WO2018058364A1 - 防污染型微阻缓闭止回阀及工业排水系统 - Google Patents

防污染型微阻缓闭止回阀及工业排水系统 Download PDF

Info

Publication number
WO2018058364A1
WO2018058364A1 PCT/CN2016/100552 CN2016100552W WO2018058364A1 WO 2018058364 A1 WO2018058364 A1 WO 2018058364A1 CN 2016100552 W CN2016100552 W CN 2016100552W WO 2018058364 A1 WO2018058364 A1 WO 2018058364A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
chamber
medium
check valve
valve
Prior art date
Application number
PCT/CN2016/100552
Other languages
English (en)
French (fr)
Inventor
寇子明
吴娟
张静
寇彦飞
张鹏
孟思佳
Original Assignee
太原理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太原理工大学 filed Critical 太原理工大学
Priority to PCT/CN2016/100552 priority Critical patent/WO2018058364A1/zh
Priority to AU2016424703A priority patent/AU2016424703B2/en
Priority to CA3042108A priority patent/CA3042108C/en
Publication of WO2018058364A1 publication Critical patent/WO2018058364A1/zh
Priority to IL259594A priority patent/IL259594B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/18Check valves with actuating mechanism; Combined check valves and actuated valves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated

Definitions

  • the invention relates to a check valve, in particular to an anti-pollution type micro-resistance slow-closing check valve and an industrial drainage system.
  • the check valve refers to a valve that automatically opens and closes the valve flap by means of the flow of the medium itself.
  • the valve is used to prevent the back flow of the medium.
  • the basic function is to protect the equipment by preventing the liquid from flowing back in the drainage system. This is for pumps and compressors. It is especially important.
  • the check valve is usually composed of a valve body, a valve flap, a valve stem, and a spring.
  • the centrifugal pump suddenly loses power and causes liquid backflow in the pipeline, the backflowing liquid will produce water hammer, which will damage the drainage system.
  • the water hammer refers to the hydraulic transition phenomenon of the pressure increase or decrease caused by the change of the fluid flow velocity in the pressure pipeline.
  • the physical principle generated is the result of the incompressibility of the liquid, the inertia of the fluid motion and the elasticity of the pipe.
  • a buffer device is needed in the check valve, and the valve flap is slowly closed during the closing process by the buffer device, thereby achieving the effect of relieving and eliminating the water hammer.
  • FIG. 1 it is a structural schematic diagram of a conventional micro-resistance slow-closing check valve for a drainage system.
  • the micro-resistance slow-closing check valve in FIG. 1 includes a main valve body a1, a valve disc a2, a valve stem a3, a spring a4, a piston cylinder a5, and a slow-closing cylinder a6.
  • the piston cylinder a5 is mounted on the main valve body a1, the valve
  • the rod a3 is connected to the piston in the piston cylinder a5.
  • the fluid pressure entering the inlet chamber of the main valve body a1 is continuously increased, and a part of the water flows through the small ball valve and the filter, and enters the lower chamber of the piston cylinder through the lower chamber nozzle a7, and the water pressure acts on the piston to push
  • the valve stem a3 moves up
  • the valve stem a3 moves up to move the slow-closing cylinder a6 upward
  • the valve flap a2 opens under the action of the water pressure of the water pump outlet to complete the valve opening, and at the same time, the water in the upper chamber of the piston cylinder passes through the upper cavity nozzle.
  • A8 discharged into the outlet cavity of the main valve body a1 through the small ball valve and the filter.
  • a throttle valve is arranged in the slow-closing cylinder a6, and the throttle valve can be throttled by controlling the throttle valve to ensure that the opening time of the main valve is greater than the starting time of the water pump motor, and the light load pump is realized to avoid the direct water hammer; when the water pump stops working
  • the pressure in the inlet chamber of the valve drops rapidly, and the pressure of the valve outlet is higher than the pressure of the inlet chamber.
  • the valve disc a2 falls rapidly under the action of its own gravity.
  • the water out of the mouth passes through the small ball valve and the filter passes through the upper chamber nozzle a8. Enter the upper chamber of the piston cylinder and close the valve under the action of water fluid pressure and spring force. Cut off the water flow.
  • the water in the lower chamber of the piston cylinder flows through the filter and the ball valve to the inlet chamber of the main valve, and the valve stem a3 descends to lower the slow closing cylinder a6.
  • the opening degree of the throttle valve in the slow-closing cylinder a6 the running speed of the piston is controlled, the valve flap a2 is slowly closed, and the water hammer of the pump is eliminated.
  • check valves have the following disadvantages in harsh environmental conditions:
  • the outlet and inlet chambers of the main valve are respectively connected with the upper and lower chambers of the piston cylinder through the first conduit, and the turbid liquid is passed through the thin first conduit, and the impurities in the liquid are easily accumulated therein, resulting in Blockage, making the check valve unable to close.
  • the impurities in the conveying medium will enter the piston cylinder at the same time, and the operating speed of the piston is controlled by setting the opening degree of the throttle valve in the slow-closing cylinder to control the valve flap. Movement speed, although the throttle valve can eliminate the water hammer, the overall closing speed of the valve flap is relatively slow.
  • the object of the present invention is to provide an anti-pollution type micro-resistance slow-closing check valve and an industrial drainage system, which can eliminate the water hammer phenomenon as much as possible, and the check valve is not easy to fail.
  • an anti-pollution type micro-resistance slow-closing check valve comprising: a valve body, a valve flap, a valve stem, a piston cylinder and a buffer mechanism, wherein the valve body is connected and provided a first chamber and a second chamber through which the working fluid medium passes, the piston cylinder being mounted on a side of the valve body adjacent to the second chamber, the two ends of the valve stem being respectively connected to the valve flap and the a piston in the piston cylinder such that the piston, the valve stem and the valve flap move synchronously to close or open a communication passage between the first chamber and the second chamber, and the buffer mechanism can The movement of the piston is buffered;
  • a medium chamber in a side of the piston cylinder remote from the valve stem is in communication with the second chamber, and a cavity in a side of the piston cylinder away from the valve stem is provided with an extendable spacer for isolating a damping medium within the piston cylinder and a working fluid medium from the second chamber.
  • the buffer mechanism includes a throttle mechanism disposed in the piston cylinder, the throttling A mechanism is located between the media chambers on either side of the piston for mitigating relative flow between the damping media on either side of the piston.
  • the throttle mechanism includes an orifice and a cone plug disposed on the piston, and a medium chamber on both sides of the piston penetrates through the throttle hole, and the cone plug is disposed in the throttle hole Medium for throttling the passing damping medium.
  • the buffer mechanism further includes a medium passage disposed in the piston cylinder for interconnecting damping materials in the medium chambers on both sides of the piston, and a control passage is further disposed on the medium passage An on/off mechanism in which the medium passage is connected or disconnected.
  • the on-off mechanism can control the media channel to be disconnected during an initial phase and/or a closure phase of the valve flap; and control the media passage communication during other movement phases of the valve flap .
  • the on/off mechanism is a trip-based on/off switch.
  • the medium passage is disposed on the piston, and a guide rod fixed with respect to the piston cylinder is disposed in the piston cylinder, and the guide rod is inserted in the medium passage, the guide The rod has a change in cross-sectional dimension in the length direction, and a cross-sectional dimension of the guide rod corresponding to a current position of the piston is smaller than a cross-sectional dimension of the medium passage at a first predetermined stroke of the piston Causing a damping medium in the medium chamber on both sides of the piston to flow through a gap between the guide rod and the medium passage; under a second predetermined stroke of the piston, the guide rod corresponds to The cross-sectional dimension of the current position of the piston is equal to the cross-sectional dimension of the media passage such that damping media within the media chambers on either side of the piston cannot pass through the media passage.
  • the spacer is a rubber film that can be deformed to the inside or the outside of the piston cylinder as the pressure relationship between the damping medium in the piston cylinder and the working fluid medium from the second chamber changes. .
  • the piston cylinder includes a cylinder block, a valve cover and the piston, the cylinder body is mounted on the valve body by a flange, and the valve cover is mounted on the cylinder body away from the valve stem At one end, the spacer is disposed inside the valve cover, and a space between the valve cover and the spacer communicates with the second cavity.
  • a hollow inner cavity is disposed on the inner side of the valve cover, and the hollow inner cavity and the second cavity are connected by a pipeline.
  • a filter is further disposed on a side of the pipeline adjacent to the second cavity.
  • a spring is further disposed between the valve cover and the piston, and the spring is immersed in a damping medium in the piston cylinder.
  • the damping medium in the piston cylinder is hydraulic oil.
  • valve stem and the piston cylinder are vertically disposed when the valve body is in a horizontally placed state.
  • the axis of the inlet and outlet of the first chamber coincides with the axis of the inlet and outlet of the second chamber, and is parallel to the plane of the valve flap.
  • a grid and an O-ring are further included, the grid is disposed between the piston and the cylinder and/or between the valve stem and the flange; A ring is disposed between the cylinder and the flange and/or between the valve body and the flange.
  • the spacer is a rubber film
  • the valve cover is provided with a central hole
