WO2018056328A1 - Substrate processing method, substrate processing device, and recording medium - Google Patents

Substrate processing method, substrate processing device, and recording medium Download PDF

Info

Publication number
WO2018056328A1
WO2018056328A1 PCT/JP2017/033970 JP2017033970W WO2018056328A1 WO 2018056328 A1 WO2018056328 A1 WO 2018056328A1 JP 2017033970 W JP2017033970 W JP 2017033970W WO 2018056328 A1 WO2018056328 A1 WO 2018056328A1
Authority
WO
WIPO (PCT)
Prior art keywords
brush
substrate
moving
pressing
priority
Prior art date
Application number
PCT/JP2017/033970
Other languages
French (fr)
Japanese (ja)
Inventor
俊樹 岩井
英作 町田
吉文 岡田
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2018056328A1 publication Critical patent/WO2018056328A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a substrate processing method for processing a substrate, a substrate processing apparatus, and a computer-readable recording medium storing a program for causing a computer provided in the substrate processing apparatus to execute the substrate processing method.
  • substrates to be processed include semiconductor wafers, liquid crystal display substrates, plasma display substrates, FED (FieldEDEmission Display) substrates, optical disk substrates, magnetic disk substrates, magneto-optical disk substrates, and photomasks.
  • substrates for substrates, ceramic substrates, and substrates for solar cells are included.
  • the top surface of the substrate held by the spin chuck may be cleaned with a brush in order to physically clean the top surface of the substrate.
  • the brush is scanned in the horizontal direction while contacting the brush with the upper surface of the rotating substrate. Thereby, the entire upper surface of the substrate is cleaned.
  • one object of the present invention is provided in a substrate processing method, a substrate processing apparatus, and a substrate processing apparatus that can suppress a decrease in throughput and that can uniformly clean the upper surface of a substrate.
  • Another object of the present invention is to provide a computer-readable recording medium that records a program for causing a computer to execute a substrate processing method.
  • a substrate holding step for horizontally holding a substrate a substrate rotating step for rotating the horizontally held substrate around a rotation axis along a vertical direction, and the horizontal holding
  • a brush contact step for bringing a brush for cleaning the upper surface of the substrate into contact with the upper surface of the rotating substrate; and a position in contact with the center of the upper surface of the horizontally held substrate in parallel with the brush contact step;
  • a brush moving step of moving the brush between a position contacting the outer periphery of the upper surface of the substrate, and dividing the upper surface of the substrate into a plurality of regions by a circular imaginary line concentric with the substrate.
  • a speed setting step for setting the moving speed of the brush in the brush moving process so that the moving speed of the brush is lower in the region with the higher priority.
  • the upper surface of the substrate is divided into a plurality of regions by a circular imaginary line concentric with the rotating substrate.
  • a priority is set for each area.
  • the brush moving speed in the brush moving process executed in parallel with the brush contact process is set to be lower as the priority is higher. For this reason, the region with higher priority is washed for a longer time. For this reason, by setting the priority of each region so that the region where dirt attached to the substrate is less likely to be removed has a higher priority, the region where contamination is less likely to be removed on the upper surface of the substrate is sufficiently cleaned.
  • the cleaning time of an area where dirt is easily removed on the upper surface of the substrate is shortened. Accordingly, a decrease in throughput is suppressed, and the upper surface of the substrate is uniformly cleaned.
  • the speed setting step sets the moving speed of the brush in the brush moving process based on the priority set so as to be higher as the degree of contamination of the upper surface of the substrate is higher.
  • a step of setting for each region is included.
  • the total time for which the brush moving step is executed is T
  • the number of the regions is i
  • the priority of the i-th region is counted from the rotation axis.
  • the degree of movement is wi
  • the movement distance of the brush in the i-th area counted from the rotation axis is ri
  • the movement time of the brush in the i-th area counted from the rotation axis is ti
  • the rotation axis Setting the moving speed of the brush in each region based on the following formulas (1) and (2), where vi is the moving speed of the brush in the i-th region counted from.
  • the total time T during which the brush moving process is executed, the number i of regions, the priority wi of the i-th region, and the brush moving distance ri in the i-th region are specified, and the formula
  • the movement time ti of the brush in the i-th region is calculated.
  • the movement speed vi of the brush is calculated by substituting the movement time ti calculated from Expression (1) and the designated movement distance ri into Expression (2). Accordingly, the brush moving speed vi in each region is set so that the brush moving process is completed after the time T has elapsed from the start of the brush moving process (as specified in advance). Therefore, a decrease in throughput is reliably suppressed.
  • the brush contact step includes a brush pressing step of pressing the brush against the upper surface of the rotating substrate.
  • the substrate processing method sets a second priority for each of the regions, and the pressing amount or the pressing pressure of the brush against the substrate in a rotating state increases as the region having the second priority becomes higher.
  • the pressing state setting step for setting each area as described above is further included.
  • the amount of pressing of the brush means the amount of movement that the brush (center of gravity) moves toward the upper surface of the substrate after the brush contacts the upper surface of the substrate.
  • the pressing amount or pressing pressure of the brush against the rotating substrate is higher in the region where the second priority is higher.
  • the higher the pressing amount or pressing pressure of the brush the easier the dirt attached to the upper surface of the substrate is removed.
  • the cleaning time of the region where the second priority is relatively high on the upper surface of the substrate is shortened.
  • the consumption of the brush is suppressed as compared with the substrate processing in which the brush is always pressed against the substrate with a constant pressing amount (pressing pressure).
  • the life of the brush can be extended. Accordingly, a decrease in throughput is suppressed, and the upper surface of the substrate is uniformly cleaned.
  • the pressing amount or the pressing pressure is set based on the second priority set so that the pressing state setting step increases as the degree of contamination of the upper surface of the substrate increases. Including a setting step.
  • the higher the degree of contamination on the upper surface of the substrate the higher the second priority.
  • the pressing amount or the pressing pressure is higher in the region where the second priority is higher. Therefore, the cleaning time for the upper surface of the substrate in a region where the degree of contamination is relatively high is shortened.
  • the consumption of the brush is suppressed as compared with the substrate processing in which the brush is always pressed against the substrate with a constant pressing amount (pressing pressure). As a result, the life of the brush can be extended. Accordingly, a decrease in throughput is suppressed, and the upper surface of the substrate is uniformly cleaned.
  • the brush contact step includes a brush pressing step of pressing the brush against the upper surface of the rotating substrate.
  • the substrate processing method includes a pressing state setting step of setting a pressing amount or pressing pressure of the brush against the substrate in a rotating state so that the substrate processing method changes in inverse proportion to the moving speed of the brush.
  • the pressing amount or pressing pressure of the brush against the substrate is set so as to change in inverse proportion to the moving speed of the brush. That is, the pressing amount or pressing pressure of the brush against the substrate in the brush pressing step is higher as the moving speed of the brush is lower. Therefore, the pressing amount or the pressing pressure is increased as the priority is higher. Therefore, the cleaning time of the upper surface of the substrate in the region having a relatively high priority is shortened. Accordingly, a decrease in throughput is suppressed, and the upper surface of the substrate is uniformly cleaned.
  • the substrate processing method includes a brush raising / lowering step for raising and lowering the brush in parallel with the brush moving step, and the brush moving step in a state where the brush is along the upper surface of the substrate. And a vertical position setting step of setting the vertical position of the brush in the brush raising / lowering step for each region.
  • the brush raising / lowering step is executed in parallel with the brush moving step.
  • the vertical position of the brush in the brush raising / lowering process is set for each region so that the brush moving process is performed with the brush being along the upper surface of the substrate. Therefore, even if the substrate is warped, the state where the brush is in contact with the upper surface of the substrate can be maintained. Therefore, uneven cleaning of the upper surface of the substrate is suppressed. Therefore, the upper surface of the substrate is more evenly cleaned.
  • a substrate processing apparatus in another embodiment, includes a substrate holding unit that horizontally holds a substrate, a substrate rotating unit that rotates a substrate held by the substrate holding unit about a rotation axis along a vertical direction, and A brush for cleaning the upper surface of the substrate held by the substrate holding unit; a brush contact unit for bringing the brush into contact with the upper surface of the substrate held by the substrate holding unit; and a brush movement for moving the brush horizontally. And a controller for controlling the substrate rotating unit, the brush contact unit, and the brush moving unit.
  • the controller rotates the substrate held horizontally, rotates the substrate, contacts the brush with the horizontally held substrate, and contacts the brush in parallel with the brush contacting step.
  • a brush moving step of moving the brush between a position contacting the center of the upper surface of the held substrate and a position contacting the outer periphery of the upper surface of the substrate; and a circular shape concentric with the substrate on the upper surface of the substrate.
  • the virtual line is divided into a plurality of areas, priority is set for each of the areas, and the brush moving speed is set in the brush moving process so that the higher the priority is, the lower the brush moving speed is.
  • a speed setting step to be programmed.
  • the upper surface of the substrate is divided into a plurality of regions by a circular virtual line concentric with the rotating substrate.
  • a priority is set for each area.
  • the brush moving speed in the brush moving process is set to be lower as the priority is higher. For this reason, the region with higher priority is washed for a longer time. For this reason, by setting the priority of each region so that the region where dirt attached to the substrate is less likely to be removed has a higher priority, the region where contamination is less likely to be removed on the upper surface of the substrate is sufficiently cleaned.
  • the cleaning time of an area where dirt is easily removed on the upper surface of the substrate is shortened. Accordingly, a decrease in throughput is suppressed, and the upper surface of the substrate is uniformly cleaned.
  • the priority is set to be higher as the degree of contamination on the upper surface of the substrate is higher.
  • the higher the degree of substrate contamination the higher the priority. For this reason, a region having a relatively high degree of contamination on the upper surface of the substrate is sufficiently cleaned.
  • the cleaning time of the region with a relatively low degree of contamination on the upper surface of the substrate is shortened. Accordingly, a decrease in throughput is suppressed, and the upper surface of the substrate is uniformly cleaned.
  • the controller sets T as the total time during which the brush moving process is executed, i as the number of the regions, and the priority of the i-th region as counted from the rotation axis. Wi, the movement distance of the brush in the i-th region counted from the rotation axis is ri, the movement time of the brush in the i-th region counted from the rotation axis is ti, and from the rotation axis It is programmed to execute the step of setting the moving speed of the brush in each of the areas based on the following formulas (1) and (2), where vi is the moving speed of the brush in the i-th area. ing.
  • the total time T during which the brush moving process is executed, the number i of regions, the priority wi of the i-th region, and the brush moving distance ri in the i-th region are specified, and the formula
  • the movement time ti of the brush in the i-th region is calculated.
  • the movement speed vi is calculated by substituting the movement time ti calculated from the equation (1) and the designated movement distance ri into the equation (2). Accordingly, the brush moving speed vi in each region is set so that the brush moving process is completed after the time T has elapsed from the start of the brush moving process (as specified in advance). Therefore, a decrease in throughput is reliably suppressed.
  • the substrate processing apparatus further includes a brush pressing unit that presses the brush against an upper surface of the horizontally held substrate.
  • the controller sets a second priority for each of the regions by pressing the brush against the upper surface of the substrate in the rotated state, and the amount of pressing of the brush against the substrate in the rotated state or It is programmed to execute a pressing state setting step of setting the pressing pressure in each of the regions so that the pressing pressure becomes higher in the region having the second priority.
  • the pressing amount or pressing pressure of the brush against the rotating substrate is higher in the region where the second priority is higher.
  • the higher the pressing amount or pressing pressure of the brush the easier the dirt attached to the upper surface of the substrate is removed.
  • the cleaning time in the region where the second priority is relatively high is shortened.
  • the consumption of the brush is suppressed as compared with the substrate processing in which the brush is always pressed against the substrate with a constant pressing amount (pressing pressure).
  • the life of the brush can be extended. Accordingly, a decrease in throughput is suppressed, and the upper surface of the substrate is uniformly cleaned.
  • the controller sets the pressing amount or the pressing pressure based on the second priority set so as to increase as the degree of contamination of the upper surface of the substrate increases. Is programmed to run.
  • the higher the degree of contamination on the upper surface of the substrate the higher the second priority.
  • the pressing amount or the pressing pressure is higher in the region where the second priority is higher. Therefore, the cleaning time for the upper surface of the substrate in a region where the degree of contamination is relatively high is shortened.
  • the consumption of the brush is suppressed as compared with the substrate processing in which the brush is always pressed against the substrate with a constant pressing amount (pressing pressure). As a result, the life of the brush can be extended. Accordingly, a decrease in throughput is suppressed, and the upper surface of the substrate is uniformly cleaned.
  • the substrate processing apparatus further includes a brush pressing unit that presses the brush against an upper surface of the horizontally held substrate.
  • it is programmed to execute a pressing state setting process for setting the pressing pressure.
  • the pressing amount or pressing pressure of the brush against the substrate is set so as to change in inverse proportion to the moving speed of the brush. That is, the pressing amount or pressing pressure of the brush against the substrate is higher with respect to the substrate as the moving speed of the brush is lower. Therefore, the pressing amount or the pressing pressure is increased as the priority is higher. Therefore, the cleaning time of the upper surface of the substrate in the region having a relatively high priority is shortened. Accordingly, a decrease in throughput is suppressed, and the upper surface of the substrate is uniformly cleaned.
  • the substrate processing apparatus further includes a brush elevating unit that elevates and lowers the brush. Further, in parallel with the brush contact step, the controller moves the brush up and down, and the brush moving step is performed in a state where the brush is placed along the upper surface of the substrate. It is programmed to execute a vertical position setting step for setting the vertical position of the brush for each region in the brush lifting step.
  • the brush raising / lowering process is executed in parallel with the brush moving process.
  • the vertical position of the brush in the brush raising / lowering process is set for each region so that the brush moving process is performed with the brush being along the upper surface of the substrate. Therefore, even if the substrate is warped, the state where the brush is in contact with the upper surface of the substrate can be maintained. Therefore, uneven cleaning of the upper surface of the substrate is suppressed. Therefore, the upper surface of the substrate is more evenly cleaned.
  • Still another embodiment of the present invention provides a computer-readable recording medium storing a program for causing a computer provided in a substrate processing apparatus to execute the substrate processing method. According to this configuration, the same effects as described above can be achieved.
  • FIG. 1 is an illustrative plan view for explaining an internal layout of a substrate processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic longitudinal sectional view for explaining a configuration example of the processing unit provided in the substrate processing apparatus.
  • FIG. 3 is a block diagram for explaining an electrical configuration of a main part of the substrate processing apparatus.
  • FIG. 4 is a flowchart for explaining an example of substrate processing by the substrate processing apparatus.
  • FIG. 5A is a schematic front view of the substrate in the brush moving step of the substrate processing (S6 in FIG. 4).
  • FIG. 5B is a schematic plan view of the substrate in the brush moving step of the substrate processing (S6 in FIG. 4).
  • FIG. 5A is a schematic front view of the substrate in the brush moving step of the substrate processing (S6 in FIG. 4).
  • FIG. 5B is a schematic plan view of the substrate in the brush moving step of the substrate processing (S6 in FIG. 4).
  • FIG. 5A is a schematic front view of the
  • FIG. 6 is a flowchart for explaining an example of a method for setting the moving speed of the brush in each region by the control means provided in the substrate processing apparatus.
  • FIG. 7A is an example of a graph created based on the moving speed of the brush set by the method shown in FIG.
  • FIG. 7B is an example of a graph created based on the moving speed of the brush set by the method shown in FIG.
  • FIG. 8A is a table showing an example of the relationship between the second priority and the pressing force of the brush in each region.
  • FIG. 8B is an example of a graph showing the pressing pressure set for each region.
  • FIG. 9A is a schematic front view of a substrate in which a warp has occurred.
  • FIG. 9B is a schematic front view of a substrate in which warpage occurs.
  • FIG. 10 is a table showing an example of information acquired by the control means in the method shown in FIG.
  • FIG. 1 is an illustrative plan view for explaining an internal layout of a substrate processing apparatus 1 according to an embodiment of the present invention.
  • the substrate processing apparatus 1 is a single wafer processing apparatus that processes substrates W such as silicon wafers one by one.
  • the substrate W is a circular substrate.
  • the substrate processing apparatus 1 includes a plurality of processing units 2 that process a substrate W, a plurality of load ports LP that respectively hold carriers C that store a plurality of substrates W processed by the processing unit 2, a load port LP, A transfer robot IR and CR that transfer the substrate W to and from the processing unit 2 and a controller 3 that controls the substrate processing apparatus 1 are included.
  • the substrate processing apparatus 1 includes a measurement unit 4 for measuring the state of the substrate W carried out from the plurality of load ports LP, and an operation unit 6 for operating the substrate processing apparatus 1.
  • the operation unit 6 includes a display unit (not shown) that displays information related to substrate processing, and an input unit (not shown) for an operator to input information related to substrate processing.
  • the transfer robot IR transfers the substrate W between the carrier C and the transfer robot CR.
  • the transfer robot CR transfers the substrate W between the transfer robot IR and the processing unit 2.
  • the plurality of processing units 2 have the same configuration, for example.
  • FIG. 2 is a schematic longitudinal sectional view for explaining one configuration example of the processing unit 2.
  • the processing unit 2 includes a spin chuck 5 that rotates the substrate W around a vertical rotation axis a ⁇ b> 1 that passes through the central portion of the substrate W while holding a single substrate W in a horizontal posture, and deionization on the upper surface of the substrate W. And a processing liquid nozzle 10 for supplying a processing liquid such as water (DIW: Deionized Water).
  • the processing unit 2 further includes a chamber 13 (see FIG. 1) that houses the spin chuck 5. Although not shown, the chamber 13 is formed with a loading / unloading port for loading / unloading the substrate W.
  • the chamber 13 is provided with a shutter unit that opens and closes the loading / unloading port.
  • the spin chuck 5 may be a vacuum chuck that holds the substrate W horizontally by adsorbing the back surface (lower surface) of the substrate W, which is a non-device forming surface.
  • the spin chuck 5 may be a clamping chuck that holds the substrate W horizontally by sandwiching the substrate W in the horizontal direction. In this embodiment, an example in which the spin chuck 5 is a vacuum chuck is shown.
  • the spin chuck 5 includes a spin base 21, a rotating shaft 22, and an electric motor 23 that applies a rotating force to the rotating shaft 22.
  • the rotation shaft 22 extends in the vertical direction along the rotation axis a1.
  • the upper end of the rotation shaft 22 is coupled to the center of the lower surface of the spin base 21.
  • the spin base 21 has a disk shape along the horizontal direction.
  • a plurality of suction ports 24 for sucking the substrate W disposed on the upper surface of the spin base 21 and holding the substrate W on the spin base 21 are formed.
  • the suction port 24 is connected to a suction tube 50 via a suction path 25 formed inside the spin base 21 and the rotating shaft 22.
  • the suction tube 50 is connected to a suction mechanism 27 such as a vacuum pump.
  • the suction pipe 50 is provided with a suction valve 40 for opening and closing the path.
  • the spin base 21 and the suction mechanism 27 are included in a substrate holding unit for holding the substrate W horizontally.
  • the suction tube 50 may extend into the spin base 21 and the rotating shaft 22.
  • a portion of the suction tube 50 that extends inside the spin base 21 and the rotation shaft 22 constitutes the suction path 25.
  • the rotating shaft 22 When the rotating shaft 22 is rotated by the electric motor 23, the substrate W is rotated around the rotating axis a1.
  • the radial direction around the rotation axis a1 is referred to as a rotational radial direction.
  • the rotational radius direction is also the radial direction of the substrate W.
  • the inside in the rotational radius direction is simply referred to as “radially inward”.
  • the outside in the rotational radial direction is simply referred to as “radially outward”.
  • the rotation shaft 22 and the electric motor 23 are included in a substrate rotation unit that rotates the substrate W around the rotation axis a1.
  • the processing liquid nozzle 10 is a fixed nozzle that is disposed so as to discharge the processing liquid toward the rotation center of the upper surface of the substrate W.
  • a processing liquid such as DIW is supplied to the processing liquid nozzle 10 from a processing liquid supply source via a processing liquid supply pipe 51.
  • the processing liquid supply pipe 51 includes a processing liquid valve 41 for opening and closing a flow path in the processing liquid supply pipe 51, a processing liquid flow rate adjusting valve 42 for adjusting the flow rate of the processing liquid in the processing liquid supply pipe 51, and Is intervening.
  • the treatment liquid nozzle 10 need not be a fixed nozzle.
  • the treatment liquid nozzle 10 may be a moving nozzle that moves at least in the horizontal direction.
  • the treatment liquid nozzle 10 may be a rinse liquid nozzle that supplies a rinse liquid other than DIW.
  • the rinsing liquid include DIW, carbonated water, electrolytic ion water, ozone water, hydrochloric acid water having a diluted concentration (for example, about 10 to 100 ppm), reduced water (hydrogen water), and the like.
  • the processing liquid supplied from the processing liquid nozzle 10 to the substrate W may be a liquid other than the rinsing liquid.
  • the processing liquid supplied to the substrate W from the processing liquid nozzle 10 may be, for example, a chemical liquid or a liquid organic solvent such as IPA.
  • a plurality of types of processing liquids may be sequentially supplied to the substrate W from one or more nozzles.
  • the processing unit 2 includes a brush 31 for cleaning the upper surface of the substrate W, a brush arm 35 that supports the brush 31, a brush moving mechanism 36 that moves the brush 31 by moving the brush arm 35, And a pressing state changing mechanism 39 that changes the pressing amount or pressing force of the brush 31 against the upper surface.
  • the pressing amount of the brush 31 means a moving amount by which the brush 31 (center of gravity) moves toward the upper surface of the substrate W after the brush 31 contacts the upper surface of the substrate W.
  • the brush 31 is held by a brush holder 32 disposed above the brush 31.
  • the brush holder 32 is attached to a holder attachment portion 33 disposed above the brush holder 32.
  • the holder mounting portion 33 is supported by a support shaft 34 that extends upward from the holder mounting portion 33.
  • the support shaft 34 protrudes downward from the brush arm 35.
  • the brush 31 is an elastically deformable sponge brush made of a synthetic resin such as PVA (polyvinyl alcohol).
  • the brush 31 protrudes downward from the brush holder 32.
  • the brush 31 includes a cleaning surface 31 a disposed below the brush holder 32.
  • the cleaning surface 31 a faces the upper surface of the substrate W in the vertical direction.
  • the cleaning surface 31a is smaller than the substrate W in plan view.
  • the cleaning surface 31a may be a flat surface parallel to the upper surface of the substrate W or a downwardly convex hemispherical surface in a free state where the brush 31 is not pressed against the substrate W.
  • the diameter of the cleaning surface 31a is, for example, 20 mm.
  • the size of the cleaning surface 31a is not limited to this.
  • the brush 31 is not limited to a sponge brush.
  • the brush 31 may be a brush having a hair bundle formed by a plurality of resin fibers.
  • the pressing state changing mechanism 39 is an actuator such as an air cylinder that moves the brush 31 up and down in the vertical direction.
  • the pressing state changing mechanism 39 is disposed in the brush arm 35.
  • the processing unit 2 may include a brush rotation mechanism in the brush arm 35 that rotates the brush 31 around the rotation axis a ⁇ b> 1 perpendicular to the brush arm 35.
  • the brush rotation mechanism rotates the brush 31 by rotating the support shaft 34 around its center line.
  • the brush moving mechanism 36 includes a brush horizontal drive mechanism 37 that moves the brush arm 35 horizontally, and a brush vertical drive mechanism 38 that moves the brush arm 35 vertically.
  • FIG. 2 shows an example in which the brush horizontal drive mechanism 37 is a brush turning mechanism that rotates the brush arm 35 around the vertical brush turning axis a ⁇ b> 2 positioned around the spin chuck 5.
