WO2018056215A1 - Electroconductive resin composition - Google Patents

Electroconductive resin composition Download PDF

Info

Publication number
WO2018056215A1
WO2018056215A1 PCT/JP2017/033483 JP2017033483W WO2018056215A1 WO 2018056215 A1 WO2018056215 A1 WO 2018056215A1 JP 2017033483 W JP2017033483 W JP 2017033483W WO 2018056215 A1 WO2018056215 A1 WO 2018056215A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
polyamide
content
resin composition
mass
Prior art date
Application number
PCT/JP2017/033483
Other languages
French (fr)
Japanese (ja)
Inventor
秀臣 片野
Original Assignee
片野染革株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 片野染革株式会社 filed Critical 片野染革株式会社
Publication of WO2018056215A1 publication Critical patent/WO2018056215A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon

Definitions

  • the present invention relates to a conductive resin composition containing carbon nanotubes and a polyamide resin.
  • a conductive material imparted with conductivity by adding a carbon material to a thermoplastic resin and a resin product using the conductive material are widely used.
  • carbon materials it is well known that carbon nanotubes have a smaller tube diameter (or fiber diameter) and a larger aspect ratio than other carbon materials, so that conductivity can be obtained at a low concentration.
  • carbon nanotubes provided as a raw material that is, a raw material are often provided in a fluffy aggregate. Therefore, in order to conduct electricity in the resin using the carbon nanotubes, it is required that the aggregate is dispersed and is appropriately dispersed in the resin.
  • carbon black and graphite are often used as a conductive material added to a resin, partly because dispersion is easier to control than carbon nanotubes.
  • dispersion control of the carbon nanotubes in the resin is a major issue.
  • the present inventor has developed a conductive resin having a volume resistivity in the thickness direction of 100 ⁇ ⁇ cm or less, comprising a carbon nanotube, an olefin polymer satisfying the following (1) to (3), and a thermoplastic resin:
  • a composition is proposed.
  • This conductive resin composition contains 15 to 40% by mass of carbon nanotubes, and the olefin polymer has (1) a weight average molecular weight (Mw) of 35,000 to 150,000, and (2) a molecular weight distribution ( Mw / Mn) is 3 or less, and (3) the softening point is 80 to 130 ° C. (Claim 1, Paragraph 0053, etc. of Patent Document 1).
  • Patent Document 2 maleic anhydride-modified ethylene-1-butene copolymer, maleic anhydride-modified ethylene-octene copolymer, and the like are used.
  • Polyamide resin is polyamide 11, polyamide 6, polyamide 66, polyamide 610, polyamide 612, polyamide 614, polyamide 12, polyamide 6T, polyamide 6I, polyamide 9T, polyamide M5T, polyamide 1010, polyamide 1012, polyamide 10T, polyamide MXD6, polyamide 6T / 66, polyamide 6T / 6I, polyamide 6T / 6I / 66, polyamide 6T / 2M-5T, and polyamide 9T / 2M-8T.
  • a dry color is prepared by mixing the pigment with metal soap, wax, plasticizer, etc., and melted and kneaded with the base resin.
  • a method for improving dispersibility is a well-known technique.
  • masterbatch technology that selects resins, plasticizers, and waxes that are compatible with both the pigment and the base resin, masters the pigment at a high concentration, and makes it easy to disperse the pigment into the base resin is also widely used. ing.
  • pigment dispersion techniques can be used as a reference when dispersing carbon nanotubes, but cannot be used directly for dispersing carbon nanotubes.
  • the carbon nanotubes are mixed with a plasticizer and wax before mixing the carbon nanotubes with the base resin, thereby making the carbon nanotubes easy to disperse and improving the dispersibility of the carbon nanotubes.
  • a plasticizer and wax since the aspect ratio, specific surface area, and oil absorption are large, more plasticizers and waxes are required per unit mass than conventional materials such as pigments.
  • conventional materials such as pigments.
  • plasticizers and waxes are added in a large amount, the performance of the base resin is adversely affected by bleedout of these components or deterioration of mechanical properties. .
  • Patent Document 1 the present inventor uses an olefin polymer of the following (1) to (3) to reduce the adverse effect on the performance of the base resin, such as bleed out and mechanical properties.
  • This olefin polymer has (1) a weight average molecular weight (Mw) of 35,000 to 150,000, (2) a molecular weight distribution (Mw / Mn) of 3 or less, and (3) a softening point of 80 to 130 ° C.
  • Mw weight average molecular weight
  • Mw / Mn molecular weight distribution
  • the molecular weight is larger than that of plasticizers and waxes, and adverse effects on the performance of the base resin are reduced due to bleeding out and mechanical properties.
  • the inventors have found a production method in which the olefin polymer is stirred with carbon nanotubes at a temperature of 90 ° C. or more and a stirring speed of 300 rpm or more to obtain a mixture, and then melt-mixed with a thermoplastic resin to obtain a resin composition.
  • Carbon nanotubes melt-mixed with this olefin polymer and thermoplastic resin become final products through various processes such as granulation, blending, molding, etc. In these processes, remelting and cooling solidification are performed. Will be repeated. During this time, it is an important issue to prevent the carbon nanotubes from aggregating and lowering the conductivity. In particular, when a crystalline resin is included in the thermoplastic resin, it is considered that carbon nanotubes tend to be unevenly distributed in the amorphous portion of the thermoplastic resin and the olefin polymer during the cooling and solidification process. In the process of commercialization, in order to obtain stable conductivity, a device for preventing re-aggregation of carbon nanotubes is very important. Until the final product is made, the problem is to make the carbon nanotubes in a dispersion suitable for electrical conductivity, and there is a need for means that can always obtain high electrical conductivity with a low concentration of carbon nanotubes.
  • thermoplastic resin composition of Patent Document 2 does not have electrical conductivity.
  • thermoplastic resin contains a carbon nanotube and a polyamide resin
  • compatibilizer component (D) of the present invention
  • the present invention provides the following [1] to [3].
  • [1] (A) carbon nanotube, (B) (1) The weight average molecular weight (Mw) is 35,000 to 150,000, (2) the molecular weight distribution (Mw / Mn) is 3 or less, and (3) the softening point is 80 to 130 ° C.
  • An olefin polymer (C) a thermoplastic resin containing a polyamide resin, and (D) a copolymer of maleic anhydride-modified ethylene or propylene and an ⁇ -olefin having 3 to 4 carbon atoms,
  • the content of the component (A) is 1 to 14% by mass with respect to 100% by mass in total of (A) to (D)
  • the content of the component (B) is 0.5 to 2 times the content of the component (A)
  • the content of the component (D) is 100% by mass in total of (A) to (D).
  • a conductive resin composition characterized by being 1 to 20% by mass.
  • the conductive resin composition of the present invention [1] is compared with a conventional conductive resin composition composed of carbon black, graphite, carbon nanotubes not containing a specific compatibilizer, the olefin polymer, and a polyamide resin.
  • a conventional conductive resin composition composed of carbon black, graphite, carbon nanotubes not containing a specific compatibilizer, the olefin polymer, and a polyamide resin.
  • the conductive resin composition of the present invention comprises (A) a carbon nanotube, (B) (1) The weight average molecular weight (Mw) is 35,000 to 150,000, (2) the molecular weight distribution (Mw / Mn) is 3 or less, and (3) the softening point is 80 to 130 ° C.
  • An olefin polymer (C) a thermoplastic resin containing a polyamide resin component, and (D) a copolymer of maleic anhydride-modified ethylene or propylene and an ⁇ -olefin having 3 to 4 carbon atoms,
  • the content of the component (A) is 1 to 14% by mass with respect to 100% by mass in total of (A) to (D)
  • the content of the component (B) is 0.5 to 2 times the content of the component (A)
  • the content of the component (D) is 100% by mass in total of (A) to (D).
  • the content is 1 to 20% by mass.
  • the carbon nanotube of component (A) used in the present invention is a cylindrical hollow fiber material made of carbon, and its structure may be a single layer or a multilayer, but it is easy to disperse. From the viewpoint, a multilayer structure is preferable.
  • any commercially available product can be used, but those having an average diameter (average thickness) of 5 to 20 nm and an average length of about 0.5 to 50 ⁇ m are used. Easy and preferable. If the average diameter of the carbon nanotubes is 5 nm or more, the carbon nanotubes can be hardly cut at the time of kneading, and if it is 20 nm or less, the conductivity can be increased. In addition, if the average length of the carbon nanotube is 0.5 ⁇ m or more, the conductivity can be increased, and if it is 50 ⁇ m or less, an increase in viscosity during kneading can be suppressed and kneading and molding can be facilitated.
  • the average diameter of the carbon nanotubes is more preferably 6 to 20 nm, still more preferably 7 to 20 nm, and the average length is more preferably 0.5 to 30 ⁇ m, still more preferably 0.6 to 15 ⁇ m.
  • the said average long diameter and average length can be calculated
  • required by observing a carbon nanotube with an electron microscope (SEM, TEM), and carrying out arithmetic average (n 50).
  • the carbon nanotube as component (A) can be produced by an arc discharge method, a chemical vapor deposition method (CVD method), a laser ablation method, or the like.
  • the carbon nanotube as the component (A) a known carbon nanotube can be used.
  • Examples of commercially available products include multi-walled carbon nanotubes such as Flo Tube 9000 from C-Nano Technology, C-100 from Arkema, NC7000 from Nanocyl. These commercial products satisfy the above-mentioned average major axis and average length, and can be preferably used. It is also excellent in terms of starting mass production and price competitiveness.
  • the (B) component olefin polymer used in the present invention satisfies the following (1) to (3).
  • Mw / Mn Molecular weight distribution
  • Softening point 80-130 ° C
  • an olefin polymer obtained by polymerizing at least one monomer selected from ethylene and an ⁇ -olefin having 3 to 28 carbon atoms is preferable.
  • Examples of the ⁇ -olefin having 3 to 28 carbon atoms include propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-decene, 1-undecene, 1- Examples include dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene and 1-icocene.
  • ⁇ -olefins having 3 to 24 carbon atoms are preferable, ⁇ -olefins having 3 to 12 carbon atoms are more preferable, ⁇ -olefins having 3 to 6 carbon atoms are more preferable, and 3 to 4 carbon atoms are particularly preferable.
  • olefin polymer of the component (B) an olefin homopolymer obtained by polymerizing one of these alone may be used, or an olefin polymer obtained by copolymerizing two or more of them in combination. A copolymer may be used.
  • olefin polymer includes both olefin homopolymers and olefin copolymers.
  • examples thereof include a system polymer (1) and a butene polymer in which 50 mol% or more of monomers constituting the polymer is a butene monomer. From the viewpoint of heat resistance and mechanical strength, the propylene polymer (1) is preferred.
  • propylene polymer (1) examples include propylene homopolymer, propylene-ethylene block copolymer, propylene-butene block copolymer, propylene- ⁇ -olefin block copolymer, propylene-ethylene random copolymer, propylene It is preferably a propylene-based polymer selected from a butene random copolymer, a propylene- ⁇ -olefin random copolymer, a propylene- ⁇ -olefin graft copolymer, etc., and a conductive resin composition is used. From the viewpoint of the mechanical strength of the molded product, a propylene homopolymer is particularly preferable.
  • the content of the structural unit of the ⁇ -olefin having 3 carbon atoms is preferably 50 mol% or more, more preferably 65 mol% of the monomer constituting the polymer. % Or more, more preferably 75 mol% or more, still more preferably 80 mol% or more.
  • a propylene polymer (2) satisfying at least one of the following (i) and (ii) can also be used.
  • a structural unit of ethylene is contained in an amount of more than 0 mol% and 25 mol% or less.
  • the structural unit of 1-butene is contained in an amount of more than 0 mol% and not more than 30 mol%.
  • the propylene polymer (2) is a copolymer containing an olefin having 2 carbon atoms (that is, an ethylene monomer)
  • the content of the constituent unit of the olefin having 2 carbon atoms constitutes the polymer.
  • the monomer is preferably more than 0 mol% and 25 mol% or less, more preferably more than 0 mol% and 23 mol% or less, still more preferably more than 0 mol% and 20 mol% or less, still more preferably more than 0 mol%. 18 mol% or less.
  • the content of the 1-butene constituent unit is preferably that of the monomer constituting the polymer. It is more than 0 mol% and 30 mol% or less, more preferably more than 0 mol% and 27 mol% or less, still more preferably more than 0 mol% and 20 mol% or less.
  • the component (B) olefin polymer has a weight average molecular weight (Mw) of 35,000 to 150,000, a molecular weight distribution (Mw / Mn) of 3 or less, and a softening point of 80 to 130 ° C.
  • Polymers called so-called waxes such as propylene-based polymers and ethylene-based polymers having a weight average molecular weight (Mw) of less than 35,000 have an influence on the physical properties of the molded product due to heat resistance and bleed out, and are limited in use. Arise.
  • the weight average molecular weight (Mw) is preferably 40,000 to 140,000, more preferably 42,000 to 130,000.
  • the molecular weight distribution (Mw / Mn) is preferably 2.8 or less, more preferably 2.5 or less.
  • the dispersibility of the component (A) can be improved and the processing temperature can be lowered.
  • the softening point is preferably 90 to 125 ° C, more preferably 93 to 120 ° C.
  • an olefin polymer synthesized with a metallocene catalyst is suitable.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) are measured by gel permeation chromatography (GPC) method to obtain the molecular weight distribution (Mw / Mn).
  • GPC gel permeation chromatography
  • the following apparatus and conditions are used for a measurement, and the weight average molecular weight and number average molecular weight of polystyrene conversion are obtained.
  • the molecular weight distribution (Mw / Mn) is a value calculated from these weight average molecular weight (Mw) and number average molecular weight (Mn).
  • ⁇ GPC measuring device >> Column: TOSO GMHHR-H (S) HT Detector: RI detector for liquid chromatogram WATERS 150C ⁇ Measurement condition ⁇ Solvent: 1,2,4-trichlorobenzene Measurement temperature: 145 ° C Flow rate: 1.0 ml / min Sample concentration: 2.2 mg / ml Injection volume: 160 ⁇ l Calibration curve: Universal Calibration Analysis program: HT-GPC (Ver.1.0) In the present invention, the softening point is determined in accordance with the ball ring method ISO4625.
  • thermoplastic resin containing the polyamide resin of component (C) used in the present invention examples include polyamide resins containing amino groups, such as polyamide 6, polyamide 66, polyamide 11, polyamide 12, polyamide 610, polyamide 612, polyamide 6T, Polyamide 6I, polyamide 9T, polyamide M5T, polyamide 1010, polyamide 1012, polyamide 10T, and polyamide MXD6.
  • the component (C) is also effective as a block copolymer containing two or more blended thermoplastic resins of the above polyamide resin and a polyamide resin component.
  • the block copolymer containing a polyamide resin component include polyamide elastomers which are block copolymers using polyether diol and polyester diol. Specific examples include polytetramethylene ether glycol and polyoxypropylene bricol.
  • the component (C) contains a polyamide resin component that uses a copolymer of maleic anhydride-modified ethylene or propylene, which is the component (D), and an ⁇ -olefin having 3 to 4 carbon atoms as a compatibilizing agent. It is also effective against alloys that Examples of the resin that forms an alloy with the polyamide resin include polyethylene resin, polypropylene resin, polyolefin elastomer resin, ABS resin, polycarbonate resin, polyphenylene ether resin, and polyarylate resin.
  • Component (D) is a compatibilizing agent and is a copolymer of ethylene or propylene to which a reactive group capable of reacting with a polyamide resin is added and an ⁇ -olefin having 3 to 4 carbon atoms.
  • Specific examples include a copolymer of ethylene or propylene modified with maleic anhydride and an ⁇ -olefin having 3 to 4 carbon atoms.
  • the maleic anhydride moiety of this copolymer is bonded to the amino group component of the polyamide resin, and the copolymer moiety of ethylene or propylene other than the maleic anhydride moiety and the ⁇ -olefin having 3 to 4 carbon atoms is an olefinic group.
  • the present inventor has found that it is compatible with the polymer and contributes to the improvement of conductivity by the carbon nanotube. The clear mechanism for improving the conductivity has not been fully analyzed. However, a copolymer of maleic anhydride-modified ethylene or propylene and an ⁇ -olefin having 3 to 4 carbon atoms is added to the carbon nanotube. It is considered that the carbon nanotubes are prevented from being re-aggregated and appropriately dispersed, and the electrical connection between the carbon nanotubes is maintained well.
  • the present invention is a polyamide resin containing an amino group component, such as polyamide 11, polyamide 6, polyamide 66, polyamide 610, polyamide 612, polyamide 12, polyamide 6T, polyamide 6I, polyamide 9T, polyamide M5T, polyamide 1010, This is effective for improving the conductivity of polyamide 1012, polyamide 10T, and polyamide MXD6.
  • an amino group component such as polyamide 11, polyamide 6, polyamide 66, polyamide 610, polyamide 612, polyamide 12, polyamide 6T, polyamide 6I, polyamide 9T, polyamide M5T, polyamide 1010.
  • the present invention can also be applied to two or more blended compositions of the above polyamide resins and block copolymers containing polyamide resin components.
  • the block copolymer containing a polyamide resin component include polyamide elastomers which are block copolymers using polyether diol and polyester diol. Specific examples include polytetramethylene ether glycol and polyoxypropylene bricol.
  • the present invention is also effective when imparting conductivity to these using carbon nanotubes and olefinic polymers.
  • resins that form alloys with polyamide resins can be applied to many resins that form alloys with polyamide resins by using a copolymer of ethylene or propylene modified with maleic anhydride and an ⁇ -olefin having 3 to 4 carbon atoms as a compatibilizing agent.
  • resins that form alloys with polyamide resins include polyethylene resins, polypropylene resins, polyolefin elastomer resins, ABS resins, polycarbonate resins, polyphenylene ether resins, and polyarylate resins.
  • the present invention is also effective when imparting conductivity using a polymer.
  • copolymers of ethylene or propylene modified with maleic anhydride and ⁇ -olefins having 3 to 4 carbon atoms are commercially available and can be used widely.
  • ⁇ -olefins having 5 or more carbon atoms used for copolymerization are also considered effective.
  • maleic anhydride modified ethylene / 1-butene copolymer has a low softening temperature. It is easy to use and preferable.
  • component (D) is a maleic anhydride-modified ethylene / 1-butene copolymer
  • ethylene / 1-butene copolymer modified with maleic anhydride has a low softening temperature.
  • the present inventor believes that it is suitable for controlling the compatibility of the component (B) with the olefin polymer and the dispersibility of the carbon nanotubes.
  • the maleic anhydride-modified ethylene / 1-butene copolymer improves the low temperature impact resistance of the conductive resin composition.
  • the content ratio of the four components (A) to (D) of the conductive resin composition affects the conductivity and mechanical properties of the molded body using the conductive resin composition.
  • the content of the four components is adjusted.
  • the content of the component (A) is 1 to 14% by weight, preferably 2 to 10% by weight, more preferably 2 to 8% by weight, based on 100% by weight of the total of the components (A) to (D). It is. When the content of the component (A) is less than 1% by mass, conductivity may not be exhibited. On the other hand, if the content of the component (A) exceeds 14% by mass, the electrical conductivity increases, but the content of the component (C) decreases, so the mechanical properties of the molded body using the conductive resin composition May be inferior.
  • the content of the component (B) is 0.5 to 2 times, preferably 0.7 to 1.8 times, more preferably 1.0 to 1.8 times the content of the component (A). Is double. If content of (B) component is less than 0.5 time, the dispersibility of (A) component will worsen and there exists a possibility of reducing the electroconductivity of the molded object using the conductive resin composition. On the other hand, when the content of the component (B) exceeds twice, the molded body using the conductive resin composition tends to be soft.
  • the content of the component (D) is 1 to 20% by mass, preferably 2 to 17% by mass, more preferably 2 to 15% by mass, with respect to 100% by mass of the total of the components (A) to (D). It is. If the content of the component (D) is less than 1% by mass, the effect of adding high conductivity to a molded body using the conductive resin composition may be insufficient. On the other hand, when the content of the component (D) exceeds 20% by mass, the conductivity of the molded body using the conductive resin composition is lowered.
  • the component (D) While it contributes to the dispersion of the carbon nanotubes, it is thought that if the amount is too large, it interferes with the electrical connection between the carbon nanotubes.
  • the content of the component (C) is the balance obtained by subtracting the contents of the components (A), (B), and (D) from the total 100% by mass of the components (A) to (D). Therefore, when the content of the component (A), the component (B), and the component (D) increases, the content of the component (C) relatively decreases. In order to balance electrical conductivity and mechanical properties, it is necessary to ensure the content of the component (C). For that purpose, the content of the component (A) is as small as possible, and the conductive resin composition It is important to develop conductivity in a molded body using a product.
  • the conductive resin composition of the present invention is a non-conductive inorganic filler generally contained in this type of composition, for example, calcium carbonate, as long as the effects of the present invention are not impaired in addition to the above components.
  • Additives such as precipitated barium sulfate, talc, diatomaceous earth, mica, glass, alumina, magnesium carbonate, calcium sulfate; lubricant; antistatic agent; ultraviolet absorber; pigment; .
  • an example of the method for producing the conductive resin composition of the present invention is to stir the components (A) and (B) at a temperature of 90 ° C. or higher and a stirring speed of 300 rpm or higher to obtain a mixture. It is a method of adding a component (C) and a component (D) to obtain a resin composition.
  • the production of the conductive resin composition of the present invention will be described in detail.
  • the component (A) and the component (B) are charged into a mixer and stirred and mixed at a temperature higher than the temperature at which the component (B) is softened, that is, 90 ° C. or higher and a stirring speed of 300 rpm or higher. Is loosened, and the component (B) adheres to the surface of the component (A).
  • (B) component adheres to the surface of (A) component, and at the time of melt-kneading (C) component and (D) component, (A) component becomes (C) component and (D) It becomes a factor that easily mixes with the component, and enables the (A) component to be highly dispersed into the (C) component and the (D) component.
  • the stirring temperature is preferably 100 to 180 ° C., more preferably 120 to 160 ° C.
  • the stirring speed is preferably 400 to 3000 rpm, more preferably 500 to 2500 rpm.
  • the stirring time is not particularly limited as long as the component (A) and the component (B) are sufficiently stirred and mixed, but it is preferably 5 minutes to 24 hours, more preferably 10 minutes to 12 hours.
  • a mixer for stirring and mixing for example, a known high-speed stirring mixer such as a dissolver, butterfly mixer, paddle blade mixer, Henschel mixer, super mixer, Banbury mixer, kneader, and trimix can be used. Specifically, an FM mixer manufactured by Nippon Coke Kogyo Co., Ltd., a super mixer manufactured by Kawata Co., Ltd., and the like can be given.
  • the total amount of component (A) and the total amount of component (B) may be mixed in one shot, but after the total amount of component (A) and a part of component (B) are mixed, the remainder Multi-stages such as a method of further adding and mixing the component (B), a method of mixing a part of the component (A) and the total amount of the component (B), and further adding and mixing the remaining component (A) May be mixed.
  • the obtained mixture (powder mixture) of the component (A) and the component (B) is added to the component (C) and the component (D) and mixed.
  • the mixture of the component (A) and the component (B) (powder mixture), the mixture of the component (C) and the component (D) is melt-kneaded with a single-screw or twin-screw extruder and extruded into a strand shape into pellets.
  • a conductive resin composition can be obtained by granulating.
  • the heating temperature in melt kneading is preferably 150 to 600 ° C., more preferably 200 to 500 ° C.
  • the mixture (powder mixture), the component (C) and a part of the component (D) are melt-kneaded with a single-screw or twin-screw extruder, extruded into a strand, granulated into pellets, and the next step A so-called master batch method may be used in which the remaining components (C) and (D) are mixed, melt-kneaded with a single-screw or twin-screw extruder, extruded into a strand, and granulated into pellets.
  • the carbon nanotubes of component (A) can be highly dispersed in the resin, so that the conductive material can be molded with a small amount of addition and has excellent mechanical properties.
  • Resin composition The above-described manufacturing method is simple and excellent in cost reduction.
  • the melt flow rate (MFR) of the conductive resin composition obtained by the above production method is preferably 0.1 to 100 g / 10 min, more preferably 0.3 to 50 g / 10 min.
  • the volume resistivity of the molded body using the cured product of the conductive resin composition is preferably 1 ⁇ 10 7 to 1 ⁇ 10 1 ⁇ ⁇ cm, more preferably 1 ⁇ 10 6 to 2 ⁇ 10 1 ⁇ ⁇ cm. It is.
  • the flexural modulus of the cured product of the resin composition is preferably 200 MPa or more, more preferably 300 MPa or more, and even more preferably 400 MPa or more.
  • the Charpy impact strength of the cured product of the resin composition is preferably 0.5 kJ / m 2 or more, more preferably 0.7 kJ / m 2 or more, and further preferably 1.0 kJ / m 2 or more.
  • each physical property value can be specifically measured by the method described in the examples.
  • a molded body using the conductive resin composition of the present invention can be usually produced by various molding methods employed for thermoplastic resins. Examples of the manufacturing method include an injection molding method, an extrusion molding method, a calendar molding method, a press molding method, and the like.
  • the component (A) and the component (B) were passed through the preparation of the mixture (powder mixture), and then the mixture (powder mixture) was mixed with the component (C) and (D). The components were added, and this was carried out by the production method for the melt kneading and granulating step in the next step.
  • a bending test and a Charpy impact test sample were prepared using an injection molding machine (Toshiba Machine Co., Ltd., IS80EPN-2A) and a test piece molding die (clamping force: 80 t) compliant with JIS K6911.
  • the cylinder set temperature during molding was 200 to 350 ° C.
  • volume resistivity In sample preparation by injection molding, a plate having a length of 13 mm ⁇ width of 180 mm and a thickness of about 3 mm was prepared by an injection molding machine. Cut out a volume resistivity measurement piece from the center of the plate, measuring 13 mm in length ⁇ 30 mm in width and about 3 mm in thickness, and using a resistivity meter (Loresta GPMCCP-T610, manufactured by Mitsubishi Chemical Analytech Co., Ltd.) was measured.
  • the volume resistivity is preferably 1 ⁇ 10 7 ⁇ ⁇ cm or less.
  • MFR Melt flow rate
  • the bending elastic modulus was measured with a precision universal testing machine (manufactured by Shimadzu Corporation, AGS-500A type).
  • the bending elastic modulus is preferably 200 MPa or more.
  • Charpy impact strength Based on JIS K7111, it was measured with a universal pendulum impact tester (CEAST, 6545/000 type).
  • the Charpy impact strength is preferably 0.5 KJ / m 2 or more.
  • each component used in the examples and comparative examples is as follows.
  • C-2) “Rilsan BMF O” (PA11), manufactured by Arkema
  • C-3) “MX Nylon S6007” (PA MXD6) manufactured by Mitsubishi Gas Chemical Company, Inc.
  • C-4) “Pebax 4533SP01” manufactured by Arkema (copolymer of PA elastomer PA12 and polytetramethylene ether glycol)
  • Component (D) Copolymer of ethylene or propylene modified with maleic anhydride and an ⁇ -olefin having 3 to 4 carbon atoms
  • D-1) “Tuffmer MH5040” manufactured by Mitsui Chemicals, Inc.
  • Examples 1 to 5 and Comparative Examples 1 to 5 The components (A) and (B) shown in Tables 1 and 2 were charged in an FM mixer (FM10C / I, capacity: 9 dm 3 ) manufactured by Nippon Coke Industries Co., Ltd. The mixture was stirred and mixed under the conditions of a stirring time of 60 minutes and a rotation speed of 1000 rpm to obtain a powdery mixture. According to JIS K5101, the bulk density of the carbon nanotube “NC7000” of (A-1) and the powdered mixture of the obtained components (A) and (B) was measured. Was 0.07 g / cm 3 , and the powder mixture was 0.40 g / cm 3 .
  • Tables 1 and 2 show physical property evaluations of the obtained conductive resin compositions. In Tables 1 and 2, a blank represents no inclusion.
  • Example 1 in which the content of the component (A) and the component (B) are the same, and the content of the component (D) is 6.0% by mass and Comparative Example 1 in which the content is 0.5% by mass, Example 1 The volume resistivity was smaller, the flexural modulus was larger, and the Charpy impact strength was larger. Therefore, Example 1 was superior as a conductive resin composition. It is considered that by adding an appropriate amount of the component (D), the dispersion of the carbon nanotubes is improved and the conductivity is improved. Further, it is considered that the improvement of the flexural modulus and the Charpy impact strength was caused by the improved dispersion of the carbon nanotubes.
  • Example 1 In Example 1 in which the content of the component (A) and the component (B) are the same, and the content of the component (D) is 6.0% by mass, and Comparative Example 2 in which the content is 25.0% by mass, Example 1 The volume resistivity was smaller and the flexural modulus was larger. Regarding Charpy impact strength, Comparative Example 2 was larger. With the increase in the content of the component (D), Comparative Example 2 shifted to a soft characteristic, but the volume resistivity significantly increased. This is considered to be because the content of the component (D) is too large, and the formation of the conductive circuit by the carbon nanotubes has been hindered. Even if there was too little content of (D) component, the favorable conductive resin composition was not obtained.
  • Comparative Example 3 Comparing Comparative Example 3 and Example 1 in which the content of the carbon nanotube as the component (A) is increased to 18.0% by mass, Comparative Example 3 has smaller volume resistivity and better electrical conductivity. As shown, the MFR was small, the flexural modulus was large, and the Charpy impact strength was remarkably low. In Comparative Example 3, it was very difficult to flow at the time of melting (that is, the moldability was poor), and the molded body was hard and brittle, so that it was not suitable for practical use as a molded body. Comparative Example 3 did not exhibit the effects of the present invention aimed at a resin having both good conductivity with a small amount of carbon nanotubes and excellent moldability and mechanical properties.
  • Comparative Example 4 in which the content of the carbon nanotube as the component (A) is reduced to 0.5 mass% is compared with Example 1, the volume resistivity of Comparative Example 4 exceeds 1 ⁇ 10 7 ⁇ ⁇ cm. The conductivity was poor.
  • the volume resistivity of Comparative Example 5 is remarkably high at 3 ⁇ 10 4 ⁇ ⁇ cm, and the MFR, flexural modulus, and Charpy impact strength are almost the same, but as a molded article of the conductive resin composition It was not suitable for practical use.
  • Example 2 compared with Example 1, the component (B) is changed from (B-1) to (B-2), the component (D) is changed from (D-1) to (D-2). Changed, but with good results.
  • Example 3 compared with Example 1, the component (C) was changed from (C-1) to (C-2), but the result was good.
  • Example 4 compared with Example 1, the component (A) is changed from (A-1) to (A-2), the component (C) is changed from (C-1) to (C-3). Changed, but with good results.
  • Example 5 compared with Example 1, the component (A) is changed from (A-1) to (A-2), the component (C) is changed from (C-1) to (C-4). Changed, but with good results.
  • the volume resistivity was significantly reduced to 9 ⁇ 10 ⁇ 1 ⁇ ⁇ cm by increasing the content of the carbon nanotube as the component (A) to 10.0% by mass.
  • (C-4) is a polyamide elastomer of a thermoplastic resin containing a polyamide resin component.
  • the component (D) is a maleic anhydride-modified ethylene or propylene copolymer with a C 3-4 ⁇ -olefin, specifically maleic anhydride.
  • Good results were obtained for Examples 1 to 5 in which the acid-modified ethylene / 1-butene copolymer was added within the scope of the present invention.
  • Comparative Examples 1 to 5 outside the scope of the present invention were inferior to Examples 1 to 5, indicating that the present invention has a remarkable effect.
  • the molded body made of the conductive resin composition of the present invention is easy to obtain good conductivity even when a small amount of carbon nanotubes are added, compared to carbon black and graphite conventionally used as a conductivity imparting agent. Therefore, the resin using the conductive resin composition is excellent in moldability and mechanical properties, and is suitable for injection molded products, extrusion molded products, films, and sheets that require antistatic properties.

Abstract

The purpose of the present invention is to provide an electroconductive resin composition usable in electroconductive fields such as the prevention of static build-up. The electroconductive resin composition is characterized by comprising (A) carbon nanotubes, (B) an olefin-based polymer having (1) a weight-average molecular weight (Mw) of 35,000-150,000, (2) a molecular-weight distribution (Mw/Mn) of 3 or less, and (3) a softening point of 80-130°C, (C) a thermoplastic resin comprising a polyamide resin ingredient, and (D) a copolymer of a maleic-anhydride-modified ethylene or propylene with a C3-4 α-olefin, the content of component (A) being 1-14 mass% with respect to the total amount of (A) to (D), which is taken as 100 mass%, the content of component (B) being 0.5-2 times by mass the component (A) content, and the content of component (D) being 1-20 mass% with respect to the total amount of (A) to (D), which is taken as 100 mass%.

Description

導電性樹脂組成物Conductive resin composition
 本発明は、カーボンナノチューブと、ポリアミド樹脂とを含有する導電性樹脂組成物に関する。 The present invention relates to a conductive resin composition containing carbon nanotubes and a polyamide resin.
 熱可塑性樹脂に炭素材料を添加することにより、導電性を付与した導電性材料と、この導電性材料を用いた樹脂製品が、広汎に使用されている。これら炭素材料の中でもカーボンナノチューブは、他の炭素材料に比べ、チューブ径(または繊維径)が細くて、アスペクト比が大きいので、低濃度で導電性が得られることは、良く知られている。 A conductive material imparted with conductivity by adding a carbon material to a thermoplastic resin and a resin product using the conductive material are widely used. Among these carbon materials, it is well known that carbon nanotubes have a smaller tube diameter (or fiber diameter) and a larger aspect ratio than other carbon materials, so that conductivity can be obtained at a low concentration.
 しかしながら、素材、すなわち原料として提供されるカーボンナノチューブは、毛玉状の凝集体で供されることが多い。従って、カーボンナノチューブを用いて、樹脂中で電気を伝導させる様にするためには、この凝集体を分散し、かつ樹脂中で程良く分散していることが求められる。 However, carbon nanotubes provided as a raw material, that is, a raw material are often provided in a fluffy aggregate. Therefore, in order to conduct electricity in the resin using the carbon nanotubes, it is required that the aggregate is dispersed and is appropriately dispersed in the resin.
 従来、樹脂に添加する導電性材料として、カーボンブラックや黒鉛が多く使用されている理由は、カーボンナノチューブに比べて、分散の制御がし易いことも一因である。ここで、カーボンナノチューブを用いた導電性樹脂組成物に関しては、樹脂中でのカーボンナノチューブの分散制御が大きな課題となっている。 Conventionally, carbon black and graphite are often used as a conductive material added to a resin, partly because dispersion is easier to control than carbon nanotubes. Here, regarding the conductive resin composition using carbon nanotubes, dispersion control of the carbon nanotubes in the resin is a major issue.
 本発明者は、カーボンナノチューブ、下記(1)~(3)を満たすオレフィン系重合体、および熱可塑性樹脂を含む樹脂組成物による、厚み方向の体積抵抗率が100Ω・cm以下の高い導電性樹脂組成物を提案している。この導電性樹脂組成物は、カーボンナノチューブを15~40質量%含んでおり、オレフィン系重合体は、(1)重量平均分子量(Mw)が35,000~150,000、(2)分子量分布(Mw/Mn)が3以下、(3)軟化点が80~130℃としている(特許文献1の請求項1、第0053段落等)。 The present inventor has developed a conductive resin having a volume resistivity in the thickness direction of 100 Ω · cm or less, comprising a carbon nanotube, an olefin polymer satisfying the following (1) to (3), and a thermoplastic resin: A composition is proposed. This conductive resin composition contains 15 to 40% by mass of carbon nanotubes, and the olefin polymer has (1) a weight average molecular weight (Mw) of 35,000 to 150,000, and (2) a molecular weight distribution ( Mw / Mn) is 3 or less, and (3) the softening point is 80 to 130 ° C. (Claim 1, Paragraph 0053, etc. of Patent Document 1).
 また、ポリアミド樹脂とポリオレフィン樹脂の混合に、所定の相溶化剤が有効である、と報告されている(特許文献2)。実施例では、無水マレイン酸変性されたエチレン-1-ブテン共重合体、無水マレイン酸変性されたエチレン・オクテン共重合体等が使われている。ポリアミド樹脂は、ポリアミド11、ポリアミド6、ポリアミド66、ポリアミド610、ポリアミド612、ポリアミド614、ポリアミド12、ポリアミド6T、ポリアミド6I、ポリアミド9T、ポリアミドM5T、ポリアミド1010、ポリアミド1012、ポリアミド10T、ポリアミドMXD6、ポリアミド6T/66、ポリアミド6T/6I、ポリアミド6T/6I/66、ポリアミド6T/2M-5T、及びポリアミド9T/2M-8Tが挙げられている。 Also, it has been reported that a predetermined compatibilizing agent is effective for mixing a polyamide resin and a polyolefin resin (Patent Document 2). In the examples, maleic anhydride-modified ethylene-1-butene copolymer, maleic anhydride-modified ethylene-octene copolymer, and the like are used. Polyamide resin is polyamide 11, polyamide 6, polyamide 66, polyamide 610, polyamide 612, polyamide 614, polyamide 12, polyamide 6T, polyamide 6I, polyamide 9T, polyamide M5T, polyamide 1010, polyamide 1012, polyamide 10T, polyamide MXD6, polyamide 6T / 66, polyamide 6T / 6I, polyamide 6T / 6I / 66, polyamide 6T / 2M-5T, and polyamide 9T / 2M-8T.
特開2016―41806号公報Japanese Unexamined Patent Publication No. 2016-41806 特開2013―147645号公報JP 2013-147645 A
 プラスチックを着色する分野において、着色用顔料の分散を制御するため、顔料と、金属石鹸、ワックス、可塑剤等とを、混合したドライカラーを作製し、ベース樹脂と溶融混練することで、顔料の分散性を向上させる方法は、良く知られた技術である。さらに、顔料とベース樹脂の両方に相性の良い樹脂、可塑剤、ワックスを選択し、顔料を高濃度でマスターバッチ化し、顔料をベース樹脂へ分散し易くしたマスターバッチ化の技術も、広く使われている。 In the field of coloring plastics, in order to control the dispersion of the coloring pigment, a dry color is prepared by mixing the pigment with metal soap, wax, plasticizer, etc., and melted and kneaded with the base resin. A method for improving dispersibility is a well-known technique. Furthermore, masterbatch technology that selects resins, plasticizers, and waxes that are compatible with both the pigment and the base resin, masters the pigment at a high concentration, and makes it easy to disperse the pigment into the base resin is also widely used. ing.
 これらの顔料分散技術は、カーボンナノチューブの分散に際し、参考にすることができるが、カーボンナノチューブの分散に直接使用することはできない。 These pigment dispersion techniques can be used as a reference when dispersing carbon nanotubes, but cannot be used directly for dispersing carbon nanotubes.
 特許文献1に記載された技術においては、カーボンナノチューブをベース樹脂と混合する前に、可塑剤やワックスと混合することにより、カーボンナノチューブを分散させ易い状態にして、カーボンナノチューブの分散性を向上させている。しかしながら、カーボンナノチューブの場合、アスペクト比、比表面積や吸油量が大きいので、顔料等の既存材料と比べて、可塑剤やワックス等が、単位質量当たりで多く必要になる。ここで、分散性向上のため、これら可塑剤やワックス等を多量に入れると、それら成分のブリードアウトや、機械物性等の劣化より、ベース樹脂の性能に悪影響を及ぼすことも良く知られている。 In the technique described in Patent Document 1, the carbon nanotubes are mixed with a plasticizer and wax before mixing the carbon nanotubes with the base resin, thereby making the carbon nanotubes easy to disperse and improving the dispersibility of the carbon nanotubes. ing. However, in the case of carbon nanotubes, since the aspect ratio, specific surface area, and oil absorption are large, more plasticizers and waxes are required per unit mass than conventional materials such as pigments. Here, in order to improve dispersibility, it is well known that when these plasticizers and waxes are added in a large amount, the performance of the base resin is adversely affected by bleedout of these components or deterioration of mechanical properties. .
 そこで、ベース樹脂への影響の少なくてカーボンナノチューブを良く分散させるための、材料と手法が、期待されていた。 Therefore, materials and methods for dispersing carbon nanotubes well with little influence on the base resin were expected.
 特許文献1では、本発明者が、カーボンナノチューブの分散を下記(1)~(3)のオレフィン系重合体を用いて、ブリードアウトや機械物性等でベース樹脂の性能への悪影響を少なくしている。このオレフィン系重合体は、(1)重量平均分子量(Mw)が35,000~150,000、(2)分子量分布(Mw/Mn)が3以下、(3)軟化点が80~130℃であり、可塑剤やワックスと比べて分子量が大きく、ブリードアウトや機械物性等でベース樹脂の性能への悪影響を少なくしている。 In Patent Document 1, the present inventor uses an olefin polymer of the following (1) to (3) to reduce the adverse effect on the performance of the base resin, such as bleed out and mechanical properties. Yes. This olefin polymer has (1) a weight average molecular weight (Mw) of 35,000 to 150,000, (2) a molecular weight distribution (Mw / Mn) of 3 or less, and (3) a softening point of 80 to 130 ° C. The molecular weight is larger than that of plasticizers and waxes, and adverse effects on the performance of the base resin are reduced due to bleeding out and mechanical properties.
 そして、このオレフィン系重合体をカーボンナノチューブと温度90℃以上、攪拌速度300rpm以上で撹拌して混合物を得て、その後、熱可塑性樹脂と溶融混合して樹脂組成物を得る製造方法を見出した。 Then, the inventors have found a production method in which the olefin polymer is stirred with carbon nanotubes at a temperature of 90 ° C. or more and a stirring speed of 300 rpm or more to obtain a mixture, and then melt-mixed with a thermoplastic resin to obtain a resin composition.
 このオレフィン系重合体と熱可塑性樹脂とに溶融混合したカーボンナノチューブは、造粒、ブレンド、成形等様々な工程を経て、最終製品となっていくが、これら工程中では、再溶融、冷却固化が繰り返されることになる。この間、カーボンナノチューブが凝集し、導電性が低下するのを防ぐことが、重要な課題となる。特に、熱可塑樹脂に結晶性樹脂が含まれる場合には、冷却固化の過程で、熱可塑性樹脂の非晶性部位とオレフィン系重合体に、カーボンナノチューブが偏在する傾向になる、と考えられる。このような製品化の過程において、安定的な導電性を得るために、カーボンナノチューブの再凝集を防ぐ工夫が、非常に重要となる。最終製品ができるまでの間に、カーボンナノチューブが、導電に適した分散となるようにすることが課題であり、常に低濃度のカーボンナノチューブで高い導電性を獲得できる手段が求められている。 Carbon nanotubes melt-mixed with this olefin polymer and thermoplastic resin become final products through various processes such as granulation, blending, molding, etc. In these processes, remelting and cooling solidification are performed. Will be repeated. During this time, it is an important issue to prevent the carbon nanotubes from aggregating and lowering the conductivity. In particular, when a crystalline resin is included in the thermoplastic resin, it is considered that carbon nanotubes tend to be unevenly distributed in the amorphous portion of the thermoplastic resin and the olefin polymer during the cooling and solidification process. In the process of commercialization, in order to obtain stable conductivity, a device for preventing re-aggregation of carbon nanotubes is very important. Until the final product is made, the problem is to make the carbon nanotubes in a dispersion suitable for electrical conductivity, and there is a need for means that can always obtain high electrical conductivity with a low concentration of carbon nanotubes.
 また、特許文献2の熱可塑性樹脂組成物は、導電性を有さない。 Moreover, the thermoplastic resin composition of Patent Document 2 does not have electrical conductivity.
 本発明者は、上記の課題を解決するべく検討した結果、熱可塑性樹脂が、カーボンナノチューブとポリアミド樹脂を含有する場合に、後述する相溶化剤(本発明の(D)成分)を配合することで、上記課題を解決できることを発見した。 As a result of studying to solve the above problems, the present inventor, when the thermoplastic resin contains a carbon nanotube and a polyamide resin, blending a compatibilizer (component (D) of the present invention) described later. Then, it discovered that the said subject could be solved.
 すなわち、本発明は、以下の〔1〕~〔3〕を提供する。
〔1〕(A)カーボンナノチューブ、
(B)(1)重量平均分子量(Mw)が35,000~150,000であり、(2)分子量分布(Mw/Mn)が3以下であり、かつ(3)軟化点が80~130℃であるオレフィン系重合体、
(C)ポリアミド樹脂を含有する熱可塑性樹脂、および
(D)無水マレイン酸変性されたエチレンまたはプロピレンと炭素数3~4のα-オレフィンとの共重合体を含み、
(A)成分の含有量が、(A)~(D)の合計100質量%に対して、1~14質量%であり、
(B)成分の含有量が、(A)成分の含有量の0.5~2質量倍であり、かつ
(D)成分の含有量が、(A)~(D)の合計100質量%に対して、1~20質量%であることを特徴とする、導電性樹脂組成物。
〔2〕(D)成分が、無水マレイン酸変性されたエチレン・1-ブテン共重合体である、上記〔1〕記載の導電性樹脂組成物。
〔3〕上記〔1〕または〔2〕記載の導電性樹脂組成物の硬化物を用いる、成形体。
That is, the present invention provides the following [1] to [3].
[1] (A) carbon nanotube,
(B) (1) The weight average molecular weight (Mw) is 35,000 to 150,000, (2) the molecular weight distribution (Mw / Mn) is 3 or less, and (3) the softening point is 80 to 130 ° C. An olefin polymer,
(C) a thermoplastic resin containing a polyamide resin, and (D) a copolymer of maleic anhydride-modified ethylene or propylene and an α-olefin having 3 to 4 carbon atoms,
The content of the component (A) is 1 to 14% by mass with respect to 100% by mass in total of (A) to (D),
The content of the component (B) is 0.5 to 2 times the content of the component (A), and the content of the component (D) is 100% by mass in total of (A) to (D). On the other hand, a conductive resin composition characterized by being 1 to 20% by mass.
[2] The conductive resin composition according to [1], wherein the component (D) is a maleic anhydride-modified ethylene / 1-butene copolymer.
[3] A molded article using a cured product of the conductive resin composition according to [1] or [2].
 本発明〔1〕の導電性樹脂組成物は、カーボンブラック、グラファイト、特定の相溶化剤を配合しないカーボンナノチューブ、該オレフィン系重合体、ポリアミド樹脂で構成される従来の導電性樹脂組成物と比較して、カーボンナノチューブの添加が少量でも、良好な導電性が得られ易いので、導電性樹脂組成物を用いる樹脂の成形性、および機械的特性(例えば、曲げ弾性率、シャルピー衝撃強度)が優れる、という顕著な効果を有する。 The conductive resin composition of the present invention [1] is compared with a conventional conductive resin composition composed of carbon black, graphite, carbon nanotubes not containing a specific compatibilizer, the olefin polymer, and a polyamide resin. Thus, even when a small amount of carbon nanotubes are added, good conductivity is easily obtained, so that the moldability of resin using the conductive resin composition and mechanical properties (for example, flexural modulus, Charpy impact strength) are excellent. Has a remarkable effect.
