WO2018056431A1 - Method for measuring l-kynurenine and measurement kit - Google Patents

Method for measuring l-kynurenine and measurement kit Download PDF

Info

Publication number
WO2018056431A1
WO2018056431A1 PCT/JP2017/034439 JP2017034439W WO2018056431A1 WO 2018056431 A1 WO2018056431 A1 WO 2018056431A1 JP 2017034439 W JP2017034439 W JP 2017034439W WO 2018056431 A1 WO2018056431 A1 WO 2018056431A1
Authority
WO
WIPO (PCT)
Prior art keywords
kynurenine
enzyme
reaction
concentration
substance
Prior art date
Application number
PCT/JP2017/034439
Other languages
French (fr)
Japanese (ja)
Inventor
宮本 浩士
史直 小林
Original Assignee
池田食研株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 池田食研株式会社 filed Critical 池田食研株式会社
Priority to JP2018540334A priority Critical patent/JP6913956B2/en
Publication of WO2018056431A1 publication Critical patent/WO2018056431A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/52Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids

Definitions

  • the present invention relates to a method and kit for measuring L-kynurenine using an enzyme.
  • L-kynurenine is known to exist in vivo as a metabolite of L-tryptophan, and various measurement significances have been studied in the medical field. L-kynurenine is generally measured by liquid chromatography, but this measurement is complicated and lacks versatility. As other measurement methods, an antibody method, a colorimetric method using an Ehrlich reagent and an enzyme method are known, but the antibody method is complicated and the colorimetric method has low specificity. As an enzymatic method, a measurement method for detecting fluorescence using kynureninease or kynurenine aminotransferase is known (Non-patent Documents 1 and 2), but biochemical automatic analysis generally used in clinical laboratory settings. There is a problem that the device cannot be used.
  • the enzymatic method using kynureninase is a technique in which a liquid obtained by extracting an enzyme reaction solution with ethyl acetate is measured by a fluorescence method, and there is a problem that it is very complicated.
  • Non-patent Documents 3 to 7 Pseudomonas-derived, human-derived, rat-derived, mosquito or yeast-derived enzymes are known as kynurenine 3-monooxygenase using L-kynurenine as a substrate.
  • kynurenine 3-monooxygenase can be used for the measurement of L-kynurenine.
  • An object of the present invention is to provide a measurement method and a measurement kit that can measure L-kynurenine simply and accurately by using an enzyme.
  • the present inventors have examined a method for measuring kynurenine using an enzyme, and as a result, kynurenine 3-mono in the presence of an electron donor selected from the group consisting of L-kynurenine and NADH, NADPH and derivatives thereof.
  • an electron donor selected from the group consisting of L-kynurenine and NADH, NADPH and derivatives thereof.
  • By reacting oxygenase and measuring the product by adding a metal indicator specific for a divalent copper compound and a monovalent copper ion, or a redox coloring reagent and a charge carrier it is simple, accurate and sensitive.
  • the inventors have found a method capable of quantifying L-kynurenine and have reached the present invention.
  • the present invention provides the following [1] to [19].
  • [1] A sample containing L-kynurenine is subjected to an enzyme reaction with kynurenine 3-monooxygenase in the presence of an electron donor selected from the group consisting of NADH, NADPH and derivatives thereof, and the remaining electrons
  • the enzyme reaction solution in step (B) (1) a step of reacting a divalent copper compound and a metal indicator specific for a monovalent copper ion, or (2) a redox coloring reagent and a charge carrier
  • C Based on the value obtained by subtracting the concentration of the chromogenic substance in the sample not containing L-kynurenine or the sample not containing kynurenine 3-monooxygenase from the concentration of the chromogenic substance obtained in step (B).
  • a method for measuring the amount of L-kynurenine in a sample comprising the step of determining the amount of kynurenine.
  • the chromogenic material obtained in (1) of the step (B) contains a monovalent copper ion produced by the reaction of 3-hydroxykynurenine and a divalent copper compound, and a metal that specifically acts on the ion.
  • the measurement method according to [1] which is produced by a reaction with an indicator.
  • the measuring method as described in. [11] The measuring method according to [10] above, wherein the reducing substance is bilirubin, ascorbic acid and / or uric acid.
  • the reducing substance is bilirubin, ascorbic acid and / or uric acid.
  • at least one selected from the group consisting of tryptophanase, tryptophan oxidase, bilirubin oxidase, ascorbate oxidase, uricase, peroxidase, catalase and hydrogen peroxide contains L-kynurenine
  • L-kynurenine measurement comprising an electron donor selected from the group consisting of NADH, NADPH and derivatives thereof, kynurenine 3-monooxygenase, a divalent copper compound, and a metal indicator specific for monovalent copper ion
  • kit for measuring L-kynurenine, comprising an electron donor selected from the group consisting of NADH, NADPH and derivatives thereof, kynurenine 3-monooxygenase, a redox coloring reagent, and a charge carrier.
  • kits for measuring L-kynurenine wherein the kit according to [17] above further comprises an enzyme that acts on a phenol compound.
  • kit for measuring L-kynurenine wherein the kit according to [18] above further comprises NADH or NADPH regenerating enzyme and a substrate thereof.
  • L-kynurenine can be quantified simply, accurately and with high sensitivity. Since a low concentration of L-kynurenine can be measured, a trace amount of L-kynurenine contained in a living body can be measured.
  • This method can be measured by absorbance, and can be used for bioanalytical automatic analyzers that are currently widely used. Therefore, this method is suitable for measuring a large number of samples, and can be put to practical use in the field of clinical tests.
  • the absorbance at 480 nm derived from the chromogenic material produced by reacting with L-Kyn was measured in a sample that did not contain L-Kyn (control). It is the figure which showed the result of having plotted the difference with the light absorbency of 480 nm originating as OD480.
  • the absorbance at 440 nm derived from the generated chromogenic material does not contain L-Kyn.
  • FIG. 6 is a diagram showing the result of plotting the difference from the absorbance at 440 nm derived from a sample not containing L-Kyn (control) as OD440.
  • P-KMO and NADH react with L-Kyn to obtain an enzyme reaction solution, then act on laccase, and then use WST-1 and diaphorase to determine the absorbance at 440 nm derived from the generated color substance.
  • FIG. 6 is a diagram showing the result of plotting the difference from the absorbance at 440 nm derived from a sample not containing L-Kyn (control) as OD440.
  • P-KMO and NADH react with L-Kyn to obtain an enzyme reaction solution, then act on bilirubin oxidase, and then use WST-1 and diaphorase to determine the absorbance at 440 nm derived from the generated color substance.
  • FIG. 5 is a graph showing the result of plotting the difference from the absorbance at 440 nm derived from a specimen (control) not containing L-Kyn as OD440.
  • P-KMO and NADH are used to react with L-Kyn to obtain an enzyme reaction solution, which is then reacted with peroxidase, alcohol dehydrogenase, ethanol, WST-1 and diaphorase to produce 440 nm derived from the generated color substance. It is the figure which showed the result of having calculated the variation
  • FIG. 7 is a graph showing the result of plotting the difference from the absorbance at 480 nm derived from a specimen not containing ⁇ Kyn (control) as OD480.
  • Reacting with L-Kyn using P-KMO and NADH in the presence of serum to obtain an enzyme reaction solution, allowing POD to act, and then using a surfactant, WST-1 and diaphorase 4 is a graph showing the result of plotting the difference between the absorbance at 440 nm derived from the 440 nm derived from the specimen not containing L-Kyn (control) as OD440.
  • the present invention (A) A sample containing L-kynurenine is subjected to an enzymatic reaction with kynurenine 3-monooxygenase in the presence of an electron donor selected from the group consisting of NADH, NADPH and derivatives thereof, and the remaining electron donor, And obtaining an enzyme reaction solution containing the produced 3-hydroxykynurenine, (B) In the enzyme reaction solution of step (A), (1) a metal indicator specific to a divalent copper compound and a monovalent copper ion, or (2) a step of reacting a redox coloring reagent and a charge carrier, and (C) the color obtained in step (B).
  • the present invention relates to a method for measuring the amount of L-kynurenine.
  • the present invention includes a step (A) of reacting a sample containing L-kynurenine with an electron donor selected from the group consisting of NADH, NADPH and derivatives thereof and kynurenine 3-monooxygenase.
  • sample used in the present invention is not particularly limited as long as it may contain L-kynurenine.
  • biological samples of mammals including humans such as blood (serum, plasma), saliva, urine, cerebrospinal cord Liquid and the like.
  • blood is preferable, and when blood is used as a sample, it is more preferable to use serum or deproteinized blood.
  • the measurement of a biological sample may include a pretreatment step of removing at least one of a reducing substance, a contaminating protein, a metal ion and the like that may interfere with the measurement by a known method.
  • a reducing substance include bilirubin, ascorbic acid, uric acid and the like.
  • examples include bilirubin oxidase for reducing bilirubin, ascorbate oxidase for reducing ascorbic acid, and pretreatment using an enzyme such as uricase for reducing uric acid.
  • treatment with hydrogen peroxide or peroxidase can also be performed. Catalase can also be used to reduce the hydrogen peroxide used or produced.
  • the usage-amount of enzyme, reaction pH, and temperature can be suitably set based on the optimal pH and temperature of each enzyme.
  • the amount of the enzyme used is, for example, 0.1 to 1000 U / mL, preferably 0.5 to 100 U / mL, in the pretreatment solution.
  • the reaction temperature is, for example, 15 to 50 ° C., preferably 20 to 45 ° C., more preferably 25 to 40 ° C.
  • the reaction pH is, for example, 5.0 to 11.0, preferably 5.5 to 10.5, and more preferably 6.0 to 10.0.
  • the reaction time is, for example, 1 to 60 minutes, preferably 1 to 40 minutes.
  • Contaminating protein can be reduced with a deproteinizing agent such as perchloric acid or trichloroacetic acid. After the treatment, neutralization using potassium carbonate or the like can be used as a sample. It should be noted that reducing substances such as bilirubin and hemoglobin can be reduced by the protein removal treatment.
  • a deproteinizing agent such as perchloric acid or trichloroacetic acid.
  • neutralization using potassium carbonate or the like can be used as a sample. It should be noted that reducing substances such as bilirubin and hemoglobin can be reduced by the protein removal treatment.
  • Metal ions can be reduced, for example, with a metal chelator.
  • the metal chelating agent is not particularly limited, but EDTA (ethylenediaminetetraacetic acid), bicine (N, N-bis (2-hydroxyethyl) glycine), DTPA (diethylenetriaminepentaacetic acid), CyDTA (trans-1,2-diaminocyclohexane- N, N, N, N-tetraacetic acid) and the like are preferably used.
  • concentration of a metal chelating agent can be set suitably.
  • the molar concentration is the same or lower than that of the divalent copper compound to be used, more preferably 1/2 or lower.
  • Magnesium ions and the like can be reduced by adding phosphoric acid.
  • a redox agent such as potassium ferricyanide, potassium ferrocyanide, benzoic acid, iodate or nitrite, or adding a surfactant Is mentioned.
  • a surfactant include nonionic surfactants, anionic surfactants, cationic surfactants, and amphoteric surfactants, such as polyoxyethylene alkyl ethers and polyoxyethylene alkyls.
  • Nonionic surfactants such as phenyl ether, polyoxyethylene sorbitan fatty acid ester, olefin sulfonic acid, polyoxyethylene alkyl phenyl ether sulfate, polyoxyethylene alkyl phenyl ether acetate, sodium lauryl sulfate, sodium cholate, octanoic acid
  • Anionic surfactants such as sodium and sodium dodecylbenzenesulfonate are preferably used.
  • polyoxyethylene sorbitan monolaurate, polyoxyethylene lauryl ether or polyoxyethylene octyl phenyl ether is more preferred, and the average added mole number of EO (ethylene oxide) is preferably 10 to 30, more preferably 5 to 25. It is.
  • polyoxyethylene (20) sorbitan monolaurate, polyoxyethylene (23) lauryl ether or polyoxyethylene (10) octylphenyl ether is preferably used.
  • the surfactant is preferably added in an amount of 0.01 to 5.0% (w / v) with respect to the entire measurement system, and an amount of 0.1 to 2.0% (w / v). It is more preferable to add.
  • the addition time is not particularly limited as long as a series of enzyme reactions proceeds, but it is preferably added before the color development reaction.
  • the liquid subjected to the above pretreatment may be used for measurement immediately after the pretreatment, or may be used after storage in refrigeration or freezing. Moreover, this pre-processing can be implemented at the suitable time before a process (A) and / or a process (B).
  • the L-kynurenine measuring method of the present invention In order to perform the L-kynurenine measuring method of the present invention more accurately, it is preferable to substantially eliminate the influence of contaminants in the sample. For example, since the L-tryptophan concentration in a biological sample is generally considered to be about 10 to 100 times higher than the L-kynurenine concentration, it is preferable to suppress the influence of L-tryptophan on the measurement of L-kynurenine. An L-kynurenine measurement method using NADH as an electron donor is preferable, and a measurement method using NADH alone is more preferable.
  • an L-kynurenine measurement method including a step of reducing L-tryptophan in a sample with an enzyme that acts on L-tryptophan is preferable. This step is preferably performed as a pretreatment prior to the reaction with kynurenine 3-monooxygenase.
  • the enzyme that acts on L-tryptophan is not particularly limited as long as it does not substantially act on L-kynurenine, and examples thereof include tryptophan oxidase and tryptophanase. Tryptophan oxidase is preferably used in combination with catalase.
  • the amount of enzyme used is not particularly limited as long as L-tryptophan can be reduced.
  • the concentration in the pretreatment solution is preferably about 0.1 to 100 U / mL, and about 1 to 10 U / mL. It is more preferable.
  • the concentration in the pretreatment solution is preferably about 0.1 to 10,000 U / mL, more preferably about 1 to 1,000 U / mL.
  • the concentration in the pretreatment solution is preferably about 0.01 to 10 U / mL, and more preferably about 0.1 to 2 U / mL.
  • the reaction temperature, reaction pH, and reaction time can be appropriately set based on the optimum pH and temperature of each enzyme.
  • the reaction temperature is, for example, 15 to 50 ° C., preferably 20 to 45 ° C., more preferably 25 to 40 ° C.
  • the reaction pH is, for example, 5.0 to 11.0, more preferably 5.5 to 10.5, and more preferably 6.0 to 10.0.
  • the reaction time is, for example, 1 to 60 minutes, preferably 1 to 40 minutes.
  • KMO kynurenine 3-monooxygenase
  • a known enzyme derived from a prokaryotic organism such as Pseudomonas or a eukaryotic organism such as human, rat, mosquito or yeast
  • the enzyme used may be a recombinant enzyme or a synthesized enzyme.
  • This enzyme is preferably a soluble enzyme, but a surfactant may be combined with the insoluble enzyme, or an enzyme in which the insoluble enzyme is solubilized by fusion with a solubilized protein or deletion of a membrane-bound portion may be used.
  • an enzyme having a known amino acid sequence can be used.
  • an enzyme having the sequence shown in SEQ ID NO: 1, 2, 3, 4 or 5 can be used. Further, it may be a modified enzyme having kynurenine 3-monooxygenase activity by substituting, adding or deleting one or several amino acids in the sequence shown in SEQ ID NO: 1, 2, 3, 4 or 5. Having a sequence having similarity or identity of SEQ ID NO: 1, 2, 3, 4 or 5, for example 60%, 65%, 70%, 75%, 80%, 85%, 90% or 95% or more, A protein having kynurenine 3-monooxygenase activity may be used.
  • Step (A) of the present invention is carried out in the presence of an electron donor selected from the group consisting of NADH, NADPH and derivatives thereof.
  • NADH or a NADPH derivative can be used to improve the stability of NADH or NADPH, increase the molar extinction coefficient, or the like.
  • the type of NADH or NADPH derivative is not particularly limited as long as the reaction with kynurenine 3-monooxygenase proceeds.
  • a known NADH or NADPH derivative disclosed in JP2012-224638A is known. Things can be used.
  • the amount of enzyme in the enzyme reaction used in the step (A) is not particularly limited as long as L-kynurenine in the sample can be converted to 3-hydroxykynurenine, but is preferably about 0.0001 to 100 U per sample. About 001 to 10 U is more preferable.
  • the concentration of the electron donor in step (A) is not particularly limited as long as L-kynurenine in the sample can be measured, but is preferably 0.01 to 1 mM, more preferably 0.01 to 0.5 mM.
  • the reaction temperature, reaction pH, and reaction time in the step (A) can be appropriately set based on the optimum pH and temperature of the enzyme.
  • the reaction temperature is, for example, 15 to 50 ° C., preferably 20 to 45 ° C., more preferably 25 to 40 ° C.
  • the reaction pH is, for example, 5.0 to 11.0, preferably 5.5 to 10.5, and more preferably 6.0 to 10.0.
  • the reaction time is, for example, 1 to 60 minutes, preferably 1 to 30 minutes, more preferably 1 to 10 minutes.
  • step (B) The present invention provides the product of step (A) (1) a step (B) of reacting a divalent copper compound and a metal indicator specific to a monovalent copper ion, or (2) a redox coloring reagent and a charge carrier.
  • a divalent copper compound is used, and a plurality of moles of monovalent copper ions per mole of 3-hydroxykynurenine can be generated by an oxidation-reduction reaction with 3-hydroxykynurenine in the reaction solution. it can. Furthermore, a coloring substance can be produced by reaction with a metal indicator specific for monovalent copper ions.
  • a water-soluble thing is preferable, for example, copper (II) chloride, copper sulfate (II), copper nitrate (II), copper acetate (II), copper citrate (II) ), Copper (II) gluconate and the like are used. Of these, copper (II) chloride or copper (II) sulfate is preferably used.
  • the metal indicator specific to the monovalent copper ion is not particularly limited, but it does not substantially react with other metal ions and specifically reacts with the monovalent copper ion to form a colored complex. Etc. are used.
  • bathocuproin, neocuproin, bicinchoninic acid, derivatives thereof or salts thereof are preferably used. Of these, bathocuproin or a salt thereof is preferable, and disodium bathocuproin disulfonate is more preferable.
  • the concentration of each reagent in the reaction is preferably 0.01 to 2.0 mM, more preferably 0.02 to 1.0 mM in the case of a divalent copper compound.
  • the metal indicator specific for monovalent copper ions is preferably from 0.01 to 2.0 mM, more preferably from 0.02 to 1.0 mM.
  • the pH during measurement is preferably from 3.0 to 11.0, more preferably from 4.0 to 10.0.
  • the reaction temperature is preferably 15 to 50 ° C, more preferably 20 to 45 ° C, still more preferably 25 to 40 ° C.
  • the metal indicator is preferably added to the sample before adding the divalent copper compound so that the production of monovalent copper ions can be discriminated.
  • the produced monovalent copper ions can be accurately quantified by the change in the monovalent copper ion concentration before and after adding the divalent copper compound.
  • the reducing coloring reagent is an electron selected from the group consisting of NADH, NADPH and derivatives thereof in the reaction solution in the presence of a charge carrier.
  • a reduced coloring material is generated from an oxidized colorless material.
  • the type of reducing coloring reagent is not particularly limited as long as L-kynurenine in a sample can be measured.
  • the concentration in the reaction solution is preferably 0.02 mg / mL or more, more preferably 0.1 mg / mL or more, when a coloring reagent having low solubility in water such as MTT is used or when a high concentration is used.
  • a coloring reagent having low solubility in water such as MTT
  • a high concentration is used.
  • a surfactant such as sodium dodecyl sulfate (SDS) or dimethyl sulfoxide (DMSO) or an organic solvent may be used for solubilization.
  • an oxidizing coloring reagent reacts with an electron donor selected from the group consisting of NADH, NADPH and derivatives thereof in the reaction solution in the presence of a charge carrier.
  • a reduced colorless substance is produced from an oxidized color developing substance.
  • the type of this reagent is not particularly limited as long as L-kynurenine in a sample can be measured, and examples thereof include dichloroindophenol (DCIP).
  • the charge carrier is not particularly limited as long as L-kynurenine in a sample can be measured, but 3-hydroxykynurenine can be reversed without catalyzing the production of a coloring substance by 3-hydroxykynurenine in a reaction solution and a redox coloring reagent. Therefore, it is desirable to inhibit the generation of a color developing substance by the reaction between the electron donor and the redox coloring reagent.
  • the use of diaphorase is preferable. When diaphorase is used, the amount used is preferably 0.01 U / mL or more, more preferably 0.1 U / mL or more, in the reaction solution.
  • the type of diaphorase is not limited as long as it reacts with an electron donor. For example, EC number 1.6.5.2, EC number 1.6.99.1, EC number 1.6.99. Those classified into 3 can be used.
  • the reaction temperature, reaction pH, and reaction time in step (B) can be appropriately set based on the optimum pH and temperature of the enzyme and the like in the first and second aspects.
  • the reaction temperature is, for example, 15 to 50 ° C., preferably 20 to 45 ° C., more preferably 25 to 40 ° C. In addition, you may make it the same temperature in a process (A).
  • the reaction pH is not particularly limited, but for example, pH 3.0 to 12.0 is preferable. In the first embodiment, pH 4.0 to 11.0 is more preferable. In the second embodiment, for example, when diaphorase is used as the charge carrier, pH 6.0 to 10.0 is preferable, and pH 7.0 to 9.0 is more preferable.
  • the reaction pH in step (A) may be the same.
  • the reaction time is, for example, 1 to 60 minutes, preferably 1 to 40 minutes, more preferably 1 to 10 minutes.
  • the type of the buffer solution in the first and second aspects is not particularly limited as long as it has a buffering ability at a target pH.
  • bicine, tris, citric acid In the case of a substance that forms a complex with a copper ion, etc., it is necessary to use it with caution because it may inhibit color development in the first embodiment.
  • the present invention is based on a value obtained by subtracting the concentration of the coloring substance in the sample not containing L-kynurenine or the sample not added with kynurenine 3-monooxygenase from the concentration of the coloring substance obtained in step (B).
  • a step (C) of determining an amount of L-kynurenine Samples that do not contain L-kynurenine or samples without kynurenine 3-monooxygenase are called controls, and exclude the influence on assay values when L-kynurenine or kynurenine 3-monooxygenase is not added. is there.
  • the color-developing substance to be measured in the first aspect is a substance produced by a reaction between a monovalent copper ion and a metal indicator specific to the monovalent copper ion.
  • concentration of this coloring substance By measuring the concentration of this coloring substance, the concentration of monovalent copper ions can be measured, and as a result, the concentration of L-kynurenine in the sample can be measured with high sensitivity.
  • the color-developing substance to be measured in the second aspect is obtained from an oxidation-reduction color-developing reagent, and is an electron selected from the group consisting of NADH, NADPH and their derivatives in the reaction solution in the presence of a charge carrier.
  • a donor is obtained by reacting with a redox coloring reagent.
  • the L-kynurenine concentration can be measured by the following procedure. a) Concentration of the coloring substance obtained by adding the electron donor and kynurenine 3-monooxygenase to the reaction solution not containing L-kynurenine, and further donating a charge carrier and a redox coloring reagent. Measure. Alternatively, after adding an electron donor to a reaction solution containing L-kynurenine, no kynurenine 3-monooxygenase is added, and the concentration of the coloring substance obtained by donating the charge carrier and the redox coloring reagent is adjusted. taking measurement.
  • the concentration of the coloring substance obtained by the reaction of the electron donor with the reducing coloring reagent in the presence of a charge carrier increases depending on the concentration of the electron donor.
  • the reaction with L-kynurenine 3-monooxygenase is carried out, the number of electron donors in the reaction solution is the same as the number of moles of L-kynurenine, so in the enzyme reaction solution after the reaction with kynurenine 3-monooxygenase, The chromogenic substance decreases depending on the concentration of L-kynurenine, but the absolute value of the slope is considered to be equal to the absolute value of the slope obtained between the electron donor and the chromogenic substance.
  • the decrease in the concentration of the chromogenic substance accompanying the increase in the L-kynurenine concentration is not only due to the influence of the decrease in the electron donor after the reaction by the kynurenine 3-monooxygenase, but also increases as the L-kynurenine concentration increases. Since the influence of the amount of hydroxykynurenine was also taken into account, it was found that an increase in absolute value of the slope more than expected was obtained. As a result, by measuring the concentration of the coloring material, the concentration of L-kynurenine in the sample can be measured with high sensitivity.
  • a substance that acts on 3-hydroxykynurenine is added, whereby the electron donor and the redox coloring by the charge carrier are added. It has been found that the effect of inhibiting the reaction with the reagent is further increased, and as a result, a more sensitive measurement can be performed.
  • the specific substance is not particularly limited as long as it does not inhibit the reaction in a system that does not contain 3-hydroxykynurenine, but is not particularly limited as long as it is a substance that inhibits the reaction in a system that contains 3-hydroxykynurenine.
  • oxidizing agent or a polymerization agent that acts, and more preferably an enzyme that acts on a phenolic compound.
  • peroxidase EC number 1.11.1.X
  • laccase EC number 1.10.3.2
  • bilirubin oxidase EC number 1.3.3.5
  • Tyrosinase EC number 1.10.3.1 or 1.14.18.1
  • 3-hydroxyanthranilate oxidase EC number 1.10.3.5
  • ferrooxidase EC number 1.16.3) .1
  • phenol-2-monooxygenase EC number 1.14.13.7 or 1.14.14.20
  • aminophenol oxidase EC number 1.10.3.4
  • glyxazone synthase EC number 1.10.3.15
  • 2-aminophenol 1,6-dioxygenase EC number 1.13.11.74
  • 2-amino-5-chlorophenol 1 6-dioxygenase EC number 1.13.1.11.76
  • peroxidase, laccase or bilirubin oxidase is preferable.
  • concentration of peroxidase, laccase or bilirubin oxidase hardly inhibits the reaction in a system not containing 3-hydroxykynurenine, but the range is not limited as long as it is a concentration that inhibits the reaction in a system containing 3-hydroxykynurenine.
  • it is preferably 0.001 to 1,000 U / mL, more preferably 0.01 to 100 U / mL.
  • the reaction pH, temperature, and time can be appropriately set in accordance with the aforementioned color development reaction and conditions suitable for each enzyme.
  • the timing of addition of the enzyme acting on the phenolic compound may be any time before, during or after the reaction with kynurenine 3-monooxygenase, but preferably after the reaction with kynurenine 3-monooxygenase.
  • the reaction temperature is, for example, 15 to 50 ° C., preferably 20 to 45 ° C., more preferably 25 to 40 ° C.
  • the reaction pH is, for example, 5.0 to 11.0, preferably 5.5 to 10.5, and more preferably 6.0 to 10.0.
  • the reaction time is, for example, 1 to 60 minutes, preferably 1 to 45 minutes, more preferably 1 to 10 minutes.
  • an enzyme that acts on a phenolic compound can be combined with an enzyme cycling method after or simultaneously with the addition of an enzyme that acts on the phenolic compound, thereby enabling further highly sensitive measurement.
  • This enzyme cycling method specifically refers to NADH or NADPH by donating an appropriate NADH or NADPH regenerating enzyme and its substrate to NAD + or NADP + obtained by a reaction using a charge carrier. In this method, the reaction using charge carriers is performed again.
  • NADH or NADPH regenerating enzyme examples include alcohol dehydrogenase, glucose dehydrogenase, glutamate dehydrogenase, formate dehydrogenase, malate dehydrogenase, glucose-6-phosphate dehydrogenase, and phosphoglucocone.
  • alcohol dehydrogenase examples include alcohol dehydrogenase, glucose dehydrogenase, glutamate dehydrogenase, formate dehydrogenase, malate dehydrogenase, glucose-6-phosphate dehydrogenase, and phosphoglucocone.
  • the type of enzyme or its substrate is not limited as long as the purpose is satisfied.
  • alcohol dehydrogenase and ethanol glucose dehydrogenase and glucose
  • glutamate dehydrogenation Enzyme and glutamate, formate dehydrogenase and formate, malate dehydrogenase and malate, glucose 6-phosphate dehydrogenase and glucose 6-phosphate, phosphogluconate dehydrogenase and phosphogluconate, glycerol dehydrogenase and glycerol Etc. are known.
  • the amount of enzyme is not particularly limited as long as L-kynurenine can be measured in the sample, but the concentration of alcohol dehydrogenase in the reaction solution is about 0.5 to 30 U / mL. It is preferably about 3 to 15 U / mL.
  • reaction temperature, reaction pH, and reaction time can be suitably set based on the optimum pH and temperature of each enzyme.
  • the concentration measuring means for the color developing substance is not particularly limited, and for example, measurement of absorbance change by a spectrophotometer can be exemplified. In the measurement with a spectrophotometer, it is preferable to select appropriately from the rate method or the endpoint method.
  • spectrophotometers used for measurement include commercial products sold by various companies such as JASCO, Hitachi High-Technologies, Shimadzu Corporation.
  • the measurement wavelength in the absorbance measurement varies depending on each metal indicator.
  • absorbance at a wavelength of around 480 nm, neocuproine at around 450 nm, and bicinchoninic acid at around 562 nm can be used. It may be changed.
  • the measurement wavelength for quantifying the generated color substance is not particularly limited as long as each color substance has absorption, but a wavelength indicating the absorption maximum of each color substance is desirable.
  • WST-1 when WST-1 is used, it is preferably 400 to 480 nm, and more preferably measured at a measurement wavelength around 440 nm.
  • the absorbance when measuring at a wavelength that exhibits an absorption maximum with a high NADH or NADPH concentration, the absorbance may be too high and the accuracy may be lost. It is also possible to measure by shifting to either.
  • Optional component In the L-kynurenine measurement method of the present invention, other optional components known to those skilled in the art may be appropriately contained to enhance the stability of the reagent components such as the enzyme.
  • the optional component is not particularly limited as long as it does not affect the measurement.
  • flavin adenine dinucleotide (FAD), bovine serum albumin (BSA), ovalbumin, saccharide, sugar alcohols, carboxyl group-containing compound, antioxidant Examples include agents, surfactants, amino acids having no activity with enzymes, and the like.
  • kynurenine 3-monooxygenase derived from Pseudomonas tends to increase in stability and activity when the salt concentration is high.
  • the final concentration of the buffer solution or sodium chloride of the reagent composition is 10 mM or more. Preferably, it is more preferably 100 mM or more.
  • the measurement of the present invention can be performed using a kit for measuring L-kynurenine containing kynurenine 3-monooxygenase and the electron donor.
  • the kynurenine 3-monooxygenase included in the kit may be an enzyme that converts L-kynurenine into 3-hydroxykynurenine.
  • any enzyme that catalyzes the reaction of producing 3-hydroxykynurenine, the electron acceptor and water in the presence of the electron donor, H + and oxygen using L-kynurenine as a substrate may be used.
  • the kit of the present invention contains at least one selected from the group consisting of tryptophanase, tryptophan oxidase, bilirubin oxidase, ascorbate oxidase, uricase, peroxidase, catalase and hydrogen peroxide for pretreatment. May be.
  • a divalent copper compound is used, and a metal indicator that specifically reacts with monovalent copper ions is included.
  • the redox coloring reagent and the charge carrier are used. That is, in the first aspect, an electron donor selected from the group consisting of NADPH, NADP and derivatives thereof, kynurenine 3-monooxygenase, a divalent copper compound, and a metal indicator specific for a monovalent copper ion are included.
  • L-kynurenine measurement kit is used.
  • an L-kynurenine measurement kit including the electron donor, kynurenine 3-monooxygenase, a redox coloring reagent and a charge carrier is used.
  • the kit in the second aspect may further contain an enzyme that acts on a phenolic compound, and may further contain NADH or NADPH regenerating enzyme and its substrate.
  • Example 1 (Measurement with copper (II) chloride / bathocuproine system) L-kynurenine at each concentration was quantified by measuring the resulting monovalent copper ion using kynurenine 3-monooxygenase (P-KMO) and Pseudomonas (Pseudomonas) -derived copper chloride (II). 2.64 mL of the reagent mixture was placed in a quartz cell having an optical path length of 1 cm and incubated at 25 ° C. for 5 minutes. Then, 0.06 mL of P-KMO was added and mixed, and the enzyme reaction was started at 25 ° C.
  • P-KMO kynurenine 3-monooxygenase
  • Pseudomonas Pseudomonas
  • the composition of the enzyme reaction solution was 100 mM HEPES buffer (pH 7.5), 0.5, 1 or 2 ⁇ M L-kynurenine, 0.05 mM NADH, and 0.01 U / mL P-KMO (Note: reaction)
  • the concentration of the liquid is indicated by the concentration after addition of copper (II) chloride).
  • As a control ultrapure water was used instead of the substrate.
  • P-KMO is a protein having the amino acid sequence described in SEQ ID NO: 1, and is published by UniProt as Q84HF5 (http://www.uniprot.org/uniprot/Q84HF5).
  • Q84HF5 http://www.uniprot.org/uniprot/Q84HF5
  • the blank value was subtracted from each L-kynurenine concentration and the measured value 4 minutes after the control (subtraction value A and subtraction value B). Subsequently, a value obtained by subtracting the control subtraction value B from the subtraction value A of each L-kynurenine concentration was plotted in the figure as OD480. This measurement was performed three times on different days. The measured values and average values are shown in FIG.
  • FIG. 1 shows that the value of OD480 increases with increasing L-kynurenine concentration, indicating that L-kynurenine can be quantified by P-KMO.
  • reproducible data was obtained even when the L-kynurenine concentration was as low as 2 ⁇ M or less, and it was shown that L-kynurenine can be quantified with high sensitivity by P-KMO. It was done.
  • L-kynurenine can be quantified with high sensitivity by using an electron donor such as kynurenine 3-monooxygenase, NADH, disodium bathocuproin disulfonate and copper (II) chloride.
  • an electron donor such as kynurenine 3-monooxygenase, NADH, disodium bathocuproin disulfonate and copper (II) chloride.
  • Example 2 Measurement with diaphorase / WST-1 system (using NADH)
  • the L-kynurenine solution at each concentration was used as a sample, and the amount of NADH decreased by the P-KMO reaction was measured using diaphorase as a charge carrier and WST-1 as a reducing coloring reagent.
  • 1.8 mL of the enzyme reaction solution was added to and mixed with a quartz cell having an optical path length of 1 cm, and the enzyme reaction was carried out at 25 ° C. for 15 minutes.
  • the composition of the enzyme reaction solution was 50 mM potassium phosphate buffer (pH 7.5), 1, 2, 3 or 4 ⁇ M L-kynurenine, 0.03 mM NADH, and 0.2 U / mL P-KMO.
  • As a control ultrapure water was used instead of the substrate (Note: The concentration of the reaction solution is shown by the concentration after addition of diaphorase).
  • FIG. 2 shows the result of plotting the value obtained by subtracting the subtraction value C of each L-kynurenine concentration from the subtraction value D of the control as OD440.
  • FIG. 2 shows that the OD440 value increases with increasing L-kynurenine concentration, indicating that L-kynurenine can be quantified.
  • L-kynurenine can be quantified with high sensitivity by using a reducing coloring reagent such as kynurenine 3-monooxygenase, NADH, diaphorase and WST-1.
  • a reducing coloring reagent such as kynurenine 3-monooxygenase, NADH, diaphorase and WST-1.
  • Example 3 Measurement with diaphorase / WST-1 system (using NADPH)
  • the L-kynurenine solution at each concentration was used as a sample, and the amount of NADPH decreased by the P-KMO reaction was measured using diaphorase as a charge carrier and WST-1 as a reducing coloring reagent.
  • 1.8 mL of the enzyme reaction solution was added to and mixed with a quartz cell having an optical path length of 1 cm, and the enzyme reaction was carried out at 25 ° C. for 15 minutes.
  • the composition of the enzyme reaction solution is 50 mM potassium phosphate buffer (pH 7.5), 0.5, 1 or 2 ⁇ M L-kynurenine, 0.04 mM EDTA, 0.03 mM NADPH, and 0.2 U / mL P-KMO. (Note: The concentration of the reaction solution is indicated by the concentration after addition of diaphorase). As a control, ultrapure water was used instead of the substrate.
  • FIG. 3 shows the result of plotting the value obtained by subtracting the subtracted value C of each L-kynurenine concentration from the subtracted value D of the control as OD440.
  • FIG. 3 shows that the value of OD440 increases with increasing L-kynurenine concentration, indicating that L-kynurenine can be quantified.
  • the slope was an increase of 0.058 [abs] per ⁇ M of L-kynurenine, and even when NADPH was used, the L-kynurenine concentration could be quantified with high sensitivity.
  • Example 4 (Measurement with diaphorase / WST-1 / POD system) Using L-kynurenine solution of each concentration as a sample, after reaction with P-KMO, peroxidase (POD) was mixed, and the reduced NADH amount was reduced using diaphorase as a charge carrier and WST-1 as a reducing coloring reagent. It was measured. 1.85 mL of the enzyme reaction solution was added to and mixed with a quartz cell having an optical path length of 1 cm, and the enzyme reaction was carried out at 25 ° C. for 30 minutes.
  • P-KMO peroxidase
  • the composition of the enzyme reaction solution was 100 mM Tris-HCl buffer (pH 8.5), 0.25, 0.5, 1 or 2 ⁇ M L-kynurenine, 0.1 mM EDTA, 0.03 mM NADH, and 0.2 U / mL P. -KMO (Note: The concentration of the reaction solution is indicated by the concentration after addition of diaphorase). As a control, ultrapure water was used instead of the substrate.
  • FIG. 4 shows the result of plotting the value obtained by subtracting the subtracted value C of each L-kynurenine concentration from the subtracted value D of the control as OD440.
  • concentration of L-kynurenine increased, the value of OD440 increased, indicating that L-kynurenine can be quantified by adding POD.
  • the slope was an increase of 0.2 [abs] per 1 ⁇ M of L-kynurenine, and measurement with higher sensitivity than in Example 2 was possible.
  • Example 5 (Measurement with diaphorase / WST-1 / laccase system) L-kynurenine solutions at various concentrations were used as samples. After reaction with P-KMO, laccase was mixed, and the decreased amount of NADH was measured using diaphorase as a charge carrier and WST-1 as a reducing coloring reagent. 1.84 mL of the enzyme reaction solution was added to and mixed with a quartz cell having an optical path length of 1 cm, and the enzyme reaction was carried out at 25 ° C. for 30 minutes.
  • the composition of the enzyme reaction solution is 100 mM potassium phosphate buffer (pH 7.0), 0.25, 0.5, or 1 ⁇ M L-kynurenine, 0.05 mM EDTA, 0.04 mM NADH, and 0.2 U / mL P. -KMO (Note: The concentration of the reaction solution is indicated by the concentration after addition of diaphorase). As a control, ultrapure water was used instead of the substrate.
  • FIG. 5 shows the result of plotting the value obtained by subtracting the subtracted value C of each L-kynurenine concentration from the subtracted value D of the control as OD440.
  • OD440 Up to 0.5 ⁇ M L-kynurenine, the value of OD440 increased with increasing concentration, indicating that L-kynurenine can be quantified by adding laccase.
  • the slope was an increase of 0.12 [abs] per 1 ⁇ M L-kynurenine, and measurement with higher sensitivity than in Example 2 was possible.
  • Example 6 (Measurement with diaphorase / WST-1 / bilirubin oxidase system) L-kynurenine solution of each concentration was used as a sample. After reaction with P-KMO, bilirubin oxidase was mixed, and the decreased amount of NADH was measured using diaphorase as a charge carrier and WST-1 as a reducing coloring reagent. . 1.84 mL of the enzyme reaction solution was added to and mixed with a quartz cell having an optical path length of 1 cm, and the enzyme reaction was carried out at 25 ° C. for 30 minutes.
  • the composition of the enzyme reaction solution was 100 mM Tris-HCl buffer (pH 8.5), 0.25, 0.5, 1, or 2 ⁇ M L-kynurenine, 0.05 mM EDTA, 0.03 mM NADH, and 0.2 U / mL.
  • P-KMO was used.
  • ultrapure water was used instead of the substrate (Note: The concentration of the reaction solution is shown by the concentration after addition of diaphorase).
  • FIG. 6 shows the result of plotting the value obtained by subtracting the subtracted value C of each L-kynurenine concentration from the subtracted value D of the control as OD440.
  • the OD440 value increased with increasing concentration, indicating that L-kynurenine can be quantified by adding bilirubin oxidase.
  • the slope increased by 0.1 [abs] per 1 ⁇ M L-kynurenine, and higher sensitivity measurement than in Example 2 was possible.
  • Example 7 (Measurement by enzyme cycling method in diaphorase / WST-1 / POD system)
  • the L-kynurenine solution at each concentration was used as a sample, and the reaction with P-KMO was performed with 0.4 mL of the reaction solution A.
  • the composition of the reaction solution A is 100 mM potassium phosphate buffer (pH 7.5), 0.25, 0.5, 0.75, 1 ⁇ M L-kynurenine, 2 mM EDTA, 0.04 mM NADH, and 0.4 U / mL.
  • P-KMO was used.
  • As a control ultrapure water was used instead of the substrate.
  • the reaction was carried out at 25 ° C. for 15 minutes.
  • reaction solution B After completion of the reaction, it was mixed with 1.5 mL of reaction solution B.
  • reaction solution B 200 mM potassium phosphate buffer (pH 7.5), 1 mM EDTA, 4% (v / v) ethanol, 5 U / mL alcohol dehydrogenase (made by Oriental Yeast), 1 U / mL POD, and 0.2 mg / mL WST-1 (Note: The concentration of this reaction solution is shown by the concentration after addition of diaphorase).
  • the final concentration of L-kynurenine at this time is 0.05, 0.1, 0.15, and 0.2 ⁇ M by adding the reaction solution B and the diaphorase solution.
  • the amount of change at 440 nm per minute was calculated from the data from 0 to 4 minutes after the start of enzyme cycling. Subsequently, in order to calculate the amount of change of 440 nm in 4 minutes of enzyme reaction, the result of plotting the value obtained by multiplying the amount of change of 440 nm per minute by 4 as OD440 is shown in FIG. As a result, the value of OD440 increased as the concentration of L-kynurenine increased, and it was shown that L-kynurenine at a low concentration can be quantified by combining the enzyme cycling method.
  • Example 8 Measurement in the copper (II) chloride / vasocproin system in the presence of serum
  • deproteinized serum After adding 0.5N perchloric acid solution to human normal serum and mixing the supernatant by centrifugation, neutralize it by adding 180 ⁇ L of 2N potassium carbonate solution to 1000 ⁇ L of the resulting solution, After refrigerated storage, deproteinized serum was obtained by removing excess potassium perchlorate as a precipitate. 2.445 mL of an enzyme reaction solution containing 1.0 mL of deproteinized serum was added to and mixed with a quartz cell having an optical path length of 1 cm, and a pretreatment was performed to reduce reducing substances at 37 ° C. for 20 minutes.
  • the composition of the enzyme reaction solution was 200 mM HEPES buffer (pH 7.5), 40 ⁇ M EDTA, 1 U / mL ascorbate oxidase (manufactured by Wako Pure Chemical Industries), 0.5 U / mL uricase (manufactured by Wako Pure Chemical Industries), 10 U / It was made into mL catalase (made by Wako Pure Chemical Industries).
  • the mixture was added to 100 ⁇ M NADPH, 0.5, 1, 2 ⁇ M L-kynurenine, 0.08 U / mL P-KMO, and reacted at 30 ° C. for 30 minutes.
  • the enzyme reaction solution at this time was adjusted to 2.55 mL (Note: the concentration of the reaction solution is indicated by the concentration after addition of copper (II) chloride).
  • ultrapure water was used instead of the substrate.
  • the blank value was subtracted from each L-kynurenine concentration and the measured value 10 minutes after the control (subtraction value A and subtraction value B). Subsequently, a value obtained by subtracting the control subtraction value B from the subtraction value A of each L-kynurenine concentration was plotted in the figure as OD480.
  • the OD480 value increased as the L-kynurenine concentration increased, indicating that L-kynurenine can be quantified by this method.
  • L-kynurenine is highly sensitive by pretreatment, using kynurenine 3-monooxygenase, NADH, disodium bathocuproine disulfonate and copper (II) chloride. It was found that it can be quantified.
  • Example 9 Measurement with diaphorase / WST-1 / POD system in the presence of serum
  • the measurement which added polyoxyethylene (20) sorbitan monolaurate (brand name: Tween20) which is surfactant was performed.
  • An enzyme reaction solution (1.5 mL) containing 0.2 mL of human normal serum was added to and mixed with a quartz cell having an optical path length of 1 cm, and an enzyme reaction was performed at 25 ° C. for 10 minutes.
  • the composition of the enzyme reaction solution was 200 mM potassium phosphate buffer (pH 7.5), 0.1, 0.2, 0.3 or 0.5 ⁇ M L-kynurenine, 1 mM EDTA, 0.04 mM NADH, 0.2 U / mL P-KMO, 0.5 U / mL POD.
  • ultrapure water was used instead of the substrate (Note: The concentration of the reaction solution is shown by the concentration after addition of diaphorase).
  • evaluation in a system without addition of serum was also performed.
  • FIG. 9 shows the result of plotting the value obtained by subtracting the subtraction value C of each L-kynurenine concentration from the subtraction value D of the control as OD440.
  • the OD440 value increased as the concentration of L-kynurenine increased, indicating that L-kynurenine can be quantified.
  • the slope increased by about 0.1 [abs] per 0.5 ⁇ M L-kynurenine regardless of the presence of serum, that is, increased by about 0.2 [abs] when converted to 1 ⁇ M L-kynurenine.
  • the result was equivalent to Example 4.