  • the brush horizontal drive mechanism 37 may be a brush slide mechanism that linearly moves the brush arm 35 in the horizontal direction.
  • the brush horizontal drive mechanism 37 is an example of a brush moving unit that moves the brush 31 in the horizontal direction.
  • the brush vertical drive mechanism 38 is an example of a brush lifting unit that lifts and lowers the brush 31.
  • the brush 31 can be moved between the standby position and the center position by moving the brush arm 35 by the brush horizontal drive mechanism 37.
  • the brush 31 is positioned around the spin chuck 5 in plan view.
  • the brush 31 contacts the center of the upper surface of the substrate W when positioned at the center position.
  • the brush 31 is in contact with the outer periphery of the upper surface of the substrate W when positioned at the outer peripheral position between the standby position and the center position.
  • the center of the upper surface of the substrate W is a portion where the upper surface of the substrate W intersects with the rotation axis a1.
  • the outer periphery of the upper surface of the substrate W is a portion on the upper surface of the substrate W that is slightly inside (center side) of the substrate W from the periphery of the substrate W.
  • FIG. 3 is a block diagram for explaining the electrical configuration of the main part of the substrate processing apparatus 1.
  • the controller 3 includes a computer main body 67 and a peripheral device 68 connected to the computer main body 67.
  • the computer main body 67 includes a CPU 69 (central processing unit) that executes various instructions and a main storage device 70 that stores information.
  • the peripheral device 68 includes an auxiliary storage device 71 that stores information such as a program, a reading device 72 that reads information from the removable medium M, and a communication device 73 that communicates with an external device such as a host computer HC.
  • the computer main body 67 is connected to each of the auxiliary storage device 71, the reading device 72, and the communication device 73.
  • the computer main body 67 is further connected to devices such as the transport robot IR and the processing unit 2.
  • the computer main body 67 exchanges information with each of the auxiliary storage devices 71 and the like.
  • the CPU 69 executes the program P stored in the auxiliary storage device 71 and the program P read from the removable medium M by the reading device 72.
  • the program P in the auxiliary storage device 71 may be installed in the controller 3 in advance.
  • the program P in the auxiliary storage device 71 may be sent from the removable medium M to the auxiliary storage device 71 through the reading device 72.
  • the program P in the auxiliary storage device 71 may be sent from the external device to the auxiliary storage device 71 through the communication device 73.
  • the auxiliary storage device 71 is a non-volatile memory that retains memory even when power is not supplied.
  • the auxiliary storage device 71 is, for example, a magnetic storage device such as a hard disk drive.
  • the auxiliary storage device 71 may be a non-volatile memory other than the magnetic storage device.
  • the removable media M is a non-volatile memory that retains memory even when power is not supplied.
  • the removable medium M is, for example, an optical disk such as a compact disk or a semiconductor memory such as a memory card.
  • the removable medium M may be a non-volatile memory other than the optical disk and the semiconductor memory.
  • the removable medium M is an example of a computer-readable recording medium on which the program P is recorded.
  • the host computer HC communicates with the controller 3.
  • the host computer HC designates the identification information of the recipe 74 indicating a series of steps performed on the substrate W to the controller 3 for each substrate W.
  • the auxiliary storage device 71 stores a plurality of types of recipes 74.
  • the recipe 74 includes recipe identification information, substrate processing conditions, and a substrate processing procedure.
  • the computer main body 67 reads the recipe 74 designated by the host computer HC from the auxiliary storage device 71. Then, the computer main body 67 creates a processing schedule for processing the substrate W by the processing unit 2 in accordance with the designated recipe 74. Thereafter, the controller 3 performs the substrate processing apparatus 1 such as the transfer robot IR, CR, the measurement unit 4, the operation unit 6, the electric motor 23, the suction mechanism 27, the brush moving mechanism 36, the pressing state changing mechanism 39, and the valves 40 to 42.
  • the control schedule (resource) is made to execute the processing schedule.
  • FIG. 4 is a flowchart for explaining an example of substrate processing by the substrate processing apparatus 1.
  • steps S1 to S12 are executed in this order as shown in FIG. 4, for example, based on the processing schedule created by the controller 3.
  • an unprocessed substrate W is carried into the processing unit 2 from the carrier C by the transfer robots IR and CR, and delivered to the spin chuck 5 (S1).
  • the controller 3 drives the suction mechanism 27 and opens the suction valve 40 to cause the suction mechanism 27 to suck the substrate W.
  • a substrate holding process for holding the substrate W horizontally on the spin chuck 5 in a state of being in contact with the upper surface of the spin base 21 is started (S2). Thereafter, the substrate W is maintained in a horizontally held state until it is unloaded by the transfer robot CR.
  • the controller 3 drives the electric motor 23 to start a substrate rotation process for rotating the substrate W held by the spin chuck 5 (S3).
  • the substrate rotation process may be continued until the start of spin dry (S9) described later.
  • the controller 3 opens the processing liquid valve 41 and supplies a processing liquid such as DIW from the processing liquid nozzle 10 toward the upper surface of the rotating substrate W. Thereby, a process liquid supply process is started (S4).
  • the processing liquid supplied to the upper surface of the rotated substrate W flows radially outward along the upper surface of the substrate W by centrifugal force. As a result, the processing liquid spreads over the entire top surface of the substrate W.
  • the controller 3 controls the brush horizontal drive mechanism 37 to move the brush 31 from the standby position to the center position. Then, the controller 3 controls the brush vertical drive mechanism 38 to execute a brush contact process for bringing the cleaning surface 31a of the brush 31 into contact with the center of the upper surface of the rotating substrate W (S5). As described above, the brush vertical drive mechanism 38 functions as a brush contact unit that brings the brush 31 into contact with the upper surface of the substrate W held by the spin base 21.
  • the controller 3 may control the pressing state changing mechanism 39 to press the brush 31 against the upper surface of the substrate W (brush pressing process).
  • the pressing state changing mechanism 39 functions as a brush pressing unit that presses the upper surface of the substrate W against the upper surface of the substrate W.
  • the controller 3 controls the brush horizontal drive mechanism 37 to start a brush moving process for moving the brush 31 in contact with the upper surface of the substrate W from the central position to the outer peripheral position (S6). That is, the brush moving process is executed in parallel with the brush contact process. As a result, the brush 31 is rubbed against the entire upper surface of the substrate W, and the entire upper surface of the substrate W is scrubbed.
  • the controller 3 controls the brush vertical drive mechanism 38 to retract the brush 31 located at the outer peripheral position upward (S7). As a result, the brush 31 is separated from the upper surface of the substrate W. Thereafter, the brush 31 is moved to the standby position.
  • the processing liquid valve 41 is closed after the brush 31 is separated from the substrate W. Thereby, the supply of DIW to the substrate W is stopped (S8). Thereafter, the rotation of the substrate W is accelerated to a drying speed (for example, several thousand rpm). Thereby, the pure water adhering to the substrate W is shaken off around the substrate W, and the substrate W is dried (S9).
  • the controller 3 controls the electric motor 23 to stop the rotation of the substrate W after the substrate W is dried (S10). Then, the controller 3 closes the suction valve 40 and then stops the suction by the suction mechanism 27. Thereby, the holding of the substrate W by the spin base 21 is released (S11).
  • the transfer robot CR enters the processing unit 2, picks up the processed substrate W from the spin chuck 5, and carries it out of the processing unit 2 (S 12).
  • the substrate W is transferred from the transfer robot CR to the transfer robot IR, and is stored in the carrier C by the transfer robot IR.
  • a plurality of substrate processing steps are executed under the substrate processing conditions specified in the recipe 74 and the substrate processing procedure specified in the recipe 74.
  • FIG. 5A and 5B are schematic views of the substrate W in the brush moving process (S6 in FIG. 4).
  • FIG. 5A is a front view
  • FIG. 5B is a plan view.
  • the controller 3 sets the moving speed v of the brush 31 in the brush moving process (S6 in FIG. 4) which is a part of the recipe 74 (speed). Setting process).
  • the controller 3 divides the upper surface of the substrate W along the rotational radius direction by a circular imaginary line L concentric with the substrate W in a rotating state. Then, the controller 3 sets the priority w for each of the plurality of areas A.
  • the center of the imaginary line L coincides with the rotation axis a1 in plan view.
  • the moving speed v is a rotational radial direction component of the moving speed of the brush 31 at a position facing the region A.
  • the rotational radial direction component of the distance traveled by the brush 31 at the position facing the region A is referred to as a travel distance r.
  • the nth (n: natural number of 2 or more) area A counted from the rotation axis a1 is also referred to as an area An.
  • the priority w in the area An is also referred to as the priority wn.
  • a virtual line L that is a boundary between the region A (n ⁇ 1) and the region An is also referred to as a virtual line Ln.
  • the movement distance r in the region An is also referred to as a movement distance rn.
  • the moving speed v of the brush 31 in the nth area An counted from the rotation axis a1 is also referred to as a moving speed vn.
  • 5A and 5B show a state in which the brush 31 is in a position facing the region A1. When the brush 31 is located at a position facing the area An, the center of the brush 31 in plan view faces the area An.
  • the priority w is set to be higher in the region A where dirt such as particles adhering to the upper surface of the substrate W is difficult to remove.
  • the priority w is set such that the higher the degree of contamination on the upper surface of the substrate W, the higher the priority w.
  • a high degree of contamination on the upper surface of the substrate W means that the amount of dirt (for example, the number of particles) attached to the upper surface of the substrate W is large. The higher the degree of contamination on the upper surface of the substrate W, the more difficult it is to remove dirt from the upper surface of the substrate W.
  • the number of particles adhering to the upper surface of the substrate W is measured while the substrate W is transferred from the load port LP to the processing unit 2 by, for example, a particle counter provided in the measurement unit 4.
  • the number of particles adhering to the upper surface of the substrate W may be measured in advance by a particle counter provided outside the substrate processing apparatus 1. Further, instead of measuring the number of particles on the substrate W to be subjected to substrate processing, the contamination state of the substrate W before being processed by the substrate processing apparatus 1 is predicted, and this prediction is based on the degree of contamination on the upper surface of the substrate W. It may be an indicator.
  • the region A in which dirt is difficult to remove requires longer time for cleaning the substrate W. Therefore, the moving speed v of the brush 31 in the brush moving process (S6 in FIG. 4) is set to be lower in the region A where the priority w is higher.
  • the amount of dirt is particularly large near the outer periphery, and the region A near the outer periphery has a higher degree of contamination than the region A near the center.
  • the priority w need not be set so that the higher the pollution degree, the higher the priority w.
  • the priority w may be set so that the priority w becomes higher in the region A where the degree of adsorption of dirt (for example, particles) to the upper surface of the substrate W is higher. As the degree of adsorption of dirt (for example, particles) to the upper surface of the substrate W is higher, the dirt is more difficult to be removed from the upper surface of the substrate W.
  • FIG. 6 is a flowchart for explaining an example of a method for setting the moving speed v of the brush 31 in each region A by the controller 3.
  • FIG. 6 shows an example in the case of n ⁇ 3.
  • Recipe information is the values of various parameters, and includes, for example, the total time (total time T) during which the brush moving process is executed, the radius R of the substrate W to be processed, and the like.
  • the total time T is, for example, about 5 to 20 seconds.
  • the radius R is, for example, 150 mm.
  • the controller 3 may acquire the recipe information from information stored in the auxiliary storage device 71 of the controller 3.
  • the controller 3 may be acquired from information input to the input unit of the operation unit 6 (see FIG. 2) by the operator.
  • the controller 3 acquires the movement distances r1,..., R (n ⁇ 1) of the brush 31 input by the operator to the input unit of the operation unit 6 (step T2). Then, it is determined whether or not the sum [r1 +... + R (n ⁇ 1)] of the movement distances r1,..., R (n ⁇ 1) is smaller than the radius R of the substrate W (step T3). When the sum [r1 +... + R (n-1)] of the movement distances r1,..., R (n-1) is greater than or equal to the radius R, the movement distance rn cannot be set. If the sum [r1 +...
  • Step T4 the processing from step T2 is performed until it is determined in step T3 that the sum [r1 +... + R (n ⁇ 1)] of the movement distances r1,..., R (n ⁇ 1) is smaller than the radius R of the substrate W. Repeated.
  • step T3 When the sum [r1 +... + R (n-1)] of the movement distances r1,..., R (n-1) is smaller than the radius R of the substrate W (Yes in step T3), the controller 3 The priority levels w1,..., Wn input to the input unit 6 are acquired (step T5).
  • the controller 3 calculates the moving speeds v1,..., Vn in each region A using the total time T, the moving distance r, and the priority w acquired in steps T1 to T5 (step T6). Specifically, the moving speeds v1,..., Vn in each region A are calculated based on the following formulas (1) and (2).
  • the number of areas A is i (i: natural number), and the priority of the brush 31 in the i-th area Ai counted from the rotation axis a1 is wi.
  • the moving distance r of the brush 31 in the i-th region Ai counted from the rotation axis a1 is ri.
  • the movement time of the brush 31 in the i-th area Ai counted from the rotation axis a1 is ti
  • the moving speed v is set to vi.
  • T indicates the total time during which the brush moving process is executed.
  • the travel time ti is calculated from Equation (1). As shown in Expression (1), the travel time ti is longer as the priority wi is higher. Then, the moving speed vi is calculated based on the moving time ti calculated by Expression (1) and Expression (2). By calculating the moving speed vi for all the regions A, the moving speeds v1, ..., vn are obtained.
  • step T7 determines whether or not the calculated moving speeds v1,..., Vn are within the mechanical performance (spec) range of the brush horizontal drive mechanism 37 (step T7). If the calculated moving speeds v1,..., Vn are outside the mechanical performance range of the brush horizontal drive mechanism 37 (No in step T7), an alarm is issued to the operator (step T8). Thereafter, the processing from step T5 is repeated until it is determined that the moving speeds v1,..., Vn calculated in step T7 are within the mechanical performance range of the brush horizontal drive mechanism 37.
  • the controller 3 sets the moving speed v of the brush 31 in the recipe 74 based on the saved data 75 stored in the auxiliary storage device 71 (speed setting step).
  • the moving speed v of the brush 31 in each area A does not always have to be constant.
  • the moving speed v may be set so as to decrease near the boundary between the region A where the brush 31 is currently facing and the region A adjacent to the region A from the outside in the radial direction.
  • the calculated moving speeds v1,..., Vn may be used as the maximum value (peak value) of the moving speed v of the brush 31 in the corresponding areas A1,. That is, the moving speed v increases near the boundary between the area A where the brush 31 is currently facing and the area A adjacent to the area A from the inside in the radial direction, and reaches the calculated moving speeds v1,. Thereafter, the brush 31 may be set so as to decrease near the boundary between the region A where the brush 31 currently faces and the region A adjacent to the region A from the outside in the radial direction.
  • 7A and 7B are examples of graphs created based on the moving speed v of the brush 31 set by the method shown in FIG.
  • the controller 3 may create a graph as shown in FIGS. 7A and 7B based on the stored data 75 and the recipe information.
  • the graph shown in FIG. 7A is an example of a graph showing the relationship between the position of the brush 31 and the moving speed v of the brush 31 in the brush moving step (S6).
  • the position of the brush 31 is taken as the horizontal axis.
  • the position of the brush 31 is the center position of the brush 31 in plan view.
  • the horizontal axis has the origin at the position of the rotation axis a1.
  • the moving speed v of the brush 31 is the vertical axis.
  • the moving speeds v1, v2, and v3 stored as the stored data 75 are used as the maximum value of the moving speed v in each of the areas A1, A2, and A3.
  • the position of the brush 31 is the vertical axis
  • the position of the rotation axis a1 is the reference (origin).
  • the elapsed time is the vertical axis.
  • the elapsed time is the time that has elapsed since the start of the brush moving process. The moment when the brush moving process starts is used as the reference (origin).
  • the controller 3 can display these graphs on the display unit of the operation unit 6 (see FIG. 1). Thereby, the operator of the substrate processing apparatus 1 can visually confirm the moving speed v of the brush 31 in each region A.
  • the substrate W is divided into a plurality of regions A by a circular imaginary line L concentric with the substrate W in a rotating state, and a priority w is set for each region A.
  • the moving speed v of the brush 31 in the brush moving process executed in parallel with the brush contact process is set to be lower as the priority w is higher. For this reason, the region A having the higher priority w is cleaned for a longer time. Therefore, by setting the priority w of each region A so that the priority w is higher in the region A where dirt attached to the substrate W is hard to be removed, the region A in which dirt is difficult to remove on the upper surface of the substrate W. Is thoroughly washed. On the other hand, the cleaning time of the region A where dirt is easily removed on the upper surface of the substrate W is shortened. Accordingly, a decrease in throughput is suppressed, and the upper surface of the substrate W is uniformly cleaned.
  • the priority w is higher in the region A where the contamination degree of the substrate W is higher. Therefore, the region A having a relatively high degree of contamination on the upper surface of the substrate W is sufficiently cleaned. On the other hand, the cleaning time of the region A having a relatively low degree of contamination on the upper surface of the substrate W is shortened. Therefore, a decrease in throughput is suppressed, and the upper surface of the substrate W is uniformly cleaned.
  • the total time T in which the brush moving process is executed the number i of the regions A, i-th
  • the movement time ti of the brush 31 in the i-th area A is Calculated.
  • the sum of the movement time ti in each area Ai is a predesignated time (total time T).
  • the movement speed vi corresponding to each movement time ti is calculated by substituting the movement time ti calculated from Expression (1) and the designated movement distance ri into Expression (2). Accordingly, the brush moving speed vi in each region Ai is set so that the brush moving process is completed after the time T has elapsed from the start of the brush moving process (as specified in advance). Therefore, a decrease in throughput is reliably suppressed.
  • the pressing force or pressing pressure of the brush 31 in the brush moving step (S6 in FIG. 4) is the controller 3 May be set.
  • the controller 3 sets the second priority y for each region A, and the pressing force or pressing pressure of the brush 31 against the substrate W is higher in the region A where the second priority y is higher.
  • the pressing force or pressing pressure is set (pressing force setting process, pressing pressure setting process).
  • FIG. 8A is a table showing an example of the relationship between the second priority y in each region A and the pressing force of the brush 31.
  • the second priority y in the nth region An counted from the rotation axis a1 is also referred to as yn (not shown).
  • the number of particles is the number of particles per unit area.
  • the second priority y is set to be higher in the region A where the contamination degree of the substrate W is higher. Specifically, the second priority y is set so that the pressing force increases as the number of particles attached to the upper surface of the substrate W increases.
  • the pressing force may be set so as to change in proportion to the number of particles.
  • the pressing force (pressing pressure) of the brush 31 against the upper surface of the substrate W is measured using a pressure sensor (not shown) such as a strain gauge. Thereby, the pressing force (pressing pressure) of the brush 31 is detected. Accordingly, it is confirmed that the pressing force (pressing pressure) of the brush 31 against the upper surface of the substrate W matches the pressing force (pressing pressure) set in the pressing force (pressing pressure) setting step. Further, the controller 3 can calculate the pressing pressure from the surface area of the cleaning surface 31a of the brush 31 and the pressing force, and can set the pressing pressure.
  • the pressing pressure of the brush 31 against the rotated substrate W is higher in the region A where the second priority y is higher. For this reason, the cleaning time of the region A having a relatively high second priority y on the upper surface of the substrate W is shortened.
  • the consumption of the brush 31 is suppressed as compared with the substrate processing in which the brush 31 is always pressed with a constant pressing pressure. As a result, the life of the brush 31 can be extended. Accordingly, a decrease in throughput is suppressed, and the upper surface of the substrate W is uniformly cleaned.
  • the consumption of the brush 31 is suppressed.
  • the life of the brush 31 can be extended. Accordingly, a decrease in throughput is suppressed, and the upper surface of the substrate W is uniformly cleaned.
  • the second priority y may be set so that the second priority y is higher in the region A where the degree of adsorption of dirt (for example, particles) to the upper surface of the substrate W is higher. .
  • FIG. 8B is a graph showing the pressing pressure of the brush 31 against the substrate W in each region A with the region A as the horizontal axis.
  • the controller 3 may display a graph showing the pressing pressure of the brush 31 in each region A as shown in FIG. 8B on the display unit of the operation unit 6 (see FIG. 2). Thereby, the operator can visually confirm the degree of contamination (number of particles) in each region A.
  • the controller 3 controls the brush vertical drive mechanism 38 to raise and lower the brush 31 in parallel with the brush moving step (S6 in FIG. 4). Good (brush lifting process).
  • the controller 3 may set the vertical position of the brush 31 in the brush lifting / lowering process for each region A before the substrate processing shown in FIG. 4 is executed (vertical position setting process). In the vertical position setting step, the vertical position of the brush 31 is set so that the brush moving step is executed with the brush 31 being along the upper surface of the substrate W.
  • the substrate W may be warped so as to go downward as it goes radially outward from the rotation axis a1. That is, the substrate W may be warped. In this case, the position of the upper surface of the substrate W in the vertical direction is lower in the vicinity of the outer periphery of the substrate W than in the vicinity of the center of the substrate W.
  • the substrate W may be warped so as to go upward as it goes radially outward from the rotation axis a1. That is, the substrate W may be warped downward. In this case, the position of the upper surface of the substrate W in the vertical direction is higher in the vicinity of the outer periphery of the substrate W than in the vicinity of the center of the substrate W.
  • a brush raising / lowering process is executed in parallel with the brush moving process.
  • the vertical position of the brush 31 in the brush lifting / lowering process is set for each region A so that the brush moving process is executed with the brush 31 being along the upper surface of the substrate W. Therefore, even if the substrate W is warped as shown in FIG. 9A or 9B, the state where the brush 31 is in contact with the upper surface of the substrate W can be maintained. Therefore, uneven cleaning of the upper surface of the substrate W is suppressed. Therefore, the upper surface of the substrate W is more evenly cleaned.
  • a table 76 (see FIG. 3) stored in the auxiliary storage device 71 may be used.
  • the table 76 as shown in FIG. 10, patterns of combinations of the movement distances r1,..., R (n ⁇ 1) of the brush 31 in each area A and the priorities w1,. Multiple entries are made.
  • the controller 3 may acquire the movement distances r1,..., R (n ⁇ 1) of the brush 31 in each region A from the table 76. 6, the controller 3 may acquire the priorities w1,..., Wn in each area A from the table 76.
  • the controller 3 acquires the moving distance r1 in step T2, and the moving distance r1 is the substrate in step T3. It is determined whether or not it is smaller than the radius R of W.
  • the priority w set in the speed setting step may be used as the second priority y.
  • the pressing force (pressing pressure) setting step the pressing force (pressing pressure) of the brush 31 against the rotating substrate W may be set to change in inverse proportion to the moving speed v of the brush 31. According to this substrate processing, the pressing pressure of the brush 31 against the substrate W in the brush pressing step increases as the moving speed of the brush 31 decreases.
  • the priority w increases as the moving speed v of the brush 31 decreases, and decreases as the moving speed v of the brush 31 increases. Therefore, the higher the priority w, the higher the pressing force (pressing pressure).
  • the cleaning time of the upper surface of the substrate W in the region A having a relatively high priority w is shortened. Accordingly, a decrease in throughput is suppressed, and the upper surface of the substrate W is uniformly cleaned.
  • the controller 3 may set the pressing amount so as to change in inverse proportion to the moving speed v of the brush 31. Further, the controller 3 may execute a pressing amount setting step of setting the pressing amount of the brush 31 against the substrate W in the rotating state so as to increase in the region A having the second priority y. In short, the controller 3 may perform a pressing state setting step of setting the pressing force (pressing pressure) or pressing amount of the brush 31 against the substrate W in the rotating state, that is, the pressing state.
  • the brush 31 is moved from the central position toward the outer peripheral position in the brush moving step (S6 in FIG. 4).
  • the brush 31 may be moved from the outer peripheral position toward the central position. Further, the brush 31 may be moved toward the outer peripheral position again after being moved from the outer peripheral position toward the central position.
  • Substrate processing device 3 Controller (computer) 21: Spin base (substrate holding unit) 22: Rotating shaft (substrate rotating unit) 23: Electric motor (substrate rotation unit) 37: Brush horizontal drive mechanism (brush moving unit) 38: Brush vertical drive mechanism (brush contact unit, brush lifting unit) 39: Pressing state changing mechanism (brush pressing unit) A: Area L: Virtual line M: Removable medium (recording medium) P: Program 27: Suction mechanism (substrate holding unit) T: Total time W: Substrate a1: Rotation axis r: Movement distance v: Movement speed w: Priority y: Second priority

Abstract

A substrate processing method comprises: a substrate holding step of holding a substrate horizontally; a substrate rotating step of rotating the substrate being held horizontally about a rotating axis along a vertical direction; a brush contact step of bringing a brush for cleaning an upper surface of the substrate being held horizontally into contact with the upper surface of the substrate being rotated; a brush moving step of moving the brush, in parallel with the brush contact step, between a position for contacting the center of the upper surface of the substrate being held horizontally and a position for contacting the outer periphery of the upper surface of the substrate; and a speed setting step in which the upper surface of the substrate is divided into a plurality of areas by a circular virtual line concentric with the substrate, priority is set in each of the areas, and the moving speed of the brush in the brush moving step is set so that the moving speed of the brush becomes lower for areas with higher priorities.

Description

基板処理方法、基板処理装置、および、記録媒体Substrate processing method, substrate processing apparatus, and recording medium
 この発明は、基板を処理する基板処理方法、基板処理装置、および、基板処理装置に備えられたコンピュータに基板処理方法を実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体に関する。 The present invention relates to a substrate processing method for processing a substrate, a substrate processing apparatus, and a computer-readable recording medium storing a program for causing a computer provided in the substrate processing apparatus to execute the substrate processing method.
 処理対象になる基板には、たとえば、半導体ウエハ、液晶表示装置用基板、プラズマディスプレイ用基板、FED(Field Emission Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、太陽電池用基板などの基板が含まれる。 Examples of substrates to be processed include semiconductor wafers, liquid crystal display substrates, plasma display substrates, FED (FieldEDEmission Display) substrates, optical disk substrates, magnetic disk substrates, magneto-optical disk substrates, and photomasks. Substrates such as substrates for substrates, ceramic substrates, and substrates for solar cells are included.
 基板を一枚ずつ処理する枚葉式の基板処理装置による基板処理では、基板の上面を物理的に洗浄するために、スピンチャックに保持された基板の上面をブラシで洗浄することがある。下記特許文献1に記載の基板処理方法では、回転する基板の上面にブラシを当接させながら、当該ブラシを水平方向にスキャンさせている。これにより、基板の上面の全体が洗浄される。 In substrate processing by a single wafer processing apparatus that processes substrates one by one, the top surface of the substrate held by the spin chuck may be cleaned with a brush in order to physically clean the top surface of the substrate. In the substrate processing method described in Patent Document 1 below, the brush is scanned in the horizontal direction while contacting the brush with the upper surface of the rotating substrate. Thereby, the entire upper surface of the substrate is cleaned.
2016-149470号公報No. 2016-149470
 特許文献1に記載の基板処理方法では、基板の上面の汚れ方にむらがある場合などには、汚れが充分に除去されない箇所が基板上に生じるおそれがある。一方、基板の上面の全体を充分に洗浄するために、基板の上面にブラシが当接する時間を長くすることが考え得る。しかし、この方法では、基板の洗浄に要する時間が増大してしまうおそれがある。その結果、スループット(単位時間当たりの基板の処理枚数)が低下するおそれがある。 In the substrate processing method described in Patent Document 1, when the upper surface of the substrate is uneven, there is a possibility that a portion where the contamination is not sufficiently removed is generated on the substrate. On the other hand, in order to sufficiently clean the entire top surface of the substrate, it is conceivable to increase the time during which the brush contacts the top surface of the substrate. However, this method may increase the time required for cleaning the substrate. As a result, the throughput (the number of substrates processed per unit time) may be reduced.
 そこで、この発明の1つの目的は、スループットの低下を抑制することができ、かつ、基板の上面を万遍なく洗浄することができる基板処理方法、基板処理装置、および、基板処理装置に備えられたコンピュータに基板処理方法を実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体を提供することである。 Accordingly, one object of the present invention is provided in a substrate processing method, a substrate processing apparatus, and a substrate processing apparatus that can suppress a decrease in throughput and that can uniformly clean the upper surface of a substrate. Another object of the present invention is to provide a computer-readable recording medium that records a program for causing a computer to execute a substrate processing method.
 この発明の一実施形態は、基板を水平に保持する基板保持工程と、前記水平に保持された基板を、鉛直方向に沿う回転軸線のまわりに回転させる基板回転工程と、前記水平に保持された基板の上面を洗浄するためのブラシを回転状態の前記基板の上面に接触させるブラシ接触工程と、前記ブラシ接触工程と並行して、前記水平に保持された基板の上面の中央に接触する位置と、当該基板の上面の外周に接触する位置との間で前記ブラシを移動させるブラシ移動工程と、前記基板の上面を当該基板と同心の円形の仮想線で複数の領域に分割し、各前記領域に優先度を設定し、前記優先度の高い前記領域ほど前記ブラシの移動速度が低くなるように前記ブラシ移動工程における前記ブラシの移動速度を設定する速度設定工程とを含む、基板処理方法を提供する。 In one embodiment of the present invention, a substrate holding step for horizontally holding a substrate, a substrate rotating step for rotating the horizontally held substrate around a rotation axis along a vertical direction, and the horizontal holding A brush contact step for bringing a brush for cleaning the upper surface of the substrate into contact with the upper surface of the rotating substrate; and a position in contact with the center of the upper surface of the horizontally held substrate in parallel with the brush contact step; A brush moving step of moving the brush between a position contacting the outer periphery of the upper surface of the substrate, and dividing the upper surface of the substrate into a plurality of regions by a circular imaginary line concentric with the substrate. And a speed setting step for setting the moving speed of the brush in the brush moving process so that the moving speed of the brush is lower in the region with the higher priority. The law provides.
 この方法によれば、回転状態の基板と同心の円形の仮想線で基板の上面が複数の領域に分割される。各領域には、優先度が設定される。ブラシ接触工程と並行して実行されるブラシ移動工程におけるブラシの移動速度は、優先度が高いほど低くなるように設定されている。そのため、優先度が高い領域ほど長時間の洗浄が行われる。そのため、基板に付着した汚れが除去されにくい領域ほど優先度が高くなるように各領域の優先度を設定しておくことで、基板の上面において汚れが除去されにくい領域が充分に洗浄される。一方、基板の上面において汚れが除去されやすい領域の洗浄時間が短縮される。したがって、スループットの低下が抑制され、かつ、基板の上面が万遍なく洗浄される。 According to this method, the upper surface of the substrate is divided into a plurality of regions by a circular imaginary line concentric with the rotating substrate. A priority is set for each area. The brush moving speed in the brush moving process executed in parallel with the brush contact process is set to be lower as the priority is higher. For this reason, the region with higher priority is washed for a longer time. For this reason, by setting the priority of each region so that the region where dirt attached to the substrate is less likely to be removed has a higher priority, the region where contamination is less likely to be removed on the upper surface of the substrate is sufficiently cleaned. On the other hand, the cleaning time of an area where dirt is easily removed on the upper surface of the substrate is shortened. Accordingly, a decrease in throughput is suppressed, and the upper surface of the substrate is uniformly cleaned.
 この発明の一実施形態では、前記速度設定工程が、前記基板の上面の汚染度合が高いほど高くなるように設定された前記優先度に基づいて、前記ブラシ移動工程における前記ブラシの移動速度を前記領域毎に設定する工程を含む。 In one embodiment of the present invention, the speed setting step sets the moving speed of the brush in the brush moving process based on the priority set so as to be higher as the degree of contamination of the upper surface of the substrate is higher. A step of setting for each region is included.
 この方法によれば、基板の汚染度合が高い領域ほど優先度が高い。そのため、基板の上面において汚染度合が比較的高い領域が充分に洗浄される。一方、基板の上面において汚染度合が比較的低い領域の洗浄時間が短縮される。したがって、スループットの低下が抑制され、かつ、基板の上面が万遍なく洗浄される。 According to this method, the higher the priority is, the higher the contamination level of the substrate. For this reason, a region having a relatively high degree of contamination on the upper surface of the substrate is sufficiently cleaned. On the other hand, the cleaning time of the region with a relatively low degree of contamination on the upper surface of the substrate is shortened. Accordingly, a decrease in throughput is suppressed, and the upper surface of the substrate is uniformly cleaned.
 この発明の一実施形態では、前記速度設定工程が、前記ブラシ移動工程が実行される合計時間をTとし、前記領域の数をiとし、前記回転軸線から数えてi番目の前記領域の前記優先度をwiとし、前記回転軸線から数えてi番目の前記領域における前記ブラシの移動距離をriとし、前記回転軸線から数えてi番目の前記領域における前記ブラシの移動時間をtiとし、前記回転軸線から数えてi番目の前記領域における前記ブラシの移動速度をviとして、下記式(1)および式(2)に基づいて各前記領域における前記ブラシの移動速度を設定する工程を含む。 In one embodiment of the present invention, in the speed setting step, the total time for which the brush moving step is executed is T, the number of the regions is i, and the priority of the i-th region is counted from the rotation axis. The degree of movement is wi, the movement distance of the brush in the i-th area counted from the rotation axis is ri, the movement time of the brush in the i-th area counted from the rotation axis is ti, and the rotation axis And setting the moving speed of the brush in each region based on the following formulas (1) and (2), where vi is the moving speed of the brush in the i-th region counted from.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 この方法によれば、ブラシ移動工程が実行される合計時間T、領域の数i、i番目の領域の優先度wi、および、i番目の領域におけるブラシの移動距離riを指定し、かつ、式(1)を用いることによって、i番目の領域におけるブラシの移動時間tiが算出される。そして、式(1)から算出された移動時間tiと、指定された移動距離riとを式(2)に代入することによって、ブラシの移動速度viが算出される。したがって、各領域におけるブラシの移動速度viは、ブラシ移動工程の開始から時間T経過後に(予め指定した時間通りに)ブラシ移動工程が終了するように設定される。よって、スループットの低下が確実に抑制される。 According to this method, the total time T during which the brush moving process is executed, the number i of regions, the priority wi of the i-th region, and the brush moving distance ri in the i-th region are specified, and the formula By using (1), the movement time ti of the brush in the i-th region is calculated. Then, the movement speed vi of the brush is calculated by substituting the movement time ti calculated from Expression (1) and the designated movement distance ri into Expression (2). Accordingly, the brush moving speed vi in each region is set so that the brush moving process is completed after the time T has elapsed from the start of the brush moving process (as specified in advance). Therefore, a decrease in throughput is reliably suppressed.
 この発明の一実施形態では、前記ブラシ接触工程が、回転状態の前記基板の上面に対して前記ブラシを押し付けるブラシ押付工程を含む。また、前記基板処理方法が、各前記領域に第2の優先度を設定し、回転状態の前記基板に対する前記ブラシの押付量または押付圧を、前記第2の優先度が高い前記領域ほど高くなるように各前記領域に設定する押付状態設定工程をさらに含む。ブラシの押付量は、ブラシが基板の上面に接触した後にブラシ(の重心)が基板の上面に向けて移動する移動量を意味する。 In one embodiment of the present invention, the brush contact step includes a brush pressing step of pressing the brush against the upper surface of the rotating substrate. Further, the substrate processing method sets a second priority for each of the regions, and the pressing amount or the pressing pressure of the brush against the substrate in a rotating state increases as the region having the second priority becomes higher. The pressing state setting step for setting each area as described above is further included. The amount of pressing of the brush means the amount of movement that the brush (center of gravity) moves toward the upper surface of the substrate after the brush contacts the upper surface of the substrate.
 この方法によれば、回転状態の基板に対するブラシの押付量または押付圧は、第2の優先度が高い領域ほど高い。ここで、ブラシの押付量または押付圧が高いほど、基板の上面に付着した汚れは除去されやすい。そのため、基板の上面において第2の優先度が比較的高い領域の洗浄時間が短縮される。その一方で、常に一定の押付量(押付圧)で基板に対してブラシを押し付ける基板処理と比較して、ブラシの消耗が抑えられる。その結果、ブラシの長寿命化を図れる。したがって、スループットの低下が抑制され、かつ、基板の上面が万遍なく洗浄される。 According to this method, the pressing amount or pressing pressure of the brush against the rotating substrate is higher in the region where the second priority is higher. Here, the higher the pressing amount or pressing pressure of the brush, the easier the dirt attached to the upper surface of the substrate is removed. For this reason, the cleaning time of the region where the second priority is relatively high on the upper surface of the substrate is shortened. On the other hand, the consumption of the brush is suppressed as compared with the substrate processing in which the brush is always pressed against the substrate with a constant pressing amount (pressing pressure). As a result, the life of the brush can be extended. Accordingly, a decrease in throughput is suppressed, and the upper surface of the substrate is uniformly cleaned.
 この発明の一実施形態では、前記押付状態設定工程が、前記基板の上面の汚染度合が高いほど高くなるように設定された前記第2の優先度に基づいて、前記押付量または前記押付圧を設定する工程を含む。 In one embodiment of the present invention, the pressing amount or the pressing pressure is set based on the second priority set so that the pressing state setting step increases as the degree of contamination of the upper surface of the substrate increases. Including a setting step.
 この方法によれば、基板の上面の汚染度合が高い領域ほど第2の優先度が高い。また、前述したように、第2の優先度が高い領域ほど押付量または押付圧が高い。そのため、汚染度合が比較的高い領域における基板の上面の洗浄時間が短縮される。その一方で、常に一定の押付量(押付圧)で基板に対してブラシを押し付ける基板処理と比較して、ブラシの消耗が抑えられる。その結果、ブラシの長寿命化を図れる。したがって、スループットの低下が抑制され、かつ、基板の上面が万遍なく洗浄される。 According to this method, the higher the degree of contamination on the upper surface of the substrate, the higher the second priority. Further, as described above, the pressing amount or the pressing pressure is higher in the region where the second priority is higher. Therefore, the cleaning time for the upper surface of the substrate in a region where the degree of contamination is relatively high is shortened. On the other hand, the consumption of the brush is suppressed as compared with the substrate processing in which the brush is always pressed against the substrate with a constant pressing amount (pressing pressure). As a result, the life of the brush can be extended. Accordingly, a decrease in throughput is suppressed, and the upper surface of the substrate is uniformly cleaned.
 この発明の一実施形態では、前記ブラシ接触工程が、回転状態の前記基板の上面に対して前記ブラシを押し付けるブラシ押付工程を含む。また、前記基板処理方法が、前記ブラシの移動速度に反比例して変化するように、回転状態の前記基板に対する前記ブラシの押付量または押付圧を設定する押付状態設定工程を含む。 In one embodiment of the present invention, the brush contact step includes a brush pressing step of pressing the brush against the upper surface of the rotating substrate. Further, the substrate processing method includes a pressing state setting step of setting a pressing amount or pressing pressure of the brush against the substrate in a rotating state so that the substrate processing method changes in inverse proportion to the moving speed of the brush.
 この方法によれば、基板に対するブラシの押付量または押付圧が、ブラシの移動速度に反比例して変化するように設定される。つまり、ブラシ押付工程における基板に対するブラシの押付量または押付圧は、ブラシの移動速度が低いほど高い。そのため、優先度が高い領域ほど当該押付量または押付圧が高くされる。そのため、優先度が比較的高い領域の基板の上面の洗浄時間が短縮される。したがって、スループットの低下が抑制され、かつ、基板の上面が万遍なく洗浄される。 According to this method, the pressing amount or pressing pressure of the brush against the substrate is set so as to change in inverse proportion to the moving speed of the brush. That is, the pressing amount or pressing pressure of the brush against the substrate in the brush pressing step is higher as the moving speed of the brush is lower. Therefore, the pressing amount or the pressing pressure is increased as the priority is higher. Therefore, the cleaning time of the upper surface of the substrate in the region having a relatively high priority is shortened. Accordingly, a decrease in throughput is suppressed, and the upper surface of the substrate is uniformly cleaned.
 この発明の一実施形態では、前記基板処理方法が、前記ブラシ移動工程と並行して、前記ブラシを昇降させるブラシ昇降工程と、前記ブラシを前記基板の上面に沿わせた状態で前記ブラシ移動工程が実行されるように、前記ブラシ昇降工程における前記ブラシの鉛直方向位置を前記領域毎に設定する鉛直位置設定工程とをさらに含む。 In one embodiment of the present invention, the substrate processing method includes a brush raising / lowering step for raising and lowering the brush in parallel with the brush moving step, and the brush moving step in a state where the brush is along the upper surface of the substrate. And a vertical position setting step of setting the vertical position of the brush in the brush raising / lowering step for each region.
 この方法によれば、ブラシ移動工程と並行してブラシ昇降工程が実行される。ブラシを基板の上面に沿わせた状態でブラシ移動工程が実行されるように、ブラシ昇降工程におけるブラシの鉛直方向位置が領域毎に設定される。そのため、仮に基板に反りが発生していたとしても、ブラシが基板の上面に接触する状態を維持することができる。そのため、基板の上面の洗浄のむらが抑制される。したがって、基板の上面が一層万遍なく洗浄される。 According to this method, the brush raising / lowering step is executed in parallel with the brush moving step. The vertical position of the brush in the brush raising / lowering process is set for each region so that the brush moving process is performed with the brush being along the upper surface of the substrate. Therefore, even if the substrate is warped, the state where the brush is in contact with the upper surface of the substrate can be maintained. Therefore, uneven cleaning of the upper surface of the substrate is suppressed. Therefore, the upper surface of the substrate is more evenly cleaned.
 この発明の他の実施形態では、基板処理装置が、基板を水平に保持する基板保持ユニットと、前記基板保持ユニットによって保持された基板を、鉛直方向に沿う回転軸線まわりに回転させる基板回転ユニットと、前記基板保持ユニットによって保持された基板の上面を洗浄するブラシと、前記基板保持ユニットによって保持された基板の上面に前記ブラシを接触させるブラシ接触ユニットと、前記ブラシを水平方向に移動させるブラシ移動ユニットと、前記基板回転ユニット、前記ブラシ接触ユニットおよび前記ブラシ移動ユニットを制御するコントローラとを含む。 In another embodiment of the present invention, a substrate processing apparatus includes a substrate holding unit that horizontally holds a substrate, a substrate rotating unit that rotates a substrate held by the substrate holding unit about a rotation axis along a vertical direction, and A brush for cleaning the upper surface of the substrate held by the substrate holding unit; a brush contact unit for bringing the brush into contact with the upper surface of the substrate held by the substrate holding unit; and a brush movement for moving the brush horizontally. And a controller for controlling the substrate rotating unit, the brush contact unit, and the brush moving unit.
 また、コントローラが、前記水平に保持された基板を回転させる基板回転工程と、前記水平に保持された基板に前記ブラシを接触させるブラシ接触工程と、前記ブラシ接触工程と並行して、前記水平に保持された基板の上面の中央に接触する位置と、当該基板の上面の外周に接触する位置との間で前記ブラシを移動させるブラシ移動工程と、前記基板の上面を当該基板と同心の円形の仮想線で複数の領域に分割し、各前記領域に優先度を設定し、前記優先度の高い前記領域ほど前記ブラシの移動速度が低くなるように前記ブラシ移動工程における前記ブラシの移動速度を設定する速度設定工程とを実行するようにプログラムされている。 The controller rotates the substrate held horizontally, rotates the substrate, contacts the brush with the horizontally held substrate, and contacts the brush in parallel with the brush contacting step. A brush moving step of moving the brush between a position contacting the center of the upper surface of the held substrate and a position contacting the outer periphery of the upper surface of the substrate; and a circular shape concentric with the substrate on the upper surface of the substrate. The virtual line is divided into a plurality of areas, priority is set for each of the areas, and the brush moving speed is set in the brush moving process so that the higher the priority is, the lower the brush moving speed is. And a speed setting step to be programmed.
 この構成によれば、回転状態の基板と同心の円形の仮想線で基板の上面が複数の領域に分割される。各領域には、優先度が設定される。ブラシ移動工程におけるブラシの移動速度は、優先度が高いほど低くなるように設定されている。そのため、優先度が高い領域ほど長時間の洗浄が行われる。そのため、基板に付着した汚れが除去されにくい領域ほど優先度が高くなるように各領域の優先度を設定しておくことで、基板の上面において汚れが除去されにくい領域が充分に洗浄される。一方、基板の上面において汚れが除去されやすい領域の洗浄時間が短縮される。したがって、スループットの低下が抑制され、かつ、基板の上面が万遍なく洗浄される。 According to this configuration, the upper surface of the substrate is divided into a plurality of regions by a circular virtual line concentric with the rotating substrate. A priority is set for each area. The brush moving speed in the brush moving process is set to be lower as the priority is higher. For this reason, the region with higher priority is washed for a longer time. For this reason, by setting the priority of each region so that the region where dirt attached to the substrate is less likely to be removed has a higher priority, the region where contamination is less likely to be removed on the upper surface of the substrate is sufficiently cleaned. On the other hand, the cleaning time of an area where dirt is easily removed on the upper surface of the substrate is shortened. Accordingly, a decrease in throughput is suppressed, and the upper surface of the substrate is uniformly cleaned.
 この発明の他の実施形態では、優先度が、基板の上面の汚染度合が高いほど高くなるように設定されている。 In another embodiment of the present invention, the priority is set to be higher as the degree of contamination on the upper surface of the substrate is higher.
 この構成によれば、基板の汚染度合が高い領域ほど優先度が高い。そのため、基板の上面において汚染度合が比較的高い領域が充分に洗浄される。その一方で、基板の上面において汚染度合が比較的低い領域の洗浄時間が短縮される。したがって、スループットの低下が抑制され、かつ、基板の上面が万遍なく洗浄される。 According to this configuration, the higher the degree of substrate contamination, the higher the priority. For this reason, a region having a relatively high degree of contamination on the upper surface of the substrate is sufficiently cleaned. On the other hand, the cleaning time of the region with a relatively low degree of contamination on the upper surface of the substrate is shortened. Accordingly, a decrease in throughput is suppressed, and the upper surface of the substrate is uniformly cleaned.
 この発明の他の実施形態では、前記コントローラが、前記ブラシ移動工程が実行される合計時間をTとし、前記領域の数をiとし、前記回転軸線から数えてi番目の前記領域の前記優先度をwiとし、前記回転軸線から数えてi番目の前記領域における前記ブラシの移動距離をriとし、前記回転軸線から数えてi番目の前記領域における前記ブラシの移動時間をtiとし、前記回転軸線から数えてi番目の前記領域における前記ブラシの移動速度をviとして、下記式(1)および式(2)に基づいて各前記領域における前記ブラシの移動速度を設定する工程を実行するようにプログラムされている。 In another embodiment of the present invention, the controller sets T as the total time during which the brush moving process is executed, i as the number of the regions, and the priority of the i-th region as counted from the rotation axis. Wi, the movement distance of the brush in the i-th region counted from the rotation axis is ri, the movement time of the brush in the i-th region counted from the rotation axis is ti, and from the rotation axis It is programmed to execute the step of setting the moving speed of the brush in each of the areas based on the following formulas (1) and (2), where vi is the moving speed of the brush in the i-th area. ing.
Figure JPOXMLDOC01-appb-M000004
 
Figure JPOXMLDOC01-appb-M000004
 
 この構成によれば、ブラシ移動工程が実行される合計時間T、領域の数i、i番目の領域の優先度wi、および、i番目の領域におけるブラシの移動距離riを指定し、かつ、式(1)を用いることによって、i番目の領域におけるブラシの移動時間tiが算出される。そして、式(1)から算出された移動時間tiと、指定された移動距離riとを式(2)に代入することによって、移動速度viが算出される。したがって、各領域におけるブラシの移動速度viは、ブラシ移動工程の開始から時間T経過後に(予め指定した時間通りに)ブラシ移動工程が終了するように設定される。よって、スループットの低下が確実に抑制される。 According to this configuration, the total time T during which the brush moving process is executed, the number i of regions, the priority wi of the i-th region, and the brush moving distance ri in the i-th region are specified, and the formula By using (1), the movement time ti of the brush in the i-th region is calculated. Then, the movement speed vi is calculated by substituting the movement time ti calculated from the equation (1) and the designated movement distance ri into the equation (2). Accordingly, the brush moving speed vi in each region is set so that the brush moving process is completed after the time T has elapsed from the start of the brush moving process (as specified in advance). Therefore, a decrease in throughput is reliably suppressed.
 この発明の他の実施形態では、前記基板処理装置が、前記水平に保持された基板の上面に対して前記ブラシを押し付けるブラシ押付ユニットをさらに含む。また、前記コントローラが、回転状態の前記基板の上面に対して前記ブラシを押し付けるブラシ押付工程と、各前記領域に第2の優先度を設定し、回転状態の前記基板に対する前記ブラシの押付量または押付圧を、前記第2の優先度が高い前記領域ほど高くなるように各前記領域に設定する押付状態設定工程とを実行するようにプログラムされている。 In another embodiment of the present invention, the substrate processing apparatus further includes a brush pressing unit that presses the brush against an upper surface of the horizontally held substrate. Further, the controller sets a second priority for each of the regions by pressing the brush against the upper surface of the substrate in the rotated state, and the amount of pressing of the brush against the substrate in the rotated state or It is programmed to execute a pressing state setting step of setting the pressing pressure in each of the regions so that the pressing pressure becomes higher in the region having the second priority.
 この構成によれば、回転状態の基板に対するブラシの押付量または押付圧は、第2の優先度が高い領域ほど高い。ここで、ブラシの押付量または押付圧が高いほど、基板の上面に付着した汚れが除去されやすい。そのため、第2の優先度が比較的高い領域の洗浄時間が短縮される。その一方で、常に一定の押付量(押付圧)で基板に対してブラシを押し付ける基板処理と比較して、ブラシの消耗が抑えられる。その結果、ブラシの長寿命化を図れる。したがって、スループットの低下が抑制され、かつ、基板の上面が万遍なく洗浄される。 According to this configuration, the pressing amount or pressing pressure of the brush against the rotating substrate is higher in the region where the second priority is higher. Here, the higher the pressing amount or pressing pressure of the brush, the easier the dirt attached to the upper surface of the substrate is removed. For this reason, the cleaning time in the region where the second priority is relatively high is shortened. On the other hand, the consumption of the brush is suppressed as compared with the substrate processing in which the brush is always pressed against the substrate with a constant pressing amount (pressing pressure). As a result, the life of the brush can be extended. Accordingly, a decrease in throughput is suppressed, and the upper surface of the substrate is uniformly cleaned.
 この発明の他の実施形態では、コントローラが、前記基板の上面の汚染度合が高いほど高くなるように設定された前記第2の優先度に基づいて、前記押付量または前記押付圧を設定する工程を実行するようにプログラムされている。 In another embodiment of the present invention, the controller sets the pressing amount or the pressing pressure based on the second priority set so as to increase as the degree of contamination of the upper surface of the substrate increases. Is programmed to run.
 この構成によれば、基板の上面の汚染度合が高い領域ほど第2の優先度が高い。また、前述したように、第2の優先度が高い領域ほど押付量または押付圧が高い。そのため、汚染度合が比較的高い領域における基板の上面の洗浄時間が短縮される。その一方で、常に一定の押付量(押付圧)で基板に対してブラシを押し付ける基板処理と比較して、ブラシの消耗が抑えられる。その結果、ブラシの長寿命化を図れる。したがって、スループットの低下が抑制され、かつ、基板の上面が万遍なく洗浄される。 According to this configuration, the higher the degree of contamination on the upper surface of the substrate, the higher the second priority. Further, as described above, the pressing amount or the pressing pressure is higher in the region where the second priority is higher. Therefore, the cleaning time for the upper surface of the substrate in a region where the degree of contamination is relatively high is shortened. On the other hand, the consumption of the brush is suppressed as compared with the substrate processing in which the brush is always pressed against the substrate with a constant pressing amount (pressing pressure). As a result, the life of the brush can be extended. Accordingly, a decrease in throughput is suppressed, and the upper surface of the substrate is uniformly cleaned.
 この発明の他の実施形態では、前記基板処理装置が、前記水平に保持された基板の上面に対して前記ブラシを押し付けるブラシ押付ユニットをさらに含む。また、前記コントローラが、回転状態の前記基板の上面に対して前記ブラシを押し付けるブラシ押付工程と、前記ブラシの移動速度に反比例して変化するように、回転状態の前記基板に対する前記ブラシの押付量または押付圧を設定する押付状態設定工程を実行するようにプログラムされている。 In another embodiment of the present invention, the substrate processing apparatus further includes a brush pressing unit that presses the brush against an upper surface of the horizontally held substrate. A brush pressing step for pressing the brush against the upper surface of the substrate in the rotating state; and a pressing amount of the brush against the substrate in the rotating state so that the controller changes in inverse proportion to a moving speed of the brush. Alternatively, it is programmed to execute a pressing state setting process for setting the pressing pressure.
 この構成によれば、基板に対するブラシの押付量または押付圧が、ブラシの移動速度に反比例して変化するように設定される。つまり、基板に対するブラシの押付量または押付圧は、ブラシの移動速度が低いほど基板に対する高い。そのため、優先度が高い領域ほど当該押付量または押付圧が高くされる。そのため、優先度が比較的高い領域の基板の上面の洗浄時間が短縮される。したがって、スループットの低下を抑制し、かつ、基板の上面が万遍なく洗浄される。 According to this configuration, the pressing amount or pressing pressure of the brush against the substrate is set so as to change in inverse proportion to the moving speed of the brush. That is, the pressing amount or pressing pressure of the brush against the substrate is higher with respect to the substrate as the moving speed of the brush is lower. Therefore, the pressing amount or the pressing pressure is increased as the priority is higher. Therefore, the cleaning time of the upper surface of the substrate in the region having a relatively high priority is shortened. Accordingly, a decrease in throughput is suppressed, and the upper surface of the substrate is uniformly cleaned.
 この発明の他の実施形態では、前記基板処理装置が、前記ブラシを昇降させるブラシ昇降ユニットをさらに含む。また、前記コントローラが、前記ブラシ接触工程と並行して、前記ブラシを昇降させるブラシ昇降工程と、前記ブラシを前記基板の上面に沿わせた状態で前記ブラシ移動工程が実行されるように、前記ブラシ昇降工程における前記ブラシの鉛直方向位置を前記領域毎に設定する鉛直位置設定工程とを実行するようにプログラムされている。 In another embodiment of the present invention, the substrate processing apparatus further includes a brush elevating unit that elevates and lowers the brush. Further, in parallel with the brush contact step, the controller moves the brush up and down, and the brush moving step is performed in a state where the brush is placed along the upper surface of the substrate. It is programmed to execute a vertical position setting step for setting the vertical position of the brush for each region in the brush lifting step.
 この構成によれば、ブラシ移動工程と並行してブラシ昇降工程が実行される。ブラシを基板の上面に沿わせた状態でブラシ移動工程が実行されるように、ブラシ昇降工程におけるブラシの鉛直方向位置が領域毎に設定される。そのため、仮に基板に反りが発生していたとしても、ブラシが基板の上面に接触する状態を維持することができる。そのため、基板の上面の洗浄のむらが抑制される。したがって、基板の上面が一層万遍なく洗浄される。 According to this configuration, the brush raising / lowering process is executed in parallel with the brush moving process. The vertical position of the brush in the brush raising / lowering process is set for each region so that the brush moving process is performed with the brush being along the upper surface of the substrate. Therefore, even if the substrate is warped, the state where the brush is in contact with the upper surface of the substrate can be maintained. Therefore, uneven cleaning of the upper surface of the substrate is suppressed. Therefore, the upper surface of the substrate is more evenly cleaned.
 この発明のさらに他の実施形態は、前記基板処理方法を、基板処理装置に備えられたコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体を提供する。この構成によれば、前述と同様の効果を奏することができる。 Still another embodiment of the present invention provides a computer-readable recording medium storing a program for causing a computer provided in a substrate processing apparatus to execute the substrate processing method. According to this configuration, the same effects as described above can be achieved.
 本発明における上述の、またはさらに他の目的、特徴および効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。 The above-described or other objects, features, and effects of the present invention will be clarified by the following description of embodiments with reference to the accompanying drawings.
図1は、この発明の一実施形態に係る基板処理装置の内部のレイアウトを説明するための図解的な平面図である。FIG. 1 is an illustrative plan view for explaining an internal layout of a substrate processing apparatus according to an embodiment of the present invention. 図2は、前記基板処理装置に備えられた処理ユニットの一構成例を説明するための図解的な縦断面図である。FIG. 2 is a schematic longitudinal sectional view for explaining a configuration example of the processing unit provided in the substrate processing apparatus. 図3は、前記基板処理装置の主要部の電気的構成を説明するためのブロック図である。FIG. 3 is a block diagram for explaining an electrical configuration of a main part of the substrate processing apparatus. 図4は、前記基板処理装置による基板処理の一例について説明するための流れ図である。FIG. 4 is a flowchart for explaining an example of substrate processing by the substrate processing apparatus. 図5Aは、前記基板処理のブラシ移動工程(図4のS6)における基板の模式的な正面図である。FIG. 5A is a schematic front view of the substrate in the brush moving step of the substrate processing (S6 in FIG. 4). 図5Bは、前記基板処理のブラシ移動工程(図4のS6)における基板の模式的な平面図である。FIG. 5B is a schematic plan view of the substrate in the brush moving step of the substrate processing (S6 in FIG. 4). 図6は、前記基板処理装置に備えられた制御手段による各領域におけるブラシの移動速度を設定する方法の一例について説明するための流れ図である。FIG. 6 is a flowchart for explaining an example of a method for setting the moving speed of the brush in each region by the control means provided in the substrate processing apparatus. 図7Aは、図6に示す方法で設定されたブラシの移動速度に基づいて作成されたグラフ図の一例である。FIG. 7A is an example of a graph created based on the moving speed of the brush set by the method shown in FIG. 図7Bは、図6に示す方法で設定されたブラシの移動速度に基づいて作成されたグラフ図の一例である。FIG. 7B is an example of a graph created based on the moving speed of the brush set by the method shown in FIG. 図8Aは、各領域における第2の優先度とブラシの押付力との関係の一例を示した表である。FIG. 8A is a table showing an example of the relationship between the second priority and the pressing force of the brush in each region. 図8Bは、領域毎に設定された押付圧を示したグラフ図の一例である。FIG. 8B is an example of a graph showing the pressing pressure set for each region. 図9Aは、反りが発生している基板の模式的な正面図である。FIG. 9A is a schematic front view of a substrate in which a warp has occurred. 図9Bは、反りが発生している基板の模式的な正面図である。FIG. 9B is a schematic front view of a substrate in which warpage occurs. 図10は、図6に示す方法において制御手段が取得する情報の一例を示した表である。FIG. 10 is a table showing an example of information acquired by the control means in the method shown in FIG.
 図1は、この発明の一実施形態に係る基板処理装置1の内部のレイアウトを説明するための図解的な平面図である。基板処理装置1は、シリコンウエハなどの基板Wを一枚ずつ処理する枚葉式の装置である。この実施形態では、基板Wは、円形状の基板である。 FIG. 1 is an illustrative plan view for explaining an internal layout of a substrate processing apparatus 1 according to an embodiment of the present invention. The substrate processing apparatus 1 is a single wafer processing apparatus that processes substrates W such as silicon wafers one by one. In this embodiment, the substrate W is a circular substrate.
 基板処理装置1は、基板Wを処理する複数の処理ユニット2と、処理ユニット2で処理される複数枚の基板Wを収容するキャリヤCをそれぞれ保持する複数のロードポートLPと、ロードポートLPと処理ユニット2との間で基板Wを搬送する搬送ロボットIRおよびCRと、基板処理装置1を制御するコントローラ3とを含む。 The substrate processing apparatus 1 includes a plurality of processing units 2 that process a substrate W, a plurality of load ports LP that respectively hold carriers C that store a plurality of substrates W processed by the processing unit 2, a load port LP, A transfer robot IR and CR that transfer the substrate W to and from the processing unit 2 and a controller 3 that controls the substrate processing apparatus 1 are included.
 基板処理装置1は、複数のロードポートLPから搬出される基板Wの状態を測定する測定ユニット4と、基板処理装置1を操作するための操作ユニット6とを含む。操作ユニット6は、基板処理に関する情報を表示する表示部(図示せず)と、基板処理に関する情報を作業者が入力するための入力部(図示せず)とを有する。 The substrate processing apparatus 1 includes a measurement unit 4 for measuring the state of the substrate W carried out from the plurality of load ports LP, and an operation unit 6 for operating the substrate processing apparatus 1. The operation unit 6 includes a display unit (not shown) that displays information related to substrate processing, and an input unit (not shown) for an operator to input information related to substrate processing.
 搬送ロボットIRは、キャリヤCと搬送ロボットCRとの間で基板Wを搬送する。搬送ロボットCRは、搬送ロボットIRと処理ユニット2との間で基板Wを搬送する。複数の処理ユニット2は、たとえば、同様の構成を有している。 The transfer robot IR transfers the substrate W between the carrier C and the transfer robot CR. The transfer robot CR transfers the substrate W between the transfer robot IR and the processing unit 2. The plurality of processing units 2 have the same configuration, for example.
 図2は、処理ユニット2の一構成例を説明するための図解的な縦断面図である。 FIG. 2 is a schematic longitudinal sectional view for explaining one configuration example of the processing unit 2.
 処理ユニット2は、一枚の基板Wを水平な姿勢で保持しながら、基板Wの中央部を通る鉛直な回転軸線a1まわりに基板Wを回転させるスピンチャック5と、基板Wの上面に脱イオン水(DIW:Deionized Water)などの処理液を供給する処理液ノズル10とを含む。処理ユニット2は、さらに、スピンチャック5を収容するチャンバ13(図1参照)を含む。図示は省略するが、チャンバ13には、基板Wを搬入/搬出するための搬入/搬出口が形成されている。チャンバ13には、この搬入/搬出口を開閉するシャッタユニットが備えられている。 The processing unit 2 includes a spin chuck 5 that rotates the substrate W around a vertical rotation axis a <b> 1 that passes through the central portion of the substrate W while holding a single substrate W in a horizontal posture, and deionization on the upper surface of the substrate W. And a processing liquid nozzle 10 for supplying a processing liquid such as water (DIW: Deionized Water). The processing unit 2 further includes a chamber 13 (see FIG. 1) that houses the spin chuck 5. Although not shown, the chamber 13 is formed with a loading / unloading port for loading / unloading the substrate W. The chamber 13 is provided with a shutter unit that opens and closes the loading / unloading port.
 スピンチャック5は、非デバイス形成面である基板Wの裏面(下面)を吸着することにより基板Wを水平に保持するバキューム式のチャックであってもよい。スピンチャック5は、基板Wを水平方向に挟むことにより基板Wを水平に保持する挟持式のチャックであってもよい。本実施形態では、スピンチャック5がバキューム式のチャックである例を示している。 The spin chuck 5 may be a vacuum chuck that holds the substrate W horizontally by adsorbing the back surface (lower surface) of the substrate W, which is a non-device forming surface. The spin chuck 5 may be a clamping chuck that holds the substrate W horizontally by sandwiching the substrate W in the horizontal direction. In this embodiment, an example in which the spin chuck 5 is a vacuum chuck is shown.
 スピンチャック5は、スピンベース21と、回転軸22と、回転軸22に回転力を与える電動モータ23とを含む。回転軸22は回転軸線a1に沿って鉛直方向に延びている。回転軸22の上端は、スピンベース21の下面中央に結合されている。スピンベース21は、水平方向に沿う円盤形状を有している。 The spin chuck 5 includes a spin base 21, a rotating shaft 22, and an electric motor 23 that applies a rotating force to the rotating shaft 22. The rotation shaft 22 extends in the vertical direction along the rotation axis a1. The upper end of the rotation shaft 22 is coupled to the center of the lower surface of the spin base 21. The spin base 21 has a disk shape along the horizontal direction.
 スピンベース21の上面には、スピンベース21の上面に配置された基板Wを吸引してスピンベース21に基板Wを保持させるための複数の吸引口24が形成されている。吸引口24は、スピンベース21および回転軸22の内部に形成された吸引経路25を介して吸引管50に連結されている。吸引管50は、真空ポンプなどの吸引機構27に連結されている。吸引管50には、その経路を開閉するための吸引バルブ40が介装されている。スピンベース21および吸引機構27は、基板Wを水平に保持するための基板保持ユニットに含まれる。 On the upper surface of the spin base 21, a plurality of suction ports 24 for sucking the substrate W disposed on the upper surface of the spin base 21 and holding the substrate W on the spin base 21 are formed. The suction port 24 is connected to a suction tube 50 via a suction path 25 formed inside the spin base 21 and the rotating shaft 22. The suction tube 50 is connected to a suction mechanism 27 such as a vacuum pump. The suction pipe 50 is provided with a suction valve 40 for opening and closing the path. The spin base 21 and the suction mechanism 27 are included in a substrate holding unit for holding the substrate W horizontally.
 この実施形態とは異なり、吸引管50がスピンベース21および回転軸22の内部にまで延びていてもよい。この場合、吸引管50においてスピンベース21および回転軸22の内部に延びる部分が、吸引経路25を構成する。 Unlike this embodiment, the suction tube 50 may extend into the spin base 21 and the rotating shaft 22. In this case, a portion of the suction tube 50 that extends inside the spin base 21 and the rotation shaft 22 constitutes the suction path 25.
 電動モータ23によって回転軸22が回転されることにより、基板Wが回転軸線a1まわりに回転される。以下では、回転軸線a1を中心とした半径方向を回転半径方向という。回転半径方向は、基板Wの径方向でもある。回転半径方向の内側を単に「径方向内方」という。回転半径方向の外側を単に「径方向外方」という。回転軸22および電動モータ23は、基板Wを回転軸線a1まわりに回転させる基板回転ユニットに含まれる。 When the rotating shaft 22 is rotated by the electric motor 23, the substrate W is rotated around the rotating axis a1. Hereinafter, the radial direction around the rotation axis a1 is referred to as a rotational radial direction. The rotational radius direction is also the radial direction of the substrate W. The inside in the rotational radius direction is simply referred to as “radially inward”. The outside in the rotational radial direction is simply referred to as “radially outward”. The rotation shaft 22 and the electric motor 23 are included in a substrate rotation unit that rotates the substrate W around the rotation axis a1.
