通知终端所需上报的波束赋形的数目M;
在N个双极化天线端口上进行波束赋形,生成L个天线端口,并在L天线端口上向终端发送第一参考信号;N为大于0的正整数。
第九方面,提供一种波束赋形传输的设备,包括:收发器、处理器和存储器;
收发器获取基站发送的终端所需上报的波束赋形矢量的数目M以及第一参考信号,第一参考信号为基站在N个双极化天线端口上发送的,M、N为大于0的整数;
处理单元器根据收发器获取的第一参考信号估计N个双极化天线端口上的下行信道状态;并根据下行信道状态以及基站发送的所需上报的波束赋形矢量的数目M选出m个第一波束赋形码字;m≤M;
收发器将处理器选出的m个第一波束赋形码字以及下行信道状态的秩反馈给基站。
可选地,处理器将基站发送的所需上报的波束赋形矢量的数目M确定为选出的第一波束赋形码字的数量m。
可选地,处理器根据下行信道状态以及基站发送的所需上报的波束赋形矢量的数目M,确定出选出的第一波束赋形码字的数量m,使得m个最优的波束赋性矢量联合预编码后的信道质量最优;
处理器通过收发器将m的取值反馈给基站。
可选地,选出的m个第一波束赋形码字是从第一码字集合中选出的,且 第一码字集合为第一码字集合为长期演进LTE的第13个版本中秩为1的W1码本或为LTE的第13个版本中秩为1的W1码本中的部分码字经过线性加权相加后得到新的码本组成的集合;
第一码字集合为基站发送的限制集,限制集为基站从LTE的第13个版本中秩为1的W1码本中选出的码字组成的集合,或为基站从LTE的第13个版本中秩为1的W1码本中的部分码字经过线性加权相加后得到新的码本组成的集合中选出的码字组成的集合。
可选地,处理器通过对基站的天线的发射角的估算,确定出m个信道质量最优的波束赋形方向;并确定出m个信道质量最优的波束赋形方向的方向角度值,方向角度值为方向角度或方向角度的三角函数值。
可选地,在将选出的m个第一波束赋形码字以及下行信道状态的秩反馈给基站之后,处理器根据所选出的第一波束赋型码字,以及下行信道状态的秩,计算信道质量指示,并通过收发器向基站反馈信道质量指示。
可选地,在向基站反馈信道质量指示之后,处理器通过收发器获取基站发送的第二参考信号以及传输的数据,数据是基站在k个天线端口上传输的;根据第二参考信号估计在k个天线端口上的下行信道状态,并根据下行信道状态的秩使用预编码解码数据信道,k为大于0的正整数。
可选地,在将选出的m个第一波束赋形码字以及下行信道状态的秩反馈给基站之后,处理器通过收发器获取基站发送的第二参考信号,第二参考信号为基站在p个天线端口上发送的;
处理器根据第二参考信号估计在p个天线端口上的下行信道状态,并根据该下行信道状态从p个天线端口中选出q个天线端口,以及计算出信道质量指示,将q个天线端口的序号和计算出的信道质量指示反馈给基站;q≤p,p等于m或p等于2m。
可选地,在将q个天线端口的序号和计算出的信道质量指示反馈给基站之后,处理器通过收发器获取基站发送的第三参考信号以及传输的数据,数 据是基站在k个天线端口上传输的;
处理器根据第三参考信号估计在k个天线端口上的下行信道状态,并根据下行信道状态的秩使用预编码解码数据信道。
可选地,当下行信道状态的秩为1时,若k个天线端口的数量为偶数,则处理器使用SFBC的预编码解码数据信道,否则处理器使用大时延循环分集预编码解码数据信道;当下行信道状态的秩大于1时,处理器使用开环空分复用预编码解码数据信道;或
当下行信道状态的秩为1时,处理器使用大时延循环分集预编码解码数据信道,当下行信道状态的秩大于1时,处理器使用开环空分复用预编码解码数据信道。
第十方面,提供一种波束赋形传输的设备,包括:收发器、处理器和存储器;
收发器获取终端的第一反馈信息,终端的第一反馈信息中包括终端选出的m个第一波束赋形码字;
处理器根据终端选出的m个第一波束赋形码字,确定出基站的m个第二波束赋形码字;并根据基站的m个第二波束赋形码字对每个极化方向天线组进行波束赋形,并生成p个天线端口,极化方向天线组中的天线的极化方向相同;p等于m或p等于2m;
收发器在p个天线端口上向终端发送第二参考信号。
可选地,终端的第一反馈信息还包括下行信道状态的秩以及终端计算的信道质量指示;
在向终端发送第二参考信号之后,处理器在p个天线端口上根据下行信道状态的秩使用预编码编码数据信道,并生成k个天线端口;0<k≤p;通过收发器在k个天线端口上通过编码后的数据信道向终端传输数据。
可选地,终端的第一反馈信息还包括下行信道状态的秩;
在向终端发送第二参考信号之后,处理器通过收发器获取终端的第二反馈信息,第二反馈信息中包括终端选出的q个天线端口的序号以及计算出的 信道质量指示;
处理器根据信道质量指示和q个天线端口的序号,确定出q个波束,并根据q个波束对每个极化方向天线组进行波束赋形,生成s个天线端口;通过收发器在s个天线端口上发送第三参考信号;q≤p,s≤q。
可选地,在发送第三参考信号之后,处理器在s个天线端口上根据下行信道状态的秩使用预编码编码数据信道,生成k个天线端口;并通过收发器在k个天线端口上通过编码后的数据信道向终端传输数据。
可选地,当下行信道状态的秩为1时,若k个天线端口的数量为偶数,则处理器使用SFBC的预编码编码数据信道,否则处理器使用大时延循环分集预编码编码数据信道;当下行信道状态的秩大于1时,处理器使用开环空分复用预编码编码数据信道;或
当下行信道状态的秩为1时,处理器使用大时延循环分集预编码编码数据信道,当下行信道状态的秩大于1时,处理器使用开环空分复用预编码编码数据信道。
可选地,在获取终端的第一反馈信息之前,收发器向终端通知终端所需上报的波束赋形的数目M;在N个双极化天线端口上向终端发送第一参考信号;N为大于0的正整数。
可选地,在获取终端的第一反馈信息之前,收发器向终端发送限制集,限制集为从LTE的第13个版本中秩为1的W1码本中选出的码字组成的集合,或为从LTE的第13个版本中秩为1的W1码本中的部分码字经过线性加权相加后得到新的码本组成的集合中选出的码字组成的集合。
第十一方面,提供一种波束赋形传输的设备,包括:收发器、处理器和存储器;
收发器获取基站发送的终端所需上报的波束赋形矢量的数目M以及第一参考信号,第一参考信号为基站在L个天线端口上发送的,M、L为大于0的整数,L>M;
处理器根据第一参考信号估计L个天线端口上的下行信道状态;并根据 下行信道状态以及基站发送的所需上报的波束赋形矢量的数目M,从L个天线端口中选出m个天线端口作为所需上报的波束赋型矢量,以及计算出信道质量指示,m≤M;
收发器还用于将m个天线端口的序号、信道质量指示以及下行信道状态的秩反馈给基站。
可选地,在将m个天线端口的序号、信道质量指示以及下行信道状态的秩反馈给基站之后,处理器通过收发器获取基站发送的第二参考信号以及传输的数据,数据是基站在k个天线端口上传输的;
处理器根据第二参考信号估计在k个天线端口上的下行信道状态,并根据下行信道状态的秩使用预编码解码数据信道,k为大于0的正整数。
可选地,当下行信道状态的秩为1时,若k个天线端口的数量为偶数,则处理器使用SFBC的预编码解码数据信道,否则处理器使用大时延循环分集预编码解码数据信道;当下行信道状态的秩大于1时,处理器使用开环空分复用预编码解码数据信道;或
当下行信道状态的秩为1时,处理器使用大时延循环分集预编码解码数据信道,当下行信道状态的秩大于1时,处理器使用开环空分复用预编码解码数据信道。
可选地,处理器将基站发送的所需上报的波束赋形矢量的数目M确定为从L个天线端口中选出的天线端口的数量m。
可选地,处理器根据下行信道状态以及基站发送的所需上报的波束赋形矢量的数目M,确定出选出的天线端口的数量m,使得m个最优的波束赋性矢量联合预编码后的信道质量最优;
处理器通过收发器将选出的m的值反馈给基站。
可选地,处理器直接从L个天线端口中选出m个天线端口;或
处理器将L个天线端口进行线性加权,得到m个天线端口。
第十二方面,提供一种波束赋形传输的设备,包括:收发器、处理器和存储器;
收发器获取终端的反馈信息,终端的反馈信息中包括终端选出的m个天线端口的序号以及信道质量指示;
处理器根据m个天线端口的序号以及信道质量指示,确定出m个第一波束赋形码字;并根据m个第一波束赋形码字对每个极化方向天线组进行波束赋形,并生成p个天线端口,极化方向天线组中的天线的极化方向相同;
收发器还用于在p个天线端口上向终端发送第二参考信号,p等于m或p等于2m。
可选地,终端的反馈信息还包括下行信道状态的秩;
在p个天线端口上向终端发送第二参考信号之后,处理器在p个天线端口上根据下行信道状态的秩使用预编码编码数据信道,并生成k个天线端口;
处理器通过收发器在k个天线端口上通过编码后的数据信道向终端传输数据;0<k≤p。
可选地,当下行信道状态的秩为1时,若k个天线端口的数量为偶数,则处理器使用SFBC的预编码编码数据信道,否则处理器使用大时延循环分集预编码编码数据信道;当下行信道状态的秩大于1时,处理器使用开环空分复用预编码编码数据信道;或
当下行信道状态的秩为1时,处理器使用大时延循环分集预编码编码数据信道,当下行信道状态的秩大于1时,处理器使用开环空分复用预编码编码数据信道。
可选地,在获取终端的反馈信息之前,收发器向终端通知终端所需上报的波束赋形的数目M;
收发器在N个双极化天线端口上进行波束赋形,生成L个天线端口,并在L天线端口上向终端发送第一参考信号;N为大于0的正整数。
本发明实施例表明,终端获取基站发送的所终端所需上报的波束赋形矢量的数目M以及第一参考信号,根据第一参考信号估计N个双极化天线端口上的下行信道状态,根据下行信道状态以及基站发送的所需上报的波束赋形矢量的数目M选出m个第一波束赋形码字,之后将选出的m个第一波束赋 形码字以及下行信道状态的秩反馈给基站。终端根据下行信道状态以及基站发送的所需上报的波束赋形矢量的数目M选出m个第一波束赋形码字,并反馈给基站,可以充分利用信道的多径特性,基于信道多径的分集,可以在高速运动场景下,保持通信的鲁棒性。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍。
图1为现有技术中一种波束赋形传输的流程示意图;
图2为本发明实施例提供的一种系统架构的示意图;