Abstract

The present invention provides a measurement method and a measurement kit capable of measuring L-kynurenine conveniently, accurately, and with high sensitivity. A method and a measurement kit that measure the L-kynurenine content in a sample, said method and said measurement kit comprising: (A) a step for causing an enzyme reaction between kynurenine 3-monooxygenase and a sample containing L-kynurenine in the presence of an electron donor selected from the group consisting of NADH, NADPH, and derivatives thereof to acquire an enzyme reaction liquid including residual electron donor and produced 3-hydroxy kynurenine; (B) a step for reacting (1) a divalent copper compound and a metal indicator specific to monovalent copper ions or (2) a redox coloring reagent and a charge carrier with the enzyme reaction liquid obtained in step (A); and (C) a step for determining the L-kynurenine content in the sample on the basis of a value obtained by subtracting, from the concentration of the coloring substance obtained in step (B), the concentration of the coloring substance in a sample specimen that does not contain L-kynurenine or a sample specimen to which kynurenine 3-monooxygenase has not been added.

Description

L-キヌレニンの測定方法及び測定キットMethod and kit for measuring L-kynurenine
 本発明は、酵素を用いたL-キヌレニンの測定方法及び測定キットに関する。 The present invention relates to a method and kit for measuring L-kynurenine using an enzyme.
 L-キヌレニンは、L-トリプトファンの代謝物として生体内に存在することが知られており、医療分野において測定意義が各種検討されている。L-キヌレニンは、液体クロマトグラフィーによる測定が一般的だが、この測定は煩雑であり、汎用性に乏しい。その他の測定法として、抗体法、Ehrlich試薬を用いた比色法及び酵素法が知られているが、抗体法は煩雑であり、また比色法は特異性が低い。酵素法としては、キヌレニナーゼやキヌレニンアミノトランスフェラーゼを用いて、蛍光検出する測定法が知られている(非特許文献1及び2)が、臨床検査の場で一般的に使用されている生化学自動分析装置が使用できないという問題がある。また、キヌレニナーゼを用いる酵素法は、酵素反応液を酢酸エチルで抽出した液に対して蛍光法で測定するという手法であり大変煩雑という問題がある。 L-kynurenine is known to exist in vivo as a metabolite of L-tryptophan, and various measurement significances have been studied in the medical field. L-kynurenine is generally measured by liquid chromatography, but this measurement is complicated and lacks versatility. As other measurement methods, an antibody method, a colorimetric method using an Ehrlich reagent and an enzyme method are known, but the antibody method is complicated and the colorimetric method has low specificity. As an enzymatic method, a measurement method for detecting fluorescence using kynureninease or kynurenine aminotransferase is known (Non-patent Documents 1 and 2), but biochemical automatic analysis generally used in clinical laboratory settings. There is a problem that the device cannot be used. In addition, the enzymatic method using kynureninase is a technique in which a liquid obtained by extracting an enzyme reaction solution with ethyl acetate is measured by a fluorescence method, and there is a problem that it is very complicated.
 一方、L-キヌレニンを基質とするキヌレニン3-モノオキシゲナーゼとして、シュードモナス由来、ヒト由来、ラット由来、蚊又は酵母由来の酵素が知られている(非特許文献3~7)。しかし、キヌレニン3-モノオキシゲナーゼをL-キヌレニンの測定に用いることができるか否かについては報告がない。 On the other hand, Pseudomonas-derived, human-derived, rat-derived, mosquito or yeast-derived enzymes are known as kynurenine 3-monooxygenase using L-kynurenine as a substrate (Non-patent Documents 3 to 7). However, there is no report as to whether kynurenine 3-monooxygenase can be used for the measurement of L-kynurenine.
 本発明は、酵素を用いることにより簡便かつ正確にL-キヌレニンを測定できる測定方法及び測定キットを提供することを課題とする。 An object of the present invention is to provide a measurement method and a measurement kit that can measure L-kynurenine simply and accurately by using an enzyme.
 そこで、本発明者らは、酵素を用いたキヌレニンの測定法について検討した結果、L-キヌレニンにNADH、NADPH及びそれらの誘導体からなる群より選択される電子供与体の存在下でキヌレニン3-モノオキシゲナーゼを反応させ、さらに2価銅化合物及び1価銅イオンに特異的な金属指示薬、又は酸化還元系発色試薬及び電荷キャリアを加えることによる生成物の測定を行うことで、簡便、正確かつ高感度にL-キヌレニンを定量できる方法を見出し、本発明に至った。 Accordingly, the present inventors have examined a method for measuring kynurenine using an enzyme, and as a result, kynurenine 3-mono in the presence of an electron donor selected from the group consisting of L-kynurenine and NADH, NADPH and derivatives thereof. By reacting oxygenase and measuring the product by adding a metal indicator specific for a divalent copper compound and a monovalent copper ion, or a redox coloring reagent and a charge carrier, it is simple, accurate and sensitive. In addition, the inventors have found a method capable of quantifying L-kynurenine and have reached the present invention.
 すなわち、本発明は、以下の[1]~[19]を提供するものである。
[1](A)L-キヌレニンを含有する試料に、NADH、NADPH及びそれらの誘導体からなる群より選択される電子供与体の存在下でキヌレニン3-モノオキシゲナーゼを酵素反応させて、残存した電子供与体、及び生成した3-ヒドロキシキヌレニンを含む酵素反応液を取得する工程
(B)工程(A)の酵素反応液に、
(1)2価銅化合物、及び1価銅イオンに特異的な金属指示薬、又は
(2)酸化還元系発色試薬及び電荷キャリア
を反応させる工程、
(C)工程(B)で得られた発色物質の濃度から、L-キヌレニンを含有しない試料又はキヌレニン3-モノオキシゲナーゼ未添加の試料における発色物質の濃度を差し引いた値に基づき、試料中のL-キヌレニン量を決定する工程
を含む、試料中のL-キヌレニン量の測定方法。
[2] 前記の反応による発色物質の濃度を、吸光度によって測定する、前項[1]記載の測定方法。
[3] 前記工程(B)の(1)で得られた発色物質が、3-ヒドロキシキヌレニンと2価銅化合物との反応で産生した1価銅イオンと、当該イオンに特異的に作用する金属指示薬との反応により生成することを特徴とする前項[1]記載の測定方法。
[4] 前記工程(B)の(1)で使用する1価銅イオンに特異的な金属指示薬がバソクプロイン、ネオクプロイン、ビシンコニン酸、それらの誘導体又はそれらの塩である、前項[1]又は[3]記載の測定方法。
[5] 前記工程(B)の(2)の反応の前又は同時に、更にフェノール系化合物に作用する酵素を添加することを特徴とする、前項[1]記載の測定方法。
[6] 前項[5]のフェノール系化合物に作用する酵素を添加後又は添加と同時に、酵素サイクリング法を行うことを特徴とする、前項[1]又は[5]記載の測定方法。
[7] 前記工程(B)の(2)で得られた発色物質が、電荷キャリアを介した電子供与体と酸化還元系発色試薬との反応により生成することを特徴とする、前項[1]記載の測定方法。
[8] 前記酸化還元系発色試薬がテトラゾリウム塩である、前項[1]、[5]、[6]又は[7]記載の測定方法。
[9] 前記電荷キャリアがジアホラーゼである、前項[1]、[5]、[6]又は[7]記載の測定方法。
[10] 前記工程(A)前に、L-キヌレニンを含有する試料中のL-トリプトファン及び/又は還元物質を低減する前処理工程を含む、前項[1]~[9]のいずれか1項に記載の測定方法。
[11] 前記還元物質が、ビリルビン、アスコルビン酸及び/又は尿酸である、前項[10]記載の測定方法。
[12] 前記工程(A)前に、トリプトファナーゼ、トリプトファンオキシダーゼ、ビリルビンオキシダーゼ、アスコルビン酸オキシダーゼ、ウリカーゼ、ペルオキシダーゼ、カタラーゼ及び過酸化水素からなる群より選択される1種以上をL-キヌレニンを含有する試料中に添加する工程を含む、前項[10]又は[11]記載の測定方法。
[13] 前記工程(A)前に、キレート作用を有する物質及び/又は金属と塩を形成し沈殿する物質を添加する工程を含む、前項[1]~[12]のいずれか1項に記載の測定方法。
[14] キレート作用を有する物質及び/又は金属と塩を形成し沈殿する物質が、エチレンジアミン四酢酸、N,N-ビス(2-ヒドロキシエチル)グリシン、ジエチレントリアミンペンタ酢酸及びトランス-1,2-ジアミノシクロヘキサン-N,N,N,N-四酢酸からなる群より選択される少なくとも1種である、前項[13]記載の測定方法。
[15] 前記工程(B)前に、界面活性剤を添加する工程を含む、[1]~[14]のいずれか1項に記載の測定方法。
[16] NADH、NADPH及びそれらの誘導体からなる群より選択される電子供与体、キヌレニン3-モノオキシゲナーゼ、2価銅化合物、並びに1価銅イオンに特異的な金属指示薬を含む、L-キヌレニン測定用キット。
[17] NADH、NADPH及びそれらの誘導体からなる群より選択される電子供与体、キヌレニン3-モノオキシゲナーゼ、酸化還元系発色試薬、並びに電荷キャリアを含む、L-キヌレニン測定用キット。
[18] 前項[17]のキットに、更にフェノール系化合物に作用する酵素を含む、L-キヌレニン測定用キット。
[19] 前項[18]のキットに、更にNADH又はNADPH再生酵素、及びその基質を含む、L-キヌレニン測定用キット。
That is, the present invention provides the following [1] to [19].
[1] (A) A sample containing L-kynurenine is subjected to an enzyme reaction with kynurenine 3-monooxygenase in the presence of an electron donor selected from the group consisting of NADH, NADPH and derivatives thereof, and the remaining electrons In the step (B) of obtaining the enzyme reaction solution containing the donor and the produced 3-hydroxykynurenine, the enzyme reaction solution in step (A),
(1) a step of reacting a divalent copper compound and a metal indicator specific for a monovalent copper ion, or (2) a redox coloring reagent and a charge carrier,
(C) Based on the value obtained by subtracting the concentration of the chromogenic substance in the sample not containing L-kynurenine or the sample not containing kynurenine 3-monooxygenase from the concentration of the chromogenic substance obtained in step (B). A method for measuring the amount of L-kynurenine in a sample, comprising the step of determining the amount of kynurenine.
[2] The measuring method according to [1] above, wherein the concentration of the color developing substance by the reaction is measured by absorbance.
[3] The chromogenic material obtained in (1) of the step (B) contains a monovalent copper ion produced by the reaction of 3-hydroxykynurenine and a divalent copper compound, and a metal that specifically acts on the ion. The measurement method according to [1], which is produced by a reaction with an indicator.
[4] The above item [1] or [3], wherein the metal indicator specific for the monovalent copper ion used in (1) of the step (B) is bathocuproin, neocuproin, bicinchoninic acid, a derivative thereof or a salt thereof. ] The measuring method of description.
[5] The measuring method according to [1] above, wherein an enzyme that acts on the phenolic compound is further added before or simultaneously with the reaction of (2) in the step (B).
[6] The measurement method according to [1] or [5], wherein the enzyme cycling method is performed after or simultaneously with the addition of the enzyme that acts on the phenolic compound according to [5].
[7] The item [1] above, wherein the color developing material obtained in (2) of the step (B) is produced by a reaction between an electron donor and a redox coloring reagent via a charge carrier. The measuring method described.
[8] The measuring method according to [1], [5], [6] or [7] above, wherein the redox coloring reagent is a tetrazolium salt.
[9] The measuring method according to [1], [5], [6] or [7] above, wherein the charge carrier is diaphorase.
[10] Any one of [1] to [9] above, comprising a pretreatment step for reducing L-tryptophan and / or a reducing substance in the sample containing L-kynurenine before the step (A). The measuring method as described in.
[11] The measuring method according to [10] above, wherein the reducing substance is bilirubin, ascorbic acid and / or uric acid.
[12] Before the step (A), at least one selected from the group consisting of tryptophanase, tryptophan oxidase, bilirubin oxidase, ascorbate oxidase, uricase, peroxidase, catalase and hydrogen peroxide contains L-kynurenine The measurement method according to [10] or [11] above, which comprises a step of adding the sample to the sample.
[13] The method described in any one of [1] to [12] above, which includes a step of adding a substance having a chelating action and / or a substance that forms a salt with a metal and precipitates before the step (A). Measuring method.
[14] Substances having a chelating action and / or substances that form salts with metals and precipitate are ethylenediaminetetraacetic acid, N, N-bis (2-hydroxyethyl) glycine, diethylenetriaminepentaacetic acid and trans-1,2-diamino The measurement method according to [13], which is at least one selected from the group consisting of cyclohexane-N, N, N, N-tetraacetic acid.
[15] The measurement method according to any one of [1] to [14], including a step of adding a surfactant before the step (B).
[16] L-kynurenine measurement comprising an electron donor selected from the group consisting of NADH, NADPH and derivatives thereof, kynurenine 3-monooxygenase, a divalent copper compound, and a metal indicator specific for monovalent copper ion For kit.
[17] A kit for measuring L-kynurenine, comprising an electron donor selected from the group consisting of NADH, NADPH and derivatives thereof, kynurenine 3-monooxygenase, a redox coloring reagent, and a charge carrier.
[18] A kit for measuring L-kynurenine, wherein the kit according to [17] above further comprises an enzyme that acts on a phenol compound.
[19] A kit for measuring L-kynurenine, wherein the kit according to [18] above further comprises NADH or NADPH regenerating enzyme and a substrate thereof.
 本発明によって、簡便で、正確かつ高感度にL-キヌレニンを定量することができる。低濃度のL-キヌレニン測定が可能になったことで、生体中に含まれる微量のL-キヌレニンの測定が可能である。該方法は、吸光度による測定が可能で、現在普及している生化学自動分析装置を使用できるため、多検体の測定に適しており、さらに臨床検査の現場で実用化可能である。 According to the present invention, L-kynurenine can be quantified simply, accurately and with high sensitivity. Since a low concentration of L-kynurenine can be measured, a trace amount of L-kynurenine contained in a living body can be measured. This method can be measured by absorbance, and can be used for bioanalytical automatic analyzers that are currently widely used. Therefore, this method is suitable for measuring a large number of samples, and can be put to practical use in the field of clinical tests.
P-KMO、NADH及び塩化銅(II)を用いて、L-Kyn(L-キヌレニン)と反応させて生成した発色物質に由来する480nmの吸光度について、L-Kynを含まない検体(コントロール)に由来する480nmの吸光度との差をOD480としてプロットした結果を示した図である。Using P-KMO, NADH, and copper (II) chloride, the absorbance at 480 nm derived from the chromogenic material produced by reacting with L-Kyn (L-kynurenine) was measured in a sample that did not contain L-Kyn (control). It is the figure which showed the result of having plotted the difference with the light absorbency of 480 nm originating as OD480. P-KMO、NADHを用いて、L-Kynと反応させて酵素反応液を取得後、WST-1及びジアホラーゼを用いて、生成した発色物質に由来する440nmの吸光度について、L-Kynを含まない検体(コントロール)に由来する440nmの吸光度との差をOD440としてプロットした結果を示した図である。After obtaining an enzyme reaction solution by reacting with L-Kyn using P-KMO and NADH, using WST-1 and diaphorase, the absorbance at 440 nm derived from the generated chromogenic material does not contain L-Kyn. It is the figure which showed the result of having plotted the difference with the light absorbency of 440 nm originating in a test substance (control) as OD440. P-KMO、NADPHを用いて、L-Kynと反応させて酵素反応液を取得後、WST-1及びジアホラーゼを用いて、生成した発色物質に由来する440nmの吸光度について、L-Kynを含まない検体(コントロール)に由来する440nmの吸光度との差をOD440としてプロットした結果を示した図である。After obtaining an enzyme reaction solution by reacting with L-Kyn using P-KMO and NADPH, using WST-1 and diaphorase, the absorbance at 440 nm derived from the generated chromogenic material does not contain L-Kyn. It is the figure which showed the result of having plotted the difference with the light absorbency of 440 nm originating in a test substance (control) as OD440. P-KMO、NADHを用いて、L-Kynと反応させて酵素反応液を取得後、ペルオキシダーゼを作用させ、その後WST-1及びジアホラーゼを用いて、生成した発色物質に由来する440nmの吸光度について、L-Kynを含まない検体(コントロール)に由来する440nmの吸光度との差をOD440としてプロットした結果を示した図である。Using P-KMO and NADH, react with L-Kyn to obtain an enzyme reaction solution, then act on peroxidase, and then use WST-1 and diaphorase to determine the absorbance at 440 nm derived from the generated color substance. FIG. 6 is a diagram showing the result of plotting the difference from the absorbance at 440 nm derived from a sample not containing L-Kyn (control) as OD440. P-KMO、NADHを用いて、L-Kynと反応させて酵素反応液を取得後、ラッカーゼを作用させ、その後WST-1及びジアホラーゼを用いて、生成した発色物質に由来する440nmの吸光度について、L-Kynを含まない検体(コントロール)に由来する440nmの吸光度との差をOD440としてプロットした結果を示した図である。Using P-KMO and NADH, react with L-Kyn to obtain an enzyme reaction solution, then act on laccase, and then use WST-1 and diaphorase to determine the absorbance at 440 nm derived from the generated color substance. FIG. 6 is a diagram showing the result of plotting the difference from the absorbance at 440 nm derived from a sample not containing L-Kyn (control) as OD440. P-KMO、NADHを用いて、L-Kynと反応させて酵素反応液を取得後、ビリルビンオキシダーゼを作用させ、その後WST-1及びジアホラーゼを用いて、生成した発色物質に由来する440nmの吸光度について、L-Kynを含まない検体(コントロール)に由来する440nmの吸光度との差をOD440としてプロットした結果を示した図である。Using P-KMO and NADH, react with L-Kyn to obtain an enzyme reaction solution, then act on bilirubin oxidase, and then use WST-1 and diaphorase to determine the absorbance at 440 nm derived from the generated color substance. FIG. 5 is a graph showing the result of plotting the difference from the absorbance at 440 nm derived from a specimen (control) not containing L-Kyn as OD440. P-KMO、NADHを用いて、L-Kynと反応させて酵素反応液を取得後、ペルオキシダーゼ、アルコール脱水素酵素、エタノール、WST-1及びジアホラーゼを作用させて、生成した発色物質に由来する440nmの吸光度変化について1分間あたりの変化量を算出し、それを4分間の変化量に換算した値をOD440としてプロットした結果を示した図である。P-KMO and NADH are used to react with L-Kyn to obtain an enzyme reaction solution, which is then reacted with peroxidase, alcohol dehydrogenase, ethanol, WST-1 and diaphorase to produce 440 nm derived from the generated color substance. It is the figure which showed the result of having calculated the variation | change_quantity per minute about the light-absorbency change, and plotting the value converted into the variation | change_quantity for 4 minutes as OD440. 除タンパク血清を使用して、還元物質の分解処理後に、P-KMO、NADH及び塩化銅(II)を用いて、L-Kynと反応させて生成した発色物質に由来する480nmの吸光度について、L-Kynを含まない検体(コントロール)に由来する480nmの吸光度との差をOD480としてプロットした結果を示した図である。About the absorbance at 480 nm derived from the coloring substance produced by reacting with L-Kyn using P-KMO, NADH and copper (II) chloride after degrading the reducing substance using deproteinized serum, FIG. 7 is a graph showing the result of plotting the difference from the absorbance at 480 nm derived from a specimen not containing −Kyn (control) as OD480. 血清存在下でP-KMO、NADHを用いて、L-Kynと反応させて酵素反応液を取得後、PODを作用させ、その後界面活性剤、WST-1及びジアホラーゼを用いて、生成した発色物質に由来する440nmの吸光度について、L-Kynを含まない検体(コントロール)に由来する440nmの吸光度との差をOD440としてプロットした結果を示した図である。Reacting with L-Kyn using P-KMO and NADH in the presence of serum to obtain an enzyme reaction solution, allowing POD to act, and then using a surfactant, WST-1 and diaphorase 4 is a graph showing the result of plotting the difference between the absorbance at 440 nm derived from the 440 nm derived from the specimen not containing L-Kyn (control) as OD440.
 本発明は、
(A)L-キヌレニンを含有する試料に、NADH、NADPH及びそれらの誘導体からなる群より選択される電子供与体の存在下でキヌレニン3-モノオキシゲナーゼを酵素反応させて、残存した電子供与体、及び生成した3-ヒドロキシキヌレニンを含む酵素反応液を取得する工程、
(B)工程(A)の酵素反応液に、
(1)2価銅化合物、及び1価銅イオンに特異的な金属指示薬、又は
(2)酸化還元系発色試薬及び電荷キャリア
を反応させる工程、並びに
(C)工程(B)で得られた発色物質の濃度から、L-キヌレニンを含有しない試料又はキヌレニン3-モノオキシゲナーゼ未添加の試料における発色物質の濃度を差し引いた値に基づき、試料中のL-キヌレニン量を決定する工程
を含む、試料中のL-キヌレニン量を測定する方法に関する。
The present invention
(A) A sample containing L-kynurenine is subjected to an enzymatic reaction with kynurenine 3-monooxygenase in the presence of an electron donor selected from the group consisting of NADH, NADPH and derivatives thereof, and the remaining electron donor, And obtaining an enzyme reaction solution containing the produced 3-hydroxykynurenine,
(B) In the enzyme reaction solution of step (A),
(1) a metal indicator specific to a divalent copper compound and a monovalent copper ion, or (2) a step of reacting a redox coloring reagent and a charge carrier, and (C) the color obtained in step (B). Including the step of determining the amount of L-kynurenine in the sample based on a value obtained by subtracting the concentration of the chromogenic substance in the sample not containing L-kynurenine or the sample not containing kynurenine 3-monooxygenase from the concentration of the substance. The present invention relates to a method for measuring the amount of L-kynurenine.
(工程(A))
 本発明は、L-キヌレニンを含有する試料にNADH、NADPH及びそれらの誘導体からなる群より選択される電子供与体とキヌレニン3-モノオキシゲナーゼとを反応させる工程(A)を含む。
(Process (A))
The present invention includes a step (A) of reacting a sample containing L-kynurenine with an electron donor selected from the group consisting of NADH, NADPH and derivatives thereof and kynurenine 3-monooxygenase.
(L-キヌレニンを含む試料)
 本発明に用いられる試料は、L-キヌレニンを含む可能性のある試料であれば特に限定されず、例えば人を含む哺乳類の生体試料、例えば、血液(血清、血漿)、唾液、尿、脳脊髄液等が挙げられる。このうち、血液が好ましく、血液を試料とする場合、血清又は除蛋白した血液を用いるのがより好ましい。
(Sample containing L-kynurenine)