  • a spring seat is disposed in the central hole, and the two ends of the spring are respectively connected with the spring seat and the piston
  • a spacer sleeve is sleeved on the spring seat, and the rubber film is clamped and fixed by the spring seat and the spacer sleeve.
  • the present invention provides an industrial drainage system including a water pump, characterized by further comprising the aforementioned anti-pollution type micro-resistance slow-closing check valve, and the anti-pollution type micro-resistance slow-closing check valve setting On the water outlet side of the water pump.
  • the present invention employs a buffer mechanism in the check valve to buffer the movement of the piston of the piston cylinder, so that the valve flap can slowly open and/or slowly close the communication between the inlet cavity and the outlet cavity of the check valve. Channel, thereby eliminating the water hammer phenomenon caused by the moment of opening and/or closing; the invention also provides a ductile spacer in the medium chamber of the piston cylinder away from the valve stem side, and the piston cylinder is used for the piston cylinder
  • the damping medium for controlling the movement of the valve stem is separated from the working fluid medium from the outlet of the check valve to prevent the impurities in the working fluid medium from entering the piston cylinder, causing the piston cylinder or the buffer mechanism to be blocked and failing, and also avoiding the work of the damping medium. Contamination of fluid media.
  • FIG. 1 is a schematic structural view of a conventional micro-resistance slow-closing check valve for a drainage system.
  • FIG. 2 is a cross-sectional structural view showing an embodiment of the anti-pollution type micro-resistance slow-closing check valve of the present invention.
  • FIG 3 is a schematic view showing the structure of the anti-pollution type micro-resistance slow-closing check valve of the present invention in a direction from the right side of the second chamber to the second chamber.
  • FIG. 4 is a schematic structural view of an embodiment of the anti-pollution type micro-resistance slow-closing check valve of the present invention in a plan view.
  • the inventors have observed and studied that the failure of the check valve is mainly caused by the fact that the impurities in the liquid transported by the drainage system may block the piston cylinder or the pilot pipe.
  • the reason why it is blocked is that in addition to being a liquid medium to be transported, the liquid to be transported needs to function as a pilot liquid for opening and closing the valve flap in the check valve, which gives the opportunity to enter the pilot duct and Inside the piston cylinder, it creates a hidden danger.
  • the inventors set up a damping medium that acts as an intermediate transfer pressure in the piston cylinder, and through the ductile spacers, the damping medium and the working fluid medium can be isolated from each other and can transmit pressure to each other, thereby avoiding Impurities directly entering the interior of the piston cylinder tend to block the position of the piston operation, which in turn makes the check valve not easily fail.
  • FIG. 2 it is a schematic cross-sectional view of an embodiment of the anti-pollution type micro-resistance slow-closing check valve of the present invention based on the above principle.
  • the anti-pollution type micro-resistance slow-closing check valve in this embodiment includes a valve body 1, a valve flap 2, a valve stem 3, a piston cylinder and a buffer mechanism, in combination with the structural diagrams of different viewing angles shown in FIG. 3 and FIG.
  • the valve body 1 is provided with a first cavity A and a second cavity B which are in communication and through which the working fluid medium passes.
  • the first chamber A and the second chamber B respectively serve as the inlet chamber and the outlet chamber of the working fluid medium when the valve flap 2 is opened, and the second chamber B also flows into the working fluid medium in the reverse direction when the liquid reverses.
  • a communication passage is formed between the first chamber A and the second chamber B, and the valve flap 2 is movable relative to the communication passage. In the different movement positions of the flap 2, the communication passage is opened or closed.
  • a piston cylinder is mounted on a side of the valve body 1 adjacent to the second chamber B, and two ends of the valve stem 3 are connected to the valve disc 2 and the piston 20 in the piston cylinder, respectively.
  • the piston 20 and the valve stem 3 can Simultaneously moving with the flap 2 to close or open the communication passage between the first chamber A and the second chamber B.
  • the valve flap 2 can be axially fixed to the valve stem 3 by a nut 23 below.
  • the upper end of the valve stem 3 can be axially fixed to the piston 20 by a nut 12.
  • the function of the cushioning mechanism is to buffer the movement of the piston 20 in order to decelerate the flap 2 at the moment of opening and/or closing, avoiding a rapid increase of the working fluid medium from zero to a larger flow rate or a rapid decrease from a larger flow rate to Zero, and the water hammer phenomenon that causes damage to the system.
  • the water hammer phenomenon mentioned here does not specifically refer to the application scenario that the working fluid medium is water, and is also applicable to other liquid working fluid media such as oil, mixed liquid and the like.
  • a damping medium is disposed in the piston cylinder, and the medium cavity away from the valve stem 3 is in communication with the second cavity B, and the dielectric cavity on the side is provided with an extendable spacer for isolating the piston cylinder Damping medium and working fluid medium from the second chamber B.
  • the pressure of the working fluid medium in the second chamber B can be transmitted to the medium chamber of the piston cylinder, and the pressure of the working fluid medium to the damping medium in the medium chamber is transmitted to the piston, thereby driving the piston to drive the valve.
  • the damping medium can be a hydraulic oil or other liquid fluid that can flow and transfer pressure.
  • the spacer used herein is capable of isolating the damping medium in the piston cylinder for controlling the movement of the valve stem from the working fluid medium from the outlet of the check valve, preventing impurities in the working fluid medium from entering the piston cylinder and causing the piston cylinder or
  • the buffer mechanism is blocked and fails, and the pollution of the working fluid medium by the damping medium is also avoided.
  • the spacer may adopt a rubber film 17, and the spacer of the material can be inward of the piston cylinder as the pressure relationship between the damping medium in the piston cylinder and the working fluid medium from the second chamber B changes The outer side is stretched and deformed, and the rubber film 17 has a good insulating effect.
  • the aforementioned damping mechanism is capable of buffering the movement of the piston 20 to decelerate the flap 2 at the moment of opening and/or closing.
  • the installation position may be in the piston cylinder or may be disposed outside the piston cylinder.
  • the slow-closing cylinder a6 similar to the prior art shown in FIG. 1 can also be applied to the anti-pollution type micro-resistance slow-closing check of the present invention. In the valve.
  • the buffer mechanism shown in FIG. 2 includes a throttle mechanism disposed in the piston cylinder, the throttle mechanism Between the dielectric chambers on either side of the piston 20 for mitigating the relative flow between the damping media on either side of the piston 20. By slowing the flow velocity of the damping medium, the speed of movement of the piston can be suppressed, so that the valve flap can be slowly opened and closed at the moment of opening and/or closing, thereby slowing or eliminating the water hammer phenomenon.
  • the throttle mechanism is disposed in the piston cylinder, which not only can realize the throttle slowing action and the flap driving function at the same time, but also has a compact structure and a small occupied space.
  • the slow opening and the slow closing of the valve flaps may be independent of each other, so that only the slow opening or the slow closing may be performed, thereby eliminating the water hammer phenomenon during the opening or closing process.
  • the slow opening and the slow closing of the flaps may also be related to each other, that is, simultaneous slow opening and slow closing to eliminate water hammer during opening and closing.
  • the throttle mechanism can have various implementations.
  • the throttle mechanism shown in FIG. 2 includes an orifice and a cone plug 11 disposed on the piston 20, and the orifice can be formed into a tapered threaded hole so that The cone plug 11 is threaded into the threaded hole.
  • a medium chamber on both sides of the piston 20 passes through the orifice, and the cone plug 11 is disposed in the orifice for throttling the passing damping medium.
  • the damping medium in the medium chamber of the piston cylinder located on both sides of the piston 20 will flow through the orifice, and by the throttling action of the cone plug 11, the two sides of the piston 20 can be The flow velocity between the medium chambers is lowered, thereby suppressing the speed of movement of the piston 20.
  • the orifice is opened on the piston 20, which is not only more convenient in processing, but also can maintain the through state between the medium chambers on both sides of the piston 20 without being limited to the position of the piston 20.
  • the orifice and the cone plug may also be provided on other structures, such as a valve stem or a cylinder of a piston cylinder.
  • the throttle mechanism is not limited to the combination of the orifice and the cone plug, but may be an independent orifice or the like.
  • a medium passage disposed in the piston cylinder may be added to the buffer mechanism for connecting the damping mediums in the medium chambers on both sides of the piston to each other.
  • An on/off mechanism for controlling communication or disconnection of the medium passage is further provided on the medium passage.
  • the on-off mechanism is controlled to open the media channel during the initial and/or closed end phase of the valve flap.
  • the damping medium in the medium chamber on both sides of the piston can only flow through the throttle mechanism, so that the throttle valve is slowed down by the throttling of the throttle mechanism to realize the slow motion of the valve flap at the instant of opening or closing.
