WO2018056787A1 - Carbon dioxide conversion process using carbon dioxide mineralization process and metabolic reaction of sulfur-oxidizing microorganisms linked thereto - Google Patents

Carbon dioxide conversion process using carbon dioxide mineralization process and metabolic reaction of sulfur-oxidizing microorganisms linked thereto Download PDF

Info

Publication number
WO2018056787A1
WO2018056787A1 PCT/KR2017/010616 KR2017010616W WO2018056787A1 WO 2018056787 A1 WO2018056787 A1 WO 2018056787A1 KR 2017010616 W KR2017010616 W KR 2017010616W WO 2018056787 A1 WO2018056787 A1 WO 2018056787A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
metal
carbonate
acid
sulfate
Prior art date
Application number
PCT/KR2017/010616
Other languages
French (fr)
Korean (ko)
Inventor
박우찬
조광국
김태완
라연화
류자영
이상민
Original Assignee
에스케이이노베이션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이이노베이션 주식회사 filed Critical 에스케이이노베이션 주식회사
Priority to AU2017330155A priority Critical patent/AU2017330155B2/en
Priority to DE112017004802.8T priority patent/DE112017004802T5/en
Priority to CN201780066387.2A priority patent/CN109890969A/en
Priority to US16/335,852 priority patent/US11845969B2/en
Priority claimed from KR1020170124179A external-priority patent/KR102503672B1/en
Publication of WO2018056787A1 publication Critical patent/WO2018056787A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/69Sulfur trioxide; Sulfuric acid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/60Preparation of carbonates or bicarbonates in general
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P1/00Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P1/00Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
    • C12P1/02Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes by using fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats

Definitions

  • the present invention relates to a method for converting carbon dioxide into a useful material, and more particularly, to a method capable of continuously converting carbon dioxide to a useful material by linking the mineralization process of carbon dioxide and the metabolic reaction of sulfated microorganisms.
  • the present inventors linked the mineralization reaction of carbon dioxide and the metabolic reaction of sulfated microorganisms, converting the carbonate of the mineralization reaction of carbon dioxide into a useful material form without supplying additional energy sources and mineral resources (metal ions). It was confirmed that the mineralization reaction of carbon dioxide proceeds continuously, and the present invention was completed.
  • the present invention (a) carbon dioxide mineralization step of producing a metal-carbonate product and sulfuric acid by reacting carbon dioxide and metal sulfate; (b) culturing the sulfated microorganism in the presence of the prepared metal-carbonate product and sulfur to prepare a useful substance and metal sulfate produced by the sulfated microorganism; And (c) recovering the useful material and the metal sulfate produced in step (b), and recycling the recovered metal sulfate to the carbon dioxide mineralization step of step (a).
  • Figure 1 is switched to a metal sulfate (MeSO 4) a sulfuric acid and a metal carbonate (MeCO 3) by the mineralization reaction of the carbon dioxide, the sulfated microbial growth using the metal carbonate (MeCO 3) and sulfur (sulfur)
  • System100 metal through the mineralization reaction of carbon dioxide sulfate (MeSO 4) a metal carbonate (MeCO 3) the process is switched to and sulfuric acid is produced
  • system 200 microbial metal carbonate (MeCO 3 )
  • fermentation process for independent nutrient growth using sulfur is described inorganic acid.
  • FIG. 2 specifically illustrates the system100 process of FIG. 1
  • apparatus 101 an enzyme immobilization apparatus that effectively converts carbon dioxide to bicarbonate using carbonic anhydrase
  • apparatus 102 alkaline solution
  • a carbon dioxide capture device for reacting (alkali solution) with bicarbonate to produce a mixture of water soluble carbonates
  • device 103 electrochemical separation of aqueous sulphates into respective acids and bases sulfuric acid (H 2 SO 4 ) and base solution (electrochemical) reaction apparatus
  • apparatus 104 mineralization apparatus for reacting a water soluble carbonate with a metal sulphate to produce a metal carbonate and a water soluble sulphate
  • apparatus 105 separating the produced metal carbonate and supplying a water soluble sulphate (electrolyte) to the apparatus 103 Separation device).
  • 3 is a schematic diagram showing the mineralization reaction of carbon dioxide.
  • FIG. 4 is a schematic diagram showing a sulfur denitrification process.
  • Figure 5 shows the results of culturing microorganisms in conjunction with the mineralization reaction of carbon dioxide and the fermentation process.
  • Figure 6 is the result of analyzing the S-adenosylmethionine (s-adenosylmethionine) prepared according to the present invention using HPLC chromatography.
  • Figure 7 is the result of analyzing the spermidine prepared according to the present invention using GC-FID.
  • the mineralization reaction of the existing carbon dioxide requires a large amount of metal ions, in order to overcome the disadvantage of storing only carbon dioxide in the form of a simple carbonate, by combining the mineralization reaction of carbon dioxide and metabolism of sulfated microorganisms It was confirmed that carbon dioxide can be converted into useful materials and reused metal ions without the need for additional external energy sources and mineral resources (metal ions) to proceed with the continuous conversion of carbon dioxide.
  • the present invention in one aspect, (a) carbon dioxide mineralization step of reacting carbon dioxide and metal sulfate to produce a metal-carbonate product and sulfuric acid; (b) culturing the sulfated microorganism in the presence of the prepared metal-carbonate product and sulfur to prepare a useful substance and metal sulfate produced by the sulfated microorganism; And (c) recovering the useful material and the metal sulfate produced in step (b), and recycling the recovered metal sulfate to the carbon dioxide mineralization step of step (a). It is about how to.
  • the metal is characterized in that the alkali metal, in detail is selected from the group consisting of Ca, Mg, Fe, Si and Al, but is not limited thereto.
  • step (a) comprises the steps of (i) converting to carbonate / bicarbonate in a reactor containing carbon dioxide, a base solution and a metal sulfate; (ii) reacting the carbonate / bicarbonate with a base solution to produce a water soluble carbonate; (iii) reacting the water-soluble carbonate with the metal sulfate to form a metal-carbonate and a water-soluble sulfate; (iv) electrolyzing the water-soluble sulfate to separate the sulfuric acid and the base solution; And (v) recovering the base solution generated in step (iv) to recycle the step (ii) to produce a water-soluble carbonate.
  • the step (i) may be characterized by being promoted by carbonic anhydrase.
  • the step (i) in the present invention include carbon dioxide (CO 2) the hydrogen carbonate (HCO 3 -) due to it is sodium carbonate (Na 2 CO 3) formed after the transition, by using the enzyme hydration acid free acid (H 2 CO 3) Solubility in sodium bicarbonate shortens the reaction with sodium hydroxide (NaOH).
  • CO 2 carbon dioxide
  • HCO 3 - hydrogen carbonate
  • Na 2 CO 3 sodium carbonate
  • Solubility in sodium bicarbonate shortens the reaction with sodium hydroxide (NaOH).
  • oxygen, nitrate (NO 3 -) as an electron acceptor in step (b) - can be characterized by additionally adding at least one from the group consisting of and nitrite (NO 2).
  • the recovery of the metal sulfate in step (c) may be characterized in that the mixture produced in step (b) is passed through a filter to filter out the metal sulfate and then dried.
  • the sulfated microorganism is Acydianus ambivalans, Acydianus brierleyi, Aquifex pyrophylus, Hydrogenobacter acidophilus ), Hydrogenobacter thermophiles, Thiobacillus denitrificans, Thiomicrospira crunogena, Sulfurmonas genus, Halothiobacillus genus , Ecidithiobacillus (Acidithiobacillus) genus and Termithiobacillus tepidarius (Thermithiobacillus tepidarius) may be selected from the group consisting of, but is not limited thereto.
  • the Sulfurmonas (Sulfurimonas) genus is Sulfurmonas autotrophica (Sulfurimonas autotrophica), Sulfurmonas denitrificans (Sulfurimonas denitrificans), Sulfurmonas gotlandica (Sulfurimonas gotlandica) and Sulfurmonas It can be characterized in that it is selected from the group consisting of Sulfurimonas paralvinellae, the genus Halothiobacillus (Halothiobacillus) is Halothiobacillus halophilus (Halothiobacillus halophilus), Halothiobacillus hydrothermalis (Halothiobacillus hydrothermalis), Halothiobacillus kellyi and Halothiobacillus neapolitanus (Halothiobacillus neapolitanus) can be characterized in that it is selected from the group consisting of S
  • the useful material produced by the sulfated microorganism is PHA (polyhydroxyalkanoate), ethanol (ethanol), acetic acid (acetic acid), lactic acid, glycerol (glycerol), 3-hydroxypropionic acid (3 -hydroxypropionic acid, isobutanol, isobutyric acid, succinic acid, butyric acid, normal butanol, 1,3-propanediol (1,3-PDO) , 2,3-butanediol (2,3-BDO), 1,4-butanediol (1,4-BDO), glutamate, isoprene, adipic acid, muconic acid ), Amino acid, glutathione, polypeptide, polypeptide, phospholipid, polyamine, S-adenosylmethionine and fatty acid This is not restrictive.
  • the metabolite of Acidothiobacillus thiooxidans may be glutamic acid, aspartic acid, glutathione, licantantase, phosphatidylinositol, or spermidine. This is not restrictive.
  • the useful substance in the present invention can be detected using high performance liquid chromatography (HPLC), gas chromatography (GC), or the like.
  • step (a) includes a carbonation process and a mineralization process as a mineralization reaction of carbon dioxide.
  • carbonation process carbon dioxide is converted into a carbonate / bicarbonate form, so that carbon dioxide may be dissolved in water, or a biocatalyst such as carbonic anhydride may be used.
  • the carbonic anhydride enzyme was used to promote the production of carbonate / bicarbonate.
  • step (a) reacts the carbonate / bicarbonate with a base solution to produce a water-soluble carbonate.
  • the base solution includes, but is not limited to, sodium hydroxide (NaOH), potassium hydroxide (KOH) and the like.
  • the water-soluble carbonates include, but are not limited to, sodium carbonate (Na 2 CO 3 ), sodium bicarbonate (NaHCO 3 ), potassium carbonate (K 2 CO 3 ), potassium hydrogen carbonate (KHCO 3 ).
  • step (a) includes the reaction of the water-soluble carbonate and the metal sulfate to produce a metal carbonate (solid carbonate) and a water-soluble sulfate.
  • the metal sulfate may be CaSO 4 , MgSO 4
  • the water-soluble sulfate may be Na 2 SO 4 , K 2 SO 4 , but is not limited thereto.
  • the solid carbonate may precipitate and be separated from the aqueous solution.
  • the water soluble sulfate can be separated into sulfuric acid (H 2 SO 4 ) and a base solution (NaOH, KOH) by an electrochemical process (Electrochemical process).
  • the generated base solution may be used again in the step of producing the water-soluble carbonate.
  • the metal element of the present invention uses a divalent metal, such as Ca, Mg, but is not limited thereto.
  • the metal carbonate (solid carbonate) may be CaCO 3 , MgCO 3, etc., but is not limited thereto.
  • the carbonic anhydrase can be used as a biocatalyst to form a bicarbonate by a nucleophilic reaction with carbon dioxide and then exchange by water to promote the production of bicarbonate.
  • the carbonic anhydrase includes enzyme forms of alpha, beta, gamma, and delta, but is not limited to specific derivatives of enzymes such as plants, animals, archaea, bacteria, and fungi. The reaction scheme is shown in Table 2 below.
  • the step (b) is to use the metabolic reaction of the aerobic chemical aerobic nutrients, using the energy generated by the oxidation reaction of sulfur using the electron donor sulfur and the electron acceptor oxygen in the growth conditions of the microorganisms Fixing the carbon dioxide.
  • the nitrate is used as the electron acceptor in the sulfur-limestone autotrophic denitrification (SLAD), which is a metabolic reaction using the conventional chemical inorganic nutrient.
  • SAD sulfur-limestone autotrophic denitrification
  • the process includes producing a metal sulfate (solid sulfate) and carbon dioxide by the reaction of the sulfate ion and the metal carbonate obtained by the oxidation reaction.
  • the metal carbonate may protect the microorganism from the sulfate.
  • the growth conditions of the microorganisms are characterized by following the optimum growth conditions of the microorganisms used in aerobic conditions.
  • the carbon dioxide can be converted into useful substances such as polyhydroxyalkanoates (PHA), glutamic acid, etc. by the microorganism.
  • the step (c) includes the process of recovering the metal sulfate (solid sulfate) and reusing in the step (a).
  • the sulfated microorganism is grown under aerobic conditions by using carbon dioxide, which is generated by oxidizing sulfur to sulfate, as a carbon source, PHA (Polyhydroxyalkanoates), ethanol, acetic acid, lactic acid, glycerol, 3-hydroxypropionic acid, isobutanol, Isobutyric acid, succinic acid, butyric acid, normal butanol, 1,3-propanediol (1,3-PDO), 2,3-butanediol (2,3-BDO), 1,4-butanediol (1,4-BDO), glutamate , Isoprene, adipic acid, muconic acid, fatty acids and the like, characterized in that the conversion to organic materials.
  • carbon dioxide which is generated by oxidizing sulfur to sulfate, as a carbon source
  • PHA Polyhydroxyalkanoates
  • ethanol ethanol
  • acetic acid lactic acid
  • the present invention comprises the steps of: (i) converting carbon dioxide, a base solution and a carbonic anhydrase to carbonate / bicarbonate; (ii) a carbon dioxide capture step of reacting the carbonate / bicarbonate with a base solution to produce a water-soluble carbonate; (iii) mineralizing the metal sulphate to form the metal carbonate and the water soluble sulfate by adding the metal sulfate to the produced water-soluble carbonate; (iv) separating the metal carbonate and the water soluble sulfate formed in step (iii); (v) electrolyzing the separated aqueous sulphate to separate the sulfuric acid and the base solution, and recovering the base solution and recycling the carbon dioxide collection step of step (ii); (vi) adding sulfur, an electron acceptor, and a sulfated microorganism to the metal carbonate separated in step (iv), followed by culturing to prepare a mixture of the useful substance and the metal sul
  • carbon dioxide anhydrous enzyme was used to convert carbon dioxide to bicarbonate in the enzyme immobilization apparatus 101 of the mineralization process system.
  • the scheme is shown below.
  • a base solution of NaOH and bicarbonate were reacted in a carbon dioxide capture device 102 to secure a water-soluble carbonate of Na 2 CO 3 and NaHCO 3 .
  • the water-soluble carbonate and the solid sulfate of CaSO 4 was reacted to produce a solid carbonate of CaCO 3 (MeCO 3 ) and a water-soluble sulfate of Na 2 SO 4 .
  • the metal carbonate was separated and the solid carbonate was separated in the separating device 105. The scheme is shown below.
  • the water-soluble sulfate remaining after separation in the separation unit 105 was separated into a basic solution of sulfuric acid (H 2 SO 4 ) and NaOH using an electrochemical process in the electrochemical reaction unit (103).
  • the base solution may react with bicarbonate again in the carbon dioxide capture device 102.
  • the produced solid sulfate of CaSO 4 was recovered and reused in the mineralization apparatus 104 to conduct a mineralization reaction of carbon dioxide.
  • CaSO 4 was filtered through a 20 um filter and dried overnight in an oven at 50 ° C.
  • the sodium carbonate was mineralized with calcium sulfate (CaSO 4 ) to produce calcium carbonate (CaCO 3 ) and sodium sulfate.
  • CaSO 4 calcium sulfate
  • the scheme is shown below.
  • the produced calcium carbonate was subjected to a fermentation process in an incubator with a medium containing oxygen, oxygen and microorganisms.
  • the produced biomass and calcium sulfate are separated in a separator to recover biomass, and calcium sulfate is recovered and reused in the mineralization process.
  • the sodium sulfate produced by the mineralization reaction is separated into sulfuric acid and sodium hydroxide through electrolysis, the separated sodium hydroxide is recovered and reused by a carbon dioxide capture process, sulfuric acid is discharged.
  • the reaction scheme of the electrolysis process is shown below.
  • the fermentation process uses calcium carbonate obtained by the mineralization reaction to obtain a useful material through microbial fermentation (FIG. 5).
  • composition of the medium is shown in Table 4.
  • the number of cells according to the incubation time is shown in Table 5.
  • HPLC-UV method used water symmetry C18 column 4.6 ⁇ 250mm as a column, UV detector was used at 254 nm. The flow rate was 1.0 ml / min, mobile phase A used water and mobile phase B used acetonitrile. Elution 2 minutes at 85% water and 15% acetonitrile, 10 minutes at 100% acetonitrile, 15 minutes at 100% acetonitrile, 16 minutes at 15% acetonitrile and 25 minutes at 15% acetonitrile Was performed.
  • Example 2 In order to detect spermidine in the useful substance produced in Example 2, 200 ⁇ l of the sample obtained in Example 2 and 200 ⁇ l of a mixture of chloroform and isooctane in a volume ratio of 1: 4 were mixed, followed by pH12.2 50 ⁇ l of K 2 CO 3 -KHCO 3 buffer was added. Then, 1 ⁇ l of propyl chloroformate was added and then vortexed. Thereafter, centrifugation was performed for 5 minutes at 13000 rpm. The resulting 100 ⁇ l top organic layer was analyzed using GC.
  • the GC-FID method used HP-5 30m ⁇ 320um ⁇ 0.25um as the column, the detector used the Flame Ionization Detector (FID), and the detection temperature was 250 °C.
  • the carrier gas was helium, and the oven temperature was maintained at 50 ° C. for 1 minute, then increased to 20 ° C. per minute to 280 ° C., and maintained for 5 minutes.
  • the brain stimulation device according to the present invention has an advantage of enhancing memory or reducing memory degradation due to dementia.
  • the brain stimulation device according to the present invention has the advantage that it can enhance hippocampus-dependent memory.
  • the portable device according to the present invention has the advantage of controlling and monitoring the brain stimulation device.
  • the method of evaluating the performance of the brain stimulation apparatus according to the present invention has an advantage of evaluating the performance of the brain stimulation apparatus.

