KR20190049573A - Method for Methanol Production Using methanotroph without External Reducing Power - Google Patents

Method for Methanol Production Using methanotroph without External Reducing Power Download PDF

Info

Publication number
KR20190049573A
KR20190049573A KR1020180131172A KR20180131172A KR20190049573A KR 20190049573 A KR20190049573 A KR 20190049573A KR 1020180131172 A KR1020180131172 A KR 1020180131172A KR 20180131172 A KR20180131172 A KR 20180131172A KR 20190049573 A KR20190049573 A KR 20190049573A
Authority
KR
South Korea
Prior art keywords
methanol
edta
methane
conversion
strain
Prior art date
Application number
KR1020180131172A
Other languages
Korean (ko)
Other versions
KR102131880B1 (en
Inventor
나정걸
오병근
김현수
한준희
김유진
이진원
Original Assignee
서강대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서강대학교산학협력단 filed Critical 서강대학교산학협력단
Publication of KR20190049573A publication Critical patent/KR20190049573A/en
Application granted granted Critical
Publication of KR102131880B1 publication Critical patent/KR102131880B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/13Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen (1.14.13)
    • C12Y114/13025Methane monooxygenase (1.14.13.25)

Abstract

The present invention relates to a methane-using methanol production method using methanotrophs that do not require an external reducing power. According to the method, methanol production can be increased by partially inhibiting MDH during a methanol production process and keeping the amounts of catalyst and reducing power constant, which can be effectively used in the methanol production process.

Description

외부 환원력이 필요없는 메탄자화균을 이용한 메탄 이용 메탄올 생산 방법{Method for Methanol Production Using methanotroph without External Reducing Power}Technical Field [0001] The present invention relates to a methanotrophic methanol production method using methanotrophic bacteria which does not require external reducing power,

본 발명은 외부 환원력이 필요없는 메탄자화균을 이용한 메탄 이용 메탄올 생산 방법에 관한 것으로서, 더욱 상세하게는 EDTA를 일정량 포함하는 조건에서 메탄자화균을 이용하여 촉매량과 환원력을 일정하게 유지함으로써 메탄올의 생산량을 증가시키는 방법에 관한 것이다.More particularly, the present invention relates to a method for producing methane-using methanol using a methane-magnetizing microorganism that does not require external reducing power, and more particularly, to a method for producing methane using a methane- / RTI >

현재 보고된 메탄자화균을 이용한 메탄 이용 메탄올 생산 방법은 메탄올 탈수소화 효소의 블로킹을 통해 메탄으로부터 생산된 메탄올이 대사되지 않도록 하여 배양액에 축적시키는 방법을 사용하고 있다.Currently reported methane - using methanol production method using methane magnetism is a method in which methanol produced from methane is not metabolized through blocking of methanol dehydrogenase and is accumulated in a culture solution.

온화한 조건에서 메탄의 전환이 가능함에도 생물학적인 방법에 의한 메탄올 생산이 어려운 이유는 두 가지가 있다. 첫째, 메탄 산화 효소(methane monooxygenase; MMO)는 메탄의 전환을 위하여 환원력이 필요하다. 둘째, 생산된 메탄올은 메탄올 탈수소화 효소(dehydrogenase; MDH)에 의하여 분해된다.Although methane conversion is possible under mild conditions, there are two reasons why methanol production by biological methods is difficult. First, methane monooxygenase (MMO) requires a reducing power to convert methane. Second, the produced methanol is decomposed by methanol dehydrogenase (MDH).

메탄자화균(methanotroph) 세포 내에서는 메탄 전환에 필요한 환원력이 메탄올 산화로부터 회수되고, 이 과정에서 생성된 포름알데히드가 세포 대사를 통해 생장에 이용되므로 자연적인 메탄올 축적 유도는 매우 어려울 수밖에 없다. 따라서 현재까지의 메탄자화균에 의한 메탄올 생산 연구 결과를 보면, 생성된 메탄올의 분해를 방지하고자 MDH 저해제를 사용하고 있다. 그러나, 인위적으로 메탄올 탈수소화 효소의 활성을 억제할 경우 환원력이 부족하여 메탄 산화가 이루어지지 않는다.In methanotroph cells, the reducing power required for methane conversion is recovered from methanol oxidation, and since the formaldehyde produced in this process is used for growth through cell metabolism, induction of natural methanol accumulation is very difficult. Therefore, studies on methanol production by methane magnetism to date have shown that MDH inhibitors are used to prevent degradation of methanol produced. However, when the activity of methanol dehydrogenase is inhibited artificially, methane oxidation is not performed due to lack of reducing power.

따라서, 기존의 방법들은 이를 해결하기 위하여 메탄올 탈수소화 효소의 저해와 함께 외부 환원력으로 메탄올보다 고가인 개미산 등을 공급하고 있다.Therefore, in order to solve this problem, conventional methods have been proposed to inhibit methanol dehydrogenase and provide formic acid, which is more expensive than methanol, as an external reducing power.

이에 본 발명자들은 메탄올 탈수소화 효소(dehydrogenase; MDH)를 부분적으로 저해하였을 때 외부 환원력의 공급 없이 메탄올 생산 공정의 수행이 가능함을 확인하였다.Therefore, the present inventors confirmed that when the methanol dehydrogenase (MDH) was partially inhibited, the methanol production process could be performed without supplying the external reducing power.

이에, 본 발명의 목적은 메틸로모나스 속(Methylomonas), 메틸로박테리움 속(Methylobacterium), 메틸로마이크로비움 속(Methylomicrobium), 메틸로박터 속(Methylobacter), 메틸로코커스 속(Methylococcus), 메틸로스페라 속(Methylosphaera), 메틸로칼덤 속(Methylocaldum), 메틸로글로버스 속(Methyloglobus), 메틸로사르시나 속(Methylosarcina), 메틸로프로펀더스 속(Methyloprofundus), 메틸로썰머스 속(Methylothermus), 메틸로할로비우스 속(Methylohalobius), 메틸로게아 속(Methylogaea), 메틸로마리넘 속(Methylomarinum), 메틸로벌럼 속(Methylovulum), 메틸로마리노범 속(Methylomarinovum), 메틸로러브럼 속(Methylorubrum), 메틸로파라코커스 속(Methyloparacoccus), 메틸로시너스 속(Methylosinus), 메틸로시스티스 속(Methylocystis), 메틸로셀라 속(Methylocella), 메틸로캡사 속(Methylocapsa), 메틸로퍼룰라 속(Methylofurula), 메틸아시디필럼 속(Methylacidiphilum) 및 메틸아시디마이크로비움 속(Methylacidimicrobium)으로 이루어진 군으로부터 선택되는 1종 이상의 균주 및 에틸렌다이아민테트라아세트산(ethylenediaminetetraacetic acid; EDTA)을 포함하는 메탄올 생산용 조성물을 제공하는 것이다.Accordingly, an object of the present invention is to provide a process for the preparation of a compound of formula (I) or a salt thereof, wherein Methylomonas, Methylobacterium, Methylomicrobium, Methylobacter, Methylococcus, But are not limited to, Methylosphaera, Methylocaldum, Methyloglobus, Methylosarcina, Methyloprofundus, Methylolucumthus, Methylothalobus, Methylohalobius, Methylogaea, Methylomarinum, Methylovulum, Methylomarinovum, Methylorabicin, Methylothiophene, The compounds of the present invention may be used in combination with one or more compounds selected from the group consisting of Methylorubrum, Methyloparacoccus, Methylosinus, Methylocystis, Methylocella, Methylocapsa, Methylofurula, Methyl acid ethylphilum and methylacidimicrobium, and ethylenediaminetetraacetic acid (EDTA). The present invention also provides a method for producing methanol, comprising the steps of:

본 발명의 다른 목적은 메틸로모나스 속, 메틸로박테리움 속, 메틸로마이크로비움 속, 메틸로박터 속, 메틸로코커스 속, 메틸로스페라 속, 메틸로칼덤 속, 메틸로글로버스 속, 메틸로사르시나 속, 메틸로프로펀더스 속, 메틸로썰머스 속, 메틸로할로비우스 속, 메틸로게아 속, 메틸로마리넘 속, 메틸로벌럼 속, 메틸로마리노범 속, 메틸로러브럼 속, 메틸로파라코커스 속, 메틸로시너스 속, 메틸로시스티스 속, 메틸로셀라 속, 메틸로캡사 속, 메틸로퍼룰라 속, 메틸아시디필럼 속 및 메틸아시디마이크로비움 속으로 이루어진 군으로부터 선택되는 1종 이상의 균주로부터 EDTA를 포함하는 배양액에서 전환반응을 유도하는 전환 단계를 포함하는 메탄올 생산 방법을 제공하는 것이다.It is another object of the present invention to provide a method for the treatment and / or prophylaxis of a disease or disorder which comprises administering to a mammal an effective amount of at least one compound selected from the group consisting of methylolmonas, methyllobaterium, methylolubium, methylrobacter, methylloccus, methylrosperes, There may be mentioned methylcyclohexane, methylcyclohexane, methylcyclohexane, methylcyclohexane, methylcyclohexane, methylcyclohexane, methylcyclohexane, methylcyclohexane, And a mixture of methyl ascorbic acid and methyl ascorbic acid, and a mixture of methyl ascorbic acid, methyl ascorbic acid, methyl ascorbic acid, methyl ascorbic acid, methyl ascorbic acid, methyl ascorbic acid, methyl ascorbic acid, And a conversion step of inducing a conversion reaction in a culture medium containing EDTA from at least one strain selected from the group consisting of EDTA.

본 발명은 외부 환원력이 필요없는 메탄자화균을 이용한 메탄 이용 메탄올 생산 방법에 관한 것으로, 본 발명에 따른 방법은 EDTA를 일정량 포함하는 조건에서 메탄자화균을 이용하여 촉매량과 환원력을 일정하게 유지함으로써 메탄올의 생산량을 증가시킨다.The present invention relates to a method for producing methane-using methanol using a methanotrophic bacterium which does not require an external reducing power, and the method according to the present invention uses methane- Of production.

본 발명자들은 EDTA를 일정량 포함하는 조건에서 메탄자화균을 이용하여 메탄올을 생산함으로써, 외부 환원력의 공급 없이도 메탄올의 생산량을 증가시켰다.The present inventors increased the production of methanol without supplying external reducing power by producing methanol using methane magnetizing bacteria under the condition of containing a certain amount of EDTA.

본 발명의 구현을 위하여 1) 지속적으로 세포를 생산하는 세포 배양 장치와 2) 메탄올을 생산하는 메탄올 생산 장치를 구성하고, 메탄올 생산 과정에 배양 장치에서 생산된 세포를 공급하여 촉매량과 환원력 양을 일정하게 유지함으로써 메탄올 생산량을 증가시키고자 하였다.In order to realize the present invention, 1) a cell culture apparatus which continuously produces cells and 2) a methanol production apparatus which produces methanol, and the cells produced in the culture apparatus are supplied to the methanol production process, To increase methanol production.

이하 본 발명을 더욱 자세히 설명하고자 한다.Hereinafter, the present invention will be described in more detail.

본 발명의 일 양태는 메틸로모나스 속(Methylomonas), 메틸로박테리움 속(Methylobacterium), 메틸로마이크로비움 속(Methylomicrobium), 메틸로박터 속(Methylobacter), 메틸로코커스 속(Methylococcus), 메틸로스페라 속(Methylosphaera), 메틸로칼덤 속(Methylocaldum), 메틸로글로버스 속(Methyloglobus), 메틸로사르시나 속(Methylosarcina), 메틸로프로펀더스 속(Methyloprofundus), 메틸로썰머스 속(Methylothermus), 메틸로할로비우스 속(Methylohalobius), 메틸로게아 속(Methylogaea), 메틸로마리넘 속(Methylomarinum), 메틸로벌럼 속(Methylovulum), 메틸로마리노범 속(Methylomarinovum), 메틸로러브럼 속(Methylorubrum), 메틸로파라코커스 속(Methyloparacoccus), 메틸로시너스 속(Methylosinus), 메틸로시스티스 속(Methylocystis), 메틸로셀라 속(Methylocella), 메틸로캡사 속(Methylocapsa), 메틸로퍼룰라 속(Methylofurula), 메틸아시디필럼 속(Methylacidiphilum) 및 메틸아시디마이크로비움 속(Methylacidimicrobium)으로 이루어진 군으로부터 선택되는 1종 이상의 균주 및 에틸렌다이아민테트라아세트산(ethylenediaminetetraacetic acid; EDTA)을 포함하는 메탄올 생산용 조성물이다.One embodiment of the present invention is a method for producing a compound of formula (I) or a salt thereof, wherein the compound is selected from the group consisting of Methylomonas, Methylobacterium, Methylomicrobium, Methylobacter, Methylococcus, But are not limited to, Methylosphaera, Methylocaldum, Methyloglobus, Methylosarcina, Methyloprofundus, Methylothermus, ), Methylohalobius, Methylogaea, Methylomarinum, Methylovulum, Methylomarinovum, Methylolabrum, Methyloglucarnide, But are not limited to, Methylorubum, Methyloparacoccus, Methylosinus, Methylocystis, Methylocella, Methylocapsa, Methylofurula, Methylacid at least one microorganism belonging to the genus Escherichia, and at least one microorganism belonging to the genus Escherichia, and at least one microorganism belonging to the genus Escherichia.

상기 균주는 기탁번호 KCTC 13004BP로 기탁된 메틸로모나스 속 DH-1인 것일 수 있으나, 이에 한정되는 것은 아니다.The strain may be, but is not limited to, Methylomonas DH-1 deposited with Accession No. KCTC 13004BP.

상기 조성물은 EDTA를 0.01 내지 5.00 mM, 0.01 내지 2.00 mM, 0.01 내지 1.00 mM, 0.01 내지 0.80 mM, 0.10 내지 5.00 mM, 0.10 내지 2.00 mM, 0.10 내지 1.00 mM, 0.10 내지 0.80 mM, 0.20 내지 5.00 mM, 0.20 내지 2.00 mM 또는 0.20 내지 1.00 mM, 예를 들어, 0.20 내지 0.80 mM의 농도로 포함하는 것일 수 있으나, 이에 한정되는 것은 아니다.Wherein the composition comprises EDTA in an amount of 0.01 to 5.00 mM, 0.01 to 2.00 mM, 0.01 to 1.00 mM, 0.01 to 0.80 mM, 0.10 to 5.00 mM, 0.10 to 2.00 mM, 0.10 to 1.00 mM, 0.10 to 0.80 mM, For example, at a concentration of 0.20 to 2.00 mM or 0.20 to 1.00 mM, for example, 0.20 to 0.80 mM, but the present invention is not limited thereto.

본 발명의 다른 양태는 메틸로모나스 속, 메틸로박테리움 속, 메틸로마이크로비움 속, 메틸로박터 속, 메틸로코커스 속, 메틸로스페라 속, 메틸로칼덤 속, 메틸로글로버스 속, 메틸로사르시나 속, 메틸로프로펀더스 속, 메틸로썰머스 속, 메틸로할로비우스 속, 메틸로게아 속, 메틸로마리넘 속, 메틸로벌럼 속, 메틸로마리노범 속, 메틸로러브럼 속, 메틸로파라코커스 속, 메틸로시너스 속, 메틸로시스티스 속, 메틸로셀라 속, 메틸로캡사 속, 메틸로퍼룰라 속, 메틸아시디필럼 속 및 메틸아시디마이크로비움 속으로 이루어진 군으로부터 선택되는 1종 이상의 균주로부터 EDTA를 포함하는 배양액에서 전환반응을 유도하는 전환 단계를 포함하는 메탄올 생산 방법이다.Another aspect of the present invention is a method for producing a compound of formula (I) or a pharmaceutically acceptable salt thereof, which comprises administering to a mammal in need thereof an effective amount of at least one compound selected from the group consisting of methylolmonas, methyllobaterium, methylolmobium, methylolbacter, methylolcocuses, methylrosperes, There may be mentioned methylcyclohexane, methylcyclohexane, methylcyclohexane, methylcyclohexane, methylcyclohexane, methylcyclohexane, methylcyclohexane, methylcyclohexane, And a mixture of methyl ascorbic acid and methyl ascorbic acid, and a mixture of methyl ascorbic acid, methyl ascorbic acid, methyl ascorbic acid, methyl ascorbic acid, methyl ascorbic acid, methyl ascorbic acid, methyl ascorbic acid, A step of inducing a conversion reaction in a culture medium containing EDTA from at least one strain selected from the group consisting of:

본 명세서상의 용어 "전환"은, 배양액 내의 물질을 이용하여 균주가 특정 물질을 생산하는 과정을 의미한다.As used herein, the term " conversion " refers to the process by which a strain produces a specific substance using a substance in a culture fluid.

상기 균주는 기탁번호 KCTC 13004BP로 기탁된 메틸로모나스 속 DH-1인 것일 수 있으나, 이에 한정되는 것은 아니다.The strain may be, but is not limited to, Methylomonas DH-1 deposited with Accession No. KCTC 13004BP.

상기 조성물은 EDTA를 0.01 내지 5.00 mM, 0.01 내지 2.00 mM, 0.01 내지 1.00 mM, 0.01 내지 0.80 mM, 0.10 내지 5.00 mM, 0.10 내지 2.00 mM, 0.10 내지 1.00 mM, 0.10 내지 0.80 mM, 0.20 내지 5.00 mM, 0.20 내지 2.00 mM 또는 0.20 내지 1.00 mM, 예를 들어, 0.20 내지 0.80 mM의 농도로 포함하는 것일 수 있으나, 이에 한정되는 것은 아니다.Wherein the composition comprises EDTA in an amount of 0.01 to 5.00 mM, 0.01 to 2.00 mM, 0.01 to 1.00 mM, 0.01 to 0.80 mM, 0.10 to 5.00 mM, 0.10 to 2.00 mM, 0.10 to 1.00 mM, 0.10 to 0.80 mM, For example, at a concentration of 0.20 to 2.00 mM or 0.20 to 1.00 mM, for example, 0.20 to 0.80 mM, but the present invention is not limited thereto.

상기 전환 단계는 균주 세포 내의 NADH/NAD+ 비율을 0.5 이상으로 유지하며 수행되는 것일 수 있으나, 이에 한정되는 것은 아니다.The conversion step may be carried out while maintaining the ratio of NADH / NAD + in the cell to 0.5 or more, but is not limited thereto.

상기 전환 단계는 10 내지 50%(v/v), 10 내지 45%(v/v), 10 내지 40%(v/v), 10 내지 35%(v/v), 20 내지 50%(v/v), 20 내지 45%(v/v), 20 내지 40%(v/v), 20 내지 35%(v/v), 25 내지 50%(v/v), 25 내지 45%(v/v) 또는 25 내지 40%(v/v), 예를 들어, 25 내지 35%(v/v)의 메탄을 포함하는 가스 존재하에서 수행되는 것일 수 있으나, 이에 한정되는 것은 아니다.The conversion step may be performed at a concentration of 10-50% v / v, 10-45% v / v, 10-40% v / v, 10-35% v / v / v), 20 to 45% (v / v), 20 to 40% (v / v), 20 to 35% (v / v), 25 to 50% / v) or 25 to 40% (v / v), for example 25 to 35% (v / v) methane.

상기 전환 단계는 상기 가스를 10 내지 900분 동안 배기하여 수행되는 것일 수 있으나, 이에 한정되는 것은 아니다. 가스의 배기에 소요되는 최적 시간은 전체 배양액의 부피, 공정 수행 시간, 사용하는 균주의 종류 및 배지 조성을 포함하는 조건의 변동에 따라 적절히 조정될 수 있다.The conversion step may be performed by exhausting the gas for 10 to 900 minutes, but is not limited thereto. The optimum time for exhausting the gas can be appropriately adjusted according to the variation of the conditions including the volume of the whole culture liquid, the execution time of the process, the type of the used strain and the composition of the medium.

상기 전환 단계는 25 내지 35℃, 27 내지 35℃, 29 내지 35℃, 25 내지 32℃, 또는 27 내지 32℃, 예를 들어, 29 내지 32℃의 온도에서 수행되는 것일 수 있으나, 이에 한정되는 것은 아니다.The conversion step may be performed at a temperature of 25 to 35 DEG C, 27 to 35 DEG C, 29 to 35 DEG C, 25 to 32 DEG C, or 27 to 32 DEG C, for example, 29 to 32 DEG C, It is not.

본 발명은 외부 환원력이 필요없는 메탄자화균을 이용한 메탄 이용 메탄올 생산 방법에 관한 것으로서, 상기 방법에 따르면 메탄올 생산 과정에서 MDH를 부분적으로 저해하여 촉매량과 환원력 양을 일정하게 유지함으로써 메탄올 생산량을 증가시킬 수 있으므로, 이를 효과적으로 메탄올 생산 공정에 이용할 수 있다.The present invention relates to a method for producing methane-using methanol using a methanotrophic bacterium which does not require an external reducing power, and in which the methanol production is partially inhibited during the methanol production process to maintain the amount of the catalyst and the reducing power constant, So that it can be effectively used in the methanol production process.