 以下、本発明を、詳細に説明する。 Hereinafter, the present invention will be described in detail.
〔導電性樹脂組成物〕
 本発明の導電性樹脂組成物は、(A)カーボンナノチューブ、
(B)(1)重量平均分子量(Mw)が35,000~150,000であり、(2)分子量分布(Mw/Mn)が3以下であり、かつ(3)軟化点が80~130℃であるオレフィン系重合体、
(C)ポリアミド樹脂成分を含有する熱可塑性樹脂、および
(D)無水マレイン酸変性されたエチレンまたはプロピレンと炭素数3~4のα-オレフィンとの共重合体を含み、
(A)成分の含有量が、(A)~(D)の合計100質量%に対して、1~14質量%であり、
(B)成分の含有量が、(A)成分の含有量の0.5~2質量倍であり、かつ
(D)成分の含有量が、(A)~(D)の合計100質量%に対して、1~20質量%であることを特徴とする。
[Conductive resin composition]
The conductive resin composition of the present invention comprises (A) a carbon nanotube,
(B) (1) The weight average molecular weight (Mw) is 35,000 to 150,000, (2) the molecular weight distribution (Mw / Mn) is 3 or less, and (3) the softening point is 80 to 130 ° C. An olefin polymer,
(C) a thermoplastic resin containing a polyamide resin component, and (D) a copolymer of maleic anhydride-modified ethylene or propylene and an α-olefin having 3 to 4 carbon atoms,
The content of the component (A) is 1 to 14% by mass with respect to 100% by mass in total of (A) to (D),
The content of the component (B) is 0.5 to 2 times the content of the component (A), and the content of the component (D) is 100% by mass in total of (A) to (D). On the other hand, the content is 1 to 20% by mass.
[(A)カーボンナノチューブ]
 本発明で用いる(A)成分のカーボンナノチューブは、炭素からなる円筒状の中空繊維状物質であり、その構造は、単層であっても多層であってもよいが、分散のし易さの観点から、多層のものが好ましい。
[(A) Carbon nanotube]
The carbon nanotube of component (A) used in the present invention is a cylindrical hollow fiber material made of carbon, and its structure may be a single layer or a multilayer, but it is easy to disperse. From the viewpoint, a multilayer structure is preferable.
 また、(A)成分のカーボンナノチューブは、いずれの市販品も使用可能であるが、平均直径(平均太さ)が5~20nm、平均長さが0.5~50μm程度のものが、使用しやすく、好ましい。カーボンナノチューブの平均直径が5nm以上であれば、混練時にカーボンナノチューブを切れにくくすることができ、20nm以下であれば、導電性を高めることができる。また、カーボンナノチューブの平均長さが0.5μm以上であれば、導電性を高めることができ、50μm以下であれば、混練時の粘度上昇を抑制し、混練および成形をしやすくすることができる。また、上記観点から、カーボンナノチューブの平均直径は、より好ましくは6~20nm、更に好ましくは7~20nmであり、平均長さは、より好ましくは0.5~30μm、更に好ましくは0.6~15μmである。なお、上記平均長径および平均長さは、カーボンナノチューブを電子顕微鏡(SEM、TEM)で観察し、算術平均することにより求めることができる(n=50)。 As the carbon nanotube of component (A), any commercially available product can be used, but those having an average diameter (average thickness) of 5 to 20 nm and an average length of about 0.5 to 50 μm are used. Easy and preferable. If the average diameter of the carbon nanotubes is 5 nm or more, the carbon nanotubes can be hardly cut at the time of kneading, and if it is 20 nm or less, the conductivity can be increased. In addition, if the average length of the carbon nanotube is 0.5 μm or more, the conductivity can be increased, and if it is 50 μm or less, an increase in viscosity during kneading can be suppressed and kneading and molding can be facilitated. . From the above viewpoint, the average diameter of the carbon nanotubes is more preferably 6 to 20 nm, still more preferably 7 to 20 nm, and the average length is more preferably 0.5 to 30 μm, still more preferably 0.6 to 15 μm. In addition, the said average long diameter and average length can be calculated | required by observing a carbon nanotube with an electron microscope (SEM, TEM), and carrying out arithmetic average (n = 50).
 (A)成分であるカーボンナノチューブは、アーク放電法、化学気相成長法(CVD法)、レーザー・アブレーション法等によって製造することができる。 The carbon nanotube as component (A) can be produced by an arc discharge method, a chemical vapor deposition method (CVD method), a laser ablation method, or the like.
 また、(A)成分であるカーボンナノチューブとしては、公知のカーボンナノチューブを用いることができる。市販品としては、例えば、C-Nano Technology社のFlo Tube9000、Arkema社のC-100、Nanocyl社のNC7000等の多層カーボンナノチューブが、挙げられる。これらの市販品は、上述の平均長径および平均長さを満たし、好ましく用いることができる。また、量産を開始していることや価格競争力の観点からも優れている。 In addition, as the carbon nanotube as the component (A), a known carbon nanotube can be used. Examples of commercially available products include multi-walled carbon nanotubes such as Flo Tube 9000 from C-Nano Technology, C-100 from Arkema, NC7000 from Nanocyl. These commercial products satisfy the above-mentioned average major axis and average length, and can be preferably used. It is also excellent in terms of starting mass production and price competitiveness.
[(B)オレフィン系重合体]
 本発明で用いる(B)成分のオレフィン系重合体は、下記(1)~(3)を満たす。
 (1)重量平均分子量(Mw)が35,000~150,000
 (2)分子量分布(Mw/Mn)が3以下
 (3)軟化点が80~130℃
[(B) Olefin polymer]
The (B) component olefin polymer used in the present invention satisfies the following (1) to (3).
(1) Weight average molecular weight (Mw) of 35,000 to 150,000
(2) Molecular weight distribution (Mw / Mn) is 3 or less (3) Softening point is 80-130 ° C
 (B)成分であるオレフィン系重合体としては、エチレンおよび炭素数3~28のα-オレフィンから選ばれる少なくとも1種のモノマーを重合してなるオレフィン系重合体が、好ましい。 As the olefin polymer as the component (B), an olefin polymer obtained by polymerizing at least one monomer selected from ethylene and an α-olefin having 3 to 28 carbon atoms is preferable.
 炭素数3~28のα-オレフィンとしては、例えば、プロピレン、1-ブテン、1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-ノナデセンおよび1-イコセン等が挙げられる。これらの中でも、好ましくは炭素数3~24のα-オレフィン、より好ましくは炭素数3~12のα-オレフィン、更に好ましくは炭素数3~6のα-オレフィン、特に好ましくは炭素数3~4のα-オレフィン、最も好ましくはプロピレンである。 Examples of the α-olefin having 3 to 28 carbon atoms include propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-decene, 1-undecene, 1- Examples include dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene and 1-icocene. Of these, α-olefins having 3 to 24 carbon atoms are preferable, α-olefins having 3 to 12 carbon atoms are more preferable, α-olefins having 3 to 6 carbon atoms are more preferable, and 3 to 4 carbon atoms are particularly preferable. An α-olefin, most preferably propylene.
 (B)成分のオレフィン系重合体としては、これらのうちの1種を単独で重合したオレフィン系単独重合体を使用してもよいし、2種以上を組み合わせて共重合して得られるオレフィン系共重合体を使用してもよい。なお、本明細書中において、単に「オレフィン系重合体」という場合には、オレフィン系単独重合体およびオレフィン系共重合体の両方が含まれる。 As the olefin polymer of the component (B), an olefin homopolymer obtained by polymerizing one of these alone may be used, or an olefin polymer obtained by copolymerizing two or more of them in combination. A copolymer may be used. In the present specification, the term “olefin polymer” includes both olefin homopolymers and olefin copolymers.
 (B)成分のオレフィン系重合体としては、重合体を構成するモノマーの50モル%以上がエチレンモノマーであるエチレン系重合体、重合体を構成するモノマーの50モル%以上がプロピレンモノマーであるプロピレン系重合体(1)、重合体を構成するモノマーの50モル%以上がブテンモノマーであるブテン系重合体等が挙げられる。耐熱性および機械的強度の観点からプロピレン系重合体(1)が好ましい。 As the olefin polymer of component (B), an ethylene polymer in which 50 mol% or more of the monomer constituting the polymer is an ethylene monomer, or a propylene monomer in which 50 mol% or more of the monomer constituting the polymer is a propylene monomer Examples thereof include a system polymer (1) and a butene polymer in which 50 mol% or more of monomers constituting the polymer is a butene monomer. From the viewpoint of heat resistance and mechanical strength, the propylene polymer (1) is preferred.
 プロピレン系重合体(1)としては、プロピレン単独重合体、プロピレン-エチレンブロック共重合体、プロピレン-ブテンブロック共重合体、プロピレン-α-オレフィンブロック共重合体、プロピレン-エチレンランダム共重合体、プロピレン-ブテンランダム共重合体、プロピレン-α-オレフィンランダム共重合体、又はプロピレン-α-オレフィングラフト共重合体等から選択されるプロピレン系重合体であることが好ましく、導電性樹脂組成物を用いた成形体の機械的強度の観点から、特にプロピレン単独重合体が好ましい。 Examples of the propylene polymer (1) include propylene homopolymer, propylene-ethylene block copolymer, propylene-butene block copolymer, propylene-α-olefin block copolymer, propylene-ethylene random copolymer, propylene It is preferably a propylene-based polymer selected from a butene random copolymer, a propylene-α-olefin random copolymer, a propylene-α-olefin graft copolymer, etc., and a conductive resin composition is used. From the viewpoint of the mechanical strength of the molded product, a propylene homopolymer is particularly preferable.
 プロピレン系重合体(1)は、炭素数が3のα-オレフィン(すなわち、プロピレンモノマー)の構成単位の含有量が、重合体を構成するモノマーの好ましくは50モル%以上、より好ましくは65モル%以上、更に好ましくは75モル%以上、より更に好ましくは80モル%以上である。 In the propylene polymer (1), the content of the structural unit of the α-olefin having 3 carbon atoms (that is, propylene monomer) is preferably 50 mol% or more, more preferably 65 mol% of the monomer constituting the polymer. % Or more, more preferably 75 mol% or more, still more preferably 80 mol% or more.
 また、(B)成分のオレフィン系重合体としては、下記(i)、(ii)の少なくともどちらか一つを満たすプロピレン系重合体(2)も用いることができる。
 (i)エチレンの構成単位が、0モル%を超え25モル%以下で含まれる。
 (ii)1-ブテンの構成単位が、0モル%を超え30モル%以下で含まれる。
Further, as the olefin polymer of the component (B), a propylene polymer (2) satisfying at least one of the following (i) and (ii) can also be used.
(I) A structural unit of ethylene is contained in an amount of more than 0 mol% and 25 mol% or less.
(Ii) The structural unit of 1-butene is contained in an amount of more than 0 mol% and not more than 30 mol%.
 プロピレン系重合体(2)は、炭素数が2のオレフィン(すなわち、エチレンモノマー)を含有する共重合体の場合には、炭素数が2のオレフィンの構成単位の含有量が、重合体を構成するモノマーの好ましくは0モル%を超え25モル%以下、より好ましくは0モル%を超え23モル%以下、さらに好ましくは0モル%を超え20モル%以下、より更に好ましくは0モル%を超え18モル%以下である。また、炭素数が4以上のα-オレフィン(すなわち、1-ブテンモノマー)を含有する共重合体の場合には、1-ブテンの構成単位の含有量が、重合体を構成するモノマーの好ましくは0モル%を超え30モル%以下、より好ましくは0モル%を超え27モル%以下、更に好ましくは0モル%を超え20モル%以下である。 In the case where the propylene polymer (2) is a copolymer containing an olefin having 2 carbon atoms (that is, an ethylene monomer), the content of the constituent unit of the olefin having 2 carbon atoms constitutes the polymer. The monomer is preferably more than 0 mol% and 25 mol% or less, more preferably more than 0 mol% and 23 mol% or less, still more preferably more than 0 mol% and 20 mol% or less, still more preferably more than 0 mol%. 18 mol% or less. In the case of a copolymer containing an α-olefin having 4 or more carbon atoms (ie, 1-butene monomer), the content of the 1-butene constituent unit is preferably that of the monomer constituting the polymer. It is more than 0 mol% and 30 mol% or less, more preferably more than 0 mol% and 27 mol% or less, still more preferably more than 0 mol% and 20 mol% or less.
 (B)成分のオレフィン系重合体は、重量平均分子量(Mw)が35,000~150,000、分子量分布(Mw/Mn)が3以下、軟化点が80~130℃である。重量平均分子量(Mw)が35,000未満のプロピレン系重合体やエチレン系重合体等のいわゆるワックスと呼ばれる重合体は、耐熱性やブリードアウトによる成形体物性への影響があり、使用に制限が生じる。また、重量平均分子量(Mw)が150,000を超える樹脂では、(A)成分の分散処理が困難となる。上記観点から、重量平均分子量(Mw)は、好ましくは40,000~140,000、より好ましくは42,000~130,000である。 The component (B) olefin polymer has a weight average molecular weight (Mw) of 35,000 to 150,000, a molecular weight distribution (Mw / Mn) of 3 or less, and a softening point of 80 to 130 ° C. Polymers called so-called waxes such as propylene-based polymers and ethylene-based polymers having a weight average molecular weight (Mw) of less than 35,000 have an influence on the physical properties of the molded product due to heat resistance and bleed out, and are limited in use. Arise. In addition, with a resin having a weight average molecular weight (Mw) exceeding 150,000, it is difficult to disperse the component (A). From the above viewpoint, the weight average molecular weight (Mw) is preferably 40,000 to 140,000, more preferably 42,000 to 130,000.
 また、分子量分布(Mw/Mn)が3以下のオレフィン系重合体を使用することで、製品物性に影響する低分子量成分の悪影響と高分子量成分の悪影響とを排除することが可能となる。上記観点から、分子量分布(Mw/Mn)は、好ましくは2.8以下、より好ましくは2.5以下である。 Also, by using an olefin polymer having a molecular weight distribution (Mw / Mn) of 3 or less, it is possible to eliminate the adverse effects of low molecular weight components and high molecular weight components that affect product properties. From the above viewpoint, the molecular weight distribution (Mw / Mn) is preferably 2.8 or less, more preferably 2.5 or less.
 さらに、軟化点を80~130℃であるオレフィン系重合体を用いることで、(A)成分の分散性を良好にでき、処理温度も下げられる。上記観点から、軟化点は、好ましくは90~125℃、より好ましくは93~120℃である。 Furthermore, by using an olefin polymer having a softening point of 80 to 130 ° C., the dispersibility of the component (A) can be improved and the processing temperature can be lowered. From the above viewpoint, the softening point is preferably 90 to 125 ° C, more preferably 93 to 120 ° C.
 また、(B)成分としては、メタロセン触媒により合成されたオレフィン系重合体が好適である。 As the component (B), an olefin polymer synthesized with a metallocene catalyst is suitable.
 本発明では、ゲルパーミエイションクロマトグラフィ(GPC)法により、重量平均分子量(Mw)、および数平均分子量(Mn)を測定し、分子量分布(Mw/Mn)を求める。なお、測定には、下記の装置および条件を使用し、ポリスチレン換算の重量平均分子量、および数平均分子量を得る。分子量分布(Mw/Mn)は、これらの重量平均分子量(Mw)および数平均分子量(Mn)により算出した値である。 In the present invention, the weight average molecular weight (Mw) and the number average molecular weight (Mn) are measured by gel permeation chromatography (GPC) method to obtain the molecular weight distribution (Mw / Mn). In addition, the following apparatus and conditions are used for a measurement, and the weight average molecular weight and number average molecular weight of polystyrene conversion are obtained. The molecular weight distribution (Mw / Mn) is a value calculated from these weight average molecular weight (Mw) and number average molecular weight (Mn).
《GPC測定装置》
 カラム    :TOSO GMHHR-H(S)HT
 検出器    :液体クロマトグラム用RI検出器 WATERS 150C
〔測定条件〕
 溶媒     :1,2,4-トリクロロベンゼン
 測定温度   :145℃
 流速     :1.0ml/分
 試料濃度   :2.2mg/ml
注入量     :160μl
 検量線    :Universal Calibration
 解析プログラム:HT-GPC(Ver.1.0)
 また、本発明では、軟化点はボールリング法ISO4625に準拠して求める。
<< GPC measuring device >>
Column: TOSO GMHHR-H (S) HT
Detector: RI detector for liquid chromatogram WATERS 150C
〔Measurement condition〕
Solvent: 1,2,4-trichlorobenzene Measurement temperature: 145 ° C
Flow rate: 1.0 ml / min Sample concentration: 2.2 mg / ml
Injection volume: 160 μl
Calibration curve: Universal Calibration
Analysis program: HT-GPC (Ver.1.0)
In the present invention, the softening point is determined in accordance with the ball ring method ISO4625.
[(C)ポリアミド樹脂を含有する熱可塑性樹脂]
 本発明で用いる(C)成分のポリアミド樹脂を含有する熱可塑性樹脂としては、アミノ基を含むポリアミド樹脂、例えば、ポリアミド6、ポリアミド66、ポリアミド11、ポリアミド12、ポリアミド610、ポリアミド612、ポリアミド6T、ポリアミド6I、ポリアミド9T、ポリアミドM5T、ポリアミド1010、ポリアミド1012、ポリアミド10T、およびポリアミドMXD6が挙げられる。
[(C) Thermoplastic resin containing polyamide resin]
Examples of the thermoplastic resin containing the polyamide resin of component (C) used in the present invention include polyamide resins containing amino groups, such as polyamide 6, polyamide 66, polyamide 11, polyamide 12, polyamide 610, polyamide 612, polyamide 6T, Polyamide 6I, polyamide 9T, polyamide M5T, polyamide 1010, polyamide 1012, polyamide 10T, and polyamide MXD6.
 また、(C)成分は、上記のポリアミド樹脂の2種類以上の配合熱可塑性樹脂や、ポリアミド樹脂成分を含有するブロックコポリマーとしても効果的である。ポリアミド樹脂成分を含有するブロックコポリマーとしては、ポリエーテルジオール、ポリエステルジオールを用いたブロックコポリマーであるポリアミドエラストマーが挙げられる。具体的には、ポリテトラメチレンエーテルグリコール、ポリオキシプロピレンブリコールなどが挙げられる。 The component (C) is also effective as a block copolymer containing two or more blended thermoplastic resins of the above polyamide resin and a polyamide resin component. Examples of the block copolymer containing a polyamide resin component include polyamide elastomers which are block copolymers using polyether diol and polyester diol. Specific examples include polytetramethylene ether glycol and polyoxypropylene bricol.
 さらに、(C)成分は、(D)成分である無水マレイン酸変性されたエチレンまたはプロピレンと炭素数3~4のα-オレフィンとの共重合体を相溶化剤とする、ポリアミド樹脂成分を含有するアロイに対しても効果的である。ポリアミド樹脂とアロイを形成する樹脂としては、ポリエチレン樹脂、ポリプロピレン樹脂、ポリオレフィンエラストマー樹脂、ABS樹脂、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、ポリアリレート樹脂が挙げられる。 Furthermore, the component (C) contains a polyamide resin component that uses a copolymer of maleic anhydride-modified ethylene or propylene, which is the component (D), and an α-olefin having 3 to 4 carbon atoms as a compatibilizing agent. It is also effective against alloys that Examples of the resin that forms an alloy with the polyamide resin include polyethylene resin, polypropylene resin, polyolefin elastomer resin, ABS resin, polycarbonate resin, polyphenylene ether resin, and polyarylate resin.
[(D)無水マレイン酸変性されたエチレンまたはプロピレンと炭素数3~4のα-オレフィンとの共重合体]
 (D)成分は、相溶化剤であり、ポリアミド樹脂と反応し得る反応性基が付与されたエチレンまたはプロピレンと炭素数3~4のα-オレフィンとの共重合体である。具体的には、無水マレイン酸変性されたエチレンまたはプロピレンと炭素数3~4のα-オレフィンとの共重合体が挙げられる。この共重合体の無水マレイン酸部位が、ポリアミド樹脂のアミノ基成分と結合し、無水マレイン酸部位以外のエチレンまたはプロピレンと炭素数3~4のα-オレフィンとの共重合体部位が、オレフィン系重合体と相溶するとともに、カーボンナノチューブによる導電性の向上に寄与することを、本発明者は見出した。この導電性の向上に関する明解なメカニズムについては、充分な解析はできていないが、無水マレイン酸変性されたエチレンまたはプロピレンと炭素数3~4のα-オレフィンとの共重合体が、カーボンナノチューブに纏わりつくことで、カーボンナノチューブの再凝集を防ぎ、適度に分散させ、カーボンナノチューブ同志の電気的な接続が良好に保たれている、と考えられる。
[(D) Copolymer of Maleic Anhydride-Modified Ethylene or Propylene and C3-C4 α-Olefin]
Component (D) is a compatibilizing agent and is a copolymer of ethylene or propylene to which a reactive group capable of reacting with a polyamide resin is added and an α-olefin having 3 to 4 carbon atoms. Specific examples include a copolymer of ethylene or propylene modified with maleic anhydride and an α-olefin having 3 to 4 carbon atoms. The maleic anhydride moiety of this copolymer is bonded to the amino group component of the polyamide resin, and the copolymer moiety of ethylene or propylene other than the maleic anhydride moiety and the α-olefin having 3 to 4 carbon atoms is an olefinic group. The present inventor has found that it is compatible with the polymer and contributes to the improvement of conductivity by the carbon nanotube. The clear mechanism for improving the conductivity has not been fully analyzed. However, a copolymer of maleic anhydride-modified ethylene or propylene and an α-olefin having 3 to 4 carbon atoms is added to the carbon nanotube. It is considered that the carbon nanotubes are prevented from being re-aggregated and appropriately dispersed, and the electrical connection between the carbon nanotubes is maintained well.
 従って、本発明は、アミノ基成分を含有するポリアミド樹脂、例えば、ポリアミド11、ポリアミド6、ポリアミド66、ポリアミド610、ポリアミド612、ポリアミド12、ポリアミド6T、ポリアミド6I、ポリアミド9T、ポリアミドM5T、ポリアミド1010、ポリアミド1012、ポリアミド10T、及びポリアミドMXD6の導電性向上に有効である。 Therefore, the present invention is a polyamide resin containing an amino group component, such as polyamide 11, polyamide 6, polyamide 66, polyamide 610, polyamide 612, polyamide 12, polyamide 6T, polyamide 6I, polyamide 9T, polyamide M5T, polyamide 1010, This is effective for improving the conductivity of polyamide 1012, polyamide 10T, and polyamide MXD6.
 また、本発明は、上記のポリアミド樹脂の2種類以上の配合組成物や、ポリアミド樹脂成分を含有するブロックコポリマーにも適用できる。ポリアミド樹脂成分を含有するブロックコポリマーとしては、ポリエーテルジオール、ポリエステルジオールを用いたブロックコポリマーであるポリアミドエラストマーが、挙げられる。具体的には、ポリテトラメチレンエーテルグリコール、ポリオキシプロピレンブリコールなどが、挙げられる。これらに、カーボンナノチューブとオレフィン系重合体を用いて、導電性を付与する際にも、本発明は有効である。 The present invention can also be applied to two or more blended compositions of the above polyamide resins and block copolymers containing polyamide resin components. Examples of the block copolymer containing a polyamide resin component include polyamide elastomers which are block copolymers using polyether diol and polyester diol. Specific examples include polytetramethylene ether glycol and polyoxypropylene bricol. The present invention is also effective when imparting conductivity to these using carbon nanotubes and olefinic polymers.
 さらに、無水マレイン酸変性されたエチレンまたはプロピレンと炭素数3~4のα-オレフィンとの共重合体を相溶化剤として、ポリアミド樹脂とアロイを形成する多くの樹脂にも適用できる。具体的には、ポリアミド樹脂とアロイを形成する樹脂として、ポリエチレン樹脂、ポリプロピレン樹脂、ポリオレフィンエラストマー樹脂、ABS樹脂、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、ポリアリレート樹脂が挙げられ、これらのアロイをカーボンナノチューブとオレフィン系重合体を用いて、導電性を付与する際にも、本発明は有効である。 Furthermore, it can be applied to many resins that form alloys with polyamide resins by using a copolymer of ethylene or propylene modified with maleic anhydride and an α-olefin having 3 to 4 carbon atoms as a compatibilizing agent. Specific examples of resins that form alloys with polyamide resins include polyethylene resins, polypropylene resins, polyolefin elastomer resins, ABS resins, polycarbonate resins, polyphenylene ether resins, and polyarylate resins. The present invention is also effective when imparting conductivity using a polymer.
 また、無水マレイン酸変性されたエチレンまたはプロピレンと炭素数3~4のα-オレフィンとの共重合体は、数多く上市されており、広く使用できる。 Many copolymers of ethylene or propylene modified with maleic anhydride and α-olefins having 3 to 4 carbon atoms are commercially available and can be used widely.
 また、一方、共重合に使われる炭素数5以上のα-オレフィンも、有効であると、考えている。例えば、1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-ノナデセンおよび1-イコセン等が、挙げられる。 On the other hand, α-olefins having 5 or more carbon atoms used for copolymerization are also considered effective. For example, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, Examples thereof include 1-heptadecene, 1-octadecene, 1-nonadecene, 1-icocene and the like.
 これらの無水マレイン酸変性されたエチレンまたはプロピレンと炭素数3~4のα-オレフィンとの共重合体の中でも、特に無水マレイン酸変性されたエチレン・1-ブテン共重合体は、軟化温度が低くて、使い易く、好ましい。 Among these copolymers of ethylene anhydride or propylene modified with maleic anhydride and an α-olefin having 3 to 4 carbon atoms, particularly maleic anhydride modified ethylene / 1-butene copolymer has a low softening temperature. It is easy to use and preferable.
 以下、(D)成分が、無水マレイン酸変性されたエチレン・1-ブテン共重合体である場合について、説明する。 Hereinafter, the case where the component (D) is a maleic anhydride-modified ethylene / 1-butene copolymer will be described.
 無水マレイン酸変性されたエチレン若しくはプロピレンと炭素数3~4のα-オレフィンとの共重合体の中でも、特に無水マレイン酸変性されたエチレン・1-ブテン共重合体は、軟化温度の低いので、(B)成分のオレフィン系重合体との相溶性とカーボンナノチューブの分散性の制御に適していると本発明者は、考えている。また、副次的な効果ではあるが、無水マレイン酸変性されたエチレン・1-ブテン共重合体は、該導電性樹脂組成物の低温耐衝撃性を向上させる。 Among copolymers of ethylene anhydride or propylene modified with maleic anhydride and an α-olefin having 3 to 4 carbon atoms, particularly ethylene / 1-butene copolymer modified with maleic anhydride has a low softening temperature. The present inventor believes that it is suitable for controlling the compatibility of the component (B) with the olefin polymer and the dispersibility of the carbon nanotubes. In addition, as a secondary effect, the maleic anhydride-modified ethylene / 1-butene copolymer improves the low temperature impact resistance of the conductive resin composition.
 導電性樹脂組成物の(A)~(D)の4成分の含有比率は、導電性樹脂組成物を用いた成形体の導電性と機械的特性に影響を与えるので、これらのバランスを取るべく、上記4成分の含有量を調整する。 The content ratio of the four components (A) to (D) of the conductive resin composition affects the conductivity and mechanical properties of the molded body using the conductive resin composition. The content of the four components is adjusted.
 (A)成分の含有量は、(A)~(D)成分の合計100質量%に対して、1~14質量%であり、好ましくは2~10質量%、より好ましくは2~8質量%である。(A)成分の含有量が1質量%未満では、導電性が発現しないおそれがある。一方、(A)成分の含有量が14質量%を超えると、導電性は高くなるが、(C)成分の含有量が少なくなるため、導電性樹脂組成物を用いた成形体の機械的特性に劣るおそれがある。 The content of the component (A) is 1 to 14% by weight, preferably 2 to 10% by weight, more preferably 2 to 8% by weight, based on 100% by weight of the total of the components (A) to (D). It is. When the content of the component (A) is less than 1% by mass, conductivity may not be exhibited. On the other hand, if the content of the component (A) exceeds 14% by mass, the electrical conductivity increases, but the content of the component (C) decreases, so the mechanical properties of the molded body using the conductive resin composition May be inferior.
 (B)成分の含有量は、(A)成分の含有量の0.5~2質量倍であり、好ましくは0.7~1.8質量倍、より好ましくは1.0~1.8質量倍である。(B)成分の含有量が0.5倍未満では、(A)成分の分散性が悪くなり、導電性樹脂組成物を用いた成形体の導電性を低下させるおそれがある。一方、(B)成分の含有量が2倍を超えると導電性樹脂組成物を用いた成形体が柔らかくなる傾向となる。 The content of the component (B) is 0.5 to 2 times, preferably 0.7 to 1.8 times, more preferably 1.0 to 1.8 times the content of the component (A). Is double. If content of (B) component is less than 0.5 time, the dispersibility of (A) component will worsen and there exists a possibility of reducing the electroconductivity of the molded object using the conductive resin composition. On the other hand, when the content of the component (B) exceeds twice, the molded body using the conductive resin composition tends to be soft.
 (D)成分の含有量は、(A)~(D)成分の合計100質量%に対して、1~20質量%であり、好ましくは2~17質量%、より好ましくは2~15質量%である。(D)成分の含有量が1質量%未満では、導電性樹脂組成物を用いた成形体への高い導電性の発現の為の添加効果が不十分となるおそれがある。一方、(D)成分の含有量が20質量%を超えると、逆に導電性樹脂組成物を用いた成形体の導電性は低くなる。(D)成分が20質量%を超えるような含有量になると導電性樹脂組成物を用いた成形体の導電性が低下する理由については、充分には解明できていないが、(D)成分はカーボンナノチューブの分散に寄与する一方で、多過ぎるとカーボンナノチューブ同志の電気的な接続の邪魔をするためである、と考えられる。 The content of the component (D) is 1 to 20% by mass, preferably 2 to 17% by mass, more preferably 2 to 15% by mass, with respect to 100% by mass of the total of the components (A) to (D). It is. If the content of the component (D) is less than 1% by mass, the effect of adding high conductivity to a molded body using the conductive resin composition may be insufficient. On the other hand, when the content of the component (D) exceeds 20% by mass, the conductivity of the molded body using the conductive resin composition is lowered. Although the reason why the conductivity of the molded article using the conductive resin composition is lowered when the content of the component (D) exceeds 20% by mass has not been fully clarified, the component (D) While it contributes to the dispersion of the carbon nanotubes, it is thought that if the amount is too large, it interferes with the electrical connection between the carbon nanotubes.
 なお、(C)成分の含有量は、(A)~(D)成分の合計100質量%から(A)成分、(B)成分、および(D)成分の含有量を差し引いた残部となる。そのため、(A)成分、(B)成分、および(D)成分の含有量が多くなると、相対的に(C)成分の含有量は少なくなる。導電性と機械的特性のバランスを取るうえで、(C)成分の含有量を確保することは、必要であり、そのためには、できる限り少ない(A)成分の含有量で、導電性樹脂組成物を用いた成形体に導電性を発現させることが、重要である。 The content of the component (C) is the balance obtained by subtracting the contents of the components (A), (B), and (D) from the total 100% by mass of the components (A) to (D). Therefore, when the content of the component (A), the component (B), and the component (D) increases, the content of the component (C) relatively decreases. In order to balance electrical conductivity and mechanical properties, it is necessary to ensure the content of the component (C). For that purpose, the content of the component (A) is as small as possible, and the conductive resin composition It is important to develop conductivity in a molded body using a product.
[その他の成分]
 本発明の導電性樹脂組成物は、以上の各成分の他に、本発明の効果を阻害しない範囲で、この種の組成物に一般に含有される非導電性の無機充填剤、例えば炭酸カルシウム、沈降性硫酸バリウム、タルク、珪藻土、マイカ、ガラス、アルミナ、炭酸マグネシウム、硫酸カルシウム;滑剤;帯電防止剤;紫外線吸収剤;顔料;有機充填剤等の添加剤を必要に応じて含有することができる。
[Other ingredients]
The conductive resin composition of the present invention is a non-conductive inorganic filler generally contained in this type of composition, for example, calcium carbonate, as long as the effects of the present invention are not impaired in addition to the above components. Additives such as precipitated barium sulfate, talc, diatomaceous earth, mica, glass, alumina, magnesium carbonate, calcium sulfate; lubricant; antistatic agent; ultraviolet absorber; pigment; .
〔導電性樹脂組成物の製造方法〕
 次に、上述の導電性樹脂組成物の製造方法の一例を説明する。
[Method for producing conductive resin composition]
Next, an example of the manufacturing method of the above-mentioned conductive resin composition will be described.
 まず、本発明の導電性樹脂組成物の製造方法の一例は、(A)成分および(B)成分を、温度90℃以上、攪拌速度300rpm以上で撹拌して、混合物を得て、その混合物を(C)成分と(D)成分に添加して、樹脂組成物を得る方法である。 First, an example of the method for producing the conductive resin composition of the present invention is to stir the components (A) and (B) at a temperature of 90 ° C. or higher and a stirring speed of 300 rpm or higher to obtain a mixture. It is a method of adding a component (C) and a component (D) to obtain a resin composition.
 本発明の導電性樹脂組成物の製造について、詳しく説明する。(A)成分および(B)成分を混合機に投入し、(B)成分が軟化する温度以上、即ち90℃以上で、攪拌速度300rpm以上の高速度で攪拌混合することで、(A)成分がほぐされると共に、(A)成分の表面に(B)成分が付着する。このようにして、(A)成分の表面に(B)成分が付着することで、(C)成分と(D)成分との溶融混練時に、(A)成分が(C)成分と(D)成分とに容易に混ざり合う要因となり、(A)成分の(C)成分と(D)成分とへの高分散を可能にしている。 The production of the conductive resin composition of the present invention will be described in detail. The component (A) and the component (B) are charged into a mixer and stirred and mixed at a temperature higher than the temperature at which the component (B) is softened, that is, 90 ° C. or higher and a stirring speed of 300 rpm or higher. Is loosened, and the component (B) adheres to the surface of the component (A). Thus, (B) component adheres to the surface of (A) component, and at the time of melt-kneading (C) component and (D) component, (A) component becomes (C) component and (D) It becomes a factor that easily mixes with the component, and enables the (A) component to be highly dispersed into the (C) component and the (D) component.
 攪拌温度は、好ましくは100~180℃、より好ましくは120~160℃であり、攪拌速度は、好ましくは400~3000rpm、より好ましくは500~2500rpmである。また、攪拌時間は(A)成分と(B)成分とが十分に攪拌混合されれば、特に限定されないが、好ましくは5分~24時間、より好ましくは10分~12時間である。攪拌混合するための混合機としては、例えば、ディゾルバー、バタフライミキサー、パドル羽根ミキサー、ヘンシェルミキサー、スーパーミキサー、バンバリーミキサー、ニーダー、トリミックスなど、公知の高速攪拌混合機を使用することができる。具体的には、日本コークス工業株式会社製のFMミキサーや株式会社カワタ製のスーパーミキサー等が挙げられる。 The stirring temperature is preferably 100 to 180 ° C., more preferably 120 to 160 ° C., and the stirring speed is preferably 400 to 3000 rpm, more preferably 500 to 2500 rpm. The stirring time is not particularly limited as long as the component (A) and the component (B) are sufficiently stirred and mixed, but it is preferably 5 minutes to 24 hours, more preferably 10 minutes to 12 hours. As a mixer for stirring and mixing, for example, a known high-speed stirring mixer such as a dissolver, butterfly mixer, paddle blade mixer, Henschel mixer, super mixer, Banbury mixer, kneader, and trimix can be used. Specifically, an FM mixer manufactured by Nippon Coke Kogyo Co., Ltd., a super mixer manufactured by Kawata Co., Ltd., and the like can be given.
 また、混合方法としては、ワンショットで(A)成分全量と(B)成分全量とを混合してもよいが、(A)成分全量と(B)成分の一部とを混合したのち、残部の(B)成分をさらに添加、混合する方法や、(A)成分の一部と(B)成分全量とを混合したのち、残部の(A)成分をさらに添加、混合する方法などの多段階で混合してもよい。 As a mixing method, the total amount of component (A) and the total amount of component (B) may be mixed in one shot, but after the total amount of component (A) and a part of component (B) are mixed, the remainder Multi-stages such as a method of further adding and mixing the component (B), a method of mixing a part of the component (A) and the total amount of the component (B), and further adding and mixing the remaining component (A) May be mixed.
 上記混合により、(A)成分の表面を(B)成分が被覆した粉状混合物を得ることができる。 By the above mixing, a powdery mixture in which the surface of the component (A) is coated with the component (B) can be obtained.
 次に、得られた(A)成分と(B)成分との混合物(粉状混合物)を、(C)成分と(D)成分に添加し、混合する。 Next, the obtained mixture (powder mixture) of the component (A) and the component (B) is added to the component (C) and the component (D) and mixed.
 (A)成分と(B)成分との混合物(粉状混合物)と、(C)成分および(D)成分との混合物は、一軸あるいは二軸押出機で溶融混練し、ストランド状に押出しペレットに造粒することにより、導電性樹脂組成物を得ることができる。溶融混練での加熱温度は、好ましくは150~600℃、より好ましくは200~500℃である。 The mixture of the component (A) and the component (B) (powder mixture), the mixture of the component (C) and the component (D) is melt-kneaded with a single-screw or twin-screw extruder and extruded into a strand shape into pellets. A conductive resin composition can be obtained by granulating. The heating temperature in melt kneading is preferably 150 to 600 ° C., more preferably 200 to 500 ° C.
 また、上記混合物(粉状混合物)と、(C)成分と(D)成分の一部とを、一軸あるいは二軸押出機で溶融混練し、ストランド状に押出しペレットに造粒し、次の工程で残りの(C)成分と(D)成分とを混合し、一軸あるいは二軸押出機で溶融混練し、ストランド状に押出しペレットに造粒する、いわゆるマスターバッチ方式を用いても良い。 In addition, the mixture (powder mixture), the component (C) and a part of the component (D) are melt-kneaded with a single-screw or twin-screw extruder, extruded into a strand, granulated into pellets, and the next step A so-called master batch method may be used in which the remaining components (C) and (D) are mixed, melt-kneaded with a single-screw or twin-screw extruder, extruded into a strand, and granulated into pellets.
 上述の製造方法によれば、(A)成分のカーボンナノチューブを樹脂中に高分散させることができるため、少ない添加量で導電性を有すると共に、機械的特性に優れた成形体を成形可能な導電性樹脂組成物とすることができる。また、上述の製造方法は、シンプルでコスト低減にも優れた方法である。 According to the above-described production method, the carbon nanotubes of component (A) can be highly dispersed in the resin, so that the conductive material can be molded with a small amount of addition and has excellent mechanical properties. Resin composition. The above-described manufacturing method is simple and excellent in cost reduction.
 上述の製造方法により得られる導電性樹脂組成物のメルトフローレイト(MFR)は、好ましくは0.1~100g/10min、より好ましくは0.3~50g/10minである。 The melt flow rate (MFR) of the conductive resin composition obtained by the above production method is preferably 0.1 to 100 g / 10 min, more preferably 0.3 to 50 g / 10 min.
 また、導電性樹脂組成物の硬化物を用いる成形体の体積抵抗率は、好ましくは1×10~1×10Ω・cm、より好ましくは1×10~2×10Ω・cmである。 The volume resistivity of the molded body using the cured product of the conductive resin composition is preferably 1 × 10 7 to 1 × 10 1 Ω · cm, more preferably 1 × 10 6 to 2 × 10 1 Ω · cm. It is.
 上記樹脂組成物の硬化物の曲げ弾性率は、好ましくは200MPa以上、より好ましくは300MPa以上、更に好ましくは400MPa以上とすることができる。 The flexural modulus of the cured product of the resin composition is preferably 200 MPa or more, more preferably 300 MPa or more, and even more preferably 400 MPa or more.
 また、該樹脂組成物の硬化物のシャルピー衝撃強度は、好ましくは0.5kJ/m以上、より好ましくは0.7kJ/m以上、更に好ましくは1.0kJ/m以上である。 The Charpy impact strength of the cured product of the resin composition is preferably 0.5 kJ / m 2 or more, more preferably 0.7 kJ / m 2 or more, and further preferably 1.0 kJ / m 2 or more.
 なお、上記各物性値の測定は、具体的には、実施例に記載の方法により測定できる。 In addition, the measurement of each physical property value can be specifically measured by the method described in the examples.
〔導電性樹脂組成物を用いた成形体〕
 本発明の導電性樹脂組成物を用いた成形体は、通常、熱可塑性樹脂に採用されている各種成形方法により、製造することができる。製造方法としては、例えば、射出成形法、押出成形法、カレンダー成形法、プレス成形法などが、挙げられる。
[Molded body using conductive resin composition]
A molded body using the conductive resin composition of the present invention can be usually produced by various molding methods employed for thermoplastic resins. Examples of the manufacturing method include an injection molding method, an extrusion molding method, a calendar molding method, a press molding method, and the like.
 以下、実施例および比較例を挙げて、本発明を具体的に説明する。なお、以下の実施例は本発明を詳細に説明するために示すものであり、本発明はその趣旨に反しない限り、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples and comparative examples. In addition, the following examples are shown in order to describe the present invention in detail, and the present invention is not limited to the following examples unless it is contrary to the gist thereof.
 全ての実施例と比較例は、(A)成分と(B)成分について、上記混合物(粉状混合物)の作製を経由した後、上記混合物(粉状混合物)に(C)成分と(D)成分とを加え、次工程での溶融混練・造粒工程とする製造方法で行った。 In all the examples and comparative examples, the component (A) and the component (B) were passed through the preparation of the mixture (powder mixture), and then the mixture (powder mixture) was mixed with the component (C) and (D). The components were added, and this was carried out by the production method for the melt kneading and granulating step in the next step.
〔曲げ試験、およびシャルピー衝撃試験サンプルの作製〕
 射出成型機(東芝機械株式会社製、IS80EPN-2A)、およびJIS K6911準拠の試験片成形用金型(型締力:80t)を用いて、曲げ試験、およびシャルピー衝撃試験サンプルを作製した。なお、成形時のシリンダー設定温度は、200~350℃とした。
[Bending test and Charpy impact test sample preparation]
A bending test and a Charpy impact test sample were prepared using an injection molding machine (Toshiba Machine Co., Ltd., IS80EPN-2A) and a test piece molding die (clamping force: 80 t) compliant with JIS K6911. The cylinder set temperature during molding was 200 to 350 ° C.
〔物性の評価〕
(1)体積抵抗率の測定
 射出成型によるサンプル作製では、縦13mm×横180mm、厚さ約3mmのプレートを、射出成型機により作製した。作製したプレート中央部から縦13mm×横30mm、厚さ約3mmで、体積抵抗率の測定片を切り出し、抵抗率計(株式会社三菱化学アナリテック製、ロレスタGPMCP-T610型)で、体積抵抗率を測定した。体積抵抗率は、1×10Ω・cm以下が好ましい。
[Evaluation of physical properties]
(1) Measurement of volume resistivity In sample preparation by injection molding, a plate having a length of 13 mm × width of 180 mm and a thickness of about 3 mm was prepared by an injection molding machine. Cut out a volume resistivity measurement piece from the center of the plate, measuring 13 mm in length × 30 mm in width and about 3 mm in thickness, and using a resistivity meter (Loresta GPMCCP-T610, manufactured by Mitsubishi Chemical Analytech Co., Ltd.) Was measured. The volume resistivity is preferably 1 × 10 7 Ω · cm or less.
(2)メルトフローレイト(MFR)
 JIS K7210に準拠し、メルトインデクサ(株式会社東洋精機製作所製、P-01型)により、測定した。測定温度、および荷重については、表1~表2に示した。MFRは、0.1g/10min以上が好ましい。
(2) Melt flow rate (MFR)
According to JIS K7210, it was measured by a melt indexer (manufactured by Toyo Seiki Seisakusho, P-01 type). The measurement temperature and load are shown in Tables 1 and 2. The MFR is preferably 0.1 g / 10 min or more.