Abstract

In a carbon dioxide conversion process of the present invention, a carbon dioxide mineralization reaction is linked to a metabolic reaction of sulfur-oxidizing microorganisms, so that carbonates in the carbon dioxide mineralization reaction are converted into a useful material form without the supply of additional energy sources (light, electric energy, etc.) and mineral resources (metal ions) from the outside and metal ions necessary for the carbon dioxide mineralization reaction are reused, thereby realizing a continuous process.

Description

이산화탄소 광물화 공정과 황산화 미생물의 대사반응을 연계한 이산화탄소 전환 공정CO2 conversion process that combines carbon dioxide mineralization and metabolism of sulfated microorganisms
본 발명은 이산화탄소를 유용물질로 전환하는 방법에 관한 것으로, 더욱 자세하게는 이산화탄소의 광물화 공정과 황산화 미생물의 대사반응을 연계하여 이산화탄소를 지속적으로 유용물질로 전환할 수 있는 방법에 관한 것이다.The present invention relates to a method for converting carbon dioxide into a useful material, and more particularly, to a method capable of continuously converting carbon dioxide to a useful material by linking the mineralization process of carbon dioxide and the metabolic reaction of sulfated microorganisms.
에너지 생산을 위한 석탄, 석유 그리고 천연 가스와 같은 화석 연료의 연소는 대기 중 이산화탄소의 농도를 높이는 주요 원인이고, 이는 지구 온난화의 원인이다. 1 kWh의 전력을 생산하는데 0.95 kg의 이산화탄소가 발생한다. 이러한 이산화탄소 배출을 줄이기 위해 지질학적인 이산화탄소 포집, 저장 및 전환등의 다양한 기술이 개발되고 있다. 특히 이산화탄소 광물화 공정은 대기중의 이산화탄소를 장기간 격리시켜 이산화탄소를 저감시키는 탄소 격리(carbon sequestration)의 대표적인 방법이다. 이에 이산화탄소를 탄산칼슘과 같은 금속탄산염 화합물로 광물화하는 기술이 보고되어 있다(KR 10-2016-0056420). 그러나 이산화탄소 광물화 공정은 단순 저장용의 카보네이트 형태로만 전환된다. 따라서 응용 분야로 언급되는 시멘트 및 제지 등으로의 활용이 제한적이다. 또한, 이산화탄소 전환 대비 과다한 양의 feed가 필요하여 feed의 수송 등에 많은 비용이 발생하는 문제점이 있다. The burning of fossil fuels such as coal, petroleum and natural gas for energy production is a major cause of increasing atmospheric CO2 concentrations, which contributes to global warming. 0.95 kg of carbon dioxide is generated to produce 1 kWh. To reduce the carbon dioxide emissions, various technologies such as geological carbon capture, storage and conversion have been developed. In particular, the carbon dioxide mineralization process is a representative method of carbon sequestration to reduce carbon dioxide by sequestering carbon dioxide in the atmosphere for a long time. The technology for mineralizing carbon dioxide to metal carbonate compounds such as calcium carbonate has been reported (KR 10-2016-0056420). However, the carbon dioxide mineralization process is only converted to carbonate form for simple storage. Therefore, the application to cement and paper, etc., which are mentioned as application fields, is limited. In addition, there is a problem in that a large amount of feed is required due to the excessive amount of feed compared to the conversion of carbon dioxide.
이산화탄소의 고정 및 전환기술로 미생물을 이용하는 이산화탄소의 생물학적 처리 방법 및 화학적 방법이 개발되고 있으며, 이산화탄소를 유용한 유기물로 전환하기 위해서는 수소 및 환원력이 필요하다. 화학적 방법으로 전환할 경우에는 메탄 또는 에탄의 개질반응이나 물의 전기분해가 필요하며, 상기 메탄 또는 에탄의 개질반응시에 이산화탄소의 발생을 유발하는 문제점이 있다. 그러나 광합성 반응 또는 화학무기영양생물의 반응은 자연적으로 일어나는 이산화탄소 고정화 반응으로 추가적인 에너지원의 공급 없이 이산화탄소를 저감시킬 수 있다. 또한, 화학무기영양생물이 광합성생물에 비하여 성장속도가 빠르고 이산화탄소 고정률이 5~10배 우수하므로, 무기원이 충분히 공급된다면 광합성 생물에 비하여 상업공정에 응용되기 유리하다. As a method of fixing and converting carbon dioxide, biological treatment and chemical methods of carbon dioxide using microorganisms have been developed, and hydrogen and reducing power are required to convert carbon dioxide into useful organic materials. In the case of conversion to a chemical method, a reforming reaction of methane or ethane or electrolysis of water is required, and there is a problem of generating carbon dioxide during the reforming reaction of methane or ethane. However, photosynthetic or chemical inorganic nutrient reactions are naturally occurring carbon dioxide immobilization reactions that can reduce carbon dioxide without supplying additional energy sources. In addition, chemical inorganic nutrients are faster than the photosynthetic growth rate and excellent carbon dioxide fixation rate of 5 to 10 times, if the inorganic source is sufficient, it is advantageous to be applied to commercial processes compared to photosynthetic organisms.
이에, 본 발명자들은 이산화탄소의 광물화 반응과 황산화 미생물의 대사반응을 연계하여, 외부의 추가적인 에너지원 및 광물자원(금속이온)의 공급 없이 이산화탄소의 광물화 반응의 카보네이트를 유용물질 형태로 전환하고 이산화탄소의 광물화 반응이 지속적으로 진행되는 것을 확인하고, 본 발명을 완성하게 되었다.Therefore, the present inventors linked the mineralization reaction of carbon dioxide and the metabolic reaction of sulfated microorganisms, converting the carbonate of the mineralization reaction of carbon dioxide into a useful material form without supplying additional energy sources and mineral resources (metal ions). It was confirmed that the mineralization reaction of carbon dioxide proceeds continuously, and the present invention was completed.
본 배경기술 부분에 기재된 상기 정보는 오직 본 발명의 배경에 대한 이해를 향상시키기 위한 것이며, 이에 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자에게 있어 이미 알려진 선행기술을 형성하는 정보를 포함하지 않을 수 있다.The above information described in this Background section is only for improving the understanding of the background of the present invention, and therefore does not include information that forms a prior art known to those of ordinary skill in the art. You may not.
발명의 요약Summary of the Invention
본 발명의 목적은 외부의 추가적인 에너지원(빛, 전기에너지 등) 및 광물자원(금속이온)의 추가 없이 이산화탄소를 지속적으로 유용물질로 전환하는 방법을 제공하는데 있다.It is an object of the present invention to provide a method for continuously converting carbon dioxide to a useful material without the addition of external additional energy sources (light, electrical energy, etc.) and mineral resources (metal ions).
상기 목적을 달성하기 위하여, 본 발명은 (a) 이산화탄소와 금속 황산염을 반응시켜 금속-탄산염 산물 및 황산을 제조하는 이산화탄소 광물화 단계; (b) 상기 제조된 금속-탄산염 산물 및 황의 존재 하에 황산화 미생물을 배양하여 상기 황산화 미생물에 의해 생성되는 유용물질과 금속 황산염을 제조하는 단계; 및 (c) 상기 (b) 단계에서 생성되는 유용물질과 금속 황산염을 각각 회수하고, 상기 회수된 금속 황산염을 (a) 단계의 이산화탄소 광물화 단계로 리싸이클시키는 단계를 포함하는 이산화탄소를 유용물질로 전환하는 방법을 제공한다.In order to achieve the above object, the present invention (a) carbon dioxide mineralization step of producing a metal-carbonate product and sulfuric acid by reacting carbon dioxide and metal sulfate; (b) culturing the sulfated microorganism in the presence of the prepared metal-carbonate product and sulfur to prepare a useful substance and metal sulfate produced by the sulfated microorganism; And (c) recovering the useful material and the metal sulfate produced in step (b), and recycling the recovered metal sulfate to the carbon dioxide mineralization step of step (a). Provide a way to.
도 1은 이산화탄소의 광물화 반응에 의하여 금속황산염(MeSO4)이 황산과 금속 탄산염(MeCO3)으로 전환되고, 황산화 미생물이 상기 금속탄산염(MeCO3)과 황(sulfur)을 이용하여 생장하고 유기물을 생산하는 공정을 나타낸 것이다(System100: 이산화탄소의 광물화 반응을 통하여 금속황산염(MeSO4)이 금속탄산염(MeCO3)으로 전환되고 황산이 생성되는 공정; system 200: 미생물이 금속탄산염(MeCO3)과 황(sulfur)을 이용하여 독립영양생장을 하는 발효공정).Figure 1 is switched to a metal sulfate (MeSO 4) a sulfuric acid and a metal carbonate (MeCO 3) by the mineralization reaction of the carbon dioxide, the sulfated microbial growth using the metal carbonate (MeCO 3) and sulfur (sulfur) It illustrates a process of producing an organic material (System100: metal through the mineralization reaction of carbon dioxide sulfate (MeSO 4) a metal carbonate (MeCO 3) the process is switched to and sulfuric acid is produced; system 200: microbial metal carbonate (MeCO 3 ) And fermentation process for independent nutrient growth using sulfur.
도 2는 도 1의 system100 공정을 구체적으로 나타낸 것이다(장치 101: 탄산무수화효소(carbonic anhydrase)를 이용해서 이산화탄소를 중탄산염(bicarbonate)으로 효과적으로 전환하는 효소(enzyme) 고정화 장치; 장치 102: 알칼리용액(alkali solution)을 중탄산염(bicarbonate)과 반응시켜 수용성 탄산염의 혼합물을 생성하는 이산화탄소 포집 장치; 장치 103: 수용성 황산염을 각각의 산과 염기인 황산(H2SO4)과 염기용액으로 분리해내는 전기화학적(electrochemical) 반응 장치; 장치 104: 수용성 탄산염을 금속 황산염과 반응시켜 금속 탄산염과 수용성 황산염을 생성시키는 광물화 장치; 및 장치 105: 생성된 금속 탄산염을 분리시키고 장치 103에 수용성 황산염 (전해질)을 공급하는 분리 장치).FIG. 2 specifically illustrates the system100 process of FIG. 1 (apparatus 101: an enzyme immobilization apparatus that effectively converts carbon dioxide to bicarbonate using carbonic anhydrase; apparatus 102: alkaline solution) a carbon dioxide capture device for reacting (alkali solution) with bicarbonate to produce a mixture of water soluble carbonates; device 103: electrochemical separation of aqueous sulphates into respective acids and bases sulfuric acid (H 2 SO 4 ) and base solution (electrochemical) reaction apparatus; apparatus 104: mineralization apparatus for reacting a water soluble carbonate with a metal sulphate to produce a metal carbonate and a water soluble sulphate; and apparatus 105: separating the produced metal carbonate and supplying a water soluble sulphate (electrolyte) to the apparatus 103 Separation device).
도 3은 이산화탄소의 광물화 반응을 나타낸 모식도이다.3 is a schematic diagram showing the mineralization reaction of carbon dioxide.
도 4는 황 탈질법 공정을 나타낸 모식도이다.4 is a schematic diagram showing a sulfur denitrification process.
도 5는 이산화탄소의 광물화 반응과 발효공정을 연계하여 미생물을 배양한 결과를 나타낸 것이다.Figure 5 shows the results of culturing microorganisms in conjunction with the mineralization reaction of carbon dioxide and the fermentation process.
도 6은 본 발명에 따라 제조된 S-아데노실메티오닌(s-adenosylmethionine)을 HPLC 크로마토크래피를 이용하여 분석한 결과이다.Figure 6 is the result of analyzing the S-adenosylmethionine (s-adenosylmethionine) prepared according to the present invention using HPLC chromatography.
도 7은 본 발명에 따라 제조된 스페르미딘(spermidine)을 GC-FID를 이용하여 분석한 결과이다.Figure 7 is the result of analyzing the spermidine prepared according to the present invention using GC-FID.
{부호의 설명}{Description of the sign}
100: 광물화 공정; 101: 효소 고정화 장치; 100: mineralization process; 101: enzyme immobilization device;
102: 이산화탄소 포집 장치; 103: 전기화학적 반응 장치; 102: carbon dioxide capture device; 103: electrochemical reaction apparatus;
104: 광물화 장치; 105: 분리 장치; 104: mineralization apparatus; 105: separation device;
200: 발효 공정200: fermentation process
발명의 상세한 설명 및 바람직한 Detailed description of the invention and preferred 구현예Embodiment
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is well known and commonly used in the art.
본 발명에서는 기존의 이산화탄소의 광물화 반응이 대량의 금속 이온을 필요로 하며, 이산화탄소를 단순 카보네이트 형태로 밖에 저장하지 못하는 단점을 극복하기 위해 이산화탄소의 광물화 반응과 황산화 미생물의 대사반응을 연계하여 외부의 추가적인 에너지원 및 광물자원(금속이온)의 공급 없이 카보네이트를 유용물질 형태로 전환하고 금속 이온을 재사용하여 이산화탄소의 지속적인 전환공정을 진행할 수 있다는 것을 확인하였다. In the present invention, the mineralization reaction of the existing carbon dioxide requires a large amount of metal ions, in order to overcome the disadvantage of storing only carbon dioxide in the form of a simple carbonate, by combining the mineralization reaction of carbon dioxide and metabolism of sulfated microorganisms It was confirmed that carbon dioxide can be converted into useful materials and reused metal ions without the need for additional external energy sources and mineral resources (metal ions) to proceed with the continuous conversion of carbon dioxide.
따라서, 본 발명은 일 관점에서, (a) 이산화탄소와 금속 황산염을 반응시켜 금속-탄산염 산물 및 황산을 제조하는 이산화탄소 광물화 단계; (b) 상기 제조된 금속-탄산염 산물 및 황의 존재 하에 황산화 미생물을 배양하여 상기 황산화 미생물에 의해 생성되는 유용물질과 금속 황산염을 제조하는 단계; 및 (c) 상기 (b) 단계에서 생성되는 유용물질과 금속 황산염을 각각 회수하고, 상기 회수된 금속 황산염을 (a) 단계의 이산화탄소 광물화 단계로 리싸이클시키는 단계를 포함하는 이산화탄소를 유용물질로 전환하는 방법에 관한 것이다.Accordingly, the present invention in one aspect, (a) carbon dioxide mineralization step of reacting carbon dioxide and metal sulfate to produce a metal-carbonate product and sulfuric acid; (b) culturing the sulfated microorganism in the presence of the prepared metal-carbonate product and sulfur to prepare a useful substance and metal sulfate produced by the sulfated microorganism; And (c) recovering the useful material and the metal sulfate produced in step (b), and recycling the recovered metal sulfate to the carbon dioxide mineralization step of step (a). It is about how to.
본 발명에 있어서, 상기 금속은 알칼리 금속인 것을 특징으로 하고, 자세히는 Ca, Mg, Fe, Si 및 Al로 구성된 군에서 선택되는 것을 특징으로 하나, 이에 제한되지 않는다. In the present invention, the metal is characterized in that the alkali metal, in detail is selected from the group consisting of Ca, Mg, Fe, Si and Al, but is not limited thereto.
본 발명에 있어서, 상기 (a) 단계는 (i) 이산화탄소, 염기용액 및 금속 황산염을 함유하는 반응기에서 카보네이트/바이카보네이트로 전환하는 단계; (ii) 상기 카보네이트/바이카보네이트와 염기 용액이 반응하여 수용성 탄산염을 생성하는 단계; (iii) 상기 수용성 탄산염과 상기 금속 황산염이 반응하여 금속-탄산염과 수용성 황산염을 형성하는 단계; (iv) 상기 수용성 황산염을 전기분해하여 황산과 염기용액으로 분리하는 단계; 및 (v) 상기 (iv) 단계에서 생성된 염기용액을 회수하여 (ii) 단계의 수용성 탄산염을 생성하는 단계로 리싸이클시키는 단계를 포함하는 것을 특징으로 할 수 있다.In the present invention, step (a) comprises the steps of (i) converting to carbonate / bicarbonate in a reactor containing carbon dioxide, a base solution and a metal sulfate; (ii) reacting the carbonate / bicarbonate with a base solution to produce a water soluble carbonate; (iii) reacting the water-soluble carbonate with the metal sulfate to form a metal-carbonate and a water-soluble sulfate; (iv) electrolyzing the water-soluble sulfate to separate the sulfuric acid and the base solution; And (v) recovering the base solution generated in step (iv) to recycle the step (ii) to produce a water-soluble carbonate.
본 발명에 있어서, 상기 (i) 단계는 탄산무수화 효소(carbonic anhydrase)에 의해 촉진되는 것을 특징으로 할 수 있다.In the present invention, the step (i) may be characterized by being promoted by carbonic anhydrase.
본 발명에서 상기 (i) 단계는 이산화탄소(CO2)가 탄산수소염(HCO3 -)으로 전환 후 탄산나트륨(Na2CO3)이 형성되기 때문에 탄산무수화 효소를 사용하여 탄산(H2CO3)으로 용해시키면 수산화나트륨(NaOH)과 반응이 단축된다. The step (i) in the present invention include carbon dioxide (CO 2) the hydrogen carbonate (HCO 3 -) due to it is sodium carbonate (Na 2 CO 3) formed after the transition, by using the enzyme hydration acid free acid (H 2 CO 3) Solubility in sodium bicarbonate shortens the reaction with sodium hydroxide (NaOH).
본 발명에 있어서, 상기 (b) 단계에 전자 수용체로 산소, 질산염(NO3 -) 및 아질산염(NO2 -)으로 구성된 군에서 어느 하나 이상을 추가로 첨가하는 것을 특징으로 할 수 있다.In the present invention, oxygen, nitrate (NO 3 -) as an electron acceptor in step (b) - can be characterized by additionally adding at least one from the group consisting of and nitrite (NO 2).
본 발명에 있어서, 상기 (c) 단계의 금속 황산염의 회수는 (b) 단계에서 생성되는 혼합물을 필터에 통과시켜 금속 황산염을 걸러낸 후, 건조시키는 것을 특징으로 할 수 있다.In the present invention, the recovery of the metal sulfate in step (c) may be characterized in that the mixture produced in step (b) is passed through a filter to filter out the metal sulfate and then dried.
본 발명에 있어서, 상기 황산화 미생물은 아키디아누스 앰비바란스(Acidianus ambivalans), 아키디아누스 브리에르레이(Acidianus brierleyi), 아퀴펙스 파이로필러스(Aquifex pyrophylus), 수소균 엑시도필로스균(Hydrogenobacter acidophilus), 수소균 테르모필스(Hydrogenobacter thermophiles), 티오바실러스 디나이트리휘칸스(Thiobacillus denitrificans), 티오마이크그로스피라 크루노게타(Thiomicrospira crunogena), 설푸리모나스(Sulfurimonas) 속, 할로티오바실러스(Halothiobacillus) 속, 에시디티오바실러스(Acidithiobacillus) 속 및 터미시오바실러스 테피다리우스(Thermithiobacillus tepidarius)로 구성된 군에서 선택되는 것을 특징으로 할 수 있으나, 이에 제한되지 않는다. In the present invention, the sulfated microorganism is Acydianus ambivalans, Acydianus brierleyi, Aquifex pyrophylus, Hydrogenobacter acidophilus ), Hydrogenobacter thermophiles, Thiobacillus denitrificans, Thiomicrospira crunogena, Sulfurmonas genus, Halothiobacillus genus , Ecidithiobacillus (Acidithiobacillus) genus and Termithiobacillus tepidarius (Thermithiobacillus tepidarius) may be selected from the group consisting of, but is not limited thereto.
본 발명에 있어서, 상기 설푸리모나스(Sulfurimonas) 속은 설푸리모나스 오토트로피카(Sulfurimonas autotrophica), 설푸리모나스 데니트리피칸스(Sulfurimonas denitrificans), 설푸리모나스 고트란디카(Sulfurimonas gotlandica) 및 설푸리모나스 파랄비넬래(Sulfurimonas paralvinellae)로 구성된 군에서 선택되는 것을 특징으로 할 수 있고, 상기 할로티오바실러스(Halothiobacillus) 속은 할로티오바실러스 할로필루스(Halothiobacillus halophilus), 할로티오바실러스 하이드로써마리스(Halothiobacillus hydrothermalis), 할로티오바실러스 켈라이(Halothiobacillus kellyi) 및 할로티오바실러스 나폴리타너스(Halothiobacillus neapolitanus)로 구성된 군에서 선택되는 것을 특징으로 할 수 있고, 상기 에시디티오바실러스(Acidithiobacillus) 속은 에시디티오바실러스 알베르텐시스(Acidithiobacillus albertensis), 에시디티오바실러스 칼더스(Acidithiobacillus caldus), 에시디티오바실러스 큐프리써미커스(Acidithiobacillus cuprithermicus), 에시디티오바실러스 페리두란스(Acidithiobacillus ferridurans), 에시디티오바실러스 페리보란스(Acidithiobacillus ferrivorans), 에시디티오바실러스 페로록시단스(Acidithiobacillus ferrooxidans) 및 에시디티오바실러스 티오옥시단스(Acidithiobacillus thiooxidans)로 구성된 군에서 선택되는 것을 특징으로 할 수 있으며, 바람직하게는 에시디티오바실러스 티오옥시단스(Acidothiobacillus thiooxidans)인 것을 특징으로 하나, 이에 제한되지 않는다.In the present invention, the Sulfurmonas (Sulfurimonas) genus is Sulfurmonas autotrophica (Sulfurimonas autotrophica), Sulfurmonas denitrificans (Sulfurimonas denitrificans), Sulfurmonas gotlandica (Sulfurimonas gotlandica) and Sulfurmonas It can be characterized in that it is selected from the group consisting of Sulfurimonas paralvinellae, the genus Halothiobacillus (Halothiobacillus) is Halothiobacillus halophilus (Halothiobacillus halophilus), Halothiobacillus hydrothermalis (Halothiobacillus hydrothermalis), Halothiobacillus kellyi and Halothiobacillus neapolitanus (Halothiobacillus neapolitanus) can be characterized in that it is selected from the group consisting of, the Ecidithiobacillus (Acidithiobacillus) genus is Ecidithiobacillus Albertensis ( Acidithiobacillus albertensis) Acidithiobacillus caldus, Acidithiobacillus cuprithermicus, Acidithiobacillus ferridurans, Acidithiobacillus ferrivorans, Ecidithiobacilli (Acidithiobacillus ferrooxidans) and Ecidithiobacillus thiooxidans (Acidithiobacillus thiooxidans) may be characterized in that it is selected from the group consisting of, and preferably characterized in that it is Acidithiobacillus thiooxidans (Acidothiobacillus thiooxidans) It is not limited.
본 발명에 있어서, 상기 황산화 미생물에 의해 생산되는 유용물질은 PHA(polyhydroxyalkanoate), 에탄올(ethanol), 아세트산(acetic acid), 젖산(lactic acid), 글리세롤(glycerol), 3-하이드록시프로피온산(3-hydroxypropionic acid), 이소부탄올(isobutanol), 아이소부티르산(isobutyric acid), 숙신산(succinic acid), 부티르산(butyric acid), 노멀 부탄올(n-butanol), 1,3-propanediol(1,3-PDO), 2,3-butanediol(2,3-BDO), 1,4-butanediol(1,4-BDO), 글루타메이트(glutamate), 이소프렌(isoprene), 아디프산(adipic acid), 무콘산(muconic acid), 아미노산, 글루타티온(glutathione), 폴리펩티드(polypeptide), 인지질(phospholipid), 폴리아민(polyamine), S-아데노실메티오닌(s-adenosylmethionine) 및 지방산(fatty acid)으로 구성된 군에서 선택되는 것을 특징으로 하나, 이에 제한되지 않는다.In the present invention, the useful material produced by the sulfated microorganism is PHA (polyhydroxyalkanoate), ethanol (ethanol), acetic acid (acetic acid), lactic acid, glycerol (glycerol), 3-hydroxypropionic acid (3 -hydroxypropionic acid, isobutanol, isobutyric acid, succinic acid, butyric acid, normal butanol, 1,3-propanediol (1,3-PDO) , 2,3-butanediol (2,3-BDO), 1,4-butanediol (1,4-BDO), glutamate, isoprene, adipic acid, muconic acid ), Amino acid, glutathione, polypeptide, polypeptide, phospholipid, polyamine, S-adenosylmethionine and fatty acid This is not restrictive.
본 발명에서 에시디티오바실러스 티오옥시단스(Acidothiobacillus thiooxidans)의 대사물질은 글루탐산, 아스파르트산, 글루타티온(glutathione), 리카난타제(licanantase), 포스파티딜이노시톨(phosphatidylinositol), 스페르미딘(spermidine)일 수 있으나, 이에 제한되지 않는다.In the present invention, the metabolite of Acidothiobacillus thiooxidans may be glutamic acid, aspartic acid, glutathione, licantantase, phosphatidylinositol, or spermidine. This is not restrictive.
본 발명에서 유용물질은 고성능 액체 크로마토그래피(high performance liquid chromatography, HPLC)법과 기체 크로마토그래피(gas chromatography, GC)법 등을 이용하여 검출할 수 있다.The useful substance in the present invention can be detected using high performance liquid chromatography (HPLC), gas chromatography (GC), or the like.
본 발명에서 상기 (a) 단계는 이산화탄소의 광물화 반응으로 탄산화 공정 및 광물화 공정을 포함한다. 상기 탄산화 공정은 이산화탄소를 카보네이트/바이카보네이트 형태로 전환하는 것으로 이산화탄소를 물에 용해시키거나 탄산무수화 효소 등의 생촉매를 사용하는 방법 등을 이용할 수 있다. 바람직하게 본 발명에서는 카보네이트/바이카보네이트의 생성 촉진을 위하여 탄산무수화 효소를 이용하였다. In the present invention, step (a) includes a carbonation process and a mineralization process as a mineralization reaction of carbon dioxide. In the carbonation process, carbon dioxide is converted into a carbonate / bicarbonate form, so that carbon dioxide may be dissolved in water, or a biocatalyst such as carbonic anhydride may be used. In the present invention, the carbonic anhydride enzyme was used to promote the production of carbonate / bicarbonate.
또한, (a) 단계는 상기 카보네이트/바이카보네이트와 염기 용액을 반응시켜 수용성 탄산염을 생성한다. 본 발명에서 상기 염기용액은 수산화나트륨(NaOH), 수산화칼륨(KOH) 등을 포함하나, 이에 제한되지 않는다. 또한, 상기 수용성 탄산염은 탄산나트륨(Na2CO3), 탄산수소나트륨(NaHCO3), 탄산칼륨(K2CO3), 탄산수소칼륨(KHCO3)을 포함하나, 이에 제한되지 않는다.In addition, step (a) reacts the carbonate / bicarbonate with a base solution to produce a water-soluble carbonate. In the present invention, the base solution includes, but is not limited to, sodium hydroxide (NaOH), potassium hydroxide (KOH) and the like. In addition, the water-soluble carbonates include, but are not limited to, sodium carbonate (Na 2 CO 3 ), sodium bicarbonate (NaHCO 3 ), potassium carbonate (K 2 CO 3 ), potassium hydrogen carbonate (KHCO 3 ).
또한, (a) 단계는 상기 수용성 탄산염과 금속 황산염이 반응하여 금속 탄산염(고체 탄산염)과 수용성 황산염이 생성되는 것을 포함한다. 상기 금속 황산염은 CaSO4, MgSO4일 수 있으며, 수용성 황산염은 Na2SO4, K2SO4일 수 있으나, 이에 제한되지 않는다. 상기 고체 탄산염은 침전되고 수용액과 분리시킬 수 있다.In addition, step (a) includes the reaction of the water-soluble carbonate and the metal sulfate to produce a metal carbonate (solid carbonate) and a water-soluble sulfate. The metal sulfate may be CaSO 4 , MgSO 4 , and the water-soluble sulfate may be Na 2 SO 4 , K 2 SO 4 , but is not limited thereto. The solid carbonate may precipitate and be separated from the aqueous solution.
상기 수용성 황산염은 전기분해 방법(Electrochemical process)에 의하여 황산(H2SO4)과 염기용액(NaOH, KOH)으로 분리될 수 있다. 상기 생성된 염기용액은 상기 수용성 탄산염을 생성하는 단계에서 다시 사용될 수 있다.The water soluble sulfate can be separated into sulfuric acid (H 2 SO 4 ) and a base solution (NaOH, KOH) by an electrochemical process (Electrochemical process). The generated base solution may be used again in the step of producing the water-soluble carbonate.
상기 금속 탄산염(고체 탄산염)이 생성되기 위해서는 금속원소가 필요하며, 반응의 완결 및 상기 탄산화 공정에서 이산화탄소의 수용성을 높이기 위하여 알칼리 조건이 필요하다. 바람직하게 본 발명의 금속원소는 2가 금속인 Ca, Mg 등을 사용하나, 이에 제한되지 않으며, 상기 금속 탄산염(고체 탄산염)은 CaCO3, MgCO3 등일 수 있으나, 이에 제한되지 않는다. In order to produce the metal carbonate (solid carbonate), a metal element is required, and alkali conditions are required to complete the reaction and to increase the water solubility of the carbon dioxide in the carbonation process. Preferably, the metal element of the present invention uses a divalent metal, such as Ca, Mg, but is not limited thereto. The metal carbonate (solid carbonate) may be CaCO 3 , MgCO 3, etc., but is not limited thereto.
상기 생성 반응은 아래 표 1와 같다.The production reaction is shown in Table 1 below.
Figure PCTKR2017010616-appb-T000001
Figure PCTKR2017010616-appb-T000001
본 발명에서 상기 탄산무수화 효소는 이산화탄소와 친핵성 반응을 하여 바이카보네이트를 형성한 후 물에 의해 교환되어 바이카보네이트의 생성을 촉진하는 생촉매로 사용될 수 있다. 상기 탄산무수화 효소는 alpha, beta, gamma 및 delta의 효소 형태를 포함하나, 식물, 동물, 고세균, 세균, 균류 등 효소의 특정 유래에 제한되지 않는다. 반응식은 아래 표 2와 같다.In the present invention, the carbonic anhydrase can be used as a biocatalyst to form a bicarbonate by a nucleophilic reaction with carbon dioxide and then exchange by water to promote the production of bicarbonate. The carbonic anhydrase includes enzyme forms of alpha, beta, gamma, and delta, but is not limited to specific derivatives of enzymes such as plants, animals, archaea, bacteria, and fungi. The reaction scheme is shown in Table 2 below.
Figure PCTKR2017010616-appb-T000002
Figure PCTKR2017010616-appb-T000002
본 발명에서 상기 (b) 단계는 절대호기성 화학무기영양생물의 대사반응을 이용하는 것으로서, 상기 미생물의 생장 조건에서, 전자공여체인 황과 전자수용체인 산소를 이용하여 황의 산화반응으로 발생한 에너지를 이용하여 이산화탄소를 고정하는 과정을 포함한다. In the present invention, the step (b) is to use the metabolic reaction of the aerobic chemical aerobic nutrients, using the energy generated by the oxidation reaction of sulfur using the electron donor sulfur and the electron acceptor oxygen in the growth conditions of the microorganisms Fixing the carbon dioxide.