도 1은 본 발명의 메탄올 생산 경로를 보여주는 모식도이다.
도 2는 DH-1 균주의 메탄올 탈수소화 효소(dehydrogenase; MDH)의 활성에 대한 에틸렌다이아민테트라아세트산(ethylenediaminetetraacetic acid; EDTA)의 영향을 나타낸 그래프이다.
도 3은 EDTA의 농도에 따른 DH-1 균주 세포의 MDH 활성을 나타낸 그래프이다.
도 4a는 EDTA를 첨가하지 않은 배지 조건하에서 DH-1 균주의 메탄 소비와 메탄올 생성을 비교한 그래프이다.
도 4b는 EDTA를 0.50 mM 첨가한 배지 조건하에서 DH-1 균주의 메탄 소비와 메탄올 생성을 비교한 그래프이다.
도 4c는 EDTA를 10.00 mM 첨가한 배지 조건하에서 DH-1 균주의 메탄 소비와 메탄올 생성을 비교한 그래프이다.
도 5a는 EDTA를 첨가하지 않은 배지 조건하에서 DH-1 균주 세포 내 NADH/NAD+ 비율을 나타낸 그래프이다.
도 5b는 EDTA를 0.50 mM 첨가한 배지 조건하에서 DH-1 균주 세포 내 NADH/NAD+ 비율을 나타낸 그래프이다.
도 5c는 EDTA를 10.00 mM 첨가한 배지 조건하에서 DH-1 균주 세포 내 NADH/NAD+ 비율을 나타낸 그래프이다.
도 6은 DH-1 균주의 전환반응에서 EDTA의 농도를 달리한 배지 조건과 흡광도와의 관계를 나타낸 그래프이다.
FIG. 1 is a schematic diagram showing the methanol production route of the present invention. FIG.
2 is a graph showing the effect of ethylenediaminetetraacetic acid (EDTA) on the activity of methanol dehydrogenase (MDH) of DH-1 strain.
FIG. 3 is a graph showing MDH activity of DH-1 strain cells according to EDTA concentration. FIG.
FIG. 4A is a graph comparing methane consumption and methanol production of DH-1 strain under the condition of no EDTA-added medium. FIG.
FIG. 4B is a graph comparing methane consumption and methanol production of DH-1 strain under a medium containing 0.50 mM EDTA.
FIG. 4C is a graph comparing methane consumption and methanol production of the DH-1 strain under a medium condition in which EDTA was added at 10.00 mM. FIG.
FIG. 5A is a graph showing the ratio of NADH / NAD + in DH-1 strain cells under the condition of no EDTA-added medium. FIG.
FIG. 5B is a graph showing the ratio of NADH / NAD + in the DH-1 strain cells under the condition of addition of EDTA at 0.50 mM.
FIG. 5C is a graph showing the ratio of NADH / NAD + in DH-1 strain cells under a medium condition in which EDTA was added at 10.00 mM. FIG.
FIG. 6 is a graph showing the relationship between the absorbance and the culture conditions in which the concentration of EDTA was varied in the conversion reaction of DH-1 strain.

이하, 본 발명을 하기의 실시예에 의하여 더욱 상세히 설명한다. 그러나 이들 실시예는 본 발명을 예시하기 위한 것일 뿐이며, 본 발명의 범위가 이들 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, these examples are only for illustrating the present invention, and the scope of the present invention is not limited by these examples.

실시예 1: EDTA의 최적 농도 결정Example 1: Determination of optimum concentration of EDTA

메탄 한 분자의 전환에는 전자 두 개가 필요하며, 메탄올의 산화를 통해 전자 네 개가 생산될 수 있으므로 이론적으로는 MDH 효소 활성의 적절한 조절을 통해 메탄 1몰로부터 최대 1/2몰의 메탄올을 얻을 수 있다.Two electrons are required for the conversion of one molecule of methane, and four electrons can be produced through the oxidation of methanol, so theoretically, up to 1/2 mole of methanol can be obtained from 1 mole of methane through proper control of MDH enzyme activity .

메탄올 탈수소화 효소(dehydrogenase; MDH) 활성 제어를 통한 메탄올의 선택적 생산을 위하여 에틸렌다이아민테트라아세트산(ethylenediaminetetraacetic acid; EDTA)를 사용하였다. EDTA는 금속 킬레이터로서 MDH에서 리실(lysyl) 또는 아르기닐(arginyl) 잔기의 고정을 통한 초기 결합을 방해함으로써 MDH의 전자 전달을 방해할 수 있어 이전의 메탄올 생산 연구에서 많이 사용되어 왔다.Ethylenediaminetetraacetic acid (EDTA) was used for the selective production of methanol through the control of methanol dehydrogenase (MDH) activity. EDTA is a metal chelator that can interfere with the electron transfer of MDH by interfering with the initial binding through the immobilization of lysyl or arginyl residues in MDH and has been widely used in previous methanol production studies.

50 mL NMS 배지가 포함된 500 mL 배플 플라스크(baffled flask)에 1 mL의 DH-1 스탁(stock, KCTC 13004BP)을 접종한 후 주기적으로 메탄/공기를 주입하며 600 nm에서 배양액의 흡광도(OD600)가 5 내지 6이 될 때까지 진탕배양기에서 30℃, 230 rpm으로 배양하여 도 1과 같은 경로로 반응을 유도하였다. 배양 시 외부 공기의 유입과 내부 메탄 또는 프로판의 유출을 방지하기 위하여 플라스크에 부틸 고무(butyl rubber) 재질의 셉텀(septum)이 있는 마개를 사용하였다. NMS 배지의 조성은 하기 표 1과 같다.Inoculate 150 mL of DH-1 stock (KCTC 13004BP) into a 500 mL baffled flask containing 50 mL of NMS medium, periodically inject methane / air and measure the absorbance (OD 600) of the culture at 600 nm. Was cultured at 30 DEG C and 230 rpm in a shaking incubator until the concentration reached 5 to 6, and the reaction was induced by the same route as in Fig. A cap with a butyl rubber septum was used in the flask to prevent the inflow of outside air and the leakage of methane or propane into the flask during the culture. The composition of the NMS medium is shown in Table 1 below.

NMS 조성NMS composition Amount for 1LAmount for 1L MgSO4 ·7H2OMgSO 4 · 7H 2 O 1 g1 g KNO3KNO3 1 g1 g CaCl2H2OCaCl 2 .2H 2 O 0.228 g0.228 g Fe-EDTAFe-EDTA 0.0038 g0.0038 g Na2MoO4 Na 2 MoO 4 0.0006 g0.0006 g FeSO7H2OFeSO 4 .7H 2 O 0.5 mg0.5 mg ZnSO7H2OZnSO 4 .7H 2 O 0.4 mg0.4 mg MnCl7H2OMnCl 2 .7H 2 O 0.02 mg0.02 mg CoCl6H2OCoCl 2 .6H 2 O 0.05 mg0.05 mg NiCl6H2ONiCl 2 .6H 2 O 0.01 mg0.01 mg H3BO3 H 3 BO 3 0.015 mg0.015 mg EDTAEDTA 0.25 mg0.25 mg KH2PO4 KH 2 PO 4 0.26 g0.26 g Na2HPO7(H2O)Na 2 HPO 4 .7 (H 2 O) 0.62 g0.62 g 바이오틴(Biotin)Biotin 0.02 mg0.02 mg 폴산(Folic acid)Folic acid 0.02 mg0.02 mg 티아민 HCl(Thiamine HCl)Thiamine HCl 0.05 mg0.05 mg Ca 판토텐산염(pantothenate)Ca pantothenate 0.05 mg0.05 mg 비타민(Vitamin) B12Vitamin B12 0.001 mg0.001 mg 리보플라빈(Riboflavin)Riboflavin 0.05 mg0.05 mg 니코틴아마이드(Nicotiamide)Nicotiamide 0.05 mg0.05 mg CuSO5H2OCuSO 4 · 5H 2 O 2.5 mg2.5 mg

메탄올 전환 실험을 위하여 상기 배양한 배양액을 원심분리하고 상등액을 제거한 다음 PBS 버퍼(buffer)로 세척하는 과정을 2회 반복하였다. 이후 pH 8.5의 PBS 버퍼에 EDTA 농도를 0.00, 0.01, 0.10, 0.50, 1.00, 5.00 및 10.00 mM로 설정하여 추가한 다음 세척된 메탄자화균 세포를 OD 30이 되도록 추가하였다. 메탄:공기=3:7 부피비의 가스를 30분간 배기한 다음 진탕 배양기에서 30℃에서 230 rpm으로 교반하며 진행하였다.For the methanol conversion experiment, the cultured medium was centrifuged, the supernatant was removed, and then washed with PBS buffer twice. Then, the EDTA concentration was set to 0.00, 0.01, 0.10, 0.50, 1.00, 5.00 and 10.00 mM in a PBS buffer of pH 8.5, and the washed methanotrophic cells were added to the OD 30. Methane: air = 3: 7 by volume gas was evacuated for 30 minutes and then stirred at 30 rpm at 230 rpm in a shaking incubator.