  • the on-off mechanism is preferably controlled to communicate with the medium passage. Since the flow passage area of the medium passage is larger than (or much larger than) the flow passage area of the throttle mechanism, for example, more than 1 time or more than 1 time, the damping medium in the medium chamber on both sides of the piston preferentially passes through a large flow passage area.
  • the medium channel is equivalent to temporarily canceling the throttling effect of the throttling mechanism on the damping medium.
  • the flow speed of the damping medium is increased, so that the piston, the valve stem and the valve flap can move quickly, so that the check valve of the present invention can be quickly lifted after the slow opening of the initial stage of the opening corresponding to the opening moment in the opening process.
  • the valve flap ensures a fast flow through the check valve.
  • valve flap When liquid backflow occurs, under the pressure of the working fluid medium of the second chamber, the valve flap can be quickly switched from the fully open state to the closed state, and decelerated and closed at the closing moment, thereby reducing the backflow of the working fluid medium to the system.
  • the destruction of internal components and piping also eliminates water hammer during closure.
  • the on-off mechanism can adopt a stroke-based on/off switch, that is, the on/off operation of the medium passage is triggered by the movement stroke of the valve flap, the valve stem or the piston,
  • the on-off operation may be purely mechanical or mechanical control based on electrical signals.
  • the on-off mechanism may also use a pressure signal based on the working fluid medium, a position sensing signal of the valve flap, and the like. Control switch, etc.
  • FIG. 1 A specific implementation of an on-off mechanism is shown in FIG.
  • a medium passage is provided on the piston 20, and a guide rod 19 fixed to the piston cylinder is provided in the piston cylinder, and the guide rod 19 is inserted in the medium passage.
  • the guide rod 19 has a change in cross-sectional dimension in the longitudinal direction.
  • the guide rod 19 can be fixed to the flange 6 between the cylinder block 1 and the piston cylinder, or can be fixed to the cylinder block 21 or the valve cover 13 of the piston cylinder according to the internal structure of the piston cylinder.
  • the change in the cross-sectional dimension of the guide rod 19 in the longitudinal direction can be processed by milling to produce a lateral flat groove or a circular concave Structure such as groove.
  • the cross-sectional dimension of the guiding rod 19 corresponding to the current position of the piston 20 is equal to the medium passage
  • the cross-sectional dimension is such that damping medium within the dielectric chamber on either side of the piston 20 cannot pass through the media passage.
  • the damping medium can only circulate between the medium chambers on both sides of the piston 20 through a throttle mechanism (for example, the orifice and the cone plug 11 in FIG. 2), thereby realizing the throttle deceleration of the movement of the piston 20.
  • valve cover 13 is mounted on an end of the cylinder 21 away from the valve stem 3, the spacer is disposed inside the valve cover 13, and a space between the valve cover 13 and the spacer Communicating with the second chamber B.
  • the line 8 For lifting, it is preferable to provide a hollow inner cavity inside the valve cover 13 and to communicate between the hollow inner cavity and the second cavity B through the pipe 8. Since the line 8 needs to receive the working fluid medium from the second chamber B, in order to prevent clogging of the line 8, the line 8 can select a pipe member having a relatively large pipe diameter, and close to the second chamber B in the pipe 8 A filter may also be provided on one side for filtering impurities of the working fluid medium.
  • the pipe 8 can be connected to the valve cover 13 and the valve body 1 through the pipe joint 10 and the pipe joint 7, respectively, and the two ends of the pipe 8 can be welded to the pipe joint 10 and the pipe joint 7, respectively, and the pipe joint 10 can be
  • the pipe joint 7 can be screwed to the second chamber of the valve body 1 by means of a thread connected to the valve cover 13.
  • pipe joint 10 can be connected to the valve cover 13 and the valve body 1 by threads, respectively.
  • the working fluid medium with a certain pressure from the second chamber B can expand and expand the spacer to the inside of the piston cylinder, but it can never truly enter the piston cylinder.
  • Internal damping medium, piston, valve stem and other components so even if it is very turbid, it can not adversely affect the normal operation of the piston cylinder.
  • a spring 18 may be further disposed between the valve cover 13 and the piston 20, and the spring 18 is immersed in a damping medium in the piston cylinder.
  • the spring force of the spring 18 can match the valve 2 and the valve
  • the self-weight of the rod 3 and the pressure of the damping medium cause the flap 2 to close as quickly as possible, and in certain cases, when the check valve is placed non-horizonically, the self-weight of the flap 2 and the valve stem 3 is less effective, then the spring 18 The spring force can still help the flap 2 to close.
  • the material of the spring 18 is usually metal or alloy, which is prone to corrosion when used for a long time, and the damping medium can usually be a medium such as hydraulic oil, which can make the spring 18 less susceptible to corrosion and increase the service life of the spring 18. .
  • the structure of the spring 18 disposed in the piston cylinder also simplifies the loading and unloading of the spring.
  • the spring can be installed and removed by simply opening the valve cover, thereby making the spring easier to replace.
  • the spring shown in Fig. 1 is disposed between the valve flap and the flange, it is necessary to disassemble the flange and the valve flap to perform spring installation, which makes the spring not easy to replace.
  • valve stem 3 and the piston cylinder In the arrangement of the piston cylinder, it is preferable to design the valve stem 3 and the piston cylinder to be vertically disposed with the valve body 1 in a horizontally placed state.
  • the arrangement direction of the piston cylinder can facilitate the perfusion of the damping medium, and there is no problem that the inclined piston cylinder shown in FIG. 1 is difficult to fill due to the inclination of the liquid surface.
  • the axis of the inlet and outlet of the first chamber A coincides with the axis of the inlet and outlet of the second chamber B, and is parallel to the plane of the flap 2. In conjunction with the side view of Figure 3, it will be appreciated that this configuration is easier to manufacture than the valve body itself, and that the sealing surface within the valve is relatively easy to machine.
  • Glyn ring is a kind of sealing ring composed of rubber O-ring and PTFE ring. It has low friction, no creeping phenomenon, good static sealing performance, and can be safely used in dirty media.
  • the grid ring is mainly used for sealing between moving contacts, for example, the grid ring 4 is disposed between the piston 20 and the cylinder block 21, and/or the grid ring 9 is disposed between the valve stem 3 and the flange 6.
  • the O-ring is a rubber seal having a circular cross section, and mainly seals the liquid at a stationary state, for example, an O-ring 5 is disposed between the cylinder 21 and the flange 6, and/or O The collar 22 is between the valve body 1 and the flange 6.
  • the isolation of the rubber film 17 has been mentioned above, and the fixing manner thereof can be referred to FIG. That is, a central hole is formed in the valve cover 13, and a spring seat 15 is formed in the central hole, and the two ends of the spring 18 are respectively connected with the spring seat 15 and the piston 20, and the spring seat 15 is The upper sleeve is provided with a spacer 16, and the rubber film 17 is clamped and fixed by the spring seat 15 and the spacer 16.
  • the present invention also provides an industrial drainage system including a water pump and the aforementioned anti-pollution type micro-resistance slow-closing check valve, the prevention Pollution
  • the type micro-resistance slow-closing check valve is disposed on the water outlet side of the water pump to prevent the water from flowing back to the water pump, thereby forming a protective effect on the water pump.
  • the piston cylinder of the anti-pollution type micro-resistance slow-closing check valve needs to be pre-filled with damping medium (for example, hydraulic oil), and the valve cover 13 passes the pipe joint 10 and the pipe joint 7 to connect the pipe 8 and the second cavity B. connection.
  • damping medium for example, hydraulic oil
  • the water pumped by the water pump enters the first chamber A, and when the pressure is accumulated in the first chamber A, the self-weight of the piston 20, the valve stem 3 and the valve flap 2, and the elasticity of the spring 18 can be overcome.
  • the force causes the flap 2 to be lifted upward.
  • the cross-sectional dimension of the position of the guide rod 19 coincident with the medium passage on the piston 18 is the same as the cross-sectional dimension of the medium passage, so that the hydraulic oil cannot pass through the medium passage.
  • the piston 18 moves upward, and the cross-sectional dimension of the corresponding guiding rod 19 on the overlapping position of the medium passage on the piston 18 is changed, that is, the cylindrical sides of the guiding rod 17 are milled. So that it becomes smaller than the cross-sectional dimension of the medium passage.
  • the gap between the guide rod 19 and the medium passage is much larger than the orifice and the cone plug 11, the upper chamber hydraulic oil preferentially flows from the gap.
  • the water acting on the rubber film 17 can transmit the moving state to the hydraulic oil in the piston chamber through the rubber film 17, the hydraulic oil movement acts on the piston 20, the water pressure of the valve flap 2 in the second chamber B, and the hydraulic oil to the piston
  • the pressure action of 20 and the elastic force of the spring 18 and the self-weight of the piston 20 are moved downwards.
  • the hydraulic oil can only flow through the orifice and the cone plug 11, so that the hydraulic oil in the lower chamber of the piston 18 flows to the upper chamber at a lower speed, so that the valve flap 2 is performed at a slow speed at the moment of closing.
  • This causes the flow rate of the water pumped by the pump to not change too fast, and forms a water hammer on the drainage system.
  • the flap 2 reaches the lowest position, the check valve is closed and the rubber film 17 is returned to the initial state.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Check Valves (AREA)
  • Water Treatment By Sorption (AREA)
  • Details Of Valves (AREA)