The sample used in the present invention is not particularly limited as long as it may contain L-kynurenine. For example, biological samples of mammals including humans such as blood (serum, plasma), saliva, urine, cerebrospinal cord Liquid and the like. Among these, blood is preferable, and when blood is used as a sample, it is more preferable to use serum or deproteinized blood.
(前処理工程)
 生体試料の測定では、測定に支障となる可能性のある還元物質、夾雑蛋白質、金属イオン等の少なくとも1つを公知の方法で除去する前処理工程を含んでもよい。還元物質としては例えば、ビリルビン、アスコルビン酸、尿酸等が挙げられる。ビリルビンの低減のためにビリルビンオキシダーゼ、アスコルビン酸の低減のためにアスコルビン酸オキシダーゼ、尿酸の低減のためにウリカーゼ等の酵素を使用した前処理等がそれぞれ例示される。さらに、過酸化水素やペルオキシダーゼによる処理も行うことができる。また、使用又は産生した過酸化水素の低減のために、カタラーゼを使用することもできる。なお、酵素の使用量、反応pH及び温度は、それぞれの酵素の至適pH及び温度を踏まえて、適宜設定することができる。酵素の使用量は、前処理液中の濃度が例えば0.1~1000U/mL、好ましくは0.5~100U/mLである。反応温度は、例えば15~50℃、好ましくは20~45℃、より好ましくは25~40℃である。反応pHは、例えば5.0~11.0、好ましくは5.5~10.5、より好ましくは6.0~10.0である。反応時間は、例えば1~60分、好ましくは1~40分間である。
(Pretreatment process)
The measurement of a biological sample may include a pretreatment step of removing at least one of a reducing substance, a contaminating protein, a metal ion and the like that may interfere with the measurement by a known method. Examples of the reducing substance include bilirubin, ascorbic acid, uric acid and the like. Examples include bilirubin oxidase for reducing bilirubin, ascorbate oxidase for reducing ascorbic acid, and pretreatment using an enzyme such as uricase for reducing uric acid. Furthermore, treatment with hydrogen peroxide or peroxidase can also be performed. Catalase can also be used to reduce the hydrogen peroxide used or produced. In addition, the usage-amount of enzyme, reaction pH, and temperature can be suitably set based on the optimal pH and temperature of each enzyme. The amount of the enzyme used is, for example, 0.1 to 1000 U / mL, preferably 0.5 to 100 U / mL, in the pretreatment solution. The reaction temperature is, for example, 15 to 50 ° C., preferably 20 to 45 ° C., more preferably 25 to 40 ° C. The reaction pH is, for example, 5.0 to 11.0, preferably 5.5 to 10.5, and more preferably 6.0 to 10.0. The reaction time is, for example, 1 to 60 minutes, preferably 1 to 40 minutes.
 夾雑蛋白質は例えば、過塩素酸やトリクロロ酢酸等の除蛋白剤で低減することができる。処理後、炭酸カリウム等を用いて中和を行うことで、試料として使用することが可能となる。なお、除蛋白剤処理によってビリルビンやヘモグロビン等の還元物質の低減も可能である。 Contaminating protein can be reduced with a deproteinizing agent such as perchloric acid or trichloroacetic acid. After the treatment, neutralization using potassium carbonate or the like can be used as a sample. It should be noted that reducing substances such as bilirubin and hemoglobin can be reduced by the protein removal treatment.
 金属イオンは、例えば、金属キレート剤で低減することができる。金属キレート剤は特に限定されないが、EDTA(エチレンジアミン四酢酸)、ビシン(N,N-ビス(2-ヒドロキシエチル)グリシン)、DTPA(ジエチレントリアミンペンタ酢酸)、CyDTA(トランス-1,2-ジアミノシクロヘキサン-N,N,N,N-四酢酸)等が好適に用いられる。なお、金属キレート剤の使用濃度は、適宜設定することができる。例えば、工程(B)の第1の態様においては、使用する2価銅化合物と同じモル濃度以下、更に好ましくは1/2以下のモル濃度であることが望ましい。また、マグネシウムイオン等は、リン酸を添加することで低減することも可能である。
 上述の前処理を実施した液については、前処理後直ぐに測定に使用してもよく、また冷蔵又は冷凍で保管後に使用してもよい。
Metal ions can be reduced, for example, with a metal chelator. The metal chelating agent is not particularly limited, but EDTA (ethylenediaminetetraacetic acid), bicine (N, N-bis (2-hydroxyethyl) glycine), DTPA (diethylenetriaminepentaacetic acid), CyDTA (trans-1,2-diaminocyclohexane- N, N, N, N-tetraacetic acid) and the like are preferably used. In addition, the use density | concentration of a metal chelating agent can be set suitably. For example, in the first aspect of the step (B), it is desirable that the molar concentration is the same or lower than that of the divalent copper compound to be used, more preferably 1/2 or lower. Magnesium ions and the like can be reduced by adding phosphoric acid.
About the liquid which implemented the above-mentioned pre-processing, you may use for a measurement immediately after a pre-processing, and may use it after storage by refrigeration or freezing.
 その他、測定に支障となる物質の影響を低減する方法としては、フェリシアン化カリウム、フェロシアン化カリウム、安息香酸、ヨウ素酸塩や亜硝酸塩等の酸化還元剤を添加することや、界面活性剤を添加することが挙げられる。使用可能な界面活性剤の種類としては、非イオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤、又は両性界面活性剤などがあり、例えばポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンソルビタン脂肪酸エステルなどの非イオン性界面活性剤、オレフィンスルホン酸、ポリオキシエチレンアルキルフェニルエーテル硫酸塩、ポリオキシエチレンアルキルフェニルエーテル酢酸塩、ラウリル硫酸ナトリウム、コール酸ナトリウム、オクタン酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウムなどのアニオン性界面活性剤などが好適に用いられる。これらのうち、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンラウリルエーテル又はポリオキシエチレンオクチルフェニルエーテルがより好ましく、そのEO(エチレンオキシド)平均付加モル数は10~30が好ましく、より好ましくは5~25である。例えば、ポリオキシエチレン(20)ソルビタンモノラウレート、ポリオキシエチレン(23)ラウリルエーテル又はポリオキシエチレン(10)オクチルフェニルエーテルなどが好適に用いられる。界面活性剤は、測定系全体に対して0.01~5.0%(w/v)となる量を添加するのが好ましく、0.1~2.0%(w/v)となる量を添加するのがより好ましい。また、添加時期としては、一連の酵素反応が進むのであれば特に限定されないが、発色反応の前に添加するのが好ましい。 In addition, as a method of reducing the influence of substances that interfere with the measurement, adding a redox agent such as potassium ferricyanide, potassium ferrocyanide, benzoic acid, iodate or nitrite, or adding a surfactant Is mentioned. Examples of usable surfactants include nonionic surfactants, anionic surfactants, cationic surfactants, and amphoteric surfactants, such as polyoxyethylene alkyl ethers and polyoxyethylene alkyls. Nonionic surfactants such as phenyl ether, polyoxyethylene sorbitan fatty acid ester, olefin sulfonic acid, polyoxyethylene alkyl phenyl ether sulfate, polyoxyethylene alkyl phenyl ether acetate, sodium lauryl sulfate, sodium cholate, octanoic acid Anionic surfactants such as sodium and sodium dodecylbenzenesulfonate are preferably used. Of these, polyoxyethylene sorbitan monolaurate, polyoxyethylene lauryl ether or polyoxyethylene octyl phenyl ether is more preferred, and the average added mole number of EO (ethylene oxide) is preferably 10 to 30, more preferably 5 to 25. It is. For example, polyoxyethylene (20) sorbitan monolaurate, polyoxyethylene (23) lauryl ether or polyoxyethylene (10) octylphenyl ether is preferably used. The surfactant is preferably added in an amount of 0.01 to 5.0% (w / v) with respect to the entire measurement system, and an amount of 0.1 to 2.0% (w / v). It is more preferable to add. The addition time is not particularly limited as long as a series of enzyme reactions proceeds, but it is preferably added before the color development reaction.
 上述の前処理を実施した液については、前処理後直ぐに測定に使用してもよく、また冷蔵又は冷凍で保管後に使用してもよい。また、本前処理は、工程(A)及び/又は工程(B)の前の適切な時期に実施することができる。 The liquid subjected to the above pretreatment may be used for measurement immediately after the pretreatment, or may be used after storage in refrigeration or freezing. Moreover, this pre-processing can be implemented at the suitable time before a process (A) and / or a process (B).
(トリプトファンの影響の低減)
 本発明のL-キヌレニン測定方法を、より正確に行うために、試料中の夾雑物の影響を実質的に除くことが好ましい。例えば、一般に生体試料中のL-トリプトファン濃度は、L-キヌレニン濃度に比べ10~100倍程度高いと考えられるため、L-トリプトファンのL-キヌレニン測定への影響を抑えることが好ましい。電子供与体としてNADHを使用したL-キヌレニン測定方法が好ましく、NADHのみを使用した測定方法がより好ましい。
(Reduction of the effects of tryptophan)
In order to perform the L-kynurenine measuring method of the present invention more accurately, it is preferable to substantially eliminate the influence of contaminants in the sample. For example, since the L-tryptophan concentration in a biological sample is generally considered to be about 10 to 100 times higher than the L-kynurenine concentration, it is preferable to suppress the influence of L-tryptophan on the measurement of L-kynurenine. An L-kynurenine measurement method using NADH as an electron donor is preferable, and a measurement method using NADH alone is more preferable.
 又は、L-トリプトファンに作用する酵素により、試料中のL-トリプトファンを低減する工程を含むL-キヌレニン測定方法が好ましい。該工程は、キヌレニン3-モノオキシゲナーゼによる反応に先立ち、前処理として行うのが好ましい。 Alternatively, an L-kynurenine measurement method including a step of reducing L-tryptophan in a sample with an enzyme that acts on L-tryptophan is preferable. This step is preferably performed as a pretreatment prior to the reaction with kynurenine 3-monooxygenase.
 前記のL-トリプトファン低減工程のため、L-トリプトファンに作用する酵素を使用することが好ましい。L-トリプトファンに作用する酵素は、L-キヌレニンに実質的に作用しない酵素であれば特に制限されないが、トリプトファンオキシダーゼやトリプトファナーゼ等が例示できる。トリプトファンオキシダーゼはカタラーゼと組み合わせて使用するのが好ましい。 For the L-tryptophan reduction step, it is preferable to use an enzyme that acts on L-tryptophan. The enzyme that acts on L-tryptophan is not particularly limited as long as it does not substantially act on L-kynurenine, and examples thereof include tryptophan oxidase and tryptophanase. Tryptophan oxidase is preferably used in combination with catalase.
 酵素使用量は、L-トリプトファンを低減できれば特に限定されないが、トリプトファンオキシダーゼの場合、前処理液中の濃度が0.1~100U/mL程度であることが好ましく、1~10U/mL程度であることがより好ましい。トリプトファンオキシダーゼにカタラーゼを組み合わせる場合、前処理液中の濃度が0.1~10,000U/mL程度であることが好ましく、1~1,000U/mL程度であることがより好ましい。トリプトファナーゼの場合、前処理液中の濃度が0.01~10U/mL程度であることが好ましく、0.1~2U/mL程度であることがより好ましい。 The amount of enzyme used is not particularly limited as long as L-tryptophan can be reduced. In the case of tryptophan oxidase, the concentration in the pretreatment solution is preferably about 0.1 to 100 U / mL, and about 1 to 10 U / mL. It is more preferable. When combining catalase with tryptophan oxidase, the concentration in the pretreatment solution is preferably about 0.1 to 10,000 U / mL, more preferably about 1 to 1,000 U / mL. In the case of tryptophanase, the concentration in the pretreatment solution is preferably about 0.01 to 10 U / mL, and more preferably about 0.1 to 2 U / mL.
 また、反応温度、反応pH及び反応時間は、それぞれの酵素の至適pH及び温度を踏まえて適宜設定することができる。反応温度は、例えば15~50℃、好ましくは20~45℃、より好ましくは25~40℃である。反応pHは、例えば5.0~11.0、より好ましくは5.5~10.5、より好ましくは6.0~10.0である。反応時間は、例えば1~60分、好ましくは1~40分間である。 The reaction temperature, reaction pH, and reaction time can be appropriately set based on the optimum pH and temperature of each enzyme. The reaction temperature is, for example, 15 to 50 ° C., preferably 20 to 45 ° C., more preferably 25 to 40 ° C. The reaction pH is, for example, 5.0 to 11.0, more preferably 5.5 to 10.5, and more preferably 6.0 to 10.0. The reaction time is, for example, 1 to 60 minutes, preferably 1 to 40 minutes.
(キヌレニン3-モノオキシゲナーゼ(KMO))
 キヌレニン3-モノオキシゲナーゼ(KMO)としては、例えば、Pseudomonas等の原核生物由来、又はヒト、ラット、蚊、酵母等の真核生物由来の公知の酵素を使用することができる。用いる酵素は組換え酵素でも良く、合成した酵素でもよい。この酵素は可溶性酵素であることが好ましいが、不溶性酵素に界面活性剤を組み合わせてもよく、可溶化タンパクとの融合又は膜結合部分の削除等により不溶性酵素を可溶化させた酵素でもよい。この酵素としては、公知のアミノ酸配列を有する酵素を利用でき、例えば、配列番号1、2、3、4又は5に記載の配列を有する酵素を使用できる。さらに、配列番号1、2、3、4又は5に記載の配列において1又は数アミノ酸を置換、付加若しくは欠失し、キヌレニン3-モノオキシゲナーゼ活性を有する改変酵素でもよい。配列番号1、2、3、4又は5と例えば60%、65%、70%、75%、80%、85%、90%又は95%以上の類似性又は同一性を有する配列を有し、キヌレニン3-モノオキシゲナーゼ活性を有する蛋白質を使用してもよい。
(Kynurenin 3-monooxygenase (KMO))
As kynurenine 3-monooxygenase (KMO), for example, a known enzyme derived from a prokaryotic organism such as Pseudomonas or a eukaryotic organism such as human, rat, mosquito or yeast can be used. The enzyme used may be a recombinant enzyme or a synthesized enzyme. This enzyme is preferably a soluble enzyme, but a surfactant may be combined with the insoluble enzyme, or an enzyme in which the insoluble enzyme is solubilized by fusion with a solubilized protein or deletion of a membrane-bound portion may be used. As this enzyme, an enzyme having a known amino acid sequence can be used. For example, an enzyme having the sequence shown in SEQ ID NO: 1, 2, 3, 4 or 5 can be used. Further, it may be a modified enzyme having kynurenine 3-monooxygenase activity by substituting, adding or deleting one or several amino acids in the sequence shown in SEQ ID NO: 1, 2, 3, 4 or 5. Having a sequence having similarity or identity of SEQ ID NO: 1, 2, 3, 4 or 5, for example 60%, 65%, 70%, 75%, 80%, 85%, 90% or 95% or more, A protein having kynurenine 3-monooxygenase activity may be used.
(電子供与体)
 本発明の工程(A)は、NADH、NADPH及びそれらの誘導体からなる群より選択される電子供与体の存在下で行われる。
 NADH又はNADPHの誘導体とは、NADHやNADPHの安定性向上、モル吸光係数の上昇等のために使用することができる。本発明においては、キヌレニン3-モノオキシゲナーゼによる反応が進むのであれば、NADH又はNADPHの誘導体の種類は特に限定されず、例えば、特開2012-224638公報で示されるNADH又はNADPH誘導体等、公知のものを使用することができる。
(Electron donor)
Step (A) of the present invention is carried out in the presence of an electron donor selected from the group consisting of NADH, NADPH and derivatives thereof.
NADH or a NADPH derivative can be used to improve the stability of NADH or NADPH, increase the molar extinction coefficient, or the like. In the present invention, the type of NADH or NADPH derivative is not particularly limited as long as the reaction with kynurenine 3-monooxygenase proceeds. For example, a known NADH or NADPH derivative disclosed in JP2012-224638A is known. Things can be used.
(酵素反応)
 工程(A)に用いる酵素反応中の酵素量は、試料中のL-キヌレニンが3-ヒドロキシキヌレニンに変換できていれば特に限定されないが、1試料あたり0.0001~100U程度が好ましく、0.001~10U程度がより好ましい。工程(A)中の電子供与体濃度は、試料中のL-キヌレニン測定ができれば特に制限はないが、0.01~1mMが好ましく、0.01~0.5mMがより好ましい。また、工程(A)における反応温度、反応pH及び反応時間は、酵素の至適pH及び温度を踏まえて適宜設定することができる。反応温度は、例えば15~50℃、好ましくは20~45℃、より好ましくは25~40℃である。反応pHは、例えば5.0~11.0、好ましくは5.5~10.5、より好ましくは、6.0~10.0である。反応時間は、例えば1~60分間、好ましくは1~30分、より好ましくは1~10分間である。
(Enzymatic reaction)
The amount of enzyme in the enzyme reaction used in the step (A) is not particularly limited as long as L-kynurenine in the sample can be converted to 3-hydroxykynurenine, but is preferably about 0.0001 to 100 U per sample. About 001 to 10 U is more preferable. The concentration of the electron donor in step (A) is not particularly limited as long as L-kynurenine in the sample can be measured, but is preferably 0.01 to 1 mM, more preferably 0.01 to 0.5 mM. Moreover, the reaction temperature, reaction pH, and reaction time in the step (A) can be appropriately set based on the optimum pH and temperature of the enzyme. The reaction temperature is, for example, 15 to 50 ° C., preferably 20 to 45 ° C., more preferably 25 to 40 ° C. The reaction pH is, for example, 5.0 to 11.0, preferably 5.5 to 10.5, and more preferably 6.0 to 10.0. The reaction time is, for example, 1 to 60 minutes, preferably 1 to 30 minutes, more preferably 1 to 10 minutes.
(工程(B))
 本発明は、工程(A)の生成物に、
(1)2価銅化合物、及び1価銅イオンに特異的な金属指示薬、又は
(2)酸化還元系発色試薬及び電荷キャリア
を反応させる工程(B)を含む。
(Process (B))
The present invention provides the product of step (A)
(1) a step (B) of reacting a divalent copper compound and a metal indicator specific to a monovalent copper ion, or (2) a redox coloring reagent and a charge carrier.
 (1)第1の態様では2価銅化合物を使用し、反応液中の3-ヒドロキシキヌレニンとの酸化還元反応によって、3-ヒドロキシキヌレニン1モルあたり複数モルの1価銅イオンを生成させることができる。更に、1価銅イオンに特異的な金属指示薬との反応により発色物質を生成することができる。 (1) In the first embodiment, a divalent copper compound is used, and a plurality of moles of monovalent copper ions per mole of 3-hydroxykynurenine can be generated by an oxidation-reduction reaction with 3-hydroxykynurenine in the reaction solution. it can. Furthermore, a coloring substance can be produced by reaction with a metal indicator specific for monovalent copper ions.
 前記2価銅化合物としては特に限定されないが、水溶性のものが好ましく、例えば、塩化銅(II)、硫酸銅(II)、硝酸銅(II)、酢酸銅(II)、クエン酸銅(II)、グルコン酸銅(II)等が用いられる。これらのうち、塩化銅(II)又は硫酸銅(II)が好適に用いられる。 Although it does not specifically limit as said divalent copper compound, A water-soluble thing is preferable, for example, copper (II) chloride, copper sulfate (II), copper nitrate (II), copper acetate (II), copper citrate (II) ), Copper (II) gluconate and the like are used. Of these, copper (II) chloride or copper (II) sulfate is preferably used.
 前記1価銅イオンに特異的な金属指示薬としては、特に限定されないが、他の金属イオンとは実質的に反応せず、1価銅イオンと特異的に反応して有色の錯体を形成する指示薬などが用いられる。例えば、バソクプロイン、ネオクプロイン、ビシンコニン酸、それらの誘導体又はそれらの塩等が好適に用いられる。これらのうち、バソクプロイン又はその塩が好ましく、バソクプロインジスルホン酸二ナトリウムがより好ましい。 The metal indicator specific to the monovalent copper ion is not particularly limited, but it does not substantially react with other metal ions and specifically reacts with the monovalent copper ion to form a colored complex. Etc. are used. For example, bathocuproin, neocuproin, bicinchoninic acid, derivatives thereof or salts thereof are preferably used. Of these, bathocuproin or a salt thereof is preferable, and disodium bathocuproin disulfonate is more preferable.
 該反応中の各試薬の濃度は、2価銅化合物の場合、0.01~2.0mMが好ましく、0.02~1.0mMがより好ましい。1価銅イオンに特異的な金属指示薬は、0.01~2.0mMが好ましく、0.02~1.0mMがより好ましい。また、測定時のpHは3.0~11.0が好ましく、pH4.0~10.0がより好ましい。反応温度は、15~50℃が好ましく、20~45℃がより好ましく、25~40℃が更に好ましい。 The concentration of each reagent in the reaction is preferably 0.01 to 2.0 mM, more preferably 0.02 to 1.0 mM in the case of a divalent copper compound. The metal indicator specific for monovalent copper ions is preferably from 0.01 to 2.0 mM, more preferably from 0.02 to 1.0 mM. The pH during measurement is preferably from 3.0 to 11.0, more preferably from 4.0 to 10.0. The reaction temperature is preferably 15 to 50 ° C, more preferably 20 to 45 ° C, still more preferably 25 to 40 ° C.
 前記金属指示薬は、1価銅イオンの生成を判別可能とするために、2価銅化合物を加える前に試料に加えておくことが好ましい。2価銅化合物を加える前後での1価銅イオン濃度の変化により、生成した1価銅イオンを正確に定量することができる。 The metal indicator is preferably added to the sample before adding the divalent copper compound so that the production of monovalent copper ions can be discriminated. The produced monovalent copper ions can be accurately quantified by the change in the monovalent copper ion concentration before and after adding the divalent copper compound.
 なお、3-ヒドロキシキヌレニンと2価銅イオンが作用して得られた1価銅イオンをバソクプロインやビシンコニン酸により検出できることは公知である(Biochemistry,39,7266-7275,2000)。しかしながら、NADHも2価銅イオンを還元することが知られている(Analyst,134(8)、1614-1617、2009)こと、及び工程(A)で使用するNADH又はNADPHは、3-ヒドロキシキヌレニンの数10倍溶液中に含まれることから、NADH又はNADPHを含んだ溶液中で、第1の態様に基づく測定ができるというのを容易に想定することは困難である。 It is known that monovalent copper ions obtained by the action of 3-hydroxykynurenine and divalent copper ions can be detected by bathocuproine or bicinchoninic acid (Biochemistry, 39, 7266-7275, 2000). However, NADH is also known to reduce divalent copper ions (Analyst, 134 (8), 1614-1617, 2009), and NADH or NADPH used in step (A) is 3-hydroxykynurenine. Therefore, it is difficult to easily assume that measurement based on the first aspect can be performed in a solution containing NADH or NADPH.
(酸化還元系発色試薬)
 (2)第2の態様において使用する酸化還元系発色試薬の内、還元系発色試薬とは、電荷キャリア存在下で、反応液中のNADH、NADPH及びそれらの誘導体からなる群より選択される電子供与体と反応することで、酸化型の無色物質から還元型の発色物質を生成するものである。
(Redox coloring reagent)
(2) Among the redox coloring reagents used in the second embodiment, the reducing coloring reagent is an electron selected from the group consisting of NADH, NADPH and derivatives thereof in the reaction solution in the presence of a charge carrier. By reacting with a donor, a reduced coloring material is generated from an oxidized colorless material.
 前記還元系発色試薬の種類は、試料中のL-キヌレニン測定ができれば特に限定されないが、例えば、2-(4-インドフェノール-3-(4-ニトリフェニル)-5-フェニル2H-タトラゾリウムクロライド(INT)、3-(4,5-ジメチル-2-チアゾリル)-2,5-ジフェニル-2H-テトラゾリウム ブロミド(MTT)、2-(4-ヨードフェニル)-3-(4-ニトロフェニル)-5-(2,4-ジスルホフェニル)-2H-テトラゾリウム、一ナトリウム塩(WST-1)、3,3’-[3,3’-ジメトキシ-(1,1’-ビフェニル)-4,4’-ジイル]-ビス[2-(4-ニトロフェニル)-5-フェニル-2H-テトラゾリウム クロリド](NTB)、2-ベンゾチアゾリル-3-(4-カルボキシ-2-メトキシフェニル)-5-[4-(2-スルホエチルカルバモイル)フェニル]-2H-テトラゾリウム(WST-4)等のテトラゾリウム塩や、レサズリンナトリウム等が使用可能である。例えば、WST-1の場合、反応液における濃度が0.02mg/mL以上が好ましく、0.1mg/mL以上がより好ましい。なお、MTTのような水への溶解性の低い発色試薬を使用する際や高濃度のホルマザン色素が生じる場合は、可溶化のためにドデシル硫酸ナトリウム(SDS)やジメチルスルホキシド(DMSO)等の界面活性剤や有機溶剤を使用してもよい。 The type of reducing coloring reagent is not particularly limited as long as L-kynurenine in a sample can be measured. For example, 2- (4-indophenol-3- (4-nitriphenyl) -5-phenyl2H-tatrazolium Chloride (INT), 3- (4,5-dimethyl-2-thiazolyl) -2,5-diphenyl-2H-tetrazolium bromide (MTT), 2- (4-iodophenyl) -3- (4-nitrophenyl) -5- (2,4-disulfophenyl) -2H-tetrazolium, monosodium salt (WST-1), 3,3 '-[3,3'-dimethoxy- (1,1'-biphenyl) -4, 4′-diyl] -bis [2- (4-nitrophenyl) -5-phenyl-2H-tetrazolium chloride] (NTB), 2-benzothiazolyl-3- (4-carboxy- Tetrazolium salts such as -methoxyphenyl) -5- [4- (2-sulfoethylcarbamoyl) phenyl] -2H-tetrazolium (WST-4), resazurin sodium, etc. can be used, for example, WST-1 In this case, the concentration in the reaction solution is preferably 0.02 mg / mL or more, more preferably 0.1 mg / mL or more, when a coloring reagent having low solubility in water such as MTT is used or when a high concentration is used. When a formazan dye is generated, a surfactant such as sodium dodecyl sulfate (SDS) or dimethyl sulfoxide (DMSO) or an organic solvent may be used for solubilization.
 一方、酸化還元系発色試薬の内、酸化系発色試薬とは、電荷キャリア存在下で、反応液中のNADH、NADPH及びそれらの誘導体からなる群より選択される電子供与体と反応することで、酸化型の発色物質から還元型の無色物質を生成するものである。本試薬の種類は、試料中のL-キヌレニン測定ができれば特に限定されないが、例えば、ジクロロインドフェノール(DCIP)などがあげられる。 On the other hand, among the redox coloring reagents, an oxidizing coloring reagent reacts with an electron donor selected from the group consisting of NADH, NADPH and derivatives thereof in the reaction solution in the presence of a charge carrier. A reduced colorless substance is produced from an oxidized color developing substance. The type of this reagent is not particularly limited as long as L-kynurenine in a sample can be measured, and examples thereof include dichloroindophenol (DCIP).
(電荷キャリア)
 前記電荷キャリアは、試料中のL-キヌレニン測定ができれば特に限定されないが、反応液中の3-ヒドロキシキヌレニンと酸化還元系発色試薬による発色物質の生成を触媒することなく、逆に3-ヒドロキシキヌレニンによって、電子供与体と酸化還元系発色試薬の反応による発色物質の生成を阻害するものが望ましい。具体的には、ジアホラーゼの使用が好ましい。ジアホラーゼを使用する場合、使用量としては反応液における濃度が0.01U/mL以上が好ましく、0.1U/mL以上がより好ましい。ジアホラーゼは、電子供与体と反応するものであればその種類は限定されないが、例えば、EC番号1.6.5.2、EC番号1.6.99.1、EC番号1.6.99.3に分類されるものを使用することができる。
(Charge carrier)
The charge carrier is not particularly limited as long as L-kynurenine in a sample can be measured, but 3-hydroxykynurenine can be reversed without catalyzing the production of a coloring substance by 3-hydroxykynurenine in a reaction solution and a redox coloring reagent. Therefore, it is desirable to inhibit the generation of a color developing substance by the reaction between the electron donor and the redox coloring reagent. Specifically, the use of diaphorase is preferable. When diaphorase is used, the amount used is preferably 0.01 U / mL or more, more preferably 0.1 U / mL or more, in the reaction solution. The type of diaphorase is not limited as long as it reacts with an electron donor. For example, EC number 1.6.5.2, EC number 1.6.99.1, EC number 1.6.99. Those classified into 3 can be used.
 工程(B)における反応温度、反応pH及び反応時間は、第1の態様及び第2の態様において、酵素等の至適pH及び温度を踏まえて適宜設定することができる。反応温度は、例えば15~50℃、好ましくは20~45℃、より好ましくは25~40℃である。なお、工程(A)における温度と同一にしてもよい。反応pHは、特に限定されないが、例えば、pH3.0~12.0が好ましい。第1の態様では、pH4.0~11.0がより好ましい。第2の態様では、例えば電荷キャリアとしてジアホラーゼを使用する場合は、pH6.0~10.0が好ましく、pH7.0~9.0がより好ましい。なお、工程(A)における反応pHと同一にしてもよい。反応時間は、例えば1~60分間、好ましくは1~40分間、より好ましくは1~10分間である。 The reaction temperature, reaction pH, and reaction time in step (B) can be appropriately set based on the optimum pH and temperature of the enzyme and the like in the first and second aspects. The reaction temperature is, for example, 15 to 50 ° C., preferably 20 to 45 ° C., more preferably 25 to 40 ° C. In addition, you may make it the same temperature in a process (A). The reaction pH is not particularly limited, but for example, pH 3.0 to 12.0 is preferable. In the first embodiment, pH 4.0 to 11.0 is more preferable. In the second embodiment, for example, when diaphorase is used as the charge carrier, pH 6.0 to 10.0 is preferable, and pH 7.0 to 9.0 is more preferable. The reaction pH in step (A) may be the same. The reaction time is, for example, 1 to 60 minutes, preferably 1 to 40 minutes, more preferably 1 to 10 minutes.
 また、第1の態様及び第2の態様における緩衝液の種類としては、目的のpHにおいて緩衝能を有するものであれば特に限定されないが、例えば、ビシン(Bicine)、トリス(Tris)、クエン酸等、銅イオンと錯体を形成する物質の場合は、第1の態様において発色を阻害する可能性があるので注意して使用する必要がある。 In addition, the type of the buffer solution in the first and second aspects is not particularly limited as long as it has a buffering ability at a target pH. For example, bicine, tris, citric acid In the case of a substance that forms a complex with a copper ion, etc., it is necessary to use it with caution because it may inhibit color development in the first embodiment.
(工程(C))
 本発明は、工程(B)で得られた発色物質の濃度から、L-キヌレニンを含有しない試料又はキヌレニン3-モノオキシゲナーゼ未添加の試料における発色物質の濃度を差し引いた値に基づき、試料中のL-キヌレニン量を決定する工程(C)を含む。なお、L-キヌレニンを含有しない試料又はキヌレニン3-モノオキシゲナーゼ未添加の試料はコントロールと呼ばれるもので、L-キヌレニン又はキヌレニン3-モノオキシゲナーゼを添加しない場合における分析値への影響を除外するものである。
(Process (C))
The present invention is based on a value obtained by subtracting the concentration of the coloring substance in the sample not containing L-kynurenine or the sample not added with kynurenine 3-monooxygenase from the concentration of the coloring substance obtained in step (B). A step (C) of determining an amount of L-kynurenine; Samples that do not contain L-kynurenine or samples without kynurenine 3-monooxygenase are called controls, and exclude the influence on assay values when L-kynurenine or kynurenine 3-monooxygenase is not added. is there.
 第1の態様における測定対象の発色物質は、1価銅イオンと、1価銅イオンに特異的な金属指示薬とが反応して生成した物質である。この発色物質の濃度を測定することによって、1価銅イオン濃度を測定でき、その結果、試料中のL-キヌレニンの濃度を高感度で測定することができる。 The color-developing substance to be measured in the first aspect is a substance produced by a reaction between a monovalent copper ion and a metal indicator specific to the monovalent copper ion. By measuring the concentration of this coloring substance, the concentration of monovalent copper ions can be measured, and as a result, the concentration of L-kynurenine in the sample can be measured with high sensitivity.
 第2の態様における測定対象の発色物質は、酸化還元系発色試薬から得られたものであり、電荷キャリア存在下で、反応液中のNADH、NADPH及びそれらの誘導体からなる群より選択される電子供与体が酸化還元系発色試薬と反応して得られる。 The color-developing substance to be measured in the second aspect is obtained from an oxidation-reduction color-developing reagent, and is an electron selected from the group consisting of NADH, NADPH and their derivatives in the reaction solution in the presence of a charge carrier. A donor is obtained by reacting with a redox coloring reagent.
 即ち、以下の手順でL-キヌレニン濃度を測定することができる。
 a)L-キヌレニンを含まない反応液に、前記電子供与体とキヌレニン3-モノオキシゲナーゼを添加して反応後、更に電荷キャリアと酸化還元系発色試薬を供与することで得られた発色物質の濃度を測定する。または、L-キヌレニンを含む反応液に、電子供与体を添加後、キヌレニン3-モノオキシゲナーゼは添加せず、更に電荷キャリアと酸化還元系発色試薬を供与することで得られた発色物質の濃度を測定する。
 b)L-キヌレニンを含む反応液に、電子供与体とキヌレニン3-モノオキシゲナーゼを添加して反応後、更に電荷キャリアと酸化還元系発色試薬を供与することで得られた発色物質の濃度を測定する。
 c)a)の濃度からb)の濃度を減算することで得られた値から、L-キヌレニン濃度を算出する。
That is, the L-kynurenine concentration can be measured by the following procedure.
a) Concentration of the coloring substance obtained by adding the electron donor and kynurenine 3-monooxygenase to the reaction solution not containing L-kynurenine, and further donating a charge carrier and a redox coloring reagent. Measure. Alternatively, after adding an electron donor to a reaction solution containing L-kynurenine, no kynurenine 3-monooxygenase is added, and the concentration of the coloring substance obtained by donating the charge carrier and the redox coloring reagent is adjusted. taking measurement.
b) After adding and reacting an electron donor and kynurenine 3-monooxygenase to a reaction solution containing L-kynurenine, the concentration of the chromogenic material obtained by further donating charge carriers and a redox coloring reagent is measured. To do.
c) The L-kynurenine concentration is calculated from the value obtained by subtracting the concentration of b) from the concentration of a).
 ところで、還元系発色試薬を使用する場合、電荷キャリア存在下で前記電子供与体が還元系発色試薬と反応することで得られる発色物質の濃度は、電子供与体の濃度依存的に増加する。また、L-キヌレニン3-モノオキシゲナーゼによる反応を実施した場合、反応液中のL-キヌレニンと同じモル数の電子供与体が減少するので、キヌレニン3-モノオキシゲナーゼによる反応後の酵素反応液においては、L-キヌレニンの濃度依存的に発色物質が減少するが、その傾きの絶対値は、先の電子供与体と発色物質の間において得られる傾きの絶対値と等しくなると考えられる。 By the way, when a reducing coloring reagent is used, the concentration of the coloring substance obtained by the reaction of the electron donor with the reducing coloring reagent in the presence of a charge carrier increases depending on the concentration of the electron donor. In addition, when the reaction with L-kynurenine 3-monooxygenase is carried out, the number of electron donors in the reaction solution is the same as the number of moles of L-kynurenine, so in the enzyme reaction solution after the reaction with kynurenine 3-monooxygenase, The chromogenic substance decreases depending on the concentration of L-kynurenine, but the absolute value of the slope is considered to be equal to the absolute value of the slope obtained between the electron donor and the chromogenic substance.
 しかしながら、今回、本発明者が検討した結果、実施例に示すように、傾きの絶対値が誤差範囲を超えるレベルで増加していることが確認できた。本原因を追究した結果、L-キヌレニンからキヌレニン3-モノオキシゲナーゼによる反応により生じた3-ヒドロキシキヌレニンによって、電荷キャリアの一種であるジアホラーゼ存在下での前記電子供与体と還元系発色試薬との間の反応が、3-ヒドロキシキヌレニンの濃度依存的に阻害され、発色物質の生成が阻害されることを見出した。 However, as a result of examination by the present inventors this time, it was confirmed that the absolute value of the slope increased at a level exceeding the error range, as shown in the examples. As a result of investigating this cause, 3-hydroxykynurenine produced by the reaction of L-kynurenine with kynurenine 3-monooxygenase causes the reaction between the electron donor and the reducing coloring reagent in the presence of diaphorase, which is a kind of charge carrier. It was found that the above reaction was inhibited depending on the concentration of 3-hydroxykynurenine, and the production of the coloring substance was inhibited.
 つまり、L-キヌレニン濃度の上昇に伴う発色物質の濃度の減少は、キヌレニン3-モノオキシゲナーゼによる反応後の電子供与体の減少の影響だけでなく、L-キヌレニン濃度の増加に伴い増加する3-ヒドロキシキヌレニン量の影響も加味されるため、想定以上の傾きの絶対値の増加が得られることが分かった。その結果、本発色物質の濃度を測定することによって、試料中のL-キヌレニンの濃度を高感度で測定することができる。 In other words, the decrease in the concentration of the chromogenic substance accompanying the increase in the L-kynurenine concentration is not only due to the influence of the decrease in the electron donor after the reaction by the kynurenine 3-monooxygenase, but also increases as the L-kynurenine concentration increases. Since the influence of the amount of hydroxykynurenine was also taken into account, it was found that an increase in absolute value of the slope more than expected was obtained. As a result, by measuring the concentration of the coloring material, the concentration of L-kynurenine in the sample can be measured with high sensitivity.
 また、第2の態様における測定において、電荷キャリアや酸化還元系発色試薬を供与する前又は同時に、3-ヒドロキシキヌレニンに作用する物質を添加することで、電荷キャリアによる電子供与体と酸化還元系発色試薬との間の反応を阻害する効果が更に高くなり、その結果、より高感度の測定ができることを見出した。具体的な物質としては、3-ヒドロキシキヌレニンを含まない系では殆ど反応を阻害しないが、3-ヒドロキシキヌレニンを含む系では反応を阻害する物質であれば特に限定されないが、好ましくはフェノール系化合物に作用する酸化剤又は重合剤であり、更に好ましくはフェノール系化合物に作用する酵素である。具体的には、酸化還元酵素としては、ペルオキシダーゼ(EC番号1.11.1.X)、ラッカーゼ(EC番号1.10.3.2)、ビリルビンオキシダーゼ(EC番号1.3.3.5)、チロシナーゼ(EC番号1.10.3.1又は1.14.18.1)、3-ヒドロキシアントラニル酸オキシダーゼ(EC番号1.10.3.5)、フェロオキシダーゼ(EC番号1.16.3.1)、フェノール-2-モノオキシゲナーゼ(EC番号1.14.13.7又は1.14.14.20)、アミノフェノールオキシダーゼ(EC番号1.10.3.4)、グリキサゾンシンターゼ(EC番号1.10.3.15)、2-アミノフェノール1,6-ジオキシゲナーゼ(EC番号1.13.11.74)、2-アミノ-5-クロロフェノール1,6-ジオキシゲナーゼ(EC番号1.13.11.76)等が例示され、転移酵素としては、N-ヒドロキシアリルアミンO-アセチルトランスフェラーゼ(EC番号2.3.1.118)、グルクロノシルトランスフェラーゼ(EC番号2.4.1.17)、フェニルβ-グルコシルトランスフェラーゼ(EC番号2.4.1.35)、アリルアミンN-アセチルトランスフェラーゼ(EC番号2.3.1.5)、アリル硫酸スルホトランスフェラーゼ(EC番号2.8.2.22)等が例示される。その中で好ましいのはペルオキシダーゼ、ラッカーゼ又はビリルビンオキシダーゼである。ペルオキシダーゼ、ラッカーゼ又はビリルビンオキシダーゼの濃度は、3-ヒドロキシキヌレニンを含まない系では殆ど反応を阻害しないが、3-ヒドロキシキヌレニンを含む系では反応を阻害するような濃度であれば、その範囲は限定されないが、好ましくは0.001~1,000U/mL、更に好ましくは0.01~100U/mLである。また、反応pH、温度、時間は、前述の発色反応やそれぞれの酵素に適した条件に併せて適宜設定することができる。なお、フェノール系化合物に作用する酵素の添加時期は、キヌレニン3-モノオキシゲナーゼによる反応前、反応中又は反応後のいずれの時期でもよいが、好ましくはキヌレニン3-モノオキシゲナーゼによる反応後である。反応温度は、例えば15~50℃、好ましくは20~45℃、より好ましくは25~40℃である。反応pHは、例えば5.0~11.0、好ましくは5.5~10.5、より好ましくは6.0~10.0である。反応時間は、例えば1~60分、好ましくは1~45分、より好ましくは1~10分である。 In addition, in the measurement in the second embodiment, before or simultaneously with the provision of the charge carrier and the redox coloring reagent, a substance that acts on 3-hydroxykynurenine is added, whereby the electron donor and the redox coloring by the charge carrier are added. It has been found that the effect of inhibiting the reaction with the reagent is further increased, and as a result, a more sensitive measurement can be performed. The specific substance is not particularly limited as long as it does not inhibit the reaction in a system that does not contain 3-hydroxykynurenine, but is not particularly limited as long as it is a substance that inhibits the reaction in a system that contains 3-hydroxykynurenine. It is an oxidizing agent or a polymerization agent that acts, and more preferably an enzyme that acts on a phenolic compound. Specifically, as the oxidoreductase, peroxidase (EC number 1.11.1.X), laccase (EC number 1.10.3.2), bilirubin oxidase (EC number 1.3.3.5) Tyrosinase (EC number 1.10.3.1 or 1.14.18.1), 3-hydroxyanthranilate oxidase (EC number 1.10.3.5), ferrooxidase (EC number 1.16.3) .1), phenol-2-monooxygenase (EC number 1.14.13.7 or 1.14.14.20), aminophenol oxidase (EC number 1.10.3.4), glyxazone synthase ( EC number 1.10.3.15), 2-aminophenol 1,6-dioxygenase (EC number 1.13.11.74), 2-amino-5-chlorophenol 1 6-dioxygenase (EC number 1.13.1.11.76) and the like are exemplified, and examples of the transferase include N-hydroxyallylamine O-acetyltransferase (EC number 2.3.1.118), glucuronosyltransferase ( EC number 2.4.1.17), phenyl β-glucosyltransferase (EC number 2.4.1.35), allylamine N-acetyltransferase (EC number 2.3.1.5), allyl sulfate sulfotransferase ( EC number 2.8.2.2.2) and the like are exemplified. Among them, peroxidase, laccase or bilirubin oxidase is preferable. The concentration of peroxidase, laccase or bilirubin oxidase hardly inhibits the reaction in a system not containing 3-hydroxykynurenine, but the range is not limited as long as it is a concentration that inhibits the reaction in a system containing 3-hydroxykynurenine. However, it is preferably 0.001 to 1,000 U / mL, more preferably 0.01 to 100 U / mL. The reaction pH, temperature, and time can be appropriately set in accordance with the aforementioned color development reaction and conditions suitable for each enzyme. The timing of addition of the enzyme acting on the phenolic compound may be any time before, during or after the reaction with kynurenine 3-monooxygenase, but preferably after the reaction with kynurenine 3-monooxygenase. The reaction temperature is, for example, 15 to 50 ° C., preferably 20 to 45 ° C., more preferably 25 to 40 ° C. The reaction pH is, for example, 5.0 to 11.0, preferably 5.5 to 10.5, and more preferably 6.0 to 10.0. The reaction time is, for example, 1 to 60 minutes, preferably 1 to 45 minutes, more preferably 1 to 10 minutes.
 フェノール系化合物に作用する酵素を使用した場合、フェノール系化合物に作用する酵素を添加後又は添加と同時に、酵素サイクリング法と組み合わせることで、更なる高感度測定も可能である。本酵素サイクリング法とは、具体的には電荷キャリアを用いた反応で得られたNADやNADPに対して、適切なNADH又はNADPH再生酵素、及びその基質を供与することで、NADH又はNADPHに変換し、再び電荷キャリアを用いた反応を行わせる方法である。 When an enzyme that acts on a phenolic compound is used, an enzyme that acts on a phenolic compound can be combined with an enzyme cycling method after or simultaneously with the addition of an enzyme that acts on the phenolic compound, thereby enabling further highly sensitive measurement. This enzyme cycling method specifically refers to NADH or NADPH by donating an appropriate NADH or NADPH regenerating enzyme and its substrate to NAD + or NADP + obtained by a reaction using a charge carrier. In this method, the reaction using charge carriers is performed again.
 なお、NADH又はNADPH再生酵素としては、例えば、アルコール脱水素酵素、グルコース脱水素酵素、グルタミン酸脱水素酵素、ギ酸脱水素酵素、リンゴ酸脱水素酵素、グルコース-6-リン酸脱水素酵素、ホスホグルコン酸脱水素酵素、グリセロール脱水素酵素等が挙げられる。 Examples of NADH or NADPH regenerating enzyme include alcohol dehydrogenase, glucose dehydrogenase, glutamate dehydrogenase, formate dehydrogenase, malate dehydrogenase, glucose-6-phosphate dehydrogenase, and phosphoglucocone. Examples include acid dehydrogenase and glycerol dehydrogenase.
 上記反応で使用するNADH又はNADPH再生酵素と基質の組み合わせとしては、目的を満たせば酵素やその基質の種類は制限されないが、例えばアルコール脱水素酵素とエタノール、グルコース脱水素酵素とグルコース、グルタミン酸脱水素酵素とグルタミン酸、ギ酸脱水素酵素とギ酸、リンゴ酸脱水素酵素とリンゴ酸、グルコース6リン酸脱水素酵素とグルコース6リン酸、ホスホグルコン酸脱水素酵素とホスホグルコン酸、グリセロール脱水素酵素とグリセロール等が知られている。 As a combination of NADH or NADPH regenerating enzyme and substrate used in the above reaction, the type of enzyme or its substrate is not limited as long as the purpose is satisfied. For example, alcohol dehydrogenase and ethanol, glucose dehydrogenase and glucose, and glutamate dehydrogenation. Enzyme and glutamate, formate dehydrogenase and formate, malate dehydrogenase and malate, glucose 6-phosphate dehydrogenase and glucose 6-phosphate, phosphogluconate dehydrogenase and phosphogluconate, glycerol dehydrogenase and glycerol Etc. are known.
 NADH再生酵素としてアルコール脱水素酵素を使用する場合、酵素量としては、試料中のL-キヌレニン測定ができれば特に限定されないが、反応液におけるアルコール脱水素酵素濃度としては0.5~30U/mL程度が好ましく、3~15U/mL程度がより好ましい。また、反応温度、反応pH及び反応時間は、それぞれの酵素の至適pH及び温度を踏まえて適宜設定することができる。 When alcohol dehydrogenase is used as NADH regenerating enzyme, the amount of enzyme is not particularly limited as long as L-kynurenine can be measured in the sample, but the concentration of alcohol dehydrogenase in the reaction solution is about 0.5 to 30 U / mL. It is preferably about 3 to 15 U / mL. Moreover, reaction temperature, reaction pH, and reaction time can be suitably set based on the optimum pH and temperature of each enzyme.
(測定手段)
 発色物質の濃度測定手段は特に限定されないが、例えば分光光度計による吸光度変化の測定が例示できる。分光光度計による測定では、レート法又はエンドポイント法から適宜選択することが好ましい。測定に用いられる分光光度計としては、日本分光、日立ハイテクノロジーズ、島津製作所等各社から販売されている市販品が例示できる。
(Measuring means)
The concentration measuring means for the color developing substance is not particularly limited, and for example, measurement of absorbance change by a spectrophotometer can be exemplified. In the measurement with a spectrophotometer, it is preferable to select appropriately from the rate method or the endpoint method. Examples of spectrophotometers used for measurement include commercial products sold by various companies such as JASCO, Hitachi High-Technologies, Shimadzu Corporation.