본 발명의 화학무기영양생물을 이용한 대사반응에서 전자수용체로 산소를 이용하면, 기존의 화학무기영양생물을 이용한 대사반응인 황 탈질법(Sulfur-limestone Autotrophic Denitrification, SLAD)에서 전자수용체로 질산염을 이용하였을 때에 비해, 생산성과 용량이 향상된다.When oxygen is used as the electron acceptor in the metabolic reaction using the chemical inorganic nutrient of the present invention, the nitrate is used as the electron acceptor in the sulfur-limestone autotrophic denitrification (SLAD), which is a metabolic reaction using the conventional chemical inorganic nutrient. In comparison with the above, productivity and capacity are improved.
또한, 상기 산화반응으로 얻어진 황산이온과 상기 금속 탄산염이 반응하여 금속 황산염(고체 황산염)과 이산화탄소를 생산하는 과정을 포함한다. 상기 금속 탄산염은 상기 황산염으로부터 미생물을 보호할 수 있다. 상기 미생물의 생장 조건은 호기조건에서 사용한 미생물의 최적 생장조건을 따르는 것을 특징으로 한다. 또한, 상기 이산화탄소는 미생물에 의해 PHA(Polyhydroxyalkanoates), 글루탐산 등과 같은 유용물질로 전환할 수 있다.In addition, the process includes producing a metal sulfate (solid sulfate) and carbon dioxide by the reaction of the sulfate ion and the metal carbonate obtained by the oxidation reaction. The metal carbonate may protect the microorganism from the sulfate. The growth conditions of the microorganisms are characterized by following the optimum growth conditions of the microorganisms used in aerobic conditions. In addition, the carbon dioxide can be converted into useful substances such as polyhydroxyalkanoates (PHA), glutamic acid, etc. by the microorganism.
본 발명에서 상기 (c) 단계는 상기 금속 황산염(고체 황산염)을 회수하여 상기 (a) 단계에서 재사용하는 과정을 포함한다. In the present invention, the step (c) includes the process of recovering the metal sulfate (solid sulfate) and reusing in the step (a).
본 발명에서 상기 황산화 미생물은 호기조건에서, 황을 황산염으로 산화시킴으로서 발생하는 이산화탄소를 탄소원으로 사용하여 생장하고 PHA(Polyhydroxyalkanoates), 에탄올, 아세트산, 젖산, 글리세롤, 3-하이드록시프로피온산, 이소부탄올, 아이소부티르산, 숙신산, 부티르산, 노멀 부탄올, 1,3-propanediol(1,3-PDO), 2,3-butanediol(2,3-BDO), 1,4-butanediol(1,4-BDO), 글루타메이트, 이소프렌, 아디프산, 무콘산 및 지방산 등과 같은 유기물질로 전환시키는 것을 특징으로 한다. In the present invention, the sulfated microorganism is grown under aerobic conditions by using carbon dioxide, which is generated by oxidizing sulfur to sulfate, as a carbon source, PHA (Polyhydroxyalkanoates), ethanol, acetic acid, lactic acid, glycerol, 3-hydroxypropionic acid, isobutanol, Isobutyric acid, succinic acid, butyric acid, normal butanol, 1,3-propanediol (1,3-PDO), 2,3-butanediol (2,3-BDO), 1,4-butanediol (1,4-BDO), glutamate , Isoprene, adipic acid, muconic acid, fatty acids and the like, characterized in that the conversion to organic materials.
대표적인 화학무기영양생물 및 그 특징을 표 3에 나타내었다.Representative chemical inorganic nutrients and their characteristics are shown in Table 3.
Figure PCTKR2017010616-appb-T000003
Figure PCTKR2017010616-appb-T000003
본 발명은 다른 관점에서, (i) 이산화탄소, 염기용액 및 탄산무수화효소를 반응시켜 카보네이트/바이카보네이트로 전환하는 단계; (ii) 상기 카보네이트/바이카보네이트와 염기 용액이 반응하여 수용성 탄산염을 생성하는 이산화탄소 포집단계; (iii) 상기 생성된 수용성 탄산염에 금속 황산염을 첨가하여 금속 탄산염과 수용성 황산염을 형성하는 광물화 단계; (iv) 상기 (iii) 단계에서 형성된 금속 탄산염과 수용성 황산염을 분리하는 단계; (v) 상기 분리된 수용성 황산염을 전기분해하여 황산과 염기용액으로 분리하고, 상기 염기용액을 회수하여 (ii) 단계의 이산화탄소 포집단계로 리싸이클시키는 단계; (vi) 상기 (iv) 단계에서 분리된 금속 탄산염에 황, 전자수용체 및 황산화 미생물을 첨가한 뒤, 배양하여 유용물질과 금속 황산염의 혼합물을 제조하는 단계; 및 (vii) 상기 (vi) 단계에서 제조된 혼합물을 필터에 통과시켜 유용물질과 금속 황산염을 각각 회수한 후, 상기 회수된 금속 황산염을 건조시킨 후 (iii) 단계의 이산화탄소 광물화 단계로 리싸이클시키는 단계를 포함하는 이산화탄소를 유용물질로 전환하는 방법에 관한 것이다.In another aspect, the present invention comprises the steps of: (i) converting carbon dioxide, a base solution and a carbonic anhydrase to carbonate / bicarbonate; (ii) a carbon dioxide capture step of reacting the carbonate / bicarbonate with a base solution to produce a water-soluble carbonate; (iii) mineralizing the metal sulphate to form the metal carbonate and the water soluble sulfate by adding the metal sulfate to the produced water-soluble carbonate; (iv) separating the metal carbonate and the water soluble sulfate formed in step (iii); (v) electrolyzing the separated aqueous sulphate to separate the sulfuric acid and the base solution, and recovering the base solution and recycling the carbon dioxide collection step of step (ii); (vi) adding sulfur, an electron acceptor, and a sulfated microorganism to the metal carbonate separated in step (iv), followed by culturing to prepare a mixture of the useful substance and the metal sulfate; And (vii) passing the mixture prepared in step (vi) through a filter to recover the useful materials and the metal sulfate, respectively, and drying the recovered metal sulfate, followed by recycling to the carbon dioxide mineralization step of step (iii). It relates to a method of converting carbon dioxide to a useful material comprising the step.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, and it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as being limited by these examples.
실시예 1: 이산화탄소의 광물화 반응Example 1 Mineralization of Carbon Dioxide
도 1에는 이산화탄소의 광물화 반응에 의하여 금속황산염(MeSO4)이 황산과 금속 탄산염(MeCO3)으로 전환되고, 황산화 미생물이 상기 금속탄산염(MeCO3)과 황(sulfur)을 이용하여 생장하고 유기물을 생산하는 공정을 나타내었다.1, the metal sulfate (MeSO 4) by the mineralization reaction of the carbon dioxide being converted into sulfuric acid and the metal carbonate (MeCO 3), the sulfated microbial growth using the metal carbonate (MeCO 3) and sulfur (sulfur) The process for producing organic matter is shown.
도 2에 나타낸 바와 같이, 광물화 공정 시스템의 효소 고정화 장치(101)에서 탄산무수화 효소를 이용하여 이산화탄소를 바이카보네이트로 전환하였다. 반응식은 아래와 같다.As shown in FIG. 2, carbon dioxide anhydrous enzyme was used to convert carbon dioxide to bicarbonate in the enzyme immobilization apparatus 101 of the mineralization process system. The scheme is shown below.
E,ZnH2O↔E,ZnOH-+H+ E, ZnH 2 O↔E, ZnOH - + H +
E,ZnOH-+CO2↔E,ZnHCO3 2 - E, ZnOH - + CO 2 ↔E , ZnHCO 3 2 -
E,ZnHCO3 2 -+H2O↔E,ZnH2O+HCO3 2 - E, ZnHCO 3 2 - + H 2 O↔E, ZnH 2 O + HCO 3 2 -
수용성 탄산염의 혼합물을 생성하기 위하여 이산화탄소 포집 장치(102)에서 NaOH의 염기 용액과 바이카보네이트를 반응시켜 Na2CO3, NaHCO3의 수용성 탄산염을 확보하였다. In order to produce a mixture of water-soluble carbonates, a base solution of NaOH and bicarbonate were reacted in a carbon dioxide capture device 102 to secure a water-soluble carbonate of Na 2 CO 3 and NaHCO 3 .
광물화 장치(104)에서, 상기 수용성 탄산염과 feed인 CaSO4의 고체 황산염(MeSO4)을 반응시켜 CaCO3의 고체 탄산염(MeCO3)과 Na2SO4의 수용성 황산염을 생성하였다. 금속 탄산염을 분리시키고, 분리 장치(105)에서 상기 고체 탄산염을 분리하였다. 반응식은 아래와 같다.In the mineralization device 104, the water-soluble carbonate and the solid sulfate of CaSO 4 (MeSO 4 ) was reacted to produce a solid carbonate of CaCO 3 (MeCO 3 ) and a water-soluble sulfate of Na 2 SO 4 . The metal carbonate was separated and the solid carbonate was separated in the separating device 105. The scheme is shown below.
CaSO4+CO2+H2O→ H2SO4+CaCO3 CaSO 4 + CO 2 + H 2 O → H 2 SO 4 + CaCO 3
분리 장치(105)에서 분리하고 남은 수용성 황산염은 전기화학적 반응 장치(103)에서 전기 분해 방법(Electrochemical process)을 이용해서 황산(H2SO4)과 NaOH의 염기용액으로 분리하였다. 상기 염기용액은 이산화탄소 포집 장치(102)에서 바이카보네이트와 다시 반응할 수 있다.The water-soluble sulfate remaining after separation in the separation unit 105 was separated into a basic solution of sulfuric acid (H 2 SO 4 ) and NaOH using an electrochemical process in the electrochemical reaction unit (103). The base solution may react with bicarbonate again in the carbon dioxide capture device 102.
발효공정 장치(200)에서 에시디티오바실러스 티오옥시단스(Acidithiobacillus thiooxidans)의 최적 생장조건에서, 황(에너지원: 전자공여체)과 산소(전자수용체)을 이용해 황을 황산이온(sulfate, SO4 2-)으로 전환하였다. 상기 황산이온은 상기 CaCO3의 고체 탄산염(MeCO3)과 반응하여 CaSO4의 고체 황산염과 이산화탄소를 생산하였다. 또한, 상기 이산화탄소를 탄소원으로 이용하여 바이오매스를 생산하였다. Under the optimum growth conditions of Acidithiobacillus thiooxidans in the fermentation process apparatus 200, sulfur (sulfate, SO 4 2 ) is dissolved using sulfur (energy source: electron donor) and oxygen (electron acceptor). - ). The sulfate ion reacted with the solid carbonate of CaCO 3 (MeCO 3 ) to produce solid sulfate and carbon dioxide of CaSO 4 . In addition, biomass was produced using the carbon dioxide as a carbon source.
상기 생성된 CaSO4의 고체 황산염을 회수하여, 광물화 장치(104)에서 재사용하여 이산화탄소의 광물화 반응을 실시하였다. The produced solid sulfate of CaSO 4 was recovered and reused in the mineralization apparatus 104 to conduct a mineralization reaction of carbon dioxide.
상기 생성된 고체 황산염을 회수하기 위하여, 20 um의 필터를 통과시켜 CaSO4를 걸러낸 후, 50℃ 오븐에서 overnight 건조하였다. In order to recover the produced solid sulfate, CaSO 4 was filtered through a 20 um filter and dried overnight in an oven at 50 ° C.
또한, 이산화탄소를 광물화하기 위하여, 이산화탄소와 수산화나트륨(NaOH)를 반응시켜 탄산나트륨(Na2CO3)를 생산하는 이산화탄소 포집공정을 실시하였다. 반응식은 아래와 같다.In addition, in order to mineralize the carbon dioxide, a carbon dioxide capture process of reacting carbon dioxide with sodium hydroxide (NaOH) to produce sodium carbonate (Na 2 CO 3 ) was performed. The scheme is shown below.
2NaOH + CO2 -> Na2CO3 + H2O2NaOH + CO 2- > Na 2 CO 3 + H 2 O
상기 탄산나트륨은 황산칼슘(CaSO4)와 광물화 반응하여 탄산칼슘(CaCO3)와 황산나트륨을 생산하였다. 반응식은 아래와 같다.The sodium carbonate was mineralized with calcium sulfate (CaSO 4 ) to produce calcium carbonate (CaCO 3 ) and sodium sulfate. The scheme is shown below.
Na2CO3 + CaSO4 -> CaCO3 + Na2SO4 Na 2 CO 3 + CaSO 4- > CaCO 3 + Na 2 SO 4
분리공정을 통하여, 상기 생산된 탄산칼슘은 황을 포함한 배지, 산소 및 미생물과 함께 배양기에서 발효공정을 실시하였다. Through the separation process, the produced calcium carbonate was subjected to a fermentation process in an incubator with a medium containing oxygen, oxygen and microorganisms.
상기 생산된 바이오매스 및 황산칼슘은 분리기에서 분리하여 바이오매스는 회수하고, 황산칼슘은 상기 광물화 공정으로 회수하여 재사용한다.The produced biomass and calcium sulfate are separated in a separator to recover biomass, and calcium sulfate is recovered and reused in the mineralization process.
또한, 상기 광물화 반응으로 생성된 황산나트륨은 전기분해를 통하여 황산과 수산화나트륨으로 분리한 후, 상기 분리된 수산화나트륨은 이산화탄소 포집공정으로 회수하여 재사용하고, 황산은 배출한다. 전기분해과정의 반응식은 아래와 같다.In addition, the sodium sulfate produced by the mineralization reaction is separated into sulfuric acid and sodium hydroxide through electrolysis, the separated sodium hydroxide is recovered and reused by a carbon dioxide capture process, sulfuric acid is discharged. The reaction scheme of the electrolysis process is shown below.
Na2SO4 + 2H2O -> H2SO4 + 2NaOHNa 2 SO 4 + 2H 2 O-> H 2 SO 4 + 2NaOH
실시예 2: 발효공정Example 2: Fermentation Process
발효 공정은 광물화 반응으로 획득한 탄산칼슘을 이용하여 미생물 발효를 통하여 유용물질을 얻는다(도 5).The fermentation process uses calcium carbonate obtained by the mineralization reaction to obtain a useful material through microbial fermentation (FIG. 5).
발효공정을 통하여 유용물질이 얻어지는 것을 확인하기 위하여, 1000 ml 플라스크에 배지 200 ml을 넣은 후 악시도티오바실러스 티오옥시단스(Acidothiobacillus thiooxidans) 0.25%를 접종하고, 30℃, 150 rpm 조건으로 전배양하였다. 이후에, 3.5 L 발효조에 1L 배지(표 4)를 넣은 후 상기 전배양 배양액 2.5%를 접종하였다. 이때, pH가 4.6에서 2.0으로 떨어지므로, 200g/L의 CaCO3 용액으로 pH 3.0을 유지하면서 air 1 vvm, 350 rpm 조건으로 배양하였다. 그 결과, 배양시간에 따라 세포 성장이 증가하는 것을 확인할 수 있었다(표 5). In order to confirm that a useful material is obtained through the fermentation process, 200 ml of medium was added to a 1000 ml flask, and then inoculated with 0.25% of Acidothiobacillus thiooxidans, and preincubated at 30 ° C. and 150 rpm. . Thereafter, 1L medium (Table 4) was placed in a 3.5 L fermenter and then inoculated with 2.5% of the preculture. At this time, the pH was dropped from 4.6 to 2.0, while incubating in air 1 vvm, 350 rpm conditions while maintaining pH 3.0 with 200g / L CaCO 3 solution. As a result, it was confirmed that cell growth increased with incubation time (Table 5).
상기 배지의 조성은 표 4에 나타내었다.The composition of the medium is shown in Table 4.
Figure PCTKR2017010616-appb-T000004
Figure PCTKR2017010616-appb-T000004
배양시간에 따른 세포 수를 표 5에 나타내었다. The number of cells according to the incubation time is shown in Table 5.
Figure PCTKR2017010616-appb-T000005
Figure PCTKR2017010616-appb-T000005
실시예 3: 유용물질 분석Example 3: Useful Substance Analysis
실시예 2에서 생성된 유용물질 중 S-아데노실메티오닌(s-adenosylmethionine)을 검출하기 위하여, HPLC-UV법과 GC-FID법을 이용하였다.In order to detect S-adenosylmethionine in the useful material produced in Example 2, HPLC-UV method and GC-FID method were used.
HPLC-UV법은 컬럼으로 waters symmetry C18 column 4.6×250mm을 이용하였으며, 검출기는 UV 254 nm를 이용하였다. 유속은 1.0 ml/min이고, 이동상 A는 물을 이용하였고, 이동상 B는 아세토나이트릴을 이용하였다. 용리는 물 85% 및 아세토나이트릴 15%에서 2분, 아세토나이트릴 100%에서 10분, 아세토나이트릴 100%에서 15분, 아세토나이트릴 15%에서 16분 및 아세토나이트릴 15%에서 25분으로 수행하였다. HPLC-UV method used water symmetry C18 column 4.6 × 250mm as a column, UV detector was used at 254 nm. The flow rate was 1.0 ml / min, mobile phase A used water and mobile phase B used acetonitrile. Elution 2 minutes at 85% water and 15% acetonitrile, 10 minutes at 100% acetonitrile, 15 minutes at 100% acetonitrile, 16 minutes at 15% acetonitrile and 25 minutes at 15% acetonitrile Was performed.
그 결과, 정체시간(Retention time) 6.430분에서 S-아데노실메티오닌(s-adenosylmethionine)이 검출되는 것을 확인하였다(도 6).As a result, it was confirmed that S-adenosylmethionine was detected at a retention time of 6.430 minutes (FIG. 6).
실시예 2에서 생성된 유용물질 중 스페르미딘을 검출하기 위하여, 실시예2에서 수득한 샘플 200 μl와 클로로포름과 이소옥탄을 1:4의 부피비로 혼합한 용액 200 μl을 혼합한 후, pH12.2의 K2CO3-KHCO3 버퍼 50 μl을 첨가하였다. 이후, 1 μl의 프로필 클로로프르메이트(propyl chloroformate)를 첨가한 후, 볼텍싱(vortexing)하였다. 이 후, 13000rpm조건에서 5분 동안 원심분리를 수행하였다. 그 결과 생성된 100 μl의 상부 유기층을 GC를 이용하여 분석하였다. In order to detect spermidine in the useful substance produced in Example 2, 200 μl of the sample obtained in Example 2 and 200 μl of a mixture of chloroform and isooctane in a volume ratio of 1: 4 were mixed, followed by pH12.2 50 μl of K 2 CO 3 -KHCO 3 buffer was added. Then, 1 μl of propyl chloroformate was added and then vortexed. Thereafter, centrifugation was performed for 5 minutes at 13000 rpm. The resulting 100 μl top organic layer was analyzed using GC.
GC-FID법은 컬럼으로 HP-5 30m × 320um × 0.25 um를 이용하였으며, 검출기는 FID(Flame Ionization Detector)를 이용하였으며 검출온도는 250℃이다. 운반기체는 헬륨을 이용하였고 오븐온도는 처음 50℃에서 1분 동안 머무른 후, 분당 20℃씩 280℃ 까지 증가시킨 후, 5분간 유지시켰다. The GC-FID method used HP-5 30m × 320um × 0.25um as the column, the detector used the Flame Ionization Detector (FID), and the detection temperature was 250 ℃. The carrier gas was helium, and the oven temperature was maintained at 50 ° C. for 1 minute, then increased to 20 ° C. per minute to 280 ° C., and maintained for 5 minutes.
그 결과, 정체시간(Retention time) 15.075분에서 스페르미딘(spermidine)이 검출되는 것을 확인하였다(도 7).As a result, it was confirmed that spermidine was detected at a retention time of 15.075 minutes (FIG. 7).
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above in detail specific parts of the present invention, it will be apparent to those skilled in the art that these specific descriptions are merely preferred embodiments, and thus the scope of the present invention is not limited thereto. will be. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.
본 발명에 따른 뇌 자극 장치는 기억을 강화시키거나, 치매로 인한 기억 저하를 줄일 수 있다는 장점이 있다. 또한, 본 발명에 따른 뇌 자극 장치는 해마-의존성 기억(hippocampus-dependent memory)을 강화시킬 수 있다는 장점이 있다. 또한 본 발명에 따른 휴대용 장치는 상기 뇌 자극 장치를 제어 및 모니터링 할 수 있다는 장점이 있다. 또한 본 발명에 따른 상기 뇌 자극 장치 성능 평가 방법은 뇌 자극 장치의 성능을 평가할 수 있다는 장점이 있다. The brain stimulation device according to the present invention has an advantage of enhancing memory or reducing memory degradation due to dementia. In addition, the brain stimulation device according to the present invention has the advantage that it can enhance hippocampus-dependent memory. In addition, the portable device according to the present invention has the advantage of controlling and monitoring the brain stimulation device. In addition, the method of evaluating the performance of the brain stimulation apparatus according to the present invention has an advantage of evaluating the performance of the brain stimulation apparatus.

Claims (13)

  1. 다음 단계를 포함하는 이산화탄소를 유용물질로 전환하는 방법:How to convert carbon dioxide to useful material, which includes the following steps:
    (a) 이산화탄소와 금속 황산염을 반응시켜 금속-탄산염 산물 및 황산을 제조하는 이산화탄소 광물화 단계;(a) a carbon dioxide mineralization step of reacting carbon dioxide with a metal sulfate to produce a metal-carbonate product and sulfuric acid;
    (b) 상기 제조된 금속-탄산염 산물 및 황의 존재 하에 황산화 미생물을 배양하여 상기 황산화 미생물에 의해 생성되는 유용물질과 금속 황산염의 혼합물을 제조하는 단계; 및(b) culturing the sulfated microorganism in the presence of the prepared metal-carbonate product and sulfur to prepare a mixture of the useful substance and metal sulfate produced by the sulfated microorganism; And
    (c) 상기 (b) 단계에서 생성되는 유용물질과 금속 황산염을 각각 회수하고, 상기 회수된 금속 황산염을 (a) 단계의 이산화탄소 광물화 단계로 리싸이클시키는 단계.(c) recovering the useful substance and the metal sulfate produced in the step (b), respectively, and recycling the recovered metal sulfate to the carbon dioxide mineralization step of step (a).
  2. 제1항에 있어서, The method of claim 1,
    상기 금속은 알칼리 금속인 것을 특징으로 하는 방법.The metal is an alkali metal.
  3. 제2항에 있어서,The method of claim 2,
    상기 알칼리 금속은 Ca, Mg, Fe, Si 및 Al로 구성된 군에서 선택되는 것을 특징으로 하는 방법. The alkali metal is selected from the group consisting of Ca, Mg, Fe, Si and Al.
  4. 제1항에 있어서, The method of claim 1,
    상기 (a) 단계는 다음 단계를 포함하는 이산화탄소를 유용물질로 전환하는 방법:Step (a) is a method for converting carbon dioxide to a useful material comprising the following steps:
    (i) 이산화탄소, 염기용액 및 금속 황산염을 함유하는 반응기에서 카보네이트/바이카보네이트로 전환하는 단계;(i) converting to carbonate / bicarbonate in a reactor containing carbon dioxide, base solution and metal sulfate;
    (ii) 상기 카보네이트/바이카보네이트와 염기 용액이 반응하여 수용성 탄산염을 생성하는 단계;(ii) reacting the carbonate / bicarbonate with a base solution to produce a water soluble carbonate;
    (iii) 상기 수용성 탄산염과 상기 금속 황산염이 반응하여 금속 탄산염과 수용성 황산염을 형성하는 단계;(iii) reacting the water soluble carbonate and the metal sulfate to form a metal carbonate and a water soluble sulfate;
    (iv) 상기 수용성 황산염을 전기분해하여 황산과 염기용액으로 분리하는 단계; 및(iv) electrolyzing the water-soluble sulfate to separate the sulfuric acid and the base solution; And
    (v) 상기 (iv) 단계에서 생성된 염기용액을 회수하여 (ii) 단계의 수용성 탄산염을 생성하는 단계로 리싸이클시키는 단계.(v) recycling the base solution generated in step (iv) to produce the water-soluble carbonate of step (ii).
  5. 제4항에 있어서, The method of claim 4, wherein
    상기 (i) 단계는 탄산무수화 효소(carbonic anhydrase)에 의해 촉진되는 것을 특징으로 하는 방법.The step (i) is characterized in that promoted by carbonic anhydrase (carbonic anhydrase).
  6. 제1항에 있어서, The method of claim 1,
    상기 (b) 단계에 전자 수용체로 산소(O2), 질산염(NO3 -) 및 아질산염(NO2 -)으로 구성된 군에서 어느 하나 이상을 추가로 첨가하는 것을 특징으로 하는 방법.Characterized in that further added to any one or more from the group consisting of - and nitrite (NO 2) - the oxygen (O 2), nitrate (NO 3) as an electron acceptor in step (b).
  7. 제1항에 있어서, The method of claim 1,
    상기 (c) 단계의 금속 황산염의 회수는 (b) 단계에서 생성되는 혼합물을 필터에 통과시켜 금속 황산염을 걸러낸 후, 건조시키는 것을 특징으로 하는 방법. The recovery of the metal sulfate of step (c) is characterized in that the mixture produced in step (b) is passed through a filter to filter out the metal sulfate, and then dried.
  8. 제1항에 있어서, The method of claim 1,
    상기 황산화 미생물은 다음 그룹에서 선택되는 것을 특징으로 하는 방법:The sulfated microorganism is selected from the following group:
    (A) 아키디아누스 앰비바란스(Acidianus ambivalans) 또는 아키디아누스 브리에르레이(Acidianus brierleyi); (A) Acidianus ambivalans or Acidianus brierleyi;
    (B) 아퀴펙스 파이로필러스(Aquifex pyrophylus); (B) Aquifex pyrophylus;
    (C) 수소균 엑시도필로스균(Hydrogenobacter acidophilus) 또는 수소균 테르모필스(Hydrogenobacter thermophiles); (C) the bacterium Hydrogenobacter acidophilus or Hydrogenobacter thermophiles;
    (D) 티오바실러스 디나이트리휘칸스(Thiobacillus denitrificans); (D) Thiobacillus denitrificans;
    (E) 티오마이크그로스피라 크루노게타(Thiomicrospira crunogena); (E) Thiomicrospira crunogena;
    (F) 설푸리모나스(Sulfurimonas) 속; (F) the genus Sulfurmonas;
    (G) 할로티오바실러스(Halothiobacillus) 속; (G) Genus Halothiobacillus;
    (H) 에시디티오바실러스(Acidithiobacillus) 속; 및 (H) genus Acidithiobacillus; And
    (I) 터미시오바실러스 테피다리우스 (Thermithiobacillus tepidarius). (I) Thermithiobacillus tepidarius.
  9. 제8항에 있어서, The method of claim 8,
    상기 설푸리모나스(Sulfurimonas) 속은 설푸리모나스 오토트로피카(Sulfurimonas autotrophica), 설푸리모나스 데니트리피칸스(Sulfurimonas denitrificans), 설푸리모나스 고트란디카(Sulfurimonas gotlandica) 및 설푸리모나스 파랄비넬래(Sulfurimonas paralvinellae)로 구성된 군에서 선택되는 것을 특징으로 하는 방법. The genus Sulfurmonas (Sulfurimonas) is Sulfurmonas autotrophica (Sulfurimonas autotrophica), Sulfurmonas denitrificans, Sulfurmonas gotlandica (Sulfurimonas gotlandica) and Sulfurmonas paranalus ( paralvinellae).
  10. 제8항에 있어서, The method of claim 8,
    상기 할로티오바실러스(Halothiobacillus) 속은 할로티오바실러스 할로필루스(Halothiobacillus halophilus), 할로티오바실러스 하이드로써마리스(Halothiobacillus hydrothermalis), 할로티오바실러스 켈라이(Halothiobacillus kellyi) 및 할로티오바실러스 나폴리타너스(Halothiobacillus neapolitanus)로 구성된 군에서 선택되는 것을 특징으로 하는 방법.Halothiobacillus genus is Halothiobacillus halophilus, Halothiobacillus hydrothermalis, Halothiobacillus kellyi and Halothiobacillus napolitanus. Method selected from the group consisting of.
  11. 제8항에 있어서, The method of claim 8,
    상기 에시디티오바실러스(Acidithiobacillus) 속은 에시디티오바실러스 알베르텐시스(Acidithiobacillus albertensis), 에시디티오바실러스 칼더스(Acidithiobacillus caldus), 에시디티오바실러스 큐프리써미커스(Acidithiobacillus cuprithermicus), 에시디티오바실러스 페리두란스(Acidithiobacillus ferridurans), 에시디티오바실러스 페리보란스(Acidithiobacillus ferrivorans), 에시디티오바실러스 페로록시단스(Acidithiobacillus ferrooxidans) 및 에시디티오바실러스 티오옥시단스(Acidithiobacillus thiooxidans)로 구성된 군에서 선택되는 것을 특징으로 하는 방법. The genus Acidithiobacillus (Acidithiobacillus albertensis), Acidithiobacillus caldus (Acidithiobacillus caldus), Acidithiobacillus cuprithermicus (Acidithiobacillus cuprithermicus), sididithiobacillus Selected from the group consisting of Durans (Acidithiobacillus ferridurans), Acidithiobacillus ferrivorans, Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. How to.
  12. 제1항에 있어서, The method of claim 1,
    상기 황산화 미생물에 의해 생산되는 유용물질은 PHA(polyhydroxyalkanoate), 에탄올(ethanol), 아세트산(acetic acid), 젖산(lactic acid), 글리세롤(glycerol), 3-하이드록시프로피온산(3-hydroxypropionic acid), 이소부탄올(isobutanol), 아이소부티르산(isobutyric acid), 숙신산(succinic acid), 부티르산(butyric acid), 노멀 부탄올(n-butanol), 1,3-propanediol(1,3-PDO), 2,3-butanediol(2,3-BDO), 1,4-butanediol(1,4-BDO), 글루타메이트(glutamate), 이소프렌(isoprene), 아디프산(adipic acid), 무콘산(muconic acid), 아미노산, 글루타티온(glutathione), 폴리펩티드(polypeptide), 인지질(phospholipid), 폴리아민(polyamine), S-아데노실메티오닌(s-adenosylmethionine) 및 지방산(fatty acid)으로 구성된 군에서 선택되는 것을 특징으로 하는 방법.Useful materials produced by the sulfated microorganism are PHA (polyhydroxyalkanoate), ethanol (ethanol), acetic acid (acetic acid), lactic acid (lactic acid), glycerol (glycerol), 3-hydroxypropionic acid (3-hydroxypropionic acid), Isobutanol, isobutyric acid, succinic acid, butyric acid, normal butanol, 1,3-propanediol (1,3-PDO), 2,3- butanediol (2,3-BDO), 1,4-butanediol (1,4-BDO), glutamate, isoprene, adipic acid, muconic acid, amino acid, glutathione (glutathione), polypeptide (polypeptide), phospholipid (phospholipid), polyamine (polyamine), S-adenosylmethionine (S-adenosylmethionine) and fatty acid (fatty acid).
  13. 다음 단계를 포함하는 이산화탄소를 유용물질로 전환하는 방법:How to convert carbon dioxide to useful material, which includes the following steps:
    (i) 이산화탄소, 염기용액 및 탄산무수화효소를 반응시켜 카보네이트/바이카보네이트로 전환하는 단계;(i) reacting carbon dioxide, base solution and carbonic anhydrase to convert to carbonate / bicarbonate;
    (ii) 상기 카보네이트/바이카보네이트와 염기 용액이 반응하여 수용성 탄산염을 생성하는 이산화탄소 포집단계;(ii) a carbon dioxide capture step of reacting the carbonate / bicarbonate with a base solution to produce a water-soluble carbonate;
    (iii) 상기 생성된 수용성 탄산염에 금속 황산염을 첨가하여 금속 탄산염과 수용성 황산염을 형성하는 광물화 단계;(iii) mineralizing the metal sulphate to form the metal carbonate and the water soluble sulfate by adding the metal sulfate to the produced water-soluble carbonate;
    (iv) 상기 (iii) 단계에서 형성된 금속 탄산염과 수용성 황산염을 분리하는 단계;(iv) separating the metal carbonate and the water soluble sulfate formed in step (iii);
    (v) 상기 분리된 수용성 황산염을 전기분해하여 황산과 염기용액으로 분리하고, 상기 염기용액을 회수하여 (ii) 단계의 이산화탄소 포집단계로 리싸이클시키는 단계;(v) electrolyzing the separated aqueous sulphate to separate the sulfuric acid and the base solution, and recovering the base solution and recycling the carbon dioxide collection step of step (ii);
    (vi) 상기 (iv) 단계에서 분리된 금속 탄산염에 황, 전자수용체 및 황산화 미생물을 첨가한 뒤, 배양하여 유용물질과 금속 황산염의 혼합물을 제조하는 단계; 및(vi) adding sulfur, an electron acceptor, and a sulfated microorganism to the metal carbonate separated in step (iv), followed by culturing to prepare a mixture of the useful substance and the metal sulfate; And
    (vii) 상기 (vi) 단계에서 제조된 혼합물을 필터에 통과시켜 유용물질과 금속 황산염을 각각 회수한 후, 상기 회수된 금속 황산염을 건조시킨 후 (iii) 단계의 이산화탄소 광물화 단계로 리싸이클시키는 단계.(vii) passing the mixture prepared in step (vi) through a filter to recover the useful materials and the metal sulfates, and then drying the recovered metal sulfates and recycling the carbon dioxide mineralization step of step (iii). .
PCT/KR2017/010616 2016-09-26 2017-09-26 Carbon dioxide conversion process using carbon dioxide mineralization process and metabolic reaction of sulfur-oxidizing microorganisms linked thereto WO2018056787A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2017330155A AU2017330155B2 (en) 2016-09-26 2017-09-26 Process of converting carbon dioxide using combination of carbon dioxide mineralization process and metabolism of sulfur-oxidizing microorganisms
DE112017004802.8T DE112017004802T5 (en) 2016-09-26 2017-09-26 CARBON DIOXIDE CONVERSION PROCESS USING A CARBON DIOXIDE MINERALIZATION PROCESS AND A METABOLIC REACTION OF ASSOCIATED SULFUR OXYGENATING MICROORGANISMS
CN201780066387.2A CN109890969A (en) 2016-09-26 2017-09-26 Use the carbon dioxide conversion method of carbon dioxide mineralization methods and the metabolic response of sulfur-oxidizing microorganisms in connection
US16/335,852 US11845969B2 (en) 2016-09-26 2017-09-26 Process of converting carbon dioxide using combination of carbon dioxide mineralization process and metabolism of sulfur-oxidizing microorganisms

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0123182 2016-09-26
KR20160123182 2016-09-26
KR10-2017-0124179 2017-09-26
KR1020170124179A KR102503672B1 (en) 2016-09-26 2017-09-26 CO2 conversion process via combination of CO2 mineralization and sulfur-oxidative metabolism

Publications (1)

Publication Number Publication Date
WO2018056787A1 true WO2018056787A1 (en) 2018-03-29

Family

ID=61691014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/010616 WO2018056787A1 (en) 2016-09-26 2017-09-26 Carbon dioxide conversion process using carbon dioxide mineralization process and metabolic reaction of sulfur-oxidizing microorganisms linked thereto

Country Status (1)

Country Link
WO (1) WO2018056787A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114621905A (en) * 2022-05-16 2022-06-14 中国科学院地理科学与资源研究所 Bacillus and application thereof
GB2620645A (en) * 2022-07-13 2024-01-17 Cemvita Factory Inc Process

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100083599A (en) * 2009-01-14 2010-07-22 정욱진 A method for removing byproduct from sulfur denitrification of wastewater
US20130189750A1 (en) * 2009-07-27 2013-07-25 The University of Wyoming Research d/b/a Western Research Institute Biological and Chemical Process Utilizing Chemoautotrophic Microorganisms
KR101351464B1 (en) * 2013-07-26 2014-01-15 한국지질자원연구원 Carbon dioxide mineralization method of carbonate using carbon dioxide microbubble
KR20160056420A (en) * 2014-11-11 2016-05-20 한국에너지기술연구원 Apparatus and method for mineralizing carbon dioxide using 3-phase fluidized bed system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100083599A (en) * 2009-01-14 2010-07-22 정욱진 A method for removing byproduct from sulfur denitrification of wastewater
US20130189750A1 (en) * 2009-07-27 2013-07-25 The University of Wyoming Research d/b/a Western Research Institute Biological and Chemical Process Utilizing Chemoautotrophic Microorganisms
KR101351464B1 (en) * 2013-07-26 2014-01-15 한국지질자원연구원 Carbon dioxide mineralization method of carbonate using carbon dioxide microbubble
KR20160056420A (en) * 2014-11-11 2016-05-20 한국에너지기술연구원 Apparatus and method for mineralizing carbon dioxide using 3-phase fluidized bed system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ROMANOV, VYACHESLAV: "Mineralization of Carbon Dioxide: A Literature Review", CHEMBIOENG REVIEWS, vol. 2, no. 4, 11 May 2015 (2015-05-11) - August 2015 (2015-08-01), pages 231 - 256, XP055603244, ISSN: 2196-9744, DOI: 10.1002/cben.201500002 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114621905A (en) * 2022-05-16 2022-06-14 中国科学院地理科学与资源研究所 Bacillus and application thereof
CN114621905B (en) * 2022-05-16 2022-07-15 中国科学院地理科学与资源研究所 Bacillus and application thereof
GB2620645A (en) * 2022-07-13 2024-01-17 Cemvita Factory Inc Process
WO2024015886A2 (en) 2022-07-13 2024-01-18 Cemvita Factory, Inc. Process

Similar Documents

Publication Publication Date Title
US11845969B2 (en) Process of converting carbon dioxide using combination of carbon dioxide mineralization process and metabolism of sulfur-oxidizing microorganisms
JP4486760B2 (en) Clostridium strain producing ethanol from gas contained in substrate
CN108603201A (en) Integrate fermentation and electrolysis process
KR101375029B1 (en) Novel bacteria and methods of use thereof
CN1228124A (en) Biological production of acetic acid from waste gases
WO2018056787A1 (en) Carbon dioxide conversion process using carbon dioxide mineralization process and metabolic reaction of sulfur-oxidizing microorganisms linked thereto
WO2019156442A1 (en) Bioreactor for converting gaseous co2
WO2016043383A1 (en) Method for synthesizing formic acid from carbon dioxide using methylotrophic bacteria
KR850004267A (en) Method for preparing poly-D-(-)-3-hydroxybutyric acid
JPWO2021151025A5 (en)
JP3224992B2 (en) Hydrogen-producing photosynthetic microorganism and method for producing hydrogen using the same
WO2020096208A1 (en) Method for producing methanol in sewage treatment process by using treated sewage water and mixed species of methane oxidizing bacteria (type i and type x) in conjunction with digestion gas from anaerobic digestion tank
US20230203433A1 (en) Method for producing biomass using hydrogen-oxidizing bacteria
KR102107013B1 (en) Method and system for complex production of hydrogen and microalgae
JPS5860992A (en) Preparation of hydrogen from green alga utilizing light and darkness cycle
WO2017039106A1 (en) Novel methylomonas sp. strain and use thereof
WO2023219458A1 (en) Method for reducing carbon dioxide using microalgae
JPH06277081A (en) Production of 5-aminolevulinic acid by methane-producing bacterium
JPH06169758A (en) Microorganism and production of 5-aminolevulinic acid
CN117343972A (en) Method for producing and recovering microbial active amino acid by using biochar biomembrane
WO2013118953A1 (en) Method for the fixation or conversion of high-pressure carbon dioxide using barophilic sulfur-oxidizing chemolithoautotrophs
JPH0728750B2 (en) Method for producing hydroxide of pyrazinic acid by microorganism
US4824780A (en) Method for producing hydroquinone
JPH1042881A (en) Useful gas producing process using microorganism
CN117187122A (en) Microbacterium oxydans TLH and application thereof in degrading organic pollutants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17853501

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017330155

Country of ref document: AU

Date of ref document: 20170926

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17853501

Country of ref document: EP

Kind code of ref document: A1