Abstract

一种防污染型微阻缓闭止回阀及工业排水系统,止回阀包括:阀体(1)、阀瓣(2)、阀杆(3)、活塞缸和缓冲机构,所述阀体(1)内设有相连通、且供工作流体介质通过的第一腔(A)和第二腔(B),所述缓冲机构能够对所述活塞(20)的运动进行缓冲;所述活塞缸中远离所述阀杆(3)一侧的介质腔与所述第二腔(B)连通,所述活塞缸中远离所述阀杆(3)一侧的介质腔内设有可延展的隔离件,用于隔离所述活塞缸内的阻尼介质和来自所述第二腔(B)的工作流体介质;该止回阀能够尽量消除水锤现象,并利用隔离件将阻尼介质与工作流体介质隔离开,避免工作流体介质中的杂质发生堵塞而使止回阀失效,也避免了阻尼介质对工作流体介质的污染。

Description

防污染型微阻缓闭止回阀及工业排水系统 技术领域
本发明涉及止回阀,尤其涉及一种防污染型微阻缓闭止回阀及工业排水系统。
背景技术
止回阀是指依靠介质本身流动而自动开、闭阀瓣,用来防止介质倒流的阀门,其基本功能是在排水系统中通过防止液体倒流来保护设备,这对于泵与压缩机等设备来说尤为重要。在现有技术中,止回阀通常由阀体、阀瓣、阀杆和弹簧等零件组成。在工业排水系统中,当离心泵突然断电造成管路中液体倒流时,倒流的液体会产生水锤现象,进而破坏排水系统。水锤就是指压力管道中流体流速的变化引起的压力升高或下降的水力过渡现象,其产生的物理原理是液体的不可压缩性、流体运动惯性与管材弹性综合作用的结果。为了缓解和消除止回阀水锤,止回阀中需要设置缓冲装置,通过缓冲装置使得阀瓣在即将关闭的过程中缓慢关闭,从而达到缓解和消除水锤的效果。
如图1所示,为现有用于排水系统的微阻缓闭止回阀的结构示意图。图1中的微阻缓闭止回阀包括主阀阀体a1、阀瓣a2、阀杆a3、弹簧a4、活塞缸a5和缓闭油缸a6,活塞缸a5安装在主阀阀体a1上,阀杆a3与活塞缸a5内的活塞连接。当水泵开始工作后,进入主阀阀体a1的进口腔的流体压力不断升高,一部分水流经小球阀、过滤器,通过下腔水口a7进入活塞缸下腔,水压力作用于活塞上,推动阀杆a3上移,阀杆a3上移带动缓闭油缸a6上移,阀瓣a2在水泵出口压力水的作用下开启,完成开阀,与此同时,活塞缸上腔的水通过上腔水口a8,再经过小球阀、过滤器排入主阀阀体a1的出口腔。
缓闭油缸a6中设有节流阀,通过控制节流阀可以起到节流作用,保证主阀开启时间大于水泵电机启动时间,实现轻载起泵,避免直接水锤;当水泵停止工作后,阀门进口腔的压力迅速下降,并且阀门出口腔压力高于进口腔的压力,阀瓣a2在自身重力作用下,迅速落下,同时,出口腔的水经过小球阀、过滤器通过上腔水口a8进入活塞缸上腔,在水流体压力和弹簧力双重作用下将阀门关紧, 截断水流。活塞缸下腔的水通过过滤器、球阀流到主阀进口腔,阀杆a3下降带动缓闭油缸a6下降。通过调整缓闭油缸a6中的节流阀开度,控制活塞运行速度,实现阀瓣a2的缓慢关闭,消除停泵水锤。
但是在实际生产中,这种止回阀在恶劣环境工况中存在以下不足:
1、当排水系统内的水相对较为浑浊,或者输送液体内自身含有杂质时,会使液体中的杂质进入到活塞缸的上下两腔,活塞缸内堆积杂质后会使阀杆无法上下移动造成阀门的失效。
2、主阀的出口腔和进口腔分别与活塞缸的上下两腔通过先导管道相连通,而浑浊的输送液体在通过较细的先导管道时,液体中的杂质极易在其中堆积,造成其堵塞,使止回阀无法进行关闭。
3、由于排水系统输送的介质较为浑浊,则输送介质中的杂质会随介质进入到活塞缸同时,通过设置缓闭油缸中的节流阀的开度来控制活塞的运行速度从而控制阀瓣的运动速度,该节流阀虽然能够消除水锤,但阀瓣的整体关闭速度比较慢。
发明内容
本发明的目的是提出一种防污染型微阻缓闭止回阀及工业排水系统,能够尽量消除水锤现象,并且止回阀不容易失效。
为实现上述目的,本发明提供了一种防污染型微阻缓闭止回阀,包括:阀体、阀瓣、阀杆、活塞缸和缓冲机构,所述阀体内设有相连通、且供工作流体介质通过的第一腔和第二腔,所述活塞缸安装在所述阀体上靠近所述第二腔的一侧,所述阀杆的两端分别连接所述阀瓣和所述活塞缸内的活塞,以便所述活塞、所述阀杆与所述阀瓣同步运动,以关闭或开启所述第一腔和所述第二腔之间的连通通道,所述缓冲机构能够对所述活塞的运动进行缓冲;
所述活塞缸中远离所述阀杆一侧的介质腔与所述第二腔连通,所述活塞缸中远离所述阀杆一侧的介质腔内设有可延展的隔离件,用于隔离所述活塞缸内的阻尼介质和来自所述第二腔的工作流体介质。
进一步的,所述缓冲机构包括设置在所述活塞缸内的节流机构,所述节流 机构位于所述活塞两侧的介质腔之间,用于减缓所述活塞两侧的阻尼介质之间的相对流动。
进一步的,所述节流机构包括设置在所述活塞上的节流孔和锥堵,所述活塞两侧的介质腔通过所述节流孔贯通,所述锥堵设置在所述节流孔中,用于对通过的阻尼介质起节流作用。
进一步的,所述缓冲机构还包括设置在所述活塞缸内的介质通道,用于使所述活塞两侧的介质腔内的阻尼介质相互连通,在所述介质通道上还设有用于控制所述介质通道连通或断开的通断机构。
进一步的,所述通断机构能够在所述阀瓣的开启初始阶段和/或闭合结束阶段,控制所述介质通道断开;并在所述阀瓣的其他运动阶段,控制所述介质通道连通。
进一步的,所述通断机构为基于行程的通断开关。
进一步的,所述介质通道设置在所述活塞上,在所述活塞缸中设有相对于所述活塞缸固定的导向杆,且所述导向杆插设在所述介质通道内,所述导向杆在长度方向上具有横截面尺寸的变化,在所述活塞的第一预设行程下,所述导向杆上对应于所述活塞的当前位置的横截面尺寸小于所述介质通道的横截面尺寸,使得所述活塞两侧的介质腔内的阻尼介质能够通过所述导向杆和所述介质通道之间的间隙流通;在所述活塞的第二预设行程下,所述导向杆上对应于所述活塞的当前位置的横截面尺寸等于所述介质通道的横截面尺寸,使得所述活塞两侧的介质腔内的阻尼介质不能通过所述介质通道。
进一步的,所述隔离件为橡胶膜,能够随着所述活塞缸内的阻尼介质和来自所述第二腔的工作流体介质之间的压力关系变化而向所述活塞缸内侧或外侧延展变形。
进一步的,所述活塞缸包括缸体、阀盖和所述活塞,所述缸体通过法兰安装在所述阀体上,所述阀盖安装在所述缸体上远离所述阀杆的一端,所述隔离件设置在所述阀盖的内侧,所述阀盖与所述隔离件之间的空间与所述第二腔连通。
进一步的,所述阀盖内侧设有中空内腔,且所述中空内腔和所述第二腔之间通过管路连通。
进一步的,所述管路内靠近所述第二腔的一侧还设有过滤器。
进一步的,在所述阀盖和所述活塞之间还设有弹簧,所述弹簧浸泡在所述活塞缸内的阻尼介质内。
进一步的,所述活塞缸内的阻尼介质为液压油。
进一步的,在所述阀体处于水平放置状态下,所述阀杆和所述活塞缸竖直设置。
进一步的,所述第一腔的进出口的轴线和第二腔的进出口的轴线重合,并且与所述阀瓣的平面平行。
进一步的,还包括格来圈和O型圈,所述格来圈设置在所述活塞和所述缸体之间和/或在所述阀杆和所述法兰之间;所述O型圈设置在所述缸体和所述法兰之间和/或在所述阀体和所述法兰之间。
进一步的,所述隔离件为橡胶膜,所述阀盖上设有中心孔,在所述中心孔内穿设有弹簧座,所述弹簧两端分别与所述弹簧座和所述活塞连接,在所述弹簧座上套设有隔套,所述橡胶膜由所述弹簧座和所述隔套夹紧固定。
为实现上述目的,本发明提供了一种工业排水系统,包括水泵,其特征在于,还包括前述的防污染型微阻缓闭止回阀,所述防污染型微阻缓闭止回阀设置在所述水泵的出水口一侧。
基于上述技术方案,本发明在止回阀中采用了缓冲机构对活塞缸的活塞的运动进行缓冲,使得阀瓣能够缓慢开启和/或缓慢关闭止回阀的进口腔和出口腔之间的连通通道,从而消除开启和/或关闭的瞬间造成的水锤现象;本发明还在活塞缸中远离阀杆一侧的介质腔内设置了可延展的隔离件,利用隔离件将活塞缸内用于控制阀杆运动的阻尼介质与来自于止回阀出口腔的工作流体介质隔离开,避免工作流体介质中的杂质进入活塞缸而导致活塞缸或缓冲机构堵塞而失效,也避免了阻尼介质对工作流体介质的污染。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限 定。在附图中:
图1为现有用于排水系统的微阻缓闭止回阀的结构示意图。
图2为本发明防污染型微阻缓闭止回阀的一实施例的剖面结构示意图。
图3为本发明防污染型微阻缓闭止回阀实施例在从第二腔右侧指向第二腔方向的视角下的结构示意图。
图4为本发明防污染型微阻缓闭止回阀实施例在俯视视角下的结构示意图。
具体实施方式
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
对于现有技术中存在的止回阀失效的问题,发明人通过观察和研究,注意到止回阀的失效主要源于排水系统的输送液体内的杂质会对活塞缸或先导管道等形成堵塞作用,而之所以会堵塞,是因为输送液体除了作为被输送的液态介质之外,还需要在止回阀中作为阀瓣启闭的先导液体发挥作用,这就使得杂质有机会进入到先导管道和活塞缸内,造成堵塞隐患。
基于这一原因,发明人在活塞缸中设置起中间传递压力作用的阻尼介质,并通过可延展的隔离件使得阻尼介质与工作流体介质既能相互隔离,又能够相互之间传递压力,从而避免杂质直接进入活塞缸内部容易堵塞活塞运行的位置,进而使得止回阀不会轻易失效。
如图2所示,为基于上述原理的本发明防污染型微阻缓闭止回阀的一实施例的剖面结构示意图。结合图3和图4所示的不同视角的结构示意图,本实施例中的防污染型微阻缓闭止回阀包括:阀体1、阀瓣2、阀杆3、活塞缸和缓冲机构。所述阀体1内设有相连通、且供工作流体介质通过的第一腔A和第二腔B。这里的第一腔A和第二腔B在阀瓣2开启时分别作为工作流体介质的进口腔和出口腔,而在液体发生倒流时,第二腔B也会反向流入工作流体介质。
第一腔A和第二腔B之间形成有连通通道,阀瓣2可以相对于该连通通道运动。在阀瓣2的不同运动位置,该连通通道被开启或关闭。
活塞缸安装在所述阀体1上靠近所述第二腔B的一侧,所述阀杆3的两端分别连接所述阀瓣2和所述活塞缸内的活塞20。所述活塞20、所述阀杆3能够 与所述阀瓣2同步运动,以关闭或开启所述第一腔A和所述第二腔B之间的连通通道。阀瓣2可通过下方的螺母23与阀杆3进行轴向固定。阀杆3的上端可以通过螺母12与活塞20进行轴向固定。
缓冲机构的作用是对所述活塞20的运动进行缓冲,以便使阀瓣2在开启和/或关闭的瞬间减速,避免工作流体介质从零迅速增加到较大流速或者从较大流速迅速降低为零,而对系统造成破坏作用的水锤现象。需要说明的是,这里所说的水锤现象并不专指工作流体介质为水的应用场景,也适用于其他的液态工作流体介质,例如油、混合液等。
活塞缸中设有阻尼介质,其远离所述阀杆3一侧的介质腔与第二腔B连通,而且该侧的介质腔内设有可延展的隔离件,用于隔离所述活塞缸内的阻尼介质和来自所述第二腔B的工作流体介质。这样就使得第二腔B中的工作流体介质的压力能够传递掉活塞缸的介质腔,而工作流体介质对介质腔内的阻尼介质的压力作用再传递给活塞,从而驱动活塞运动,来带动阀瓣运动。阻尼介质可以为液压油或其他可以流动并传递压力作用的液态流体。
当系统发生液体倒流时,第二腔B会倒流入工作流体介质,该工作流体介质的压力通过阻尼介质传递给活塞后,能够带动阀瓣关闭,从而阻止液体倒流到止回阀的第一腔A中。这里所采用的隔离件能够将活塞缸内用于控制阀杆运动的阻尼介质与来自于止回阀出口腔的工作流体介质隔离开,避免工作流体介质中的杂质进入活塞缸而导致活塞缸或缓冲机构堵塞而失效,也避免了阻尼介质对工作流体介质的污染。
隔离件可采用橡胶膜17,这种材质的隔离件能够随着所述活塞缸内的阻尼介质和来自所述第二腔B的工作流体介质之间的压力关系变化而向所述活塞缸内侧或外侧延展变形,并且橡胶膜17具有良好的隔离作用。
前面提到缓冲机构能够对所述活塞20的运动进行缓冲,以便使阀瓣2在开启和/或关闭的瞬间减速。其设置位置可以在活塞缸内,也可以设置在活塞缸外,例如类似于图1所示的现有技术中的缓闭油缸a6也可以适用于本发明的防污染型微阻缓闭止回阀中。
图2中示出的缓冲机构包括设置在所述活塞缸内的节流机构,该节流机构 位于活塞20两侧的介质腔之间,用于减缓所述活塞20两侧的阻尼介质之间的相对流动。通过减缓阻尼介质的流动速度,能够使得活塞的运动速度受到抑制,进而使阀瓣在开启和/或关闭的瞬间能够缓慢开闭,从而减缓或消除水锤现象。节流机构设置在活塞缸内,不仅能够同时实现节流缓速作用和阀瓣驱动作用,而且结构更为紧凑,占用空间较小。需要说明的是,在本发明的不同实施例中,阀瓣的缓慢开启和缓慢闭合可以是相互独立的,因此可以只进行缓慢开启或者缓慢闭合,从而消除在开启或者闭合过程中的水锤现象;另外,阀瓣的缓慢开启和缓慢闭合也可以是相互关联的,即同时实现缓慢开启和缓慢闭合,以消除开启和闭合过程中的水锤现象。
节流机构可以有多种实现方式,例如图2所示的节流机构包括设置在所述活塞20上的节流孔和锥堵11,节流孔可以加工成锥形螺纹孔的形式,以便锥堵11通过螺纹拧在该螺纹孔中。所述活塞20两侧的介质腔通过所述节流孔贯通,所述锥堵11设置在所述节流孔中,用于对通过的阻尼介质起节流作用。当活塞20受到推动作用时,活塞缸内位于活塞20两侧的介质腔内的阻尼介质就会发生经由节流孔的流动,而通过锥堵11的节流作用,能够使活塞20两侧的介质腔之间的流动速度降低,从而抑制活塞20的运动速度。节流孔开设在活塞20上,不仅在加工上更加方便,而且能够不受限于活塞20的位置而始终保持活塞20两侧的介质腔之间的贯通状态。在其他实施例中,节流孔和锥堵还可以设置在其他结构上,例如阀杆或者活塞缸的缸体上。而且节流机构并不仅限于节流孔和锥堵的组合形式,还可以是独立的节流孔等。
为了更好的控制阀瓣和活塞的运行过程,还可以在缓冲机构中加入设置在所述活塞缸内的介质通道,用于使所述活塞两侧的介质腔内的阻尼介质相互连通,在所述介质通道上还设有用于控制所述介质通道连通或断开的通断机构。通过通断机构能够使活塞两侧的介质腔内的阻尼介质可以绕过或不能绕过节流机构的节流降速作用,利用该通断机构可以实现对活塞的缓速控制和快速控制的阶段性作用。
考虑到止回阀除了在启闭瞬间需要缓慢启闭,其他运动阶段则需要尽快完成开启和关闭操作,以便提高系统效率,降低工作流体介质倒流的危害。因此, 优选使通断机构在所述阀瓣的开启初始阶段和/或闭合结束阶段,控制所述介质通道断开。此时,活塞两侧的介质腔内的阻尼介质仅能够通过节流机构流通,因此受到节流机构的节流降速作用而实现阀瓣在开启瞬间或者闭合瞬间的慢速运动。
在所述阀瓣的其他运动阶段(即阀瓣的所有运动阶段中去掉开启初始阶段和/或闭合结束阶段的剩余运动阶段),则优选使通断机构控制所述介质通道连通。由于介质通道的通流面积大于(或远大于)节流机构的通流面积,例如大于1倍或1倍以上,因此活塞两侧的介质腔内的阻尼介质会优先通过通流面积较大的介质通道,相当于暂时取消了节流机构对阻尼介质的节流降速作用。当然,也会有一小部分阻尼介质流过截流机构。因此,阻尼介质流动速度加快,致使活塞、阀杆和阀瓣均能够快速运动,从而使得本发明止回阀在开启过程中除了对应于开启瞬间的开启初始阶段慢速打开之后,能够迅速抬起阀瓣,确保止回阀的快速通流。
在发生液体倒流时,在第二腔的工作流体介质的压力下,阀瓣能够从完全开启状态快速向关闭状态转换,并在闭合瞬间减速闭合,这样既可以减小倒流的工作流体介质对系统内部元件和管路的破坏作用,也能够消除闭合时的水锤现象。
为实现在阀瓣的不同运动阶段的介质通道的通断控制,通断机构可采用基于行程的通断开关,即通过阀瓣、阀杆或者活塞的运动行程触发介质通道的通断操作,该通断操作可以为纯机械式,也可以是基于电信号的机械控制,例如在其他实施例中,通断机构也可以采用基于工作流体介质的压力信号、阀瓣的位置传感信号等的电控开关等。
图2中示出了一种通断机构的具体实现例。在图2中,介质通道设置在所述活塞20上,在活塞缸中设有相对于所述活塞缸固定的导向杆19,且所述导向杆19插设在所述介质通道内。所述导向杆19在长度方向上具有横截面尺寸的变化。导向杆19可以固定在缸体1和活塞缸之间的法兰6上,也可以根据活塞缸内部结构选择固定在活塞缸的缸体21或者阀盖13上。导向杆19在长度方向上横截面尺寸的变化可以通过铣加工来加工出侧向的平槽,或者加工出圆形的内凹 槽等结构。
在所述活塞20的第一预设行程下,例如对应于除去阀瓣2的开启初始阶段和闭合结束阶段的其他运动阶段,导向杆19上对应于所述活塞20的当前位置的横截面尺寸小于所述介质通道的横截面尺寸,使得所述活塞20两侧的介质腔内的阻尼介质能够通过所述导向杆19和所述介质通道之间的间隙流通。
在所述活塞20的第二预设行程下,例如对应于阀瓣2的开启初始阶段和闭合结束阶段,导向杆19上对应于所述活塞20的当前位置的横截面尺寸等于所述介质通道的横截面尺寸,使得所述活塞20两侧的介质腔内的阻尼介质不能通过所述介质通道。此时阻尼介质只能够通过节流机构(例如图2中的节流孔和锥堵11)在活塞20两侧的介质腔之间流通,从而实现了活塞20运动的节流降速作用。
下面参考图2对活塞缸的一个实例的构成进行说明,该活塞缸包括缸体21、阀盖13和所述活塞20,所述缸体21通过法兰6安装在所述阀体1上,所述阀盖13安装在所述缸体21上远离所述阀杆3的一端,所述隔离件设置在所述阀盖13的内侧,所述阀盖13与所述隔离件之间的空间与所述第二腔B连通。
起重,优选在阀盖13内侧设置中空内腔,并使该中空内腔和所述第二腔B之间通过管路8连通。由于管路8需要接受来自第二腔B的工作流体介质,为了防止管路8的堵塞,管路8可以选择管径较粗的管道件,而且在管路8内靠近所述第二腔B的一侧还可设置过滤器,用于过滤工作流体介质的杂质。管路8可以通过管路接头10和管路接头7分别连接阀盖13和阀体1,管路8的两端可以分别与管路接头10和管路接头7焊接,而管路接头10可以通过螺纹与阀盖13连接,管路接头7可以与阀体1的第二腔进行螺纹连接。
和管路接头10可以通过螺纹分别与阀盖13和阀体1连接,
在隔离件(例如橡胶膜17)的隔离作用下,来自第二腔B的具有一定压力的工作流体介质虽然能够使隔离件向活塞缸的内部扩张延展,但其始终不能真正的进入到活塞缸内部的阻尼介质、活塞、阀杆等部件中,因此其即便非常混浊,也不能对活塞缸的正常运行造成不利影响。
在所述阀盖13和所述活塞20之间还可以进一步设置弹簧18,而且所述弹簧18浸泡在所述活塞缸内的阻尼介质内。弹簧18的弹性力能够配合阀瓣2、阀 杆3的自重和阻尼介质的压力来使得阀瓣2尽快关闭,而在特定情况下,当止回阀非水平放置,阀瓣2和阀杆3的自重所起作用较小时,则弹簧18的弹性力仍然能够帮助阀瓣2关闭。弹簧18的材质通常为金属或合金,其在长时间使用时容易发生腐蚀,而阻尼介质通常可采用液压油等介质,这种介质可以使弹簧18更不容易被腐蚀,增加弹簧18的使用寿命。弹簧18设置在活塞缸内的结构,还可以简化弹簧的装卸,只需打开阀盖就可以对弹簧进行安装和拆除,因此使得弹簧更容易更换。而图1所示的弹簧由于设置在阀瓣和法兰之间,需要拆卸法兰和阀瓣才能进行弹簧的安装,这使得弹簧不容易更换。
在活塞缸的设置方式上,优选在阀体1处于水平放置状态下,将阀杆3和所述活塞缸设计为竖直设置。这种活塞缸的设置方向能够方便阻尼介质的灌注,不存在图1所示的倾斜的活塞缸内由于液面倾斜而难以注满的问题。此外,优选使第一腔A的进出口的轴线和第二腔B的进出口的轴线重合,并且与所述阀瓣2的平面平行。结合图3侧视角度的视图,可以理解这种结构除了阀体本身易于制造,而且阀内的密封面也比较容易加工。
为了确保各个相结合的部件之间的密封性,可以在防污染型微阻缓闭止回阀设置格来圈和O型圈。格来圈是一种由橡胶O型圈及聚四氟乙烯圈组合而成的密封圈,其摩擦力小,无爬行现象,静密封性能好,在有污物的介质中也可以安全使用,在本发明的止回阀中,格来圈主要用于运动接触之间的密封,例如将格来圈4设置在所述活塞20和所述缸体21之间,和/或将格来圈9设置在所述阀杆3和所述法兰6之间。O型圈是一种截面为圆形的橡胶密封圈,主要在静止状态下对液体进行密封,例如O型圈5设置在所述缸体21和所述法兰6之间,和/或O型圈22在所述阀体1和所述法兰6之间。
前面已提到橡胶膜17的隔离作用,其固定方式可参考图2所示。即在阀盖13上设有中心孔,在所述中心孔内穿设有弹簧座15,所述弹簧18两端分别与所述弹簧座15和所述活塞20连接,在所述弹簧座15上套设有隔套16,所述橡胶膜17由所述弹簧座15和所述隔套16夹紧固定。
基于前述的各个防污染型微阻缓闭止回阀的实施例的说明,本发明还提供了一种工业排水系统,包括水泵和前述的防污染型微阻缓闭止回阀,所述防污染 型微阻缓闭止回阀设置在所述水泵的出水口一侧,用于防止水倒流对水泵的冲击作用,从而对水泵形成保护作用。
下面结合图2-4所示的防污染型微阻缓闭止回阀的具体实施例结构,并在工业排水系统中的应用中的主要流程进行说明。
首先,需要将防污染型微阻缓闭止回阀接入到工业排水系统中,将阀体1的第一腔A连接到水泵的出水口一侧,将第二腔B接入到用水一侧。同时防污染型微阻缓闭止回阀的活塞缸内需要预先灌注阻尼介质(例如液压油),并将阀盖13通过管路接头10和管路接头7将管路8与第二腔B连接。在原始状态下,活塞20、阀杆3和阀瓣2在自重的作用下以及弹簧18的弹性力作用下处于最下方关闭第一腔A和第二腔B之间的通道的位置。
当启动水泵后,水泵所泵送出的水进入第一腔A,在第一腔A内积累到一定压力时,就能够克服活塞20、阀杆3和阀瓣2的自重和弹簧18的弹性力而使阀瓣2向上抬起,在这个开启初始阶段,导向杆19上与活塞18上的介质通道的重合位置的截面尺寸与介质通道的截面尺寸相同,因此液压油无法通过这个介质通道,只能通过另一侧的节流孔和锥堵11,进而使得活塞18上腔的液压油以较低的速度流到下腔,因此阀瓣2在开启的瞬间是以慢速进行的。这样就使得水泵泵送的水的流速不至于变化过快,而对排水系统形成水锤。
在度过了开启初始阶段后,活塞18向上运动,相应的导向杆19上与活塞18上的介质通道的重合位置的截面尺寸发生了变化,即对导向杆17的圆柱两侧进行了铣加工,使其变得小于介质通道的截面尺寸,此时由于导向杆19和介质通道之间的间隙比节流孔和锥堵11要大得多,因此上腔液压油则优先从该间隙中流向下腔,从而液压油流动速度加快,使得活塞18能够快速上升,从而迅速的使阀瓣离开关闭位置,当水的作用力与活塞20、阀杆3和阀瓣2的自重、弹簧18的弹性力相平衡时,阀瓣2不再上升则达到最大开度。阀瓣上升过程中,由于阀杆3在活塞缸内腔占用一定体积,则会引起橡胶膜17向上的突起。当阀瓣2达到最大开度时,水泵泵送的水就能够基本不受阻碍的通过止回阀。
当工业排水系统出现堵塞、水泵突然停机等突发情况,形成了用水侧水压高于水泵侧的水压时,会出现水倒流的情况。即水流入到第二腔B,再从第一腔 A流出。由于第二腔B的压力大于第一腔A的压力,因此倒流的水一部分从通过阀体1内流动,另一部分则通过水管8进入到阀盖13的中空内腔,并作用于缸体21和阀盖13中间的橡胶膜17。作用于橡胶膜17的水能够通过橡胶膜17将运动状态传递给活塞腔内的液压油,液压油运动再作用于活塞20,阀瓣2在第二腔B的水压作用、液压油对活塞20的压力作用以及弹簧18的弹性力以及活塞20、阀杆3和阀瓣2的自重的共同作用下则向下运动。
在下降的初始价段,由于导向杆19上与活塞18上的介质通道的重合位置进行了铣加工,使其变得小于介质通道的截面尺寸,因此优先通过导向杆19和介质通道之间的间隙通流,由于流通的面积较大,因此液压油的流速较快,从而使阀瓣2快速下降。当活塞20下降到一定高度(对应于阀瓣的闭合结束阶段)时,由于导杆19上与活塞18上的介质通道的重合位置的杆体结构已将介质通道完全填满,因此在阀芯闭合结束阶段,液压油只能通过节流孔和锥堵11流动,使得活塞18下腔的液压油以较低的速度流到上腔,因此阀瓣2在闭合的瞬间是以慢速进行的。这样就使得水泵泵送的水的流速不至于变化过快,而对排水系统形成水锤。当阀瓣2到达最低位置时则止回阀关闭,同时橡胶膜17恢复到初始状态。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制;尽管参照较佳实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本发明技术方案的精神,其均应涵盖在本发明请求保护的技术方案范围当中。