 第1の態様において、吸光度測定における測定波長はそれぞれの金属指示薬によって異なる。例えば、1価銅イオンに特異的な金属指示薬としてバソクプロインを使用した場合480nm付近、ネオクプロインの場合450nm付近、ビシンコニン酸の場合562nm付近の波長での吸光度が用いることができるが、必要に応じて適宜変更してもよい。 In the first embodiment, the measurement wavelength in the absorbance measurement varies depending on each metal indicator. For example, when bathocuproine is used as a metal indicator specific for monovalent copper ions, absorbance at a wavelength of around 480 nm, neocuproine at around 450 nm, and bicinchoninic acid at around 562 nm can be used. It may be changed.
 第2の態様において、生成した発色物質を定量するための測定波長は、各発色物質が吸収を持つ波長であれば特に限定されないが、各発色物質の吸収極大を示す波長が望ましい。例えば、WST-1を使用した場合は、400~480nmが望ましく、440nm付近の測定波長で測定することが更に好ましい。但し、NADH、NADPH濃度が高い状態で吸収極大を示す波長で測定する場合、吸光度が高くなりすぎ、正確性を欠く恐れがあるため、吸収極大を示す波長から、低波長側、長波長側のいずれかにずらして測定することも可能である。 In the second embodiment, the measurement wavelength for quantifying the generated color substance is not particularly limited as long as each color substance has absorption, but a wavelength indicating the absorption maximum of each color substance is desirable. For example, when WST-1 is used, it is preferably 400 to 480 nm, and more preferably measured at a measurement wavelength around 440 nm. However, when measuring at a wavelength that exhibits an absorption maximum with a high NADH or NADPH concentration, the absorbance may be too high and the accuracy may be lost. It is also possible to measure by shifting to either.
(任意成分)
 本発明のL-キヌレニン測定方法において、当業者に公知の他の任意成分を適宜含有させ、前記酵素等試薬成分の安定性を高めてもよい。任意成分は測定に影響のない成分であれば特に限定されないが、例えば、フラビンアデニンジヌクレオチド(FAD)、牛血清アルブミン(BSA)、卵白アルブミン、糖類、糖アルコール類、カルボキシル基含有化合物、酸化防止剤、界面活性剤、酵素と作用性のないアミノ酸類等が例示できる。特に、シュードモナス(Pseudomonas)由来のキヌレニン3-モノオキシゲナーゼは、塩濃度が高い方が安定性や活性が増す傾向にあることから、例えば、試薬組成物の緩衝液や塩化ナトリウムの終濃度を10mM以上にすることが好ましく、100mM以上にすることがより好ましい。
(Optional component)
In the L-kynurenine measurement method of the present invention, other optional components known to those skilled in the art may be appropriately contained to enhance the stability of the reagent components such as the enzyme. The optional component is not particularly limited as long as it does not affect the measurement. For example, flavin adenine dinucleotide (FAD), bovine serum albumin (BSA), ovalbumin, saccharide, sugar alcohols, carboxyl group-containing compound, antioxidant Examples include agents, surfactants, amino acids having no activity with enzymes, and the like. In particular, kynurenine 3-monooxygenase derived from Pseudomonas tends to increase in stability and activity when the salt concentration is high. For example, the final concentration of the buffer solution or sodium chloride of the reagent composition is 10 mM or more. Preferably, it is more preferably 100 mM or more.
(キット)
 本発明の測定は、キヌレニン3-モノオキシゲナーゼ、前記電子供与体を含む、L-キヌレニン測定用キットを使用して行うことができる。該キットに含まれる該キヌレニン3-モノオキシゲナーゼは、L-キヌレニンを3-ヒドロキシキヌレニンに変換する酵素であればよい。詳細には、L-キヌレニンを基質として、前記電子供与体、H及び酸素存在下で、3-ヒドロキシキヌレニン、前記電子受容体及び水を生成する反応を触媒する酵素であればよい。
(kit)
The measurement of the present invention can be performed using a kit for measuring L-kynurenine containing kynurenine 3-monooxygenase and the electron donor. The kynurenine 3-monooxygenase included in the kit may be an enzyme that converts L-kynurenine into 3-hydroxykynurenine. Specifically, any enzyme that catalyzes the reaction of producing 3-hydroxykynurenine, the electron acceptor and water in the presence of the electron donor, H + and oxygen using L-kynurenine as a substrate may be used.
 また、本発明のキットには、前処理用に、トリプトファナーゼ、トリプトファンオキシダーゼ、ビリルビンオキシダーゼ、アスコルビン酸オキシダーゼ、ウリカーゼ、ペルオキシダーゼ、カタラーゼ及び過酸化水素からなる群より選択される1種以上を含有させてもよい。 The kit of the present invention contains at least one selected from the group consisting of tryptophanase, tryptophan oxidase, bilirubin oxidase, ascorbate oxidase, uricase, peroxidase, catalase and hydrogen peroxide for pretreatment. May be.
 第1の態様では、2価銅化合物を用い、さらに1価銅イオンに特異的に反応する金属指示薬を含む。第2の態様では、前記酸化還元系発色試薬及び前記電荷キャリアを用いる。すなわち、第1の態様では、NADPH、NADP及びそれらの誘導体からなる群より選択される電子供与体、キヌレニン3-モノオキシゲナーゼ、2価銅化合物、並びに1価銅イオンに特異的な金属指示薬を含む、L-キヌレニン測定用キットが用いられる。第2の態様では、前記電子供与体、キヌレニン3-モノオキシゲナーゼ、酸化還元系発色試薬及び電荷キャリアを含む、L-キヌレニン測定用キットが用いられる。なお、第2の態様におけるキットにおいては、更にフェノール系化合物に作用する酵素を含んでいても良く、更にNADH又はNADPH再生酵素、及びその基質を含んでいても良い。 In the first embodiment, a divalent copper compound is used, and a metal indicator that specifically reacts with monovalent copper ions is included. In the second embodiment, the redox coloring reagent and the charge carrier are used. That is, in the first aspect, an electron donor selected from the group consisting of NADPH, NADP and derivatives thereof, kynurenine 3-monooxygenase, a divalent copper compound, and a metal indicator specific for a monovalent copper ion are included. L-kynurenine measurement kit is used. In the second embodiment, an L-kynurenine measurement kit including the electron donor, kynurenine 3-monooxygenase, a redox coloring reagent and a charge carrier is used. The kit in the second aspect may further contain an enzyme that acts on a phenolic compound, and may further contain NADH or NADPH regenerating enzyme and its substrate.
 以下、実施例によって本発明を具体的に説明するが、本発明は以下の実施例によって限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to the following examples.
[実施例1]
(塩化銅(II)/バソクプロイン系での測定)
 シュードモナス(Pseudomonas)由来のキヌレニン3-モノオキシゲナーゼ(P-KMO)及び塩化銅(II)を用いて、生じる1価銅イオンを測定することで、各濃度のL-キヌレニンを定量した。
 試薬混合液2.64mLを光路長1cmの石英セルに入れ、25℃で5分間保温後に、P-KMO 0.06mLを添加、混合し、25℃で酵素反応を開始した。尚、酵素反応液の組成は、100mM HEPES緩衝液(pH7.5)、0.5、1又は2μM L-キヌレニン、0.05mM NADH、及び0.01U/mL P-KMOとした(注:反応液の濃度は、塩化銅(II)添加後の濃度で示している)。コントロールとして、基質の代わりに超純水を使用した。
[Example 1]
(Measurement with copper (II) chloride / bathocuproine system)
L-kynurenine at each concentration was quantified by measuring the resulting monovalent copper ion using kynurenine 3-monooxygenase (P-KMO) and Pseudomonas (Pseudomonas) -derived copper chloride (II).
2.64 mL of the reagent mixture was placed in a quartz cell having an optical path length of 1 cm and incubated at 25 ° C. for 5 minutes. Then, 0.06 mL of P-KMO was added and mixed, and the enzyme reaction was started at 25 ° C. The composition of the enzyme reaction solution was 100 mM HEPES buffer (pH 7.5), 0.5, 1 or 2 μM L-kynurenine, 0.05 mM NADH, and 0.01 U / mL P-KMO (Note: reaction) The concentration of the liquid is indicated by the concentration after addition of copper (II) chloride). As a control, ultrapure water was used instead of the substrate.
 P-KMOは、配列番号1記載のアミノ酸配列を有する蛋白質であり、UniProtでQ84HF5(http://www.uniprot.org/uniprot/Q84HF5)として公開されている。配列番号1記載のアミノ酸配列をコードする遺伝子を挿入した組換え微生物を培養し、培養物からP-KMOを回収した後、精製した酵素である。 P-KMO is a protein having the amino acid sequence described in SEQ ID NO: 1, and is published by UniProt as Q84HF5 (http://www.uniprot.org/uniprot/Q84HF5). An enzyme purified by culturing a recombinant microorganism into which a gene encoding the amino acid sequence shown in SEQ ID NO: 1 has been inserted and recovering P-KMO from the culture.
 酵素反応開始30分後に、各L-キヌレニン濃度及びコントロールのセルに金属指示薬である1mMのバソクプロインジスルホン酸二ナトリウム0.15mLを各々添加、混合し、分光光度計(V-660、日本分光社製)にて480nmにおける吸光度を測定した。この測定値を各L-キヌレニン濃度及びコントロールのブランク値とした。 30 minutes after the start of the enzymatic reaction, 0.15 mL of 1 mM of bathocproin disulphonate, a metal indicator, was added to each L-kynurenine concentration and control cell, mixed, and the spectrophotometer (V-660, Japan) Absorbance at 480 nm was measured with a spectrophotometer. This measured value was used as a blank value for each L-kynurenine concentration and control.
 次に、各L-キヌレニン濃度及びコントロールのセルに1mMの塩化銅(II)溶液0.15mLを各々添加、混合し、25℃で経時的に480nmにおける吸光度を測定した。なお、上述したように、塩化銅(II)溶液を添加すると、P-KMOによりL-キヌレニンから変換されたヒドロキシキヌレニンが、複数モルの2価銅イオンを還元するため、還元された1価銅イオンとバソクプロインが480nmを吸収極大とする錯体を生成する。 Next, 0.15 mL of 1 mM copper (II) chloride solution was added to each L-kynurenine concentration and control cell, mixed, and the absorbance at 480 nm was measured over time at 25 ° C. As described above, when a copper (II) chloride solution is added, hydroxyquinurenine converted from L-kynurenine by P-KMO reduces plural moles of divalent copper ions. Ions and bathocuproine produce a complex with an absorption maximum at 480 nm.
 各L-キヌレニン濃度及びコントロールの4分後の測定値からブランク値を各々減算した(減算値A及び減算値B)。続いて、各L-キヌレニン濃度の減算値Aから、コントロールの減算値Bを各々減算した値を、OD480として図にプロットした。なお、本測定は、異なる日に計3回実施した。各測定値と平均値を図1に示した。 The blank value was subtracted from each L-kynurenine concentration and the measured value 4 minutes after the control (subtraction value A and subtraction value B). Subsequently, a value obtained by subtracting the control subtraction value B from the subtraction value A of each L-kynurenine concentration was plotted in the figure as OD480. This measurement was performed three times on different days. The measured values and average values are shown in FIG.
 図1より、L-キヌレニンの濃度上昇に従いOD480の値が高くなっており、P-KMOによりL-キヌレニンの定量が可能であることが示された。また、全測定において、L-キヌレニン濃度が2μM以下と低い濃度であっても再現性のあるデータが得られており、P-KMOによりL-キヌレニンの高感度の定量が可能であることが示された。 FIG. 1 shows that the value of OD480 increases with increasing L-kynurenine concentration, indicating that L-kynurenine can be quantified by P-KMO. In all measurements, reproducible data was obtained even when the L-kynurenine concentration was as low as 2 μM or less, and it was shown that L-kynurenine can be quantified with high sensitivity by P-KMO. It was done.
 以上より、キヌレニン3-モノオキシゲナーゼ、NADHのような電子供与体、バソクプロインジスルホン酸二ナトリウム及び塩化銅(II)を用いて、L-キヌレニンを高感度に定量できることが分かった。 From the above, it was found that L-kynurenine can be quantified with high sensitivity by using an electron donor such as kynurenine 3-monooxygenase, NADH, disodium bathocuproin disulfonate and copper (II) chloride.
[実施例2]
(ジアホラーゼ/WST-1系での測定(NADH使用))
 各濃度のL-キヌレニン溶液を試料とし、P-KMO反応によって減少したNADH量を電荷キャリアであるジアホラーゼと、還元系発色試薬であるWST-1を用いて測定した。酵素反応液1.8mLを光路長1cmの石英セルに添加、混合し、25℃、15分間酵素反応を実施した。
[Example 2]
(Measurement with diaphorase / WST-1 system (using NADH))
The L-kynurenine solution at each concentration was used as a sample, and the amount of NADH decreased by the P-KMO reaction was measured using diaphorase as a charge carrier and WST-1 as a reducing coloring reagent. 1.8 mL of the enzyme reaction solution was added to and mixed with a quartz cell having an optical path length of 1 cm, and the enzyme reaction was carried out at 25 ° C. for 15 minutes.
 酵素反応液の組成は、50mM リン酸カリウム緩衝液(pH7.5)、1、2、3又は4μM L-キヌレニン、0.03mM NADH、及び0.2U/mL P-KMOとした。コントロールとして、基質の代わりに超純水を使用した(注:反応液の濃度は、ジアホラーゼ添加後の濃度で示している)。 The composition of the enzyme reaction solution was 50 mM potassium phosphate buffer (pH 7.5), 1, 2, 3 or 4 μM L-kynurenine, 0.03 mM NADH, and 0.2 U / mL P-KMO. As a control, ultrapure water was used instead of the substrate (Note: The concentration of the reaction solution is shown by the concentration after addition of diaphorase).
 反応終了後、10mg/mLのWST-1(2-(4-ヨードフェニル)-3-(4-ニトロフェニル)-5-(2,4-ジスルホフェニル)-2H-テトラゾリウム、一ナトリウム塩(同仁化学研究所製))を100μL各セルに添加、混合し、440nmにおける吸光度を分光光度計(V-660、日本分光社製)で測定した。この測定値を各L-キヌレニン濃度及びコントロールのブランク値とした。 After completion of the reaction, 10 mg / mL WST-1 (2- (4-iodophenyl) -3- (4-nitrophenyl) -5- (2,4-disulfophenyl) -2H-tetrazolium, monosodium salt ( 100 μL of Dojindo Laboratories) was added to each cell and mixed, and the absorbance at 440 nm was measured with a spectrophotometer (V-660, manufactured by JASCO Corporation). This measured value was used as a blank value for each L-kynurenine concentration and control.
 次に、100U/mLのジアホラーゼ(オリエンタル酵母製)を100μL各セルに添加、混合し、25℃、10分間酵素反応を実施して、440nmにおける吸光度を分光光度計で測定した。 Next, 100 U / mL of diaphorase (manufactured by Oriental Yeast) was added to and mixed with 100 μL of each cell, the enzyme reaction was carried out at 25 ° C. for 10 minutes, and the absorbance at 440 nm was measured with a spectrophotometer.
 各L-キヌレニン濃度及びコントロールの10分後の測定値からブランク値を各々減算した(減算値C及び減算値D)。続いて、コントロールの減算値Dから各L-キヌレニン濃度の減算値Cを各々減算した値を、OD440としてプロットした結果を図2に示した。図2より、L-キヌレニンの濃度上昇に従いOD440の値が高くなっており、L-キヌレニンの定量が可能であることが示された。 The blank value was subtracted from each L-kynurenine concentration and the measured value 10 minutes after the control (subtraction value C and subtraction value D). FIG. 2 shows the result of plotting the value obtained by subtracting the subtraction value C of each L-kynurenine concentration from the subtraction value D of the control as OD440. FIG. 2 shows that the OD440 value increases with increasing L-kynurenine concentration, indicating that L-kynurenine can be quantified.
 なお、本試験とは別に、50mM リン酸カリウム緩衝液(pH7.5)中に、NADH濃度を0.027、0.028、0.029又は0.030mMにした溶液1.8mLに対し、100U/mLのジアホラーゼ(オリエンタル酵母製)、10mg/mLのWST-1を100μLずつ添加、混合し、25℃、10分間酵素反応を実施して、440nmにおける吸光度を分光光度計で測定した。その結果、得られた傾きはNADH 1μMあたり0.029[abs]の増加であった。先の試験において得られた傾きは、L-キヌレニン1μMあたり0.045[abs]の増加であったので、単なるNADH量の変化以外の要因により感度が増大していることが確認できた。 Separately from this test, 100 U was added to 1.8 mL of a solution in which NADH concentration was 0.027, 0.028, 0.029 or 0.030 mM in 50 mM potassium phosphate buffer (pH 7.5). / ML diaphorase (manufactured by Oriental Yeast), 10 mg / mL WST-1 was added in an amount of 100 μL, mixed, and subjected to an enzyme reaction at 25 ° C. for 10 minutes, and the absorbance at 440 nm was measured with a spectrophotometer. As a result, the obtained slope was an increase of 0.029 [abs] per 1 μM NADH. Since the slope obtained in the previous test was an increase of 0.045 [abs] per 1 μM of L-kynurenine, it was confirmed that the sensitivity was increased by a factor other than a simple change in the amount of NADH.
 また、50mM リン酸カリウム緩衝液(pH7.5)中に、NADH終濃度が0.03mM、3-ヒドロキシキヌレニン濃度が0~5μMとなるように各試薬を添加した液180μLに対し、10mg/mLのWST-1、100U/mLのジアホラーゼ(オリエンタル酵母製)を10μLずつ添加、混合し、25℃、10分間酵素反応を実施して、440nmにおける吸光度をプレートリーダー(SpectraMax Plus384、モレキュラーデバイス社製)で測定した結果、3-ヒドロキシキヌレニン濃度の増大に従って、440nmの値が減少していることが確認できた。 In addition, 10 mg / mL for 180 μL of each reagent added in 50 mM potassium phosphate buffer (pH 7.5) so that the final NADH concentration is 0.03 mM and 3-hydroxykynurenine concentration is 0 to 5 μM. WST-1, 100 U / mL diaphorase (made by Oriental Yeast) 10 μL each, mixed, and subjected to an enzyme reaction at 25 ° C. for 10 minutes, and absorbance at 440 nm was measured by a plate reader (SpectraMax Plus 384, manufactured by Molecular Devices). As a result of measurement, it was confirmed that the value at 440 nm decreased as the 3-hydroxykynurenine concentration increased.
 以上より、キヌレニン3-モノオキシゲナーゼ、NADH、ジアホラーゼ及びWST-1のような還元系発色試薬を用いて、L-キヌレニンを高感度に定量できることが分かった。 From the above, it was found that L-kynurenine can be quantified with high sensitivity by using a reducing coloring reagent such as kynurenine 3-monooxygenase, NADH, diaphorase and WST-1.
[実施例3]
(ジアホラーゼ/WST-1系での測定(NADPH使用))
 各濃度のL-キヌレニン溶液を試料とし、P-KMO反応によって減少したNADPH量を電荷キャリアであるジアホラーゼと、還元系発色試薬であるWST-1を用いて測定した。酵素反応液1.8mLを光路長1cmの石英セルに添加、混合し、25℃、15分間酵素反応を実施した。
[Example 3]
(Measurement with diaphorase / WST-1 system (using NADPH))
The L-kynurenine solution at each concentration was used as a sample, and the amount of NADPH decreased by the P-KMO reaction was measured using diaphorase as a charge carrier and WST-1 as a reducing coloring reagent. 1.8 mL of the enzyme reaction solution was added to and mixed with a quartz cell having an optical path length of 1 cm, and the enzyme reaction was carried out at 25 ° C. for 15 minutes.
 酵素反応液の組成は、50mM リン酸カリウム緩衝液(pH7.5)、0.5、1又は2μM L-キヌレニン、0.04mM EDTA、0.03mM NADPH、及び0.2U/mL P-KMOとした(注:反応液の濃度は、ジアホラーゼ添加後の濃度で示している)。コントロールとして、基質の代わりに超純水を使用した。 The composition of the enzyme reaction solution is 50 mM potassium phosphate buffer (pH 7.5), 0.5, 1 or 2 μM L-kynurenine, 0.04 mM EDTA, 0.03 mM NADPH, and 0.2 U / mL P-KMO. (Note: The concentration of the reaction solution is indicated by the concentration after addition of diaphorase). As a control, ultrapure water was used instead of the substrate.
 反応終了後、10mg/mLのWST-1を100μL各セルに添加、混合し、440nmにおける吸光度を分光光度計で測定した。この測定値を各L-キヌレニン濃度及びコントロールのブランク値とした。 After completion of the reaction, 10 mg / mL WST-1 was added to and mixed with 100 μL of each cell, and the absorbance at 440 nm was measured with a spectrophotometer. This measured value was used as a blank value for each L-kynurenine concentration and control.
 次に、3U/mLのジアホラーゼ(旭化成ファーマ製)を100μL各セルに添加、混合し、25℃、10分間酵素反応を実施して、440nmにおける吸光度を分光光度計で測定した。 Next, 3 U / mL of diaphorase (manufactured by Asahi Kasei Pharma) was added to and mixed with 100 μL of each cell, the enzyme reaction was carried out at 25 ° C. for 10 minutes, and the absorbance at 440 nm was measured with a spectrophotometer.
 各L-キヌレニン濃度及びコントロールの10分後の測定値からブランク値を各々減算した(減算値C及び減算値D)。続いて、コントロールの減算値Dから各L-キヌレニン濃度の減算値Cを各々減算した値を、OD440としてプロットした結果を図3に示した。図3より、L-キヌレニンの濃度上昇に従いOD440の値が高くなっており、L-キヌレニンの定量が可能であることが示された。傾きは、L-キヌレニン1μMあたり0.058[abs]の増加であり、NADPHを使用した場合においても、L-キヌレニン濃度を高感度に定量できた。 The blank value was subtracted from each L-kynurenine concentration and the measured value 10 minutes after the control (subtraction value C and subtraction value D). Next, FIG. 3 shows the result of plotting the value obtained by subtracting the subtracted value C of each L-kynurenine concentration from the subtracted value D of the control as OD440. FIG. 3 shows that the value of OD440 increases with increasing L-kynurenine concentration, indicating that L-kynurenine can be quantified. The slope was an increase of 0.058 [abs] per μM of L-kynurenine, and even when NADPH was used, the L-kynurenine concentration could be quantified with high sensitivity.
[実施例4]
(ジアホラーゼ/WST-1/POD系での測定)
 各濃度のL-キヌレニン溶液を試料とし、P-KMOによる反応後、ペルオキシダーゼ(POD)を混合し、減少したNADH量を電荷キャリアであるジアホラーゼと、還元系発色試薬であるWST-1を用いて測定した。酵素反応液1.85mLを光路長1cmの石英セルに添加、混合し、25℃、30分間酵素反応を実施した。
[Example 4]
(Measurement with diaphorase / WST-1 / POD system)
Using L-kynurenine solution of each concentration as a sample, after reaction with P-KMO, peroxidase (POD) was mixed, and the reduced NADH amount was reduced using diaphorase as a charge carrier and WST-1 as a reducing coloring reagent. It was measured. 1.85 mL of the enzyme reaction solution was added to and mixed with a quartz cell having an optical path length of 1 cm, and the enzyme reaction was carried out at 25 ° C. for 30 minutes.
 酵素反応液の組成は、100mM トリス塩酸緩衝液(pH8.5)、0.25、0.5、1又は2μM L-キヌレニン、0.1mM EDTA、0.03mM NADH、及び0.2U/mL P-KMOとした(注:反応液の濃度は、ジアホラーゼ添加後の濃度で示している)。コントロールとして、基質の代わりに超純水を使用した。 The composition of the enzyme reaction solution was 100 mM Tris-HCl buffer (pH 8.5), 0.25, 0.5, 1 or 2 μM L-kynurenine, 0.1 mM EDTA, 0.03 mM NADH, and 0.2 U / mL P. -KMO (Note: The concentration of the reaction solution is indicated by the concentration after addition of diaphorase). As a control, ultrapure water was used instead of the substrate.
 反応終了後、40U/mLのPOD(和光純薬工業製)を50μLセルに添加し、25℃3分間酵素反応を実施した。反応終了後、20mg/mLのWST-1を50μL各セルに添加、混合し、440nmにおける吸光度を分光光度計で測定した。この測定値を各L-キヌレニン濃度及びコントロールのブランク値とした。 After completion of the reaction, 40 U / mL POD (manufactured by Wako Pure Chemical Industries) was added to a 50 μL cell, and an enzyme reaction was carried out at 25 ° C. for 3 minutes. After completion of the reaction, 50 mg of 20 mg / mL WST-1 was added to each cell and mixed, and the absorbance at 440 nm was measured with a spectrophotometer. This measured value was used as a blank value for each L-kynurenine concentration and control.
