WO2017039106A1 - Novel methylomonas sp. strain and use thereof - Google Patents

Novel methylomonas sp. strain and use thereof Download PDF

Info

Publication number
WO2017039106A1
WO2017039106A1 PCT/KR2016/003894 KR2016003894W WO2017039106A1 WO 2017039106 A1 WO2017039106 A1 WO 2017039106A1 KR 2016003894 W KR2016003894 W KR 2016003894W WO 2017039106 A1 WO2017039106 A1 WO 2017039106A1
Authority
WO
WIPO (PCT)
Prior art keywords
strain
methanol
methane
methylomonas
present
Prior art date
Application number
PCT/KR2016/003894
Other languages
French (fr)
Korean (ko)
Inventor
이은열
황인엽
전영찬
허동훈
Original Assignee
경희대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160041147A external-priority patent/KR101714967B1/en
Application filed by 경희대학교 산학협력단 filed Critical 경희대학교 산학협력단
Publication of WO2017039106A1 publication Critical patent/WO2017039106A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/26Methylomonas

Definitions

  • the present invention is a novel strain of genus Methylomonas sp.) DH-1 strain and its use, and more specifically, the present invention relates to the genus Methylomonas deposited with the deposit number KCTC13004BP to synthesize methanol sp.) DH-1 strain, the composition for synthesizing methanol comprising the strain or culture of the strain, the kit for methanol synthesis comprising the strain or the composition, and a method for producing methanol using the strain.
  • Methane gas is a major component of natural gas and shale gas and is known to cause a greenhouse effect. Unlike liquid hydrocarbons represented by petroleum, methane is a gas on its own, making it difficult to convert to high value products and use as a fuel. Accordingly, efforts have been made to convert methane gas into a liquid compound.
  • Representative compounds that can be produced using methane include methanol. Methanol is a reaction intermediate used in the production of dimethyl ether and biodiesel, and is used as a basic compound in many other fields. The methanol production process using methane, which is currently commercialized, consists of converting methane to syngas, a mixture of hydrogen and carbon monoxide, and then synthesizing methanol through high temperature and high pressure conditions.
  • Methanotrophic bacteria are microorganisms capable of growing methane as the only energy source and were first isolated by Sohngen in 1906. Then, the taxonomic study morphology of the cells to, methyl Pseudomonas genus (Methylomonas), bakteo in (Methylobacter), in (Methylococcus) Rhodococcus methyl methyl depending on the cell or cell type of inner structure of the stationary phase, micro-methyl Methylomicrobium , Methylosphaera , Methylocaldum , Methyloglobus , Methylosarcina , Methyloprofundus , in Plymouth tide methyl (Methylothermus), to Flavian in (Methylohalobius), as geah in (Methylogaea), horses crossed in (Methylomarinum), in Marino commits methyl in (Methylovulum), beolreom as methyl methyl to
  • methane-oxidizing bacteria have a developed inner membrane structure in all species, and type I, in which the inner membrane of the superimposed vesicles is distributed throughout the cell, and the inner membrane are arranged along the periphery of the cell, according to the difference between the intracellular membranes. It is divided into two forms. In addition, it is reported that there are differences in the fatty acid composition constituting lipids in the intracellular membrane, and type I methane oxidizing bacteria contains 16-carbon chain fatty acids and type II methane oxidizing bacteria contains 18-carbon chain fatty acids. Many, both types have fatty acids containing one unsaturated bond.
  • methane oxidizing bacteria contain an enzyme called methane monooxygenases (MMO), so that methane can be easily converted to methanol even at normal temperature and pressure.
  • MMO methane monooxygenases
  • Methane is oxidized to methanol by methane monooxygenase, and then methanol is oxidized to formaldehyde or formic acid by methanol dehydrogenase (MDH) to carbon dioxide.
  • MDH methanol dehydrogenase
  • Biosynthesis of carbon compounds from this methane is carried out by the ribulose monophosphate cycle (RuMP cycle) and the serine cycle (serine cycle).
  • Type II methane-oxidizing bacteria are known to synthesize biomass using the serine circuit (Biocatalytic Conversion of Methane to Methanol as a Key Step for Development of Methane-Based Biorefineries J. Microbiol. Biotechnol.In Yeub Hwang et al (2014) ), 24 (12), 1597-605). Due to the physiological characteristics of methane oxidizing bacteria, efforts have been made to convert methane to methanol using methane oxidizing bacteria to reduce harmful methane gas and to utilize them as energy sources.
  • the present inventors have made diligent efforts to develop a method for producing methanol more efficiently using methane gas, and as a result, Methylomonas sp.
  • the DH-1 strain was isolated and identified, and the DH-1 strain rapidly produced methanol in high yield, thus completing the present invention.
  • Another object of the present invention is to provide a composition for synthesizing methanol, comprising the DH-1 strain or a culture of the strain.
  • Still another object of the present invention is to provide a kit for methanol synthesis, comprising the DH-1 strain or the composition.
  • Still another object of the present invention is to provide a method for producing methanol, comprising the step of reacting the DH-1 strain or its culture product in a reaction vessel containing methane.
  • the DH-1 strain of the genus Methylmonas deposited with the accession number KCTC13004BP of the present invention can synthesize methanol, it can be widely used in biodegradable plastic production, methanol fuel cell, gasoline engine, and other biofuels. .
  • Figure 1 is an image of the DH-1 strain of the present invention observed under a microscope
  • Figure 1a is a scanning electron microscope
  • Figure 1b shows a result of observation with a projection electron microscope.
  • Figure 2 is a molecular biological phylogenetic diagram of the DH-1 strain of the present invention
  • Figure 2a is a phylogenetic diagram using the 16S rDNA gene sequence
  • Figure 2b is a particulate methane monooxygenase alpha subunit (particulate methane monooxygenase alpha subunit)
  • pmoA A phylogenetic map using the nucleotide sequence of a gene.
  • Figure 3 is a graph showing the methanol synthesis ability under various conditions of the DH-1 strain of the present invention
  • Figure 3a is methane concentration
  • Figure 3b is pH
  • Figure 3c is the dry cell weight of the DH-1 strain
  • Figure 3d is sodium formate (Sodium formate) concentration
  • Figure 3e shows the methanol synthesis ability of the DH-1 strain according to the EDTA concentration.
  • Figure 4 is a graph showing the methanol synthesis capacity in the optimum conditions for methanol production of the DH-1 strain of the present invention.
  • Figure 5 compares the methanol synthesis capability between the DH-1 strain and Sinners tricot sports Solarium in OB3b strain to another methane oxidizing bacteria methyl invention (Methylosinus trichosporium OB3b), Cellar silbeseuteuri methyl switch in BL2 strain (Methylocella silvestirs BL2) As a graph, the reaction was carried out at methanol production conditions optimized in the present invention.
  • the present invention provides a Methylomonas sp. DH-1 strain deposited with accession number KCTC13004BP.
  • Methylomonas sp. DH-1 strain refers to a strain belonging to the genus Methylomonas sp., which is derived from sewage sludge and has not been reported in the past , 2016. It means a strain deposited with the Korea Institute of Bioscience and Biotechnology Center on April 8, 2010 and given accession number KCTC13004BP. The strain was deposited on August 27, 2015 to the Korea Research Institute of Bioscience and Biotechnology, and converted to a deposit under the Budapest Treaty, which was assigned the deposit number KCTC18400P, and the strain of accession number KCTC13004BP and the strain number KCTC18400P It is obvious that the same thing.
  • the present inventors in order to find a strain suitable for the production of methanol using microorganisms, the present inventors have focused on the sewage sludge which methane is continuously generated, and succeeded in identifying and identifying a new methane-oxidizing bacterium, the genus Methyluromonas.
  • the strain is not limited thereto, but may be derived from at least one selected from the group consisting of sewage sludge as well as groundwater, surface water, industrial water, sewage, wastewater, and sewage.
  • the strain has a 16S rDNA gene as set out in SEQ ID NO: 3 and a pmoA gene as set out in SEQ ID NO: 6.
  • the term '16S rDNA' also called 16S ribosomal DNA, refers to rDNA constituting the 30S subunit of prokaryotic ribosomes. While the sequence of the rDNA has almost no diversity among homologous species, it is used for bioidentification because of its diversity among other species, and identification and classification of organisms that are impossible or difficult to cultivate or organisms that have not been reported. This is especially useful for.
  • pMMO particle methane monooxygenase
  • particulate methane monooxygenase alpha subunit means an alpha subunit that is one of three subunits of particulate methane monooxygenase.
  • gene means a gene expressing the methane monooxygenase alpha subunit.
  • pmoA of the strain Molecular systematic analysis of the gene, Methylomonas koyamae
  • the pmoA gene of the Fw12E-Y strain showed a similarity of 98% or more, indicating that the strain was a novel strain belonging to the genus Methylonomonas (FIG. 2B).
  • the strain was named " Methylomonas sp. DH-1" and was deposited on April 8, 2016 to the Korea Institute of Bioscience and Biotechnology Biological Resource Center was given accession number KCTC13004BP.
  • the strain of the present invention is a gram-negative microorganism, which is resistant to the antibiotics chloramphenicol (Cam), tetracycline (Tet) and rifampicin (Rif), and in culture Appropriate temperature is 30 °C, the appropriate concentration of copper ion is 10 ⁇ M, it was confirmed that the growth well under the condition of the air: methane ratio of 7: 3 (Table 1). In addition, the strain was found to grow well in the carbon source of methane, methanol, methylamine (methylamine), esculin (Table 2).
  • the strain is a condition in which 30 to 70% of methane, specifically 40% of methane is present; PH conditions of 6 to 8, specifically pH 7 conditions; 0.6 to 2.4 g dry cell weight / L, specifically, 2.4 g dry cell weight / L; Conditions in which 20 to 200 mM sodium formate, specifically 40 mM sodium formate, is present; In the presence of 0.3 to 5 mM EDTA, specifically, 0.5 mM EDTA, it was confirmed that methanol production capacity was maximized (FIGS. 3A to 3E), and methanol production capacity was maximized within 4 hours of reaction. It was confirmed that the synthesis capacity was maintained up to 12 hours (Fig. 4).
  • the DH-1 strain was compared with Sinners tricot sports Solarium in OB3b strain (Methylosinus trichosporium OB3b) or methyl Cellar silbeseuteuri's in BL2 strain (Methylocella silvestirs BL2) to a different methane oxidizing bacteria, methyl, respectively, 130%, or It was confirmed to exhibit a 230% high methanol production capacity (FIG. 5).
  • OB3b strain Metallosinus trichosporium OB3b
  • methyl Cellar silbeseuteuri's in BL2 strain Metallocella silvestirs BL2 strain
  • FIG. 5 This suggests that the DH-1 strain of the genus Methylonomonas of the present invention can produce methanol from methane in a high yield in a fast reaction time compared to other methanogenic bacteria, and thus biofuel or various chemical processes using methanol. It suggests that it can be widely used for application as a material.
  • the methanogenic bacterium Methylus sinus tricosporium OB3b strain
  • the OB3b strain produces 14.2 mM methanol after 12 hours of reaction at 0.6 mg dry cell weight / mL.
  • the DH-1 strain of the present invention can produce 41.5 mM of methanol within 4 hours, so that the DH-1 strain of the present invention can produce a large amount of methanol much faster than conventional methanogenic bacteria.
  • the DH-1 strain of the present invention This suggests that it can be a solution to overcome the problems of slow reaction speed and difficulty of mass production, which have been suggested as problems of methanol production using existing microorganisms.
  • the present invention provides a composition for synthesizing methanol comprising the methylomonas DH-1 strain or a culture of the strain.
  • the culture product of the strain of methylomonas DH-1 included in the composition is not particularly limited as long as it can synthesize methanol. Specific examples may be a culture of the strain, a culture supernatant, a lysate, fractions thereof, and the like.
  • the culture supernatant may be obtained by centrifugation of the culture of DH-1 strain of Methylmonas
  • the lysate may be obtained by physically or ultrasonically treating the DH-1 strain of Methylmonas
  • Fractions can be obtained by applying the culture, culture supernatant, lysate and the like to a method such as centrifugation, chromatography.
  • composition for synthesizing methanol of the present invention may further include other strains that may increase the methanol production rate or increase the methanol production rate, in addition to the methylomonas DH-1 strain.
  • Strains that can be included in the add is in particular to this the but are not limited and preferably methane, methane, methyl-oxidizing bacteria capable of oxidizing methanol Pseudomonas genus (Methylomonas), bakteo methyl in (Methylobacter), methyl Rhodococcus ( Methylococcus ), Methylomicrobium , Methylosphaera , Methylocaldum , Methyloglobus , Methylosarcina , Methylosarcina , Methylosarcina Methylosarcina Methyloprofundus , Methylothermus , Methylohalobius , Methylogaea , Methylomarin
  • the present invention provides a kit for methanol synthesis comprising the composition.
  • the kit of the present invention may be used to synthesize methanol, including the composition, but is not particularly limited thereto, and may include one or more other component compositions, solutions, or devices suitable for the reaction, and in particular, the composition.
  • DH-1 strain culture medium of the genus Methylonomonas contained in, a buffer for methanol synthesis, a reaction vessel for performing the methanol synthesis, a temperature controller for performing the methanol synthesis, for performing the methanol synthesis reaction A timer may be included.
  • the kit for synthesizing methanol of the present invention may include a DH-1 strain of the genus Methylonomonas, the culture medium for the strain, a buffer used for methanol synthesis, and a constant temperature reaction vessel used for methanol synthesis.
  • the present invention comprises the step of producing methanol, comprising the step of reacting the genus DH-1 strain or culture products thereof in a reaction vessel containing methane to provide.
  • the gas in the reaction vessel may contain methane 30 to 70% (v / v), specifically 40% (v / v); PH in the reaction vessel may be 6.0 to 8.0, specifically pH 7.0; The strain may comprise 0.6 to 2.4 g dry cell weight / L, specifically 2.4 g dry cell weight / L; The reaction vessel may further comprise 20 to 200 mM sodium formate, specifically 40 mM sodium formate; The reaction vessel may further include 0.3 to 5 mM EDTA, specifically, 0.5 mM EDTA, but is not limited thereto.
  • the reaction when the reaction is carried out by including 40% methane, sodium phosphate pH 7, 2.4 g dry cell weight / L, 40 mM sodium formate, 0.5 mM EDTA in the reaction vessel, It was confirmed that the methanol production capacity is maximized compared to the conditions (FIGS. 3A to 3E).
  • the method for separating methane oxidizing bacteria from sewage sludge is as follows.
  • the collected sewage sludge is nitrate-mineral-salt (NMS) medium (per liter; 1 g MgSO 4 ⁇ 7H 2 O, 1 g KNO 3 , 0.2 g CaCl 2 ⁇ H 2 O, 0.0038 g Fe-EDTA, 0.0005 g NaMo ⁇ 4H 2 O) in the trace elements solution (1x) 1 mL ( per liter; 500 mg FeSO 4 ⁇ 7H 2 O, 400 mg ZnSO 4 ⁇ 7H 2 O, 20 mg MnCl 2 ⁇ 7H 2 O, 50 mg CoCl 2 ⁇ 6H 2 O, 10 mg NiCl 2 .6H 2 O, 15 mg H 3 BO 3 , 250 mg EDTA), phosphate stock solution (1x) 10 mL (per liter; 26 g KH 2 PO 4 , 62 g Na 2 HPO 4 7H 2 O), vitamin stock
  • FIGS. 1A and B In order to observe the appearance of the isolated methane-oxidized bacteria, the results were observed using a scanning electron microscope and a projection electron microscope, and the results are shown in FIGS. 1A and B. As shown in Figure 1a, b it was confirmed that the bacterium having a size of 1x1.5 ⁇ m through a scanning microscope, type I methane oxidizing bacteria having an intracytoplasmic membrane (ICM) structure inside through a projection microscope. .
  • ICM intracytoplasmic membrane
  • sequencing of the 16S rDNA gene was performed as follows. After amplification by PCR using primers described in SEQ ID NO: 1 and SEQ ID NO: 2 for 16S rDNA gene amplification, the amplified PCR product was analyzed by sequencing reaction.
  • Reverse primer 1492R (5'-GGTTACCTTGTTACGACTT-3 '): (SEQ ID NO: 2)
  • the nucleotide sequence of the strain isolated from the present invention was Methylomonas. koyamae At least 99% similarity with the Fw12E-Y strain.
  • the result of analysis of the 16S rDNA base sequence of the strain was described as SEQ ID NO: 3, and the systematic result using the analyzed base sequence was inferred by the evolutionary distance and the phylogeny between the base sequences by the Kimura 2-parameter model and the neighbor-joining method. (FIG. 2A).
  • Reverse primer mb661R (5'-CCGGMGCAACGTCYTTACC-3 '): (SEQ ID NO: 5)
  • the pmoA gene of the strain was Methylomonas. koyamae At least 98% similarity with the pmoA gene of Fw12E-Y strain.
  • the nucleotide sequence of the pmoA gene of the strain was described as SEQ ID NO: 6, and the phylogenetic results using the analyzed nucleotide sequence were inferred by the evolutionary distance between the nucleotide sequences and the phylogenetic tree by the Kimura 2-parameter model and the neighbor-joining method ( 2b).
  • the microorganism isolated in the present invention is Methylomonas sp. which is widely known as a microorganism for oxidizing methane to methanol.
  • the present inventors named the strain " Metthlyomonas sp. DH-1", and deposited it on the biological resource setter of the Korea Research Institute of Bioscience and Biotechnology on April 8, 2016 and received the accession number KCTC13004BP. .
  • DH-1 strain of genus Meromonas were observed by scanning electron microscope (Scanning Electron Microscope, SEM) and transmission electron microscope (Transmission Electron Microscope, TEM) (Fig. 1). As shown in FIG. 1, the DH-1 strain showed a rod form, which is a typical form of methane oxidizing bacteria, and showed a colony color of Light Yellow-> Yellow-> Orange-> Brown in a solid medium.
  • the DH-1 strain is a Gram-negative microorganism, and is resistant to antibiotics chloramphenicol (Cam), tetracycline (Tet), and rifampicin (Rif).
  • Cam chloramphenicol
  • Tet tetracycline
  • Rif rifampicin
  • the DH-1 strain was found to grow well in the carbon source of methane, methanol, methylamine (Methylamine) or esculin (Esculin).
  • the saturated fatty acid 14: 0 of the DH-1 strain showed 23.59%, showing a similar result in the genus methylomonas and fatty acid composition.
  • the unsaturated fatty acids 16: 1 ⁇ 8c, 16: 1 ⁇ 7c, 16: 1 ⁇ 6c, 16: 1 ⁇ 5c and 16: 1 ⁇ 8t showed different fatty acid compositions from the genus Methylonomonas, and 16: 1 ⁇ 7c (31.82%) and 16: 1 ⁇ 6c (3.52% ) Showed similar results for the genus Methyloccus and fatty acid composition.
  • the amount of methanol produced was left to react at 90 °C heating block (heating block) 30 minutes to terminate the reaction, centrifuged at 13000 rpm to obtain a supernatant, and then the methanol production of the reaction solution through GC analysis Measured.
  • Example 6-4 Sodium formate Methanol production by concentration
  • Example 6 In order to analyze the methanol synthesis ability of the DH-1 strain of the genus M. monomonas isolated and identified in Examples 1 and 2, the DH-1 strain was reacted under the optimum growth conditions established in Example 6 above. .
  • the methanol production capacity was maximized within 4 hours of the reaction when incubated in the above conditions containing sodium formate and EDTA at an appropriate concentration, as compared with the case where nothing was added or only sodium formate was added. It was confirmed that the methanol synthesis ability of the DH-1 strain was confirmed to be maintained up to 12 hours.
  • the embodiment optimal growth conditions established through 6 with DH-1 strain, Sinners tricot sports Solarium in OB3b strain as methyl (Methylosinus trichosporium OB3b), Cellar silbeseuteuri's in BL2 strain as methyl (Methylocella silvestirs BL2) Each was reacted for 4 hours.
  • the DH-1 strain was able to confirm that the methanol production capacity of 130%, 230% higher than the other methane oxidizing bacteria OB3b strain and BL2 strain, respectively.
  • the genus MH of the present invention DH-1 strain can produce methanol from methane in a high yield in a fast reaction time.