다양한 EDTA 농도에서 메틸로모나스 속(Methylomonas sp.) DH-1의 MDH 활성에 대한 EDTA의 영향을 관찰하였다. MDH의 활성은 MDH가 메탄올을 산화시킬 때 발생하는 전자에 의한 DCPIP(2,6-dichlorophenolindophenol)의 환원속도를 측정하여 결정하였다 (참고문헌: 김희곤, 이상귀, 김시욱, "신규 type I 메탄자화세균 Methylobacterium sp. HG-1을 이용한 메탄올의 생합성", 공학기술논문지, 1(1), 33-37 (2008))The effect of EDTA on the MDH activity of Methylomonas sp. DH-1 was observed at various EDTA concentrations. The activity of MDH was determined by measuring the rate of reduction of DCPIP (2,6-dichlorophenolindophenol) by electrons that occurs when MDH oxidizes methanol (References: Kim Hee-Gon, Lee Sik Ei, Kim Sik Wook, Biosynthesis of Methanol Using Methylobacterium sp. HG-1 ", Journal of Engineering Technology, 1 (1), 33-37 (2008))

도 2에서 확인할 수 있듯이, EDTA에 의한 저해 효과는 0.01 mM까지는 나타나지 않았으며, 이후 1.00 mM 농도까지는 급격히 증가하였다. 0.50 mM의 EDTA를 첨가하였을 때, MDH의 특이적 활성(specific activity)은 2.095 nmol/mg protein/min로서, 원래 활성의 31% 수준이었다. 1.00 mM 이상의 EDTA에서 활성은 서서히 저해되며 최종적으로 EDTA 농도가 10.00 mM에 이르면 MDH의 활성은 완전히 저해되었다. 메탄이 메탄올로 전환하는데 필요한 전자와 메탄올이 산화되어 얻을 수 있는 전자를 고려할 때, MDH의 활성이 1/3 내지 1/2일 때 메탄올을 가장 많이 축적할 수 있으리라 예상되어 EDTA 최적 농도를 0.50 mM로 결정하였다.As can be seen in FIG. 2, the inhibitory effect of EDTA did not appear until 0.01 mM, and then rapidly increased until the concentration of 1.00 mM. When 0.50 mM EDTA was added, the specific activity of MDH was 2.095 nmol / mg protein / min, which was 31% of the original activity. In the case of EDTA above 1.00 mM, the activity was slowly inhibited. Finally, when the EDTA concentration reached 10.00 mM, the activity of MDH was completely inhibited. Considering the electrons required to convert methane to methanol and the electrons obtained by oxidation of methanol, it is expected that most of methanol can be accumulated when the activity of MDH is 1/3 to 1/2, so that the optimum concentration of EDTA is 0.50 mM Respectively.

실시예 2: EDTA에 의한 MDH 저해 효과의 확인Example 2: Confirmation of MDH inhibitory effect by EDTA

EDTA에 의한 MDH 효소 저해가 in-vivo 상에서도 이루어지는지 확인하기 위하여 반응 버퍼(reaction buffer)에서 초기 메탄올 농도가 45 mM일 때 Methylomonas sp. DH-1 세포를 투입하여 메탄올 분해를 관찰하였다. 효소 활성 실험에서 도출한 0.00 mM, 0.50 mM, 그리고 10.00 mM의 EDTA 농도에서 DH-1 휴지 세포(resting cell)의 시간당 메탄올 소모량을 분석하였다.In order to confirm that the inhibition of MDH enzyme by EDTA is also achieved in vivo, the initial methanol concentration in the reaction buffer was 45 mM, and Methylomonas sp. DH-1 cells were injected and methanol degradation was observed. The amount of methanol consumed per hour of DH-1 resting cells was analyzed at 0.00 mM, 0.50 mM, and 10.00 mM EDTA concentration derived from enzyme activity experiments.

도 3에서 확인할 수 있듯이, EDTA가 포함되지 않았을 때 DH-1 세포는 4시간만에 메탄올을 모두 소모하였다. 그러나 MDH 활성이 대부분 저해를 받는 EDTA 10.00 mM이 포함된 조건에서는 4시간이 지나도 1.80 mM의 메탄올만을 소모함으로써 메탄올 분해가 거의 이루어지지 않았음을 확인할 수 있다. 한편, MDH 부분저해 조건인 EDTA 0.50 mM 포함 조건에서 DH-1 세포는 4시간 동안 투입 메탄올의 31%인 13.9 mM의 메탄올을 소모하여 실제 전세포 전환 실험에서도 MDH의 부분 저해가 가능함을 확인하였다.As shown in FIG. 3, when EDTA was not included, DH-1 cells consumed methanol in 4 hours. However, in the condition that EDTA containing 10.00 mM EDTA containing MDH activity was mostly inhibited, it was confirmed that methanol decomposition was hardly achieved by consuming only 1.80 mM of methanol even after 4 hours. On the other hand, DH-1 cells consumed 13.9 mM methanol, which is 31% of the input methanol, for 4 hours under the condition of containing 0.50 mM of EDTA, which is a partial inhibition condition of MDH.

실시예 3: 메탄올 전환 및 축적 정도의 확인Example 3: Determination of conversion and accumulation of methanol

실시예 1 및 2에서 수행한 효소 활성 실험과 휴지 세포 실험으로부터 얻은 MDH 부분 저해 효과를 이용하여 실제 메탄 전환 실험을 수행하였다. Methylomonas sp. DH-1 세포를 투입하여 메탄의 소모를 관찰하였다.Actual methane conversion experiments were performed using the enzymatic activity tests performed in Examples 1 and 2 and the MDH partial inhibitory effect obtained from the dormant cell experiments. Methylomonas sp. DH-1 cells were injected and the consumption of methane was observed.

도 4a에서 확인할 수 있듯이, MDH 저해를 받지 않는 EDTA가 없는 조건에서 메탄 전환 메탄올 생산 실험 결과, 반응 4시간 및 8시간째에 메탄의 소비량은 각각 36.28 mM, 37.10 mM이었다. 이는 대사 과정에 저해를 받지 않았기 때문에 세포 내에서 가장 많은 메탄 소비량을 보인 것으로 볼 수 있다.As can be seen from FIG. 4A, the methanol consumption was 36.28 mM and 37.10 mM at 4 hours and 8 hours, respectively, as a result of methanol conversion experiment under the condition of no EDTA without MDH inhibition. This is the most abundant methane consumption in the cell because it is not inhibited by the metabolic process.

그러나 MDH 저해가 없는 조건에서 메탄올은 계속해서 산화되기 때문에 메탄올 축적은 거의 발생하지 않았다. 반응 4시간째에 최대 메탄올 생산은 0.273 mM였으며 메탄 소비 대비 메탄올 수율은 0.8%이었다. 반응 8시간째에 메탄올은 더 감소하여 0.224 mM였으며 메탄 소비 대비 메탄올 수율은 0.6%이었다.However, in the absence of MDH inhibition, methanol was continuously oxidized and methanol accumulation was scarcely occurred. Maximum methanol production was 0.273 mM at 4 hours and methanol yield was 0.8%. At 8 hours after the reaction, methanol was further decreased to 0.224 mM and methanol yield was 0.6% compared to methane consumption.

도 4b에서 확인할 수 있듯이, MDH 활성을 1/3 수준으로 낮춘 조건(EDTA 0.50 mM)에서 메탄올은 성공적으로 축적되었다. 메탄 소모량은 4시간 및 8시간째에서 각각 29.41 mM과 35.24 mM로서 EDTA가 없는 조건보다 줄어들었으나, 메탄올 농도는 반응 4시간째에 21.52 mM(0.69 g/l)로 빠르게 증가하였고 이 후, 반응 8시간째에 메탄올 생산은 최종 27.85 mM(0.892 g/l) 까지 증가하였다. 메탄 소비 대비 메탄올 생산 수율은 각각 4시간 및 8시간째에 73.1%, 79.0%였다.As can be seen in FIG. 4B, methanol was successfully accumulated in the condition of MDH activity reduced to 1/3 level (EDTA 0.50 mM). Methane consumption was 29.41 mM and 35.24 mM at 4 and 8 hours, respectively, but the methanol concentration was rapidly increased to 21.52 mM (0.69 g / l) at 4 hours after the reaction. Methanol production increased to 27.85 mM (0.892 g / l) at the end of time. Methanol production yields of methane were 73.1% and 79.0% at 4 and 8 hours, respectively.

도 4c에서 확인할 수 있듯이, MDH 완전 저해가 발생하는 EDTA 10.00 mM 조건에서는, 메탄올 산화를 통한 환원력 공급이 이루어지지 않으므로 메탄 전환이 이루어지지 않아 메탄 소비와 메탄올 축적이 모두 거의 발생하지 않았다. 반응 4시간째에 소비된 메탄은 3.62 mM, 생산된 메탄올 농도는 0.06 mM에 불과하였다.As can be seen from FIG. 4C, under the condition of EDTA 10.00 mM in which complete inhibition of MDH occurs, no reducing power was supplied through methanol oxidation, so no methane conversion occurred and almost no methane consumption and methanol accumulation occurred. At the 4th hour of the reaction, the amount of methane consumed was 3.62 mM and the methanol concentration was 0.06 mM.

결론적으로, MDH 부분 저해를 통하여 외부 환원력 없이도 최대 0.892 g/l의 메탄올을 생산할 수 있었다.In conclusion, the MDH partial inhibition was able to produce up to 0.892 g / l of methanol without external reducing power.

실시예 4: NADH/NAD+ 비율을 통한 세포 내 환원력 측정Example 4: Measurement of intracellular reducing power by NADH / NAD + ratio

메탄자화균을 이용한 메탄의 전환과 메탄올 생산 과정에서 환원력 레벨(level)은 매우 중요한 역할을 담당한다. Methylomonas sp. DH-1 휴지 세포를 사용한 메탄올 전환에서 세포 내의 환원력 레벨을 판단하기 위하여, NADH/NAD+ 비율을 측정하였다.Methane conversion and methanogen production using methanogenic bacteria play a very important role. Methylomonas sp. To determine the level of intracellular reducing power in methanol conversion using DH-1 dormant cells, the NADH / NAD + ratio was determined.

도 5a에서 확인할 수 있듯이, MDH 저해를 받지 않는 EDTA가 없는 조건에서 전환 시간 동안 NADH/NAD+ 비율이 초기 상태에서 유지되는 것을 확인할 수 있었다. 이는 Methylomonas sp. DH-1 내에서 메탄으로부터 생산되는 메탄올이 모두 메탄 생산에 필요한 환원력 공급에 다시 활용되는 것을 의미한다.As can be seen in FIG. 5A, it was confirmed that the NADH / NAD + ratio remained in the initial state during the conversion time in the absence of EDTA without MDH inhibition. Methylomonas sp. This means that methanol produced from methane in DH-1 is all re-used to supply the reducing power needed for methane production.

도 5b에서 확인할 수 있듯이, MDH가 부분적으로 저해된 EDTA 0.50 mM이 포함된 조건에서의 NADH/NAD+ 비율은 전환 시간 동안 초기에 일부 감소하지만 어느 정도 유지되고 있음을 알 수 있었다. 생산된 메탄올은 부분 저해된 MDH의 활성에 따라 일부는 메탄 전환에 필요한 환원력으로 공급되고, 일부는 반응 버퍼(reaction buffer)에 축적되는 것으로 판단된다. 다만, 전체적인 NADH/NAD+ 비율이 낮기 때문에 메탄 전환 속도는 EDTA가 없는 조건보다는 늦어지는 것으로 판단되었다.As can be seen in FIG. 5B, the NADH / NAD + ratio in the condition containing 0.50 mM EDTA partially inhibited MDH was partially reduced at the early stage during the conversion time, but it remained to some extent. The methanol produced is partially supplied as a reducing power required for methane conversion depending on the activity of the partially inhibited MDH, and some of it is considered to be accumulated in the reaction buffer. However, the overall NADH / NAD + ratio is low, suggesting that methane conversion rate is slower than without EDTA.

도 5c에서 확인할 수 있듯이, MDH 활성을 완전히 저해시킨 EDTA 10.00 mM이 포함된 조건에서의 NADH/NAD+ 비율은 지속적으로 감소하였다. 메탄 전환에 필요한 환원력 제공 및 메탄올 산화가 원활히 이루어지지 않으므로 미량의 메탄 전환만이 관찰되는 것으로 해석할 수 있다. EDTA 10.00 mM 조건에서 NADH/NAD+ 비율은 반응 초기의 0.766에서 반응 8시간째에 0.254로 현저하게 낮아졌다.As shown in FIG. 5C, the ratio of NADH / NAD + in the condition containing 10.00 mM of EDTA completely inhibiting MDH activity was continuously decreased. It can be interpreted that only a trace amount of methane conversion is observed since the reductive power required for methane conversion and methanol oxidation are not smoothly achieved. At the EDTA 10.00 mM, the NADH / NAD + ratio was significantly lowered from 0.766 at the beginning of the reaction to 0.254 at the 8th hour of the reaction.

실시예 5: 전환반응 중 세포 농도의 변화 확인Example 5: Confirmation of change in cell concentration during conversion reaction

전환반응 중의 세포 흡광도(optical density; OD)값을 측정하였다.The optical density (OD) value during the conversion reaction was measured.

도 6에서 확인할 수 있듯이, EDTA가 0.00 mM일 때 세포 OD 값은 초기에 31이었다가 반응 4시간 후 2.8 감소하였으나, 다시 반응 8시간 후에 0.8 회복되었다. 전체 반응과정에서 EDTA가 없을 경우 세포의 유지에도 큰 저해가 나타나지 않음을 확인했다.As can be seen from FIG. 6, when the EDTA was 0.00 mM, the cell OD value was 31 at the initial stage but decreased by 2.8 after 4 hours. It was confirmed that no significant inhibition of cell maintenance was observed in the absence of EDTA during the entire reaction.

그러나 EDTA가 포함된 경우 세포농도는 꾸준히 감소하였으며, 농도에 따라 그 정도가 심해졌다. MDH 부분 저해가 발생하는 EDTA 0.50 mM이 포함되었을 때 반응 4시간 및 8시간 후 세포 OD 값은 각각 6.5, 10.8 감소하였으며, 4시간 이후 메탄올의 생산 속도가 느려진 것은 이러한 생촉매 감소에서 야기한 것으로 판단된다.However, when EDTA was added, the cell concentration was steadily decreased, and the degree of cell concentration was increased with concentration. When 0.50 mM EDTA containing MDH partial inhibitor was added, the cell OD values were decreased by 6.5 and 10.8 after 4 and 8 hours, respectively. The slower production rate of methanol after 4 hours was considered to be caused by the decrease of these biocatalysts .

그리고 세포 내의 MDH가 완전히 저해된 EDTA 10.00 mM이 포함된 조건에서는 세포가 이전 조건보다 더 빠르게 감소되는 것을 확인하였다. 반응 4시간 및 8시간 후 세포 OD 값은 각각 24.5 및 27.55만큼 감소하여 대부분의 세포가 사멸된 것으로 분석되었다.In addition, it was confirmed that the cells contained EDTA 10.00 mM completely inhibited MDH more rapidly than the previous condition. After 4 hours and 8 hours after the reaction, the cell OD values decreased by 24.5 and 27.55, respectively, and most of the cells were killed.

이러한 결과로부터 EDTA 농도가 MDH 활성 뿐 아니라 휴지 세포의 분해에도 영향을 미치는 것을 알 수 있었으며 지속적인 세포의 활성 및 세포 내 환원력 유지 방법이 상업적인 메탄올 생산 공정 개발을 위하여 마련되어야 할 것으로 보인다.From these results, it was found that EDTA concentration affects not only MDH activity but also decomposition of dormant cells, and the maintenance of continuous cell activity and intracellular reducing power should be prepared for commercial methanol production process.

Claims (10)

메틸로모나스 속(Methylomonas), 메틸로박테리움 속(Methylobacterium), 메틸로마이크로비움 속(Methylomicrobium), 메틸로박터 속(Methylobacter), 메틸로코커스 속(Methylococcus), 메틸로스페라 속(Methylosphaera), 메틸로칼덤 속(Methylocaldum), 메틸로글로버스 속(Methyloglobus), 메틸로사르시나 속(Methylosarcina), 메틸로프로펀더스 속(Methyloprofundus), 메틸로썰머스 속(Methylothermus), 메틸로할로비우스 속(Methylohalobius), 메틸로게아 속(Methylogaea), 메틸로마리넘 속(Methylomarinum), 메틸로벌럼 속(Methylovulum), 메틸로마리노범 속(Methylomarinovum), 메틸로러브럼 속(Methylorubrum), 메틸로파라코커스 속(Methyloparacoccus), 메틸로시너스 속(Methylosinus), 메틸로시스티스 속(Methylocystis), 메틸로셀라 속(Methylocella), 메틸로캡사 속(Methylocapsa), 메틸로퍼룰라 속(Methylofurula), 메틸아시디필럼 속(Methylacidiphilum) 및 메틸아시디마이크로비움 속(Methylacidimicrobium)으로 이루어진 군으로부터 선택되는 1종 이상의 균주 및 에틸렌다이아민테트라아세트산(ethylenediaminetetraacetic acid; EDTA)을 포함하는 메탄올 생산용 조성물.Methylomonas, Methylobacterium, Methylomicrobium, Methylobacter, Methylococcus, Methylosphaera, Methylcyclohexanone, and the like. The compounds of formula (I) are preferably selected from the group consisting of Methylocaldum, Methyloglobus, Methylosarcina, Methyloprofundus, Methylothermus, The compounds of the present invention can be used in the form of Methylohalobius, Methylogaea, Methylomarinum, Methylovulm, Methylomarinovum, Methylorubrum, Methyloparcoccus, Methylosinus, Methylocystis, Methylocella, Methylocapsa, Methylofurula, Methylcyclohexyl, Methylcyclohexyl, Methylcyclohexyl, Methylacidiphilum and Methyl Acid At least one strain selected from the group consisting of Methylacidimicrobium and ethylenediaminetetraacetic acid (EDTA). 제1항에 있어서, 상기 균주는 기탁번호 KCTC 13004BP로 기탁된 메틸로모나스 속 DH-1인 것인, 메탄올 생산용 조성물.The composition for producing methanol according to claim 1, wherein the strain is Methylomonas DH-1 deposited with Accession No. KCTC 13004BP. 제1항에 있어서, 상기 조성물은 EDTA를 0.01 내지 5.00 mM의 농도로 포함하는 것인, 메탄올 생산용 조성물.The composition for producing methanol according to claim 1, wherein the composition comprises EDTA at a concentration of 0.01 to 5.00 mM. 메틸로모나스 속(Methylomonas), 메틸로박테리움 속(Methylobacterium), 메틸로마이크로비움 속(Methylomicrobium), 메틸로박터 속(Methylobacter), 메틸로코커스 속(Methylococcus), 메틸로스페라 속(Methylosphaera), 메틸로칼덤 속(Methylocaldum), 메틸로글로버스 속(Methyloglobus), 메틸로사르시나 속(Methylosarcina), 메틸로프로펀더스 속(Methyloprofundus), 메틸로썰머스 속(Methylothermus), 메틸로할로비우스 속(Methylohalobius), 메틸로게아 속(Methylogaea), 메틸로마리넘 속(Methylomarinum), 메틸로벌럼 속(Methylovulum), 메틸로마리노범 속(Methylomarinovum), 메틸로러브럼 속(Methylorubrum), 메틸로파라코커스 속(Methyloparacoccus), 메틸로시너스 속(Methylosinus), 메틸로시스티스 속(Methylocystis), 메틸로셀라 속(Methylocella), 메틸로캡사 속(Methylocapsa), 메틸로퍼룰라 속(Methylofurula), 메틸아시디필럼 속(Methylacidiphilum) 및 메틸아시디마이크로비움 속(Methylacidimicrobium)으로 이루어진 군으로부터 선택되는 1종 이상의 균주로부터 에틸렌다이아민테트라아세트산(ethylenediaminetetraacetic acid; EDTA)을 포함하는 배양액에서 전환반응을 유도하는 전환 단계를 포함하는 메탄올 생산 방법.Methylomonas, Methylobacterium, Methylomicrobium, Methylobacter, Methylococcus, Methylosphaera, Methylcyclohexanone, and the like. The compounds of formula (I) are preferably selected from the group consisting of Methylocaldum, Methyloglobus, Methylosarcina, Methyloprofundus, Methylothermus, The compounds of the present invention can be used in the form of Methylohalobius, Methylogaea, Methylomarinum, Methylovulm, Methylomarinovum, Methylorubrum, Methyloparcoccus, Methylosinus, Methylocystis, Methylocella, Methylocapsa, Methylofurula, Methylcyclohexyl, Methylcyclohexyl, Methylcyclohexyl, Methylacidiphilum and Methyl Acid And a conversion step of inducing a conversion reaction in a culture solution containing ethylenediaminetetraacetic acid (EDTA) from at least one strain selected from the group consisting of Methylacidimicrobium. 제4항에 있어서, 상기 균주는 메틸로모나스 속 DH-1인 것인, 메탄올 생산 방법.5. The method of producing methanol according to claim 4, wherein the strain is Methylomonas genus DH-1. 제4항에 있어서, 상기 배양액은 EDTA를 0.01 내지 5.00 mM의 농도로 포함하는 것인, 메탄올 생산 방법.5. The method according to claim 4, wherein the culture medium contains EDTA at a concentration of 0.01 to 5.00 mM. 제4항에 있어서, 상기 전환 단계는 균주 세포 내의 NADH/NAD+ 비율을 0.5 이상으로 유지하며 수행되는 것인, 메탄올 생산 방법.5. The method according to claim 4, wherein the step of converting is carried out while maintaining the ratio of NADH / NAD + in the cell of the strain to 0.5 or more. 제4항에 있어서, 상기 전환 단계는 10 내지 50%(v/v)의 메탄을 포함하는 가스 존재하에서 수행되는 것인, 메탄올 생산 방법.5. The process according to claim 4, wherein the conversion is carried out in the presence of a gas comprising 10 to 50% (v / v) methane. 제8항에 있어서, 상기 전환 단계는 상기 가스를 10 내지 900분 동안 배기하여 수행되는 것인, 메탄올 생산 방법.9. The method according to claim 8, wherein the conversion is carried out by evacuating the gas for 10 to 900 minutes. 제4항에 있어서, 상기 전환 단계는 25 내지 35℃의 온도에서 수행되는 것인, 메탄올 생산 방법.5. The process according to claim 4, wherein the conversion step is carried out at a temperature of 25 to 35 占 폚.
KR1020180131172A 2017-10-30 2018-10-30 Method for Methanol Production Using methanotroph without External Reducing Power KR102131880B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20170142093 2017-10-30
KR1020170142093 2017-10-30

Publications (2)

Publication Number Publication Date
KR20190049573A true KR20190049573A (en) 2019-05-09
KR102131880B1 KR102131880B1 (en) 2020-07-09

Family

ID=66546689

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180131172A KR102131880B1 (en) 2017-10-30 2018-10-30 Method for Methanol Production Using methanotroph without External Reducing Power

Country Status (1)

Country Link
KR (1) KR102131880B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112522327A (en) * 2020-10-12 2021-03-19 青岛科技大学 Method for continuously preparing methanol by utilizing microorganisms with multi-substrate metabolic characteristics

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102449931B1 (en) 2019-11-21 2022-10-04 건국대학교 산학협력단 Method of producing electricity from biogas using methanotrophic reactor and microbial fuel cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6440711B1 (en) * 2000-12-08 2002-08-27 Board Of Trustees Southern Illinois University, The Dehydrogenase enzymatic synthesis of methanol
KR20170026084A (en) * 2015-08-31 2017-03-08 경희대학교 산학협력단 Novel Methylomonas species strain and use thereof
WO2017039106A1 (en) * 2015-08-31 2017-03-09 경희대학교 산학협력단 Novel methylomonas sp. strain and use thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6440711B1 (en) * 2000-12-08 2002-08-27 Board Of Trustees Southern Illinois University, The Dehydrogenase enzymatic synthesis of methanol
KR20170026084A (en) * 2015-08-31 2017-03-08 경희대학교 산학협력단 Novel Methylomonas species strain and use thereof
WO2017039106A1 (en) * 2015-08-31 2017-03-09 경희대학교 산학협력단 Novel methylomonas sp. strain and use thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FEMS Microbiol Lett., 1992, Vol. 96, pp. 231-234* *
대한환경공학회지, 2011, Vol. 33, No. 9, pp. 662-669* *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112522327A (en) * 2020-10-12 2021-03-19 青岛科技大学 Method for continuously preparing methanol by utilizing microorganisms with multi-substrate metabolic characteristics

Also Published As

Publication number Publication date
KR102131880B1 (en) 2020-07-09

Similar Documents

Publication Publication Date Title
KR102165641B1 (en) Composition for the production of propanol containing methanotroph and propanol production method
Zhang et al. The characteristics of a novel heterotrophic nitrification–aerobic denitrification bacterium, Bacillus methylotrophicus strain L7
Choi et al. Metabolic pathways leading to mercury methylation in Desulfovibrio desulfuricans LS
KR102321136B1 (en) genetically engineered bacteria
Gray et al. Biological Formation of Molecular Hydrogen: A" hydrogen valve" facilitates regulation of anaerobic energy metabolism in many microorganisms.
Maicas et al. NAD (P) H regeneration is the key for heterolactic fermentation of hexoses in Oenococcus oeni
Mägli et al. Isolation and characterization of Dehalobacterium formicoaceticum gen. nov. sp. nov., a strictly anaerobic bacterium utilizing dichloromethane as source of carbon and energy
Thauer et al. Respiration with sulfate as electron acceptor
Sánchez et al. Effect of different levels of NADH availability on metabolic fluxes of Escherichia coli chemostat cultures in defined medium
Yang et al. Fed-batch fermentation of recombinant Citrobacter freundii with expression of a violacein-synthesizing gene cluster for efficient violacein production from glycerol
Möller-Zinkhan et al. Anaerobic lactate oxidation to 3 CO 2 by Archaeoglobus fulgidus via the carbon monoxide dehydrogenase pathway: demonstration of the acetyl-CoA carbon-carbon cleavage reaction in cell extracts
KR20190049573A (en) Method for Methanol Production Using methanotroph without External Reducing Power
Zhou et al. Multi-energy metabolic mechanisms of the fungus Fusarium oxysporum in low oxygen environments
Zhang et al. Effects of the ecological factors on hydrogen production and [Fe–Fe]-hydrogenase activity in Ethanoligenens harbinense YUAN-3
Guedon et al. Growth inhibition of Clostridium cellulolyticum by an inefficiently regulated carbon flow
Canganella et al. Clostridium thermobutyricum: growth studies and stimulation of butyrate formation by acetate supplementation
Chandra et al. Oxalate, formate, formamide, and methanol metabolism in Thiobacillus novellus
Schmitz et al. The anaerobic way of life
Dipasquale et al. Potential of hydrogen fermentative pathways in marine thermophilic bacteria: dark fermentation and capnophilic lactic fermentation in thermotoga and pseudothermotoga species
KR20190049574A (en) Inhibition of Methanol Dehydrogenase Activity by pH Control in Culture Medium and Methanol Production Method using Methanotroph
KR101911576B1 (en) A high yield of methanol production method using Methylosinus sporium and a composition therefor
Probst Respiration in hydrogen bacteria
Anandham et al. Thiosulfate oxidation and mixotrophic growth of Methylobacterium goesingense and Methylobacterium fujisawaense
Auburger et al. Activation and degradation of benzoate, 3-phenylpropionate and crotonate by Syntrophus buswellii strain GA. Evidence for electron-transport phosphorylation during crotonate respiration
Suzuki et al. Nitrate respiratory metabolism in an obligately autotrophic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus TK-6

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant