WO2018058525A1 - 一种荧光免疫层析定量分析仪器及方法 - Google Patents

一种荧光免疫层析定量分析仪器及方法 Download PDF

Info

Publication number
WO2018058525A1
WO2018058525A1 PCT/CN2016/101080 CN2016101080W WO2018058525A1 WO 2018058525 A1 WO2018058525 A1 WO 2018058525A1 CN 2016101080 W CN2016101080 W CN 2016101080W WO 2018058525 A1 WO2018058525 A1 WO 2018058525A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
dichroic mirror
quantitative analysis
convex lens
plano
Prior art date
Application number
PCT/CN2016/101080
Other languages
English (en)
French (fr)
Inventor
詹爱军
张婷
Original Assignee
深圳市检验检疫科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市检验检疫科学研究院 filed Critical 深圳市检验检疫科学研究院
Priority to PCT/CN2016/101080 priority Critical patent/WO2018058525A1/zh
Publication of WO2018058525A1 publication Critical patent/WO2018058525A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/558Immunoassay; Biospecific binding assay; Materials therefor using diffusion or migration of antigen or antibody

Definitions

  • the invention belongs to the technical field of quarantine detection and relates to a fluorescent immunochromatographic quantitative analysis instrument and method.
  • Fluorescence immunochromatography is a simple, rapid, and highly specific and sensitive method that will replace colloidal gold immunochromatography and be extended to clenbuterol, ractopamine, salbutamol, melamine, and chlorine.
  • Residues of veterinary drugs such as mycin, tetracycline furan antibiotics, sulfonamides, animal diseases such as Escherichia coli, foot-and-mouth disease, blue ear disease, avian influenza virus, Newcastle disease virus, and zearalenone, aflatoxin, vomiting toxin, etc. Security testing field.
  • the object of the present invention is to overcome the above disadvantages of the prior art and to provide a Fluorescence immunochromatography quantitative analysis instrument and method, which can realize quantitative detection by fluorescence immunochromatography, and the cost is reduced.
  • the fluorescent immunochromatographic quantitative analysis instrument of the present invention comprises a controller, a signal processing circuit and a fluorescent immunological detection module;
  • the fluorescent immuno-optical detection module comprises a light source, a first plano-convex lens, a silicon photocell, a dichroic mirror, a second plano-convex lens, a small aperture diaphragm and a test strip, and the controller is connected with the control end of the light source, and the light emitted by the light source passes through two After the color mirror is reflected, it is irradiated onto the object to be tested in the test strip by the first plano-convex lens, and the light irradiated onto the object to be tested is divided into two parts, wherein part of the light is absorbed by the object to be tested, and the other part is to be tested.
  • the object reflection, the first plano-convex lens, the dichroic mirror, the second plano-convex lens and the aperture lens are irradiated onto the photosensitive surface of the silicon photo cell, and the signal output end of the silicon photo cell is connected to the input end of the signal processing circuit, and the signal processing circuit is connected The output is connected to the input of the controller.
  • the light from the light source is incident on the dichroic mirror through the first filter.
  • a second filter is disposed between the dichroic mirror and the second plano-convex lens.
  • the utility model also comprises a stepping motor, a slide rail, a screw rod and a sliding table.
  • the fluorescent immuno-optical detection module is located on the sliding table, and an output shaft of the stepping motor is connected with one end of the screw rod, and the other end of the screw rod passes through the sliding table. Threaded, the slide is located on the slide rail.
  • the signal processing circuit includes an I/V conversion circuit, a filter circuit, a synchronous demodulator, and an AD
  • the conversion chip, the signal output end of the silicon photo cell is connected to the input end of the I/V conversion circuit, and the output end of the I/V conversion circuit is sequentially passed through the filter circuit, the synchronous demodulator and the AD
  • the conversion chip is connected to the input of the controller.
  • the I/V conversion circuit includes an ultra low noise operational amplifier.
  • the controller is further connected with a display, a memory and a light source parameter input module.
  • the fluorescence immunochromatographic quantitative analysis method of the present invention comprises the following steps: the controller controls the light source to emit light according to the light intensity information input by the user, and the light emitted by the light source is refracted by the dichroic mirror and then irradiated to the test strip through the first plano-convex lens.
  • the light irradiated onto the object to be tested is divided into two parts, wherein one part of the light is absorbed by the object to be tested, and the other part of the light is reflected by the object to be tested, and then irradiated to the first plano-convex lens.
  • the dichroic mirror is then transmitted through the dichroic mirror and then irradiated onto the photosensitive surface of the silicon photocell through the second plano-convex lens and the aperture of the aperture, so that the silicon photocell generates a current signal, and the current signal generated by the silicon photocell passes through
  • the I/V conversion circuit converts into a voltage signal and amplifies the voltage signal, and the amplified voltage signal is sequentially filtered by a filter circuit, synchronous demodulator synchronous demodulation, and AD conversion chip AD After the conversion, the controller inputs the light intensity value of the light according to the voltage value of the received voltage signal, and then the difference between the light intensity information input by the user and the light intensity value of the detected light is obtained.
  • the concentration of the analyte is then transmitted through the dichroic mirror and then irradiated onto the photosensitive surface of the silicon photocell through the second plano-convex lens and the aperture of the aperture, so that the silicon photocell generates a current signal, and the current signal generated by
  • the controller controls the light emitted by the light source to absorb a part of the light through the object to be tested, and the other part of the light is converted into a current signal by the silicon photo cell, and the current signal is passed through the signal processing circuit.
  • the signal is converted into a voltage signal, and the controller obtains the intensity of the detected light according to the voltage signal, and then obtains the concentration of the object to be tested according to the difference between the intensity of the light emitted by the light source and the intensity of the detected light, thereby realizing fluorescence immunity.
  • Chromatographic quantitative detection the cost is low.
  • the fluorescence immunochromatographic quantitative analysis method of the present invention passes through the detection vehicle. I/V
  • the conversion circuit converts the current signal generated by the silicon photocell into a voltage signal, and amplifies the voltage signal, and then sequentially performs signal processing through the filter circuit and the synchronous demodulator, thereby effectively improving the accuracy of the quantitative detection.
  • a fluorescent immuno-optical detection module is located on the sliding table, and an output shaft of the stepping motor is connected to one end of the screw rod, and the other end of the screw rod is screwed to the sliding table, and the sliding table is located on the sliding rail, thereby It can realize the detection of the whole test strip, and the detection range is wide.
  • Figure 1 is a schematic diagram of a fluorescent immunological optical detection module of the present invention.
  • 1 is a light source
  • 2 is a first filter
  • 3 is a dichroic mirror
  • 4 is a first plano-convex lens
  • 5 is a test strip
  • 6 is a second filter
  • 7 is a second plano-convex lens
  • 8 is Small aperture diaphragm
  • 9 is a silicon photocell.
  • the fluorescence immunochromatographic quantitative analysis instrument of the invention comprises a controller, a signal processing circuit and a fluorescence immuno-optical detection module;
  • the fluorescence immuno-optical detection module comprises a light source 1 , a first plano-convex lens 4 , and a silicon photo cell 9 a dichroic mirror 3, a second plano-convex lens 7, a small aperture diaphragm 8 and a test strip 5,
  • the controller is connected to the control end of the light source 1, and the light emitted by the light source 1 is reflected by the dichroic mirror 3 and then passed through the first Plano-convex lens 4
  • the light irradiated onto the object to be tested is divided into two parts, wherein one part is absorbed by the object to be tested, and the other part is reflected by the object to be tested, the first plano-convex lens 4, Two-color mirror 3, second plano-convex lens 7 and small aperture dia
  • the light emitted by the light source 1 is incident on the dichroic mirror 3 through the first filter 2, and the dichroic mirror 3 and the second plano-convex lens 7 A second filter 6 is provided between them.
  • the invention further comprises a stepping motor, a sliding rail, a screw rod and a sliding table, wherein the fluorescent immuno-optical detecting module is located on the sliding table, the output shaft of the stepping motor is connected with one end of the screw rod, and the other end of the screw rod is sliding
  • the table is connected by a screw
  • the slide table is located on the slide rail
  • the signal processing circuit includes I/V conversion circuit, filter circuit, synchronous demodulator and AD conversion chip
  • the signal output terminal of the silicon photocell 9 is connected to the input end of the I/V conversion circuit
  • I/V The output end of the conversion circuit is sequentially connected to the input end of the controller via the filter circuit, the synchronous demodulator and the AD conversion chip, I/V
  • the conversion circuit includes an ultra-low noise operational amplifier, and the controller is also connected with a display, a memory, and a light source parameter input module.
  • the fluorescence immunochromatographic quantitative analysis method of the present invention comprises the following steps: the controller controls the light source 1 according to the light intensity information input by the user, and the light source 1
  • the emitted light is refracted by the dichroic mirror 3 and then irradiated to the test strip by the first plano-convex lens 4
  • the light irradiated onto the object to be tested is divided into two parts, wherein one part of the light is absorbed by the object to be tested, and the other part of the light is reflected by the object to be tested and then irradiated by the first plano-convex lens 4 Go to the dichroic mirror 3 and then through the dichroic mirror 3
  • it is irradiated onto the photosensitive surface of the silicon photocell 9 through the second plano-convex lens 7 and the aperture stop 8 to generate a current signal, and the current signal generated by the silicon photocell 9 passes through the I/V.
  • the conversion circuit converts into a voltage signal and amplifies the voltage signal, and the amplified voltage signal is sequentially filtered by a filter circuit, synchronous demodulator synchronous demodulation, and an AD conversion chip AD
  • the controller inputs the light intensity value of the light according to the voltage value of the received voltage signal, and then the difference between the light intensity information input by the user and the light intensity value of the detected light is obtained.
  • concentration of the analyte is a concentration of the analyte.
  • the light source 1 is an LED lamp
  • the silicon photocell 9 is a photodiode
  • the AD conversion chip is a low noise 24-bit ⁇ - ⁇ type. AD conversion chip.
  • the invention overcomes the technical difficulties that the conventional time-resolved fluorescence detection principle is weak and is susceptible to environmental light interference, improves the detection sensitivity of the system, and provides a low cost and high cost performance under the premise of ensuring the detection sensitivity of the system.
  • the experimental prototype development program can directly meet the urgent needs of market competition. Also scan the test strip 5 blank area, measuring belt and quality control strip line, blank area adopts smoothing filter denoising algorithm, and measuring belt and quality control belt adopt "spectral curve integral" algorithm to intelligently quantitatively analyze sample concentration of test object, detection sensitivity at 1% the above.
  • the invention can be applied to the field of food safety, and can detect a variety of substances, including catechol residues such as clenbuterol, melamine, chloramphenicol, tetracycline furan antibiotics, sulfonamides, Escherichia coli, foot-and-mouth disease, blue ear disease, avian influenza virus , animal diseases such as Newcastle disease virus and toxins such as zearalenone, aflatoxin, and vomiting toxin.
  • catechol residues such as clenbuterol, melamine, chloramphenicol, tetracycline furan antibiotics, sulfonamides, Escherichia coli, foot-and-mouth disease, blue ear disease, avian influenza virus , animal diseases such as Newcastle disease virus and toxins such as zearalenone, aflatoxin, and vomiting toxin.

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种荧光免疫层析定量分析仪器及方法,包括控制器、信号处理电路及荧光免疫光学检测模块;荧光免疫光学检测模块包括光源(1)、第一平凸透镜(4)、硅光电池(9)、二色镜(3)、第二平凸透镜(7)、小孔光阑(8)及试纸条(5),控制器与光源(1)的控制端相连接,光源(1)发出的光经二色镜(3)反射后再经第一平凸透镜(4)后照射到试纸条(5)中的待测物上,照射到待测物上的光分为两部分,其中,一部分被待测物吸收,另一部分经待测物反射、第一平凸透镜(4)、二色镜(3)、第二平凸透镜(7)及小孔光阑(8)后照射到硅光电池(9)的光敏面上,硅光电池(9)的信号输出端与信号处理电路的输入端相连接,信号处理电路的输出端与控制器的输入端相连接。该仪器及方法能够实现荧光免疫层析定量检测,并且成本降低。

Description

一种荧光免疫层析定量分析仪器及方法 技术领域
本发明属于检疫检测技术领域,涉及一种荧光免疫层析定量分析仪器及方法 。
背景技术
荧光免疫层析技术因其操作简便、快速,且具有很高的特异性和灵敏性,必然将取代胶体金免疫层析技术,而推广到盐酸克伦特罗、莱克多巴胺、沙丁胺醇、三聚氰胺、氯霉素、四环素呋喃类抗生素、磺胺类等兽药残留,大肠杆菌、口蹄疫、蓝耳病、禽流感病毒、新城疫病毒等动物疫病和玉米赤霉烯酮、黄曲霉毒素、呕吐毒素等毒素的食品安全检测领域。据目前市场调研得知,长三角及珠三角一带的原胶体金试纸条生产厂家,纷纷投入技术力量准备完成从胶体金定性分析到荧光定量分析的转型。例如深圳万孚自主研发了"飞测"系列检测仪,配套荧光检测试纸条,检测心肌肌钙蛋白等指标,很受市场欢迎,但精度稍差;另外一些厂家配套国外高端仪器进行试纸条销售,成本过高,市场竞争力低;还有更多的试纸条生产厂家,局限于没有合适的荧光定量分析仪,迟迟无法推出产品,延误了宝贵时机。因此,如果能开发一套高性能的荧光免疫层析定量分析仪,将极大有效的推动相关行业的发展,而且据前期市场预估,仅是专业市场,每年仪器的需求量应该在 5 万台以上,市场估值在 6 亿元人民币以上。
技术问题
自主研发了"飞测"系列检测仪,配套荧光检测试纸条,检测心肌肌钙蛋白等指标,很受市场欢迎,但精度稍差;另外一些厂家配套国外高端仪器进行试纸条销售,成本过高,市场竞争力低;还有更多的试纸条生产厂家,局限于没有合适的荧光定量分析仪,迟迟无法推出产品,延误了宝贵时机。
技术解决方案
本发明的目的在于克服上述现有技术的缺点,提供了一种 荧光免疫层析定量分析仪器及方法,该仪器及方法能够实现荧光免疫层析定量检测,并且成本降低。
为达到上述目的,本发明所述的荧光免疫层析定量分析仪器包括控制器、信号处理电路及荧光免疫光学检测模块;
荧光免疫光学检测模块包括光源、第一平凸透镜、硅光电池、二色镜、第二平凸透镜、小孔光阑及试纸条,控制器与光源的控制端相连接,光源发出的光经二色镜反射后再经第一平凸透镜后照射到试纸条中的待测物上,照射到待测物上的光分为两部分,其中,一部分被待测物吸收,另一部分经待测物反射、第一平凸透镜、二色镜、第二平凸透镜及小孔光阑后照射到硅光电池的光敏面上,硅光电池的信号输出端与信号处理电路的输入端相连接,信号处理电路的输出端与控制器的输入端相连接。
光源发出的光经第一滤光片入射到二色镜上。
二色镜与第二平凸透镜之间设有第二滤光片。
还包括步进电机、滑轨、丝杆及滑台,荧光免疫光学检测模块位于所述滑台上,步进电机的输出轴与丝杆的一端相连接,丝杆的另一端与滑台通过螺纹连接,滑台位于所述滑轨上。
所述信号处理电路包括 I/V 转换电路、滤波电路、同步解调器及 AD 转换芯片,硅光电池的信号输出端与 I/V 转换电路的输入端相连接, I/V 转换电路的输出端依次经滤波电路、同步解调器及 AD 转换芯片与控制器的输入端相连接。
所述 I/V 转换电路包括超低噪声运算放大器。
所述控制器还连接有显示器、存储器及光源参数输入模块。
本发明所述的荧光免疫层析定量分析方法包括以下步骤:控制器根据用户输入的光强信息控制光源发光,光源发出的光经二色镜折射后再经第一平凸透镜照射到试纸条内的待测物上,照射到待测物上的光分为两部分,其中,一分部光被待测物吸收,另一部分光经待测物反射后再经第一平凸透镜后照射到二色镜上,然后再经二色镜透射后经第二平凸透镜及小孔光阑后照射到硅光电池的光敏面上,使硅光电池产生电流信号,硅光电池产生的电流信号经 I/V 转换电路转换为电压信号并对所述电压信号进行放大,放大后的电压信号依次经滤波电路滤波、同步解调器同步解调以及 AD 转换芯片 AD 转换后输入到控制器中,控制器根据接收到的电压信号的电压值得检测到的光的光强值,然后再根据用户输入的光强信息与检测到的光的光强值之差得待测物的浓度。
有益效果
本发明所述的荧光免疫层析定量分析仪器在检测过程中,控制器控制光源发出的光经待测物吸收一部分,另一部分光经硅光电池转换为电流信号,所述电流信号经信号处理电路处理后转换为电压信号,控制器根据所述电压信号得检测到的光的光强,再根据光源发出的光的强度与检测到的光的强度之差得到待测物的浓度,实现荧光免疫层析定量检测,成本较低。另外,本发明所述的荧光免疫层析定量分析方法在检测过车中,通过 I/V 转换电路将硅光电池产生的电流信号转换为电压信号,并对所述电压信号进行放大,然后通过滤波电路及同步解调器依次进行信号处理,从而有效的提高定量检测的精度。
进一步,荧光免疫光学检测模块位于所述滑台上,步进电机的输出轴与丝杆的一端相连接,丝杆的另一端与滑台通过螺纹连接,滑台位于所述滑轨上,从而能够实现对试纸条整体进行检测,检测的范围较广。
附图说明
图1为本发明中 荧光免疫光学检测模块 的原理图。
其中,1为光源、2为第一滤光片、3为二色镜、4为第一平凸透镜、5为试纸条、6为第二滤光片、7为第二平凸透镜、8为小孔光阑、9为硅光电池。
本发明的实施方式
下面结合附图对本发明做进一步详细描述:
参考图1, 本发明所述的荧光免疫层析定量分析仪器包括控制器、信号处理电路及荧光免疫光学检测模块;荧光免疫光学检测模块包括光源 1 、第一平凸透镜 4 、硅光电池 9 、二色镜 3 、第二平凸透镜 7 、小孔光阑 8 及试纸条 5 ,控制器与光源 1 的控制端相连接,光源 1 发出的光经二色镜 3 反射后再经第一平凸透镜 4 后照射到试纸条 5 中的待测物上,照射到待测物上的光分为两部分,其中,一部分被待测物吸收,另一部分经待测物反射、第一平凸透镜 4 、二色镜 3 、第二平凸透镜 7 及小孔光阑 8 后照射到硅光电池 9 的光敏面上,硅光电池 9 的信号输出端与信号处理电路的输入端相连接,信号处理电路的输出端与控制器的输入端相连接。
需要说明的是,光源 1 发出的光经第一滤光片 2 入射到二色镜 3 上,二色镜 3 与第二平凸透镜 7 之间设有第二滤光片 6 。
本发明还包括步进电机、滑轨、丝杆及滑台,荧光免疫光学检测模块位于所述滑台上,步进电机的输出轴与丝杆的一端相连接,丝杆的另一端与滑台通过螺纹连接,滑台位于所述滑轨上,信号处理电路包括 I/V 转换电路、滤波电路、同步解调器及 AD 转换芯片,硅光电池 9 的信号输出端与 I/V 转换电路的输入端相连接, I/V 转换电路的输出端依次经滤波电路、同步解调器及 AD 转换芯片与控制器的输入端相连接, I/V 转换电路包括超低噪声运算放大器,控制器还连接有显示器、存储器及光源参数输入模块。
本发明所述的荧光免疫层析定量分析方法包括以下步骤:控制器根据用户输入的光强信息控制光源 1 发光,光源 1 发出的光经二色镜 3 折射后再经第一平凸透镜 4 照射到试纸条 5 内的待测物上,照射到待测物上的光分为两部分,其中,一分部光被待测物吸收,另一部分光经待测物反射后再经第一平凸透镜 4 后照射到二色镜 3 上,然后再经二色镜 3 透射后经第二平凸透镜 7 及小孔光阑 8 后照射到硅光电池 9 的光敏面上,使硅光电池 9 产生电流信号,硅光电池 9 产生的电流信号经 I/V 转换电路转换为电压信号并对所述电压信号进行放大,放大后的电压信号依次经滤波电路滤波、同步解调器同步解调以及 AD 转换芯片 AD 转换后输入到控制器中,控制器根据接收到的电压信号的电压值得检测到的光的光强值,然后再根据用户输入的光强信息与检测到的光的光强值之差得待测物的浓度。
所述光源1为LED灯,所述硅光电池9为光敏二极管,所述 AD 转换芯片为低噪声 24 位 Σ-Δ 型 AD 转换芯片。
本发明克服了常规时间分辨荧光检测原理存在的荧光信号弱、易受环境光干扰的技术难点,提高了系统检测灵敏度,在保证系统检测灵敏度的前提下,还提供一种低成本、高性价比的实验样机开发方案,能够直接满足市场竞争的迫切需要。另外扫描试纸条 5 内的空白区、测量带及质控带谱线,空白区采用平滑滤波去噪算法,而测量带、质控带采用"光谱曲线积分"算法,智能定量分析待测物样品浓度,检测灵敏度在 1% 以上。因此本发明能够应用于食品安全领域,可检测多种物质,包括瘦肉精、三聚氰胺、氯霉素、四环素呋喃类抗生素、磺胺类等兽药残留,大肠杆菌、口蹄疫、蓝耳病、禽流感病毒、新城疫病毒等动物疫病和玉米赤霉烯酮、黄曲霉毒素、呕吐毒素等毒素。

Claims (8)

  1. 一种荧光免疫层析定量分析仪器,其特征在于,包括控制器、信号处理电路及荧光免疫光学检测模块;
    荧光免疫光学检测模块包括光源( 1 )、第一平凸透镜( 4 )、硅光电池( 9 )、二色镜( 3 )、第二平凸透镜( 7 )、小孔光阑( 8 )及试纸条( 5 ),控制器与光源( 1 )的控制端相连接,光源( 1 )发出的光经二色镜( 3 )反射后再经第一平凸透镜( 4 )后照射到试纸条( 5 )中的待测物上,照射到待测物上的光分为两部分,其中,一部分被待测物吸收,另一部分经待测物反射、第一平凸透镜( 4 )、二色镜( 3 )、第二平凸透镜( 7 )及小孔光阑( 8 )后照射到硅光电池( 9 )的光敏面上,硅光电池( 9 )的信号输出端与信号处理电路的输入端相连接,信号处理电路的输出端与控制器的输入端相连接。
  2. 根据权利要求 1 所述的荧光免疫层析定量分析仪器,其特征在于,光源( 1 )发出的光经第一滤光片( 2 )入射到二色镜( 3 )上。
  3. 根据权利要求 2 所述的荧光免疫层析定量分析仪器,其特征在于,二色镜( 3 )与第二平凸透镜( 7 )之间设有第二滤光片( 6 )。
  4. 根据权利要求 1 所述的荧光免疫层析定量分析仪器,其特征在于,还包括步进电机、滑轨、丝杆及滑台,荧光免疫光学检测模块位于所述滑台上,步进电机的输出轴与丝杆的一端相连接,丝杆的另一端与滑台通过螺纹连接,滑台位于所述滑轨上。
  5. 根据权利要求 1 所述的荧光免疫层析定量分析仪器,其特征在于,所述信号处理电路包括 I/V 转换电路、滤波电路、同步解调器及 AD 转换芯片,硅光电池( 9 )的信号输出端与 I/V 转换电路的输入端相连接, I/V 转换电路的输出端依次经滤波电路、同步解调器及 AD 转换芯片与控制器的输入端相连接。
  6. 根据权利要求 1 所述的荧光免疫层析定量分析仪器,其特征在于,所述 I/V 转换电路包括超低噪声运算放大器。
  7. 根据权利要求 1 所述的荧光免疫层析定量分析仪器,其特征在于,所述控制器还连接有显示器、存储器及光源参数输入模块。
  8. 一种荧光免疫层析定量分析方法,其特征在于,基于权利要求 5 所述荧光免疫层析定量分析仪器,包括以下步骤:控制器根据用户输入的光强信息控制光源( 1 )发光,光源( 1 )发出的光经二色镜( 3 )折射后再经第一平凸透镜( 4 )照射到试纸条( 5 )内的待测物上,照射到待测物上的光分为两部分,其中,一分部光被待测物吸收,另一部分光经待测物反射后再经第一平凸透镜( 4 )后照射到二色镜( 3 )上,然后再经二色镜( 3 )透射后经第二平凸透镜( 7 )及小孔光阑( 8 )后照射到硅光电池( 9 )的光敏面上,使硅光电池( 9 )产生电流信号,硅光电池( 9 )产生的电流信号经 I/V 转换电路转换为电压信号并对所述电压信号进行放大,放大后的电压信号依次经滤波电路滤波、同步解调器同步解调以及 AD 转换芯片 AD 转换后输入到控制器中,控制器根据接收到的电压信号的电压值得检测到的光的光强值,然后再根据用户输入的光强信息与检测到的光的光强值之差得待测物的浓度。
PCT/CN2016/101080 2016-09-30 2016-09-30 一种荧光免疫层析定量分析仪器及方法 WO2018058525A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/101080 WO2018058525A1 (zh) 2016-09-30 2016-09-30 一种荧光免疫层析定量分析仪器及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/101080 WO2018058525A1 (zh) 2016-09-30 2016-09-30 一种荧光免疫层析定量分析仪器及方法

Publications (1)

Publication Number Publication Date
WO2018058525A1 true WO2018058525A1 (zh) 2018-04-05

Family

ID=61762524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/101080 WO2018058525A1 (zh) 2016-09-30 2016-09-30 一种荧光免疫层析定量分析仪器及方法

Country Status (1)

Country Link
WO (1) WO2018058525A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110220907A (zh) * 2019-06-28 2019-09-10 中国计量大学 一种基于硅光电池的便携式金标检测仪的检测系统
CN110441280A (zh) * 2019-09-09 2019-11-12 云南健牛生物科技有限公司 一种碳点-罗丹明b双荧光体系比例荧光探针检测四环素及克伦特罗的方法
CN112748245A (zh) * 2020-12-30 2021-05-04 浙江省智能诊疗设备制造业创新中心 多通道荧光免疫层析定量检测仪及其检测方法
CN112924418A (zh) * 2019-12-05 2021-06-08 深圳迈瑞生物医疗电子股份有限公司 特定蛋白分析系统
CN114200131A (zh) * 2021-12-13 2022-03-18 成都云芯医联科技有限公司 类夜明珠发光特性的检测系统及配套检测试纸的制备方法
CN114216904A (zh) * 2021-12-01 2022-03-22 江苏农牧科技职业学院 一种食品安全综合检测仪
CN115327119A (zh) * 2022-10-18 2022-11-11 深圳市强大创新科技实业有限公司 一种抗原检测仪及其检测方法
CN115468941A (zh) * 2022-09-24 2022-12-13 福州大学 基于轨迹优化的荧光免疫层析试条检测系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101592659A (zh) * 2009-02-09 2009-12-02 马义才 一种基于持续荧光物标记的试条定量检测系统及其方法
CN204008471U (zh) * 2014-08-22 2014-12-10 苏州百慧华业精密仪器有限公司 一种试纸条的定量检测装置
US20150090014A1 (en) * 2013-09-30 2015-04-02 Hitachi High-Technologies Corporation Detector for liquid chromatography
CN104880450A (zh) * 2015-06-18 2015-09-02 苏州和迈精密仪器有限公司 一种免疫荧光试剂卡的线聚焦检测系统
CN105242039A (zh) * 2015-10-29 2016-01-13 詹爱军 一种荧光免疫层析定量分析仪器及方法
CN205246666U (zh) * 2015-10-29 2016-05-18 詹爱军 一种荧光免疫层析定量分析仪器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101592659A (zh) * 2009-02-09 2009-12-02 马义才 一种基于持续荧光物标记的试条定量检测系统及其方法
US20150090014A1 (en) * 2013-09-30 2015-04-02 Hitachi High-Technologies Corporation Detector for liquid chromatography
CN204008471U (zh) * 2014-08-22 2014-12-10 苏州百慧华业精密仪器有限公司 一种试纸条的定量检测装置
CN104880450A (zh) * 2015-06-18 2015-09-02 苏州和迈精密仪器有限公司 一种免疫荧光试剂卡的线聚焦检测系统
CN105242039A (zh) * 2015-10-29 2016-01-13 詹爱军 一种荧光免疫层析定量分析仪器及方法
CN205246666U (zh) * 2015-10-29 2016-05-18 詹爱军 一种荧光免疫层析定量分析仪器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIE, MENGYUAN ET AL.: "Research on Portable Quantitative Fluorescence Immunoassay Analyzer", INSTRUMENT TECHNIQUE AND SENSOR, 31 December 2014 (2014-12-31), pages 26; 28, ISSN: 1002-1841 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110220907A (zh) * 2019-06-28 2019-09-10 中国计量大学 一种基于硅光电池的便携式金标检测仪的检测系统
CN110441280A (zh) * 2019-09-09 2019-11-12 云南健牛生物科技有限公司 一种碳点-罗丹明b双荧光体系比例荧光探针检测四环素及克伦特罗的方法
CN112924418A (zh) * 2019-12-05 2021-06-08 深圳迈瑞生物医疗电子股份有限公司 特定蛋白分析系统
CN112748245A (zh) * 2020-12-30 2021-05-04 浙江省智能诊疗设备制造业创新中心 多通道荧光免疫层析定量检测仪及其检测方法
CN114216904A (zh) * 2021-12-01 2022-03-22 江苏农牧科技职业学院 一种食品安全综合检测仪
CN114200131A (zh) * 2021-12-13 2022-03-18 成都云芯医联科技有限公司 类夜明珠发光特性的检测系统及配套检测试纸的制备方法
CN114200131B (zh) * 2021-12-13 2023-08-15 成都云芯医联科技有限公司 类夜明珠发光特性的检测系统及配套检测试纸的制备方法
CN115468941A (zh) * 2022-09-24 2022-12-13 福州大学 基于轨迹优化的荧光免疫层析试条检测系统及方法
CN115327119A (zh) * 2022-10-18 2022-11-11 深圳市强大创新科技实业有限公司 一种抗原检测仪及其检测方法