Abstract

The present invention relates to a novel strain Methylomonas sp. DH-1 and a use thereof and, more specifically, to a strain Methylomonas sp. DH-1, deposited as Accession Number KCTC13004BP, synthesizing methanol from methane, to a composition containing a culture product of the strain for synthesizing methanol, a kit comprising the composition for synthesizing methanol, and to a method for producing methanol by using the strain. The use of the strain Methylomonas sp. DH-1 of the present invention can achieve a mass production of methanol more promptly, and the produced methanol can be widely utilized in the production of a biodegradable plastic and the application to a biofuel, such as a methanol fuel cell or a gasoline engine.

Description

신규한 메틸로모나스 속 균주 및 이의 용도Novel methyllomonas strains and uses thereof
본 발명은 신규한 균주 메틸로모나스 속(Methylomonas sp.) DH-1 균주 및 이의 용도에 관한 것으로, 보다 구체적으로는 본 발명은 메탄올을 합성하는 기탁번호 KCTC13004BP로 기탁된 메틸로모나스 속(Methylomonas sp.) DH-1 균주, 상기 균주 또는 상기 균주의 배양물을 포함하는 메탄올 합성용 조성물, 상기 균주 또는 상기 조성물을 포함하는 메탄올 합성용 키트, 및 상기 균주를 이용한 메탄올의 생산방법에 관한 것이다.The present invention is a novel strain of genus Methylomonas sp.) DH-1 strain and its use, and more specifically, the present invention relates to the genus Methylomonas deposited with the deposit number KCTC13004BP to synthesize methanol sp.) DH-1 strain, the composition for synthesizing methanol comprising the strain or culture of the strain, the kit for methanol synthesis comprising the strain or the composition, and a method for producing methanol using the strain.
메탄가스는 천연가스와 셰일가스의 주성분이며 온실효과를 일으키는 원인 물질로 알려져 있다. 석유로 대표되는 액체 탄화수소와는 달리 메탄은 그 자체만으로는 기체이기 때문에 고부가가치 산물로의 전환이 어렵고 연료로서의 사용 또한 어렵다고 평가된다. 그에 따라 메탄가스를 액상의 화합물로 전환하고자 하는 노력이 계속되어 왔다. 메탄을 이용하여 생산할 수 있는 대표적인 화합물에는 메탄올을 예로 들 수 있다. 메탄올은 디메틸에테르(dimethyl ether)와 바이오디젤(biodiesel)등의 생성에 사용되는 반응 중간체이며, 그 외 여러 분야에서 기초적인 화합물질로서 사용되고 있다. 현재 상용화 되어있는 메탄을 이용한 메탄올 생산 공정은 메탄을 수소와 일산화탄소의 혼합물인 합성가스(syngas)로 전환한 후에 고온과 고압의 조건을 거쳐 메탄올을 합성하는 공정으로 이루어져 있다. 그러나 이와 같은 화학공정은 고온, 고압 조건을 필요로 하기 때문에 안정성의 문제가 제시되고 있으며, 높은 공정비용과 낮은 수율 또한 큰 문제로 대두되고 있다. 그에 따라 환경보전적이며 경제적인 바이오공정을 통해 메탄올을 합성하려는 연구가 진행되어 왔다. 바이오공정은 기존의 화학공정에 비하여 에너지소모가 적으며 더욱 선택적으로 반응하고, 안정적이라는 장점이 있어 많은 화학공정을 바이오공정으로 대체하여 메탄으로부터 메탄올을 합성하려는 노력이 계속되고 있다. Methane gas is a major component of natural gas and shale gas and is known to cause a greenhouse effect. Unlike liquid hydrocarbons represented by petroleum, methane is a gas on its own, making it difficult to convert to high value products and use as a fuel. Accordingly, efforts have been made to convert methane gas into a liquid compound. Representative compounds that can be produced using methane include methanol. Methanol is a reaction intermediate used in the production of dimethyl ether and biodiesel, and is used as a basic compound in many other fields. The methanol production process using methane, which is currently commercialized, consists of converting methane to syngas, a mixture of hydrogen and carbon monoxide, and then synthesizing methanol through high temperature and high pressure conditions. However, such a chemical process requires high temperature and high pressure conditions, and thus, a problem of stability has been proposed, and a high process cost and a low yield also pose a big problem. Accordingly, research has been conducted to synthesize methanol through environmentally and economically bioprocessing. Bio process has the advantages of less energy consumption, more selective reaction, and stable than the existing chemical process, and efforts to synthesize methanol from methane by replacing many chemical processes with bio process are ongoing.
메탄자화균(Methanotrophic bacteria)은 메탄을 유일한 에너지원으로 생육할 수 있는 미생물로, 1906년에 Sohngen에 의해 처음으로 분리되었다. 그 후, 분류학적 연구로 세포의 형태, 정지기의 세포 또는 세포내막구조의 형태에 따라 메틸로모나스 속(Methylomonas), 메틸로박터 속(Methylobacter), 메틸로코커스 속(Methylococcus), 메틸로마이크로븀 속(Methylomicrobium), 메틸로스페라 속(Methylosphaera), 메틸로칼덤 속(Methylocaldum), 메틸로글로버스 속(Methyloglobus), 메틸로사르시나 속(Methylosarcina), 메틸로프로펀더스 속(Methyloprofundus), 메틸로썰머스 속(Methylothermus), 메틸로할로비우스 속(Methylohalobius), 메틸로게아 속(Methylogaea), 메틸로마리넘 속(Methylomarinum), 메틸로벌럼 속(Methylovulum), 메틸로마리노범 속(Methylomarinovum), 메틸로러브럼 속(Methylorubrum), 메틸로파라코커스 속(Methyloparacoccus), 메틸로시너스 속(Methylosinus), 메틸로시스티스 속(Methylocystis), 메틸로셀라 속(Methylocella), 메틸로캡사 속(Methylocapsa), 메틸로퍼룰라 속(Methylofurula), 메틸아시디필럼 속(Methylacidiphilum), 메틸아시디마이크로븀 속(Methylacidimicrobium)의 25종으로 분류되었다. 또한, 메탄산화세균은 모든 균종에 있어서 발달된 내막구조가 관찰되고, 이 세포내막의 차이에 따라 포개진 소포상의 내막이 세포전체에 분포하는 type I과 세포 주변을 따라 내막이 배열되어 있는 type II의 두가지 형태로 구분된다. 또한, 세포내막에는 지질을 구성하고 있는 지방산 조성에 차이가 있다고 보고되고 있으며, type I의 메탄산화세균은 16-탄소사슬의 지방산이 많고, type II의 메탄산화세균은 18-탄소사슬의 지방산이 많으며, 양쪽 타입 모두가 불포화 결합을 1개 함유하는 지방산을 갖는다. 이러한 메탄산화세균은 메탄 모노옥시게나아제(monooxygenases, MMO)라는 효소를 함유하고 있어 상온, 상압하에서도 용이하게 메탄을 메탄올로 전환할 수 있다. 메탄은 메탄 모노옥시게나아제에 의해 메탄올로 산화되고, 그 다음, 메탄올은 메탄올탈수소효소(methanol dehydrogenase, MDH)에 의해 포름알데히드(formaldehyde) 또는 포름산으로 산화되어 이산화탄소가 된다. 이러한 메탄으로부터 탄소화합물의 생합성은 리불로오스 일인산 회로(ribulose monophosphate cycle; RuMP cycle)와 세린 회로(serine cycle)에 의해 진행되고, 일반적으로 type I의 메탄산화세균은 리불로오스 일인산 회로를, type II의 메탄산화세균은 세린 회로를 이용하여 바이오매스를 합성한다고 알려져 있다(Biocatalytic Conversion of Methane to Methanol as a Key Step for Development of Methane-Based BiorefineriesJ. Microbiol. Biotechnol. In Yeub Hwang et al(2014), 24(12), 1597-605). 이러한 메탄산화세균이 갖는 생리학적 특성으로 인해, 메탄산화세균을 이용하여 메탄을 메탄올로 전환시켜, 유해한 메탄가스를 절감시키려는 노력과 에너지원으로 활용하려는 노력이 계속되어 왔다. Methanotrophic bacteria are microorganisms capable of growing methane as the only energy source and were first isolated by Sohngen in 1906. Then, the taxonomic study morphology of the cells to, methyl Pseudomonas genus (Methylomonas), bakteo in (Methylobacter), in (Methylococcus) Rhodococcus methyl methyl depending on the cell or cell type of inner structure of the stationary phase, micro-methyl Methylomicrobium , Methylosphaera , Methylocaldum , Methyloglobus , Methylosarcina , Methyloprofundus , in Plymouth tide methyl (Methylothermus), to Flavian in (Methylohalobius), as geah in (Methylogaea), horses crossed in (Methylomarinum), in Marino commits methyl in (Methylovulum), beolreom as methyl methyl to methyl Methylomarinovum , Methylorubrum , Methyloparacoccus , Methylosinus , Methylocystis , Methylocella , Methylocella Genus ( Methylo 25 species of capsa), methyl hydroperoxide in Lula (Methylofurula), methyl O CD pilreom in (Methylacidiphilum), methyl O CD micro byum in (Methylacidimicrobium) Classified. In addition, methane-oxidizing bacteria have a developed inner membrane structure in all species, and type I, in which the inner membrane of the superimposed vesicles is distributed throughout the cell, and the inner membrane are arranged along the periphery of the cell, according to the difference between the intracellular membranes. It is divided into two forms. In addition, it is reported that there are differences in the fatty acid composition constituting lipids in the intracellular membrane, and type I methane oxidizing bacteria contains 16-carbon chain fatty acids and type II methane oxidizing bacteria contains 18-carbon chain fatty acids. Many, both types have fatty acids containing one unsaturated bond. These methane oxidizing bacteria contain an enzyme called methane monooxygenases (MMO), so that methane can be easily converted to methanol even at normal temperature and pressure. Methane is oxidized to methanol by methane monooxygenase, and then methanol is oxidized to formaldehyde or formic acid by methanol dehydrogenase (MDH) to carbon dioxide. Biosynthesis of carbon compounds from this methane is carried out by the ribulose monophosphate cycle (RuMP cycle) and the serine cycle (serine cycle). , Type II methane-oxidizing bacteria are known to synthesize biomass using the serine circuit (Biocatalytic Conversion of Methane to Methanol as a Key Step for Development of Methane-Based Biorefineries J. Microbiol. Biotechnol.In Yeub Hwang et al (2014) ), 24 (12), 1597-605). Due to the physiological characteristics of methane oxidizing bacteria, efforts have been made to convert methane to methanol using methane oxidizing bacteria to reduce harmful methane gas and to utilize them as energy sources.
하지만, 실질적으로 메탄산화세균을 통한 바이오공정은, 미생물 반응이기 때문에 반응속도가 느리다는 점, 미생물의 대량생산이 어렵다는 점, 장기간 안정적인 배양이 곤란하다는 점, 생성물을 효율적으로 회수할 수 없다는 등의 문제점으로 인해 바이오공정을 통한 메탄올의 대량생산은 곤란한 실정이다. 보고된 바에 따르면, 종래의 메탄산화세균의 일종인 메틸로시너스 트리코스포리움 OB3b를 이용한 메탄올 합성에 있어서, 그 생산능력이 30μmol/min/g 건조균제 정도로, 상업적으로 이용하기에는 양이 충분하지 않아 실질적으로 대량생산에 이어지지 못하고 있다(Optimization of Methanol Biosynthesis by Methylosinus trichosporium OB3b, M. Tak eguti et al, Applied Biochemistry and Biotechnology vol68, 143-152 1997, 한국특허공개 제2002-0073376호). However, the bioprocess through methane oxidizing bacteria is a microbial reaction, which means that the reaction rate is slow, the mass production of microorganisms is difficult, the long-term stable culture is difficult, and the product cannot be efficiently recovered. Due to the problem, mass production of methanol through bioprocessing is difficult. Reportedly, in the synthesis of methanol using methylosinous tricosporium OB3b, a kind of conventional methane-oxidizing bacteria, its production capacity is about 30 μmol / min / g dry bacterium, which is not sufficient for commercial use, and thus is substantially (Optimization of Methanol Biosynthesis by Methylosinus) trichosporium OB3b, M. Tak eguti et al , Applied Biochemistry and Biotechnology vol68, 143-152 1997, Korea Patent Publication No. 2002-0073376 call).
이러한 문제점을 해결하기 위한 방안으로, 메탄을 메탄올로 산화시키는 메탄산화효소의 작용을 유지 또는 향상시키거나, 메탄올탈수소효소의 작용을 선택적으로 저해할 수 있다면 상온 및 상압 조건에서 고수율로 메탄올의 합성을 유도할 수 있을 것으로 생각된다.As a solution to this problem, if methanol can be maintained or improved by oxidizing methane to methanol or selectively inhibiting the action of methanol dehydrogenase, the synthesis of methanol in high yield at room temperature and atmospheric conditions It is thought to be able to induce.
본 발명자들은 메탄가스를 이용하여 메탄올을 보다 효율적으로 생산할 수 있는 방법을 개발하기 위하여 예의노력한 결과, 메탄가스가 지속적으로 생성되는 하수 슬러지로부터 신규 균주인 메탄산화세균 메틸로모나스 속(Methylomonas sp.) DH-1 균주를 분리동정하였고, 상기 DH-1 균주가 신속하게 고수율로 메탄올을 생산하는 것을 확인하고, 본 발명을 완성하였다.The present inventors have made diligent efforts to develop a method for producing methanol more efficiently using methane gas, and as a result, Methylomonas sp. The DH-1 strain was isolated and identified, and the DH-1 strain rapidly produced methanol in high yield, thus completing the present invention.
본 발명의 목적은 기탁번호 KCTC13004BP로 기탁된 메틸로모나스 속(Methylomonas sp.) DH-1 균주를 제공하는 것이다. It is an object of the present invention to provide a Methylomonas sp. DH-1 strain deposited with accession number KCTC13004BP.
본 발명의 다른 목적은 상기 DH-1 균주 또는 상기 균주의 배양물을 포함하는, 메탄올 합성용 조성물을 제공하는 것이다. Another object of the present invention is to provide a composition for synthesizing methanol, comprising the DH-1 strain or a culture of the strain.
본 발명의 또 다른 목적은 상기 DH-1 균주 또는 상기 조성물을 포함하는, 메탄올 합성용 키트를 제공하는 것이다. Still another object of the present invention is to provide a kit for methanol synthesis, comprising the DH-1 strain or the composition.
본 발명의 또 다른 목적은 상기 DH-1 균주 또는 이의 배양산물을 메탄을 포함하는 반응용기에서 반응하는 단계를 포함하는, 메탄올의 생산방법을 제공하는 것이다.Still another object of the present invention is to provide a method for producing methanol, comprising the step of reacting the DH-1 strain or its culture product in a reaction vessel containing methane.
본 발명의 기탁번호 KCTC13004BP로 기탁된 메틸로모나스 속 DH-1 균주는 메탄올을 합성할 수 있으므로, 생분해성 플라스틱생산, 메탄올 연료전지, 가솔린엔진 등의 바이오연료로의 응용에 널리 활용될 수 있을 것이다.Since the DH-1 strain of the genus Methylmonas deposited with the accession number KCTC13004BP of the present invention can synthesize methanol, it can be widely used in biodegradable plastic production, methanol fuel cell, gasoline engine, and other biofuels. .
도 1은 본 발명의 DH-1 균주를 현미경을 통해 관찰한 이미지로서, 도 1a는 주사전자현미경, 도 1b는 투사전자현미경으로 관찰한 결과를 보여준다.Figure 1 is an image of the DH-1 strain of the present invention observed under a microscope, Figure 1a is a scanning electron microscope, Figure 1b shows a result of observation with a projection electron microscope.
도 2는 본 발명의 DH-1 균주의 분자생물학적 계통분류도로서, 도 2a는 16S rDNA 유전자 염기서열을 이용한 계통분류도, 도 2b는 미립자 메탄 모노옥시게나제 알파 소단위체(particulate methane monooxygenase alpha subunit, pmoA)유전자의 염기서열을 이용한 계통분류도이다.Figure 2 is a molecular biological phylogenetic diagram of the DH-1 strain of the present invention, Figure 2a is a phylogenetic diagram using the 16S rDNA gene sequence, Figure 2b is a particulate methane monooxygenase alpha subunit (particulate methane monooxygenase alpha subunit) , pmoA ) A phylogenetic map using the nucleotide sequence of a gene.
도 3은 본 발명의 DH-1 균주의 다양한 조건에서의 메탄올 합성 능력을 나타내는 그래프로서, 도 3a는 메탄 농도, 도 3b는 pH, 도 3c는 DH-1 균주의 건조균체량, 도 3d는 포름산나트륨(Sodium formate) 농도, 도 3e는 EDTA 농도에 따른 DH-1 균주의 메탄올 합성 능력을 보여준다.Figure 3 is a graph showing the methanol synthesis ability under various conditions of the DH-1 strain of the present invention, Figure 3a is methane concentration, Figure 3b is pH, Figure 3c is the dry cell weight of the DH-1 strain, Figure 3d is sodium formate (Sodium formate) concentration, Figure 3e shows the methanol synthesis ability of the DH-1 strain according to the EDTA concentration.
도 4는 본 발명의 DH-1 균주의 메탄올 생산 최적 조건에서의 메탄올 합성 능력을 나타내는 그래프이다.Figure 4 is a graph showing the methanol synthesis capacity in the optimum conditions for methanol production of the DH-1 strain of the present invention.
도 5는 본 발명의 DH-1 균주와 다른 메탄산화세균인 메틸로시너스 트리코스포리움 속 OB3b 균주(Methylosinus trichosporium OB3b), 메틸로셀라 실베스트리스 속 BL2 균주(Methylocella silvestirs BL2)간의 메탄올 합성 능력을 비교한 그래프로서, 본 발명에서 최적화한 메탄올 생산 조건에서 반응을 수행하였다.Figure 5 compares the methanol synthesis capability between the DH-1 strain and Sinners tricot sports Solarium in OB3b strain to another methane oxidizing bacteria methyl invention (Methylosinus trichosporium OB3b), Cellar silbeseuteuri methyl switch in BL2 strain (Methylocella silvestirs BL2) As a graph, the reaction was carried out at methanol production conditions optimized in the present invention.
상기 본 발명의 목적을 달성하기 위한 일 실시양태로서, 본 발명은 기탁번호 KCTC13004BP로 기탁된 메틸로모나스 속(Methylomonas sp.) DH-1 균주를 제공한다. As an embodiment for achieving the above object of the present invention, the present invention provides a Methylomonas sp. DH-1 strain deposited with accession number KCTC13004BP.
본 발명에서 사용되는 용어, "메틸로모나스 속(Methylomonas sp.) DH-1 균주"란, 하수슬러지로부터 유래되고, 종래에 보고되지 않았던 메틸로모나스 속(Methylomonas sp.)에 속하는 균주로서, 2016년 4월 8일자로 한국생명공학연구원 생물자원센터에 기탁하고, 기탁번호 KCTC13004BP를 부여받은 균주를 의미한다. 상기 균주는 2015년 8월 27일자로 한국생명공학연구원 생물자원센터에 기탁하고, 기탁번호 KCTC18400P를 부여받은 균주를 부다페스트 조약하의 기탁으로 전환한 것으로서, 기탁번호 KCTC13004BP의 균주와 기탁번호 KCTC18400P의 균주가 동일한 것임은 자명하다. As used herein, the term " Methylomonas sp. DH-1 strain" refers to a strain belonging to the genus Methylomonas sp., Which is derived from sewage sludge and has not been reported in the past , 2016. It means a strain deposited with the Korea Institute of Bioscience and Biotechnology Center on April 8, 2010 and given accession number KCTC13004BP. The strain was deposited on August 27, 2015 to the Korea Research Institute of Bioscience and Biotechnology, and converted to a deposit under the Budapest Treaty, which was assigned the deposit number KCTC18400P, and the strain of accession number KCTC13004BP and the strain number KCTC18400P It is obvious that the same thing.
본 발명에 있어서, 본 발명자들은 미생물을 이용한 메탄올 생산에 적합한 균주를 발굴하기 위하여, 메탄가스가 지속적으로 발생하는 하수슬러지에 주목하여 새로운 메탄산화세균인 메틸로모나스 속 균주를 분리동정하는데 성공하였다. In the present invention, in order to find a strain suitable for the production of methanol using microorganisms, the present inventors have focused on the sewage sludge which methane is continuously generated, and succeeded in identifying and identifying a new methane-oxidizing bacterium, the genus Methyluromonas.
상기 균주는 이에 제한되지 않지만, 하수슬러지 뿐만 아니라, 구체적인 예로 지하수, 지표수, 공업용수, 오수, 폐수 및 하수로 이루어진 군에서 선택된 하나 이상으로부터 유래된 것일 수 있다. The strain is not limited thereto, but may be derived from at least one selected from the group consisting of sewage sludge as well as groundwater, surface water, industrial water, sewage, wastewater, and sewage.
상기 분리한 균주의 성상특성을 분석한 결과, 주사전자현미경을 통해 1x1.5 ㎛의 크기를 갖는 간균임을 확인하였고, 투사현미경을 통해 내부에 만입세포막(intracytoplasmic membrane, ICM)구조를 갖는 type I의 메탄산화세균임을 확인하였다(도 1a, 도 1b). As a result of analyzing the characteristics of the isolated strain, it was confirmed that the bacillus having a size of 1x1.5 μm through a scanning electron microscope, and of type I having an intracytoplasmic membrane (ICM) structure inside through a projection microscope. It was confirmed that the methane oxidizing bacteria (Fig. 1a, Fig. 1b).
상기 균주는 서열번호 3으로 기재된 16S rDNA 유전자 및 서열번호 6으로 기재된 pmoA 유전자를 갖는다. The strain has a 16S rDNA gene as set out in SEQ ID NO: 3 and a pmoA gene as set out in SEQ ID NO: 6.
본 발명에서 사용되는 용어, '16S rDNA'란, 16S 리보솜 DNA(16S ribosomal DNA)라고도 불리며, 원핵생물 리보솜의 30S 소단위체를 구성하고 있는 rDNA를 의미한다. 상기 rDNA의 서열은 동종(同種)간에는 다양성이 거의 없는 반면에, 타종(他種)간에는 다양성이 나타나므로 생물동정에 사용되며, 배양이 불가능하거나 어려운 생물, 또는 보고된 적이 없는 생물의 동정 및 분류에 특히 유용하게 사용된다. As used herein, the term '16S rDNA', also called 16S ribosomal DNA, refers to rDNA constituting the 30S subunit of prokaryotic ribosomes. While the sequence of the rDNA has almost no diversity among homologous species, it is used for bioidentification because of its diversity among other species, and identification and classification of organisms that are impossible or difficult to cultivate or organisms that have not been reported. This is especially useful for.
본 발명의 일 실시예에 의하면, 16S rDNA 유전자를 증폭시켜 염기서열을 결정한 후 분자 계통학적으로 분석한 결과, 메틸로모나스 속에 속하는 다른 균주와 99%의 유사도를 보여 상기 균주가 메틸로모나스 속에 속하는 신규한 균주임을 알 수 있었다(도 2a).According to one embodiment of the present invention, the amplification of the 16S rDNA gene to determine the nucleotide sequence and molecular systematic analysis, showing a similarity of 99% with other strains belonging to the genus Methylonomonas, said strain belonging to the genus Methylonomonas It was found that the novel strain (Fig. 2a).
본 발명에서 사용되는 용어, "미립자 메탄 모노옥시게나제(particulate methane monooxygenase, pMMO)"란, 메탄산화세균이 함유하고 있는 메탄을 메탄올로 산화시키는 화학반응을 촉매하는 효소를 의미한다. As used herein, the term "particulate methane monooxygenase (pMMO)" means an enzyme that catalyzes a chemical reaction for oxidizing methane contained in methane oxidized bacteria to methanol.
본 발명에서 사용되는 용어, "미립자 메탄 모노옥시게나제 알파 소단위체 (particulate methane monooxygenase alpha subunit, pmoA)"란, 미립자 메탄 모노옥시게나제의 세가지 소단위체 중 하나인 알파 소단위체를 의미하며, 구체적으로 미립자 메탄 모노옥시게나제 알파 소단위체를 발현하는 유전자를 의미한다.As used herein, the term "particulate methane monooxygenase alpha subunit ( pmoA )" means an alpha subunit that is one of three subunits of particulate methane monooxygenase. By gene means a gene expressing the methane monooxygenase alpha subunit.
본 발명의 일 실시예에 의하면, 상기 균주의 pmoA 유전자를 분자계통학적으로 분석한 결과, Methylomonas koyamae Fw12E-Y 균주의 pmoA 유전자와 98% 이상의 유사도를 나타내어 상기 균주가 메틸로모나스 속에 속하는 신규한 균주임을 알 수 있었다(도 2b). 이에, 상기 균주를 "메틸로모나스 속(Methylomonas sp.) DH-1"으로 명명하고, 이를 2016년 4월 8일자로 한국생명공학연구원 생물자원센터에 기탁하여 기탁번호 KCTC13004BP를 부여받았다.According to an embodiment of the present invention, pmoA of the strain Molecular systematic analysis of the gene, Methylomonas koyamae The pmoA gene of the Fw12E-Y strain showed a similarity of 98% or more, indicating that the strain was a novel strain belonging to the genus Methylonomonas (FIG. 2B). Thus, the strain was named " Methylomonas sp. DH-1" and was deposited on April 8, 2016 to the Korea Institute of Bioscience and Biotechnology Biological Resource Center was given accession number KCTC13004BP.
본 발명의 상기 균주의 형태학적 및 생화학적 특징을 분석한 결과, 그람음성의 미생물로, 항생물질인 클로람페니콜(Cam), 테트라사이클린(Tet), 리팜피신(Rif)에 대해 저항성을 가지며, 배양에 있어서 적절한 온도는 30℃이며, 적절한 구리이온의 농도는 10 μM이며, 공기:메탄의 비율이 7:3인 조건에서 잘 생육하는 것을 확인하였다(표 1). 추가로, 상기 균주는 메탄, 메탄올, 메틸아민(methylamine), 에스큘린(esculin)의 탄소원에서 잘 생육하는 것을 알 수 있었다(표 2).As a result of analyzing the morphological and biochemical characteristics of the strain of the present invention, it is a gram-negative microorganism, which is resistant to the antibiotics chloramphenicol (Cam), tetracycline (Tet) and rifampicin (Rif), and in culture Appropriate temperature is 30 ℃, the appropriate concentration of copper ion is 10 μM, it was confirmed that the growth well under the condition of the air: methane ratio of 7: 3 (Table 1). In addition, the strain was found to grow well in the carbon source of methane, methanol, methylamine (methylamine), esculin (Table 2).
또한, 상기 균주는 30 내지 70%의 메탄, 구체적으로 40%의 메탄이 존재하는 조건; 6 내지 8의 pH 조건, 구체적으로 pH 7의 조건; 0.6 내지 2.4g 건조균체량/L, 구체적으로 2.4g 건조균체량/L이 존재하는 조건; 20 내지 200 mM의 포름산나트륨, 구체적으로 40 mM의 포름산나트륨이 존재하는 조건; 0.3 내지 5 mM의 EDTA, 구체적으로 0.5 mM의 EDTA가 존재하는 조건에서 메탄올 생산 능력이 최대가 됨을 확인하였고(도 3a 내지 도 3e), 아울러 반응 4시간 이내에 메탄올 생산 능력이 최대가 되며, 이러한 메탄올 합성 능력은 최대 12시간까지 유지됨을 확인하였다(도 4).In addition, the strain is a condition in which 30 to 70% of methane, specifically 40% of methane is present; PH conditions of 6 to 8, specifically pH 7 conditions; 0.6 to 2.4 g dry cell weight / L, specifically, 2.4 g dry cell weight / L; Conditions in which 20 to 200 mM sodium formate, specifically 40 mM sodium formate, is present; In the presence of 0.3 to 5 mM EDTA, specifically, 0.5 mM EDTA, it was confirmed that methanol production capacity was maximized (FIGS. 3A to 3E), and methanol production capacity was maximized within 4 hours of reaction. It was confirmed that the synthesis capacity was maintained up to 12 hours (Fig. 4).