图3为本发明实施例提供的一种波束赋形传输的方法的流程示意图;
图4为本发明实施例提供的一种波束赋形传输的方法的流程示意图;
图5为本发明实施例提供的一种波束赋形传输的方法的流程示意图;
图6为本发明实施例提供的一种波束赋形传输的方法的流程示意图;
图7为本发明实施例提供的一种波束赋形传输的方法的流程示意图;
图8为本发明实施例提供的一种波束赋形传输的装置的结构示意图;
图9为本发明实施例提供的一种波束赋形传输的装置的结构示意图;
图10为本发明实施例提供的一种波束赋形传输的装置的结构示意图;
图11为本发明实施例提供的一种波束赋形传输的装置的结构示意图;
图12为本发明实施例提供的一种波束赋形传输的设备的结构示意图;
图13为本发明实施例提供的一种波束赋形传输的设备的结构示意图;
图14为本发明实施例提供的一种波束赋形传输的设备的结构示意图;
图15为本发明实施例提供的一种波束赋形传输的设备的结构示意图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图及实施例对本发明作进一步地详细描述。
图2示出了本发明实施例所适用的一种系统架构,基于该系统架构可实现波束赋形传输的流程,本发明实施例提供的波束赋形传输的系统架构中包括LTE(Long Term Evolution,长期演进)基站201和终端202。
在本发明实施例中,终端202可以为向用户提供语音和/或数据连通性的设备(device),包括无线终端。无线终端可以是具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备,经无线接入网与一个或多个核心网进行通信的移动终端。例如,无线终端可以是移动电话(或称为“蜂窝”电话)和具有移动终端的计算机。又如,无线终端也可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动设备。再如,无线终端可以为移动站(Mobile Station)、接入点(Access point)、或用户设备(User Equipment,简称UE)的一部分。
终端202可以通过空中接口与基站201进行通信,实现波束赋形传输的流程。
基于上述描述,图3示出了本发明实施例提供的一种波束赋形传输的方法的流程,该流程可以由波束赋形传输的装置执行。
如图3所示,该流程具体步骤包括:
步骤301,终端获取基站发送的终端所需上报的波束赋形矢量的数目M以及第一参考信号。
步骤302,终端根据第一参考信号估计N个双极化天线端口上的下行信道状态;并根据下行信道状态以及基站发送的所需上报的波束赋形矢量的数目M选出m个第一波束赋形码字。
步骤303,终端将选出的m个第一波束赋形码字以及下行信道状态的秩反馈给基站。
步骤304,基站获取终端的第一反馈信息。
步骤305,基站根据终端选出的m个第一波束赋形码字,确定出基站的m个第二波束赋形码字;并根据基站的m个第二波束赋形码字对每个极化方向天线组进行波束赋形,并生成p个天线端口,极化方向天线组中的天线的 极化方向相同。
步骤306,基站在p个天线端口上向终端发送第二参考信号。
步骤307,终端获取基站发送的第二参考信号以及传输的数据,并根据第二参考信号估计在k个天线端口上的下行信道状态,并根据下行信道状态的秩使用预编码解码数据信道。
在步骤301中,该第一参考信号为基站在N个双极化天线端口上发送的,其中,M、N为大于0的整数。
在该步骤301之前,基站还需要向终端通知该终端所需上报的波束赋形的数目M,以及在在N个双极化天线端口上向终端发送第一参考信号。基站在计算该终端所需上报的波束赋形的数目M时,可以依据天线的极化方向来确定,比如,当两个极化方向使用不同的波束赋形矢量时,可以确定出该M的最小值为2,当两个极化方向使用相同的波束赋形矢量时,可以确定出该M的最小值为1。基站可以将该M发送给终端,以使终端上报波束赋形矢量的数目。该波束赋形的数目M是基站通过系统消息或无线资源控制消息发送的。
在步骤302中,终端在获取到基站发送的第一参考信号和所需上报的波束赋形矢量之后,终端根据该第一参考信号估计出在该N个双极化天线端口上的下行信道状态,然后根据下行信道状态以及基站发送的所需上报的波束赋形矢量的数目M选出m个第一波束赋形码字,该m≤M。
终端在确定需要选出的第一波束赋形码字的数量m的过程中,可以通过下述方式来确定该m值。
方式一
终端将基站发送的所需上报的波束赋形矢量的数目M确定为选出的第一波束赋形码字的数量m,也就是说,基站让终端上报多少波束赋形矢量,终端不进行处理,直接向基站上报基站所需的波束赋形数量的数量。
方式二
终端根据估计的下行信道状态以及基站发送的所需上报的波束赋形矢量的数目M,确定出选出的第一波束赋形码字的数量m,使得m个最优的波束 赋性矢量联合预编码后的信道质量最优,终端将该m的取值反馈给基站。终端依据下行信道状态,将信道质量最优的下行信道的数量确定为需要选出的第一波束赋形码字的数量m,用以提高波束赋形传输的质量。
基于上述两种确定m值的方式,终端选出m个第一波束赋形码字,具体的,终端选出的m个第一波束赋形码字是从第一码字集合中选出,该第一码字集合为第一码字集合为LTE的第13个版本和第14个版本中秩为1的W1码本或为LTE的第13个版本和第14个版本中秩为1的W1码本中的部分码字经过线性加权相加后得到新的码本组成的集合。该LTE的第13个版本和第14个版本中秩为1的W1码本可以是LTE的第13个版本到第14个版本里,定义为{8,12,16,20,24,28,32}秩为1的W1码本。
相应地,该第一码字集合还可以是基站发送的限制集,该限制集可以为基站从LTE的第13个版本和第14个版本中秩为1的W1码本中选出的码字组成的集合,也可以是基站从LTE的第13个版本中秩为1的W1码本中的部分码字经过线性加权相加后得到新的码本组成的集合中选出的码字组成的集合。基站对LTE的第13个版本和第14个版本中秩为1的W1码本中的码字进行排序标号,然后在排序标号之后的码字集合中选出码字组成限制集。该LTE的第13个版本和第14个版本中秩为1的W1码本可以是LTE的第13个版本到第14个版本里,定义为{8,12,16,20,24,28,32}秩为1的W1码本。
为了使得终端选出的第一波束赋形码字更优,终端在选出m个第一波束赋形码字时,可以通过对基站的天线的发射角进行估算,确定出m个信道质量最优的波束赋形方向,然后再确定出该m个信道质量最优的波束赋形方向的方向角度值,该方向角度值可以为方向角度或者是方向角度的三角函数值,如正弦值、正切值,终端将该m个信道质量最优的波束赋形方向的方向角度值作为反馈参数反馈给基站,以供基站进行波束赋形。
可选地,在步骤303终端将选出的m个第一波束赋形码字以及下行信道状态的秩反馈给基站之后,终端根据所选出的第一波束赋型码字,以及下行信道状态的秩,计算信道质量指示,并向基站反馈信道质量指示。当终端向 基站反馈信道质量指示之后,终端就可以获取基站发送的第二参考信号以及传输的数据,该数据是基站在k个天线端口上传输的。终端可以根据该第二参考信号估计在k个天线端口上的下行信道状态,然后根据该下行信道状态的秩使用预编码解码数据信道,其中,k为大于0的正整数,0<k≤p。
相应地,在步骤303终端将选出的m个第一波束赋形码字以及下行信道状态的秩反馈给基站之后,终端获取基站发送的第二参考信号。该第二参考信号为基站在p个天线端口上发送的,之后终端根据第二参考信号估计在p个天线端口上的下行信道状态,并根据该下行信道状态从该p个天线端口中选出q个天线端口,以及计算出信道质量指示,将q个天线端口的序号和计算出的信道质量指示反馈给基站,其中q≤p,基站在p个天线端口上发送第二参考信号时,基站需要确定该p的值,该p的值与终端反馈的第一波束赋形矢量的数量m有关。比如,当天线的两个极化方向使用不同的波束赋形矢量时,p=m,当天线的两个极化方向使用相同的波束赋形矢量时,p=2m。进一步地,终端在将q个天线端口的序号和计算出的信道质量指示反馈给基站之后,终端获取基站发送的第三参考信号以及传输的数据,该数据是基站在k个天线端口上传输的,基站是在这k个天线端口上根据终端反馈的下行信道状态的秩使用预编码编码数据信道之后,在编码后的数据信道上向终端传输数据。终端在得到该基站传输的数据之后,根据接收到的第三参考信号估计出在这k个天线端口上的下行信道状态,然后根据该下行信道状态的秩使用预编码解码数据信道。
为了在进行波束赋形传输时,充分利用信道多径特性,使得终端在高速运动场景下,能够灵活地进行分集和复用。终端在根据下行信道状态的秩使用预编码解码数据信道时,可以通过下述几种方式来解码数据信道:
方式一
当下行信道状态的秩为1时,若k个天线端口的数量为偶数,则终端使用SFBC的预编码解码数据信道;
当下行信道状态的秩大于1时,终端使用开环空分复用预编码解码数据 信道,比如,终端使用层1的LD-CDD预编码。
方式二
下行信道状态的秩为1时,若k个天线端口的数量为奇数,则终端使用大时延循环分集预编码解码数据信道,比如,终端使用层1的LD-CDD预编码;
当下行信道状态的秩大于1时,终端使用开环空分复用预编码解码数据信道,比如,终端使用LD-CDD预编码。
方式三
当下行信道状态的秩为1时,终端使用大时延循环分集预编码解码数据信道,比如,终端使用层1的LD-CDD预编码;
当下行信道状态的秩大于1时,终端使用开环空分复用预编码解码数据信道,比如,终端使用LD-CDD预编码。
在步骤305中,基站在获取终端的第一反馈信息之后,该第一反馈信息包括终端选出的m个第一波束赋形码字,基站根据终端选出的m个第一波束赋形码字确定出基站的m个第二波束赋形码字,然后依据该基站的m个第二波束赋形码字对每个极化方向天线组进行波束赋形,并生成p个天线端口,每个极化方向天线组中的天线的极化方向相同,每组中有N/2个天线端口。其中,该p的值与终端反馈的第一波束赋形矢量的数量m有关。比如,当天线的两个极化方向使用不同的波束赋形矢量时,p=m,当天线的两个极化方向使用相同的波束赋形矢量时,p=2m。基站在这p个天线端口上向终端发送第二参考信号。
