KR101911576B1 - A high yield of methanol production method using Methylosinus sporium and a composition therefor - Google Patents

A high yield of methanol production method using Methylosinus sporium and a composition therefor Download PDF

Info

Publication number
KR101911576B1
KR101911576B1 KR1020140113950A KR20140113950A KR101911576B1 KR 101911576 B1 KR101911576 B1 KR 101911576B1 KR 1020140113950 A KR1020140113950 A KR 1020140113950A KR 20140113950 A KR20140113950 A KR 20140113950A KR 101911576 B1 KR101911576 B1 KR 101911576B1
Authority
KR
South Korea
Prior art keywords
methanol
methane
concentration
mgcl
methanol production
Prior art date
Application number
KR1020140113950A
Other languages
Korean (ko)
Other versions
KR20160026087A (en
Inventor
이정걸
강윤찬
김태수
쿠마 싱 산자이 파텔
Original Assignee
건국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 건국대학교 산학협력단 filed Critical 건국대학교 산학협력단
Priority to KR1020140113950A priority Critical patent/KR101911576B1/en
Publication of KR20160026087A publication Critical patent/KR20160026087A/en
Application granted granted Critical
Publication of KR101911576B1 publication Critical patent/KR101911576B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 메틸로시너스 스포리움을 이용한 메탄으로부터 메탄올의 제조방법에 관한 것으로, 더욱 구체적으로는 메탄으로부터 메탄올을 생합성하는 데 있어서 메틸로시너스 스포리움, NH4Cl의 농도, MgCl2의 농도, 인산염의 농도를 이용하여 메탄으로부터 메탄올을 고수율로 생합성하는 방법에 관한 것이다. 본 발명은 메탄올 생합성 조건을 최적화함으로서 종래 메탄올 생합성 방법에 비해 더욱 높은 수율로 메탄올을 얻을 수 있어 경제적으로 메탄올을 생산할 수 있으며, 또한 메탄의 재활용에 유용하게 사용될 수 있다.The present invention relates to a process for the production of methanol from methane using methylene sulfonium, and more particularly to a process for the production of methanol from methane by methyl cyclosporium, the concentration of NH 4 Cl, the concentration of MgCl 2 , And a method for biosynthesizing methanol from methane at a high yield. By optimizing the conditions for biosynthesis of methanol, methanol can be obtained at a higher yield than the conventional method for biosynthesis of methanol, thereby making it possible to economically produce methanol and also to be usefully used for recycling methane.

Description

메틸로시너스 스포리움을 이용한 고수율 메탄올 생산 방법 및 그 조성물{A high yield of methanol production method using Methylosinus sporium and a composition therefor}Technical Field [0001] The present invention relates to a method for producing a methanol having a high yield using methylene cinnamosporium and a composition therefor,

본 발명은 메탄산화세균을 이용한 고수율 메탄올 제조방법에 관한 것으로, 더욱 구체적으로는 메탄으로부터 메탄올을 생산함에 있어서, 메탄산화세균, 염화나트륨 및 환원제를 이용하여 메탄으로부터 메탄올을 고수율로 생산하는 방법에 관한 것이다. More particularly, the present invention relates to a method for producing methanol from methane at a high yield by using methane-oxidizing bacteria, sodium chloride and a reducing agent in the production of methanol from methane .

메탄산화세균(Methanotrophic bacteria)은 메탄을 탄소원 및 에너지원으로 사용하여 성장하는 세균집단을 통칭하는 것으로, 메틸로모나스(Methylomonas), 메타노모나스(Methanomonas), 메틸로코쿠스(Methylococcus), 메틸로시누스(Methylosinus), 메틸로박터(Methylobacter), 메틸로미크로비움(Methylomicrobium) 및 메틸로시스티스(Methyl ocystis) 등이 있다. 상기 메탄산화세균은 메탄을 메탄올로 산화시키는 메탄 일원자산소화효소(methane monooxygenase, 이하 'MMO'라 칭함.) 및 메탄올을 포름알데히드로 산화시키는 메탄올 탈수소효소(methanol dehydrogenase, 이하 'MDH'라 칭함.) 등을 포함하고 있어 메탄가스를 산화시켜 이산화탄소로 전환시키는 역할을 한다. 구체적으로, 메탄산화세균은 메탄을 메탄올로 산화시키고, 메탄올을 다시 포름알데히드로 산화시킨다. 그리고 포름알데히드를 포름산으로 산화시켜 최종적으로 유해성이 적은 이산화탄소로 전환한다. 또한 상기 메탄산화세균은 다탄소 결합을 갖는 유기화합물을 성장물질로는 이용하지 못하지만 메탄을 산화할 때 생성되는 효소인 MMO의 효소작용으로 많은 알칸족과 방향족 화합물도 산화시킬 수 있다. 한편, 현재 쓰레기 처리장 등에서 발생되는 메탄을 재활용하는데 많은 연구가 진행되고 있으며, 그 중 메탄산화세균을 이용하여 메탄을 메탄올로 전환시키는 연구가 진행되고 있다. 메탄으로부터 메탄올을 고효율로 생합성하기 위해서는 MMO의 활성을 증가시킴과 동시에 생산된 메탄올이 포름알데히드로 산화되는 것을 억제하여야 한다. 즉 메탄올의 산화를 막기 위해서는 MDH의 활성을 저해시켜야 하는데, 이러한 MDH의 활성 저해제로는 디티오트레이톨(dithiothreitol), 시클로프로판(cyclopropane), 시클로프로판올(cyclopropanol), 페닐히드라진(phenylhydrazine), 금속 킬레이트제(metal chelating agent), 이오도아세테이트(iodoacetate) 등을 사용한다. 메탄산화세균을 이용하여 메탄올을 생합성하는 종래의 연구에 의하면, 마사이류키 등이 MDH 활성 저해제로 시클로프로판올 및 EDTA 등을 이용한 메탄올 생합성 방법이 논문에 개재되었다 [Masayuki Takeguchi, Takako Furuto, Daisukeugimori, and Ichiro Okura, Applied Biochemistry and Biotechnology, 1997, 68, 143-152; Takako Furuto, Masayuko Takeguchi, Ichiro Okura, Journal of Molecular Catalysis A : Chemical. 1999, 144, 257-261; Perdeep K. Mehta, Saroj Mishra, and Tarun K. Ghose, Biotechnology and Bioengineering, 1991, 37, 551-556]. Methanotrophic bacteria refers to a group of bacteria that grows by using methane as a carbon source and an energy source. Methylomonas, Methanomonas, Methylococcus, Methylosinus, Methylobacter, Methylomicrobium and Methyl ocystis, and the like. The methanogenic bacteria are methane monooxygenase (hereinafter abbreviated as MMO), which oxidizes methane to methanol, and methanol dehydrogenase (hereinafter referred to as MDH), which oxidizes methanol to formaldehyde. ) To convert methane gas to carbon dioxide. Specifically, the methane oxidizing bacteria oxidize methane to methanol and oxidize the methanol again to formaldehyde. Then, formaldehyde is oxidized to formic acid, which ultimately converts to less toxic carbon dioxide. In addition, the methanogenic bacteria can not use an organic compound having a carbon-carbon bond as a growth material, but many alkanes and aromatics can be oxidized by the enzymatic action of MMO, an enzyme produced when methane is oxidized. On the other hand, much research has been carried out on the recycling of methane generated at the waste disposal site, and research is underway to convert methane to methanol using methane oxidizing bacteria. In order to biosynthesize methanol efficiently from methane, it is necessary to increase the activity of MMO and to inhibit oxidation of the produced methanol to formaldehyde. That is, in order to prevent oxidation of methanol, MDH activity should be inhibited. Examples of the MDH activity inhibitor include dithiothreitol, cyclopropane, cyclopropanol, phenylhydrazine, metal chelate A metal chelating agent, iodoacetate, or the like is used. According to a conventional study in which methanol is biosynthesized using methane-oxidizing bacteria, a method of biosynthesizing methanol using cyclopropanol and EDTA as a MDH activity inhibitor by Masai Ryuki et al. [Masayuki Takeguchi, Takako Furuto, Daisukeugimori, and Ichiro Okura, Applied Biochemistry and Biotechnology, 1997, 68, 143-152; Takako Furuto, Masayuko Takeguchi, Ichiro Okura, Journal of Molecular Catalysis A: Chemical. 1999,144, 257-261; Perdeep K. Mehta, Saroj Mishra, and Tarun K. Ghose, Biotechnology and Bioengineering, 1991, 37, 551-556].

[선행 특허 문헌][Prior Patent Literature]

대한민국 특허 공개번호 제1020110006964호  Korean Patent Publication No. 1020110006964

본 발명은 상기의 필요성에 의하여 안출된 것으로서 본 발명의 목적은 메탄으로부터 메탄올을 고수율로 생합성하는 방법을 제공하는 것이다.The present invention has been made in view of the above needs, and an object of the present invention is to provide a method for biosynthesizing methanol from methane at a high yield.

상기의 목적을 달성하기 위하여 본 발명은 메탄으로부터 메탄올 생합성 방법에 있어서, 메틸로시너스 스포리움(Methylosinus sporium)을 균주로 사용하는 것을 특징으로 하는 메탄으로부터 메탄올 생합성 방법을 제공한다.In order to accomplish the above object, the present invention provides a method for biosynthesizing methanol from methane, which comprises using methylosinus sporium as a strain in methanol biosynthesis from methane.

본 발명의 일 구현예에 있어서, 상기 방법은 NH4Cl, MgCl2, 및 인산염으로 구성된 군으로부터 하나 이상의 물질을 처리하는 것이 바람직하고, 상기 NH4Cl의 농도, MgCl2의 농도, 및 인산염 농도는 각각 10 mM, 7.5 mM, 및 20 mM인 것이 바람직하나 이에 한정되지 아니한다.In one embodiment of the present invention, the method is preferably to treat one or more substances from the group consisting of NH 4 Cl, MgCl 2 , and phosphate, wherein the concentration of NH 4 Cl, the concentration of MgCl 2 , and the phosphate concentration Are preferably 10 mM, 7.5 mM, and 20 mM, respectively, but are not limited thereto.

본 발명의 다른 구현예에 있어서, 상기 방법은 배지의 pH, 배양온도, 및 교반속도가 각각 pH 7, 30℃, 및 175 rpm인 것이 바람직하나 이에 한정되지 아니한다.In another embodiment of the present invention, the method is preferably, but not limited to, pH, culture temperature, and agitation speed of the medium at pH 7, 30 ° C, and 175 rpm, respectively.

또 본 발명은 메틸로시너스 스포리움(Methylosinus sporium)을 유효성분으로 포함하는 메탄으로부터 메탄올 생합성용 조성물을 제공한다.The present invention also provides a composition for methanol biosynthesis from methane containing methylosinus sporium as an active ingredient.

본 발명의 일 구현예에 있어서, 상기 조성물은 NH4Cl, MgCl2, 및 인산염으로 구성된 군으로부터 하나 이상의 물질을 추가로 포함하는 것이 바람직하고, 상기 NH4Cl의 농도, MgCl2의 농도, 및 인산염 농도는 각각 10 mM, 7.5 mM, 및 20 mM인 것이 바람직하나 이에 한정되지 아니한다.In one embodiment of the present invention, it is preferred that the composition further comprises at least one substance from the group consisting of NH 4 Cl, MgCl 2 , and phosphate, wherein the concentration of NH 4 Cl, the concentration of MgCl 2 , and The phosphate concentrations are preferably, but not limited to, 10 mM, 7.5 mM, and 20 mM, respectively.

이하 본 발명을 설명한다.Hereinafter, the present invention will be described.

본 발명자들은 메탄올을 고효율로 생합성하기 위해 다양한 메탄산화세균을 스크리닝하고 선별된 균주를 이용하여 배지의 pH, 배양온도, 교반속도, NH4Cl의 농도, MgCl2의 농도, 인산염의 농도 등을 조절하여 메탄으로부터 메탄올을 고효율로 생합성함으로써 본 발명을 완성하였다.In order to biosynthesize methanol efficiently, various methanotrophic bacteria are screened and the pH, culture temperature, stirring speed, NH 4 Cl concentration, MgCl 2 concentration, phosphate concentration and the like of the culture medium are controlled using the selected strains Thereby completing the present invention by biosynthesizing methanol from methane with high efficiency.

본 발명은 메탄으로부터 메탄올을 생합성하는 방법에 있어서, 메탄산화세균, 배지의 pH, 배양온도, 교반속도, NH4Cl의 농도, MgCl2의 농도, 인산염의 농도를 이용하여 메탄으로부터 메탄올을 생합성하는 방법을 제공한다.The present invention relates to a method for biosynthesizing methanol from methane by biosynthesizing methanol from methane using methane-oxidizing bacteria, pH of the medium, culture temperature, stirring speed, NH 4 Cl concentration, MgCl 2 concentration and phosphate concentration ≪ / RTI >

이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

메탄올 생산 잠재력을 확인하기 위해 다양한 메탄 산화 세균들로부터 메탄올 생산량을 확인한 결과, 메틸로시너스 스포리움이 가장 우수한 균주로 선별되었다. 메틸로시너스 스포리움의 메탄올 생합성량을 최대로 하기 위해서 합성된 메탄올이 더 이상 산화되지 못하도록 MDH의 활성을 저해시켜야 한다. 이에, 본 발명은 MDH의 저해제로서 NH4Cl, MgCl2 또는 인산염을 사용한다. 상기 NH4Cl 단독 사용 시, NH4Cl의 농도는 5∼15 mM이며, 바람직하게는 10 mM이다. 상기 MgCl2 단독 사용 시, MgCl2의 농도는 5∼10 mM이며, 바람직하게는 7.5 mM이다. 또한, 인산염의 농도는 10∼30 mM이며, 바람직하게는 20 mM이다.To confirm the methanol production potential, methanol production from various methanotrophic bacteria was determined, and methylrogenosphere was selected as the best strain. In order to maximize the methanol biosynthesis amount of methylosynthosporium, the activity of MDH must be inhibited so that the synthesized methanol is no longer oxidized. Thus, the present invention is NH 4 Cl, MgCl 2 as inhibitors of MDH Or phosphate. When NH 4 Cl alone is used, the concentration of NH 4 Cl is 5 to 15 mM, preferably 10 mM. When MgCl 2 alone is used, the concentration of MgCl 2 is 5 to 10 mM, preferably 7.5 mM. The concentration of the phosphate is 10 to 30 mM, preferably 20 mM.

상술한 바와 같이, 본 발명에서 메탄산화세균을 이용하여 메탄으로부터 메탄올을 합성함에 있어 배지의 pH, 배양온도, 교반속도, NH4Cl의 농도, MgCl2의 농도, 인산염의 농도를 최적화함으로써, 종래 메탄올 생합성 방법에 비해 빠른 시간 내에 더욱 많은 메탄올을 얻을 수 있어 메탄의 재활용에 유용하게 사용될 수 있다.
As described above, in the present invention, by optimizing the medium pH, culture temperature, stirring speed, NH 4 Cl concentration, MgCl 2 concentration and phosphate concentration in the synthesis of methanol from methane using methane oxidizing bacteria, It is possible to obtain more methanol in a shorter time than the methanol biosynthesis method and thus can be usefully used for recycling methane.

도 1a는 pH에 따른, 1b는 생산온도에 따른, 1c는 교반속도에 따른 NMS 배지에서 메틸로시너스 스포리움의 메탄올 생산 확인. 메탄올 생산시간: ● 24시간, ○ 48시간.
도 2는 인산염 농도에 따른 NMS배지에서 메틸로시너스 스포리움의 메탄올 생산 확인. 메탄올 생산시간: ● 24시간, ○ 48시간.
FIG. 1A shows the methanol production of methylene synthase spore in NMS medium according to pH, 1b according to the production temperature and 1c according to the stirring speed. Methanol production time: ● 24 hours, ○ 48 hours.
FIG. 2 shows the methanol production of methylrogenesporium in NMS medium according to the phosphate concentration. Methanol production time: ● 24 hours, ○ 48 hours.