Claims (18)

  1. 一种防污染型微阻缓闭止回阀,包括:阀体(1)、阀瓣(2)、阀杆(3)、活塞缸和缓冲机构,所述阀体(1)内设有相连通、且供工作流体介质通过的第一腔(A)和第二腔(B),所述活塞缸安装在所述阀体(1)上靠近所述第二腔(B)的一侧,所述阀杆(3)的两端分别连接所述阀瓣(2)和所述活塞缸内的活塞(20),以便所述活塞(20)、所述阀杆(3)与所述阀瓣(2)同步运动,以关闭或开启所述第一腔(A)和所述第二腔(B)之间的连通通道,所述缓冲机构能够对所述活塞(20)的运动进行缓冲;
    其特征在于,所述活塞缸中远离所述阀杆(3)一侧的介质腔与所述第二腔(B)连通,所述活塞缸中远离所述阀杆(3)一侧的介质腔内设有可延展的隔离件,用于隔离所述活塞缸内的阻尼介质和来自所述第二腔(B)的工作流体介质。
  2. 根据权利要求1所述的防污染型微阻缓闭止回阀,其特征在于,所述缓冲机构包括设置在所述活塞缸内的节流机构,所述节流机构位于所述活塞(20)两侧的介质腔之间,用于减缓所述活塞(20)两侧的阻尼介质之间的相对流动。
  3. 根据权利要求2所述的防污染型微阻缓闭止回阀,其特征在于,所述节流机构包括设置在所述活塞(20)上的节流孔和锥堵(11),所述活塞(20)两侧的介质腔通过所述节流孔贯通,所述锥堵(11)设置在所述节流孔中,用于对通过的阻尼介质起节流作用。
  4. 根据权利要求2所述的防污染型微阻缓闭止回阀,其特征在于,所述缓冲机构还包括设置在所述活塞缸内的介质通道,用于使所述活塞(20)两侧的介质腔内的阻尼介质相互连通,在所述介质通道上还设有用于控制所述介质通道连通或断开的通断机构。
  5. 根据权利要求4所述的防污染型微阻缓闭止回阀,其特征在于,所述通断机构能够在所述阀瓣的开启初始阶段和/或闭合结束阶段,控制所述介质通道断开;并在所述阀瓣的其他运动阶段,控制所述介质通道连通。
  6. 根据权利要求4所述的防污染型微阻缓闭止回阀,其特征在于,所述通断机构为基于行程的通断开关。
  7. 根据权利要求6所述的防污染型微阻缓闭止回阀,其特征在于,所述介质通道设置在所述活塞(20)上,在所述活塞缸中设有相对于所述活塞缸固定的导向杆(19),且所述导向杆(19)插设在所述介质通道内,所述导向杆(19)在长度方向上具有横截面尺寸的变化,在所述活塞(20)的第一预设行程下,所述导向杆(19)上对应于所述活塞(20)的当前位置的横截面尺寸小于所述介质通道的横截面尺寸,使得所述活塞(20)两侧的介质腔内的阻尼介质能够通过所述导向杆(19)和所述介质通道之间的间隙流通;在所述活塞(20)的第二预设行程下,所述导向杆(19)上对应于所述活塞(20)的当前位置的横截面尺寸等于所述介质通道的横截面尺寸,使得所述活塞(20)两侧的介质腔内的阻尼介质不能通过所述介质通道。
  8. 根据权利要求1所述的防污染型微阻缓闭止回阀,其特征在于,所述隔离件为橡胶膜(17),能够随着所述活塞缸内的阻尼介质和来自所述第二腔(B)的工作流体介质之间的压力关系变化而向所述活塞缸内侧或外侧延展变形。
  9. 根据权利要求1所述的防污染型微阻缓闭止回阀,其特征在于,所述活塞缸包括缸体(21)、阀盖(13)和所述活塞(20),所述缸体(21)通过法兰(6)安装在所述阀体(1)上,所述阀盖(13)安装在所述缸体(21)上远离所述阀杆(3)的一端,所述隔离件设置在所述阀盖(13)的内侧,所述阀盖(13)与所述隔离件之间的空间与所述第二腔(B)连通。
  10. 根据权利要求9所述的防污染型微阻缓闭止回阀,其特征在于,所述阀盖(13)内侧设有中空内腔,且所述中空内腔和所述第二腔(B)之间通过管路(8)连通。
  11. 根据权利要求10所述的防污染型微阻缓闭止回阀,其特征在于,所述管路(8)内靠近所述第二腔(B)的一侧还设有过滤器。
  12. 根据权利要求9所述的防污染型微阻缓闭止回阀,其特征在于,在所述阀盖(13)和所述活塞(20)之间还设有弹簧(18),所述弹簧(18)浸泡在所述活塞缸内的阻尼介质内。
  13. 根据权利要求1所述的防污染型微阻缓闭止回阀,其特征在于,所述活塞缸内的阻尼介质为液压油。
  14. 根据权利要求1所述的防污染型微阻缓闭止回阀,其特征在于,在所述阀体(1)处于水平放置状态下,所述阀杆(3)和所述活塞缸竖直设置。
  15. 根据权利要求14所述的防污染型微阻缓闭止回阀,其特征在于,所述第一腔(A)的进出口的轴线和第二腔(B)的进出口的轴线重合,并且与所述阀瓣(2)的平面平行。
  16. 根据权利要求9所述的防污染型微阻缓闭止回阀,其特征在于,还包括格来圈(4,9)和O型圈(5,22),所述格来圈(4,9)设置在所述活塞(20)和所述缸体(21)之间和/或在所述阀杆(3)和所述法兰(6)之间;所述O型圈(5,22)设置在所述缸体(21)和所述法兰(6)之间和/或在所述阀体(1)和所述法兰(6)之间。
  17. 根据权利要求12所述的防污染型微阻缓闭止回阀,其特征在于,所述隔离件为橡胶膜(17),所述阀盖(13)上设有中心孔,在所述中心孔内穿设有弹簧座(15),所述弹簧(18)两端分别与所述弹簧座(15)和所述活塞(20)连接,在所述弹簧座(15)上套设有隔套(16),所述橡胶膜(17)由所述弹簧座(15)和所述隔套(16)夹紧固定。
  18. 一种工业排水系统,包括水泵,其特征在于,还包括权利要求1~17任一所述的防污染型微阻缓闭止回阀,所述防污染型微阻缓闭止回阀设置在所述水泵的出水口一侧。
PCT/CN2016/100552 2016-09-28 2016-09-28 防污染型微阻缓闭止回阀及工业排水系统 WO2018058364A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2016/100552 WO2018058364A1 (zh) 2016-09-28 2016-09-28 防污染型微阻缓闭止回阀及工业排水系统
AU2016424703A AU2016424703B2 (en) 2016-09-28 2016-09-28 Contamination-preventing micro-resistance slow-closing check valve and industrial drainage system
CA3042108A CA3042108C (en) 2016-09-28 2016-09-28 Anti-pollution micro-resistance slow-closing check valve and industrial drainage system
IL259594A IL259594B2 (en) 2016-09-28 2018-05-24 Anti-pollution check valve with slow-closing micro-resistance and industrial sewage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/100552 WO2018058364A1 (zh) 2016-09-28 2016-09-28 防污染型微阻缓闭止回阀及工业排水系统