可选地,上述基站获取的终端的第一反馈信息中还包括下行信道状态的秩以及终端计算的信道质量指示,则在基站向终端发送第二参考信号之后,基站在这p个天线端口生根据下行信道状态的秩,使用预编码编码数据信道,并生成k个天线端口,然后在这k个天线端口上通过编码后的数据信道向终端传输数据。
相应地,若基站获取的终端的第一反馈信息中还包括下行信道状态的秩, 则在基站向终端发送第二参考信号之后,基站获取终端的第二反馈信息,该第二反馈信息中会包括终端选出的q个天线端口的序号以及计算出的信道质量指示。该第二反馈信息是终端在根据接收到的基站发送的第二参考信号估计在p个天线端口上的下行信道状态,并根据该下行信道状态从该p个天线端口中选出q个天线端口,计算信道质量指示之后发送的。
基站根据获取的信道质量指示和q个天线端口的序号,确定出q个波束,并根据该q个波束对每个极化方向天线组进行波束赋形,生成s个天线端口;基于该s个天线端口,基站在这s个天线端口上发送第三参考信号,其中q≤p,s≤q。该第三参考信号可供终端进行下行信道状态估计。
为了充分利用信道多径特性,在发送第三参考信号之后,基站在这s个天线端口上根据下行信道状态的秩使用预编码编码数据信道,生成k个天线端口,并在这k个天线端口上通过编码后的数据信道向终端传输数据,终端可以在这k个天线端口上根据下行信道状态的秩使用预编码解码数据信道,得到基站传输的数据。
具体的,基站在根据下行信道状态的秩使用预编码编码数据信道时,可以通过下述几种方式来编码数据信道:
方式一
当下行信道状态的秩为1时,若k个天线端口的数量为偶数,则基站使用SFBC的预编码编码数据信道;
当下行信道状态的秩大于1时,基站使用开环空分复用预编码编码数据信道,比如,基站使用层1的LD-CDD预编码。
方式二
下行信道状态的秩为1时,若k个天线端口的数量为奇数,则基站使用大时延循环分集预编码编码数据信道,比如,基站使用层1的LD-CDD预编码;
当下行信道状态的秩大于1时,基站使用开环空分复用预编码编码数据信道,比如,基站使用LD-CDD预编码。
方式三
当下行信道状态的秩为1时,基站使用大时延循环分集预编码编码数据信道,比如,基站使用层1的LD-CDD预编码;
当下行信道状态的秩大于1时,基站使用开环空分复用预编码编码数据信道,比如,基站使用LD-CDD预编码。
在上述实施例中,终端获取基站发送的所终端所需上报的波束赋形矢量的数目M以及第一参考信号,根据第一参考信号估计N个双极化天线端口上的下行信道状态,根据下行信道状态以及基站发送的所需上报的波束赋形矢量的数目M选出m个第一波束赋形码字,之后将选出的m个第一波束赋形码字以及下行信道状态的秩反馈给基站。终端根据下行信道状态以及基站发送的所需上报的波束赋形矢量的数目M选出m个第一波束赋形码字,并反馈给基站,可以充分利用信道的多径特性,基于信道多径的分集,可以在高速运动场景下,保持通信的鲁棒性,较为灵活地实现多用户配对和空分复用。
基于相同的技术构思,图4示出了本发明实施例提供的一种波束赋形传输的方法的流程,该流程可以由波束赋形传输的装置执行。
如图4所示,该流程具体步骤包括:
步骤401,终端获取基站发送的终端所需上报的波束赋形矢量的数目M以及第一参考信号。
步骤402,终端根据第一参考信息估计L个天线端口上的下行信道状态;并根据下行信道状态以及基站发送的所需上报的波束赋形矢量的数目M,从L个天线端口中选出m个天线端口作为所需上报的波束赋型矢量,以及计算出信道质量指示。
步骤403,终端将m个天线端口的序号、信道质量指示以及下行信道状态的秩反馈给基站。
步骤404,基站获取终端的反馈信息。
步骤405,基站根据m个天线端口的序号以及信道质量指示,确定出m个第一波束赋形码字;并根据m个第一波束赋形码字对每个极化方向天线组 进行波束赋形,并生成p个天线端口。
步骤406,基站在p个天线端口上向终端发送第二参考信。
步骤407,终端获取基站发送的第二参考信号以及传输的数据,并根据第二参考信号估计在k个天线端口上的下行信道状态,并根据下行信道状态的秩使用预编码解码数据信道。
在步骤401中,该第一参考信号为基站在L天线端口上发送的,其中,M、L为大于0的整数,L>M。
在该步骤401之前,基站还需要向终端通知该终端所需上报的波束赋形的数目M,基站在N个双极化天线端口上进行波束赋形,生成L个天线端口,并在L天线端口上向终端发送第一参考信号,其中,N为大于0的正整数。基站在计算该终端所需上报的波束赋形的数目M时,可以依据天线的极化方向来确定,比如,当两个极化方向使用不同的波束赋形矢量时,可以确定出该M的最小值为2,当两个极化方向使用相同的波束赋形矢量时,可以确定出该M的最小值为1。基站可以将该M发送给终端,以使终端上报波束赋形矢量的数目。该波束赋形的数目M是基站通过系统消息或无线资源控制消息发送的。
在步骤402中,终端在获取到基站发送的第一参考信号和所需上报的波束赋形矢量之后,终端根据该第一参考信息估计这L个天线端口上的下行信道状态,然后根据下行信道状态以及基站发送的所需上报的波束赋形矢量的数目M,从这L个天线端口中选出m个天线端口作为所需上报的波束赋型矢量,以及计算出信道质量指示。
终端在确定需要从L个天线端口中选出的天线端口的数量m的过程中,可以通过下述方式来确定该m值。
方式一
终端将基站发送的所需上报的波束赋形矢量的数目M确定为从L个天线端口中选出的天线端口的数量m,也就是说,基站让终端上报多少波束赋形矢量,终端不进行处理,直接向基站上报从L个天线端口中选出的天线端口 的数量。
方式二
终端根据估计的下行信道状态以及基站发送的所需上报的波束赋形矢量的数目M,确定出选出的天线端口的数量m,使得在m个天线端口上使用预编码后的信道质量最优,终端将该m的取值反馈给基站。其中,0<m≤M,终端依据下行信道状态,将信道质量最优的下行信道的数量确定为需要选出的天线端口的数量m,用以提高波束赋形传输的质量。
基于上述两种确定m值的方式,终端在选出m个天线端口时,终端可以直接从L个天线端口中选出m个天线端口,也就是说是随机从L个天线端口中选出m个天线端口。或者,终端可以将L个天线端口进行线性加权,得到m个天线端口。
在步骤403终端将m个天线端口的序号、信道质量指示以及下行信道状态的秩反馈给基站之后,在步骤407中,终端获取基站发送的第二参考信号以及传输的数据,该数据是基站在k个天线端口上传输的,然后终端根据第二参考信号估计在k个天线端口上的下行信道状态,并根据下行信道状态的秩使用预编码解码数据信道。该k个天线端口是基站根据m个第一波束赋形码字对每个极化方向天线组进行波束赋形之后生成p个天线端口,并在p个天线端口上根据下行信道状态的秩使用预编码编码数据信道之后生成的k个天线端口。k为大于0的正整数,0<k≤p。
为了在进行波束赋形传输时,充分利用信道多径特性,使得终端在高速运动场景下,能够灵活地进行分集和复用。终端在根据下行信道状态的秩使用预编码解码数据信道时,可以通过下述几种方式来解码数据信道:
方式一
当下行信道状态的秩为1时,若k个天线端口的数量为偶数,则终端使用SFBC的预编码解码数据信道;
当下行信道状态的秩大于1时,终端使用开环空分复用预编码解码数据信道,比如,终端使用层1的LD-CDD预编码。
方式二
下行信道状态的秩为1时,若k个天线端口的数量为奇数,则终端使用大时延循环分集预编码解码数据信道,比如,终端使用层1的LD-CDD预编码;
当下行信道状态的秩大于1时,终端使用开环空分复用预编码解码数据信道,比如,终端使用LD-CDD预编码。
方式三
当下行信道状态的秩为1时,终端使用大时延循环分集预编码解码数据信道,比如,终端使用层1的LD-CDD预编码;
当下行信道状态的秩大于1时,终端使用开环空分复用预编码解码数据信道,比如,终端使用LD-CDD预编码。
在步骤405中,基站在获取终端的反馈信息之后,该终端的反馈信息中包括终端选出的m个天线端口的序号以及信道质量指示,基站根据m个天线端口的序号以及信道质量指示,确定出m个第一波束赋形码字,并根据该m个第一波束赋形码字对每个极化方向天线组进行波束赋形,并生成p个天线端口。每个极化方向天线组中的天线的极化方向相同,每组中有N/2个天线端口。其中,该p的值与终端反馈的第一波束赋形矢量的数量m有关。比如,当天线的两个极化方向使用不同的波束赋形矢量时,p=m,当天线的两个极化方向使用相同的波束赋形矢量时,p=2m。基站在这p个天线端口上向终端发送第二参考信号。
可选地,上述终端的反馈信息中还包括下行信道状态的秩,基站在这p个天线端口上根据下行信道状态的秩使用预编码编码数据信道,并生成k个天线端口,然后基站在k个天线端口上通过编码后的数据信道向终端传输数据。
具体的,基站在根据下行信道状态的秩使用预编码编码数据信道时,可以通过下述几种方式来编码数据信道:
方式一
当下行信道状态的秩为1时,若k个天线端口的数量为偶数,则基站使用SFBC的预编码编码数据信道;
当下行信道状态的秩大于1时,基站使用开环空分复用预编码编码数据信道,比如,基站使用层1的LD-CDD预编码。
方式二
下行信道状态的秩为1时,若k个天线端口的数量为奇数,则基站使用大时延循环分集预编码编码数据信道,比如,基站使用层1的LD-CDD预编码;
当下行信道状态的秩大于1时,基站使用开环空分复用预编码编码数据信道,比如,基站使用LD-CDD预编码。
方式三
当下行信道状态的秩为1时,基站使用大时延循环分集预编码编码数据信道,比如,基站使用层1的LD-CDD预编码;
当下行信道状态的秩大于1时,基站使用开环空分复用预编码编码数据信道,比如,基站使用LD-CDD预编码。
在上述实施例中,终端获取基站发送的终端所需上报的波束赋形矢量的数目M以及第一参考信号,根据第一参考信息估计L个天线端口上的下行信道状态,根据下行信道状态以及基站发送的所需上报的波束赋形矢量的数目M,从L个天线端口中选出m个天线端口作为所需上报的波束赋型矢量,以及计算出信道质量指示,将m个天线端口的序号、信道质量指示以及下行信道状态的秩反馈给基站。终端根据下行信道状态以及基站发送的所需上报的波束赋形矢量的数目M选出m个天线端口作为所需上报的波束赋型矢量,并反馈给基站,可以充分利用信道的多径特性,基于信道多径的分集,可以在高速运动场景下,保持通信的鲁棒性,较为灵活地实现多用户配对和空分复用。
为了更好的解释本发明实施例,下面将通过具体的场景来描述波束赋形传输的流程。
实施例一
如图5所示,该流程具体步骤包括:
步骤501,基站通过系统消息或无线资源控制消息,通知终端所需上报的波束赋形矢量的数目M。
步骤502,基站在N个双极化天线端口上,发送第一参考信号。
步骤503,终端根据第一参考信号,估计下行信道状态,进而从第一码字集合中,选出m个第一波束赋形码字,进而计算并反馈信道质量指示。
步骤504,基站根据终端的反馈,决定m个第一波束赋形码字,对每一极化方向天线组进行波束赋形,生成p个天线端口,在这p个天线端口上,发送第二参考信号。
步骤505,基站在p个天线端口上进行LD-CDD预编码(rank>1)或SFBC(rank=1),生成k个新的端口,用于进行数据传输。
步骤506,终端根据第二参考信号,估计k个端口上的下行信道状态,进而依据固有的LD-CDD或SFBC编码流程,解码数据信道。
上述流程的具体实施方式已在上述实施例中描述,不再赘述。
实施例二
如图6所示,该流程具体步骤包括:
步骤601,基站通过系统消息或无线资源控制消息,通知终端所需上报的波束赋形矢量的数目M。
步骤602,基站在N个双极化天线端口上,发送第一参考信号。
步骤603,终端根据第一参考信号,估计下行信道状态,进而从第一码字集合中,选出m个第一波束赋形码字。
步骤604,基站根据终端的反馈,决定m个第一波束赋形码字,对每一极化方向天线组进行波束赋形,生成p个天线端口,在这p个天线端口上,发送第二参考信号。
步骤605,终端在p个天线端口接收第二参考信号,估计信道状态,进而从第二天线端口组中,选出q个天线端口,将序号反馈给基站,并计算和反 馈信道质量指示。
步骤606,基站根据终端的反馈,决定q个波束,对每一极化方向天线组进行波束赋型,生成s个天线端口,在s个天线端口上,发送第三参考信号。
步骤607,基站在s个天线端口上进行LD-CDD预编码(rank>1)或SFBC(rank=1),生成k个新的端口,用于进行数据传输。
步骤608,终端根据第三参考信号,估计k个端口上的下行信道状态,进而依据固有的LD-CDD或SFBC编码流程,解码数据信道。
上述流程的具体实施方式已在上述实施例中描述,不再赘述。
实施例三
如图7所示,该流程具体步骤包括:
步骤701,基站通过系统消息或无线资源控制消息,通知终端所需上报的波束赋形矢量的数目M。
步骤702,基站在N个双极化天线端口上,进行波束赋形,生成L个波束,并视作L个天线端口,在L个天线端口上,发送第一参考信号。
步骤703,终端根据第一参考信号,估计下行信道状态,进而从L个天线端口中,选出m个天线端口,将其序号反馈给基站,并进而计算信道质量指示。
步骤704,基站根据终端的反馈,决定第一波束赋形码字,对于每一极化方向天线组进行波束赋形,生成p个天线端口,在这p个天线端口上,发送第二参考信号。
步骤705,基站在p个天线端口上进行LD-CDD预编码(rank>1)或SFBC(rank=1),生成k个新的端口,用于进行数据传输。
步骤706,终端根据第二参考信号,估计k个端口上的下行信道状态,进而依据固有的LD-CDD或SFBC编码流程,解码数据信道。
上述流程的具体实施方式已在上述实施例中描述,不再赘述。
基于相同的技术构思,图8示出了本发明实施例提供一种波束赋形传输的装置,该装置可以执行波束赋形的流程,该装置可以位于终端内,也可以 是该终端。
如图8所示,该装置具体包括:
收发单元801,用于获取基站发送的终端所需上报的波束赋形矢量的数目M以及第一参考信号,所述第一参考信号为基站在N个双极化天线端口上发送的,M、N为大于0的整数;
处理单元802,用于根据所述收发单元801获取的第一参考信号估计所述N个双极化天线端口上的下行信道状态;并根据所述下行信道状态以及所述基站发送的所需上报的波束赋形矢量的数目M选出m个第一波束赋形码字;m≤M;
所述收发单元801还用于将所述处理单元选出的m个第一波束赋形码字以及所述下行信道状态的秩反馈给基站。
可选地,所述处理单元802具体用于:
将所述基站发送的所需上报的波束赋形矢量的数目M确定为所述选出的第一波束赋形码字的数量m。
可选地,所述处理单元802具体用于:根据所述下行信道状态以及所述基站发送的所需上报的波束赋形矢量的数目M,确定出选出的第一波束赋形码字的数量m,使得m个最优的波束赋性矢量联合预编码后的信道质量最优;
通过所述收发单元801将所述m的取值反馈给基站。
可选地,所述选出的m个第一波束赋形码字是从第一码字集合中选出的,且所述第一码字集合为所述第一码字集合为长期演进LTE的第13个版本中秩为1的W1码本或为LTE的第13个版本中秩为1的W1码本中的部分码字经过线性加权相加后得到新的码本组成的集合;
所述第一码字集合为所述基站发送的限制集,所述限制集为基站从所述LTE的第13个版本中秩为1的W1码本中选出的码字组成的集合,或为基站从所述LTE的第13个版本中秩为1的W1码本中的部分码字经过线性加权相加后得到新的码本组成的集合中选出的码字组成的集合。
可选地,所述处理单元802具体用于:
通过对基站的天线的发射角的估算,确定出m个信道质量最优的波束赋形方向;
确定出所述m个信道质量最优的波束赋形方向的方向角度值,所述方向角度值为方向角度或方向角度的三角函数值。
可选地,所述处理单元802还用于:
在将选出的m个第一波束赋形码字以及所述下行信道状态的秩反馈给基站之后,根据所选出的第一波束赋型码字,以及所述下行信道状态的秩,计算信道质量指示,并通过所述收发单元801向所述基站反馈所述信道质量指示。
可选地,所述处理单元802还用于:
在向所述基站反馈所述信道质量指示之后,通过所述收发单元801获取所述基站发送的第二参考信号以及传输的数据,所述数据是基站在k个天线端口上传输的;
根据所述第二参考信号估计在k个天线端口上的下行信道状态,并根据下行信道状态的秩使用预编码解码数据信道,k为大于0的正整数。
可选地,所述处理单元802还用于:
在将选出的m个第一波束赋形码字以及所述下行信道状态的秩反馈给基站之后,通过所述收发单元801获取所述基站发送的第二参考信号,所述第二参考信号为所述基站在p个天线端口上发送的;
根据所述第二参考信号估计在p个天线端口上的下行信道状态,并根据该下行信道状态从所述p个天线端口中选出q个天线端口,以及计算出信道质量指示,将所述q个天线端口的序号和所述计算出的信道质量指示反馈给所述基站;q≤p,p等于m或p等于2m。
可选地,所述处理单元802还用于:
在将所述q个天线端口的序号和所述计算出的信道质量指示反馈给所述基站之后,通过所述收发单元801获取所述基站发送的第三参考信号以及传 输的数据,所述数据是基站在k个天线端口上传输的;
根据所述第三参考信号估计在k个天线端口上的下行信道状态,并根据下行信道状态的秩使用预编码解码数据信道。
可选地,所述处理单元802具体用于:
当下行信道状态的秩为1时,若所述k个天线端口的数量为偶数,则使用SFBC的预编码解码数据信道,否则使用大时延循环分集预编码解码数据信道;当下行信道状态的秩大于1时,使用开环空分复用预编码解码数据信道;或
当下行信道状态的秩为1时,使用大时延循环分集预编码解码数据信道,当下行信道状态的秩大于1时,使用开环空分复用预编码解码数据信道。
基于相同的技术构思,图9示出了本发明实施例提供一种波束赋形传输的装置,该装置可以执行波束赋形的流程,该装置可以位于基站内,也可以是该基站。
如图9所示,该装置具体包括:
收发单元901,用于获取终端的第一反馈信息,所述终端的第一反馈信息中包括所述终端选出的m个第一波束赋形码字;
处理单元902,用于根据所述终端选出的m个第一波束赋形码字,确定出基站的m个第二波束赋形码字;并根据所述基站的m个第二波束赋形码字对每个极化方向天线组进行波束赋形,并生成p个天线端口,所述极化方向天线组中的天线的极化方向相同;p等于m或p等于2m;
所述收发单元901还用于在所述p个天线端口上向所述终端发送第二参考信号。
可选地,所述终端的第一反馈信息还包括下行信道状态的秩以及所述终端计算的信道质量指示;
所述处理单元902还用于:
在向所述终端发送第二参考信号之后,在所述p个天线端口上根据所述下行信道状态的秩使用预编码编码数据信道,并生成k个天线端口;0<k≤p;
通过所述收发单元901在所述k个天线端口上通过编码后的数据信道向所述终端传输数据。
可选地,所述终端的第一反馈信息还包括下行信道状态的秩;
所述处理单元902还用于:
在向所述终端发送第二参考信号之后,通过所述收发单元901获取所述终端的第二反馈信息,所述第二反馈信息中包括所述终端选出的q个天线端口的序号以及计算出的信道质量指示;
根据所述信道质量指示和所述q个天线端口的序号,确定出q个波束,并根据所述q个波束对每个极化方向天线组进行波束赋形,生成s个天线端口;在所述s个天线端口上发送第三参考信号;q≤p,s≤q。
可选地,所述处理单元902还用于:
在发送第三参考信号之后,在所述s个天线端口上根据下行信道状态的秩使用预编码编码数据信道,生成k个天线端口;并通过所述收发单元901在所述k个天线端口上通过编码后的数据信道向所述终端传输数据。
可选地,所述处理单元902具体用于:
当下行信道状态的秩为1时,若所述k个天线端口的数量为偶数,则使用SFBC的预编码编码数据信道,否则使用大时延循环分集预编码编码数据信道;当下行信道状态的秩大于1时,使用开环空分复用预编码编码数据信道;或
当下行信道状态的秩为1时,使用大时延循环分集预编码编码数据信道,当下行信道状态的秩大于1时,使用开环空分复用预编码编码数据信道。
可选地,所述收发单元901还用于:
在获取终端的第一反馈信息之前,向所述终端通知所述终端所需上报的波束赋形的数目M;
在N个双极化天线端口上向所述终端发送第一参考信号;N为大于0的正整数。
可选地,所述收发单元901还用于:
在获取终端的第一反馈信息之前,向所述终端发送限制集,所述限制集为从所述LTE的第13个版本中秩为1的W1码本中选出的码字组成的集合,或为从所述LTE的第13个版本中秩为1的W1码本中的部分码字经过线性加权相加后得到新的码本组成的集合中选出的码字组成的集合。
基于相同的技术构思,图10示出了本发明实施例提供一种波束赋形传输的装置,该装置可以执行波束赋形的流程,该装置可以位于终端内,也可以是该终端。
如图10所示,该装置具体包括:
收发单元1001,用于获取基站发送的终端所需上报的波束赋形矢量的数目M以及第一参考信号,所述第一参考信号为基站在L个天线端口上发送的,M、L为大于0的整数,L>M;
处理单元1002,用于根据所述第一参考信号估计所述L个天线端口上的下行信道状态;并根据所述下行信道状态以及基站发送的所需上报的波束赋形矢量的数目M,从所述L个天线端口中选出m个天线端口作为所需上报的波束赋型矢量,以及计算出信道质量指示,m≤M;
所述收发单元1001还用于将所述m个天线端口的序号、所述信道质量指示以及所述下行信道状态的秩反馈给所述基站。
可选地,所述处理单元1002还用于:
在将所述m个天线端口的序号、所述信道质量指示以及所述下行信道状态的秩反馈给所述基站之后,通过所述收发单元1001获取所述基站发送的第二参考信号以及传输的数据,所述数据是基站在k个天线端口上传输的;
根据所述第二参考信号估计在k个天线端口上的下行信道状态,并根据下行信道状态的秩使用预编码解码数据信道,k为大于0的正整数。
可选地,所述处理单元1002具体用于:
当下行信道状态的秩为1时,若所述k个天线端口的数量为偶数,则使用SFBC的预编码解码数据信道,否则使用大时延循环分集预编码解码数据信道;当下行信道状态的秩大于1时,使用开环空分复用预编码解码数据信 道;或
当下行信道状态的秩为1时,使用大时延循环分集预编码解码数据信道,当下行信道状态的秩大于1时,使用开环空分复用预编码解码数据信道。
可选地,所述处理单元1002具体用于:
将所述基站发送的所需上报的波束赋形矢量的数目M确定为从所述L个天线端口中选出的天线端口的数量m。
可选地,所述处理单元1002具体用于:
根据所述下行信道状态以及所述基站发送的所需上报的波束赋形矢量的数目M,确定出选出的天线端口的数量m,使得m个最优的波束赋性矢量联合预编码后的信道质量最优;
通过所述收发单元1001将选出的m的值反馈给基站。
可选地,所述处理单元1002具体用于:
直接从所述L个天线端口中选出m个天线端口;或
将所述L个天线端口进行线性加权,得到m个天线端口。
基于相同的技术构思,图11示出了本发明实施例提供一种波束赋形传输的装置,该装置可以执行波束赋形的流程,该装置可以位于基站内,也可以是该基站。
如图11所示,该装置具体包括:
收发单元1101,用于获取终端的反馈信息,所述终端的反馈信息中包括终端选出的m个天线端口的序号以及信道质量指示;
处理单元1102,用于根据所述m个天线端口的序号以及信道质量指示,确定出m个第一波束赋形码字;并根据所述m个第一波束赋形码字对每个极化方向天线组进行波束赋形,并生成p个天线端口,所述极化方向天线组中的天线的极化方向相同;
所述收发单元1101还用于在所述p个天线端口上向所述终端发送第二参考信号,p等于m或p等于2m。
可选地,所述处理单元1102还用于:
所述终端的反馈信息还包括下行信道状态的秩;
在所述p个天线端口上向所述终端发送第二参考信号之后,在所述p个天线端口上根据所述下行信道状态的秩使用预编码编码数据信道,并生成k个天线端口;
通过所述收发单元1101在所述k个天线端口上通过编码后的数据信道向所述终端传输数据;0<k≤p。
可选地,所述处理单元1102具体用于:
当下行信道状态的秩为1时,若所述k个天线端口的数量为偶数,则使用SFBC的预编码编码数据信道,否则使用大时延循环分集预编码编码数据信道;当下行信道状态的秩大于1时,使用开环空分复用预编码编码数据信道;或
当下行信道状态的秩为1时,使用大时延循环分集预编码编码数据信道,当下行信道状态的秩大于1时,使用开环空分复用预编码编码数据信道。
可选地,所述收发单元1101还用于:
在获取终端的反馈信息之前,向所述终端通知所述终端所需上报的波束赋形的数目M;
在N个双极化天线端口上进行波束赋形,生成L个天线端口,并在L天线端口上向所述终端发送第一参考信号;N为大于0的正整数。
基于相同构思,参见图12,为本发明实施例提供的一种波束赋形传输的设备1200。该波束赋形传输的设备1200可以执行上述各实施例中接收机所实施的步骤或执行的功能。该波束赋形传输的设备1200可包括:收发器1201、处理器1202和存储器1203。处理器1202用于控制波束赋形传输的设备1200的操作;存储器1203可以包括只读存储器和随机存取存储器,存储有处理器1202可以执行的指令和数据。存储器1203的一部分还可以包括非易失行随机存取存储器(NVRAM)。收发器1201、处理器1202和存储器1203等各组件通过总线1209连接,其中总线1209除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总 线都标为总线1209。
本发明实施例揭示的一种波束赋形传输的方法可以应用于处理器1202中,或者由处理器1202实现。在实现过程中,处理流程的各步骤可以通过处理器1202中的硬件的集成逻辑电路或者软件形式的指令完成。处理器1202可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1203,处理器1202读取存储器1203中存储的信息,结合其硬件完成一种波束赋形传输的方法的步骤。
收发器1201获取基站发送的终端所需上报的波束赋形矢量的数目M以及第一参考信号,所述第一参考信号为基站在N个双极化天线端口上发送的,M、N为大于0的整数;
处理器1202根据所述收发器1201获取的第一参考信号估计所述N个双极化天线端口上的下行信道状态;并根据所述下行信道状态以及所述基站发送的所需上报的波束赋形矢量的数目M选出m个第一波束赋形码字;m≤M;
所述收发器1201将所述处理器1202选出的m个第一波束赋形码字以及所述下行信道状态的秩反馈给基站。
可选地,所述处理器1202将所述基站发送的所需上报的波束赋形矢量的数目M确定为所述选出的第一波束赋形码字的数量m。
可选地,所述处理器1202根据所述下行信道状态以及所述基站发送的所需上报的波束赋形矢量的数目M,确定出选出的第一波束赋形码字的数量m,使得m个最优的波束赋性矢量联合预编码后的信道质量最优;
所述处理器1202通过所述收发器1201将所述m的取值反馈给基站。
可选地,所述选出的m个第一波束赋形码字是从第一码字集合中选出的,且所述第一码字集合为所述第一码字集合为长期演进LTE的第13个版本中秩为1的W1码本或为LTE的第13个版本中秩为1的W1码本中的部分码字经过线性加权相加后得到新的码本组成的集合;
所述第一码字集合为所述基站发送的限制集,所述限制集为基站从所述LTE的第13个版本中秩为1的W1码本中选出的码字组成的集合,或为基站从所述LTE的第13个版本中秩为1的W1码本中的部分码字经过线性加权相加后得到新的码本组成的集合中选出的码字组成的集合。
可选地,所述处理器1202通过对基站的天线的发射角的估算,确定出m个信道质量最优的波束赋形方向;并确定出所述m个信道质量最优的波束赋形方向的方向角度值,所述方向角度值为方向角度或方向角度的三角函数值。
可选地,在将选出的m个第一波束赋形码字以及所述下行信道状态的秩反馈给基站之后,所述处理器1202根据所选出的第一波束赋型码字,以及所述下行信道状态的秩,计算信道质量指示,并通过所述收发器1201向所述基站反馈所述信道质量指示。
可选地,在向所述基站反馈所述信道质量指示之后,所述处理器1202通过所述收发器1201获取所述基站发送的第二参考信号以及传输的数据,所述数据是基站在k个天线端口上传输的;根据所述第二参考信号估计在k个天线端口上的下行信道状态,并根据下行信道状态的秩使用预编码解码数据信道,k为大于0的正整数。
可选地,在将选出的m个第一波束赋形码字以及所述下行信道状态的秩反馈给基站之后,所述处理器1202通过所述收发器1201获取所述基站发送的第二参考信号,所述第二参考信号为所述基站在p个天线端口上发送的;
所述处理器1202根据所述第二参考信号估计在p个天线端口上的下行信道状态,并根据该下行信道状态从所述p个天线端口中选出q个天线端口,以及计算出信道质量指示,将所述q个天线端口的序号和所述计算出的信道 质量指示反馈给所述基站;q≤p,p等于m或p等于2m。
可选地,在将所述q个天线端口的序号和所述计算出的信道质量指示反馈给所述基站之后,所述处理器1202通过所述收发器1201获取所述基站发送的第三参考信号以及传输的数据,所述数据是基站在k个天线端口上传输的;
所述处理器1202根据所述第三参考信号估计在k个天线端口上的下行信道状态,并根据下行信道状态的秩使用预编码解码数据信道。
可选地,当下行信道状态的秩为1时,若所述k个天线端口的数量为偶数,则所述处理器1202使用SFBC的预编码解码数据信道,否则所述处理器1202使用大时延循环分集预编码解码数据信道;当下行信道状态的秩大于1时,所述处理器1202使用开环空分复用预编码解码数据信道;或
当下行信道状态的秩为1时,所述处理器1202使用大时延循环分集预编码解码数据信道,当下行信道状态的秩大于1时,所述处理器1202使用开环空分复用预编码解码数据信道。
基于相同构思,参见图13,为本发明实施例提供的一种波束赋形传输的设备1300。该波束赋形传输的设备1300可以执行上述各实施例中接收机所实施的步骤或执行的功能。该波束赋形传输的设备1300可包括:收发器1301、处理器1302和存储器1303。处理器1302用于控制波束赋形传输的设备1300的操作;存储器1303可以包括只读存储器和随机存取存储器,存储有处理器1302可以执行的指令和数据。存储器1303的一部分还可以包括非易失行随机存取存储器(NVRAM)。收发器1301、处理器1302和存储器1303等各组件通过总线1309连接,其中总线1309除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线1309。