 処理液ノズル10は、この実施形態では、基板Wの上面の回転中心に向けて処理液を吐出するように配置された固定ノズルである。処理液ノズル10には、処理液供給源から、処理液供給管51を介して、DIWなどの処理液が供給される。処理液供給管51には、処理液供給管51内の流路を開閉するための処理液バルブ41と、処理液供給管51における処理液の流量を調節するための処理液流量調節バルブ42とが介装されている。処理液ノズル10は、固定ノズルである必要はない。処理液ノズル10は、少なくとも水平方向に移動する移動ノズルであってもよい。 In this embodiment, the processing liquid nozzle 10 is a fixed nozzle that is disposed so as to discharge the processing liquid toward the rotation center of the upper surface of the substrate W. A processing liquid such as DIW is supplied to the processing liquid nozzle 10 from a processing liquid supply source via a processing liquid supply pipe 51. The processing liquid supply pipe 51 includes a processing liquid valve 41 for opening and closing a flow path in the processing liquid supply pipe 51, a processing liquid flow rate adjusting valve 42 for adjusting the flow rate of the processing liquid in the processing liquid supply pipe 51, and Is intervening. The treatment liquid nozzle 10 need not be a fixed nozzle. The treatment liquid nozzle 10 may be a moving nozzle that moves at least in the horizontal direction.
 処理液ノズル10は、DIW以外のリンス液を供給するリンス液ノズルであってもよい。リンス液とは、DIWのほかにも、炭酸水、電解イオン水、オゾン水、希釈濃度(たとえば、10~100ppm程度)の塩酸水、還元水(水素水)などを例示できる。処理液ノズル10から基板Wに供給される処理液は、リンス液以外の液体であってもよい。処理液ノズル10から基板Wに供給される処理液は、たとえば、薬液であってもよいし、IPA等の液状の有機溶剤であってもよい。複数種の処理液が、1つ以上のノズルから基板Wに順次供給されてもよい。 The treatment liquid nozzle 10 may be a rinse liquid nozzle that supplies a rinse liquid other than DIW. Examples of the rinsing liquid include DIW, carbonated water, electrolytic ion water, ozone water, hydrochloric acid water having a diluted concentration (for example, about 10 to 100 ppm), reduced water (hydrogen water), and the like. The processing liquid supplied from the processing liquid nozzle 10 to the substrate W may be a liquid other than the rinsing liquid. The processing liquid supplied to the substrate W from the processing liquid nozzle 10 may be, for example, a chemical liquid or a liquid organic solvent such as IPA. A plurality of types of processing liquids may be sequentially supplied to the substrate W from one or more nozzles.
 処理ユニット2は、基板Wの上面を洗浄するためのブラシ31と、ブラシ31を支持するブラシアーム35と、ブラシアーム35を移動させることによりブラシ31を移動させるブラシ移動機構36と、基板Wの上面に対するブラシ31の押付量または押付力を変更する押付状態変更機構39とを含む。なお、ブラシ31の押付量とは、ブラシ31が基板Wの上面に接触した後に、ブラシ31(の重心)が基板Wの上面に向けて移動する移動量を意味する。 The processing unit 2 includes a brush 31 for cleaning the upper surface of the substrate W, a brush arm 35 that supports the brush 31, a brush moving mechanism 36 that moves the brush 31 by moving the brush arm 35, And a pressing state changing mechanism 39 that changes the pressing amount or pressing force of the brush 31 against the upper surface. Note that the pressing amount of the brush 31 means a moving amount by which the brush 31 (center of gravity) moves toward the upper surface of the substrate W after the brush 31 contacts the upper surface of the substrate W.
 ブラシ31は、ブラシ31の上方に配置されたブラシホルダ32に保持されている。ブラシホルダ32は、ブラシホルダ32の上方に配置されたホルダ取付部33に取り付けられている。ホルダ取付部33は、ホルダ取付部33から上方に延びる支持軸34に支持されている。支持軸34は、ブラシアーム35から下方に突出している。 The brush 31 is held by a brush holder 32 disposed above the brush 31. The brush holder 32 is attached to a holder attachment portion 33 disposed above the brush holder 32. The holder mounting portion 33 is supported by a support shaft 34 that extends upward from the holder mounting portion 33. The support shaft 34 protrudes downward from the brush arm 35.
 ブラシ31は、PVA(ポリビニルアルコール)などの合成樹脂で作成された弾性変形可能なスポンジブラシである。ブラシ31は、ブラシホルダ32から下方に突出している。ブラシ31は、ブラシホルダ32よりも下方に配置された洗浄面31aを含む。洗浄面31aは、基板Wの上面に対して上下方向に対向している。洗浄面31aは、平面視で基板Wよりも小さい。洗浄面31aは、ブラシ31が基板Wに押し付けられていない自由状態において、基板Wの上面に平行な平面であってもよいし、下方に凸の半球面であってもよい。洗浄面31aが円形の場合、洗浄面31aの直径はたとえば20mmである。ただし、洗浄面31aの大きさは、これに限られない。ブラシ31は、スポンジブラシに限られない。ブラシ31は、樹脂製の複数の繊維によって形成された毛束を備えるブラシであってもよい。 The brush 31 is an elastically deformable sponge brush made of a synthetic resin such as PVA (polyvinyl alcohol). The brush 31 protrudes downward from the brush holder 32. The brush 31 includes a cleaning surface 31 a disposed below the brush holder 32. The cleaning surface 31 a faces the upper surface of the substrate W in the vertical direction. The cleaning surface 31a is smaller than the substrate W in plan view. The cleaning surface 31a may be a flat surface parallel to the upper surface of the substrate W or a downwardly convex hemispherical surface in a free state where the brush 31 is not pressed against the substrate W. When the cleaning surface 31a is circular, the diameter of the cleaning surface 31a is, for example, 20 mm. However, the size of the cleaning surface 31a is not limited to this. The brush 31 is not limited to a sponge brush. The brush 31 may be a brush having a hair bundle formed by a plurality of resin fibers.
 押付状態変更機構39は、たとえば、エアシリンダなどの、ブラシ31を鉛直方向に上下させるアクチュエータである。押付状態変更機構39は、ブラシアーム35内に配置されている。処理ユニット2は、ブラシアーム35に対して鉛直な回転軸線a1まわりにブラシ31を回転させるブラシ自転機構をブラシアーム35内に備えていてもよい。ブラシ自転機構は、支持軸34をその中心線まわりに回転させることにより、ブラシ31を自転させる。 The pressing state changing mechanism 39 is an actuator such as an air cylinder that moves the brush 31 up and down in the vertical direction. The pressing state changing mechanism 39 is disposed in the brush arm 35. The processing unit 2 may include a brush rotation mechanism in the brush arm 35 that rotates the brush 31 around the rotation axis a <b> 1 perpendicular to the brush arm 35. The brush rotation mechanism rotates the brush 31 by rotating the support shaft 34 around its center line.
 ブラシ移動機構36は、ブラシアーム35を水平に移動させるブラシ水平駆動機構37と、ブラシアーム35を鉛直に移動させるブラシ鉛直駆動機構38とを含む。図2は、ブラシ水平駆動機構37が、スピンチャック5の周囲に位置する鉛直なブラシ回動軸線a2まわりにブラシアーム35を回動させるブラシ旋回機構である例を示している。ブラシ水平駆動機構37は、ブラシアーム35を直線的に水平方向に移動させるブラシスライド機構であってもよい。ブラシ水平駆動機構37は、ブラシ31を水平方向に移動させるブラシ移動ユニットの一例である。ブラシ鉛直駆動機構38は、ブラシ31を昇降させるブラシ昇降ユニットの一例である。 The brush moving mechanism 36 includes a brush horizontal drive mechanism 37 that moves the brush arm 35 horizontally, and a brush vertical drive mechanism 38 that moves the brush arm 35 vertically. FIG. 2 shows an example in which the brush horizontal drive mechanism 37 is a brush turning mechanism that rotates the brush arm 35 around the vertical brush turning axis a <b> 2 positioned around the spin chuck 5. The brush horizontal drive mechanism 37 may be a brush slide mechanism that linearly moves the brush arm 35 in the horizontal direction. The brush horizontal drive mechanism 37 is an example of a brush moving unit that moves the brush 31 in the horizontal direction. The brush vertical drive mechanism 38 is an example of a brush lifting unit that lifts and lowers the brush 31.
 ブラシ31は、ブラシ水平駆動機構37がブラシアーム35を移動させることにより、待機位置と中央位置との間で移動可能である。ブラシ31は、待機位置に位置するとき、平面視でスピンチャック5の周囲に位置する。ブラシ31は、中央位置に位置するとき、基板Wの上面の中央に接触する。ブラシ31は、待機位置と中央位置との間の外周位置に位置するとき、基板Wの上面の外周に接触する。基板Wの上面の中央とは、基板Wの上面と回転軸線a1とが交差する部分のことである。また、基板Wの上面の外周とは、基板Wの上面において、基板Wの周縁よりも僅かに基板Wの内側(中心側)の部分のことである。 The brush 31 can be moved between the standby position and the center position by moving the brush arm 35 by the brush horizontal drive mechanism 37. When the brush 31 is positioned at the standby position, the brush 31 is positioned around the spin chuck 5 in plan view. The brush 31 contacts the center of the upper surface of the substrate W when positioned at the center position. The brush 31 is in contact with the outer periphery of the upper surface of the substrate W when positioned at the outer peripheral position between the standby position and the center position. The center of the upper surface of the substrate W is a portion where the upper surface of the substrate W intersects with the rotation axis a1. Further, the outer periphery of the upper surface of the substrate W is a portion on the upper surface of the substrate W that is slightly inside (center side) of the substrate W from the periphery of the substrate W.
 図3は、基板処理装置1の主要部の電気的構成を説明するためのブロック図である。コントローラ3は、コンピュータ本体67と、コンピュータ本体67に接続された周辺装置68とを含む。コンピュータ本体67は、各種の命令を実行するCPU69(central processing unit:中央処理装置)と、情報を記憶する主記憶装置70とを含む。周辺装置68は、プログラム等の情報を記憶する補助記憶装置71と、リムーバブルメディアMから情報を読み取る読取装置72と、ホストコンピュータHC等の外部装置と通信する通信装置73とを含む。 FIG. 3 is a block diagram for explaining the electrical configuration of the main part of the substrate processing apparatus 1. The controller 3 includes a computer main body 67 and a peripheral device 68 connected to the computer main body 67. The computer main body 67 includes a CPU 69 (central processing unit) that executes various instructions and a main storage device 70 that stores information. The peripheral device 68 includes an auxiliary storage device 71 that stores information such as a program, a reading device 72 that reads information from the removable medium M, and a communication device 73 that communicates with an external device such as a host computer HC.
 コンピュータ本体67は、補助記憶装置71、読取装置72、および通信装置73のそれぞれに接続されている。コンピュータ本体67は、さらに、搬送ロボットIRや処理ユニット2等の各装置に接続されている。コンピュータ本体67は、補助記憶装置71等のそれぞれと情報のやり取りを行う。 The computer main body 67 is connected to each of the auxiliary storage device 71, the reading device 72, and the communication device 73. The computer main body 67 is further connected to devices such as the transport robot IR and the processing unit 2. The computer main body 67 exchanges information with each of the auxiliary storage devices 71 and the like.
 CPU69は、補助記憶装置71に記憶されているプログラムPや、読取装置72によってリムーバブルメディアMから読み取られたプログラムPを実行する。補助記憶装置71内のプログラムPは、コントローラ3に予めインストールされたものであってもよい。補助記憶装置71内のプログラムPは、読取装置72を通じてリムーバブルメディアMから補助記憶装置71に送られたものであってもよい。補助記憶装置71内のプログラムPは、通信装置73を通じて外部装置から補助記憶装置71に送られたものであってもよい。 The CPU 69 executes the program P stored in the auxiliary storage device 71 and the program P read from the removable medium M by the reading device 72. The program P in the auxiliary storage device 71 may be installed in the controller 3 in advance. The program P in the auxiliary storage device 71 may be sent from the removable medium M to the auxiliary storage device 71 through the reading device 72. The program P in the auxiliary storage device 71 may be sent from the external device to the auxiliary storage device 71 through the communication device 73.
 補助記憶装置71は、電力が供給されていなくても記憶を保持する不揮発性メモリーである。補助記憶装置71は、たとえば、ハードディスクドライブ等の磁気記憶装置である。補助記憶装置71は、磁気記憶装置以外の不揮発性メモリーであってもよい。 The auxiliary storage device 71 is a non-volatile memory that retains memory even when power is not supplied. The auxiliary storage device 71 is, for example, a magnetic storage device such as a hard disk drive. The auxiliary storage device 71 may be a non-volatile memory other than the magnetic storage device.
 リムーバブルメディアMは、電力が供給されていなくても記憶を保持する不揮発性メモリーである。リムーバブルメディアMは、たとえば、コンパクトディスクなどの光ディスクまたはメモリーカードなどの半導体メモリーである。リムーバブルメディアMは、光ディスクおよび半導体メモリー以外の不揮発性メモリーであってもよい。リムーバブルメディアMは、プログラムPが記録されたコンピュータ読取可能な記録媒体の一例である。 The removable media M is a non-volatile memory that retains memory even when power is not supplied. The removable medium M is, for example, an optical disk such as a compact disk or a semiconductor memory such as a memory card. The removable medium M may be a non-volatile memory other than the optical disk and the semiconductor memory. The removable medium M is an example of a computer-readable recording medium on which the program P is recorded.
 ホストコンピュータHCは、コントローラ3と通信を行う。ホストコンピュータHCは、基板Wに対して行われる一連の工程を示すレシピ74の識別情報を基板Wごとにコントローラ3に指定する。 The host computer HC communicates with the controller 3. The host computer HC designates the identification information of the recipe 74 indicating a series of steps performed on the substrate W to the controller 3 for each substrate W.
 補助記憶装置71には、複数種類のレシピ74が記憶されている。レシピ74は、レシピ識別情報、基板処理条件、および基板処理手順を含む。コンピュータ本体67は、ホストコンピュータHCによって指定されたレシピ74を補助記憶装置71から読み込む。そして、コンピュータ本体67は、指定されたレシピ74に従って当該基板Wを処理ユニット2で処理する処理スケジュールを作成する。その後、コントローラ3は、搬送ロボットIR,CR、測定ユニット4、操作ユニット6、電動モータ23、吸引機構27、ブラシ移動機構36、押付状態変更機構39およびバルブ類40~42などの基板処理装置1の制御対象(リソース)に処理スケジュールを実行させる。 The auxiliary storage device 71 stores a plurality of types of recipes 74. The recipe 74 includes recipe identification information, substrate processing conditions, and a substrate processing procedure. The computer main body 67 reads the recipe 74 designated by the host computer HC from the auxiliary storage device 71. Then, the computer main body 67 creates a processing schedule for processing the substrate W by the processing unit 2 in accordance with the designated recipe 74. Thereafter, the controller 3 performs the substrate processing apparatus 1 such as the transfer robot IR, CR, the measurement unit 4, the operation unit 6, the electric motor 23, the suction mechanism 27, the brush moving mechanism 36, the pressing state changing mechanism 39, and the valves 40 to 42. The control schedule (resource) is made to execute the processing schedule.
 図4は、基板処理装置1による基板処理の一例を説明するための流れ図である。基板処理装置1による基板処理では、コントローラ3によって作成された処理スケジュールに基づいて、たとえば、図4に示すように、ステップS1~S12がこの順番で実行される。 FIG. 4 is a flowchart for explaining an example of substrate processing by the substrate processing apparatus 1. In the substrate processing by the substrate processing apparatus 1, steps S1 to S12 are executed in this order as shown in FIG. 4, for example, based on the processing schedule created by the controller 3.
 まず、未処理の基板Wが、搬送ロボットIR,CRによってキャリヤCから処理ユニット2に搬入され、スピンチャック5に渡される(S1)。そして、コントローラ3は、吸引機構27を駆動し、かつ、吸引バルブ40を開くことにより、吸引機構27に基板Wを吸引させる。これにより、スピンベース21の上面に接触した状態でスピンチャック5に基板Wを水平に保持させる基板保持工程が開始される(S2)。この後、基板Wは、搬送ロボットCRによって搬出されるまでの間、水平に保持された状態で維持される。 First, an unprocessed substrate W is carried into the processing unit 2 from the carrier C by the transfer robots IR and CR, and delivered to the spin chuck 5 (S1). Then, the controller 3 drives the suction mechanism 27 and opens the suction valve 40 to cause the suction mechanism 27 to suck the substrate W. Thereby, a substrate holding process for holding the substrate W horizontally on the spin chuck 5 in a state of being in contact with the upper surface of the spin base 21 is started (S2). Thereafter, the substrate W is maintained in a horizontally held state until it is unloaded by the transfer robot CR.
 そして、コントローラ3は、電動モータ23を駆動して、スピンチャック5に保持された基板Wを回転させる基板回転工程を開始させる(S3)。基板回転工程は、後述するスピンドライ(S9)の開始まで継続されてもよい。 Then, the controller 3 drives the electric motor 23 to start a substrate rotation process for rotating the substrate W held by the spin chuck 5 (S3). The substrate rotation process may be continued until the start of spin dry (S9) described later.
 そして、コントローラ3は、処理液バルブ41を開き、回転状態の基板Wの上面に向けてDIWなどの処理液を処理液ノズル10から供給させる。これにより、処理液供給工程が開始される(S4)。回転状態の基板Wの上面に供給された処理液は、遠心力によって基板Wの上面に沿って径方向外方に流れる。これにより、処理液が基板Wの上面の全体に行き渡る。 Then, the controller 3 opens the processing liquid valve 41 and supplies a processing liquid such as DIW from the processing liquid nozzle 10 toward the upper surface of the rotating substrate W. Thereby, a process liquid supply process is started (S4). The processing liquid supplied to the upper surface of the rotated substrate W flows radially outward along the upper surface of the substrate W by centrifugal force. As a result, the processing liquid spreads over the entire top surface of the substrate W.
 次に、コントローラ3は、ブラシ水平駆動機構37を制御して、ブラシ31を待機位置から中央位置に移動させる。そして、コントローラ3は、ブラシ鉛直駆動機構38を制御して、回転状態の基板Wの上面の中央にブラシ31の洗浄面31aを接触させるブラシ接触工程を実行する(S5)。このように、ブラシ鉛直駆動機構38は、スピンベース21によって保持された基板Wの上面にブラシ31を接触させるブラシ接触ユニットとして機能する。 Next, the controller 3 controls the brush horizontal drive mechanism 37 to move the brush 31 from the standby position to the center position. Then, the controller 3 controls the brush vertical drive mechanism 38 to execute a brush contact process for bringing the cleaning surface 31a of the brush 31 into contact with the center of the upper surface of the rotating substrate W (S5). As described above, the brush vertical drive mechanism 38 functions as a brush contact unit that brings the brush 31 into contact with the upper surface of the substrate W held by the spin base 21.
 ブラシ接触工程では、コントローラ3が押付状態変更機構39を制御して、基板Wの上面にブラシ31を押し付けていてもよい(ブラシ押付工程)。ブラシ31が基板Wに押し付けられると、ブラシ31の弾性変形により洗浄面31aが基板Wにさらに密着する。このように、押付状態変更機構39は、基板Wの上面に対して基板Wの上面を押し付けるブラシ押付ユニットとして機能する。 In the brush contact process, the controller 3 may control the pressing state changing mechanism 39 to press the brush 31 against the upper surface of the substrate W (brush pressing process). When the brush 31 is pressed against the substrate W, the cleaning surface 31 a further adheres to the substrate W due to elastic deformation of the brush 31. As described above, the pressing state changing mechanism 39 functions as a brush pressing unit that presses the upper surface of the substrate W against the upper surface of the substrate W.
 その後、コントローラ3は、ブラシ水平駆動機構37を制御して、基板Wの上面に接触した状態のブラシ31を中央位置から外周位置まで移動させるブラシ移動工程を開始させる(S6)。つまり、ブラシ接触工程と並行してブラシ移動工程が実行される。これにより、ブラシ31が基板Wの上面の全体に擦り付けられ、基板Wの上面の全体がスクラブ洗浄される。 Thereafter, the controller 3 controls the brush horizontal drive mechanism 37 to start a brush moving process for moving the brush 31 in contact with the upper surface of the substrate W from the central position to the outer peripheral position (S6). That is, the brush moving process is executed in parallel with the brush contact process. As a result, the brush 31 is rubbed against the entire upper surface of the substrate W, and the entire upper surface of the substrate W is scrubbed.