 次に、20U/mLのジアホラーゼ(ニプロ製)を50μL各セルに添加、混合し、25℃、10分間酵素反応を実施して、440nmにおける吸光度を分光光度計で測定した。 Next, 20 U / mL of diaphorase (manufactured by Nipro) was added to 50 μL of each cell, mixed, subjected to an enzyme reaction at 25 ° C. for 10 minutes, and the absorbance at 440 nm was measured with a spectrophotometer.
 各L-キヌレニン濃度及びコントロールの10分後の測定値からブランク値を各々減算した(減算値C及び減算値D)。続いて、コントロールの減算値Dから各L-キヌレニン濃度の減算値Cを各々減算した値を、OD440としてプロットした結果を図4に示した。L-キヌレニンの濃度上昇に従いOD440の値が高くなっており、POD添加によってL-キヌレニンの定量が可能であることが示された。傾きは、L-キヌレニン1μMあたり0.2[abs]の増加であり、実施例2より高感度の測定が可能であった。 The blank value was subtracted from each L-kynurenine concentration and the measured value 10 minutes after the control (subtraction value C and subtraction value D). FIG. 4 shows the result of plotting the value obtained by subtracting the subtracted value C of each L-kynurenine concentration from the subtracted value D of the control as OD440. As the concentration of L-kynurenine increased, the value of OD440 increased, indicating that L-kynurenine can be quantified by adding POD. The slope was an increase of 0.2 [abs] per 1 μM of L-kynurenine, and measurement with higher sensitivity than in Example 2 was possible.
[実施例5]
(ジアホラーゼ/WST-1/ラッカーゼ系での測定)
 各濃度のL-キヌレニン溶液を試料とし、P-KMOによる反応後、ラッカーゼを混合し、減少したNADH量を電荷キャリアであるジアホラーゼと、還元系発色試薬であるWST-1を用いて測定した。酵素反応液1.84mLを光路長1cmの石英セルに添加、混合し、25℃、30分間酵素反応を実施した。
[Example 5]
(Measurement with diaphorase / WST-1 / laccase system)
L-kynurenine solutions at various concentrations were used as samples. After reaction with P-KMO, laccase was mixed, and the decreased amount of NADH was measured using diaphorase as a charge carrier and WST-1 as a reducing coloring reagent. 1.84 mL of the enzyme reaction solution was added to and mixed with a quartz cell having an optical path length of 1 cm, and the enzyme reaction was carried out at 25 ° C. for 30 minutes.
 酵素反応液の組成は、100mM リン酸カリウム緩衝液(pH7.0)、0.25、0.5、又は1μM L-キヌレニン、0.05mM EDTA、0.04mM NADH、及び0.2U/mL P-KMOとした(注:反応液の濃度は、ジアホラーゼ添加後の濃度で示している)。コントロールとして、基質の代わりに超純水を使用した。 The composition of the enzyme reaction solution is 100 mM potassium phosphate buffer (pH 7.0), 0.25, 0.5, or 1 μM L-kynurenine, 0.05 mM EDTA, 0.04 mM NADH, and 0.2 U / mL P. -KMO (Note: The concentration of the reaction solution is indicated by the concentration after addition of diaphorase). As a control, ultrapure water was used instead of the substrate.
 反応終了後、100U/mLのラッカーゼ(カワラタケ由来)(Sigma Aldrich製)を10μLセルに添加し、25℃3分間酵素反応を実施した。反応終了後、10mg/mLのWST-1を100μL各セルに添加、混合し、440nmにおける吸光度を分光光度計で測定した。この測定値を各L-キヌレニン濃度及びコントロールのブランク値とした。 After completion of the reaction, 100 U / mL laccase (from Kawaratake) (Sigma Aldrich) was added to a 10 μL cell, and an enzyme reaction was carried out at 25 ° C. for 3 minutes. After completion of the reaction, 10 mg / mL WST-1 was added to each 100 μL cell and mixed, and the absorbance at 440 nm was measured with a spectrophotometer. This measured value was used as a blank value for each L-kynurenine concentration and control.
 次に、20U/mLのジアホラーゼ(ニプロ製)を50μL各セルに添加、混合し、25℃、10分間酵素反応を実施して、440nmにおける吸光度を分光光度計で測定した。 Next, 20 U / mL of diaphorase (manufactured by Nipro) was added to 50 μL of each cell, mixed, subjected to an enzyme reaction at 25 ° C. for 10 minutes, and the absorbance at 440 nm was measured with a spectrophotometer.
 各L-キヌレニン濃度及びコントロールの10分後の測定値からブランク値を各々減算した(減算値C及び減算値D)。続いて、コントロールの減算値Dから各L-キヌレニン濃度の減算値Cを各々減算した値を、OD440としてプロットした結果を図5に示した。L-キヌレニン0.5μMまでは、濃度上昇に従いOD440の値が高くなっており、ラッカーゼ添加によってL-キヌレニンの定量が可能であることが示された。傾きは、L-キヌレニン0.5μMまでの範囲では、L-キヌレニン1μMあたり0.12[abs]の増加であり、実施例2より高感度の測定が可能であった。 The blank value was subtracted from each L-kynurenine concentration and the measured value 10 minutes after the control (subtraction value C and subtraction value D). FIG. 5 shows the result of plotting the value obtained by subtracting the subtracted value C of each L-kynurenine concentration from the subtracted value D of the control as OD440. Up to 0.5 μM L-kynurenine, the value of OD440 increased with increasing concentration, indicating that L-kynurenine can be quantified by adding laccase. In the range up to 0.5 μM L-kynurenine, the slope was an increase of 0.12 [abs] per 1 μM L-kynurenine, and measurement with higher sensitivity than in Example 2 was possible.
[実施例6]
(ジアホラーゼ/WST-1/ビリルビンオキシダーゼ系での測定)
 各濃度のL-キヌレニン溶液を試料とし、P-KMOによる反応後、ビリルビンオキシダーゼを混合し、減少したNADH量を電荷キャリアであるジアホラーゼと、還元系発色試薬であるWST-1を用いて測定した。酵素反応液1.84mLを光路長1cmの石英セルに添加、混合し、25℃、30分間酵素反応を実施した。
[Example 6]
(Measurement with diaphorase / WST-1 / bilirubin oxidase system)
L-kynurenine solution of each concentration was used as a sample. After reaction with P-KMO, bilirubin oxidase was mixed, and the decreased amount of NADH was measured using diaphorase as a charge carrier and WST-1 as a reducing coloring reagent. . 1.84 mL of the enzyme reaction solution was added to and mixed with a quartz cell having an optical path length of 1 cm, and the enzyme reaction was carried out at 25 ° C. for 30 minutes.
 酵素反応液の組成は、100mM トリス塩酸緩衝液(pH8.5)、0.25、0.5、1、又は2μM L-キヌレニン、0.05mM EDTA、0.03mM NADH、及び0.2U/mL P-KMOとした。コントロールとして、基質の代わりに超純水を使用した(注:反応液の濃度は、ジアホラーゼ添加後の濃度で示している)。 The composition of the enzyme reaction solution was 100 mM Tris-HCl buffer (pH 8.5), 0.25, 0.5, 1, or 2 μM L-kynurenine, 0.05 mM EDTA, 0.03 mM NADH, and 0.2 U / mL. P-KMO was used. As a control, ultrapure water was used instead of the substrate (Note: The concentration of the reaction solution is shown by the concentration after addition of diaphorase).
 反応終了後、2U/mLのビリルビンオキシダーゼ(Sigma Aldrich製)を10μLセルに添加し、25℃3分間酵素反応を実施した。反応終了後、10mg/mLのWST-1を100μL各セルに添加、混合し、440nmにおける吸光度を分光光度計で測定した。この測定値を各L-キヌレニン濃度及びコントロールのブランク値とした。 After completion of the reaction, 2 U / mL bilirubin oxidase (manufactured by Sigma Aldrich) was added to a 10 μL cell, and an enzyme reaction was performed at 25 ° C. for 3 minutes. After completion of the reaction, 10 mg / mL WST-1 was added to each 100 μL cell and mixed, and the absorbance at 440 nm was measured with a spectrophotometer. This measured value was used as a blank value for each L-kynurenine concentration and control.
 次に、20U/mLのジアホラーゼ(ニプロ製)を50μL各セルに添加、混合し、25℃、15分間酵素反応を実施して、440nmにおける吸光度を分光光度計で測定した。 Next, 20 U / mL of diaphorase (manufactured by Nipro) was added to and mixed with 50 μL of each cell, an enzyme reaction was performed at 25 ° C. for 15 minutes, and the absorbance at 440 nm was measured with a spectrophotometer.
 各L-キヌレニン濃度及びコントロールの15分後の測定値からブランク値を各々減算した(減算値C及び減算値D)。続いて、コントロールの減算値Dから各L-キヌレニン濃度の減算値Cを各々減算した値を、OD440としてプロットした結果を図6に示した。L-キヌレニン1.0μMまでは、濃度上昇に従いOD440の値が高くなっており、ビリルビンオキシダーゼ添加によってL-キヌレニンの定量が可能であることが示された。傾きは、L-キヌレニン1.0μMまでの範囲では、L-キヌレニン1μMあたり0.1[abs]の増加であり、実施例2より高感度の測定が可能であった。 The blank value was subtracted from each L-kynurenine concentration and the measured value 15 minutes after the control (subtraction value C and subtraction value D). FIG. 6 shows the result of plotting the value obtained by subtracting the subtracted value C of each L-kynurenine concentration from the subtracted value D of the control as OD440. Up to 1.0 μM L-kynurenine, the OD440 value increased with increasing concentration, indicating that L-kynurenine can be quantified by adding bilirubin oxidase. In the range up to 1.0 μM L-kynurenine, the slope increased by 0.1 [abs] per 1 μM L-kynurenine, and higher sensitivity measurement than in Example 2 was possible.
[実施例7]
(ジアホラーゼ/WST-1/POD系での酵素サイクリング法による測定)
 各濃度のL-キヌレニン溶液を試料とし、0.4mLの反応液Aで、P-KMOによる反応を実施した。反応液Aの組成は、100mM リン酸カリウム緩衝液(pH7.5)、0.25、0.5、0.75、1μM L-キヌレニン、2mM EDTA、0.04mM NADH、及び0.4U/mL P-KMOとした。コントロールとして、基質の代わりに超純水を使用した。25℃で15分反応させた。
[Example 7]
(Measurement by enzyme cycling method in diaphorase / WST-1 / POD system)
The L-kynurenine solution at each concentration was used as a sample, and the reaction with P-KMO was performed with 0.4 mL of the reaction solution A. The composition of the reaction solution A is 100 mM potassium phosphate buffer (pH 7.5), 0.25, 0.5, 0.75, 1 μM L-kynurenine, 2 mM EDTA, 0.04 mM NADH, and 0.4 U / mL. P-KMO was used. As a control, ultrapure water was used instead of the substrate. The reaction was carried out at 25 ° C. for 15 minutes.
 反応終了後に、1.5mLの反応液Bと混合した。反応液Bの混合により、200mM リン酸カリウム緩衝液(pH7.5)、1mM EDTA、4%(v/v) エタノール、5U/mL アルコール脱水素酵素(オリエンタル酵母製)、1U/mL POD、及び0.2mg/mL WST-1になるようにした(注:本反応液の濃度は、ジアホラーゼ添加後の濃度で示している)。 After completion of the reaction, it was mixed with 1.5 mL of reaction solution B. By mixing reaction solution B, 200 mM potassium phosphate buffer (pH 7.5), 1 mM EDTA, 4% (v / v) ethanol, 5 U / mL alcohol dehydrogenase (made by Oriental Yeast), 1 U / mL POD, and 0.2 mg / mL WST-1 (Note: The concentration of this reaction solution is shown by the concentration after addition of diaphorase).
 次に、10U/mLのジアホラーゼ(ニプロ製)を100μL各セルに添加、混合、25℃、10分間酵素サイクリングによる酵素反応を実施して、440nmにおける吸光度をレート法により分光光度計で測定した。レート法で測定しているのは、本酵素サイクリング法の場合、測定時間による吸光度変化が永続的に続くため、実施例1~6で実施したようなエンドポイント法では、測定誤差が大きくなることによる。 Next, 100 μL of 10 U / mL diaphorase (manufactured by Nipro) was added to each cell, mixed, enzyme reaction was performed by enzyme cycling at 25 ° C. for 10 minutes, and the absorbance at 440 nm was measured with a spectrophotometer by the rate method. In the case of this enzyme cycling method, the absorbance change due to the measurement time lasts continually in the rate method. Therefore, the endpoint method as in Examples 1 to 6 has a large measurement error. by.
 なお、この時のL-キヌレニンの終濃度は、反応液B及びジアホラーゼ溶液の添加によって、0.05、0.1、0.15、0.2μMとなっている。 The final concentration of L-kynurenine at this time is 0.05, 0.1, 0.15, and 0.2 μM by adding the reaction solution B and the diaphorase solution.
 各L-キヌレニン濃度及びコントロールにおいて、酵素サイクリング開始後0分から4分までのデータから1分間あたりの440nmの変化量をそれぞれ算出した。続いて、酵素反応4分間での440nmの変化量を算出するために、1分間あたりの440nmの変化量を4倍した値を、OD440としてプロットした結果を図7に示した。その結果、L-キヌレニンの濃度上昇に従いOD440の値が高くなっており、酵素サイクリング法を組み合わせることによって、低濃度のL-キヌレニンの定量が可能であることが示された。L-キヌレニン0.1μMあたり0.046[abs]の増加、即ちL-キヌレニン1μMあたりに換算すると、0.46[abs]の増加であり、実施例2及び実施例4より高感度の測定が可能であった。 For each L-kynurenine concentration and control, the amount of change at 440 nm per minute was calculated from the data from 0 to 4 minutes after the start of enzyme cycling. Subsequently, in order to calculate the amount of change of 440 nm in 4 minutes of enzyme reaction, the result of plotting the value obtained by multiplying the amount of change of 440 nm per minute by 4 as OD440 is shown in FIG. As a result, the value of OD440 increased as the concentration of L-kynurenine increased, and it was shown that L-kynurenine at a low concentration can be quantified by combining the enzyme cycling method. An increase of 0.046 [abs] per 0.1 μM of L-kynurenine, that is, an increase of 0.46 [abs] when converted to 1 μM of L-kynurenine, which is a higher sensitivity measurement than in Examples 2 and 4. It was possible.
[実施例8]
(血清存在下での塩化銅(II)/バソクプロイン系での測定)
 実施例1で示した方法で血清存在下での測定が可能か否かの検証を行ったところ、血清をそのまま使用した測定においては、還元物質の影響が大きいことから、測定が困難であることが分かった。そのため、以下の要領で前処理を実施して測定を実施した。
[Example 8]
(Measurement in the copper (II) chloride / vasocproin system in the presence of serum)
When it was verified whether the measurement in the presence of serum was possible by the method shown in Example 1, in the measurement using the serum as it is, the measurement was difficult because the effect of the reducing substance was large. I understood. Therefore, the pretreatment was performed in the following manner and the measurement was performed.
 ヒト正常血清に対し0.5Nの過塩素酸溶液を入れて混合し、遠心分離にて上清回収後、得られた液1000μLに対して、2Nの炭酸カリウム溶液180μLを加えて中和し、冷蔵保管後、過剰量の過塩素酸カリウムを沈殿物として除去することにより、除タンパク血清を取得した。除タンパク血清1.0mLを含む酵素反応液2.445mLを光路長1cmの石英セルに添加、混合し、37℃20分還元物質を低減する前処理を実施した。 After adding 0.5N perchloric acid solution to human normal serum and mixing the supernatant by centrifugation, neutralize it by adding 180 μL of 2N potassium carbonate solution to 1000 μL of the resulting solution, After refrigerated storage, deproteinized serum was obtained by removing excess potassium perchlorate as a precipitate. 2.445 mL of an enzyme reaction solution containing 1.0 mL of deproteinized serum was added to and mixed with a quartz cell having an optical path length of 1 cm, and a pretreatment was performed to reduce reducing substances at 37 ° C. for 20 minutes.
 酵素反応液の組成は、200mM HEPES緩衝液(pH7.5)、40μM EDTA、1U/mL アスコルビン酸オキシダーゼ(和光純薬工業製)、0.5U/mL ウリカーゼ(和光純薬工業製)、10U/mL カタラーゼ(和光純薬工業製)とした。 The composition of the enzyme reaction solution was 200 mM HEPES buffer (pH 7.5), 40 μM EDTA, 1 U / mL ascorbate oxidase (manufactured by Wako Pure Chemical Industries), 0.5 U / mL uricase (manufactured by Wako Pure Chemical Industries), 10 U / It was made into mL catalase (made by Wako Pure Chemical Industries).
 上記前処理終了後に、100μM NADPH、0.5、1、2μM L-キヌレニン、0.08U/mL P-KMOになるように添加混合後、30℃で30分間反応させた。この時の酵素反応液を2.55mLになるようにした(注:反応液の濃度は、塩化銅(II)添加後の濃度で示している)。コントロールとして、基質の代わり超純水を使用した。 After completion of the above pretreatment, the mixture was added to 100 μM NADPH, 0.5, 1, 2 μM L-kynurenine, 0.08 U / mL P-KMO, and reacted at 30 ° C. for 30 minutes. The enzyme reaction solution at this time was adjusted to 2.55 mL (Note: the concentration of the reaction solution is indicated by the concentration after addition of copper (II) chloride). As a control, ultrapure water was used instead of the substrate.
 酵素反応後に、各L-キヌレニン濃度及びコントロールのセルに金属指示薬である2mMのバソクプロインジスルホン酸二ナトリウム0.15mLを各々添加、混合し、分光光度計(V-660、日本分光社製)にて480nmにおける吸光度を測定した。この測定値を各L-キヌレニン濃度及びコントロールのブランク値とした。  After the enzyme reaction, 0.15 mL of 2 mM bathocuproin disulphonate, a metal indicator, was added to each L-kynurenine concentration and control cell, mixed, and a spectrophotometer (V-660, manufactured by JASCO Corporation) ), The absorbance at 480 nm was measured. This measured value was used as a blank value for each L-kynurenine concentration and control.
 次に、各L-キヌレニン濃度及びコントロールのセルに4mMの塩化銅(II)溶液0.3mLを各々添加、混合し、37℃で経時的に480nmにおける吸光度を測定した。 Next, 0.3 mL of 4 mM copper (II) chloride solution was added to each L-kynurenine concentration and control cell, mixed, and the absorbance at 480 nm was measured over time at 37 ° C.
 各L-キヌレニン濃度及びコントロールの10分後の測定値からブランク値を各々減算した(減算値A及び減算値B)。続いて、各L-キヌレニン濃度の減算値Aから、コントロールの減算値Bを各々減算した値を、OD480として図にプロットした。 The blank value was subtracted from each L-kynurenine concentration and the measured value 10 minutes after the control (subtraction value A and subtraction value B). Subsequently, a value obtained by subtracting the control subtraction value B from the subtraction value A of each L-kynurenine concentration was plotted in the figure as OD480.
 図8に示すように、L-キヌレニンの濃度上昇に従いOD480の値が高くなっており、本手法によりL-キヌレニンの定量が可能であることが示された。 As shown in FIG. 8, the OD480 value increased as the L-kynurenine concentration increased, indicating that L-kynurenine can be quantified by this method.
 以上の通り、血清を含む系でも、前処理を行うことで、キヌレニン3-モノオキシゲナーゼ、NADH、バソクプロインジスルホン酸二ナトリウム及び塩化銅(II)を用いることにより、L-キヌレニンを高感度に定量できることが分かった。 As described above, even in a system containing serum, L-kynurenine is highly sensitive by pretreatment, using kynurenine 3-monooxygenase, NADH, disodium bathocuproine disulfonate and copper (II) chloride. It was found that it can be quantified.
[実施例9]
(血清存在下でのジアホラーゼ/WST-1/POD系での測定)
 実施例4で示した方法で血清存在下での測定が可能かの検証を行ったところ、血清をそのまま使用した測定においては、還元物質等の影響が大きく、WST-1の発色反応が阻害されたため、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレート(商品名:Tween20)を添加した測定を行った。ヒト正常血清0.2mLを含む酵素反応液1.5mLを光路長1cmの石英セルに添加、混合し、25℃で10分間酵素反応を実施した。
[Example 9]
(Measurement with diaphorase / WST-1 / POD system in the presence of serum)
When it was verified whether measurement in the presence of serum was possible by the method shown in Example 4, in the measurement using serum as it was, the influence of the reducing substance was large, and the color reaction of WST-1 was inhibited. Therefore, the measurement which added polyoxyethylene (20) sorbitan monolaurate (brand name: Tween20) which is surfactant was performed. An enzyme reaction solution (1.5 mL) containing 0.2 mL of human normal serum was added to and mixed with a quartz cell having an optical path length of 1 cm, and an enzyme reaction was performed at 25 ° C. for 10 minutes.
 酵素反応液の組成は、200mM リン酸カリウム緩衝液(pH7.5)、0.1、0.2、0.3又は0.5μM L-キヌレニン、1mM EDTA、0.04mM NADH、0.2U/mL P-KMO、0.5U/mL POD。コントロールとして、基質の代わり超純水を使用した(注:反応液の濃度は、ジアホラーゼ添加後の濃度で示している)。なお、比較例として、血清無添加の系での評価も実施した。 The composition of the enzyme reaction solution was 200 mM potassium phosphate buffer (pH 7.5), 0.1, 0.2, 0.3 or 0.5 μM L-kynurenine, 1 mM EDTA, 0.04 mM NADH, 0.2 U / mL P-KMO, 0.5 U / mL POD. As a control, ultrapure water was used instead of the substrate (Note: The concentration of the reaction solution is shown by the concentration after addition of diaphorase). As a comparative example, evaluation in a system without addition of serum was also performed.
 反応終了後、血清添加群においては、3%(w/v)のTween20を200μL添加した(血清無添加群は超純水を200μL添加した)。その後、10mg/mLのWST-1を100μL各セルに添加、混合し、440nmにおける吸光度を分光光度計で測定した。この測定値を各L-キヌレニン濃度及びコントロールのブランク値とした。 After completion of the reaction, 200 μL of 3% (w / v) Tween 20 was added in the serum-added group (200 μL of ultrapure water was added in the serum-free group). Thereafter, 10 mg / mL WST-1 was added to and mixed with 100 μL of each cell, and the absorbance at 440 nm was measured with a spectrophotometer. This measured value was used as a blank value for each L-kynurenine concentration and control.
 次に、5U/mLのジアホラーゼ(ニプロ製)を200μL各セルに添加、混合し、25℃、10分間酵素反応を実施して、440nmにおける吸光度を分光光度計で測定した。 Next, 200 μL of 5 U / mL diaphorase (manufactured by Nipro) was added to and mixed with each cell, an enzyme reaction was performed at 25 ° C. for 10 minutes, and the absorbance at 440 nm was measured with a spectrophotometer.
 各L-キヌレニン濃度及びコントロールの10分後の測定値からブランク値を各々減算した(減算値C及び減算値D)。続いて、コントロールの減算値Dから各L-キヌレニン濃度の減算値Cを各々減算した値を、OD440としてプロットした結果を図9に示した。血清存在下であっても、L-キヌレニンの濃度上昇に従いOD440の値が高くなっており、L-キヌレニンの定量が可能であることが示された。傾きは、血清の有無によらず、L-キヌレニン0.5μMあたり0.1[abs]程度の増加、すなわちL-キヌレニン1μMあたりに換算すると、0.2[abs]程度の増加であり、実施例4と同等の結果であった。 The blank value was subtracted from each L-kynurenine concentration and the measured value 10 minutes after the control (subtraction value C and subtraction value D). Subsequently, FIG. 9 shows the result of plotting the value obtained by subtracting the subtraction value C of each L-kynurenine concentration from the subtraction value D of the control as OD440. Even in the presence of serum, the OD440 value increased as the concentration of L-kynurenine increased, indicating that L-kynurenine can be quantified. The slope increased by about 0.1 [abs] per 0.5 μM L-kynurenine regardless of the presence of serum, that is, increased by about 0.2 [abs] when converted to 1 μM L-kynurenine. The result was equivalent to Example 4.

Claims (19)

  1.  (A)L-キヌレニンを含有する試料に、NADH、NADPH及びそれらの誘導体からなる群より選択される電子供与体の存在下でキヌレニン3-モノオキシゲナーゼを酵素反応させて、残存した電子供与体、及び生成した3-ヒドロキシキヌレニンを含む酵素反応液を取得する工程、
     (B)工程(A)の酵素反応液に、
      (1)2価銅化合物、及び1価銅イオンに特異的な金属指示薬、又は
      (2)酸化還元系発色試薬及び電荷キャリア
    を反応させる工程、並びに
     (C)工程(B)で得られた発色物質の濃度から、L-キヌレニンを含有しない試料又はキヌレニン3-モノオキシゲナーゼ未添加の試料における発色物質の濃度を差し引いた値に基づき、試料中のL-キヌレニン量を決定する工程
    を含む、試料中のL-キヌレニン量の測定方法。
    (A) A sample containing L-kynurenine is subjected to an enzymatic reaction with kynurenine 3-monooxygenase in the presence of an electron donor selected from the group consisting of NADH, NADPH and derivatives thereof, and the remaining electron donor, And obtaining an enzyme reaction solution containing the produced 3-hydroxykynurenine,
    (B) In the enzyme reaction solution of step (A),
    (1) a metal indicator specific for a divalent copper compound and a monovalent copper ion, or (2) a step of reacting a redox coloring reagent and a charge carrier, and (C) the color obtained in step (B). Including the step of determining the amount of L-kynurenine in the sample based on a value obtained by subtracting the concentration of the chromogenic substance in the sample not containing L-kynurenine or the sample not containing kynurenine 3-monooxygenase from the concentration of the substance. Of measuring the amount of L-kynurenine.
  2.  前記の反応による発色物質の濃度を、吸光度によって測定する、請求項1記載の測定方法。 The measuring method according to claim 1, wherein the concentration of the color developing substance due to the reaction is measured by absorbance.
  3.  前記工程(B)の(1)で得られた発色物質が、3-ヒドロキシキヌレニンと2価銅化合物との反応で産生した1価銅イオンと、当該イオンに特異的に作用する金属指示薬との反応により生成することを特徴とする請求項1記載の測定方法。 The chromogenic material obtained in (1) of the step (B) comprises a monovalent copper ion produced by the reaction of 3-hydroxykynurenine and a divalent copper compound, and a metal indicator that specifically acts on the ion. The measuring method according to claim 1, wherein the measuring method is produced by a reaction.
  4.  前記工程(B)の(1)で使用する1価銅イオンに特異的な金属指示薬がバソクプロイン、ネオクプロイン、ビシンコニン酸、それらの誘導体又はそれらの塩である、請求項1又は3記載の測定方法。 The measurement method according to claim 1 or 3, wherein the metal indicator specific for the monovalent copper ion used in (1) of the step (B) is bathocuproin, neocuproin, bicinchoninic acid, a derivative thereof or a salt thereof.
  5.  前記工程(B)の(2)の反応の前又は同時に、更にフェノール系化合物に作用する酵素を添加することを特徴とする、請求項1記載の測定方法。 2. The measuring method according to claim 1, wherein an enzyme acting on the phenolic compound is further added before or simultaneously with the reaction of (2) in the step (B).
  6.  請求項5のフェノール系化合物に作用する酵素を添加後又は添加と同時に、酵素サイクリング法を行うことを特徴とする、請求項1又は5記載の測定方法。 6. The method according to claim 1 or 5, wherein an enzyme cycling method is performed after or simultaneously with the addition of an enzyme that acts on the phenolic compound of claim 5.
  7.  前記工程(B)の(2)で得られた発色物質が、電荷キャリアを介した電子供与体と酸化還元系発色試薬との反応により生成することを特徴とする、請求項1記載の測定方法。 2. The measuring method according to claim 1, wherein the coloring substance obtained in (2) of the step (B) is produced by a reaction between an electron donor and a redox coloring reagent via a charge carrier. .
  8.  前記酸化還元系発色物質がテトラゾリウム塩である、請求項1、5、6又は7記載の測定方法。 The measurement method according to claim 1, 5, 6, or 7, wherein the redox-based color-developing substance is a tetrazolium salt.
  9.  前記電荷キャリアがジアホラーゼである、請求項1、5、6又は7記載の測定方法。 The measurement method according to claim 1, 5, 6 or 7, wherein the charge carrier is diaphorase.
  10.  前記工程(A)前に、L-キヌレニンを含有する試料中のL-トリプトファン及び/又は還元物質を低減する前処理工程を含む、請求項1~9のいずれか1項に記載の測定方法。 The measurement method according to any one of claims 1 to 9, further comprising a pretreatment step of reducing L-tryptophan and / or a reducing substance in the sample containing L-kynurenine before the step (A).
  11.  前記還元物質が、ビリルビン、アスコルビン酸及び/又は尿酸である、請求項10記載の測定方法。 The measurement method according to claim 10, wherein the reducing substance is bilirubin, ascorbic acid and / or uric acid.
  12.  前記工程(A)前に、トリプトファナーゼ、トリプトファンオキシダーゼ、ビリルビンオキシダーゼ、アスコルビン酸オキシダーゼ、ウリカーゼ、ペルオキシダーゼ、カタラーゼ及び過酸化水素からなる群より選択される1種以上をL-キヌレニンを含有する試料中に添加する工程を含む、請求項10又は11記載の測定方法。 Before the step (A), at least one selected from the group consisting of tryptophanase, tryptophan oxidase, bilirubin oxidase, ascorbate oxidase, uricase, peroxidase, catalase and hydrogen peroxide is contained in the sample containing L-kynurenine. The measuring method of Claim 10 or 11 including the process added to.
  13.  前記工程(A)前に、キレート作用を有する物質及び/又は金属と塩を形成し沈殿する物質を添加する工程を含む、請求項1~12のいずれか1項に記載の測定方法。 The measurement method according to any one of claims 1 to 12, comprising a step of adding a substance having a chelating action and / or a substance that forms a salt with a metal and precipitates before the step (A).
  14.  キレート作用を有する物質及び/又は金属と塩を形成し沈殿する物質が、エチレンジアミン四酢酸、N,N-ビス(2-ヒドロキシエチル)グリシン、ジエチレントリアミンペンタ酢酸及びトランス-1,2-ジアミノシクロヘキサン-N,N,N,N-四酢酸からなる群より選択される少なくとも1種である、請求項13記載の測定方法。 Substances having a chelating action and / or substances which form salts with metals and precipitate are ethylenediaminetetraacetic acid, N, N-bis (2-hydroxyethyl) glycine, diethylenetriaminepentaacetic acid and trans-1,2-diaminocyclohexane-N The measurement method according to claim 13, which is at least one selected from the group consisting of N, N, N, N-tetraacetic acid.
  15. 前記工程(B)前に、界面活性剤を添加する工程を含む、請求項1~14のいずれか1項に記載の測定方法。 The measurement method according to any one of claims 1 to 14, further comprising a step of adding a surfactant before the step (B).
  16.  NADP、NADPH及びそれらの誘導体からなる群より選択される電子供与体、キヌレニン3-モノオキシゲナーゼ、2価銅化合物、並びに1価銅イオンに特異的な金属指示薬を含む、L-キヌレニン測定用キット。 A kit for measuring L-kynurenine comprising an electron donor selected from the group consisting of NADP, NADPH and derivatives thereof, kynurenine 3-monooxygenase, a divalent copper compound, and a metal indicator specific for monovalent copper ions.
  17.  NADP、NADPH及びそれらの誘導体からなる群より選択される電子供与体、キヌレニン3-モノオキシゲナーゼ、酸化還元系発色試薬、並びに電荷キャリアを含む、L-キヌレニン測定用キット。 A kit for measuring L-kynurenine comprising an electron donor selected from the group consisting of NADP, NADPH and derivatives thereof, kynurenine 3-monooxygenase, a redox coloring reagent, and a charge carrier.
  18.  請求項17のキットに、更にフェノール系化合物に作用する酵素を含む、L-キヌレニン測定用キット。 A kit for measuring L-kynurenine, wherein the kit according to claim 17 further comprises an enzyme that acts on a phenolic compound.
  19.  請求項18のキットに、更にNADH又はNADPH再生酵素、及びその基質を含む、L-キヌレニン測定用キット。
     
    A kit for measuring L-kynurenine, which further comprises NADH or NADPH regenerating enzyme and a substrate thereof in the kit of claim 18.
PCT/JP2017/034439 2016-09-26 2017-09-25 Method for measuring l-kynurenine and measurement kit WO2018056431A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018540334A JP6913956B2 (en) 2016-09-26 2017-09-25 L-Kynurenine measurement method and measurement kit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-186714 2016-09-26
JP2016186714 2016-09-26
JP2017063852 2017-03-09
JP2017-063852 2017-03-09

Publications (1)

Publication Number Publication Date
WO2018056431A1 true WO2018056431A1 (en) 2018-03-29

Family

ID=61689945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034439 WO2018056431A1 (en) 2016-09-26 2017-09-25 Method for measuring l-kynurenine and measurement kit

Country Status (2)

Country Link
JP (1) JP6913956B2 (en)
WO (1) WO2018056431A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109813918A (en) * 2019-01-11 2019-05-28 河北省医疗器械与药品包装材料检验研究院(河北省医疗器械技术审评中心) A kind of total bilirubin determination reagent kit
WO2019182008A1 (en) * 2018-03-21 2019-09-26 池田食研株式会社 2-aminophenol measurement method
WO2023001460A1 (en) 2021-07-19 2023-01-26 Nchain Licensing Ag Enforcing conditions on blockchain transactions
WO2023001461A1 (en) 2021-07-19 2023-01-26 Nchain Licensing Ag Enforcing conditions on blockchain transactions
WO2024017786A1 (en) 2022-07-22 2024-01-25 Nchain Licensing Ag Proving and verifying input data

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4989596A (en) * 1972-12-25 1974-08-27
JPS63233800A (en) * 1987-03-20 1988-09-29 Toyo Jozo Co Ltd Method for measuring activity of lecithin cholesterol acyltransferase
JPS63248397A (en) * 1987-04-02 1988-10-14 Toyobo Co Ltd Method for determining d-mannose
JPH06339397A (en) * 1993-08-30 1994-12-13 Toyobo Co Ltd Method for removing reductive substance in biological specimen
JPH1070996A (en) * 1996-08-29 1998-03-17 Toyo Roshi Kaisha Ltd Composition for assaying pod-like active substance based on redox process
JP2004506915A (en) * 2000-08-18 2004-03-04 ザ ゼネラル ホスピタル コーポレーション Method for identifying a substance that inhibits or promotes cataract and use thereof
JP2009039015A (en) * 2007-08-07 2009-02-26 Shino Test Corp Method for measuring objective substance to be measured in sample by using tetrazoleum compound as chromogen, reagent for measurement, method for inhibiting nonspecific color development and nonspecific color development inhibitor
JP2016520827A (en) * 2013-05-03 2016-07-14 ザリオン ゲーエムベーハー In vitro early detection method for potential inflammation particularly associated with transplant rejection, neurodegenerative disease or depression
JP2017063786A (en) * 2015-09-29 2017-04-06 池田食研株式会社 Methods and kits of measuring l-kynurenine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4989596A (en) * 1972-12-25 1974-08-27
JPS63233800A (en) * 1987-03-20 1988-09-29 Toyo Jozo Co Ltd Method for measuring activity of lecithin cholesterol acyltransferase
JPS63248397A (en) * 1987-04-02 1988-10-14 Toyobo Co Ltd Method for determining d-mannose
JPH06339397A (en) * 1993-08-30 1994-12-13 Toyobo Co Ltd Method for removing reductive substance in biological specimen
JPH1070996A (en) * 1996-08-29 1998-03-17 Toyo Roshi Kaisha Ltd Composition for assaying pod-like active substance based on redox process
JP2004506915A (en) * 2000-08-18 2004-03-04 ザ ゼネラル ホスピタル コーポレーション Method for identifying a substance that inhibits or promotes cataract and use thereof
JP2009039015A (en) * 2007-08-07 2009-02-26 Shino Test Corp Method for measuring objective substance to be measured in sample by using tetrazoleum compound as chromogen, reagent for measurement, method for inhibiting nonspecific color development and nonspecific color development inhibitor
JP2016520827A (en) * 2013-05-03 2016-07-14 ザリオン ゲーエムベーハー In vitro early detection method for potential inflammation particularly associated with transplant rejection, neurodegenerative disease or depression
JP2017063786A (en) * 2015-09-29 2017-04-06 池田食研株式会社 Methods and kits of measuring l-kynurenine

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
IINUMA, F. ET AL.: "FLUOROMETRIC DETERMINATION OF KYNURENINE DERIVATIVES BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY WITH HYDROGEN PEROXIDE AND SODIUM CARBONATE", CHEMICAL ANALYSIS (BUNSEKI KAGAKU), vol. 33, no. 7, 1 January 1984 (1984-01-01), pages E315 - E322, XP055498892, ISSN: 0525-1931, Retrieved from the Internet <URL:https://doi.org/10.2116/bunsekikagaku.33.7_E315> *
JOSEPH, MH. ET AL.: "The determination of kynurenine in plasma", CLIN. CHIM. ACTA, vol. 63, no. 2, 1 September 1975 (1975-09-01), pages 197 - 204, XP025198987, ISSN: 0009-8981, Retrieved from the Internet <URL:https://doi.org/10.1016/0009-8981(75)90163-1> *
NAITO, J. ET AL.: "Determination of kynurenine in serum by high-performance liquid chromatography after enzymatic conversion to 3-hydroxykynurenine", ANAL. BIOCHEM., vol. 161, no. 1, 15 February 1987 (1987-02-15), pages 16 - 19, XP024819309, ISSN: 0003-2697, Retrieved from the Internet <URL:https://doi.org/10.1016/0003-2697(87)90644-0> *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019182008A1 (en) * 2018-03-21 2019-09-26 池田食研株式会社 2-aminophenol measurement method
CN109813918A (en) * 2019-01-11 2019-05-28 河北省医疗器械与药品包装材料检验研究院(河北省医疗器械技术审评中心) A kind of total bilirubin determination reagent kit
CN109813918B (en) * 2019-01-11 2021-04-09 河北省药品医疗器械检验研究院 Total bilirubin determination kit
WO2023001460A1 (en) 2021-07-19 2023-01-26 Nchain Licensing Ag Enforcing conditions on blockchain transactions
WO2023001461A1 (en) 2021-07-19 2023-01-26 Nchain Licensing Ag Enforcing conditions on blockchain transactions
WO2024017786A1 (en) 2022-07-22 2024-01-25 Nchain Licensing Ag Proving and verifying input data
WO2024017798A1 (en) 2022-07-22 2024-01-25 Nchain Licensing Ag Proving and verifying input data

Also Published As

Publication number Publication date
JP6913956B2 (en) 2021-08-04
JPWO2018056431A1 (en) 2019-07-04

Similar Documents

Publication Publication Date Title
WO2018056431A1 (en) Method for measuring l-kynurenine and measurement kit
JP5131955B2 (en) Reagent containing protease reaction accelerator and / or dye stabilizer
KR920001449B1 (en) Process for the colorimetric determination of an analyte by means of enzymetic oxidation
JP2010011876A (en) Method of quantifying glycosylated protein using redox reaction and quantification kit
US20040063213A1 (en) Assay method with the use of redox reaction
US20070026523A1 (en) Method for stabilizing leuco dye
JP2017063786A (en) Methods and kits of measuring l-kynurenine
MX2007002224A (en) Method for determining the concentration of analytes in samples by direct mediation of enzymes.
JP2009072136A (en) Stable measurement method using reducing pigment, and reagent thereof
JPH0739397A (en) Method for determining chloride ion
EP0100217B1 (en) Process for quantitative determination of substrate treated with oxidase
JP4200467B1 (en) Liquid reagent for total branched chain amino acid measurement
US20030186346A1 (en) Process for producing protein decomposition product
JP4143698B2 (en) N- (carboxymethylaminocarbonyl) -4,4&#39;-bis (dimethylamino) diphenylamine sodium miscoloration preventing method, reagent solution using the method, and measuring method
JP4214277B2 (en) Measurement method by redox reaction using formazan
JP7330516B2 (en) Method for measuring 2-aminophenols
Kayamori et al. Enzymatic method for assaying uric acid in serum with a new tetrazolium salt produces water-soluble formazan dye
CN111575339A (en) 1, 5-anhydroglucitol enzymatic quantitative method and reagent therefor
JP3910174B2 (en) Measurement method using sodium azide
JPH0249600A (en) Assay of nad(p)h
Racek Lactate biosensor based on human erythrocytes
JPS63116700A (en) Analytical method for trace substance
US4695540A (en) Quantitative determination of substrate treated with oxidase
Yao et al. Facile chemiluminescence assay for acyl-CoA oxidase activity: fundamentals and illustrative examples
JP2004113138A (en) Method for measuring homocysteine and reagent for measurement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17853198

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018540334

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17853198

Country of ref document: EP

Kind code of ref document: A1