本发明实施例揭示的一种波束赋形传输的方法可以应用于处理器1302中,或者由处理器1302实现。在实现过程中,处理流程的各步骤可以通过处理器1302中的硬件的集成逻辑电路或者软件形式的指令完成。处理器1302 可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1303,处理器1302读取存储器1303中存储的信息,结合其硬件完成一种波束赋形传输的方法的步骤。
收发器1301获取终端的第一反馈信息,所述终端的第一反馈信息中包括所述终端选出的m个第一波束赋形码字;
处理器1302根据所述终端选出的m个第一波束赋形码字,确定出基站的m个第二波束赋形码字;并根据所述基站的m个第二波束赋形码字对每个极化方向天线组进行波束赋形,并生成p个天线端口,所述极化方向天线组中的天线的极化方向相同;p等于m或p等于2m;
所述收发器1301在所述p个天线端口上向所述终端发送第二参考信号。
可选地,所述终端的第一反馈信息还包括下行信道状态的秩以及所述终端计算的信道质量指示;
在向所述终端发送第二参考信号之后,所述处理器1302在所述p个天线端口上根据所述下行信道状态的秩使用预编码编码数据信道,并生成k个天线端口;0<k≤p;通过所述收发器1301在所述k个天线端口上通过编码后的数据信道向所述终端传输数据。
可选地,所述终端的第一反馈信息还包括下行信道状态的秩;
在向所述终端发送第二参考信号之后,所述处理器1302通过所述收发器1301获取所述终端的第二反馈信息,所述第二反馈信息中包括所述终端选出的q个天线端口的序号以及计算出的信道质量指示;
所述处理器1302根据所述信道质量指示和所述q个天线端口的序号,确 定出q个波束,并根据所述q个波束对每个极化方向天线组进行波束赋形,生成s个天线端口;通过所述收发器1301在所述s个天线端口上发送第三参考信号;q≤p,s≤q。
可选地,在发送第三参考信号之后,所述处理器1302在所述s个天线端口上根据下行信道状态的秩使用预编码编码数据信道,生成k个天线端口;并通过所述收发器1301在所述k个天线端口上通过编码后的数据信道向所述终端传输数据。
可选地,当下行信道状态的秩为1时,若所述k个天线端口的数量为偶数,则所述处理器1302使用SFBC的预编码编码数据信道,否则所述处理器1302使用大时延循环分集预编码编码数据信道;当下行信道状态的秩大于1时,所述处理器1302使用开环空分复用预编码编码数据信道;或
当下行信道状态的秩为1时,所述处理器1302使用大时延循环分集预编码编码数据信道,当下行信道状态的秩大于1时,所述处理器1302使用开环空分复用预编码编码数据信道。
可选地,在获取终端的第一反馈信息之前,所述收发器1301向所述终端通知所述终端所需上报的波束赋形的数目M;在N个双极化天线端口上向所述终端发送第一参考信号;N为大于0的正整数。
可选地,在获取终端的第一反馈信息之前,所述收发器1301向所述终端发送限制集,所述限制集为从所述LTE的第13个版本中秩为1的W1码本中选出的码字组成的集合,或为从所述LTE的第13个版本中秩为1的W1码本中的部分码字经过线性加权相加后得到新的码本组成的集合中选出的码字组成的集合。
基于相同构思,参见图14,为本发明实施例提供的一种波束赋形传输的设备1400。该波束赋形传输的设备1400可以执行上述各实施例中接收机所实施的步骤或执行的功能。该波束赋形传输的设备1400可包括:收发器1401、处理器1402和存储器1403。处理器1402用于控制波束赋形传输的设备1400的操作;存储器1403可以包括只读存储器和随机存取存储器,存储有处理器 1402可以执行的指令和数据。存储器1403的一部分还可以包括非易失行随机存取存储器(NVRAM)。收发器1401、处理器1402和存储器1403等各组件通过总线1409连接,其中总线1409除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线1409。
本发明实施例揭示的一种波束赋形传输的方法可以应用于处理器1402中,或者由处理器1402实现。在实现过程中,处理流程的各步骤可以通过处理器1402中的硬件的集成逻辑电路或者软件形式的指令完成。处理器1402可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1403,处理器1402读取存储器1403中存储的信息,结合其硬件完成一种波束赋形传输的方法的步骤。
收发器1401获取基站发送的终端所需上报的波束赋形矢量的数目M以及第一参考信号,所述第一参考信号为基站在L个天线端口上发送的,M、L为大于0的整数,L>M;
处理器1402根据所述第一参考信号估计所述L个天线端口上的下行信道状态;并根据所述下行信道状态以及所述基站发送的所需上报的波束赋形矢量的数目M,从所述L个天线端口中选出m个天线端口作为所需上报的波束赋型矢量,以及计算出信道质量指示,m≤M;
所述收发器1401还用于将所述m个天线端口的序号、所述信道质量指示以及所述下行信道状态的秩反馈给所述基站。
可选地,在将所述m个天线端口的序号、所述信道质量指示以及所述下 行信道状态的秩反馈给所述基站之后,所述处理器1402通过所述收发器1401获取所述基站发送的第二参考信号以及传输的数据,所述数据是基站在k个天线端口上传输的;
所述处理器1402根据所述第二参考信号估计在k个天线端口上的下行信道状态,并根据下行信道状态的秩使用预编码解码数据信道,k为大于0的正整数。
可选地,当下行信道状态的秩为1时,若所述k个天线端口的数量为偶数,则所述处理器1402使用SFBC的预编码解码数据信道,否则所述处理器1402使用大时延循环分集预编码解码数据信道;当下行信道状态的秩大于1时,所述处理器1402使用开环空分复用预编码解码数据信道;或
当下行信道状态的秩为1时,所述处理器1402使用大时延循环分集预编码解码数据信道,当下行信道状态的秩大于1时,所述处理器1402使用开环空分复用预编码解码数据信道。
可选地,所述处理器1402将所述基站发送的所需上报的波束赋形矢量的数目M确定为从所述L个天线端口中选出的天线端口的数量m。
可选地,所述处理器1402根据所述下行信道状态以及所述基站发送的所需上报的波束赋形矢量的数目M,确定出选出的天线端口的数量m,使得m个最优的波束赋性矢量联合预编码后的信道质量最优;
所述处理器1402通过所述收发器1401将选出的m的值反馈给基站。
可选地,所述处理器1402直接从所述L个天线端口中选出m个天线端口;或
所述处理器1402将所述L个天线端口进行线性加权,得到m个天线端口。
基于相同构思,参见图15,为本发明实施例提供的一种波束赋形传输的设备1500。该波束赋形传输的设备1500可以执行上述各实施例中接收机所实施的步骤或执行的功能。该波束赋形传输的设备1500可包括:收发器1501、处理器1502和存储器1503。处理器1502用于控制波束赋形传输的设备1500的操作;存储器1503可以包括只读存储器和随机存取存储器,存储有处理器 1502可以执行的指令和数据。存储器1503的一部分还可以包括非易失行随机存取存储器(NVRAM)。收发器1501、处理器1502和存储器1503等各组件通过总线1509连接,其中总线1509除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线1509。
本发明实施例揭示的一种波束赋形传输的方法可以应用于处理器1502中,或者由处理器1502实现。在实现过程中,处理流程的各步骤可以通过处理器1502中的硬件的集成逻辑电路或者软件形式的指令完成。处理器1502可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1503,处理器1502读取存储器1503中存储的信息,结合其硬件完成一种波束赋形传输的方法的步骤。
收发器1501获取终端的反馈信息,所述终端的反馈信息中包括终端选出的m个天线端口的序号以及信道质量指示;
处理器1502根据所述m个天线端口的序号以及信道质量指示,确定出m个第一波束赋形码字;并根据所述m个第一波束赋形码字对每个极化方向天线组进行波束赋形,并生成p个天线端口,所述极化方向天线组中的天线的极化方向相同;
所述收发器1501还用于在所述p个天线端口上向所述终端发送第二参考信号,p等于m或p等于2m。
可选地,所述终端的反馈信息还包括下行信道状态的秩;
在所述p个天线端口上向所述终端发送第二参考信号之后,所述处理器 1502在所述p个天线端口上根据所述下行信道状态的秩使用预编码编码数据信道,并生成k个天线端口;
所述处理器1502通过所述收发器1501在所述k个天线端口上通过编码后的数据信道向所述终端传输数据;0<k≤p。
可选地,当下行信道状态的秩为1时,若所述k个天线端口的数量为偶数,则所述处理器1502使用SFBC的预编码编码数据信道,否则所述处理器1502使用大时延循环分集预编码编码数据信道;当下行信道状态的秩大于1时,所述处理器1502使用开环空分复用预编码编码数据信道;或
当下行信道状态的秩为1时,所述处理器1502使用大时延循环分集预编码编码数据信道,当下行信道状态的秩大于1时,所述处理器1502使用开环空分复用预编码编码数据信道。
可选地,在获取终端的反馈信息之前,所述收发器1501向所述终端通知所述终端所需上报的波束赋形的数目M;
所述收发器1501在N个双极化天线端口上进行波束赋形,生成L个天线端口,并在L天线端口上向所述终端发送第一参考信号;N为大于0的正整数。
本领域内的技术人员应明白,本发明的实施例可提供为方法、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流 程图一个流程或多个流程和/或方框图一个方框或多个方框中功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。显然,本领域的技术人员可以对本发明各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (26)

  1. 一种波束赋形传输的方法,其特征在于,包括:
    终端获取基站发送的所述终端所需上报的波束赋形矢量的数目M以及第一参考信号,所述第一参考信号为基站在N个双极化天线端口上发送的,M、N为大于0的整数;
    所述终端根据所述第一参考信号估计所述N个双极化天线端口上的下行信道状态;
    所述终端根据所述下行信道状态以及所述基站发送的所需上报的波束赋形矢量的数目M选出m个第一波束赋形码字;m≤M;
    所述终端将选出的m个第一波束赋形码字以及所述下行信道状态的秩反馈给基站。
  2. 如权利要求1所述的方法,其特征在于,所述终端通过下述步骤确定所述选出的第一波束赋形码字的数量m:
    所述终端将所述基站发送的所需上报的波束赋形矢量的数目M确定为所述选出的第一波束赋形码字的数量m。
  3. 如权利要求1所述的方法,其特征在于,所述终端通过下述步骤确定所述选出的第一波束赋形码字的数量m:
    所述终端根据所述下行信道状态以及所述基站发送的所需上报的波束赋形矢量的数目M,确定出选出的第一波束赋形码字的数量m,使得m个最优的波束赋性矢量联合预编码后的信道质量最优;
    所述终端将所述m的取值反馈给基站。
  4. 如权利要求2或3所述的方法,其特征在于,在所述终端将选出的m个第一波束赋形码字以及所述下行信道状态的秩反馈给基站之后,还包括:
    所述终端根据所选出的第一波束赋型码字,以及所述下行信道状态的秩,计算信道质量指示,并向所述基站反馈所述信道质量指示。
  5. 如权利要求4所述的方法,其特征在于,所述终端向所述基站反馈所 述信道质量指示之后,还包括:
    所述终端获取所述基站发送的第二参考信号以及传输的数据,所述数据是基站在k个天线端口上传输的;
    所述终端根据所述第二参考信号估计在k个天线端口上的下行信道状态,并根据下行信道状态的秩使用预编码解码数据信道,k为大于0的正整数。
  6. 如权利要求2所述的方法,其特征在于,在所述终端将选出的m个第一波束赋形码字以及所述下行信道状态的秩反馈给基站之后,还包括:
    所述终端获取所述基站发送的第二参考信号,所述第二参考信号为所述基站在p个天线端口上发送的;所述终端根据所述第二参考信号估计在p个天线端口上的下行信道状态,并根据该下行信道状态从所述p个天线端口中选出q个天线端口,以及计算出信道质量指示,将所述q个天线端口的序号和所述计算出的信道质量指示反馈给所述基站;q≤p,p等于m或p等于2m。
  7. 如权利要求6所述的方法,其特征在于,所述终端在将所述q个天线端口的序号和所述计算出的信道质量指示反馈给所述基站之后,还包括:
    所述终端获取所述基站发送的第三参考信号以及传输的数据,所述数据是基站在k个天线端口上传输的;所述终端根据所述第三参考信号估计在k个天线端口上的下行信道状态,并根据下行信道状态的秩使用预编码解码数据信道。
  8. 一种波束赋形传输的方法,其特征在于,包括:
    基站获取终端的第一反馈信息,所述终端的第一反馈信息中包括所述终端选出的m个第一波束赋形码字;
    所述基站根据所述终端选出的m个第一波束赋形码字,确定出所述基站的m个第二波束赋形码字;
    所述基站根据所述基站的m个第二波束赋形码字对每个极化方向天线组进行波束赋形,并生成p个天线端口,所述极化方向天线组中的天线的极化方向相同;p等于m或p等于2m;
    所述基站在所述p个天线端口上向所述终端发送第二参考信号。
  9. 一种波束赋形传输的方法,其特征在于,包括:
    终端获取基站发送的所述终端所需上报的波束赋形矢量的数目M以及第一参考信号,所述第一参考信号为基站在L个天线端口上发送的,M、L为大于0的整数,L>M;
    所述终端根据所述第一参考信号估计所述L个天线端口上的下行信道状态;
    所述终端根据所述下行信道状态以及所述基站发送的所需上报的波束赋形矢量的数目M,从所述L个天线端口中选出m个天线端口作为所需上报的波束赋型矢量,以及计算出信道质量指示,m≤M;
    所述终端将所述m个天线端口的序号、所述信道质量指示以及所述下行信道状态的秩反馈给所述基站。
  10. 如权利要求9所述的方法,其特征在于,在所述终端将所述m个天线端口的序号、所述信道质量指示以及所述下行信道状态的秩反馈给所述基站之后,还包括:
    所述终端获取所述基站发送的第二参考信号以及传输的数据,所述数据是基站在k个天线端口上传输的;
    所述终端根据所述第二参考信号估计在k个天线端口上的下行信道状态,并根据下行信道状态的秩使用预编码解码数据信道,k为大于0的正整数。
  11. 如权利要求9所述的方法,其特征在于,所述终端通过下述步骤确定从所述L个天线端口中选出的天线端口的数量m:
    所述终端将所述基站发送的所需上报的波束赋形矢量的数目M确定为从所述L个天线端口中选出的天线端口的数量m。
  12. 如权利要求9所述的方法,其特征在于,所述终端通过下述步骤确定从所述L个天线端口中选出的天线端口的数量m:
    所述终端根据所述下行信道状态以及所述基站发送的所需上报的波束赋形矢量的数目M,确定出选出的天线端口的数量m,使得m个最优的波束赋性矢量联合预编码后的信道质量最优;
    所述终端将选出的m的值反馈给基站。
  13. 一种波束赋形传输的方法,其特征在于,包括:
    基站获取终端的反馈信息,所述终端的反馈信息中包括终端选出的m个天线端口的序号以及信道质量指示;
    所述基站根据所述m个天线端口的序号以及信道质量指示,确定出m个第一波束赋形码字;并根据所述m个第一波束赋形码字对每个极化方向天线组进行波束赋形,并生成p个天线端口,所述极化方向天线组中的天线的极化方向相同;
    所述基站在所述p个天线端口上向所述终端发送第二参考信号,p等于m或p等于2m。
  14. 一种波束赋形传输的装置,其特征在于,包括:
    收发单元,用于获取基站发送的终端所需上报的波束赋形矢量的数目M以及第一参考信号,所述第一参考信号为基站在N个双极化天线端口上发送的,M、N为大于0的整数;
    处理单元,用于根据所述收发单元获取的第一参考信号估计所述N个双极化天线端口上的下行信道状态;并根据所述下行信道状态以及所述基站发送的所需上报的波束赋形矢量的数目M选出m个第一波束赋形码字;m≤M;
    所述收发单元还用于将所述处理单元选出的m个第一波束赋形码字以及所述下行信道状态的秩反馈给基站。
  15. 如权利要求14所述的装置,其特征在于,所述处理单元具体用于:
    将所述基站发送的所需上报的波束赋形矢量的数目M确定为所述选出的第一波束赋形码字的数量m。
  16. 如权利要求14所述的装置,其特征在于,所述处理单元具体用于:根据所述下行信道状态以及所述基站发送的所需上报的波束赋形矢量的数目M,确定出选出的第一波束赋形码字的数量m,使得m个最优的波束赋性矢量联合预编码后的信道质量最优;
    通过所述收发单元将所述m的取值反馈给基站。
  17. 如权利要求15或16所述的装置,其特征在于,所述处理单元还用于:
    在将选出的m个第一波束赋形码字以及所述下行信道状态的秩反馈给基站之后,根据所选出的第一波束赋型码字,以及所述下行信道状态的秩,计算信道质量指示,并通过所述收发单元向所述基站反馈所述信道质量指示。
  18. 如权利要求17所述的装置,其特征在于,所述处理单元还用于:
    在向所述基站反馈所述信道质量指示之后,通过所述收发单元获取所述基站发送的第二参考信号以及传输的数据,所述数据是基站在k个天线端口上传输的;
    根据所述第二参考信号估计在k个天线端口上的下行信道状态,并根据下行信道状态的秩使用预编码解码数据信道,k为大于0的正整数。
  19. 如权利要求15所述的装置,其特征在于,所述处理单元还用于:
    在将选出的m个第一波束赋形码字以及所述下行信道状态的秩反馈给基站之后,通过所述收发单元获取所述基站发送的第二参考信号,所述第二参考信号为所述基站在p个天线端口上发送的;
    根据所述第二参考信号估计在p个天线端口上的下行信道状态,并根据该下行信道状态从所述p个天线端口中选出q个天线端口,以及计算出信道质量指示,将所述q个天线端口的序号和所述计算出的信道质量指示反馈给所述基站;q≤p,p等于m或p等于2m。
  20. 如权利要求19所述的装置,其特征在于,所述处理单元还用于:
    在将所述q个天线端口的序号和所述计算出的信道质量指示反馈给所述基站之后,通过所述收发单元获取所述基站发送的第三参考信号以及传输的数据,所述数据是基站在k个天线端口上传输的;
    根据所述第三参考信号估计在k个天线端口上的下行信道状态,并根据下行信道状态的秩使用预编码解码数据信道。
  21. 一种波束赋形传输的装置,其特征在于,包括:
    收发单元,用于获取终端的第一反馈信息,所述终端的第一反馈信息中包括所述终端选出的m个第一波束赋形码字;
    处理单元,用于根据所述终端选出的m个第一波束赋形码字,确定出基站的m个第二波束赋形码字;并根据所述基站的m个第二波束赋形码字对每个极化方向天线组进行波束赋形,并生成p个天线端口,所述极化方向天线组中的天线的极化方向相同;p等于m或p等于2m;
    所述收发单元还用于在所述p个天线端口上向所述终端发送第二参考信号。
  22. 一种波束赋形传输的装置,其特征在于,包括:
    收发单元,用于获取基站发送的终端所需上报的波束赋形矢量的数目M以及第一参考信号,所述第一参考信号为基站在L个天线端口上发送的,M、L为大于0的整数,L>M;
    处理单元,用于根据所述第一参考信号估计所述L个天线端口上的下行信道状态;并根据所述下行信道状态以及所述基站发送的所需上报的波束赋形矢量的数目M,从所述L个天线端口中选出m个天线端口作为所需上报的波束赋型矢量,以及计算出信道质量指示,m≤M;
    所述收发单元还用于将所述m个天线端口的序号、所述信道质量指示以及所述下行信道状态的秩反馈给所述基站。
  23. 如权利要求22所述的装置,其特征在于,所述处理单元还用于:
    在将所述m个天线端口的序号、所述信道质量指示以及所述下行信道状态的秩反馈给所述基站之后,通过所述收发单元获取所述基站发送的第二参考信号以及传输的数据,所述数据是基站在k个天线端口上传输的;
    根据所述第二参考信号估计在k个天线端口上的下行信道状态,并根据下行信道状态的秩使用预编码解码数据信道,k为大于0的正整数。
  24. 如权利要求22所述的装置,其特征在于,所述处理单元具体用于:
    将所述基站发送的所需上报的波束赋形矢量的数目M确定为从所述L个天线端口中选出的天线端口的数量m。
  25. 如权利要求22所述的装置,其特征在于,所述处理单元具体用于:
    根据所述下行信道状态以及所述基站发送的所需上报的波束赋形矢量的数目M,确定出选出的天线端口的数量m,使得m个最优的波束赋性矢量联合预编码后的信道质量最优;
    通过所述收发单元将选出的m的值反馈给基站。
  26. 一种波束赋形传输的装置,其特征在于,包括:
    收发单元,用于获取终端的反馈信息,所述终端的反馈信息中包括终端选出的m个天线端口的序号以及信道质量指示;
    处理单元,用于根据所述m个天线端口的序号以及信道质量指示,确定出m个第一波束赋形码字;并根据所述m个第一波束赋形码字对每个极化方向天线组进行波束赋形,并生成p个天线端口,所述极化方向天线组中的天线的极化方向相同;
    所述收发单元还用于在所述p个天线端口上向所述终端发送第二参考信号,p等于m或p等于2m。
PCT/CN2016/101288 2016-09-30 2016-09-30 一种波束赋形传输的方法及装置 WO2018058621A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680088456.5A CN109565479B (zh) 2016-09-30 2016-09-30 一种波束赋形传输的方法及装置
EP16917371.3A EP3512169B1 (en) 2016-09-30 2016-09-30 Beamforming transmission method and device
US16/338,641 US10693543B2 (en) 2016-09-30 2016-09-30 Beamforming-based transmission method and apparatus
PCT/CN2016/101288 WO2018058621A1 (zh) 2016-09-30 2016-09-30 一种波束赋形传输的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/101288 WO2018058621A1 (zh) 2016-09-30 2016-09-30 一种波束赋形传输的方法及装置

Publications (1)

Publication Number Publication Date
WO2018058621A1 true WO2018058621A1 (zh) 2018-04-05

Family

ID=61763019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/101288 WO2018058621A1 (zh) 2016-09-30 2016-09-30 一种波束赋形传输的方法及装置

Country Status (4)

Country Link
US (1) US10693543B2 (zh)
EP (1) EP3512169B1 (zh)
CN (1) CN109565479B (zh)
WO (1) WO2018058621A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113258974B (zh) * 2020-02-10 2022-12-30 大唐移动通信设备有限公司 信道状态信息反馈方法、装置、终端、网络侧和存储介质
CN114301551B (zh) * 2021-12-30 2023-06-02 北京信息科技大学 一种车联网中基于感知的车载天线极化状态估计方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101895486A (zh) * 2010-07-16 2010-11-24 北京创毅视通科技有限公司 一种lte下行波束赋形方法、装置、基站和用户终端
WO2015115706A1 (en) * 2014-01-28 2015-08-06 Lg Electronics Inc. Method for transmitting reference signal based on adaptive antenna scaling in wireless communication system, and apparatus therefor
CN105207738A (zh) * 2014-06-10 2015-12-30 中国移动通信集团公司 一种信道参数上报方法、装置、通信终端及基站
CN105322992A (zh) * 2014-06-23 2016-02-10 中国移动通信集团公司 基站天线选择及多天线通道自适应方法、装置和基站
WO2016051792A1 (en) * 2014-10-01 2016-04-07 Nec Corporation Method and system for mimo communication

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050286663A1 (en) * 2004-06-23 2005-12-29 Intel Corporation Compact feedback for closed loop MIMO systems
US8259836B2 (en) * 2006-12-04 2012-09-04 Samsung Electronics Co., Ltd. Method and system for generating candidate beamforming coefficients for transmission of data over a wireless medium
US8073069B2 (en) * 2007-01-05 2011-12-06 Apple Inc. Multi-user MIMO-SDMA for finite rate feedback systems
US7809074B2 (en) * 2007-03-16 2010-10-05 Freescale Semiconductor, Inc. Generalized reference signaling scheme for multi-user, multiple input, multiple output (MU-MIMO) using arbitrarily precoded reference signals
KR101426962B1 (ko) * 2008-03-20 2014-08-07 삼성전자주식회사 다중 안테나 다중 사용자 통신 시스템에서 빔 포밍 방법 및장치
US8477859B2 (en) * 2009-03-23 2013-07-02 Futurewei Technologies, Inc. System and method for wireless communications with codebook quantization
CN103326761B (zh) * 2012-03-19 2017-10-27 中兴通讯股份有限公司 信道状态信息处理方法及装置
JP6121118B2 (ja) 2012-09-07 2017-04-26 株式会社Nttドコモ 無線通信方法、ユーザ端末、無線基地局及び無線通信システム
CN103475401B (zh) 2013-09-18 2017-02-01 北京北方烽火科技有限公司 一种下行波束赋形方法与装置
CN105530037B (zh) 2014-10-24 2019-04-19 电信科学技术研究院 一种信道状态信息的反馈、获取方法及装置
US10476563B2 (en) * 2014-11-06 2019-11-12 Futurewei Technologies, Inc. System and method for beam-formed channel state reference signals
US20160233938A1 (en) * 2015-02-06 2016-08-11 Nokia Solutions And Networks Oy Multiple Restrictions For CSI Reporting

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101895486A (zh) * 2010-07-16 2010-11-24 北京创毅视通科技有限公司 一种lte下行波束赋形方法、装置、基站和用户终端
WO2015115706A1 (en) * 2014-01-28 2015-08-06 Lg Electronics Inc. Method for transmitting reference signal based on adaptive antenna scaling in wireless communication system, and apparatus therefor
CN105207738A (zh) * 2014-06-10 2015-12-30 中国移动通信集团公司 一种信道参数上报方法、装置、通信终端及基站
CN105322992A (zh) * 2014-06-23 2016-02-10 中国移动通信集团公司 基站天线选择及多天线通道自适应方法、装置和基站
WO2016051792A1 (en) * 2014-10-01 2016-04-07 Nec Corporation Method and system for mimo communication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3512169A4 *

Also Published As

Publication number Publication date
US10693543B2 (en) 2020-06-23
CN109565479A (zh) 2019-04-02
EP3512169A1 (en) 2019-07-17
CN109565479B (zh) 2020-11-03
US20190356367A1 (en) 2019-11-21
EP3512169B1 (en) 2023-04-05
EP3512169A4 (en) 2019-08-14

Similar Documents

Publication Publication Date Title
CN108631847B (zh) 传输信道状态信息的方法、终端设备和网络设备
TWI717623B (zh) 一種上行傳輸碼本確定方法、電腦裝置及電腦可讀存儲介質
CN104396153B (zh) 用于蜂窝无线通信系统的信道状态信息码字构造的方法和装置
US10742272B2 (en) Channel information feedback method and apparatus, terminal and base station
RU2676268C1 (ru) Предварительное кодирование передачи из одномерной антенной решетки, которая включает в себя совместно поляризованные антенные элементы, выровненные по одной линии в единственном пространственном измерении решетки
CN109495149B (zh) 通信方法、网络设备、终端设备和系统
KR102027075B1 (ko) 프리코딩 정보 송신 및 피드백 방법 및 장치
CN107733493A (zh) 用于确定预编码矩阵的方法和装置
JP5275514B2 (ja) 閉ループmimoビーム形成のための差分フィードバックスキーム
WO2019019838A1 (zh) 用于数据传输的方法、装置和系统
TWI656760B (zh) Data transmission method and device
CN111106857B (zh) 指示和确定预编码向量的方法以及通信装置
CN109391305B (zh) 一种通信处理方法及装置
WO2018228599A1 (zh) 通信方法、通信装置和系统
CN111865377B (zh) 指示和确定预编码矩阵的方法以及通信装置
WO2014039056A1 (en) Codebook construction using csi feedback for evolving deployment scenarios
CN112533295B (zh) 参数配置方法和通信装置
CN102696180A (zh) 空间信道状态反馈方法和装置
CN111435850B (zh) 用于构建预编码向量的向量指示方法和通信装置
CN112312464A (zh) 上报信道状态信息的方法和通信装置
WO2018058621A1 (zh) 一种波束赋形传输的方法及装置
CN111585627A (zh) 一种无线通信中的方法和装置
CN111865372B (zh) 一种用于构建预编码矩阵的系数指示方法和通信装置
US11082108B2 (en) Channel state information transmission method, access network device, and terminal device
CN111435848B (zh) 指示和确定预编码向量的方法以及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016917371

Country of ref document: EP

Effective date: 20190411