이하, 본 발명을 하기의 비한정적인 실시예에 의하여 더욱 상세히 설명한다. 단 하기 실시예는 본 발명을 예시하기 위한 의도로 기재된 것으로서 본 발명의 범위는 하기 실시예에 의하여 제한되는 것으로 해석되지 아니한다.
Hereinafter, the present invention will be described in more detail with reference to the following non-limiting examples. The following examples are intended to illustrate the invention and the scope of the invention is not to be construed as being limited by the following examples.

실시예Example 1: 메탄 산화 세균의 스크리닝  1: Screening of methanogenic bacteria

다양한 메탄 산화세균 균주를 ATCC(미국 형 배양 수집) 및 DSMZ(독일 미생물 및 세포 배양 수집센터)로부터 구매하였다. 표준 균주 메틸로코커스 캅슐라투스 바스(ATCC 33009) 및 메틸로마이크로비움 알붐(ATCC 33003)은 미국 ATCC(버지니아, 마나시스)로부터 확보하였다. 메틸로시너스 스포리움(DSMZ 17706), 실베스트리스(DSMZ 15510), 모나스 메타니카 (DSM 25384), 메틸로마이크로비움 알칼리필룸(DSMZ 19304), 메틸로셀라 툰드라(DSMZ 15673), 메틸로페룰라 스텔라타(DSMZ 22108) 및 메틸로시스티스 브르요필(DSMZ 21852)은 DSMZ에서 구매하였다. 균주는 NMS배지에서 배양한 후 메탄올 생산을 확인하였다.
A variety of methanogenic bacterial strains were purchased from ATCC (American Type Culture Collection) and DSMZ (German Microorganism and Cell Culture Collection Center). The standard strains methylroccocus capsulatus bath (ATCC 33009) and methylmicrobium alum (ATCC 33003) were obtained from the American ATCC (Manassas, VA). Methyl rosinose sporthum (DSMZ 17706), (DSMZ 15510), Monas Methanika (DSM 25384), MethylroMicrobium Alkali Films (DSMZ 19304), Methylocelera Tundra (DSMZ 15673), Methylorupera Stellata (DSMZ 22108) and Methyl Rocisteis Brewfilm (DSMZ 21852) was purchased from DSMZ. The strain was cultured in NMS medium and methanol production was confirmed.

실시예Example 2: 메탄올 생산 조건 및 생성물 검출 방법  2: Methanol production condition and product detection method

메탄과 공기의 부피 비율이 약 1:1인 대기 하에 100 ml NMS((nitrate mineral salt solution) 배지를 함유한 밀폐된 500 ml의 진탕형 삼각플라스크(듀란, 쇼트사)에 종배양이 준비되었고 16~20일 동안 200 rpm으로 작동하는 회전 진탕기에서 28 ℃에 배양되었다. 배양하는 동안 플라스크의 기체상은 공기와 메탄(부피비 1:1) 혼합물을 사용해 24시간 간격으로 새로 채워졌다. 합성된 메탄올 양은 가스크로마토그래피로 측정하였으며, 사용한 컬럼은 FID detector가 연결된 HP-5 polyethylene glycol (Agilent 19091J-413) column이었다. 컬럼 온도는 250℃, 주입기의 온도는 220℃, 검출기 온도는 250℃, 운반기체는 헬륨를 사용하였으며, 유출속도는 25 ㎖/min으로 하여 메탄올 생산량을 측정하였다.
A seed culture was prepared in an enclosed 500 ml shaking-type Erlenmeyer flask (Duran, Shot) containing 100 ml of Nitrous Mineral Salt Solution (NMS) medium under an atmosphere of about 1: 1 volume ratio of methane and air, For 20 days at 28 ° C. During the incubation, the gas phase of the flask was refilled with a mixture of air and methane (1: 1 by volume) at intervals of 24 hours. The amount of methanol synthesized The column temperature was 250 ° C, the temperature of the injector was 220 ° C, the temperature of the detector was 250 ° C, and the carrier gas was H 2 O. The column was a HP-5 polyethylene glycol column (Agilent 19091J-413) Helium was used and the methanol production was measured at a flow rate of 25 ml / min.