Similar Documents

Publication Publication Date Title
WO2018058525A1 (zh) 一种荧光免疫层析定量分析仪器及方法
Alba-Patino et al. Nanoparticle-based mobile biosensors for the rapid detection of sepsis biomarkers in whole blood
Fernández et al. A label-free and portable multichannel surface plasmon resonance immunosensor for on site analysis of antibiotics in milk samples
Obahiagbon et al. A compact, low-cost, quantitative and multiplexed fluorescence detection platform for point-of-care applications
CN205246666U (zh) 一种荧光免疫层析定量分析仪器
CN105242039A (zh) 一种荧光免疫层析定量分析仪器及方法
CN111610332B (zh) 用于检测新冠病毒的长余辉免疫层析试纸条与检测方法
WO2012027867A1 (zh) 紫外、可见、近红外在线检测漫反射光谱分析仪
US4224304A (en) Method and apparatus for the measurement of antigens and antibodies
CN105388283A (zh) 免疫荧光色带定量检测系统及其应用
US4203724A (en) Method and apparatus for the measurement of antigens and antibodies
Liang et al. A quantum dot-based lateral flow immunoassay for the rapid, quantitative, and sensitive detection of specific IgE for mite allergens in sera from patients with allergic rhinitis
CN111812321A (zh) 基于纳米等离子共振的新型冠状病毒颗粒定量检测方法
CN107121548A (zh) 定量检测肿瘤标志物的试纸、制备方法及检测方法
WO2014082439A1 (zh) 一种提高胶体金免疫层析试纸条检测灵敏度的方法
CN106053802A (zh) 一种肺炎支原体抗体双标记纳米时间分辨荧光免疫层析定量试纸及其制备方法
CN104849443B (zh) 基于pH计的酶联免疫吸附测定方法
Wang et al. based multiplex colorimetric vertical flow assay with smartphone readout for point-of-care detection of acute kidney injury biomarkers
WO2021120605A1 (zh) 一种药剂浓度传感器
Huang et al. Convolutional neural network for accurate analysis of methamphetamine with upconversion lateral flow biosensor
CN105974108B (zh) 免疫层析检测系统和检测方法
CN207717626U (zh) 一种荧光免疫层析分析仪
CN111307725A (zh) 一种测定谷胱甘肽含量的方法
CN114166808B (zh) 可视化定量检测Vc含量的方法及便携式智能传感系统
US20220404354A1 (en) Real-time, point of care diagnostic and method of use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917275

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16917275

Country of ref document: EP

Kind code of ref document: A1