 そして、コントローラ3は、ブラシ鉛直駆動機構38を制御して、外周位置に位置するブラシ31を上方に退避させる(S7)。これにより、ブラシ31が基板Wの上面から離れる。その後、ブラシ31を待機位置に移動させる。処理液バルブ41は、ブラシ31が基板Wから離れた後に閉じられる。これにより、基板WへのDIWの供給が停止される(S8)。その後、基板Wの回転を乾燥速度(たとえば、数千rpm)まで加速させる。これにより、基板Wに付着している純水が基板Wの周囲に振り切られ、基板Wが乾燥する(S9)。コントローラ3は、電動モータ23を制御して、基板Wが乾燥した後に基板Wの回転を停止させる(S10)。そして、コントローラ3は、吸引バルブ40を閉じ、その後、吸引機構27による吸引を停止させる。これにより、スピンベース21による基板Wの保持が解除される(S11)。 Then, the controller 3 controls the brush vertical drive mechanism 38 to retract the brush 31 located at the outer peripheral position upward (S7). As a result, the brush 31 is separated from the upper surface of the substrate W. Thereafter, the brush 31 is moved to the standby position. The processing liquid valve 41 is closed after the brush 31 is separated from the substrate W. Thereby, the supply of DIW to the substrate W is stopped (S8). Thereafter, the rotation of the substrate W is accelerated to a drying speed (for example, several thousand rpm). Thereby, the pure water adhering to the substrate W is shaken off around the substrate W, and the substrate W is dried (S9). The controller 3 controls the electric motor 23 to stop the rotation of the substrate W after the substrate W is dried (S10). Then, the controller 3 closes the suction valve 40 and then stops the suction by the suction mechanism 27. Thereby, the holding of the substrate W by the spin base 21 is released (S11).
 その後、搬送ロボットCRが、処理ユニット2に進入して、スピンチャック5から処理済みの基板Wをすくい取って、処理ユニット2外へと搬出する(S12)。その基板Wは、搬送ロボットCRから搬送ロボットIRへと渡され、搬送ロボットIRによって、キャリヤCに収納される。 Thereafter, the transfer robot CR enters the processing unit 2, picks up the processed substrate W from the spin chuck 5, and carries it out of the processing unit 2 (S 12). The substrate W is transferred from the transfer robot CR to the transfer robot IR, and is stored in the carrier C by the transfer robot IR.
 このようにして、複数の基板処理工程(ブラシ移動工程やブラシ接触工程)が、レシピ74で指定された基板処理条件で、かつ、レシピ74で指定された基板処理手順で実行される。 In this way, a plurality of substrate processing steps (brush moving step and brush contact step) are executed under the substrate processing conditions specified in the recipe 74 and the substrate processing procedure specified in the recipe 74.
 図5Aおよび図5Bは、ブラシ移動工程(図4のS6)における基板Wの模式図である。図5Aは正面図であり、図5Bは平面図である。 5A and 5B are schematic views of the substrate W in the brush moving process (S6 in FIG. 4). FIG. 5A is a front view, and FIG. 5B is a plan view.
 ここで、図4に示した基板処理が実行される前に、コントローラ3は、レシピ74の一部であるブラシ移動工程(図4のS6)における、ブラシ31の移動速度vを設定する(速度設定工程)。 Here, before the substrate processing shown in FIG. 4 is executed, the controller 3 sets the moving speed v of the brush 31 in the brush moving process (S6 in FIG. 4) which is a part of the recipe 74 (speed). Setting process).
 具体的には、コントローラ3が、回転状態の基板Wと同心の円形状の仮想線Lで回転半径方向に沿って基板Wの上面を分割する。そして、コントローラ3は、複数の領域Aのそれぞれに優先度wを設定する。仮想線Lの中心は、平面視で、回転軸線a1と一致している。移動速度vは、領域Aと対向する位置にあるブラシ31の移動速度の回転半径方向成分である。領域Aと対向する位置にあるブラシ31が移動する距離の回転半径方向成分を移動距離rという。 Specifically, the controller 3 divides the upper surface of the substrate W along the rotational radius direction by a circular imaginary line L concentric with the substrate W in a rotating state. Then, the controller 3 sets the priority w for each of the plurality of areas A. The center of the imaginary line L coincides with the rotation axis a1 in plan view. The moving speed v is a rotational radial direction component of the moving speed of the brush 31 at a position facing the region A. The rotational radial direction component of the distance traveled by the brush 31 at the position facing the region A is referred to as a travel distance r.
 回転軸線a1から数えてn(n:2以上の自然数)番目の領域Aを領域Anともいう。領域Anにおける優先度wを優先度wnともいう。領域A(n-1)と領域Anとの境界となる仮想線Lを仮想線Lnともいう。領域Anにおける移動距離rを移動距離rnともいう。回転軸線a1から数えてn番目の領域Anにおけるブラシ31の移動速度vを移動速度vnともいう。図5Aおよび図5Bでは、ブラシ31が、領域A1と対向する位置にある状態を示している。ブラシ31が領域Anと対向する位置に位置するとき、平面視におけるブラシ31の中心が、領域Anと対向する。 The nth (n: natural number of 2 or more) area A counted from the rotation axis a1 is also referred to as an area An. The priority w in the area An is also referred to as the priority wn. A virtual line L that is a boundary between the region A (n−1) and the region An is also referred to as a virtual line Ln. The movement distance r in the region An is also referred to as a movement distance rn. The moving speed v of the brush 31 in the nth area An counted from the rotation axis a1 is also referred to as a moving speed vn. 5A and 5B show a state in which the brush 31 is in a position facing the region A1. When the brush 31 is located at a position facing the area An, the center of the brush 31 in plan view faces the area An.
 優先度wは、基板Wの上面に付着したパーティクルなどの汚れが除去されにくい領域Aほど高くなるように設定されている。詳しくは、基板Wの上面の汚染度合が高いほど優先度wが高くなるように優先度wが設定されている。基板Wの上面の汚染度合が高いとは、基板Wの上面に付着した汚れの量(たとえばパーティクルの数)が多いことをいう。基板Wの上面の汚染度合が高いほど、基板Wの上面から汚れが除去されにくい。 The priority w is set to be higher in the region A where dirt such as particles adhering to the upper surface of the substrate W is difficult to remove. Specifically, the priority w is set such that the higher the degree of contamination on the upper surface of the substrate W, the higher the priority w. A high degree of contamination on the upper surface of the substrate W means that the amount of dirt (for example, the number of particles) attached to the upper surface of the substrate W is large. The higher the degree of contamination on the upper surface of the substrate W, the more difficult it is to remove dirt from the upper surface of the substrate W.
 基板Wの上面に付着したパーティクルの数は、たとえば、測定ユニット4に備えられたパーティクルカウンタなどによって、基板WがロードポートLPから処理ユニット2に搬送される間に測定される。基板Wの上面に付着したパーティクルの数は、基板処理装置1の外部に設けられたパーティクルカウンタによって事前に測定されていてもよい。また、基板処理を施す基板Wのパーティクルの数を測定するのではなく、基板処理装置1で処理される前の基板Wの汚染状態を予測して、この予測を基板Wの上面の汚染度合の指標としてもよい。 The number of particles adhering to the upper surface of the substrate W is measured while the substrate W is transferred from the load port LP to the processing unit 2 by, for example, a particle counter provided in the measurement unit 4. The number of particles adhering to the upper surface of the substrate W may be measured in advance by a particle counter provided outside the substrate processing apparatus 1. Further, instead of measuring the number of particles on the substrate W to be subjected to substrate processing, the contamination state of the substrate W before being processed by the substrate processing apparatus 1 is predicted, and this prediction is based on the degree of contamination on the upper surface of the substrate W. It may be an indicator.
 汚れが除去しにくい領域Aほど、基板Wの洗浄に長時間を要する。そのため、ブラシ移動工程(図4のS6)におけるブラシ31の移動速度vは、優先度wが高い領域Aほど低くなるように設定されている。なお、基板Wの上面では、特に外周付近に汚れが付着する量が多く、外周付近の領域Aは、中央付近の領域Aと比較して、汚染度合が高い。 The region A in which dirt is difficult to remove requires longer time for cleaning the substrate W. Therefore, the moving speed v of the brush 31 in the brush moving process (S6 in FIG. 4) is set to be lower in the region A where the priority w is higher. On the upper surface of the substrate W, the amount of dirt is particularly large near the outer periphery, and the region A near the outer periphery has a higher degree of contamination than the region A near the center.
 また、必ずしも汚染度合が高いほど優先度wが高くなるように、優先度wが設定されている必要はない。たとえば、基板Wの上面に対する汚れ(たとえばパーティクル)の吸着度合が高い領域Aほど優先度wが高くなるように、優先度wが設定されていてもよい。基板Wの上面に対する汚れ(たとえばパーティクル)の吸着度合が高いほど、基板Wの上面から汚れが除去されにくい。 Also, the priority w need not be set so that the higher the pollution degree, the higher the priority w. For example, the priority w may be set so that the priority w becomes higher in the region A where the degree of adsorption of dirt (for example, particles) to the upper surface of the substrate W is higher. As the degree of adsorption of dirt (for example, particles) to the upper surface of the substrate W is higher, the dirt is more difficult to be removed from the upper surface of the substrate W.
 次に、各領域Aにおけるブラシ31の移動速度vの設定方法について詳細に説明する。図6は、コントローラ3による各領域Aにおけるブラシ31の移動速度vを設定する方法の一例について説明するための流れ図である。図6では、n≧3の場合の例を示している。 Next, a method for setting the moving speed v of the brush 31 in each region A will be described in detail. FIG. 6 is a flowchart for explaining an example of a method for setting the moving speed v of the brush 31 in each region A by the controller 3. FIG. 6 shows an example in the case of n ≧ 3.
 まず、コントローラ3は、レシピ情報を取得する(ステップT1)。レシピ情報とは、各種パラメータの値のことであり、たとえば、ブラシ移動工程が実行される時間の合計(合計時間T)や、基板処理の対象となる基板Wの半径Rなどが挙げられる。合計時間Tは、たとえば、5秒~20秒程度の時間である。半径Rは、たとえば、150mmである。コントローラ3は、これらのレシピ情報を、コントローラ3の補助記憶装置71に記憶された情報から取得してもよい。コントローラ3は、作業者が操作ユニット6(図2参照)の入力部に入力した情報から取得してもよい。 First, the controller 3 acquires recipe information (step T1). Recipe information is the values of various parameters, and includes, for example, the total time (total time T) during which the brush moving process is executed, the radius R of the substrate W to be processed, and the like. The total time T is, for example, about 5 to 20 seconds. The radius R is, for example, 150 mm. The controller 3 may acquire the recipe information from information stored in the auxiliary storage device 71 of the controller 3. The controller 3 may be acquired from information input to the input unit of the operation unit 6 (see FIG. 2) by the operator.
 そして、コントローラ3は、作業者が操作ユニット6の入力部に入力したブラシ31の移動距離r1,…,r(n-1)を取得する(ステップT2)。そして、移動距離r1,…,r(n-1)の和[r1+…+r(n-1)]が基板Wの半径Rよりも小さいか否かを判定する(ステップT3)。移動距離r1,…,r(n-1)の和[r1+…+r(n-1)]が半径R以上になると移動距離rnが設定できない。移動距離r1,…,r(n-1)の和[r1+…+r(n-1)]が基板Wの半径Rよりも小さくない場合(ステップT3でNo)、作業者に対してアラームが発せられる(ステップT4)。その後、ステップT3で移動距離r1,…,r(n-1)の和[r1+…+r(n-1)]が基板Wの半径Rよりも小さいと判断されるまで、ステップT2からの処理が繰り返される。 Then, the controller 3 acquires the movement distances r1,..., R (n−1) of the brush 31 input by the operator to the input unit of the operation unit 6 (step T2). Then, it is determined whether or not the sum [r1 +... + R (n−1)] of the movement distances r1,..., R (n−1) is smaller than the radius R of the substrate W (step T3). When the sum [r1 +... + R (n-1)] of the movement distances r1,..., R (n-1) is greater than or equal to the radius R, the movement distance rn cannot be set. If the sum [r1 +... + R (n-1)] of the movement distances r1,..., R (n-1) is not smaller than the radius R of the substrate W (No in step T3), an alarm is issued to the worker. (Step T4). Thereafter, the processing from step T2 is performed until it is determined in step T3 that the sum [r1 +... + R (n−1)] of the movement distances r1,..., R (n−1) is smaller than the radius R of the substrate W. Repeated.
 移動距離r1,…,r(n-1)の和[r1+…+r(n-1)]が基板Wの半径Rよりも小さい場合(ステップT3でYes)、コントローラ3は、作業者が操作ユニット6の入力部に入力した優先度w1,…,wnを取得する(ステップT5)。 When the sum [r1 +... + R (n-1)] of the movement distances r1,..., R (n-1) is smaller than the radius R of the substrate W (Yes in step T3), the controller 3 The priority levels w1,..., Wn input to the input unit 6 are acquired (step T5).
 そして、コントローラ3は、ステップT1からステップT5によって取得した合計時間T、移動距離rおよび優先度wを用いて、各領域Aにおける移動速度v1,…,vnを算出する(ステップT6)。具体的には、下記の式(1)および式(2)に基づいて、各領域Aにおける移動速度v1,…,vnを算出する。 Then, the controller 3 calculates the moving speeds v1,..., Vn in each region A using the total time T, the moving distance r, and the priority w acquired in steps T1 to T5 (step T6). Specifically, the moving speeds v1,..., Vn in each region A are calculated based on the following formulas (1) and (2).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 式(1)および式(2)では、領域Aの数がi(i:自然数)とされ、回転軸線a1から数えてi番目の領域Aiにおけるブラシ31の優先度がwiとされる。また、式(1)および式(2)では、回転軸線a1から数えてi番目の領域Aiにおけるブラシ31の移動距離rがriとされる。また、式(1)および式(2)では、回転軸線a1から数えてi番目の領域Aiにおけるブラシ31の移動時間がtiとされ、回転軸線a1から数えてi番目の領域Aiにおけるブラシ31の移動速度vがviとされる。前述したように、Tは、ブラシ移動工程が実行される合計時間を示している。 In the expressions (1) and (2), the number of areas A is i (i: natural number), and the priority of the brush 31 in the i-th area Ai counted from the rotation axis a1 is wi. In the equations (1) and (2), the moving distance r of the brush 31 in the i-th region Ai counted from the rotation axis a1 is ri. In Expressions (1) and (2), the movement time of the brush 31 in the i-th area Ai counted from the rotation axis a1 is ti, and the brush 31 in the i-th area Ai counted from the rotation axis a1. The moving speed v is set to vi. As described above, T indicates the total time during which the brush moving process is executed.
 式(1)から、移動時間tiが計算される。式(1)に示すように、移動時間tiは、優先度wiが高いほど長い。そして、式(1)で計算された移動時間tiと式(2)とに基づいて移動速度viが算出される。全ての領域Aについて移動速度viが算出されることで、移動速度v1,…,vnが得られる。 The travel time ti is calculated from Equation (1). As shown in Expression (1), the travel time ti is longer as the priority wi is higher. Then, the moving speed vi is calculated based on the moving time ti calculated by Expression (1) and Expression (2). By calculating the moving speed vi for all the regions A, the moving speeds v1, ..., vn are obtained.
 そして、コントローラ3は、算出された移動速度v1,…,vnがブラシ水平駆動機構37の機械的な性能(スペック)の範囲内であるか否かの判断をする(ステップT7)。算出された移動速度v1,…,vnがブラシ水平駆動機構37の機械的な性能の範囲外である場合(ステップT7でNo)、作業者に対してアラームが発せられる(ステップT8)。その後、ステップT7で算出された移動速度v1,…,vnがブラシ水平駆動機構37の機械的な性能の範囲内であると判断されるまで、ステップT5からの処理が繰り返される。 Then, the controller 3 determines whether or not the calculated moving speeds v1,..., Vn are within the mechanical performance (spec) range of the brush horizontal drive mechanism 37 (step T7). If the calculated moving speeds v1,..., Vn are outside the mechanical performance range of the brush horizontal drive mechanism 37 (No in step T7), an alarm is issued to the operator (step T8). Thereafter, the processing from step T5 is repeated until it is determined that the moving speeds v1,..., Vn calculated in step T7 are within the mechanical performance range of the brush horizontal drive mechanism 37.
 算出された移動速度v1,…,vnがブラシ水平駆動機構37の機械的な性能の範囲内である場合(ステップT7でYes)、算出された移動速度v1,…,vnが保存データ75(図3参照)として補助記憶装置71などに記憶されて保存される(ステップT9)。保存データ75は、算出された移動速度v1,…,vnとともに移動時間t1,…,tnを含んでいてもよい。そして、コントローラ3は、補助記憶装置71に記憶された保存データ75に基づいて、レシピ74内のブラシ31の移動速度vを設定する(速度設定工程)。 When the calculated moving speeds v1,..., Vn are within the mechanical performance range of the brush horizontal drive mechanism 37 (Yes in step T7), the calculated moving speeds v1,. 3) and stored in the auxiliary storage device 71 or the like (step T9). The stored data 75 may include travel times t1,..., Tn together with the calculated travel speeds v1,. Then, the controller 3 sets the moving speed v of the brush 31 in the recipe 74 based on the saved data 75 stored in the auxiliary storage device 71 (speed setting step).
 各領域Aにおけるブラシ31の移動速度vは、常に一定である必要はない。移動速度vは、たとえば、ブラシ31が現在対向する領域Aと、当該領域Aに径方向外方から隣接する領域Aとの境界付近で低下するように設定されていてもよい。また、算出された移動速度v1,…,vnは、対応する領域A1…,Anにおけるブラシ31の移動速度vの最大値(ピーク値)として用いられてもよい。すなわち、移動速度vは、ブラシ31が現在対向する領域Aと、当該領域Aに径方向内方から隣接する領域Aとの境界付近で増大し算出された移動速度v1,…,vnに達し、その後、ブラシ31が現在対向する領域Aと、当該領域Aに径方向外方から隣接する領域Aとの境界付近で低下するように設定されてもよい。 The moving speed v of the brush 31 in each area A does not always have to be constant. For example, the moving speed v may be set so as to decrease near the boundary between the region A where the brush 31 is currently facing and the region A adjacent to the region A from the outside in the radial direction. Further, the calculated moving speeds v1,..., Vn may be used as the maximum value (peak value) of the moving speed v of the brush 31 in the corresponding areas A1,. That is, the moving speed v increases near the boundary between the area A where the brush 31 is currently facing and the area A adjacent to the area A from the inside in the radial direction, and reaches the calculated moving speeds v1,. Thereafter, the brush 31 may be set so as to decrease near the boundary between the region A where the brush 31 currently faces and the region A adjacent to the region A from the outside in the radial direction.
 図7Aおよび図7Bは、図6に示す方法で設定されたブラシ31の移動速度vに基づいて作成されたグラフ図の一例である。 7A and 7B are examples of graphs created based on the moving speed v of the brush 31 set by the method shown in FIG.
 コントローラ3は、保存データ75とレシピ情報とに基づいて図7Aや図7Bに示すようなグラフ図を作成してもよい。 The controller 3 may create a graph as shown in FIGS. 7A and 7B based on the stored data 75 and the recipe information.
 図7Aに示すグラフ図は、ブラシ移動工程(S6)におけるブラシ31の位置とブラシ31の移動速度vとの関係を示すグラフ図の一例である。図7Aに示すグラフ図では、ブラシ31の位置を横軸としている。ブラシ31の位置とは、平面視におけるブラシ31の中心の位置のことである。横軸は、回転軸線a1の位置を原点としている。図7Aに示すグラフ図では、ブラシ31の移動速度vを縦軸としている。このグラフ図では、n=3の例を示している。このグラフ図では、保存データ75として保存された移動速度v1,v2,v3を、各領域A1,A2,A3における移動速度vの最大値として用いている。 The graph shown in FIG. 7A is an example of a graph showing the relationship between the position of the brush 31 and the moving speed v of the brush 31 in the brush moving step (S6). In the graph shown in FIG. 7A, the position of the brush 31 is taken as the horizontal axis. The position of the brush 31 is the center position of the brush 31 in plan view. The horizontal axis has the origin at the position of the rotation axis a1. In the graph shown in FIG. 7A, the moving speed v of the brush 31 is the vertical axis. This graph shows an example of n = 3. In this graph, the moving speeds v1, v2, and v3 stored as the stored data 75 are used as the maximum value of the moving speed v in each of the areas A1, A2, and A3.
 図7Bに示すグラフ図では、ブラシ31の位置を縦軸としており、回転軸線a1の位置を基準(原点)としている。また、図7Bに示すグラフ図では、経過時間を縦軸としている。経過時間とは、ブラシ移動工程が開始されてから経過した時間のことである。ブラシ移動工程が開始される瞬間を基準(原点)としている。 7B, the position of the brush 31 is the vertical axis, and the position of the rotation axis a1 is the reference (origin). In the graph shown in FIG. 7B, the elapsed time is the vertical axis. The elapsed time is the time that has elapsed since the start of the brush moving process. The moment when the brush moving process starts is used as the reference (origin).
 コントローラ3は、これらのグラフ図を操作ユニット6(図1参照)の表示部に表示させることができる。これにより、基板処理装置1の作業者は、各領域Aにおけるブラシ31の移動速度vを視覚的に確認することができる。 The controller 3 can display these graphs on the display unit of the operation unit 6 (see FIG. 1). Thereby, the operator of the substrate processing apparatus 1 can visually confirm the moving speed v of the brush 31 in each region A.