또한, 상기 DH-1 균주는 다른 메탄산화세균인 메틸로시너스 트리코스포리움 속 OB3b 균주(Methylosinus trichosporium OB3b) 또는 메틸로셀라 실베스트리스 속 BL2 균주 (Methylocella silvestirs BL2)와 비교하였을 때, 각각 130% 또는 230% 높은 메탄올 생산 능력을 나타냄을 확인하였다(도 5). 이는, 본 발명의 메틸로모나스 속 DH-1 균주는 다른 메탄산화세균에 비하여 빠른 반응 시간 내에 고수율로, 메탄으로부터 메탄올을 생산할 수 있음을 시사하는 것이며, 따라서 메탄올을 이용한 바이오연료 또는 여러 화학공정의 재료로서의 응용에 널리 활용될 수 있음을 시사하는 것이다.In addition, the DH-1 strain was compared with Sinners tricot sports Solarium in OB3b strain (Methylosinus trichosporium OB3b) or methyl Cellar silbeseuteuri's in BL2 strain (Methylocella silvestirs BL2) to a different methane oxidizing bacteria, methyl, respectively, 130%, or It was confirmed to exhibit a 230% high methanol production capacity (FIG. 5). This suggests that the DH-1 strain of the genus Methylonomonas of the present invention can produce methanol from methane in a high yield in a fast reaction time compared to other methanogenic bacteria, and thus biofuel or various chemical processes using methanol. It suggests that it can be widely used for application as a material.
한국특허공개 제2002-0073376호에 공지된 바에 따르면, 메탄산화세균인 메틸로시너스 트리코스포리움 OB3b 균주는 0.6 mg 건조균체량/mL에서 반응 40시간 후에 14 mM의 메탄올을 생산하는 것이 개시되어 있다. 또한, 기존 문헌(Biotechnology and Bioprocess Engineering 15: 476-480, 2010. Hee Gon Kim)에 공지된 바에 따르면, 상기 OB3b 균주는 0.6 mg 건조균체량/mL에서 반응 12시간 후에 13.2 mM의 메탄올을 생성하는 것이 개시되어 있으나, 본 발명의 DH-1 균주는 4시간 이내에 41.5 mM의 메탄올을 생산할 수 있으므로, 기존의 메탄산화세균에 비하여 본 발명의 DH-1 균주가 훨씬 빠르게 많은 양의 메탄올을 생산할 수 있음을 시사하는 것이고, 메탄올 합성에 더욱 유용하게 사용될 수 있음을 시사하는 것이다. 또한, 본 발명의 DH-1 균주는 기존의 미생물을 이용한 메탄올 생산의 문제점으로 제시되어 왔던 느린 반응 속도와 대량생산의 어려움 등의 문제점을 극복하기 위한 해결책이 될 수 있음을 시사한다.As known from Korean Patent Laid-Open Publication No. 2002-0073376, it is disclosed that the methanogenic bacterium, Methylus sinus tricosporium OB3b strain, produces 14 mM methanol after 40 hours of reaction at 0.6 mg dry cell weight / mL. In addition, according to the existing literature (Biotechnology and Bioprocess Engineering 15: 476-480, 2010. Hee Gon Kim), the OB3b strain produced 13.2 mM methanol after 12 hours of reaction at 0.6 mg dry cell weight / mL. Although disclosed, the DH-1 strain of the present invention can produce 41.5 mM of methanol within 4 hours, so that the DH-1 strain of the present invention can produce a large amount of methanol much faster than conventional methanogenic bacteria. It suggests that it can be used more effectively for methanol synthesis. In addition, the DH-1 strain of the present invention This suggests that it can be a solution to overcome the problems of slow reaction speed and difficulty of mass production, which have been suggested as problems of methanol production using existing microorganisms.
상기 본 발명의 목적을 달성하기 위한 다른 실시양태로서, 본 발명은 상기 메틸로모나스 속 DH-1 균주 또는 상기 균주의 배양물을 포함하는 메탄올 합성용 조성물을 제공한다. As another embodiment for achieving the above object of the present invention, the present invention provides a composition for synthesizing methanol comprising the methylomonas DH-1 strain or a culture of the strain.
본 발명에서 제공하는 메틸로모나스 속 DH-1 균주는 메탄올을 합성할 수 있으므로, 상기 조성물에 포함된 메틸로모나스 속 DH-1 균주의 배양산물은 메탄올을 합성할 수 있는 한 특별히 제한되지 않는다. 구체적인 예로는 상기 균주의 배양물, 배양상등액, 파쇄물, 이들의 분획물 등이 될 수 있다. 이때, 상기 배양상등액은 메틸로모나스 속 DH-1 균주의 배양물을 원심분리하여 수득할 수 있고, 상기 파쇄물은 메틸로모나스 속 DH-1 균주를 물리적으로 또는 초음파처리하여 수득할 수 있으며, 상기 분획물은 상기 배양물, 배양상등액, 파쇄물 등을 원심분리, 크로마토그래피 등의 방법에 적용하여 수득할 수 있다.Since the strain of methyl genus DH-1 provided by the present invention can synthesize methanol, the culture product of the strain of methylomonas DH-1 included in the composition is not particularly limited as long as it can synthesize methanol. Specific examples may be a culture of the strain, a culture supernatant, a lysate, fractions thereof, and the like. In this case, the culture supernatant may be obtained by centrifugation of the culture of DH-1 strain of Methylmonas, and the lysate may be obtained by physically or ultrasonically treating the DH-1 strain of Methylmonas, Fractions can be obtained by applying the culture, culture supernatant, lysate and the like to a method such as centrifugation, chromatography.
또한, 본 발명의 메탄올 합성용 조성물은 상기 메틸로모나스 DH-1 균주 이외에, 메탄올 생산량 증진 또는 메탄올 생산속도를 증가시킬 수 있는 다른 균주를 추가로 포함 할 수 있다. 상기 추가로 포함될 수 있는 균주는 특별히 이에 제한되지 않으나 바람직하게는 메탄을 메탄올로 산화할 수 있는, 메탄산화세균인 메틸로모나스 속(Methylomonas), 메틸로박터 속(Methylobacter), 메틸로코커스 속(Methylococcus), 메틸로마이크로븀 속(Methylomicrobium), 메틸로스페라 속(Methylosphaera), 메틸로칼덤 속(Methylocaldum), 메틸로글로버스 속(Methyloglobus), 메틸로사르시나 속(Methylosarcina), 메틸로프로펀더스 속(Methyloprofundus), 메틸로썰머스 속(Methylothermus), 메틸로할로비우스 속(Methylohalobius), 메틸로게아 속(Methylogaea), 메틸로마리넘 속(Methylomarinum), 메틸로벌럼 속(Methylovulum), 메틸로마리노범 속(Methylomarinovum), 메틸로러브럼 속(Methylorubrum), 메틸로파라코커스 속(Methyloparacoccus), 메틸로시너스 속(Methylosinus), 메틸로시스티스 속(Methylocystis), 메틸로셀라 속(Methylocella), 메틸로캡사 속(Methylocapsa), 메틸로퍼룰라 속(Methylofurula), 메틸아시디필럼 속(Methylacidiphilum), 메틸아시디마이크로븀 속(Methylacidimicrobium) 등을 조합하여 포함할 수 있다. In addition, the composition for synthesizing methanol of the present invention may further include other strains that may increase the methanol production rate or increase the methanol production rate, in addition to the methylomonas DH-1 strain. Strains that can be included in the add is in particular to this the but are not limited and preferably methane, methane, methyl-oxidizing bacteria capable of oxidizing methanol Pseudomonas genus (Methylomonas), bakteo methyl in (Methylobacter), methyl Rhodococcus ( Methylococcus ), Methylomicrobium , Methylosphaera , Methylocaldum , Methyloglobus , Methylosarcina , Methylosarcina , Methylosarcina Methyloprofundus , Methylothermus , Methylohalobius , Methylogaea , Methylomarinum , Methylovulum , Marino penalized in (Methylomarinovum), methyl Love column in (Methylorubrum), methyl Paracoccus genus (Methyloparacoccus), Sinners in (Methylosinus), seutiseu in (Methylocystis) when a methyl methyl, methyl Cellar in (Methylocella), kaepsa in (Methylocapsa) methyl, methyl hydroperoxide in Lula (Methylofurula), methyl O CD pilreom in (Methylacidiphilum), methyl O CD micro byum in (Methylacidimicrobium) And the like may be combined.
상기 본 발명의 목적을 달성하기 위한 또 다른 실시양태로서, 본 발명은 상기 조성물을 포함하는 메탄올 합성용 키트를 제공한다.As another embodiment for achieving the object of the present invention, the present invention provides a kit for methanol synthesis comprising the composition.
본 발명의 키트는 상기 조성물을 포함하여 메탄올을 합성하는데 사용될 수 있는데, 특별히 이에 제한되지 않으나, 상기 반응에 적합한 한 종류 또는 그 이상의 다른 구성 성분 조성물, 용액 또는 장치가 포함될 수 있고, 구체적인 예로 상기 조성물에 포함된 메틸로모나스 속 DH-1 균주 배양용 배지, 메탄올 합성에 사용되는 완충액, 상기 메탄올 합성을 수행하기 위한 반응용기, 상기 메탄올 합성을 수행하기 위한 온도 조절기, 상기 메탄올 합성 반응을 수행하기 위한 타이머 등이 포함될 수 있다. The kit of the present invention may be used to synthesize methanol, including the composition, but is not particularly limited thereto, and may include one or more other component compositions, solutions, or devices suitable for the reaction, and in particular, the composition. DH-1 strain culture medium of the genus Methylonomonas contained in, a buffer for methanol synthesis, a reaction vessel for performing the methanol synthesis, a temperature controller for performing the methanol synthesis, for performing the methanol synthesis reaction A timer may be included.
더 구체적인 예로, 본 발명의 메탄올 합성용 키트는 메틸로모나스 속 DH-1 균주, 상기 균주 배양용 배지, 메탄올 합성에 사용되는 완충액 및 메탄올 합성에 사용되는 항온 반응용기를 포함할 수 있다. More specifically, the kit for synthesizing methanol of the present invention may include a DH-1 strain of the genus Methylonomonas, the culture medium for the strain, a buffer used for methanol synthesis, and a constant temperature reaction vessel used for methanol synthesis.
상기 본 발명의 목적을 달성하기 위한 또 다른 실시양태로서, 본 발명은 메틸로모나스 속 DH-1 균주 또는 이의 배양산물을 메탄을 포함하는 반응용기에서 반응하는 단계를 포함하는, 메탄올의 생산방법을 제공한다.As another embodiment for achieving the object of the present invention, the present invention comprises the step of producing methanol, comprising the step of reacting the genus DH-1 strain or culture products thereof in a reaction vessel containing methane to provide.
본 발명에서, 상기 반응용기 내 기체는 메탄을 30 내지 70%(v/v), 구체적으로 40%(v/v)로 포함할 수 있고; 상기 반응용기 내 pH는 6.0 내지 8.0, 구체적으로 pH 7.0일 수 있고; 상기 균주는 0.6 내지 2.4g 건조균체량/L, 구체적으로 2.4g 건조균체량/L로 포함될 수 있고; 상기 반응용기는 20 내지 200 mM의 포름산나트륨, 구체적으로 40 mM의 포름산나트륨을 추가로 포함할 수 있고; 상기 반응용기는 0.3 내지 5 mM의 EDTA, 구체적으로 0.5 mM의 EDTA를 추가로 포함할 수 있으나, 이에 제한되지 않는다. In the present invention, the gas in the reaction vessel may contain methane 30 to 70% (v / v), specifically 40% (v / v); PH in the reaction vessel may be 6.0 to 8.0, specifically pH 7.0; The strain may comprise 0.6 to 2.4 g dry cell weight / L, specifically 2.4 g dry cell weight / L; The reaction vessel may further comprise 20 to 200 mM sodium formate, specifically 40 mM sodium formate; The reaction vessel may further include 0.3 to 5 mM EDTA, specifically, 0.5 mM EDTA, but is not limited thereto.
본 발명의 일 실시예에 의하면, 반응용기에 40%의 메탄, pH 7의 인산나트륨, 2.4g 건조균체량/L, 40 mM의 포름산나트륨, 0.5 mM의 EDTA를 포함시켜 반응을 수행하였을 때, 다른 조건에 비하여 메탄올 생산 능력이 최대가 됨을 확인하였다(도 3a 내지 도 3e).According to one embodiment of the present invention, when the reaction is carried out by including 40% methane, sodium phosphate pH 7, 2.4 g dry cell weight / L, 40 mM sodium formate, 0.5 mM EDTA in the reaction vessel, It was confirmed that the methanol production capacity is maximized compared to the conditions (FIGS. 3A to 3E).
이하, 본 발명은 실시예에 의해 보다 상세히 설명한다. 단 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail by examples. However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited to the following examples.
실시예 1: 하수슬러지로부터 메탄산화세균의 분리Example 1 Isolation of Methane Oxidized Bacteria from Sewage Sludge
하수슬러지로부터 메탄산화세균을 분리하기 위한 방법은 다음과 같다. 채취한 하수슬러지를 nitrate-mineral-salt(NMS)배지(liter당; 1 g MgSO4·7H2O, 1 g KNO3, 0.2 g CaCl2·H2O, 0.0038 g Fe-EDTA, 0.0005 g NaMo·4H2O)에 trace elements solution (1x) 1 mL (liter당; 500 mg FeSO4·7H2O, 400 mg ZnSO4·7H2O, 20 mg MnCl2·7H2O, 50 mg CoCl2·6H2O, 10 mg NiCl2·6H2O, 15 mg H3BO3, 250 mg EDTA), phosphate stock solution (1x) 10 mL (liter당; 26 g KH2PO4, 62 g Na2HPO4·7H2O), vitamin stock (1x) 2 mL (liter당; 2 mg Biotin, 2 mg Folic acid, 5 mg Thimine HCl, 5 mg Ca pantothenate, 0.1 mg Vitamin B12, 5 mg Riboflavin, 5 mg Nicotinamide)이 담겨있는 시험관에 첨가한 후, 시험관을 고무마개와 절연테이프를 이용하여 밀봉하였다. 그 다음, 주사기를 이용하여 공기를 30% 제거하고, 메탄가스를 주입하여 시험관내의 메탄가스의 최종농도가 30%가 되도록 조정하였다. 그 다음, 30℃, 230 rpm에서 배양하였다. 배지에 미생물이 충분히 배양되면 고체 NMS agar에 미생물을 도말하였다. 도말된 고체 NMS agar를 진공 데시케이터 안에 넣어 공기와 메탄의 비율이 7:3으로 유지되도록 밀봉한 후, 30℃에서 수일간 배양하였다. 수일 후, 생성된 균락을 채취하여 2 내지 3회 정도 계대배양함으로써 단일균주를 분리하였다.The method for separating methane oxidizing bacteria from sewage sludge is as follows. The collected sewage sludge is nitrate-mineral-salt (NMS) medium (per liter; 1 g MgSO 4 · 7H 2 O, 1 g KNO 3 , 0.2 g CaCl 2 · H 2 O, 0.0038 g Fe-EDTA, 0.0005 g NaMo · 4H 2 O) in the trace elements solution (1x) 1 mL ( per liter; 500 mg FeSO 4 · 7H 2 O, 400 mg ZnSO 4 · 7H 2 O, 20 mg MnCl 2 · 7H 2 O, 50 mg CoCl 2 · 6H 2 O, 10 mg NiCl 2 .6H 2 O, 15 mg H 3 BO 3 , 250 mg EDTA), phosphate stock solution (1x) 10 mL (per liter; 26 g KH 2 PO 4 , 62 g Na 2 HPO 4 7H 2 O), vitamin stock (1x) 2 mL (per liter; 2 mg Biotin, 2 mg Folic acid, 5 mg Thimine HCl, 5 mg Ca pantothenate, 0.1 mg Vitamin B12, 5 mg Riboflavin, 5 mg Nicotinamide) After addition to the contained test tube, the test tube was sealed using a rubber stopper and insulating tape. Then, 30% of air was removed using a syringe, and methane gas was injected to adjust the final concentration of methane gas in the test tube to 30%. Then, it was incubated at 30 ℃, 230 rpm. Once the microorganisms were sufficiently cultured in the medium, the microorganisms were plated in a solid NMS agar. The smeared solid NMS agar was placed in a vacuum desiccator, sealed to maintain a ratio of air and methane 7: 3, and then incubated at 30 ° C. for several days. After several days, the resulting strains were harvested and subcultured two to three times to isolate single strains.