Publications (1)

Publication Number Publication Date
WO2018058364A1 true WO2018058364A1 (zh) 2018-04-05

Family

ID=61763515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100552 WO2018058364A1 (zh) 2016-09-28 2016-09-28 防污染型微阻缓闭止回阀及工业排水系统

Country Status (4)

Country Link
AU (1) AU2016424703B2 (zh)
CA (1) CA3042108C (zh)
IL (1) IL259594B2 (zh)
WO (1) WO2018058364A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996018054A1 (fr) * 1994-12-05 1996-06-13 Kabushiki Kaisha Yokota Seisakusho Dispositif a clapet antiretour sans coup de belier
CN2399577Y (zh) * 1999-11-24 2000-10-04 刘庆 自控消声止回阀
CN2423461Y (zh) * 2000-05-17 2001-03-14 上海正丰阀门制造有限公司 活塞式缓闭止回阀
US20080083464A1 (en) * 2006-10-10 2008-04-10 Ebara Corporation Check valve for vacuum sewage pipe and vacuum sewage system
CN203286063U (zh) * 2013-06-08 2013-11-13 正丰阀门集团有限公司 缓闭静音轴流式止回阀
CN103542142A (zh) * 2012-07-11 2014-01-29 上海神通企业发展有限公司 一种自力式止回阀
CN204922108U (zh) * 2015-09-15 2015-12-30 明珠阀门集团有限公司 一种液控缓闭型立式止回阀
US9360133B2 (en) * 2014-10-14 2016-06-07 Kennedy Valve Company Cushioned check valve

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102410203B (zh) * 2011-10-25 2014-08-27 太原理工大学 一种用于煤矿井下排水系统的液压缓阻水泵阀

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996018054A1 (fr) * 1994-12-05 1996-06-13 Kabushiki Kaisha Yokota Seisakusho Dispositif a clapet antiretour sans coup de belier
CN2399577Y (zh) * 1999-11-24 2000-10-04 刘庆 自控消声止回阀
CN2423461Y (zh) * 2000-05-17 2001-03-14 上海正丰阀门制造有限公司 活塞式缓闭止回阀
US20080083464A1 (en) * 2006-10-10 2008-04-10 Ebara Corporation Check valve for vacuum sewage pipe and vacuum sewage system
CN103542142A (zh) * 2012-07-11 2014-01-29 上海神通企业发展有限公司 一种自力式止回阀
CN203286063U (zh) * 2013-06-08 2013-11-13 正丰阀门集团有限公司 缓闭静音轴流式止回阀
US9360133B2 (en) * 2014-10-14 2016-06-07 Kennedy Valve Company Cushioned check valve
CN204922108U (zh) * 2015-09-15 2015-12-30 明珠阀门集团有限公司 一种液控缓闭型立式止回阀

Also Published As

Publication number Publication date
AU2016424703B2 (en) 2020-09-17
CA3042108A1 (en) 2018-04-05
AU2016424703A1 (en) 2019-05-16
IL259594B2 (en) 2023-08-01
CA3042108C (en) 2020-04-07
IL259594B1 (en) 2023-04-01
IL259594A (en) 2018-07-31

Similar Documents

Publication Publication Date Title
JPH04262072A (ja) 水圧モータ制御装置
US4274434A (en) Automatic low-friction check valve
WO1998015762A1 (fr) Appareil a soupapes de regulation automatique
CN116123155A (zh) 用于在流体交换设备中使用的活塞以及方法
CN110469685B (zh) 一种气动轴流式紧急切断阀
CN109469735B (zh) 一种双阀口三密封阀芯阀座结构
US1932992A (en) Plunger control device
US3196901A (en) Ratio pressure reducing valve
CN101275685B (zh) 乳化液介质大流量安全阀
US2814307A (en) Pilot controlled main valve with cushioning means
WO2018058364A1 (zh) 防污染型微阻缓闭止回阀及工业排水系统
CN201487322U (zh) 一种具有阀板缓闭功能的止回阀
US2142410A (en) Surge suppressor
US3074433A (en) Control device
US3219056A (en) Non-return valves
US2046759A (en) Slow closing valve
KR101299271B1 (ko) 엑추에이터
RU2683010C2 (ru) Устройство для сброса давления
CN1300498C (zh) 缓开速闭节能止回阀
CN2643104Y (zh) 缓开速闭节能止回阀
US1890678A (en) Valve
KR101523955B1 (ko) 가변 교축에 의해 급폐 및 완폐의 조절이 가능한 체크밸브
CN210637557U (zh) 自动排气阀与隔膜泵用排气阀总成
CN210135297U (zh) 一种高密封性电动两通阀
USRE19703E (en) Valve

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 259594

Country of ref document: IL

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 3042108

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2016424703

Country of ref document: AU

Date of ref document: 20160928

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16917119

Country of ref document: EP

Kind code of ref document: A1