 (3)曲げ試験
 JIS K7203に準拠し、精密万能試験機(株式会社島津製作所製、AGS-500A型)により、曲げ弾性率を測定した。曲げ弾性率は、200MPa以上が好ましい。
(3) Bending test Based on JIS K7203, the bending elastic modulus was measured with a precision universal testing machine (manufactured by Shimadzu Corporation, AGS-500A type). The bending elastic modulus is preferably 200 MPa or more.
(4)シャルピー衝撃強度
 JIS K7111に準拠し、万能振子式衝撃試験機(CEAST社製、6545/000型)により測定した。シャルピー衝撃強度は、0.5KJ/m以上が好ましい。
(4) Charpy impact strength Based on JIS K7111, it was measured with a universal pendulum impact tester (CEAST, 6545/000 type). The Charpy impact strength is preferably 0.5 KJ / m 2 or more.
 実施例および比較例で使用した各成分の詳細は、以下のとおりである。
[(A)成分:カーボンナノチューブ]
・(A-1):Nanocyl社製、「NC7000」(平均直径9.5nm、平均長さ1.5μm)
・(A-2):Arkema社製、「C-100」(平均直径13nm、平均長さ4μm)
[(B)成分:オレフィン系重合体]
・(B-1):出光興産株式会社製、「エルモーデュ S400」(メタロセン触媒 低立体規則性ポリオレフィン、Mw=45,000、(Mw/Mn)=2、軟化点:93℃)
・(B-2):出光興産株式会社製、「エルモーデュ S901」(メタロセン触媒 低立体規則性ポリオレフィン、Mw=130,000、(Mw/Mn)=2、軟化点:120℃)
[(C)成分:ポリアミド樹脂成分を含有する熱可塑性樹脂]
・(C-1):宇部興産株式会社製、「ナイロン樹脂 射出1013B」(PA6)
・(C-2):Arkema社製、「Rilsan BMF O」(PA11)
・(C-3):三菱ガス化学株式会社製、「MXナイロン S6007」(PA MXD6)
 (C-4) :Arkema社製、「Pebax4533SP01」(PAエラストマー PA12とポリテトラメチレンエーテルグリコールの共重合体)
[(D)成分:無水マレイン酸変性されたエチレン若しくはプロピレンと炭素数3~4のα-オレフィンとの共重合体]
・(D-1):三井化学株式会社製、「タフマーMH5040」(無水マレイン酸変性されたエチレン・1-ブテン共重合体、MFR(230℃):1.1g/10min)
・(D-2):三井化学株式会社製、「タフマーMH7020」(無水マレイン酸変性されたエチレン・1-ブテン共重合体、MFR(230℃):1.5g/10min)
・(D-3):三井化学株式会社製、「タフマーDF610」(エチレン・1-ブテン共重合体、MFR(230℃):2.2g/10min)
Details of each component used in the examples and comparative examples are as follows.
[(A) component: carbon nanotube]
(A-1): “NC7000” manufactured by Nanocyl (average diameter 9.5 nm, average length 1.5 μm)
(A-2): “C-100” manufactured by Arkema (average diameter 13 nm, average length 4 μm)
[(B) component: olefin polymer]
(B-1): “Ilmodu S400” manufactured by Idemitsu Kosan Co., Ltd. (metallocene catalyst low stereoregular polyolefin, Mw = 45,000, (Mw / Mn) = 2, softening point: 93 ° C.)
(B-2): “Ilmodu S901” manufactured by Idemitsu Kosan Co., Ltd. (metallocene catalyst low stereoregular polyolefin, Mw = 130,000, (Mw / Mn) = 2, softening point: 120 ° C.)
[Component (C): Thermoplastic resin containing polyamide resin component]
(C-1): “Nylon resin injection 1013B” (PA6), manufactured by Ube Industries, Ltd.
(C-2): “Rilsan BMF O” (PA11), manufactured by Arkema
(C-3): “MX Nylon S6007” (PA MXD6) manufactured by Mitsubishi Gas Chemical Company, Inc.
(C-4): “Pebax 4533SP01” manufactured by Arkema (copolymer of PA elastomer PA12 and polytetramethylene ether glycol)
[Component (D): Copolymer of ethylene or propylene modified with maleic anhydride and an α-olefin having 3 to 4 carbon atoms]
(D-1): “Tuffmer MH5040” manufactured by Mitsui Chemicals, Inc. (maleic anhydride modified ethylene / 1-butene copolymer, MFR (230 ° C.): 1.1 g / 10 min)
(D-2): “Tafmer MH7020” (maleic anhydride modified ethylene / 1-butene copolymer, MFR (230 ° C.): 1.5 g / 10 min), manufactured by Mitsui Chemicals, Inc.
(D-3): “Tafmer DF610” (ethylene / 1-butene copolymer, MFR (230 ° C.): 2.2 g / 10 min) manufactured by Mitsui Chemicals, Inc.
〔実施例1~5、および比較例1~5〕
 日本コークス工業株式会社製のFMミキサー(FM10C/I、容量:9dm)に、表1~表2に示す(A)成分と(B)成分を各含有量で投入し、攪拌温度140℃、攪拌時間60分、回転数1000rpmの条件で攪拌混合し、粉状混合物を得た。なお、JIS K5101に準拠し、(A-1)のカーボンナノチューブ「NC7000」、および得られた(A)成分と(B)成分の粉状混合物の嵩密度を測定したところ、(A-1)は0.07g/cm、粉状混合物は0.40g/cmであった。
[Examples 1 to 5 and Comparative Examples 1 to 5]
The components (A) and (B) shown in Tables 1 and 2 were charged in an FM mixer (FM10C / I, capacity: 9 dm 3 ) manufactured by Nippon Coke Industries Co., Ltd. The mixture was stirred and mixed under the conditions of a stirring time of 60 minutes and a rotation speed of 1000 rpm to obtain a powdery mixture. According to JIS K5101, the bulk density of the carbon nanotube “NC7000” of (A-1) and the powdered mixture of the obtained components (A) and (B) was measured. Was 0.07 g / cm 3 , and the powder mixture was 0.40 g / cm 3 .
 その後、得られた粉状混合物と、表1~2に示す含有量の(C)成分と(D)成分を、ドライブレンドし、次いで、二軸押出機(東芝機械株式会社製、TEM-35B〔スクリュー径:35mm、L/D:32、ベント式〕)を用いて、撹拌回転数100rpm、表1~2に示すMFR測定温度+30℃の混練温度で、溶融混練した。さらに、二軸混練機の出口に直径3mmのストランド取出し用穴付きのダイスを取り付け、該ダイスから混練物を押し出して水槽に入れ、冷却した後、ストランドカッターでペレット化した。表1~2に、得られた導電性樹脂組成物の物性評価を示す。なお、表1~2中、空欄は含有なしを表す。 Thereafter, the obtained powder mixture, the components (C) and (D) having the contents shown in Tables 1 and 2 were dry blended, and then a twin-screw extruder (manufactured by Toshiba Machine Co., Ltd., TEM-35B). [Screw diameter: 35 mm, L / D: 32, vent type]), and melt kneading at a stirring rotation speed of 100 rpm and a kneading temperature of MFR measurement temperature + 30 ° C. shown in Tables 1 and 2. Further, a die with a hole for taking out a strand having a diameter of 3 mm was attached to the outlet of the biaxial kneader, the kneaded product was extruded from the die, put into a water tank, cooled, and pelletized with a strand cutter. Tables 1 and 2 show physical property evaluations of the obtained conductive resin compositions. In Tables 1 and 2, a blank represents no inclusion.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1~表2から、以下がわかった。(A)成分と(B)成分の含有量が同一であり、(D)成分の含有量が6.0質量%の実施例1と0.5質量%の比較例1とでは、実施例1の方が、体積抵抗率が小さく、曲げ弾性率が大きく、シャルピー衝撃強度が大きかった。従って、導電性樹脂組成物として、実施例1の方が優れていた。(D)成分を適量添加することで、カーボンナノチューブの分散が良くなり、導電性が良くなった、と考えられる。また、カーボンナノチューブの分散が良くなったことで、曲げ弾性率とシャルピー衝撃強度の向上が生じた、と考えられる。 From Tables 1 and 2, we found the following. In Example 1 in which the content of the component (A) and the component (B) are the same, and the content of the component (D) is 6.0% by mass and Comparative Example 1 in which the content is 0.5% by mass, Example 1 The volume resistivity was smaller, the flexural modulus was larger, and the Charpy impact strength was larger. Therefore, Example 1 was superior as a conductive resin composition. It is considered that by adding an appropriate amount of the component (D), the dispersion of the carbon nanotubes is improved and the conductivity is improved. Further, it is considered that the improvement of the flexural modulus and the Charpy impact strength was caused by the improved dispersion of the carbon nanotubes.
 (A)成分と(B)成分の含有量が同一であり、(D)成分の含有量が6.0質量%の実施例1と25.0質量%の比較例2とでは、実施例1の方が、体積抵抗率が小さく、曲げ弾性率が大きかった。シャルピー衝撃強度については、比較例2の方が、大きかった。(D)成分の含有量の増加に伴い、比較例2は、軟質な特性に移行したが、体積抵抗率は、著しく上昇した。これは、(D)成分の含有量が多過ぎるため、カーボンナノチューブによる導電回路の形成を阻害されてしまったためである、と考えられる。(D)成分の含有量は、少な過ぎても多過ぎても、良好な導電性樹脂組成物を得られなかった。 In Example 1 in which the content of the component (A) and the component (B) are the same, and the content of the component (D) is 6.0% by mass, and Comparative Example 2 in which the content is 25.0% by mass, Example 1 The volume resistivity was smaller and the flexural modulus was larger. Regarding Charpy impact strength, Comparative Example 2 was larger. With the increase in the content of the component (D), Comparative Example 2 shifted to a soft characteristic, but the volume resistivity significantly increased. This is considered to be because the content of the component (D) is too large, and the formation of the conductive circuit by the carbon nanotubes has been hindered. Even if there was too little content of (D) component, the favorable conductive resin composition was not obtained.
 (A)成分であるカーボンナノチューブの含有量を18.0質量%に増加した比較例3と実施例1とを比べると、比較例3の方が、体積抵抗率は、小さく良好な導電性を示したが、MFRは、小さく、曲げ弾性率は大きく、シャルピー衝撃強度は、著しく低かった。比較例3は、溶融時にかなり流れ難く(すなわち、成形性が悪く)、成形体は、硬くて脆くなっており、成形体として、実用に適さないものであった。比較例3は、少ないカーボンナノチューブの含有量で良好な導電性と、優れた成形性と機械的特性の両方を有する樹脂を目的とする本発明の効果を奏さなかった。 Comparing Comparative Example 3 and Example 1 in which the content of the carbon nanotube as the component (A) is increased to 18.0% by mass, Comparative Example 3 has smaller volume resistivity and better electrical conductivity. As shown, the MFR was small, the flexural modulus was large, and the Charpy impact strength was remarkably low. In Comparative Example 3, it was very difficult to flow at the time of melting (that is, the moldability was poor), and the molded body was hard and brittle, so that it was not suitable for practical use as a molded body. Comparative Example 3 did not exhibit the effects of the present invention aimed at a resin having both good conductivity with a small amount of carbon nanotubes and excellent moldability and mechanical properties.
 (A)成分であるカーボンナノチューブの含有量を0.5質量%に減らした比較例4と実施例1とを比べると、比較例4の体積抵抗率は、1×10Ω・cmを超えており、導電性が悪かった。 When Comparative Example 4 in which the content of the carbon nanotube as the component (A) is reduced to 0.5 mass% is compared with Example 1, the volume resistivity of Comparative Example 4 exceeds 1 × 10 7 Ω · cm. The conductivity was poor.
 (D)成分である無水マレイン酸変性されたエチレン・1-ブテン共重合体のかわりに、無水マレイン酸変性されていないエチレン・1-ブテン共重合体を用いた比較例5と実施例1とを比べると、比較例5の体積抵抗率は、3×10Ω・cmと著しく高く、MFR、曲げ弾性率、シャルピー衝撃強度が、ほぼ同等であるが、導電性樹脂組成物の成形体として、実用に適さないものであった。 Comparative Example 5 and Example 1 using an ethylene / 1-butene copolymer not modified with maleic anhydride instead of the maleic anhydride modified ethylene / 1-butene copolymer as component (D) In comparison, the volume resistivity of Comparative Example 5 is remarkably high at 3 × 10 4 Ω · cm, and the MFR, flexural modulus, and Charpy impact strength are almost the same, but as a molded article of the conductive resin composition It was not suitable for practical use.
 実施例2では、実施例1と比較して、(B)成分を、(B-1)から(B-2)に、(D)成分を、(D-1)から(D-2)に、変更したが、良好な結果であった。 In Example 2, compared with Example 1, the component (B) is changed from (B-1) to (B-2), the component (D) is changed from (D-1) to (D-2). Changed, but with good results.
 実施例3では、実施例1と比較して、(C)成分を、(C-1)から(C-2)に、変更したが、良好な結果であった。 In Example 3, compared with Example 1, the component (C) was changed from (C-1) to (C-2), but the result was good.
 実施例4では、実施例1と比較して、(A)成分を、(A-1)から(A-2)に、(C)成分を、(C-1)から(C-3)に、変更したが、良好な結果であった。 In Example 4, compared with Example 1, the component (A) is changed from (A-1) to (A-2), the component (C) is changed from (C-1) to (C-3). Changed, but with good results.
 実施例5では、実施例1と比較して、(A)成分を、(A-1)から(A-2)に、(C)成分を、(C-1)から(C-4)に、変更したが、良好な結果であった。この実施例5では、(A)成分であるカーボンナノチューブの含有量を10.0質量%に増やしたことで体積抵抗率が9×10-1Ω・cmと顕著に低い値が得られた。なお、(C-4)は、ポリアミド樹脂成分を含有する熱可塑性樹脂のポリアミドエラストマーである。 In Example 5, compared with Example 1, the component (A) is changed from (A-1) to (A-2), the component (C) is changed from (C-1) to (C-4). Changed, but with good results. In Example 5, the volume resistivity was significantly reduced to 9 × 10 −1 Ω · cm by increasing the content of the carbon nanotube as the component (A) to 10.0% by mass. (C-4) is a polyamide elastomer of a thermoplastic resin containing a polyamide resin component.
 実施例および比較例を鳥瞰してみると、(D)成分が無水マレイン酸変性されたエチレンまたはプロピレンと炭素数3~4のα-オレフィンとの共重合体である、具体的には無水マレイン酸変性されたエチレン・1-ブテン共重合体を、本発明の範囲内で添加した実施例1~5については、良好な結果が得られた。一方、本発明の範囲外の比較例1~5については、実施例1~5より劣る結果となっており、本発明が顕著な効果を有することがわかった。 From a bird's-eye view of Examples and Comparative Examples, the component (D) is a maleic anhydride-modified ethylene or propylene copolymer with a C 3-4 α-olefin, specifically maleic anhydride. Good results were obtained for Examples 1 to 5 in which the acid-modified ethylene / 1-butene copolymer was added within the scope of the present invention. On the other hand, Comparative Examples 1 to 5 outside the scope of the present invention were inferior to Examples 1 to 5, indicating that the present invention has a remarkable effect.
  本発明の導電性樹脂組成物からなる成形体は、従来、導電性付与剤として使用されているカーボンブラックやグラファイトと比較して、カーボンナノチューブの添加が少量でも、良好な導電性が得られ易いので、導電性樹脂組成物を用いる樹脂の成形性、および機械的特性が優れ、帯電防止が求められる射出成形品、押出成形品、フィルム、シートに好適である。 The molded body made of the conductive resin composition of the present invention is easy to obtain good conductivity even when a small amount of carbon nanotubes are added, compared to carbon black and graphite conventionally used as a conductivity imparting agent. Therefore, the resin using the conductive resin composition is excellent in moldability and mechanical properties, and is suitable for injection molded products, extrusion molded products, films, and sheets that require antistatic properties.

Claims (3)

  1.  (A)カーボンナノチューブ、
    (B)(1)重量平均分子量(Mw)が35,000~150,000であり、(2)分子量分布(Mw/Mn)が3以下であり、かつ(3)軟化点が80~130℃であるオレフィン系重合体、
    (C)ポリアミド樹脂を含有する熱可塑性樹脂、および
    (D)無水マレイン酸変性されたエチレンまたはプロピレンと炭素数3~4のα-オレフィンとの共重合体を含み、
    (A)成分の含有量が、(A)~(D)の合計100質量%に対して、1~14質量%であり、
    (B)成分の含有量が、(A)成分の含有量の0.5~2質量倍であり、かつ
    (D)成分の含有量が、(A)~(D)の合計100質量%に対して、1~20質量%であることを特徴とする、導電性樹脂組成物。
    (A) carbon nanotube,
    (B) (1) The weight average molecular weight (Mw) is 35,000 to 150,000, (2) the molecular weight distribution (Mw / Mn) is 3 or less, and (3) the softening point is 80 to 130 ° C. An olefin polymer,
    (C) a thermoplastic resin containing a polyamide resin, and (D) a copolymer of maleic anhydride-modified ethylene or propylene and an α-olefin having 3 to 4 carbon atoms,
    The content of the component (A) is 1 to 14% by mass with respect to 100% by mass in total of (A) to (D),
    The content of the component (B) is 0.5 to 2 times the content of the component (A), and the content of the component (D) is 100% by mass in total of (A) to (D). On the other hand, a conductive resin composition characterized by being 1 to 20% by mass.
  2.  (D)成分が、無水マレイン酸変性されたエチレン・1-ブテン共重合体である、請求項1記載の導電性樹脂組成物。 The conductive resin composition according to claim 1, wherein component (D) is a maleic anhydride-modified ethylene / 1-butene copolymer.
  3.  請求項1または2記載の導電性樹脂組成物の硬化物を用いる、成形体。 A molded body using a cured product of the conductive resin composition according to claim 1 or 2.
PCT/JP2017/033483 2016-09-21 2017-09-15 Electroconductive resin composition WO2018056215A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-184348 2016-09-21
JP2016184348A JP2018048254A (en) 2016-09-21 2016-09-21 Conductive resin composition

Publications (1)

Publication Number Publication Date
WO2018056215A1 true WO2018056215A1 (en) 2018-03-29

Family

ID=61689474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033483 WO2018056215A1 (en) 2016-09-21 2017-09-15 Electroconductive resin composition

Country Status (2)

Country Link
JP (1) JP2018048254A (en)
WO (1) WO2018056215A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021015098A1 (en) * 2019-07-24 2021-01-28 東レ株式会社 Resin composition and resin molded article made of said resin composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011213797A (en) * 2010-03-31 2011-10-27 Toyobo Co Ltd Hybrid carbon fiber reinforced thermoplastic resin composite material
WO2012098840A1 (en) * 2011-01-17 2012-07-26 株式会社クラレ Resin composition and molded article including same
JP2016041806A (en) * 2015-09-14 2016-03-31 片野染革株式会社 Resin composition, method for producing resin composition, powdery mixture, bipolar plate for redox flow cell, and separator for fuel cell
WO2016104531A1 (en) * 2014-12-24 2016-06-30 株式会社クラレ Multilayered tube for transporting liquid medicine and polyamide resin composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011213797A (en) * 2010-03-31 2011-10-27 Toyobo Co Ltd Hybrid carbon fiber reinforced thermoplastic resin composite material
WO2012098840A1 (en) * 2011-01-17 2012-07-26 株式会社クラレ Resin composition and molded article including same
WO2016104531A1 (en) * 2014-12-24 2016-06-30 株式会社クラレ Multilayered tube for transporting liquid medicine and polyamide resin composition
JP2016041806A (en) * 2015-09-14 2016-03-31 片野染革株式会社 Resin composition, method for producing resin composition, powdery mixture, bipolar plate for redox flow cell, and separator for fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021015098A1 (en) * 2019-07-24 2021-01-28 東レ株式会社 Resin composition and resin molded article made of said resin composition
CN114008138A (en) * 2019-07-24 2022-02-01 东丽株式会社 Resin composition and resin molded article formed from the same
CN114008138B (en) * 2019-07-24 2024-03-05 东丽株式会社 Resin composition and resin molded article formed from the same

Also Published As

Publication number Publication date
JP2018048254A (en) 2018-03-29

Similar Documents

Publication Publication Date Title
WO2018025824A1 (en) Conductive resin composition
US6331586B1 (en) Conductive polymer blends with finely divided conductive material selectively localized in continuous polymer phase or continuous interface
JP6780835B2 (en) Resin composition, method for producing resin composition, powdery mixture, bipolar plate for redox flow battery, and separator for fuel cell
EP1813649B1 (en) Electroconductive masterbatch and resin composition including the same
TW201602237A (en) Electrically conductive polyamide moulding materials
JP7240805B2 (en) Polyamide resin composition and molded article thereof
US7511086B2 (en) Thermoplastic resin composition, molded product therefrom and outside plate part for vehicle using the molded product
EP3385331A1 (en) Polyamide resin composition with high fluidity
JP7055871B2 (en) Conductive concentrated resin composition, conductive polyamide resin composition, its manufacturing method and molded product
WO2018056215A1 (en) Electroconductive resin composition
JP2011162752A (en) Electrically conductive masterbatch and manufacturing method therefor, and electrically conductive resin composition and molded product thereof obtained using the electrically conductive masterbatch
JPH04202247A (en) Olefin polymer composition excellent in impact resistance
KR20170112980A (en) Electro-conductive polymer composite and resin composition having improved impact strength and method for preparing the same
AU6549890A (en) Polyolefin/thermoplastic blend
JP2011162753A (en) Electroconductive resin composition, method for producing the same, and molded product obtained by using the electroconductive resin composition
CN112480646B (en) Kaolin reinforced polyphenyl ether composition and preparation method and application thereof
EP3244421A1 (en) Electroconductive resin composite and electroconductive resin composition having excellent impact strength, and method of producing the same
WO2018147250A1 (en) Conductive polyamide resin composition
WO2018186073A1 (en) Conductive resin composition, powdery mixture, method for producing conductive resin composition, and molded article
CN115867608A (en) Ethylene polymer composition and use thereof
JP2011057719A (en) High-performance polyphenylene sulfide-based resin composition and method for producing the same
JPH04296353A (en) Polycarbonate resin composition
JPH10330559A (en) Polypropylene resin composition
JP2000345056A (en) Conductive resin composition
JP3690013B2 (en) Polypropylene resin modifier and polypropylene resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852988

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17852988

Country of ref document: EP

Kind code of ref document: A1