분리한 메탄산화세균의 외형을 관찰하기 위해 주사전자현미경과 투사전자현미경을 이용해 관찰하여 그 결과를 도 1a, b에 나타내었다. 도 1a, b에 나타내는 바와 같이 주사현미경을 통해 1x1.5 ㎛의 크기를 갖는 간균임을 확인하였으며, 투사현미경을 통해 내부에 만입세포막(intracytoplasmic membrane, ICM)구조를 갖는 type I 메탄산화세균임을 확인하였다. In order to observe the appearance of the isolated methane-oxidized bacteria, the results were observed using a scanning electron microscope and a projection electron microscope, and the results are shown in FIGS. 1A and B. As shown in Figure 1a, b it was confirmed that the bacterium having a size of 1x1.5 ㎛ through a scanning microscope, type I methane oxidizing bacteria having an intracytoplasmic membrane (ICM) structure inside through a projection microscope. .
실시예 2: 신규한 메틸로모나스 속 균주의 동정 및 명명Example 2: Identification and Naming of Novel Methylonomonas Strains
상기 실시예 1에서 분리한 메탄산화세균을 동정하기 위해 16S rDNA 유전자의 염기서열분석을 하기와 같이 실시하였다. 16S rDNA 유전자 증폭을 위해 서열번호 1 및 서열번호 2로 기재된 프라이머를 사용하여 PCR에 의해 증폭한 후, 증폭한 PCR 산물을 시퀀싱(sequencing) 반응을 통해 염기서열을 분석하였다. In order to identify the methane-oxidized bacteria isolated in Example 1, sequencing of the 16S rDNA gene was performed as follows. After amplification by PCR using primers described in SEQ ID NO: 1 and SEQ ID NO: 2 for 16S rDNA gene amplification, the amplified PCR product was analyzed by sequencing reaction.
정방향 프라이머 27F (5'-AGAGTTTGATCCTGGCTCAG-3'): (서열번호: 1)Forward primer 27F (5'-AGAGTTTGATCCTGGCTCAG-3 '): (SEQ ID NO: 1)
역방향 프라이머 1492R (5'-GGTTACCTTGTTACGACTT-3'): (서열번호: 2)Reverse primer 1492R (5'-GGTTACCTTGTTACGACTT-3 '): (SEQ ID NO: 2)
상기 분석한 균주의 염기서열을 NCBI(National Center for Biotechnology Information: 미국 국립생물정보센터)의 BLAST를 이용하여 미생물 상동성을 조사한 결과, 본 발명에서 분리한 균주의 염기서열은 Methylomonas koyamae Fw12E-Y 균주와 99% 이상의 유사도를 나타내었다. 상기 균주의 16S rDNA염기서열의 분석결과를 서열번호 3으로 기재하였으며, 상기 분석한 염기서열을 이용한 계통학적 결과는 Kimura 2-parameter 모델과 neighbor-joining 방법으로 염기서열 간의 진화적 거리와 계통도를 추론하였다(도 2a).As a result of examining the homology of the microorganisms using the BLAST of the NCBI (National Center for Biotechnology Information (NCBI)), the nucleotide sequence of the strain isolated from the present invention was Methylomonas. koyamae At least 99% similarity with the Fw12E-Y strain. The result of analysis of the 16S rDNA base sequence of the strain was described as SEQ ID NO: 3, and the systematic result using the analyzed base sequence was inferred by the evolutionary distance and the phylogeny between the base sequences by the Kimura 2-parameter model and the neighbor-joining method. (FIG. 2A).
또한, 상기 균주의 미립자 메탄 모노옥시게나제 알파 소단위체(particulate methane monooxygenase alpha subunit, pmoA) 유전자의 염기서열을 분석하기 위해 서열번호 4 및 서열번호 5에 기재된 프라이머를 사용하여 PCR에 의해 증폭한 후, 증폭된 PCR 산물을 시퀀싱(sequencing)반응을 통해 염기서열을 분석하였다. In addition, after the amplification by PCR using the primers described in SEQ ID NO: 4 and SEQ ID NO: 5 to analyze the nucleotide sequence of the particulate methane monooxygenase alpha subunit ( pmoA ) gene of the strain The sequence was analyzed by sequencing the amplified PCR product.
정방향 프라이머 A189F(5'-GGNGACTGGGACTTCTGG-3'): (서열번호: 4)Forward primer A189F (5'-GGNGACTGGGACTTCTGG-3 '): (SEQ ID NO: 4)
역방향 프라이머 mb661R(5'-CCGGMGCAACGTCYTTACC-3'): (서열번호: 5)Reverse primer mb661R (5'-CCGGMGCAACGTCYTTACC-3 '): (SEQ ID NO: 5)
상기 분석한 균주의 염기서열을 NCBI(National Center for Biotechnology Information: 미국 국립생물정보센터)의 BLAST를 이용하여 미생물 상동성을 조사한 결과, 상기 균주의 pmoA 유전자는 Methylomonas koyamae Fw12E-Y 균주의 pmoA 유전자와 98% 이상의 유사도를 나타내었다. 상기 균주의 pmoA 유전자의 염기서열을 서열번호 6으로 기재하였으며, 상기 분석한 염기서열을 이용한 계통학적 결과는 Kimura 2-parameter 모델과 neighbor-joining 방법으로 염기서열 간의 진화적 거리와 계통도를 추론하였다(도 2b). As a result of examining the homology of the microorganisms using the BLAST of the NCBI (National Center for Biotechnology Information), the pmoA gene of the strain was Methylomonas. koyamae At least 98% similarity with the pmoA gene of Fw12E-Y strain. The nucleotide sequence of the pmoA gene of the strain was described as SEQ ID NO: 6, and the phylogenetic results using the analyzed nucleotide sequence were inferred by the evolutionary distance between the nucleotide sequences and the phylogenetic tree by the Kimura 2-parameter model and the neighbor-joining method ( 2b).
상기 결과를 토대로, 본 발명에서 분리한 미생물이 메탄을 메탄올로 산화하는 미생물로 널리 알려진 메탄산화세균 메틸로모나스 속(Methylomonas sp.)임을 확인하였다.Based on the above results, it was confirmed that the microorganism isolated in the present invention is Methylomonas sp. Which is widely known as a microorganism for oxidizing methane to methanol.
이에, 본 발명자들은 상기 균주를 "메틸로모나스 속(Methlyomonas sp.) DH-1"으로 명명하고, 이를 2016년 4월 8일자로 한국생명공학연구원 생물자원세터에 기탁하여 기탁번호 KCTC13004BP를 부여받았다. Accordingly, the present inventors named the strain " Metthlyomonas sp. DH-1", and deposited it on the biological resource setter of the Korea Research Institute of Bioscience and Biotechnology on April 8, 2016 and received the accession number KCTC13004BP. .
실시예 3: DH-1 균주의 형태학적 및 생화학적 특성Example 3: Morphological and Biochemical Properties of DH-1 Strains
주사전자현미경(Scanning Electron Microscope, SEM) 및 투사전자현미경(Transmission Electron Microscope, TEM)을 통해 메틸로모나스 속 DH-1 균주의 형태학적 특성을 관찰하였다(도 1). 도 1에서 나타내는 바와 같이, DH-1 균주는 메탄산화세균의 전형적인 형태인 막대 형태를 보였고, 고체배지에서 점차적으로 Light Yellow -> Yellow -> Orange -> Brown의 콜로니 색깔을 나타냄을 알 수 있었다. Morphological characteristics of DH-1 strain of genus Meromonas were observed by scanning electron microscope (Scanning Electron Microscope, SEM) and transmission electron microscope (Transmission Electron Microscope, TEM) (Fig. 1). As shown in FIG. 1, the DH-1 strain showed a rod form, which is a typical form of methane oxidizing bacteria, and showed a colony color of Light Yellow-> Yellow-> Orange-> Brown in a solid medium.
또한, 하기 표 1에 나타낸 바와 같이, 생화학적 특성으로는 본 상기 DH-1 균주는 그람음성의 미생물로, 항생물질인 클로람페니콜(Cam), 테트라사이클린(Tet), 리팜피신(Rif)에 대해 저항성을 가지고, 배양에 있어서 적절한 온도는 30℃이며, 적절한 구리이온의 농도는 10 μM이며, 공기:메탄의 비율이 7:3인 조건에서 잘 배양되는 것을 확인하였다.In addition, as shown in Table 1, as a biochemical property, the DH-1 strain is a Gram-negative microorganism, and is resistant to antibiotics chloramphenicol (Cam), tetracycline (Tet), and rifampicin (Rif). In addition, it was confirmed that the proper temperature in the culture was 30 ° C, the appropriate concentration of copper ions was 10 µM, and well-cultivated under the condition that the air: methane ratio was 7: 3.
Figure PCTKR2016003894-appb-T000001
Figure PCTKR2016003894-appb-T000001
실시예 4: DH-1 균주의 기질 이용능력Example 4: Substrate Availability of DH-1 Strains
상기 실시예 1 및 실시예 2에서 분리동정한 메틸로모나스 속 DH-1 균주의 기질 이용능력을 조사하였으며, 그 결과를 하기 표 2에 나타내었다.Substrate utilization of the DH-1 strain of the genus Methyluromonas isolated in Example 1 and Example 2 was investigated, and the results are shown in Table 2 below.
Figure PCTKR2016003894-appb-T000002
Figure PCTKR2016003894-appb-T000002
상기 표 2에서 나타내는 바와 같이, 상기 DH-1 균주는 메탄, 메탄올, 메틸아민(Methylamine) 또는 에스큘린(Esculin)의 탄소원에서 잘 생육하는 것을 알 수 있었다. As shown in Table 2, the DH-1 strain was found to grow well in the carbon source of methane, methanol, methylamine (Methylamine) or esculin (Esculin).
실시예 5: 다양한 메탄산화세균과 DH-1 균주의 지방산 조성의 비교Example 5 Comparison of Fatty Acid Compositions of Various Methanogenic Bacteria and DH-1 Strains
메탄산화세균의 type Ⅰ의 메틸로모나스 속(Methylosinus), 메틸로박터 속(Methylobacter), 메틸로마이크로비움 속(Methylomicarobium) 및 메틸로코커스 속(Methylococcus)과, DH-1 균주의 지방산 조성에 대해 비교하였으며, 그 결과를 표 3에 나타내었다.The fatty acid composition of the methyl of the type Ⅰ methane oxidizing bacteria Pseudomonas genus (Methylosinus), bakteo in (Methylobacter), micro-away in (Methylomicarobium) and Rhodococcus in a methyl (Methylococcu s) and, DH-1 strain of methyl methyl Were compared, and the results are shown in Table 3.
Figure PCTKR2016003894-appb-T000003
Figure PCTKR2016003894-appb-T000003
상기 표 3에서 14:0은 탄소개수 14개이며 포화되어 있는 지방산을 의미한다. 표에서 16:1ω8c는 탄소개수 16개이며 8번 탄소에 cis 구조의 이중결합이 존재하는 불포화 지방산을 의미한다. In Table 3, 14: 0 means 14 carbon atoms and saturated fatty acids. In the table, 16: 1ω8c means an unsaturated fatty acid having 16 carbon atoms and having a double bond of cis structure on carbon 8.
또한, 상기 표 3에서 나타내는 바와 같이, DH-1 균주의 포화 지방산 14:0이 23.59%를 나타내어 메틸로모나스 속과 지방산 조성에 있어서 유사한 결과를 나타내었다. 하지만, 불포화 지방산인 16:1ω8c, 16:1ω7c, 16:1ω6c, 16:1ω5c 및 16:1ω8t는 메틸로모나스 속과 다른 지방산 조성을 나타내었고, 16:1ω7c(31.82%), 16:1ω6c(3.52%)는 메틸로코커스 속과 지방산 조성에 있어서 유사한 결과를 나타내었다.In addition, as shown in Table 3, the saturated fatty acid 14: 0 of the DH-1 strain showed 23.59%, showing a similar result in the genus methylomonas and fatty acid composition. However, the unsaturated fatty acids 16: 1ω8c, 16: 1ω7c, 16: 1ω6c, 16: 1ω5c and 16: 1ω8t showed different fatty acid compositions from the genus Methylonomonas, and 16: 1ω7c (31.82%) and 16: 1ω6c (3.52% ) Showed similar results for the genus Methyloccus and fatty acid composition.
실시예 6: DH-1 균주의 메탄올 합성의 최적화 조건 확립Example 6 Establishment of Optimal Conditions for Methanol Synthesis of DH-1 Strains
상기 실시예 1 및 실시예 2에서 분리, 동정한 메틸로모나스 속 DH-1 균주의 메탄올 합성능력을 분석하기 위해, 하기 실시예 6-1 내지 6-5를 통해 생육조건을 달리한 반응용액에서의 메탄올 생산량을 측정함으로써 메탄올 생성의 최적 조건을 확인하였다.In order to analyze the methanol synthesis ability of the isolated and identified methyl monascus DH-1 strains in Examples 1 and 2, in the reaction solution of different growth conditions through the following Examples 6-1 to 6-5 The optimum conditions for methanol production were confirmed by measuring the methanol production amount of.
실시예 6-1: 메탄 농도에 따른 메탄올 생산량 분석Example 6-1 Analysis of Methanol Production According to Methane Concentration
20 mM 인산나트륨 완충용액(pH 6.3), 0.6 g 건조균체량/L의 DH-1 균주, 0.5 mM EDTA, 및 40 mM 포름산나트륨을 포함하는 반응 용액 1 ml을 부피 24 ml인 반응용기에 넣어 상부의 메탄 농도를 10 내지 90 %로 다양하게 설정한 후, 30℃에서 230 rpm으로 12시간 동안 메탄올 생성반응을 수행하였다. 반응이 종료된 후, 생성된 메탄올의 양을 측정하였다. 이때, 메탄올의 생산량은 반응시킨 반응 용액을 90℃ 히팅블락(heating block)에서 30분 방치하여 반응 종결 후, 13000 rpm으로 원심분리하여 상층액을 얻은 다음, GC분석을 통하여 반응용액의 메탄올 생산량을 측정하였다. 1 ml of a reaction solution containing 20 mM sodium phosphate buffer (pH 6.3), 0.6 g dry cell weight / L of DH-1 strain, 0.5 mM EDTA, and 40 mM sodium formate was placed in a reaction vessel having a volume of 24 ml. After varying the methane concentration to 10 to 90%, methanol production was carried out for 12 hours at 30 rpm at 230 rpm. After the reaction was completed, the amount of methanol produced was measured. At this time, the amount of methanol produced was left to react at 90 ℃ heating block (heating block) 30 minutes to terminate the reaction, centrifuged at 13000 rpm to obtain a supernatant, and then the methanol production of the reaction solution through GC analysis Measured.
그 결과, 도 3a에서 나타내는 바와 같이, 30 내지 70%의 메탄을 제공하였을 때 메탄올 합성 능력이 우수함을 확인하였고, 특히, 40%의 메탄을 제공하였을 때 0.706 g/L의 메탄올을 생산하여, 다른 농도에 비하여 메탄올 합성 능력이 최대가 됨을 확인하였다.As a result, as shown in Figure 3a, it was confirmed that the methanol synthesis ability is excellent when providing 30 to 70% of methane, in particular, 0.706 g / L methanol is produced when providing 40% of methane, It was confirmed that the methanol synthesis capacity was maximized compared to the concentration.
실시예 6-2: pH에 따른 메탄올 생산량 분석Example 6-2 Analysis of Methanol Production According to pH
4 내지 10의 pH를 갖는 20 mM 인산나트륨 완충용액, 0.6 g 건조균체량/L의 DH-1 균주, 0.5 mM EDTA, 및 40 mM 포름산나트륨을 포함하는 반응 용액 1 ml을 부피 24 ml인 반응용기에 넣어 상부의 메탄 농도를 40%로 설정한 후, 30℃에서 230 rpm으로 4시간 동안 메탄올 생성반응을 수행하였다. 반응이 종료된 후, 상기 실시예 6-1에 따른 방법으로 생성된 메탄올의 양을 측정하였다.1 ml of a reaction solution containing 20 mM sodium phosphate buffer solution having a pH of 4 to 10, 0.6 g dry cell weight / L of DH-1 strain, 0.5 mM EDTA, and 40 mM sodium formate is placed in a reaction vessel having a volume of 24 ml. Methane concentration was set to 40% at the top, and methanol production was performed for 4 hours at 230 ° C. at 230 rpm. After the reaction was completed, the amount of methanol produced by the method according to Example 6-1 was measured.
그 결과, 도 3b에서 나타내는 바와 같이, 6 내지 8의 pH조건에서 메탄올 합성 능력이 우수함을 확인하였고, 특히, pH 7.0의 인산나트륨 완충용액을 반응 용액으로 사용하였을 때 0.302 g/L의 메탄올을 생산하여, 다른 pH 조건에 비하여 메탄올 합성 능력이 최대가 됨을 확인하였다.As a result, as shown in Figure 3b, it was confirmed that the methanol synthesis ability is excellent in the pH conditions of 6 to 8, in particular, when using a sodium phosphate buffer solution of pH 7.0 as the reaction solution to produce 0.302 g / L methanol As a result, it was confirmed that methanol synthesis ability was maximized compared to other pH conditions.
실시예 6-3: 건조균체량에 따른 메탄올 생산량 분석Example 6-3 Analysis of Methanol Production According to Dry Cell Weight
20 mM 인산나트륨 완충용액(pH 7.0), 0.15 내지 4.8 g 건조균체량/L의 DH-1 균주, 0.5 mM EDTA, 및 40 mM 포름산나트륨을 포함하는 반응 용액 1 ml을 부피 24 ml인 반응용기에 넣어 상부의 메탄 농도를 40%로 설정한 후, 30℃에서 230 rpm으로 1시간 동안 메탄올 생성반응을 수행하였다. 반응이 종료된 후, 상기 실시예 6-1에 따른 방법으로 생성된 메탄올의 양을 측정하였다.1 ml of a reaction solution containing 20 mM sodium phosphate buffer (pH 7.0), 0.15 to 4.8 g dry cell weight / L of DH-1 strain, 0.5 mM EDTA, and 40 mM sodium formate was placed in a reaction vessel having a volume of 24 ml. After the upper methane concentration was set to 40%, methanol production was performed at 30 ° C. at 230 rpm for 1 hour. After the reaction was completed, the amount of methanol produced by the method according to Example 6-1 was measured.
그 결과, 도 3c에서 나타내는 바와 같이, 0.6 내지 2.4g 건조균체량/L의 조건에서 메탄올 합성 능력이 우수함을 확인하였고, 특히, 2.4 g 건조균체량/L의 DH-1 균주가 존재할 때 0.256 g/L의 메탄올을 생산하여, 다른 건조균체량 조건에 비하여 메탄올 합성 능력이 최대가 됨을 확인하였다.As a result, as shown in Figure 3c, it was confirmed that methanol synthesis ability is excellent under the conditions of 0.6 to 2.4g dry cell weight / L, in particular, 0.256 g / L when 2.4 g dry cell weight / L DH-1 strain is present By producing methanol, it was confirmed that the methanol synthesis capacity was maximized compared to other dry cell weight conditions.
실시예Example 6-4:  6-4: 포름산나트륨Sodium formate 농도에 따른 메탄올 생산량 분석 Methanol production by concentration
20 mM 인산나트륨 완충용액(pH 7.0), 2.4 g 건조균체량/L의 DH-1 균주, 0.5 mM EDTA, 및 0 내지 200 mM 포름산나트륨을 포함하는 반응 용액 1 ml을 부피 24 ml인 반응용기에 넣어 상부의 메탄 농도를 40%로 설정한 후, 30℃에서 230 rpm으로 12시간 동안 메탄올 생성반응을 수행하였다. 반응이 종료된 후, 상기 실시예 6-1에 따른 방법으로 생성된 메탄올의 양을 측정하였다.1 ml of a reaction solution containing 20 mM sodium phosphate buffer (pH 7.0), 2.4 g dry cell weight / L of DH-1 strain, 0.5 mM EDTA, and 0 to 200 mM sodium formate was placed in a reaction vessel having a volume of 24 ml. After setting the methane concentration of the upper portion to 40%, methanol production reaction was carried out for 12 hours at 230 rpm at 30 ℃. After the reaction was completed, the amount of methanol produced by the method according to Example 6-1 was measured.
그 결과, 도 3d에서 나타내는 바와 같이, 20 내지 200 mM 포름산나트륨의 조건에서 메탄올 합성 능력이 우수함을 확인하였고, 특히 40 mM 포름산나트륨이 존재할 때 0.785 g/L의 메탄올을 생산하여, 다른 포름산나트륨 농도에 비하여 메탄올 합성 능력이 최대가 됨을 확인하였다.As a result, as shown in Figure 3d, it was confirmed that the methanol synthesis ability is excellent under the conditions of 20 to 200 mM sodium formate, in particular 0.785 g / L methanol is produced in the presence of 40 mM sodium formate, different sodium formate concentration Compared to the methanol synthesis capacity was confirmed to the maximum.
실시예 6-5: EDTA 농도에 따른 메탄올 생산량 분석Example 6-5 Analysis of Methanol Production According to EDTA Concentration
20 mM 인산나트륨 완충용액(pH 7.0), 2.4 g 건조균체량/L의 DH-1 균주, 0 내지 15 mM EDTA, 및 40 mM 포름산나트륨을 포함하는 반응 용액 1 ml을 부피 24 ml인 반응용기에 넣어 상부의 메탄 농도를 40%로 설정한 후, 30℃에서 230 rpm으로 12시간 동안 메탄올 생성반응을 수행하였다. 반응이 종료된 후, 상기 실시예 6-1에 따른 방법으로 생성된 메탄올의 양을 측정하였다.1 ml of a reaction solution containing 20 mM sodium phosphate buffer (pH 7.0), 2.4 g dry cell weight / L of DH-1 strain, 0 to 15 mM EDTA, and 40 mM sodium formate was placed in a reaction vessel having a volume of 24 ml. After setting the methane concentration of the upper portion to 40%, methanol production reaction was carried out for 12 hours at 230 rpm at 30 ℃. After the reaction was completed, the amount of methanol produced by the method according to Example 6-1 was measured.
그 결과, 도 3e에서 나타내는 바와 같이, 0.3 내지 5 mM EDTA의 조건에서 메탄올 합성 능력이 우수함을 확인하였고, 특히 0.5 mM EDTA가 존재할 때 0.809 g/L의 메탄올을 생산하여, 다른 EDTA 농도에 비하여 메탄올 합성 능력이 최대가 됨을 확인하였다.As a result, as shown in Figure 3e, it was confirmed that methanol synthesis ability is excellent under the conditions of 0.3 to 5 mM EDTA, in particular, 0.809 g / L methanol is produced in the presence of 0.5 mM EDTA, methanol compared to other EDTA concentrations It was confirmed that the synthetic capacity was maximum.
실시예 7: DH-1 균주의 최대 메탄올 합성 능력 확인 Example 7: Confirmation of maximum methanol synthesis capacity of DH-1 strain
상기 실시예 1 및 실시예 2에서 분리, 동정한 메틸로모나스 속 DH-1 균주의 메탄올 합성능력을 분석하기 위해, 상기 실시예 6을 통해 확립한 최적의 생육 조건에서 DH-1 균주를 반응시켰다.In order to analyze the methanol synthesis ability of the DH-1 strain of the genus M. monomonas isolated and identified in Examples 1 and 2, the DH-1 strain was reacted under the optimum growth conditions established in Example 6 above. .
구체적으로, 전체 반응 용액 대비, 40 mM 포름산나트륨, 0.5 mM EDTA, 및 20 mM 인산나트륨(pH 7.0)을 포함하는 반응용매 1 ml에 2.4 g 건조균체량/L의 DH-1 균주, 0.5 mM EDTA, 및 40 mM 포름산나트륨을 부피 24 ml인 반응용기에 넣어 상부의 메탄 농도를 40%로 설정한 후, 30℃에서 230 rpm으로 0 내지 24시간 동안 메탄올 생성반응을 수행하였다. 반응이 종료된 후, 상기 실시예 6-1에 따른 방법으로 생성된 메탄올의 양을 측정하였다.Specifically, 2.4 g dry cell weight / L DH-1 strain, 0.5 mM EDTA, in 1 ml of a reaction solvent containing 40 mM sodium formate, 0.5 mM EDTA, and 20 mM sodium phosphate (pH 7.0) relative to the total reaction solution. And 40 mM sodium formate was added to a reaction container having a volume of 24 ml, and the upper methane concentration was set to 40%. Then, methanol production reaction was performed at 230 ° C. at 230 rpm for 0 to 24 hours. After the reaction was completed, the amount of methanol produced by the method according to Example 6-1 was measured.
그 결과, 도 4에서 나타내는 바와 같이, 아무것도 첨가하지 않거나, 포름산나트륨만 첨가하는 경우에 비하여, 적절한 농도의 포름산나트륨 및 EDTA가 포함된 상기 조건에서 배양할 경우, 반응 4시간 이내에 메탄올 생산 능력이 최대가 됨을 확인하였고, DH-1 균주의 메탄올 합성 능력은 최대 12시간까지 유지됨을 확인하였다.As a result, as shown in Fig. 4, the methanol production capacity was maximized within 4 hours of the reaction when incubated in the above conditions containing sodium formate and EDTA at an appropriate concentration, as compared with the case where nothing was added or only sodium formate was added. It was confirmed that the methanol synthesis ability of the DH-1 strain was confirmed to be maintained up to 12 hours.
실시예 8: 메탄산화세균간의 메탄올 합성 능력 비교Example 8 Comparison of Methanol Synthesis Ability between Methane Oxidized Bacteria
상기 실시예 1 및 실시예 2에서 분리, 동정한 메틸로모나스 속 DH-1 균주의 메탄올 합성 능력을 분석하기 위해, 다른 메탄산화세균과 메탄올 합성 능력을 비교 분석하였다. In order to analyze the methanol synthesis ability of the isolates identified in Example 1 and Example 2 of the genus Methylone Monas DH-1, other methanogenic bacteria and methanol synthesis ability was analyzed.
구체적으로, 상기 실시예 6을 통해 확립한 최적의 생육 조건으로 DH-1 균주, 메틸로시너스 트리코스포리움 속 OB3b 균주(Methylosinus trichosporium OB3b), 메틸로셀라 실베스트리스 속 BL2 균주(Methylocella silvestirs BL2)를 각각 4시간 동안 반응시켰다.To be specific, the embodiment optimal growth conditions established through 6 with DH-1 strain, Sinners tricot sports Solarium in OB3b strain as methyl (Methylosinus trichosporium OB3b), Cellar silbeseuteuri's in BL2 strain as methyl (Methylocella silvestirs BL2) Each was reacted for 4 hours.
그 결과, 도 5에서 볼 수 있듯이, DH-1 균주는 다른 메탄산화세균인 OB3b 균주와 BL2 균주 대비 각각 130%, 230% 높은 메탄올 생산 능력을 보임을 확인할 수 있었다. 상기 결과를 통해, 본 발명의 메틸로모나스 속 DH-1 균주는 메탄으로부터 메탄올을 빠른 반응 시간 내에 고수율로 생산할 수 있음을 알 수 있었다.As a result, as shown in Figure 5, the DH-1 strain was able to confirm that the methanol production capacity of 130%, 230% higher than the other methane oxidizing bacteria OB3b strain and BL2 strain, respectively. Through the above results, it can be seen that the genus MH of the present invention DH-1 strain can produce methanol from methane in a high yield in a fast reaction time.
이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.From the above description, those skilled in the art will appreciate that the present invention can be implemented in other specific forms without changing the technical spirit or essential features. In this regard, the embodiments described above are to be understood in all respects as illustrative and not restrictive. The scope of the present invention should be construed that all changes or modifications derived from the meaning and scope of the following claims and equivalent concepts rather than the detailed description are included in the scope of the present invention.
Figure PCTKR2016003894-appb-I000001
Figure PCTKR2016003894-appb-I000001
Figure PCTKR2016003894-appb-I000002
Figure PCTKR2016003894-appb-I000002

Claims (14)

  1. 기탁번호 KCTC13004BP로 기탁된 메틸로모나스 속(Methylomonas sp.) DH-1 균주. Methylomonas sp. DH-1 strain deposited with accession number KCTC13004BP.
  2. 제1항에 있어서, 상기 균주는 서열번호 3으로 표시되는 16S rDNA 유전자를 갖는 것을 특징으로 하는, 균주.According to claim 1, The strain is characterized in that it has a 16S rDNA gene represented by SEQ ID NO: 3.
  3. 제1항에 있어서, 상기 균주는 서열번호 6으로 표시되는 미립자 메탄모노옥시게나제 알파 소단위체(particulate methane monooxygenase alpha subunit, pmoA ) 유전자를 갖는 것을 특징으로 하는, 균주.The strain according to claim 1, wherein the strain has a particulate methane monooxygenase alpha subunit ( pmoA ) gene represented by SEQ ID NO: 6.
  4. 제1항에 있어서, 상기 균주는 하수 슬러지로부터 분리된 것인, 균주.The strain of claim 1, wherein the strain is isolated from sewage sludge.
  5. 제1항에 있어서, 상기 균주는 메탄으로부터 메탄올을 합성하는 것인, 균주.The strain of claim 1, wherein the strain synthesizes methanol from methane.
  6. 제1항의 메틸로모나스 속 DH-1 균주 또는 상기 균주의 배양산물을 포함하는, 메탄올 합성용 조성물.Claim 1 of the methylomonas genus DH-1 strain comprising a culture product of the strain, the composition for methanol synthesis.
  7. 제6항에 있어서, 상기 배양산물은 메틸로모나스 속 DH-1 균주의 배양물, 배양상등액, 파쇄물 및 이들의 분획물로 구성된 군으로부터 선택되는 조성물.The composition of claim 6, wherein the culture product is selected from the group consisting of cultures, culture supernatants, lysates, and fractions thereof of the DH-1 strain of Methylonomonas.
  8. 제1항의 메틸로모나스 속 DH-1 균주 또는 제6항의 조성물을 포함하는 메탄올 합성용 키트.A kit for synthesizing methanol comprising the DH-1 strain of the genus Methylone of claim 1 or the composition of claim 6.
  9. 제1항의 균주 또는 이의 배양산물을 메탄을 포함하는 반응용기에서 반응하는 단계를 포함하는, 메탄올의 생산방법.The method of claim 1, comprising the step of reacting the strain or the culture product thereof in a reaction vessel containing methane.
  10. 제9항에 있어서, 상기 반응용기 내 공기는 메탄을 30 내지 70%(v/v) 포함하는 것인, 메탄올의 생산방법.The method of claim 9, wherein the air in the reaction vessel contains 30 to 70% (v / v) of methane.
  11. 제9항에 있어서, 상기 반응용기 내 pH는 6.0 내지 8.0인 것인, 메탄올의 생산방법.The method of claim 9, wherein the pH in the reaction vessel is 6.0 to 8.0, the production method of methanol.
  12. 제9항에 있어서, 상기 균주는 0.6 내지 2.4g 건조균체량/L로 포함되는 것인, 메탄올의 생산방법.The method of claim 9, wherein the strain is comprised of 0.6 to 2.4 g dry cell weight / L.
  13. 제9항에 있어서, 상기 반응용기는 20 내지 200 mM의 포름산나트륨을 추가로 포함하는 것인, 메탄올의 생산방법.The method of claim 9, wherein the reaction vessel further comprises 20 to 200 mM sodium formate.
  14. 제9항에 있어서, 상기 반응용기는 0.3 내지 5 mM의 EDTA를 추가로 포함하는 것인, 메탄올의 생산방법.10. The method of claim 9, wherein the reaction vessel further comprises 0.3 to 5 mM EDTA.
PCT/KR2016/003894 2015-08-31 2016-04-14 Novel methylomonas sp. strain and use thereof WO2017039106A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0123067 2015-08-31
KR20150123067 2015-08-31
KR1020160041147A KR101714967B1 (en) 2015-08-31 2016-04-04 Novel Methylomonas species strain and use thereof
KR10-2016-0041147 2016-04-04

Publications (1)

Publication Number Publication Date
WO2017039106A1 true WO2017039106A1 (en) 2017-03-09

Family

ID=58188940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003894 WO2017039106A1 (en) 2015-08-31 2016-04-14 Novel methylomonas sp. strain and use thereof

Country Status (1)

Country Link
WO (1) WO2017039106A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190049573A (en) * 2017-10-30 2019-05-09 서강대학교산학협력단 Method for Methanol Production Using methanotroph without External Reducing Power

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030034166A (en) * 2000-09-01 2003-05-01 이 아이 듀폰 디 네모아 앤드 캄파니 High Growth Methanotrophic Bacterial Strain Methylomonas 16A
WO2005072086A2 (en) * 2003-12-03 2005-08-11 E.I. Dupont De Nemours And Company Optimized bacterial host strains of methylomonas sp.16a
KR100551711B1 (en) * 2002-11-25 2006-02-13 학교법인조선대학교 Method for high yield production of methanol using methanotr0phic bacteria
KR20150036502A (en) * 2012-07-13 2015-04-07 칼리스타, 인코포레이티드 Biorefinery system, methods and compositions thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030034166A (en) * 2000-09-01 2003-05-01 이 아이 듀폰 디 네모아 앤드 캄파니 High Growth Methanotrophic Bacterial Strain Methylomonas 16A
KR100551711B1 (en) * 2002-11-25 2006-02-13 학교법인조선대학교 Method for high yield production of methanol using methanotr0phic bacteria
WO2005072086A2 (en) * 2003-12-03 2005-08-11 E.I. Dupont De Nemours And Company Optimized bacterial host strains of methylomonas sp.16a
KR20150036502A (en) * 2012-07-13 2015-04-07 칼리스타, 인코포레이티드 Biorefinery system, methods and compositions thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUR, DONG HOON ET AL.: "Bio-Conversion of Methane to Methanol Using Methane Oxidizing Bacteria Isolated from Waste Sludge", 2015 KSBB SPRING MEETING AND INTERNATIONAL SYMPOSIUM, 15 April 2015 (2015-04-15), Republic of Korea, XP055374059 *
HWANG, IN YEUB ET AL.: "Biocatalytic Conversion of Methane to Methanol as a Key Step for Development of Methane-Based Biorefineries", JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, vol. 24, no. 12, 2014, pages 1597 - 1605, XP055374052 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190049573A (en) * 2017-10-30 2019-05-09 서강대학교산학협력단 Method for Methanol Production Using methanotroph without External Reducing Power
KR102131880B1 (en) 2017-10-30 2020-07-09 서강대학교산학협력단 Method for Methanol Production Using methanotroph without External Reducing Power

Similar Documents

Publication Publication Date Title
Iino et al. Candidatus Methanogranum caenicola: a novel methanogen from the anaerobic digested sludge, and proposal of Methanomassiliicoccaceae fam. nov. and Methanomassiliicoccales ord. nov., for a methanogenic lineage of the class Thermoplasmata
Kawata et al. Poly (3-hydroxybutyrate) production by isolated Halomonas sp. KM-1 using waste glycerol
Stetter et al. Methanothermus fervidus, sp. nov., a novel extremely thermophilic methanogen isolated from an Icelandic hot spring
KR101714967B1 (en) Novel Methylomonas species strain and use thereof
KR20130009808A (en) A novel ethanologenic clostridium species, clostridium coskatii
EP2220244A2 (en) Microorganisms and methods for increased hydrogen production using diverse carbonaceous feedstock&highly absorptive materials
Cui et al. Mucilaginibacter composti sp. nov., with ginsenoside converting activity, isolated from compost
IL148762A (en) Preparation of 1,3- propanediol by fermentaiton of glycerol
WO2014133668A1 (en) A butyrate producing clostridium species, clostridium pharus
KR102045043B1 (en) A method for production of acetone from propane using methanotroph
US8148133B2 (en) Fossil fuel-free process of lignocellulosic pretreatment with biological hydrogen production
CN112094767B (en) Marine sediment derived lignin degrading bacterium and application thereof in lignin degradation
WO2017039106A1 (en) Novel methylomonas sp. strain and use thereof
Kawasaki et al. Characterization of moderately thermophilic bacteria isolated from saline hot spring in Japan
KR101827834B1 (en) Novel Strain Hyphomicrobium sp. NM3 and Application Using the Same
Takahashi Exploitation of new microbial resources for bioactive compounds and discovery of new actinomycetes
Mohammed et al. Biohydrogen Production by Antarctic Psychrotolerant sp. ABZ11
Dong et al. Zhizhongheella caldifontis gen. nov., sp. nov., a novel member of the family Comamonadaceae
JP2008245600A (en) New bacterium and method for producing monoacetin from glycerol using the bacterium
JP5317488B2 (en) Novel microorganism and method for producing dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan intermediate using the novel microorganism
CN114134077B (en) Cellulose degrading bacterium DC11 derived from silkworm excrement, screening method and application thereof
Sung et al. Symbiobacterium toebii sp. nov., commensal thermophile isolated from Korean compost
JP5680313B2 (en) Proteolytic treatment method and composition for proteolytic treatment
JP5681392B2 (en) Method for producing L-glyceric acid by microorganism
Oshkin et al. Thermotolerant Methanotrophic Bacteria from Sediments of the River Chernaya, Crimea, and Assessment of Their Growth Characteristics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16842072

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16842072

Country of ref document: EP

Kind code of ref document: A1