 この実施形態によれば、回転状態の基板Wと同心の円形の仮想線Lで基板Wが複数の領域Aに分割され、各領域Aに優先度wが設定される。ブラシ接触工程と並行して実行されるブラシ移動工程におけるブラシ31の移動速度vは、優先度wが高いほど低くなるように設定されている。そのため、優先度wが高い領域Aほど長時間の洗浄が行われる。そのため、基板Wに付着した汚れが除去されにくい領域Aほど優先度wが高くなるように各領域Aの優先度wを設定しておくことで、基板Wの上面において汚れが除去されにくい領域Aが充分に洗浄される。一方で、基板Wの上面において汚れが除去されやすい領域Aの洗浄時間が短縮される。したがって、スループットの低下が抑制され、かつ、基板Wの上面が万遍なく洗浄される。 According to this embodiment, the substrate W is divided into a plurality of regions A by a circular imaginary line L concentric with the substrate W in a rotating state, and a priority w is set for each region A. The moving speed v of the brush 31 in the brush moving process executed in parallel with the brush contact process is set to be lower as the priority w is higher. For this reason, the region A having the higher priority w is cleaned for a longer time. Therefore, by setting the priority w of each region A so that the priority w is higher in the region A where dirt attached to the substrate W is hard to be removed, the region A in which dirt is difficult to remove on the upper surface of the substrate W. Is thoroughly washed. On the other hand, the cleaning time of the region A where dirt is easily removed on the upper surface of the substrate W is shortened. Accordingly, a decrease in throughput is suppressed, and the upper surface of the substrate W is uniformly cleaned.
 また、この実施形態によれば、基板Wの汚染度合が高い領域Aほど優先度wが高い。そのため、基板Wの上面において汚染度合が比較的高い領域Aが充分に洗浄される。一方で、基板Wの上面において汚染度合が比較的低い領域Aの洗浄時間が短縮される。したがって、スループットの低下が抑制され、かつ、基板Wの上面が万遍なく洗浄されるた、この実施形態によれば、ブラシ移動工程が実行される合計時間T、領域Aの数i、i番目の領域Aの優先度wi、および、i番目の領域Aにおけるブラシ31の移動距離riを指定し、かつ、式(1)を用いることによって、i番目の領域Aにおけるブラシ31の移動時間tiが算出される。各領域Aiにおける移動時間tiの和は、予め指定された時間(合計時間T)になる。そして、式(1)から算出された移動時間tiと、指定された移動距離riとを式(2)に代入することによって、各移動時間tiに対応する移動速度viが算出される。したがって、各領域Aiにおけるブラシの移動速度viは、ブラシ移動工程の開始から時間T経過後に(予め指定した時間通りに)ブラシ移動工程が終了するように設定される。よって、スループットの低下が確実に抑制される。 Also, according to this embodiment, the priority w is higher in the region A where the contamination degree of the substrate W is higher. Therefore, the region A having a relatively high degree of contamination on the upper surface of the substrate W is sufficiently cleaned. On the other hand, the cleaning time of the region A having a relatively low degree of contamination on the upper surface of the substrate W is shortened. Therefore, a decrease in throughput is suppressed, and the upper surface of the substrate W is uniformly cleaned. According to this embodiment, the total time T in which the brush moving process is executed, the number i of the regions A, i-th By specifying the priority wi of the area A and the movement distance ri of the brush 31 in the i-th area A and using the equation (1), the movement time ti of the brush 31 in the i-th area A is Calculated. The sum of the movement time ti in each area Ai is a predesignated time (total time T). Then, the movement speed vi corresponding to each movement time ti is calculated by substituting the movement time ti calculated from Expression (1) and the designated movement distance ri into Expression (2). Accordingly, the brush moving speed vi in each region Ai is set so that the brush moving process is completed after the time T has elapsed from the start of the brush moving process (as specified in advance). Therefore, a decrease in throughput is reliably suppressed.
 上述の実施形態における基板処理装置1による基板処理では、図4に示した基板処理が実行される前に、ブラシ移動工程(図4のS6)におけるブラシ31の押付力または押付圧が、コントローラ3によって設定されていてもよい。 In the substrate processing by the substrate processing apparatus 1 in the above-described embodiment, before the substrate processing shown in FIG. 4 is executed, the pressing force or pressing pressure of the brush 31 in the brush moving step (S6 in FIG. 4) is the controller 3 May be set.
 具体的には、コントローラ3は、各領域Aに第2の優先度yを設定し、第2の優先度yが高い領域Aほど基板Wに対するブラシ31の押付力または押付圧が高くなるように、当該押付力または押付圧を設定する(押付力設定工程、押付圧設定工程)。 Specifically, the controller 3 sets the second priority y for each region A, and the pressing force or pressing pressure of the brush 31 against the substrate W is higher in the region A where the second priority y is higher. The pressing force or pressing pressure is set (pressing force setting process, pressing pressure setting process).
 図8Aは、各領域Aにおける第2の優先度yとブラシ31の押付力との関係の一例を示した表である。回転軸線a1から数えてn番目の領域Anにおける第2の優先度yをynともいう(図示せず)。図8Aは、n=5の例を示している。パーティクル数とは、単位面積当たりのパーティクルの個数である。 FIG. 8A is a table showing an example of the relationship between the second priority y in each region A and the pressing force of the brush 31. The second priority y in the nth region An counted from the rotation axis a1 is also referred to as yn (not shown). FIG. 8A shows an example of n = 5. The number of particles is the number of particles per unit area.
 第2の優先度yは、基板Wの汚染度合が高い領域Aほど高くなるように設定されている。詳しくは、第2の優先度yは、基板Wの上面に付着したパーティクルの数が多いほど押付力が高くなるように設定される。押付力は、パーティクル数に比例して変化するように設定されていてもよい。 The second priority y is set to be higher in the region A where the contamination degree of the substrate W is higher. Specifically, the second priority y is set so that the pressing force increases as the number of particles attached to the upper surface of the substrate W increases. The pressing force may be set so as to change in proportion to the number of particles.
 ブラシ押付工程では、基板Wの上面に対するブラシ31の押付力(押付圧)が、歪みゲージなどの圧力センサ(図示せず)を用いて測定される。これにより、ブラシ31の押付力(押付圧)が検出される。これにより、基板Wの上面に対するブラシ31の押付力(押付圧)が、押付力(押付圧)設定工程で設定された押付力(押付圧)と一致していることが確認される。また、コントローラ3は、ブラシ31の洗浄面31aの表面積と押付力とから押付圧を算出し、押付圧を設定することもできる。 In the brush pressing step, the pressing force (pressing pressure) of the brush 31 against the upper surface of the substrate W is measured using a pressure sensor (not shown) such as a strain gauge. Thereby, the pressing force (pressing pressure) of the brush 31 is detected. Accordingly, it is confirmed that the pressing force (pressing pressure) of the brush 31 against the upper surface of the substrate W matches the pressing force (pressing pressure) set in the pressing force (pressing pressure) setting step. Further, the controller 3 can calculate the pressing pressure from the surface area of the cleaning surface 31a of the brush 31 and the pressing force, and can set the pressing pressure.
 この基板処理では、回転状態の基板Wに対するブラシ31の押付圧は、第2の優先度yが高い領域Aほど高い。そのため、基板Wの上面において第2の優先度yが比較的高い領域Aの洗浄時間が短縮される。その一方で、ブラシ31を常に一定の押付圧で押し付ける基板処理と比較して、ブラシ31の消耗が抑えられる。その結果、ブラシ31の長寿命化を図れる。したがって、スループットの低下が抑制され、かつ、基板Wの上面が万遍なく洗浄される。 In this substrate processing, the pressing pressure of the brush 31 against the rotated substrate W is higher in the region A where the second priority y is higher. For this reason, the cleaning time of the region A having a relatively high second priority y on the upper surface of the substrate W is shortened. On the other hand, the consumption of the brush 31 is suppressed as compared with the substrate processing in which the brush 31 is always pressed with a constant pressing pressure. As a result, the life of the brush 31 can be extended. Accordingly, a decrease in throughput is suppressed, and the upper surface of the substrate W is uniformly cleaned.
 また、この基板処理によれば、基板Wの上面の汚染度合が高いほど基板Wに対するブラシ31の押付圧が高くなる。そのため、汚染度合が比較的高い領域Aにおける基板Wの上面の洗浄時間が短縮される。その一方で、基板Wに対してブラシ31を常に一定の押付圧で押し付ける基板処理と比較して、ブラシ31の消耗が抑えられる。その結果、ブラシ31の長寿命化を図れる。したがって、スループットの低下が抑制され、かつ、基板Wの上面が万遍なく洗浄される。 Further, according to this substrate processing, the higher the degree of contamination of the upper surface of the substrate W, the higher the pressing pressure of the brush 31 against the substrate W. Therefore, the cleaning time of the upper surface of the substrate W in the region A where the degree of contamination is relatively high is shortened. On the other hand, compared with the substrate processing in which the brush 31 is always pressed against the substrate W with a constant pressing pressure, the consumption of the brush 31 is suppressed. As a result, the life of the brush 31 can be extended. Accordingly, a decrease in throughput is suppressed, and the upper surface of the substrate W is uniformly cleaned.
 この基板処理とは異なり、基板Wの上面に対する汚れ(たとえばパーティクル)の吸着度合が高い領域Aほど第2の優先度yが高くなるように、第2の優先度yが設定されていてもよい。 Unlike this substrate processing, the second priority y may be set so that the second priority y is higher in the region A where the degree of adsorption of dirt (for example, particles) to the upper surface of the substrate W is higher. .
 図8Bは、領域Aを横軸とし、各領域Aにおける基板Wに対するブラシ31の押付圧を示したグラフ図である。コントローラ3は、図8Bのような各領域Aにおけるブラシ31の押付圧を示すグラフ図を操作ユニット6(図2参照)の表示部に表示させてもよい。これにより、作業者は、各領域Aにおける汚染度合(パーティクルの数)を視覚的に確認することができる。 FIG. 8B is a graph showing the pressing pressure of the brush 31 against the substrate W in each region A with the region A as the horizontal axis. The controller 3 may display a graph showing the pressing pressure of the brush 31 in each region A as shown in FIG. 8B on the display unit of the operation unit 6 (see FIG. 2). Thereby, the operator can visually confirm the degree of contamination (number of particles) in each region A.
 また、上述の実施形態における基板処理装置1による基板処理では、コントローラ3は、ブラシ移動工程(図4のS6)と並行して、ブラシ鉛直駆動機構38を制御して、ブラシ31を昇降させてもよい(ブラシ昇降工程)。コントローラ3は、図4に示した基板処理が実行される前に、ブラシ昇降工程におけるブラシ31の鉛直方向位置を、領域A毎に設定していてもよい(鉛直位置設定工程)。鉛直位置設定工程では、ブラシ31を基板Wの上面に沿わせた状態でブラシ移動工程が実行されるようにブラシ31の鉛直方向位置が設定される。 Further, in the substrate processing by the substrate processing apparatus 1 in the above-described embodiment, the controller 3 controls the brush vertical drive mechanism 38 to raise and lower the brush 31 in parallel with the brush moving step (S6 in FIG. 4). Good (brush lifting process). The controller 3 may set the vertical position of the brush 31 in the brush lifting / lowering process for each region A before the substrate processing shown in FIG. 4 is executed (vertical position setting process). In the vertical position setting step, the vertical position of the brush 31 is set so that the brush moving step is executed with the brush 31 being along the upper surface of the substrate W.
 図9Aに示すように、基板Wは、回転軸線a1から径方向外方に向かうにしたがって下方に向かうように基板Wが反っていることがある。すなわち、基板Wが上反りしている場合がある。この場合、基板Wの中央付近よりも基板Wの外周付近の位置の方が、鉛直方向における基板Wの上面の位置が低い。逆に、図9Bに示すように、基板Wは、回転軸線a1から径方向外方に向かうにしたがって上方に向かうように基板Wが反っていることがある。すなわち、基板Wが下反りしている場合がある。この場合、基板Wの中央付近よりも基板Wの外周付近の位置の方が、鉛直方向における基板Wの上面の位置が高い。 As shown in FIG. 9A, the substrate W may be warped so as to go downward as it goes radially outward from the rotation axis a1. That is, the substrate W may be warped. In this case, the position of the upper surface of the substrate W in the vertical direction is lower in the vicinity of the outer periphery of the substrate W than in the vicinity of the center of the substrate W. Conversely, as shown in FIG. 9B, the substrate W may be warped so as to go upward as it goes radially outward from the rotation axis a1. That is, the substrate W may be warped downward. In this case, the position of the upper surface of the substrate W in the vertical direction is higher in the vicinity of the outer periphery of the substrate W than in the vicinity of the center of the substrate W.
 この基板処理では、ブラシ移動工程と並行してブラシ昇降工程が実行される。ブラシ31を基板Wの上面に沿わせた状態でブラシ移動工程が実行されるように、ブラシ昇降工程におけるブラシ31の鉛直方向位置が領域A毎に設定される。そのため、仮に基板Wに図9Aまたは図9Bに示すような反りが発生していたとしても、ブラシ31が基板Wの上面に接触する状態を維持することができる。したがって、基板Wの上面の洗浄のむらが抑制される。したがって、基板Wの上面が一層万遍なく洗浄される。 In this substrate processing, a brush raising / lowering process is executed in parallel with the brush moving process. The vertical position of the brush 31 in the brush lifting / lowering process is set for each region A so that the brush moving process is executed with the brush 31 being along the upper surface of the substrate W. Therefore, even if the substrate W is warped as shown in FIG. 9A or 9B, the state where the brush 31 is in contact with the upper surface of the substrate W can be maintained. Therefore, uneven cleaning of the upper surface of the substrate W is suppressed. Therefore, the upper surface of the substrate W is more evenly cleaned.
 この発明は、以上に説明した実施形態に限定されるものではなく、さらに他の形態で実施することができる。 The present invention is not limited to the embodiment described above, and can be implemented in other forms.
 たとえば、コントローラ3が各領域Aにおけるブラシ31の移動速度を設定する際、補助記憶装置71に保存されたテーブル76(図3参照)が用いられてもよい。テーブル76には、図10に示すように、各領域Aにおけるブラシ31の移動距離r1,…,r(n-1)と、各領域Aにおける優先度w1,…,wnとの組み合わせのパターンが複数入力されている。図6のステップT2において、コントローラ3は、テーブル76から、各領域Aにおけるブラシ31の移動距離r1,…,r(n-1)を取得してもよい。図6のステップT4において、コントローラ3は、テーブル76から各領域Aにおける優先度w1,…,wnを取得してもよい。 For example, when the controller 3 sets the moving speed of the brush 31 in each area A, a table 76 (see FIG. 3) stored in the auxiliary storage device 71 may be used. In the table 76, as shown in FIG. 10, patterns of combinations of the movement distances r1,..., R (n−1) of the brush 31 in each area A and the priorities w1,. Multiple entries are made. In step T2 of FIG. 6, the controller 3 may acquire the movement distances r1,..., R (n−1) of the brush 31 in each region A from the table 76. 6, the controller 3 may acquire the priorities w1,..., Wn in each area A from the table 76.
 また、図6に示す例とは異なり、n=2の場合のブラシ31の移動速度vの設定方法では、コントローラ3は、ステップT2において移動距離r1を取得し、ステップT3において移動距離r1が基板Wの半径Rよりも小さいか否かを判断する。 Unlike the example shown in FIG. 6, in the method of setting the moving speed v of the brush 31 when n = 2, the controller 3 acquires the moving distance r1 in step T2, and the moving distance r1 is the substrate in step T3. It is determined whether or not it is smaller than the radius R of W.
 また、上述の実施形態とは異なり、第2の優先度yとして、速度設定工程で設定された優先度wを用いてもよい。また、押付力(押付圧)設定工程では、回転状態の基板Wに対するブラシ31の押付力(押付圧)が、ブラシ31の移動速度vに反比例して変化するように設定されてもよい。この基板処理によれば、ブラシ押付工程における基板Wに対するブラシ31の押付圧は、ブラシ31の移動速度が低いほど高くなる。ここで、前述したように、優先度wは、ブラシ31の移動速度vが低いほどが高くなり、ブラシ31の移動速度vが高いほど低くなる。そのため、優先度wが高い領域ほど当該押付力(押付圧)が高くされる。優先度wが比較的高い領域Aの基板Wの上面の洗浄時間が短縮される。したがって、スループットの低下が抑制され、かつ、基板Wの上面が万遍なく洗浄される。 Further, unlike the above-described embodiment, the priority w set in the speed setting step may be used as the second priority y. Further, in the pressing force (pressing pressure) setting step, the pressing force (pressing pressure) of the brush 31 against the rotating substrate W may be set to change in inverse proportion to the moving speed v of the brush 31. According to this substrate processing, the pressing pressure of the brush 31 against the substrate W in the brush pressing step increases as the moving speed of the brush 31 decreases. Here, as described above, the priority w increases as the moving speed v of the brush 31 decreases, and decreases as the moving speed v of the brush 31 increases. Therefore, the higher the priority w, the higher the pressing force (pressing pressure). The cleaning time of the upper surface of the substrate W in the region A having a relatively high priority w is shortened. Accordingly, a decrease in throughput is suppressed, and the upper surface of the substrate W is uniformly cleaned.
 また、上述の実施形態とは異なり、コントローラ3は、ブラシ31の移動速度vに反比例して変化するように押付量を設定してもよい。また、コントローラ3は、回転状態の基板Wに対するブラシ31の押付量を、第2の優先度yの高い領域Aほど高くなるように設定する押付量設定工程を実行してもよい。要は、コントローラ3は、回転状態の基板Wに対するブラシ31の押付力(押付圧)または押付量、すなわち押付状態を設定する押付状態設定工程を実行すればよい。 Further, unlike the above-described embodiment, the controller 3 may set the pressing amount so as to change in inverse proportion to the moving speed v of the brush 31. Further, the controller 3 may execute a pressing amount setting step of setting the pressing amount of the brush 31 against the substrate W in the rotating state so as to increase in the region A having the second priority y. In short, the controller 3 may perform a pressing state setting step of setting the pressing force (pressing pressure) or pressing amount of the brush 31 against the substrate W in the rotating state, that is, the pressing state.
 また、上述の実施形態では、ブラシ移動工程(図4のS6)において、ブラシ31は中央位置から外周位置へ向けて移動された。しかし、上述の実施形態とは異なり、ブラシ移動工程において、ブラシ31が外周位置から中央位置へ向けて移動されてもよい。また、ブラシ31は、外周位置から中央位置に向けて移動された後に、再び外周位置に向けて移動されてもよい。 In the above-described embodiment, the brush 31 is moved from the central position toward the outer peripheral position in the brush moving step (S6 in FIG. 4). However, unlike the above-described embodiment, in the brush moving step, the brush 31 may be moved from the outer peripheral position toward the central position. Further, the brush 31 may be moved toward the outer peripheral position again after being moved from the outer peripheral position toward the central position.
 本発明の実施形態について詳細に説明してきたが、これらは本発明の技術的内容を明らかにするために用いられた具体例に過ぎず、本発明はこれらの具体例に限定して解釈されるべきではなく、本発明の範囲は添付の請求の範囲によってのみ限定される。 Although the embodiments of the present invention have been described in detail, these are merely specific examples used to clarify the technical contents of the present invention, and the present invention is construed to be limited to these specific examples. Rather, the scope of the present invention is limited only by the accompanying claims.
 この出願は、2016年9月26日に日本国特許庁に提出された特願2016-187246号に対応しており、この出願の全開示はここに引用により組み込まれるものとする。 This application corresponds to Japanese Patent Application No. 2016-187246 filed with the Japan Patent Office on September 26, 2016, the entire disclosure of which is incorporated herein by reference.
1   :基板処理装置
3   :コントローラ(コンピュータ)
21  :スピンベース(基板保持ユニット)
22  :回転軸(基板回転ユニット)
23  :電動モータ(基板回転ユニット)
37  :ブラシ水平駆動機構(ブラシ移動ユニット)
38  :ブラシ鉛直駆動機構(ブラシ接触ユニット、ブラシ昇降ユニット)
39  :押付状態変更機構(ブラシ押付ユニット)
A   :領域
L   :仮想線
M   :リムーバブルメディア(記録媒体)
P   :プログラム
27  :吸引機構(基板保持ユニット)
T   :合計時間
W   :基板
a1  :回転軸線
r   :移動距離
v   :移動速度
w   :優先度
y   :第2の優先度 
 
1: Substrate processing device 3: Controller (computer)
21: Spin base (substrate holding unit)
22: Rotating shaft (substrate rotating unit)
23: Electric motor (substrate rotation unit)
37: Brush horizontal drive mechanism (brush moving unit)
38: Brush vertical drive mechanism (brush contact unit, brush lifting unit)
39: Pressing state changing mechanism (brush pressing unit)
A: Area L: Virtual line M: Removable medium (recording medium)
P: Program 27: Suction mechanism (substrate holding unit)
T: Total time W: Substrate a1: Rotation axis r: Movement distance v: Movement speed w: Priority y: Second priority

Claims (15)

  1.  基板を水平に保持する基板保持工程と、
     前記水平に保持された基板を、鉛直方向に沿う回転軸線のまわりに回転させる基板回転工程と、
     前記水平に保持された基板の上面を洗浄するためのブラシを回転状態の前記基板の上面に接触させるブラシ接触工程と、
     前記ブラシ接触工程と並行して、前記水平に保持された基板の上面の中央に接触する位置と、当該基板の上面の外周に接触する位置との間で前記ブラシを移動させるブラシ移動工程と、
     前記基板の上面を当該基板と同心の円形の仮想線で複数の領域に分割し、各前記領域に優先度を設定し、前記優先度が高い前記領域ほど前記ブラシの移動速度が低くなるように前記ブラシ移動工程における前記ブラシの移動速度を設定する速度設定工程とを含む、基板処理方法。
    A substrate holding step for holding the substrate horizontally;
    A substrate rotating step of rotating the horizontally held substrate around a rotation axis along the vertical direction;
    A brush contact step of bringing a brush for cleaning the upper surface of the horizontally held substrate into contact with the upper surface of the rotating substrate;
    In parallel with the brush contact step, a brush moving step of moving the brush between a position in contact with the center of the upper surface of the substrate held horizontally and a position in contact with the outer periphery of the upper surface of the substrate;
    The upper surface of the substrate is divided into a plurality of regions by a circular imaginary line concentric with the substrate, a priority is set for each region, and the higher the priority, the lower the moving speed of the brush. And a speed setting step for setting a moving speed of the brush in the brush moving step.
  2.  前記速度設定工程が、前記基板の上面の汚染度合が高いほど高くなるように設定された前記優先度に基づいて、前記ブラシ移動工程における前記ブラシの移動速度を前記領域毎に設定する工程を含む、請求項1に記載の基板処理方法。 The speed setting step includes a step of setting, for each region, the brush moving speed in the brush moving step based on the priority set so as to increase as the degree of contamination on the upper surface of the substrate increases. The substrate processing method according to claim 1.
  3.  前記速度設定工程が、前記ブラシ移動工程が実行される合計時間をTとし、前記領域の数をiとし、前記回転軸線から数えてi番目の前記領域の前記優先度をwiとし、前記回転軸線から数えてi番目の前記領域における前記ブラシの移動距離をriとし、前記回転軸線から数えてi番目の前記領域における前記ブラシの移動時間をtiとし、前記回転軸線から数えてi番目の前記領域における前記ブラシの移動速度をviとして、下記式(1)および式(2)に基づいて各前記領域における前記ブラシの移動速度を設定する工程を含む、請求項1または2に記載の基板処理方法。
    Figure JPOXMLDOC01-appb-M000001
    In the speed setting step, T is the total time during which the brush moving step is executed, i is the number of the regions, wi is the priority of the i-th region counted from the rotation axis, and the rotation axis The movement distance of the brush in the i-th area counted from ri, the movement time of the brush in the i-th area counted from the rotation axis as ti, and the i-th area counted from the rotation axis The substrate processing method according to claim 1, further comprising a step of setting the moving speed of the brush in each of the regions based on the following formulas (1) and (2), where v is the moving speed of the brush: .
    Figure JPOXMLDOC01-appb-M000001
  4.  前記ブラシ接触工程が、回転状態の前記基板の上面に対して前記ブラシを押し付けるブラシ押付工程を含み、
     各前記領域に第2の優先度を設定し、回転状態の前記基板に対する前記ブラシの押付量または押付圧を、前記第2の優先度が高い前記領域ほど高くなるように各前記領域に設定する押付状態設定工程をさらに含む、請求項1~3のいずれか一項に記載の基板処理方法。
    The brush contact step includes a brush pressing step of pressing the brush against the upper surface of the substrate in a rotating state,
    A second priority is set for each of the areas, and the pressing amount or pressing pressure of the brush against the rotated substrate is set for each of the areas such that the higher the second priority, the higher the area. The substrate processing method according to any one of claims 1 to 3, further comprising a pressing state setting step.
  5.  前記押付状態設定工程が、前記基板の上面の汚染度合が高いほど高くなるように設定された前記第2の優先度に基づいて、前記押付量または前記押付圧を設定する工程を含む、請求項4に記載の基板処理方法。 The pressing state setting step includes a step of setting the pressing amount or the pressing pressure based on the second priority set so as to be higher as the degree of contamination on the upper surface of the substrate is higher. 5. The substrate processing method according to 4.
  6.  前記ブラシ接触工程が、回転状態の前記基板の上面に対して前記ブラシを押し付けるブラシ押付工程を含み、
     前記ブラシの移動速度に反比例して変化するように、回転状態の前記基板に対する前記ブラシの押付量または押付圧を設定する押付状態設定工程を含む、請求項1~3のいずれか一項に記載の基板処理方法。
    The brush contact step includes a brush pressing step of pressing the brush against the upper surface of the substrate in a rotating state,
    The pressing state setting step of setting a pressing amount or pressing pressure of the brush against the substrate in a rotating state so as to change in inverse proportion to a moving speed of the brush. Substrate processing method.
  7.  前記ブラシ移動工程と並行して、前記ブラシを昇降させるブラシ昇降工程と、
     前記ブラシを前記基板の上面に沿わせた状態で前記ブラシ移動工程が実行されるように、前記ブラシ昇降工程における前記ブラシの鉛直方向位置を前記領域毎に設定する鉛直位置設定工程とをさらに含む、請求項1~6のいずれか一項に記載の基板処理方法。
    In parallel with the brush moving step, a brush raising and lowering step for raising and lowering the brush,
    A vertical position setting step of setting a vertical position of the brush for each region in the brush lifting step so that the brush moving step is performed in a state where the brush is along the upper surface of the substrate. The substrate processing method according to any one of claims 1 to 6.
  8.  基板を水平に保持する基板保持ユニットと、
     前記基板保持ユニットによって保持された基板を、鉛直方向に沿う回転軸線まわりに回転させる基板回転ユニットと、
     前記基板保持ユニットによって保持された基板の上面を洗浄するブラシと、
     前記基板保持ユニットによって保持された基板の上面に前記ブラシを接触させるブラシ接触ユニットと、
     前記ブラシを水平方向に移動させるブラシ移動ユニットと、
     前記基板回転ユニット、前記ブラシ接触ユニットおよび前記ブラシ移動ユニットを制御するコントローラとを含み、
     前記コントローラが、前記水平に保持された基板を回転させる基板回転工程と、前記水平に保持された基板に前記ブラシを接触させるブラシ接触工程と、前記ブラシ接触工程と並行して、前記水平に保持された基板の上面の中央に接触する位置と、当該基板の上面の外周に接触する位置との間で前記ブラシを移動させるブラシ移動工程と、前記基板の上面を当該基板と同心の円形の仮想線で複数の領域に分割し、各前記領域に優先度を設定し、前記優先度が高い前記領域ほど前記ブラシの移動速が低くなるように前記ブラシ移動工程における前記ブラシの移動速を設定する速度設定工程とを実行するようにプログラムされている、基板処理装置。
    A substrate holding unit for horizontally holding the substrate;
    A substrate rotating unit for rotating the substrate held by the substrate holding unit around a rotation axis along the vertical direction;
    A brush for cleaning the upper surface of the substrate held by the substrate holding unit;
    A brush contact unit for bringing the brush into contact with an upper surface of a substrate held by the substrate holding unit;
    A brush moving unit for moving the brush in a horizontal direction;
    A controller for controlling the substrate rotating unit, the brush contact unit, and the brush moving unit;
    The controller rotates the substrate held horizontally, rotates the substrate, contacts the brush with the horizontally held substrate, and contacts the brush in parallel with the brush contacting step. A brush moving step of moving the brush between a position contacting the center of the upper surface of the substrate and a position contacting the outer periphery of the upper surface of the substrate, and a circular virtual concentric surface of the substrate with the substrate. The line is divided into a plurality of areas, priority is set for each of the areas, and the brush moving speed is set in the brush moving process so that the higher the priority is, the lower the brush moving speed is. A substrate processing apparatus programmed to perform a speed setting step.
  9.  前記優先度が、前記基板の上面の汚染度合が高いほど高くなるように設定されている、請求項8に記載の基板処理装置。 The substrate processing apparatus according to claim 8, wherein the priority is set so as to increase as the degree of contamination on the upper surface of the substrate increases.
  10.  前記コントローラが、前記速度設定工程において、前記ブラシ移動工程が実行される合計時間をTとし、前記領域の数をiとし、前記回転軸線から数えてi番目の前記領域の前記優先度をwiとし、前記回転軸線から数えてi番目の前記領域における前記ブラシの移動距離をriとし、前記回転軸線から数えてi番目の前記領域における前記ブラシの移動時間をtiとし、前記回転軸線から数えてi番目の前記領域における前記ブラシの移動速度をviとして、下記式(1)および式(2)に基づいて各前記領域における前記ブラシの移動速度を設定するようにプログラムされている、請求項8または9に記載の基板処理装置。
    Figure JPOXMLDOC01-appb-M000002
    In the speed setting step, the controller sets the total time for which the brush moving step is executed as T, the number of the regions as i, and the priority of the i-th region counted from the rotation axis as wi. , The moving distance of the brush in the i-th area counted from the rotation axis is ri, the moving time of the brush in the i-th area counted from the rotation axis is ti, and i is counted from the rotation axis. The movement speed of the brush in each of the areas is programmed based on the following formulas (1) and (2), where v is the movement speed of the brush in the second area. 9. The substrate processing apparatus according to 9.
    Figure JPOXMLDOC01-appb-M000002
  11.  前記水平に保持された基板の上面に対して前記ブラシを押し付けるブラシ押付ユニットをさらに含み、
     前記コントローラが、回転状態の前記基板の上面に対して前記ブラシを押し付けるブラシ押付工程と、各前記領域に第2の優先度を設定し、回転状態の前記基板に対する前記ブラシの押付量または押付圧を、前記第2の優先度が高い前記領域ほど高くなるように各前記領域に設定する押付状態設定工程とを実行するようにプログラムされている、請求項8に記載の基板処理装置。
    A brush pressing unit that presses the brush against an upper surface of the horizontally held substrate;
    A brush pressing step in which the controller presses the brush against the upper surface of the rotating substrate, and a second priority is set for each of the regions, and the pressing amount or pressing pressure of the brush against the rotating substrate The substrate processing apparatus according to claim 8, wherein the substrate processing apparatus is programmed to execute a pressing state setting step of setting each of the regions such that the higher the second priority, the higher the region.
  12.  前記コントローラが、前記基板の上面の汚染度合が高いほど高くなるように設定された前記第2の優先度に基づいて、前記押付量または前記押付圧を設定する工程を実行するようにプログラムされている、請求項11に記載の基板処理装置。 The controller is programmed to execute the step of setting the pressing amount or the pressing pressure based on the second priority set so as to increase as the degree of contamination of the upper surface of the substrate increases. The substrate processing apparatus according to claim 11.
  13.  前記水平に保持された基板の上面に対して前記ブラシを押し付けるブラシ押付ユニットをさらに含み、
     前記コントローラが、回転状態の前記基板の上面に対して前記ブラシを押し付けるブラシ押付工程と、前記ブラシの移動速度に反比例して変化するように、回転状態の前記基板に対する前記ブラシの押付量または押付圧を設定する押付状態設定工程とを実行するようにプログラムされている、請求項8~10のいずれか一項に記載の基板処理装置。
    A brush pressing unit that presses the brush against an upper surface of the horizontally held substrate;
    A brush pressing step in which the controller presses the brush against the upper surface of the substrate in the rotating state and a pressing amount or pressing of the brush against the substrate in the rotating state so as to change inversely proportional to the moving speed of the brush. The substrate processing apparatus according to any one of claims 8 to 10, wherein the substrate processing apparatus is programmed to execute a pressing state setting step of setting a pressure.
  14.  前記ブラシを昇降させるブラシ昇降ユニットをさらに含み、
     前記コントローラが、前記ブラシ接触工程と並行して、前記ブラシを昇降させるブラシ昇降工程と、前記ブラシを前記基板の上面に沿わせた状態で前記ブラシ移動工程が実行されるように、前記ブラシ昇降工程における前記ブラシの鉛直方向位置を前記領域毎に設定する鉛直位置設定工程とを実行するようにプログラムされている、請求項8~13のいずれか一項に記載の基板処理装置。
    A brush elevating unit for elevating the brush;
    In parallel with the brush contact process, the controller lifts and lowers the brush, and the brush moving process is performed in a state where the brush is moved along the upper surface of the substrate. The substrate processing apparatus according to any one of claims 8 to 13, programmed to execute a vertical position setting step of setting a vertical position of the brush in each step for each region.
  15.  請求項1~7のいずれか一項に記載の基板処理方法を、基板処理装置に備えられたコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。
     
    A computer-readable recording medium recording a program for causing a computer provided in the substrate processing apparatus to execute the substrate processing method according to any one of claims 1 to 7.
PCT/JP2017/033970 2016-09-26 2017-09-20 Substrate processing method, substrate processing device, and recording medium WO2018056328A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-187246 2016-09-26
JP2016187246A JP6785605B2 (en) 2016-09-26 2016-09-26 Substrate processing method, substrate processing equipment, and recording medium

Publications (1)

Publication Number Publication Date
WO2018056328A1 true WO2018056328A1 (en) 2018-03-29

Family

ID=61689584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033970 WO2018056328A1 (en) 2016-09-26 2017-09-20 Substrate processing method, substrate processing device, and recording medium

Country Status (3)

Country Link
JP (1) JP6785605B2 (en)
TW (1) TWI654036B (en)
WO (1) WO2018056328A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208265A1 (en) * 2018-04-27 2019-10-31 株式会社Screenホールディングス Substrate treatment device and substrate treatment method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH118212A (en) * 1997-06-13 1999-01-12 Sony Corp Wafer-cleaning method and its device
JP2014127584A (en) * 2012-12-26 2014-07-07 Tokyo Electron Ltd Substrate cleaning device, substrate cleaning method and storage medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH118212A (en) * 1997-06-13 1999-01-12 Sony Corp Wafer-cleaning method and its device
JP2014127584A (en) * 2012-12-26 2014-07-07 Tokyo Electron Ltd Substrate cleaning device, substrate cleaning method and storage medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208265A1 (en) * 2018-04-27 2019-10-31 株式会社Screenホールディングス Substrate treatment device and substrate treatment method

Also Published As

Publication number Publication date
JP6785605B2 (en) 2020-11-18
TW201817505A (en) 2018-05-16
TWI654036B (en) 2019-03-21
JP2018056198A (en) 2018-04-05

Similar Documents

Publication Publication Date Title
KR102008061B1 (en) Substrate cleaning device, substrate processing apparatus, substrate cleaning method and substrate processing method
TWI653680B (en) Substrate cleaning device, substrate processing device, and substrate cleaning method
TWI381474B (en) Substrate processing apparatus
CN107851573B (en) Substrate processing method and substrate processing apparatus
KR20120139573A (en) Substrate processing method and substrate processing unit
TWI782320B (en) Substrate processing apparatus and brush container
JP2018056550A (en) Substrate processing device and substrate processing method
KR101972226B1 (en) Substrate cleaning device and substrate processing apparatus including the same
JP2015205359A (en) Substrate treatment device
WO2018056328A1 (en) Substrate processing method, substrate processing device, and recording medium
KR20220002532A (en) Substrate processing apparatus, substrate processing method, and computer-readable storage medium
JP2021136418A (en) Substrate processing apparatus and substrate processing method
KR20210110205A (en) Substrate processing apparatus
JP2024047290A (en) Substrate processing apparatus and brush cleaning method
JP2014038958A (en) Immersion type cleaner
JP2024044924A (en) Substrate cleaning equipment and substrate cleaning method
CN114643531A (en) Pad carrier for horizontal pre-cleaning module
CN114222948A (en) Coating and developing device
JP2020053583A (en) Brush cleaning apparatus, substrate processing apparatus, and brush cleaning method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17853098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17853098

Country of ref document: EP

Kind code of ref document: A1