실시예Example 3 : 메탄 산화 세균의 선별 3: Selection of methanogenic bacteria

메탄올 생산 잠재력을 확인하기 위해 다양한 메탄 산화 세균들로부터 메탄올 생산량을 확인한 결과, 메틸로시너스 스포리움이 가장 높은 473 μM의 메탄올을 생산하였다 (표 1). 따라서 메틸로시너스 스포리움을 메탄올 생산의 최적화를 위한 균주로 선별하였다.To confirm the methanol production potential, methanol production from various methanotrophic bacteria was determined, and methylrogenosphereolithium produced the highest amount of 473 μM methanol (Table 1). Thus, Methylosynthosporium was selected as a strain for optimization of methanol production.

MethanotrophsMethanotrophs Methanol production (μM)Methanol production ([mu] M) MethylosinusMethylosinus sporiumsporium 473473 Methylococcus capsulatus Bath Methylococcus capsulatus bath 2.052.05 MethylomonasMethylomonas methanicamethanica 1.741.74 MethylomicrobiumMethylomicrobium albumalbum 1.21.2 MethylocellaMethylocella silverstrissilverstris NdNd MethylocystisMethylocystis bryophilabryophila NdNd MethyloferulaMethyloferula stellatastellata NdNd MethylocellaMethylocella tundraetundrae NdNd MethylomicrobiumMethylomicrobium alcaliphilumalcaliphilum NDND

표 1은 메탄올 생산량 비교를 통한 메탄 산화세균의 선별 표로, Nd: Not detected
Table 1 shows the methane-oxidizing bacteria selection table by comparing the methanol yield. Nd: Not detected

실시예Example 4:  4: pHpH 에 따른 메탄올 생성 양의 측정Of methanol production

메틸로시너스 스포리움을 활용해 서로 다른 pH가 메탄올 생산에 미치는 영향을 시험하였다. 최적 pH는 7.0으로 48시간 배양 후 1.1 mM의 메탄올을 생산하였다 (도 1a).
The effect of different pH on the methanol production was examined using methylosynthosphospheres. The optimum pH was 7.0 for 48 hours and then 1.1 mM of methanol was produced (Fig. 1A).

실시예Example 5: 배양온도에 따른 메탄올 생성 양의 측정 5: Measurement of amount of methanol production according to incubation temperature

온도는 메탄올 생산 뿐만아니라 메탄 산화 세균의 성장에 영향을 미치는 인자로 최적화가 필요하다. 메틸로시너스 스포리움에 의한 메탄올 생산의 최적 온도는 30℃로 최대 메탄올 생산량은 NMS 배지에서 48시간 후 1.2 mM 이었다 (도 1b).
The temperature needs to be optimized not only for methanol production but also as a factor influencing the growth of methanogenic bacteria. The optimum temperature for methanol production by methylene spinosum was 30 ° C and the maximum methanol production was 1.2 mM after 48 hours in NMS medium (FIG. 1b).

실시예Example 6:  6: NHNH 44 ClCl , , MgClMgCl 22 농도에 따른 메탄올 생성 양의 측정 Measurement of methanol production by concentration

종래 기술에 의해 NH4Cl와 MgCl2이 MDH 저해제로 효과가 있음이 알려져 있다. 0 mM에서 20 mM 범위의 다양한 NH4Cl, MgCl2 농도에서 메틸로시너스 스포리움에 의한 메탄올 생산량을 확인하였다. 메탄올 생산은 48시간 이후 10 mM NH4Cl의 농도, 7.5 mM MgCl2 농도에서 최적 메탄올 생산량인 1.3 mM에 이르렀다.It is known that NH 4 Cl and MgCl 2 are effective as MDH inhibitors by the prior art. Various NH 4 Cl, MgCl 2 < RTI ID = 0.0 > Methanol production by methylene sulfonium was confirmed. Methanol production was measured after 48 hours by the addition of 10 mM NH 4 Cl, 7.5 mM MgCl 2 The optimum methanol yield was reached to 1.3 mM.

실시예Example 7: 인산염 농도에 따른 메탄올 생성 양의 측정 7: Measurement of the amount of methanol production by phosphate concentration

높은 수준의 인산염은 메탄 산화세균 내에서 메탄올을 포름알데히드로 산화시키는 데 있어서 촉매작용을 하는 메탄올을 억제한다. 메틸로시너스 스포리움에 의해 0 mM에서 50 mM 범위의 다양한 인산염농도에서 메탄올 생산량을 확인하였다 (도 2). 메탄올 생산은 48시간 이후 20 mM 인산염에서 최적 메탄올 생산량인 1.6 mM에 이르렀다.
High levels of phosphate inhibit methanol catalyzing the oxidation of methanol to formaldehyde in methane oxidizing bacteria. Methanol production was determined at various phosphate concentrations ranging from 0 mM to 50 mM by methyl Rhosine spores (Fig. 2). Methanol production reached an optimum methanol yield of 1.6 mM in 20 mM phosphate after 48 hours.

Claims (7)

메틸로시너스 스포리움(Methylosinus sporium)을 균주로 사용하는 것을 특징으로 하는 메탄으로부터 메탄올 생합성 방법으로서,
상기 방법은, 배지의 배양온도가 30℃이고, NH4Cl, MgCl2, 및 인산염으로 구성된 군으로부터 선택된 하나 이상의 물질을 처리하며,
상기 NH4Cl의 농도, MgCl2의 농도, 및 인산염 농도는 각각 10 mM, 7.5 mM, 및 20 Mm인 것을 특징으로 하는 방법.
A method for biosynthesizing methanol from methane using Methylosinus sporium as a strain,
The method comprises treating the at least one substance selected from the group consisting of NH 4 Cl, MgCl 2 , and phosphate, wherein the culture temperature of the culture medium is 30 ° C,
Wherein the concentration of NH 4 Cl, the concentration of MgCl 2 , and the phosphate concentration are 10 mM, 7.5 mM, and 20 Mm, respectively.
삭제delete 삭제delete 제 1항에 있어서, 상기 방법은 배지의 pH 및 교반속도가 각각 pH 7 및 175 rpm인 것을 특징으로 하는 방법.The method according to claim 1, wherein the pH and agitation speed of the medium are pH 7 and 175 rpm, respectively. 메틸로시너스 스포리움(Methylosinus sporium)을 유효성분으로 포함하는 메탄으로부터 메탄올 생합성용 조성물로서,
상기 조성물은, 30℃의 온도에서 배양하고, NH4Cl, MgCl2, 및 인산염으로 구성된 군으로부터 선택된 하나 이상의 물질을 추가로 포함하며,
상기 조성물의 NH4Cl의 농도, MgCl2의 농도, 및 인산염 농도는 각각 10 mM, 7.5 mM, 및 20 mM인 것을 특징으로 하는 조성물.
A composition for methanol biosynthesis from methane containing methylosinus sporium as an active ingredient,
The composition is incubated at a temperature of 30 ℃, and further comprising at least one material selected from the group consisting of NH 4 Cl, MgCl 2, and phosphate salts,
Wherein the NH 4 Cl concentration, the MgCl 2 concentration, and the phosphate concentration of the composition are 10 mM, 7.5 mM, and 20 mM, respectively.
삭제delete 삭제delete
KR1020140113950A 2014-08-29 2014-08-29 A high yield of methanol production method using Methylosinus sporium and a composition therefor KR101911576B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140113950A KR101911576B1 (en) 2014-08-29 2014-08-29 A high yield of methanol production method using Methylosinus sporium and a composition therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140113950A KR101911576B1 (en) 2014-08-29 2014-08-29 A high yield of methanol production method using Methylosinus sporium and a composition therefor

Publications (2)

Publication Number Publication Date
KR20160026087A KR20160026087A (en) 2016-03-09
KR101911576B1 true KR101911576B1 (en) 2018-10-24

Family

ID=55536548

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140113950A KR101911576B1 (en) 2014-08-29 2014-08-29 A high yield of methanol production method using Methylosinus sporium and a composition therefor

Country Status (1)

Country Link
KR (1) KR101911576B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101895683B1 (en) 2016-11-14 2018-09-07 건국대학교 산학협력단 A high yield of methanol production method using covalent immobilized methylosinus sporium on the chitosan and a composition therefor
KR102165641B1 (en) * 2017-10-30 2020-10-15 서강대학교산학협력단 Composition for the production of propanol containing methanotroph and propanol production method
KR102091313B1 (en) 2018-01-30 2020-03-19 건국대학교 산학협력단 Macro-porous particles for immobilization of Methanotrophs and methode for production of methanol using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101095478B1 (en) * 2009-07-15 2011-12-16 이화여자대학교 산학협력단 Novel methane-oxidizing bacterium, Methylocystis sp. M6 and method for removing methane using the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Appl. Biochem. Biotechnol., Vol. 171, pp. 1487-1499 (2013.08.21.)*
Russian Chemical Bulletin, International Edition, Vol. 57, pp. 1633-1636 (2008.08.)*

Also Published As

Publication number Publication date
KR20160026087A (en) 2016-03-09

Similar Documents

Publication Publication Date Title
Vijayaraghavan et al. Biohydrogen generation from jackfruit peel using anaerobic contact filter
Ge et al. Biological conversion of methane to liquid fuels: status and opportunities
Panke et al. Production of enantiopure styrene oxide by recombinant Escherichia coli synthesizing a two‐component styrene monooxygenase
Carlsen et al. Inhibition by ammonia of methane utilization in Methylococcus capsulatus (Bath)
AlSayed et al. Sustainable biogas mitigation and value-added resources recovery using methanotrophs intergrated into wastewater treatment plants
Kim et al. Optimization of lab scale methanol production by Methylosinus trichosporium OB3b
Wu et al. Novel Alcaligenes ammonioxydans sp. nov. from wastewater treatment sludge oxidizes ammonia to N2 with a previously unknown pathway
Tholozan et al. Clostridium neopropionicum sp. nov., a strict anaerobic bacterium fermenting ethanol to propionate through acrylate pathway
Meza et al. Role of ethanol on growth, laccase production and protease activity in Pycnoporus cinnabarinus ss3
CN101535467B (en) A levorotatory lactonohydrolase producing strain and its use for producing chiral oxyacid
CN101437949A (en) Method of producing hydroxycarboxylic acid by regenerating coenzyme
Moradi et al. Improved γ-decalactone production from castor oil by fed-batch cultivation of Yarrowia lipolytica
Chen et al. A fungus–bacterium co-culture synergistically promoted nitrogen removal by enhancing enzyme activity and electron transfer
KR101911576B1 (en) A high yield of methanol production method using Methylosinus sporium and a composition therefor
CN1329506C (en) Recombinant bacterium with granular methane monooxygenase activity and application thereof
JPH0145356B2 (en)
Doronina et al. Aerobic methylobacteria as promising objects of modern biotechnology
KR20190049575A (en) Composition for the production of propanol containing methanotroph and propanol production method
KR101796983B1 (en) Microbial production of n-butyraldehyde
Patel et al. Microbial oxidation of gaseous hydrocarbons: production of methylketones from corresponding n-alkanes by methane-utilizing bacteria
US4368267A (en) Epoxidation of lower α-olefins
CA1148488A (en) Epoxidation of lower alpha-olefins
Patel et al. Microbial oxidation of gaseous hydrocarbons: production of secondary alcohols from corresponding n-alkanes by methane-utilizing bacteria
KR101895683B1 (en) A high yield of methanol production method using covalent immobilized methylosinus sporium on the chitosan and a composition therefor
Xin et al. Continuous biocatalytic synthesis of epoxypropane using a biofilm reactor

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant