WO2018056102A1 - 情報処理装置、情報処理方法、プログラム、及び、センシング装置 - Google Patents
情報処理装置、情報処理方法、プログラム、及び、センシング装置 Download PDFInfo
- Publication number
- WO2018056102A1 WO2018056102A1 PCT/JP2017/032747 JP2017032747W WO2018056102A1 WO 2018056102 A1 WO2018056102 A1 WO 2018056102A1 JP 2017032747 W JP2017032747 W JP 2017032747W WO 2018056102 A1 WO2018056102 A1 WO 2018056102A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- plant
- photosynthesis
- information processing
- quantum yield
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6408—Fluorescence; Phosphorescence with measurement of decay time, time resolved fluorescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G7/00—Botany in general
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
- G01N21/648—Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6486—Measuring fluorescence of biological material, e.g. DNA, RNA, cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N2021/635—Photosynthetic material analysis, e.g. chrorophyll
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N2021/8466—Investigation of vegetal material, e.g. leaves, plants, fruits
Definitions
- the present technology relates to an information processing device, an information processing method, a program, and a sensing device, and in particular, an information processing device, an information processing method, a program, and a sensing device that can determine an internal state of a living body. About.
- Plant growth is affected by environmental conditions such as sunlight and temperature, but even in the same environment, it shows different behavior depending on the type of plant and the state of acclimatization to the environment, so to grow plants well, In addition to grasping the state of the environment, it is necessary to diagnose the growth of the plant and prepare the growth environment according to the state.
- Patent Document 1 the technique disclosed in Patent Document 1 is known as a method for diagnosing the growth of this type of plant.
- This technology has been made in view of such a situation, and makes it possible to determine the internal state of a living body.
- An information processing apparatus applies a calculation algorithm corresponding to a transient model indicating a function of the living body to measurement data of a transient response obtained from a living body to be measured, and parameters related to the transient model Among these, the information processing apparatus includes a calculation unit that calculates an unknown parameter.
- the information processing method or program according to one aspect of the present technology is an information processing method or program corresponding to the information processing apparatus according to one aspect of the present technology described above.
- a calculation algorithm corresponding to a transient model indicating a function of the living body is obtained for measurement data of a transient response obtained from the living body to be measured. Applied, an unknown parameter is calculated among the parameters related to the transient model.
- a sensing device is responsive to a sensor that senses a living body to be measured, and measurement data of a transient response obtained from the living body by sensing using the sensor, according to a transient model that indicates a function of the living body.
- a sensing device including a calculation unit that applies a calculation algorithm to calculate an unknown parameter among parameters related to the transient model.
- a calculation algorithm corresponding to a transient model indicating a function of the living body is applied to measurement data of a transient response obtained from the living body by sensing the living body to be measured. Then, an unknown parameter among the parameters related to the transient model is calculated.
- the information processing device and the sensing device may be independent devices, or may be internal blocks constituting one device.
- the internal state of the living body can be determined.
- the photosynthetic activity of the plant and the accompanying growth of the plant body are affected by environmental conditions such as sunlight, temperature, saturation, carbon dioxide concentration (CO 2 concentration), soil moisture, and fertilizer components in the soil. Also shows different behavior depending on the kind of plant and the acclimatization state to the environment. Therefore, for the good growth of plants, not only grasp the environmental conditions, but also monitor (monitor) the internal state of the plant with temporal changes for each plant type and stage. Accordingly, it is necessary to control the breeding environment.
- the present technology makes it possible to determine (diagnose) the internal state of a plant.
- photosynthesis which is a prerequisite for explaining the present technology, is used.
- the specific contents of this technology will be explained.
- FIG. 1 is a diagram for explaining the mechanism of plant photosynthesis.
- photosynthesis is roughly divided into a photochemical system and a carbon reduction reaction (Calvin-Benson Cycle).
- the photochemical reaction is a process of obtaining energy by decomposing water (H 2 O) with the energy of light.
- the carbon reduction reaction is a process of generating sugar (CH 2 O) by decomposing carbon dioxide (CO 2 ) using energy obtained in the preceding photochemical reaction.
- the photochemical reaction is divided into a photosystem I (PSI) and a photosystem II (PSII) depending on the difference in the wavelength band of the received light.
- the photochemical reaction is mainly described as a collecting antenna (LHCI, LHCII) that collects light and a reaction center (RCI, RCII: P680, P700 in Fig. 1) that excites electrons with the energy of light.
- a collecting antenna LHCI, LHCII
- RCII reaction center
- intermediate pools Q A , Q B , PQ, A0, etc.
- nicotinamide adenine dinucleotide phosphate (NADPH) is synthesized by an oxidation-reduction reaction of a Z mechanism (Z-scheme) indicating an energy gradient of electrons in the electron transfer system.
- Nicotinamide adenine dinucleotide phosphate exists everywhere in the living body and has two states, oxidized (NADP + ) and reduced (NADPH), and has a role of carrying electrons and hydrogen.
- the oxidized form (NADP + ) is easy to receive electrons
- the reduced form (NADPH) is easy to emit electrons.
- ATP adenosine triphosphate
- ADP adenosine diphosphate
- carbon dioxide CO 2
- NADPH nicotinamide adenine dinucleotide phosphate
- ATP adenosine triphosphate
- Chlorophyll Fluorescence is fluorescence emitted from plants as plants are photosynthetic. If energy is not extracted within a certain period of time from a reaction center (RC) excited by light, it is a higher plant. In this case, energy is emitted as fluorescence having a wavelength of around 680 to 750 nm. The emitted energy is 0.5 to 3% with respect to the incident light energy, and varies depending on the state of photosynthesis of the plant.
- FIG. 2 schematically shows the chlorophyll fluorescence of a plant.
- the reaction center (RC) is said to be open, and the electrons excited by light are electrons. It flows out through the transmission system and the excited state is eliminated. This is called photochemical quenching.
- photochemical quenching In general, when photosynthesis proceeds efficiently, the intensity of chlorophyll fluorescence decreases because the degree of photochemical quenching is large.
- reaction center (RC) when the intermediate pool of the electron transfer system is in a reduced state and cannot accept electrons, the reaction center (RC) is said to be closed.
- photochemical quenching disappears (electron transfer to the electron transfer system stops), and the intensity of chlorophyll fluorescence is maximized.
- reaction rate of electron transport system In the photochemical reaction, the reaction speed of the electron transfer system with respect to the input of light shows a fast reaction of picoseconds to several tens of milliseconds, which is called a short response.
- FIG. 3 describes that the reaction rate of the electron transfer system in the photochemical reaction is from picoseconds to several tens of milliseconds.
- FIG. 3 shows that it takes several seconds to several minutes to activate the carbon reduction reaction and the xanthophyll cycle. Note that the value of the timing parameter shown in FIG. 3 is an example.
- Quantum yields of photosynthesis include, for example, Fv / Fm and ⁇ PSII. With these values, it is possible to grasp in real time how efficiently plants are performing photosynthesis under the current environmental conditions. It becomes.
- Fv / Fm is the maximum quantum yield of the photosystem II (PSII) electron transfer system of photosynthesis, and the quantum yield of the photosystem II in the dark adaptation state without being controlled by the carbon reduction reaction or xanthophyll cycle (input) The number of output electrons with respect to the number of photons).
- ⁇ PSII is the quantum yield of the electron transfer system of photosystem II (PSII) of photosynthesis, and represents the quantum yield when photosynthesis is performed by shining with a certain intensity of light.
- the input light intensity I PPFD [ ⁇ mol / m 2 / s]
- the light absorption rate of plants generally 0.84 is often used
- the photochemistry of input light Using the partition ratio between system I (PSI) and photosystem II (PSII) (constant 0.5 is commonly used), and the quantum yield ( ⁇ PSII) of the photosystem II electron transport system in photosynthesis (assuming 0.7
- the electron transport rate (ETR) can be calculated.
- the electron transfer rate (ETR) is a parameter that quantitatively expresses in real time how fast the plant is changing light into electrons under the current environmental conditions and plant conditions.
- the PPFD value is the value of photosynthetic Photon Flux Density (PPFD), and the photon quanta at a wavelength of 400 nm to 700 nm, which is the absorption wavelength of chlorophyll, per unit time and unit area. This is expressed by the number of incident light.
- PPFD photosynthetic Photon Flux Density
- GPP Gross Primary Production
- the efficiency of the carbon reduction reaction varies depending on the temperature and CO 2 concentration. However, if the efficiency of the carbon reduction reaction is reduced and the upper limit of the energy that can be accepted is limited, the electron transfer rate (ETR) decreases. Therefore, it is known that the correlation between ETR and GPP is high.
- Pulse modulation fluorescence measurement measures the state of photosynthesis of a plant by irradiating the plant with extremely strong artificial light (hereinafter referred to as saturated light) exceeding the intensity of sunlight.
- FIG. 5 is a diagram showing a configuration of a photosynthetic measurement apparatus 90 using pulse modulation fluorescence measurement.
- the photosynthesis measuring device 90 measures the quantum yield of plant photosynthesis using saturated light.
- the photosynthesis measuring device 90 includes a central control unit 900, a light emission unit 901, a light emission control unit 902, a measurement light generation unit 903, a synthesis unit 904, an optical filter 905, an optical sensor 906, a measurement light separation electrical filter 907, a sampling unit 908, A photosynthesis quantum yield calculation unit 909 and a result display unit 910 are included.
- the light emission control unit 902 synthesizes the pulse-modulated measurement light generated by the measurement light generation unit 903 according to the control from the central control unit 900 by the synthesis unit 904, so that the light emission unit 901 has a predetermined intensity. Allow light to be emitted.
- the light emitting unit 901 emits light of three types of intensity by an LED (Light Emitting Diode).
- the three types of light intensity include a first light composed of measurement light (hereinafter referred to as “measurement light”) and a second light composed of stationary light and measurement light (hereinafter referred to as “steady light + measurement light”). And a third light composed of saturated light and measurement light (hereinafter referred to as “saturated light + measurement light”).
- the measurement light is very weak light for measuring chlorophyll fluorescence (F 0 or the like) in which the reaction center (RC) is in an open state.
- Saturated light is very strong light for measuring chlorophyll fluorescence (F m , F m ′) in a state in which the reaction center (RC) is completely closed. This saturated light has a duration of about 0.5 to 1 second.
- Steady light is light for measuring chlorophyll fluorescence (F s ) in a state in which the plant 1 steadily performs photosynthesis.
- This steady light is a light that is continuously emitted for several minutes until the photosynthesis of the plant 1 is stabilized in order to observe a long response.
- the optical filter 905 is a filter for removing light from the light emitting unit 901 and disturbance light and taking out only chlorophyll fluorescence from the plant 1.
- the optical sensor 906 converts the intensity of chlorophyll fluorescence transmitted through the optical filter 905 into an electrical signal.
- the measurement light separation electrical filter 907 is a filter for removing the DC component of the electrical signal converted by the optical sensor 906 and taking out the intensity of chlorophyll fluorescence with respect to the measurement light.
- the sampling unit 908 converts an electrical signal obtained by the filter processing by the measurement light separating electrical filter 907 from an analog signal to a digital signal in accordance with control from the central control unit 900.
- the photosynthetic quantum yield calculation unit 909 calculates the photosynthesis quantum yield from the digital signal sampled by the sampling unit 908 according to the control from the central control unit 900.
- the result display unit 910 displays the calculation result of the photosynthesis quantum yield calculated by the photosynthesis quantum yield calculation unit 909 according to the control from the central control unit 900.
- Fv / Fm and ⁇ PSII are displayed as the quantum yield of photosynthesis.
- the photosynthesis measuring device 90 is configured as described above.
- FIG. 6 A in FIG. 6 shows the intensity of light emitted from the light emitting unit 901, and B in FIG. 6 shows chlorophyll fluorescence of the plant 1 caused by controlling the light emitted from the light emitting unit 901. Shows the strength.
- the horizontal direction represents time, and the time direction is a direction from the left side to the right side in the drawing.
- chlorophyll fluorescence (F 0 ) is obtained by the measurement light in the section where only the measurement light is emitted immediately after the start of the measurement, and is saturated.
- Chlorophyll fluorescence (F m ) by saturated light is obtained in the section where light + measurement light is emitted.
- chlorophyll fluorescence (F s ) due to steady light is obtained in the section where the light synthesis of plant 1 emits steady light + measurement light at the steady state.
- Chlorophyll fluorescence (F m ′) by saturated light is obtained in a section where saturated light + measurement light is emitted when photosynthesis is in a steady state.
- the photosynthesis measuring device 90 of FIG. 5 provides saturated light, which is very intense light, in order to clog the electron transfer system in a short time (for example, 2 to 3 seconds). Note that, at the end of the measurement, irradiation with steady light is stopped, and chlorophyll fluorescence (F 0 ′) by the measurement light is obtained.
- FIG. 7 is a diagram showing a calculation algorithm for calculating the photosynthesis quantum yield (Fv / Fm) of the plant 1 using an electrical model.
- the magnitude of the input light is expressed as I
- the degree of energy absorption as chlorophyll fluorescence, heat, and photochemical reaction is expressed as G F , G H , and GP , respectively.
- I represents that the current corresponds to the current
- G F , G H , and GP correspond to the conductance connected in parallel.
- the quantum yield (Fv / Fm) of photosynthesis can be expressed as the following formula (5).
- Equation (5) the right side indicates the ratio of the input light (I) that is divided into reaction centers (RC), that is, the yield.
- FIG. 8 is a diagram for explaining supplementary information regarding the pulse modulation fluorescence measurement performed by the photosynthetic measurement apparatus 90 of FIG.
- measurement light and saturated light + measurement light are used as input light (I) in order to measure chlorophyll fluorescence (F 0 , F m ).
- I chlorophyll fluorescence
- saturation light is applied in addition to alternating measurement light, and therefore the response of chlorophyll fluorescence is also a response to saturation light (DC Measured in the form of overlapping components.
- pulse modulation fluorescence measurement is performed.
- saturated light that is very strong artificial light exceeding the intensity of sunlight is used, in reality, measurement in a limited region is possible. It is not suitable for measurement in a wide range of areas where it is difficult to apply saturated light as in the case of plants in a field, and has not been put into practical use at present.
- the quantum yield of photosynthesis without using saturated light so that the state inside the plant can be judged (diagnosed). Therefore, in the present technology, one or more transient models indicating plant photosynthesis are prepared, and a calculation algorithm corresponding to the target transient model is applied to measurement data of transient response of chlorophyll fluorescence obtained from the plant to be measured. Thus, the quantum yield of photosynthesis, which is an unknown parameter among the parameters related to the transient model, is estimated. This makes it possible to calculate the quantum yield of photosynthesis without using saturated light, and to determine (diagnose) the internal state of the plant.
- FIG. 9 is a diagram conceptually showing parameter estimation using the transient model and the photosynthetic quantum yield calculation algorithm of the present technology.
- the input generation C1 represents that the measurement target plant C3 is irradiated with the input light C2 such as measurement light and growth light.
- the input generation C1 indicates that the transient model C5 is generated and prepared in advance.
- the chlorophyll fluorescence output C4 is measurement data of the transient response of the chlorophyll fluorescence of the measurement target plant C3 obtained by sampling the measurement target plant C3 irradiated with the input light C2. This chlorophyll fluorescence output C4 becomes the input data of the photosynthetic quantum yield calculation algorithm C6.
- the transient model C5 is a model expressing an electron transfer system of a photochemical reaction in plant photosynthesis.
- a model in plant physiology such as a paddle model (Puddle Model), a lake model (Lake Model), or a connected unit model (Connected Unit Model) can be used.
- One or more transient models C5 can be prepared.
- a gray box model is used as a modeling method of the transient model C5.
- the gray box model is a model positioned between the white box model (first principle model) and the black box model (system identification), and a part of the system structure is unknown.
- gray box model unknown parameters are estimated from input / output data (input data) based on the target first principle model.
- input data input data
- target first principle model a technique related to this gray box.
- this document discloses a method of modeling heat transfer in a building using a gray box model.
- the photosynthesis quantum yield calculation algorithm C6 is an algorithm for calculating the photosynthesis quantum yield from the chlorophyll fluorescence output C4 using the transient model C5.
- One or a plurality of photosynthetic quantum yield calculation algorithms C6 can be prepared according to, for example, the type of the transient model C5, the photosynthesis quantum yield (Fv / Fm, ⁇ PSII) to be calculated, and the like.
- the transient model C5 corresponds to a gray box model, and includes the photosynthesis quantum yield of the measurement target plant C3 as an unknown parameter among a plurality of parameters. Therefore, by applying the chlorophyll fluorescence output C4 (measurement data of the transient response of the chlorophyll fluorescence of the plant C3 to be measured) as input data and applying the photosynthetic quantum yield calculation algorithm C6 according to the transient model C5, as an unknown parameter It is possible to calculate the quantum yield of photosynthesis of the plant C3 to be measured.
- the photosynthesis quantum yield calculation result C7 indicates that the photosynthesis quantum yield (Fv / Fm, ⁇ PSII) of the plant C3 to be measured is calculated as the calculation result of the photosynthesis quantum yield calculation algorithm C6.
- the measurement target is determined as an unknown parameter among the parameters related to the transient model C5.
- the quantum yield of photosynthesis of the plant C3 is estimated (calculated).
- the first to fifth embodiments will be described as specific embodiments for realizing parameter estimation using the transient model C5 and the photosynthetic quantum yield calculation algorithm C6. .
- FIG. 10 is a diagram illustrating a configuration example of the photosynthesis measuring device 10 according to the first embodiment.
- the photosynthesis measuring device 10 applies a calculation algorithm according to a transient model indicating photosynthesis of a plant to measurement data of a transient response of chlorophyll fluorescence obtained from the plant 1 to be measured, and among the parameters related to the transient model, Estimate (calculate) the quantum yield of photosynthesis as an unknown parameter.
- the photosynthesis measuring device 10 includes a central control unit 100, a light emitting unit 101, a light emission control unit 102, an optical filter 103, an optical sensor 104, a sampling unit 105, a transient model holding unit 106, a calculation algorithm holding unit 107, and a selector 108. , A selector 109, a photosynthetic quantum yield calculation unit 110, and a result display unit 111.
- the central control unit 100 includes, for example, a circuit such as a CPU (Central Processing Unit) or an FPGA (Field Programmable Gate Array).
- the central control unit 100 controls the operation of each unit of the photosynthetic measurement apparatus 10. For example, the central control unit 100 controls light emission control by the light emission control unit 102, sampling by the sampling unit 105, selection of a transient model by the selector 108, selection of a calculation algorithm by the selector 109, and display of the result by the result display unit 111. .
- the light emitting unit 101 is, for example, a light emitting device that emits (emits) light from an LED (Light Emitting Diode).
- the light emitting unit 101 emits light of, for example, three types of intensity according to the control from the light emission control unit 102.
- the light emitted from the light emitting unit 101 is applied to the plant 1.
- the light emission control unit 102 controls the light emission intensity and the light emission sequence of the light emitted from the light emitting unit 101 according to the control from the central control unit 100.
- the optical filter 103 is a filter for separating ambient light and chlorophyll fluorescence.
- a band pass filter or low pass filter having a wavelength for separating the excitation light (visible light) and chlorophyll fluorescence (wavelength of around 680 to 750 nm) is used.
- the wavelength of a narrow wavelength that selectively transmits fluorescence of solar dark lines for example, oxygen (O 2 ), absorption band 687 nm
- a bandpass filter may be used.
- the optical sensor 104 is a one-dimensional or two-dimensional sensor having sensitivity to the wavelength of chlorophyll fluorescence in order to measure (sense) the intensity of chlorophyll fluorescence.
- the optical sensor 104 detects light transmitted through the optical filter 103 with a sensing element, and supplies a measurement signal (intensity value) of chlorophyll fluorescence obtained as a result to the sampling unit 105.
- the optical sensor 104 for the purpose of one-dimensional sensing, for example, a sensing element on which a photodiode is mounted can be used.
- a sensing element on which a photodiode is mounted can be used.
- two-dimensional sensing a plurality of pixels, such as CMOS (Complementary Metal-Oxide Semiconductor) and CCD (Charge Coupled Device), are arranged in a two-dimensional pattern as the optical sensor 104, for example.
- An image sensor including a sensing element can be used.
- sensing means measuring the plant 1 to be measured. Sensing also includes the meaning of imaging the plant 1 to be measured.
- the sampling unit 105 performs sampling on the measurement signal (intensity value) of the chlorophyll fluorescence from the optical sensor 104 according to the control from the central control unit 100, thereby converting the measurement signal of chlorophyll fluorescence from the analog signal in order of time. Convert to digital signal.
- the measurement data of chlorophyll fluorescence obtained as a result of the sampling is supplied to the photosynthetic quantum yield calculation unit 110.
- the measurement data obtained by this sampling is one-dimensional or two-dimensional time-series chlorophyll fluorescence measurement data.
- the measurement data can be data in various formats such as image data.
- the transient model holding unit 106 holds one or a plurality of transient models.
- the selector 108 selects the target transient model from the transient models held in the transient model holding unit 106 according to the control from the central control unit 100 and supplies the selected transient model to the photosynthetic quantum yield calculation unit 110.
- the calculation algorithm holding unit 107 holds one or a plurality of photosynthetic quantum yield calculation algorithms.
- the selector 109 selects a target photosynthesis quantum yield calculation algorithm from the photosynthesis quantum yield calculation algorithms held in the calculation algorithm holding unit 107 in accordance with control from the central control unit 100, and performs photosynthesis quantum yield calculation. To the unit 110.
- the transient model holding unit 106 and the calculation algorithm holding unit 107 are configured as a storage unit 130 including a semiconductor memory (for example, RAM (Random Access Memory) or the like).
- a semiconductor memory for example, RAM (Random Access Memory) or the like.
- the photosynthetic quantum yield calculation unit 110 is supplied with chlorophyll fluorescence measurement data from the sampling unit 105, a transient model from the selector 108, and a photosynthetic quantum yield calculation algorithm from the selector 109.
- the measurement data from the sampling unit 105 includes measurement data of the transient response of the chlorophyll fluorescence of the plant 1 obtained by changing the light irradiated to the plant 1.
- the photosynthetic quantum yield calculation unit 110 applies the photosynthetic quantum yield calculation algorithm corresponding to the transient model indicating the photosynthesis of the plant to the measurement data of the transient response of the chlorophyll fluorescence of the plant 1, so that the parameters relating to the transient model can be obtained. Among them, the quantum yield of photosynthesis, which is an unknown parameter, is calculated. The photosynthetic quantum yield calculation unit 110 supplies the calculated quantum yield of photosynthesis to the result display unit 111.
- the quantum yield of this photosynthesis for example, at least one of the maximum quantum yield (Fv / Fm) of the photosynthesis electron transfer system and the photosynthesis electron transfer system ( ⁇ PSII) is calculated.
- the result display unit 111 includes a display such as an LCD (Liquid Crystal Display) or an OELD (Organic Electroluminescence Display).
- the result display unit 111 is controlled by the central control unit 100 to supply data related to the calculation result of the photosynthesis quantum yield (Fv / Fm, ⁇ PSII) supplied from the photosynthesis quantum yield calculation unit 110 (for example, numerical data, Image data).
- all or part of the functions of the sampling unit 105, the selector 108, the selector 109, and the photosynthetic quantum yield calculation unit 110 are, for example, programs executed by the central control unit 100 configured as a CPU ( Software).
- the result display unit 111 and the storage unit 130 have been described as being provided inside the photosynthesis measuring device 10. However, as a display device and a storage device, the result display unit 111 and the storage unit 130 are provided outside the photosynthesis measuring device 10. Also good.
- the photosynthetic quantum yield calculation unit 110 acquires a transient model and a calculation algorithm from an external storage device via a network.
- the central control unit 100 displays data of the photosynthesis quantum yield calculation result calculated by the photosynthesis quantum yield calculation unit 110 on an external display device or stores the data in an external storage device. be able to.
- the photosynthesis measuring device 10 is configured as described above.
- the vertical direction represents the intensity level, and the level increases as it goes upward in the figure.
- the horizontal direction represents time, and the time direction is a direction from the left side to the right side in the drawing.
- FIG. 11A shows the intensity of light emitted from the light emitting unit 101
- FIG. 11B shows chlorophyll fluorescence of the plant 1 caused by controlling the light emitted from the light emitting unit 101. Shows the strength.
- the first section is a section in which measurement light that is weak light is emitted. As this measurement light, for example, light of around 10 [ ⁇ mol / m 2 / s] is emitted.
- the second section is a section in which the first growth light is emitted
- the third section is a section in which the second growth light, which is light having a stronger intensity than the first growth light, is emitted.
- the growth light is light having an intensity used for growing plants, and is, for example, at least about 100 [ ⁇ mol / m 2 / s]. However, the intensity of the second growing light is stronger than that of the first growing light.
- Fv / Fm is measured as the quantum yield of photosynthesis
- plant 1 is dark acclimated for an appropriate time (for example, 30 minutes or more) in a dark state
- the measurement is performed.
- the measurement light is irradiated in the 1st section, and the intensity of light is changed by irradiating the 1st breeding light in the 2nd section that follows it, and the measurement of chlorophyll fluorescence Get the data.
- the sampling unit 105 causes the time t0 in the first section (or the boundary between the first section and the second section) and the chlorophyll immediately after the first growing light is irradiated in the second section.
- Sampling of chlorophyll fluorescence is performed when the level of fluorescence intensity increases (time t1, time t2, time t3).
- the time t1, the time t2, and the time t3 satisfy the conditions of a minimum of 250 microseconds and a maximum of 500 milliseconds from the time t0.
- the photosynthetic quantum yield calculator 110 can calculate Fv / Fm based on the measurement data of the transient response of the chlorophyll fluorescence (the intensity value of the chlorophyll fluorescence). That is, here, the quantum yield (Fv / Fm) in the dark adaptation state of photosynthesis is determined.
- ⁇ PSII as the quantum yield of photosynthesis
- the sampling unit 105 causes the time ts0 in the second section (or the boundary between the second section and the third section) and the chlorophyll immediately after the second growing light is irradiated in the third section.
- Sampling of chlorophyll fluorescence is performed when the level of fluorescence intensity increases (time ts1, time ts2, time ts3).
- the time ts1, the time ts2, and the time ts3 satisfy the conditions of a minimum of 250 microseconds and a maximum of 500 milliseconds starting from the time ts0.
- the photosynthetic quantum yield calculation unit 110 can calculate ⁇ PSII based on the measurement data (transient value of chlorophyll fluorescence) of the transient response of chlorophyll fluorescence of the plant 1. That is, here, the quantum yield ( ⁇ PSII) when photosynthesis is performed by shining with light of a certain intensity is obtained.
- the measurement data of the transient response of the chlorophyll fluorescence of the plant 1 is obtained by increasing (intensifying) the light emission intensity. It is only necessary to change the intensity.
- the measurement data of the transient response can be acquired by decreasing (weakening) the light emission intensity.
- the plant 1 which is a higher plant exists in the position which can be measured with the photosynthesis measuring apparatus 10.
- FIG. 11 the timing of light emission by the light emitting unit 101 and the timing of sampling by the sampling unit 105 will be described with reference to FIG. 11 as appropriate.
- step S101 the central control unit 100 controls each unit to irradiate the plant 1 with measurement light so that chlorophyll fluorescence is sampled at the timing of time t0 in FIG.
- the central control unit 100 controls the light emission control unit 102 so that the measurement light from the light emitting unit 101 is irradiated to the plant 1. Thereby, the measurement signal of the chlorophyll fluorescence from the plant 1 irradiated with the measurement light is input from the optical sensor 104 to the sampling unit 105.
- the central control unit 100 controls the sampling unit 105 so that the measurement signal of chlorophyll fluorescence from the optical sensor 104 is sampled. Accordingly, at time t0 in FIG. 11, the measurement signal of the chlorophyll fluorescence of the plant 1 irradiated with the measurement light is converted into a digital signal, and the measurement data obtained as a result is output to the photosynthetic quantum yield calculation unit 110.
- step S102 the central control unit 100 controls each unit to irradiate the plant 1 with the first growth light, and sampling of chlorophyll fluorescence at the timings t1, t2, and t3 in FIG. To be done.
- the central control unit 100 controls the light emission control unit 102 so that the plant 1 is irradiated with the first growth light from the light emitting unit 101. Thereby, the measurement signal of the chlorophyll fluorescence from the plant 1 irradiated with the first growth light is input from the optical sensor 104 to the sampling unit 105.
- the central control unit 100 controls the sampling unit 105 so that the measurement signal of chlorophyll fluorescence from the optical sensor 104 is sampled. Accordingly, at time t1 in FIG. 11, the measurement signal of chlorophyll fluorescence of the plant 1 irradiated with the first growth light is converted into a digital signal, and the measurement data obtained as a result is sent to the photosynthetic quantum yield calculation unit 110. Is output. Sampling is also performed at the timings t2 and t3 in FIG. 11 similarly to the timing at time t1.
- step S103 the central control unit 100 controls the light emission control unit 102 so that the plant 1 is continuously irradiated with the first growth light from the light emitting unit 101. That is, irradiation of the first growth light to the plant 1 is started in the process of step S102, but irradiation of the first growth light to the plant 1 is continued in the process of step S103.
- step S104 the central control unit 100 controls the sampling unit 105 so that the measurement signal of the chlorophyll fluorescence from the optical sensor 104 is sampled. Accordingly, at time ts0 in FIG. 11, the measurement signal of chlorophyll fluorescence of the plant 1 irradiated with the first growth light is converted into a digital signal, and the measurement data obtained as a result is sent to the photosynthetic quantum yield calculation unit 110. Is output.
- step S105 the central control unit 100 controls each unit to irradiate the plant 1 with the second growth light, and sampling of chlorophyll fluorescence at timings ts1, ts2, and ts3 in FIG. To be done.
- the central control unit 100 controls the light emission control unit 102 so that the plant 1 is irradiated with the second growing light from the light emitting unit 101. Thereby, the measurement signal of the chlorophyll fluorescence from the plant 1 irradiated with the second growth light is input from the optical sensor 104 to the sampling unit 105.
- the central control unit 100 controls the sampling unit 105 to sample the measurement signal of chlorophyll fluorescence from the optical sensor 104. Accordingly, at time ts1 in FIG. 11, the measurement signal of chlorophyll fluorescence of the plant 1 irradiated with the second growth light is converted into a digital signal, and the measurement data obtained as a result is sent to the photosynthetic quantum yield calculation unit 110. Is output. Also, sampling is performed at the timings of time ts2 and ts3 in FIG. 11 as with the timing of time ts1.
- step S ⁇ b> 106 the central control unit 100 controls the selector 108 so that a transient model used for measuring the quantum yield of photosynthesis is selected from one or more transient models held in the transient model holding unit 106.
- a transient model used for measuring the quantum yield of photosynthesis is selected from one or more transient models held in the transient model holding unit 106.
- the paddle model can be selected.
- step S107 the central control unit 100 controls the selector 109 to select the transient selected in the process of step S106 from one or more photosynthetic quantum yield calculation algorithms held in the calculation algorithm holding unit 107.
- the photosynthetic quantum yield calculation algorithm corresponding to the model is selected.
- a photosynthesis quantum yield calculation algorithm for the paddle model can be selected.
- step S108 the central control unit 100 controls the photosynthetic quantum yield calculation unit 110 to measure the photosynthetic quantum obtained in step S107 with respect to the transient response measurement data obtained in steps S101 to S105.
- the quantum yield of photosynthesis is calculated by applying the yield calculation algorithm.
- the quantum yield (Fv / Fm) of photosynthesis can be calculated by processing according to the photosynthesis quantum yield calculation algorithm for the paddle model.
- the photosynthesis quantum yield ( ⁇ PSII) can be calculated.
- step S109 the central control unit 100 controls the result display unit 111 so that the calculation result of the process in step S108 is displayed on the result display unit 111.
- the result display unit 111 displays data related to the calculation result of the photosynthesis quantum yield (Fv / Fm, ⁇ PSII).
- reaction Center (RC) model As the transient model, for example, a plant physiological model such as a paddle model, a lake model, or a connected unit model can be used.
- FIG. 13A shows an example of the configuration of a reaction center (RC) model corresponding to the paddle model.
- the reaction center (RC) is determined based on the input photons if time factors are taken into consideration. Can be expressed by an equivalent circuit in which photons that could not be obtained from the reaction center (RC) flow into the chlorophyll fluorescence and heat sides. .
- the reaction center (RC) is composed of a plurality of modules (Q A , Q B , PQ, etc.).
- the reaction center (RC) is represented as a capacitor, and a current (i (t)) corresponding to a preferentially input photon is defined as a charge (q (t)). accumulate.
- the current (i (t)) corresponding to the photon flows into the reaction center (RC) side and exceeds the maximum charge retention amount of the capacitor in the reaction center (RC)
- the current corresponding to the photon (Ii (t)) flows into the fluorescence and heat sides.
- the nonlinear behavior of the reaction center (RC) shown in FIG. 13A is described using probability calculation. That is, the absorption to the reaction center (RC) is determined probabilistically by multiplying the input and the open rate, and the characteristic is defined as the following formula (6).
- Equation (6) the first term on the right side (I ⁇ P M ) represents the input, and the second term on the right side (Q M -q (t)) / Q M is the open rate.
- Q M represents the maximum charge retention amount of the reaction center (RC).
- equation (8) when equation (7) is solved, it can be expressed as equation (8) below.
- N represents the number of reaction centers (RC).
- Equation (8) and Equation (9) have no difference in the equation shape.
- the expression (8) is substituted.
- FIG. 14 shows an example of the simulation result of the transient model by the inventor of the present technology.
- the waveform of the chlorophyll response for each model when photosynthesis with the highest logic performance is performed is shown, the horizontal axis represents time (unit: second), and the vertical axis represents fluorescence intensity. ing.
- the waveform represented by “0” corresponds to the paddle model.
- the paddle model there is no energy transfer between the reaction centers (RC), and the waveform of the chlorophyll response has a natural logarithmic shape.
- the four waveforms represented by “0.2”, “0.4”, “0.6”, “0.8” correspond to the connected unit model.
- energy transfer between the reaction centers (RC) occurs with a certain probability, and the waveform of the chlorophyll response has a shape obtained by combining the shape of the natural logarithm and the shape of the sigmoid function.
- the waveform represented by “1” corresponds to the rake model.
- energy transfer between the reaction centers (RC) occurs with a probability of 100%, and the waveform of the chlorophyll response has the shape of a sigmoid function.
- FIG. 13B shows an example of the configuration of the chlorophyll fluorescence model corresponding to the paddle model.
- the energy is a parameter of the three output elements as a parallel circuit. Are divided while being influenced by each other.
- the reaction center (RC) has a faster “extraction time” than chlorophyll fluorescence and heat.
- Energy is preferentially distributed to the reaction center (RC). Therefore, in the paddle model described above, the remaining energy that could not be received at the reaction center (RC) is distributed to chlorophyll fluorescence and heat as an independent circuit.
- the paddle model is used as the transient model.
- a rake model or a connected unit model may be used.
- Transient models are not limited to paddle models, lake models, or connected unit models, but other models in plant physiology, such as the Excess model, which is a model when the leaves of a plant are damaged greatly. Can be used.
- a parameter identification algorithm using regression analysis is used instead of a parameter identification algorithm using an analytical solution as described in the embodiment of the present technology. May be.
- the first and second derivatives are applied to the equation (17), and the ratio of the values obtained as a result is taken to obtain the time constant (k ). That is, the first-order differentiation and the second-order differentiation here are expressed by the following equations (18) and (19).
- time constant (k) is obtained as represented by the following equation (20) by the ratio of the first-order derivative represented by equation (18) and the second-order derivative represented by equation (19). .
- the value of the equation (20) can be obtained from three points of measurement data.
- the measurement data is represented by f (t)
- time t1 to t2 when the measurement data at time t1, time t2, and time t3 are a, b, and c, time t1 to t2
- the slope of the graph and the slope of the graph at times t2 to t3 are expressed as follows.
- the time constant (k) can be obtained from the three measurement data.
- the photosynthetic measurement apparatus 10 (FIG. 10) by performing the processing of steps S151 to S154 in FIG. 16, the measurement data of the transient response of the chlorophyll fluorescence of the plant 1 is used to calculate the photosynthetic quantum yield calculation algorithm for the paddle model. Process until application of.
- Fv / Fm is calculated as the quantum yield of photosynthesis
- the light emission sequence shown in step S151 is part of the first to second intervals in the light emission sequence of FIG. 11 described above. It corresponds.
- the photosynthetic quantum yield calculation unit 110 applies the transient response measurement data (three-point measurement data) from the sampling unit 105 to Equation (21) using the method shown in FIG. 15 described above.
- the time constant (k) can be calculated (S152).
- the photosynthetic quantum yield calculation unit 110 can calculate rFv by applying the measurement data of the transient response from the sampling unit 105 to the equation (14) (S153).
- the photosynthetic quantum yield calculation unit 110 uses the time constant (k) obtained by the process of step S152 and the rFv obtained by the process of step S153 as the photosynthetic quantum yield calculation algorithm for the paddle model described below. by applying the equation (22) can calculate the P M (S154).
- P M obtained by the, to correspond to the Fv / Fm as quantum yield of photosynthesis are as previously described.
- ⁇ PSII calculation algorithm is used to calculate ⁇ PSII as the quantum yield of photosynthesis. Also, when calculating ⁇ PSII, the time constant (k) needs to be obtained, but the time constant (k) can be calculated by the method shown in FIG. 15 described above.
- the photosynthetic measurement apparatus 10 (FIG. 10) by executing the processing of steps S171 to S174 in FIG. 17, the measurement data of the transient response of the chlorophyll fluorescence of the plant 1 is used to calculate the photosynthetic quantum yield calculation algorithm for the paddle model. Process until application of.
- ⁇ PSII is calculated as the quantum yield of photosynthesis
- the light emission sequence shown in step S171 corresponds to a part of the second to third intervals in the light emission sequence of FIG. 11 described above. ing.
- the photosynthetic quantum yield calculation unit 110 uses the method shown in FIG. 15 described above, and calculates the time constant (k) based on the transient response measurement data (three-point measurement data) from the sampling unit 105. It can be calculated (S172).
- the photosynthetic quantum yield calculation unit 110 can calculate rFv based on the measurement data of the transient response from the sampling unit 105 (S173).
- the photosynthetic quantum yield calculation unit 110 uses the time constant (k) obtained by the process of step S172 and the rFv obtained by the process of step S173 as the photosynthetic quantum yield calculation algorithm for the paddle model described below.
- ⁇ PSII can be calculated (S174).
- measurement data of transient response of chlorophyll fluorescence is acquired by irradiating the plant 1 with measurement light and growth light (steady light), and the measurement data is input.
- a photosynthesis quantum yield calculation algorithm according to a transient model such as a paddle model, the quantum yield of photosynthesis can be calculated even without saturated light.
- the intensity of the measurement light used here is about 10 [ ⁇ mol / m 2 / s].
- the intensity of saturated light is set to 2000 [ ⁇ mol / m 2 / s] or more.
- Saturated light is also referred to as saturated pulsed light.
- stationary light is not necessary.
- the intensity of the steady light used here is the intensity used for the growth of the plant 1 and is at least about 100 [ ⁇ mol / m 2 / s]. Also here, the intensity of the saturated light is set to 2000 [ ⁇ mol / m 2 / s] or more. Note that when measuring ⁇ PSII with the current method, no measurement light is required.
- the intensity of the measurement light used here is about 10 [ ⁇ mol / m 2 / s].
- the intensity of the first growing light is the intensity used for growing the plant 1 and is about 100 [ ⁇ mol / m 2 / s] at the minimum.
- the first growth light is also referred to as first stationary light.
- saturation light is unnecessary.
- strength of 1st growth light and 2nd growth light used here is an intensity
- the second growing light is also referred to as second stationary light.
- measurement light and saturation light are not necessary.
- FIG. 19 is a diagram illustrating a configuration example of the photosynthetic measurement device 20 according to the second embodiment.
- the photosynthesis measuring device 20 includes a central control unit 200, a laser emission unit 201, a light emission control unit 202, an optical filter 203, an optical sensor 204, a sampling unit 205, a transient model holding unit 206, a calculation algorithm holding unit 207, a selector. 208, a selector 209, a photosynthesis quantum yield calculation unit 210, a result display unit 211, an actuator 212, and an image synthesis unit 213.
- the transient model holding unit 206 and the calculation algorithm holding unit 207 are configured as a storage unit 230 such as a semiconductor memory.
- the photosynthesis measuring device 20 in FIG. 19 is different from the photosynthesis measuring device 10 in FIG. 10 in that a laser emission unit 201 is provided instead of the emission unit 101, and an actuator 212 and an image synthesis unit 213 are newly provided. Is different. Note that, in the photosynthesis measuring device 20, the other configuration is basically the same as the configuration of the photosynthesis measuring device 10, and therefore the description thereof will be omitted as appropriate.
- the laser light emitting unit 201 emits (emits), for example, three types of laser light (measurement light, first growth light, and second growth light) according to control from the light emission control unit 202.
- the actuator 212 has a function of scanning a predetermined region of the plant 1 to be measured with the laser light emitted from the laser light emitting unit 201.
- the chlorophyll fluorescence of the plant 1 irradiated with the laser light is detected by the optical sensor 204 configured as a two-dimensional sensor via the optical filter 203.
- the sampling unit 205 samples the chlorophyll fluorescence measurement signal (intensity value) from the optical sensor 204.
- the photosynthesis quantum yield calculation unit 210 applies a photosynthesis quantum yield calculation algorithm corresponding to the transient model indicating the photosynthesis of the plant to the measurement data of the transient response of the chlorophyll fluorescence of the plant 1, so that the parameters relating to the transient model can be obtained. Among them, the quantum yield (Fv / Fm, ⁇ PSII) of photosynthesis, which is an unknown parameter, is calculated. However, the photosynthesis quantum yield calculation unit 210 calculates the quantum yield of photosynthesis for each scan by laser light, and supplies it to the image synthesis unit 213.
- the image synthesis unit 213 generates a single image by synthesizing the photosynthesis quantum yield obtained for each scan with the laser beam in accordance with the control from the central control unit 200.
- the image generated by the image composition unit 213 is displayed on the result display unit 211.
- the photosynthesis measuring device 20 is configured as described above.
- the photosynthetic measurement processing executed by the photosynthetic measurement device 20 in FIG. 19 is basically the same as the above-described photosynthetic measurement processing (FIG. 12), but the light emitted to the plant 1 is laser light. Is different. That is, when sampling is performed in the processing of steps S101 to S105 in FIG. 12, laser light from the laser light emitting unit 201 (FIG. 19) is used instead of light from the light emitting unit 101 (FIG. 10) or the like. .
- the plant 1 is scanned with the laser beam to acquire measurement data of transient response of chlorophyll fluorescence, and the measurement data is used as input data to obtain a paddle model or the like.
- the photosynthetic quantum yield calculation algorithm corresponding to the transient model the photosynthesis quantum yield can be calculated even without saturated light.
- JP 2006-504956 discloses an apparatus that moves a laser beam and scans chlorophyll fluorescence with a camera for each dot to perform two-dimensional measurement of photosynthesis quantum yield.
- plant material is scanned with a laser of about 1 Hz to about 10 kHz (ie, 1 second to 0.1 milliseconds per dot), called Ffast measurement, and then And scanning with a laser of about 0.01 to about 1 Hz (ie, 100 seconds to 1 second per dot), referred to as Fslow measurement.
- the quantum efficiency of photosynthesis activity (imaging quantum efficiency (IQP) of photosynthesis) is calculated by the following equation (25).
- a measurement time is required when the resolution is increased. For example, when measuring a 100m 2 (10m ⁇ 10m) field with 1000 points in each direction, it takes 278 hours, but when using this technology, a two-dimensionally arranged sensing element is used as the optical sensor 104. For example, since one screen can be measured at a time, the measurement can be completed within a maximum of 500 milliseconds.
- the photosynthesis measuring device 30 (FIG. 19) of the second embodiment, laser light is used as the light for irradiating the plant 1, but it is compared with the technique disclosed in the above document.
- the output per unit area of the laser light emitting unit 201 can be small, so that safety is improved during measurement in the field and the time required for measurement is increased. Can be shortened.
- FIG. 20 is a diagram illustrating a configuration example of the photosynthetic measurement device 30 according to the third embodiment.
- the photosynthesis measuring device 30 includes a central control unit 300, a light emission control unit 302, an optical filter 303, an optical sensor 304, a sampling unit 305, a transient model holding unit 306, a calculation algorithm holding unit 307, a selector 308, a selector 309, It comprises a photosynthetic quantum yield calculation unit 310, a result display unit 311, and an interface 312.
- the transient model holding unit 306 and the calculation algorithm holding unit 307 are configured as a storage unit 330 such as a semiconductor memory.
- the photosynthesis measuring device 20 is different from the photosynthesis measuring device 10 in FIG. 10 in that an interface 312 for connecting to an external device is provided instead of the light emitting unit 101.
- the other configuration is basically the same as the configuration of the photosynthesis measuring device 10, and the description thereof will be omitted as appropriate.
- the interface 312 includes an input / output interface circuit and can be connected to an external plant-growing light-emitting device 31.
- the plant growing light emitting device 31 is a device that emits light for growing plants, such as light from an LED. In other words, depending on the environment, there is a case where the sunshine of the plant is insufficient and the growth of the plant may be affected. Light can be efficiently irradiated to promote plant growth.
- the light emission control unit 302 controls the light emitted from the plant growing light emitting device 31 via the interface 312.
- the plant-growing light-emitting device 31 emits (emits), for example, three kinds of light (measurement light, first growth light, and second growth light) according to control from the light emission control unit 302.
- the chlorophyll fluorescence of the plant irradiated with light from the plant growing light emitting device 31 is detected by the optical sensor 304 via the optical filter 303.
- the sampling unit 305 samples the measurement signal (intensity value) of chlorophyll fluorescence from the optical sensor 304.
- the photosynthetic quantum yield calculation unit 310 applies a photosynthetic quantum yield calculation algorithm corresponding to the transient model indicating the photosynthesis of the plant to the measurement data of the transient response of the chlorophyll fluorescence of the plant 1, so that the parameters relating to the transient model Among them, the quantum yield (Fv / Fm, ⁇ PSII) of photosynthesis, which is an unknown parameter, is calculated.
- the calculation result by the photosynthetic quantum yield calculation unit 310 is displayed on the result display unit 311.
- the photosynthesis measuring device 30 is configured as described above.
- the photosynthetic measurement process executed by the photosynthetic measurement device 30 in FIG. 20 is basically the same as the above-described photosynthetic measurement process (FIG. 12), but the light irradiated to the plant 1 is for growing an external plant.
- the point which is irradiated by the light emitting device 31 is different. That is, when sampling is performed in the processes of steps S101 to S105 in FIG. 12, instead of the light from the LED from the light emitting unit 101 (FIG. 10), the LED from the plant growing light emitting device 31 (FIG. 20) is used. Light is used.
- the measurement data of the transient response of chlorophyll fluorescence is acquired by irradiating the plant 1 with light from the external light emitting device 31 for plant growth, and the measurement data Is processed in accordance with a photosynthesis quantum yield calculation algorithm according to a transient model such as a paddle model, so that the quantum yield of photosynthesis can be calculated without saturated light.
- the photosynthesis measuring device 30 side is special for performing photosynthesis measurement. It is possible to obtain the quantum yield of photosynthesis without preparing a simple light source.
- FIG. 21 is a diagram illustrating a configuration example of the photosynthesis measuring device 40 according to the fourth embodiment.
- the photosynthesis measuring device 40 includes a central control unit 400, an optical filter 403, an optical sensor 404, a sampling unit 405, a transient model holding unit 406, a calculation algorithm holding unit 407, a selector 408, a selector 409, and a photosynthesis quantum yield calculation.
- the transient model holding unit 406 and the calculation algorithm holding unit 407 are configured as a storage unit 430 such as a semiconductor memory.
- the photosynthesis measuring device 40 is provided with an ambient light sensor 412, a sampling unit 413, and an optimum change detection unit 414 instead of the light emitting unit 101 and the light emission control unit 102, as compared with the photosynthesis measuring device 10 of FIG. The point is different.
- the other configuration is basically the same as the configuration of the photosynthesis measuring device 10, and the description thereof will be omitted as appropriate.
- the ambient light sensor 412 is a sensor for measuring the intensity of ambient light such as sunlight.
- the ambient light sensor 412 supplies a measurement signal corresponding to the ambient light intensity to the sampling unit 413.
- the sampling unit 413 performs sampling on the ambient light measurement signal (intensity value) from the ambient light sensor 412, thereby converting the ambient light measurement signal from an analog signal to a digital signal in order of time.
- the ambient light measurement data obtained as a result of the sampling is supplied to the optimum change detection unit 414.
- the optimal change detection unit 414 Based on the measurement data of the ambient light from the sampling unit 413, the optimal change detection unit 414 detects an abrupt change necessary for performing the photosynthetic measurement of the plant 1 among the changes in the intensity of the ambient light, and detects the change. The result is supplied to the central control unit 400.
- the emission intensity from the measurement light in the first section to the first growth light in the second section in the light emission sequence shown in FIG. A change in the intensity of the ambient light corresponding to the change is detected.
- the emission intensity from the first growing light in the second section to the second growing light in the third section in the light emission sequence shown in FIG. A change in the intensity of the ambient light corresponding to the change is detected.
- the chlorophyll fluorescence of the plant irradiated with ambient light such as sunlight is detected by the optical sensor 404 via the optical filter 403.
- the sampling unit 405 samples the measurement signal (intensity value) of chlorophyll fluorescence from the optical sensor 404 according to the control from the central control unit 400.
- the central control unit 400 performs sampling according to the change in the intensity of the ambient light based on the detection result from the optimum change detection unit 414.
- ⁇ PSII is calculated as the quantum yield of photosynthesis
- Sampling of chlorophyll fluorescence is performed at a predetermined timing corresponding to the timings of ts0, ts1, ts2, and ts3.
- the photosynthetic quantum yield calculation unit 410 applies a photosynthesis quantum yield calculation algorithm corresponding to the transient model indicating the photosynthesis of the plant to the measurement data of the transient response of the chlorophyll fluorescence of the plant 1, so that the parameters relating to the transient model can be obtained. Among them, the quantum yield (Fv / Fm, ⁇ PSII) of photosynthesis, which is an unknown parameter, is calculated. The calculation result by the photosynthetic quantum yield calculation unit 410 is displayed on the result display unit 411.
- the photosynthesis measuring device 40 is configured as described above.
- the photosynthetic measurement processing executed by the photosynthetic measurement device 40 in FIG. 21 is basically the same as the above-described photosynthetic measurement processing (FIG. 12), but the light irradiated to the plant 1 is an environment such as sunlight. The only difference is that the timing of sampling the chlorophyll fluorescence of the plant 1 is determined according to the timing of the change in the intensity of the ambient light.
- the sampling timing of chlorophyll fluorescence at times t0 to t3 and times ts0 to ts3 is not a change in the emission intensity of light emitted from the light emitting unit 101 (FIG. 10), but the intensity of ambient light such as sunlight. It is determined according to the timing of change.
- the plant 1 is irradiated with only environmental light such as sunlight, and the chlorophyll fluorescence sampled at the timing according to the intensity change of the environmental light. It is possible to calculate the quantum yield of photosynthesis by acquiring the measurement data of the transient response and processing it according to the photosynthetic quantum yield calculation algorithm according to the transient model such as the paddle model using the measurement data as input data. .
- the intensity and timing of light applied to the plant 1 is controlled so that the light applied to the plant 1 is instantaneously increased, and the timing thereof. Sampling.
- ambient light such as sunlight cannot control the intensity change, so the timing of the intensity change is detected and the detection result is determined. Sampling is performed at the timing.
- the ambient light is sunlight
- a change in intensity caused by the passage of clouds may be detected.
- changes in ambient light such as sunlight are continuously measured by the ambient light sensor 412, and a convenient change in the intensity of ambient light happens to occur.
- time is selected, photosynthesis measurement is performed.
- the saturation light not only the saturation light but also the measurement light and the stationary light (growth light) are used, and the intensity of ambient light such as sunlight is used to change the quantum yield of photosynthesis.
- the rate is calculated. That is, in the case where an intensity change of ambient light such as sunlight is used, the light emission sequence shown in FIG. 11 is not essential.
- the method of measuring the intensity of the ambient light by the ambient light sensor 412 has been described as a technique for measuring the change in the intensity of the ambient light.
- the change in the intensity of the ambient light may be measured by another method such as a measurement method.
- FIG. 22 is a diagram illustrating a configuration example of the information processing apparatus 50 according to the fifth embodiment.
- the information processing apparatus 50 includes a central control unit 500, a transient model holding unit 506, a calculation algorithm holding unit 507, a selector 508, a selector 509, a photosynthetic quantum yield calculation unit 510, and a result display unit 511.
- the transient model holding unit 506 and the calculation algorithm holding unit 507 are configured as a storage unit 530 such as a semiconductor memory.
- the interface 512 includes an input / output interface circuit and the like, and can be connected to the external chlorophyll fluorescence measuring device 52 via the external storage 51 or the network 53.
- the external storage 51 is a large-capacity recording device such as a hard disk or a semiconductor memory.
- the external storage 51 stores a file of measurement data of transient response of the chlorophyll fluorescence of the plant 1 (hereinafter referred to as transient response measurement file).
- the external storage 51 provides the accumulated transient response measurement file to the information processing device 50 in response to a request from the information processing device 50.
- the transient response measurement file from the external storage 51 is supplied to the photosynthetic quantum yield calculation unit 510 via the interface 512.
- the external chlorophyll fluorescence measuring device 52 is a device that measures (measures) the chlorophyll fluorescence of the plant 1.
- the external chlorophyll fluorescence measuring device 52 has functions corresponding to the central control unit 100, the light emitting unit 101, the light emission control unit 102, the optical filter 103, the optical sensor 104, and the sampling unit 105 shown in FIG. It is possible to sample the chlorophyll fluorescence of the plant 1 irradiated with light or growing light.
- the external chlorophyll fluorescence measuring device 52 provides measurement information of the transient response of chlorophyll fluorescence of the plant 1 to the information processing device 50 via the network 53 in response to a request from the information processing device 50.
- transient response measurement data from the external chlorophyll fluorescence measurement apparatus 52 is supplied to the photosynthetic quantum yield calculation unit 510 via the interface 512.
- a file of the measurement data may be provided.
- an information processing apparatus such as a server connected to the network 53 such as the Internet may provide the transient response measurement data and the transient response measurement file via the network 53.
- the photosynthetic quantum yield calculation unit 510 is provided with a transient response measurement file or transient response measurement data from the external storage 51 or the external chlorophyll fluorescence measurement device 52.
- the transient response measurement file includes transient response measurement data.
- the photosynthetic quantum yield calculation unit 510 applies a photosynthetic quantum yield calculation algorithm according to a transient model indicating photosynthesis of a plant to transient measurement data provided from the outside, so that parameters of the transient model can be calculated. Among them, the quantum yield (Fv / Fm, ⁇ PSII) of photosynthesis, which is an unknown parameter, is calculated.
- the calculation result by the photosynthetic quantum yield calculation unit 510 is displayed on the result display unit 511.
- the information processing apparatus 50 is configured as described above.
- the information processing executed by the information processing apparatus 50 of FIG. 22 is the processing of the subsequent steps S106 to S109 without executing the processing of the previous steps S101 to S105, as compared with the above-described photosynthesis measurement processing (FIG. 12). The only difference is that it is executed.
- the processes in steps S101 to S105 in the previous stage are executed by the external chlorophyll fluorescence measuring device 52, or the transient response measurement file obtained in the processes in steps S101 to S105 in the previous stage is stored in the external storage 51. ing. Then, in the information processing apparatus 50, using the measurement data of the transient response obtained from the external storage 51 or the external chlorophyll fluorescence measurement apparatus 52, the processes of steps S106 to S109 at the subsequent stage are executed.
- the measurement data of the transient response provided from the outside is obtained, and the photosynthesis quantum yield calculation algorithm according to the transient model such as the paddle model is obtained using the measurement data as input data.
- the quantum yield of photosynthesis can be calculated by processing according to the above.
- FIG. 23 As a specific example of the measuring device that measures the plant 1 to be measured in the first to fifth embodiments described above, a fixed point measuring device 60A that performs fixed point observation, and mobile observation The movement measuring device 60B which performs is illustrated.
- a fixed-point measuring device 60A shown in FIG. 23A is fixed at a position where a measurement target plant 1 (for example, a plant in a field) can be measured (sensing) by a fixed leg 61A, and the plant measured there.
- the measurement data of the transient response of 1 chlorophyll fluorescence is transmitted to the information processing apparatus 50 (FIG. 22) using, for example, wireless communication.
- the information processing apparatus 50 can calculate the quantum yield of photosynthesis of the plant 1 observed at a fixed point by the fixed point measuring apparatus 60A by processing the transient response measurement data transmitted from the fixed point measuring apparatus 60A.
- the mobile measuring device 60B shown in FIG. 23B is, for example, an unmanned aerial vehicle (UAV: Unmanned Aerial Vehicle), which flies by the rotation of the propeller-shaped rotor blade 61B, and from above, the plant 1 to be measured ( For example, a field plant or the like) is measured (aerial photography).
- UAV Unmanned Aerial Vehicle
- the mobile measurement device 60B transmits the measurement data of the transient response of the chlorophyll fluorescence of the plant 1 measured there, for example, to the information processing device 50 (FIG. 22) using, for example, wireless communication.
- the information processing apparatus 50 can obtain the quantum yield of photosynthesis of the plant 1 that has been observed for movement by the movement measuring apparatus 60B by processing the measurement data of the transient response transmitted from the movement measuring apparatus 60B.
- the mobile measurement device 60B may be configured to autonomously fly using position information such as GPS (Global Positioning System), for example, by previously storing the flight route as coordinate data.
- position information such as GPS (Global Positioning System)
- the movement measurement device 60B is described as a rotary wing machine having the rotary blades 61B.
- the movement measurement device 60B may be a fixed wing machine.
- the transient response measurement data measured by the fixed point measurement device 60A or the movement measurement device 60B is transmitted to the information processing device 50 (FIG. 22), and the information processing device 50 performs photosynthesis of the plant 1.
- the fixed point measuring apparatus 60A or the movement measuring apparatus 60B has the function similar to the photosynthesis measuring apparatus 10 (FIG. 10), the information processing apparatus 50 (FIG. 22), etc.
- the photosynthesis quantum yield may be determined.
- the measurement target is a plant.
- the measurement target is not limited to a plant but can be a whole living body. That is, as shown in FIG. 9 described above, the present technology uses the transient response measurement data obtained from the measurement target as an input and applies a calculation algorithm according to the transient model, so that This method is characterized by estimating (calculating) an unknown parameter, and this principle can be applied to all living organisms.
- the measurement data of the transient response obtained from the measurement target living body is used as an input, and the calculation algorithm corresponding to the transient model indicating the function of the target living body is applied, so that the parameters related to the transient model are obtained.
- an unknown parameter can be calculated.
- FIG. 24 is a diagram illustrating a configuration example of hardware of a computer that executes the series of processes described above by a program.
- a CPU Central Processing Unit
- ROM Read Only Memory
- RAM Random Access Memory
- An input / output interface 1005 is further connected to the bus 1004.
- An input unit 1006, an output unit 1007, a recording unit 1008, a communication unit 1009, and a drive 1010 are connected to the input / output interface 1005.
- the input unit 1006 includes a keyboard, a mouse, a microphone, and the like.
- the output unit 1007 includes a display, a speaker, and the like.
- the recording unit 1008 includes a hard disk, a nonvolatile memory, and the like.
- the communication unit 1009 includes a network interface or the like.
- the drive 1010 drives a removable storage medium 1011 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory.
- the CPU 1001 loads the program recorded in the ROM 1002 or the recording unit 1008 to the RAM 1003 via the input / output interface 1005 and the bus 1004 and executes the program. A series of processing is performed.
- the program executed by the computer 1000 can be provided by being recorded in a removable storage medium 1011 as a package medium, for example.
- the program can be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.
- the program can be installed in the recording unit 1008 via the input / output interface 1005 by attaching the removable storage medium 1011 to the drive 1010.
- the program can be received by the communication unit 1009 via a wired or wireless transmission medium and installed in the recording unit 1008.
- the program can be installed in the ROM 1002 or the recording unit 1008 in advance.
- the processing performed by the computer according to the program does not necessarily have to be performed in chronological order in the order described as the flowchart. That is, the processing performed by the computer according to the program includes processing executed in parallel or individually (for example, parallel processing or object processing).
- the program may be processed by one computer (processor), or may be processed in a distributed manner by a plurality of computers.
- this technique can take the following structures.
- a calculation unit that calculates an unknown parameter among parameters related to the transient model by applying a calculation algorithm corresponding to the transient model indicating a function of the living body to measurement data of a transient response obtained from a living body to be measured An information processing apparatus.
- the living body is a plant
- the transient model is a model expressing an electron transfer system of a photochemical reaction in the photosynthesis of the plant
- the calculation algorithm is an algorithm for calculating the quantum yield of photosynthesis from the transient response of the chlorophyll fluorescence of the plant using the transient model
- the measurement data is measurement data of a transient response of chlorophyll fluorescence of the plant
- the information processing apparatus according to (1), wherein the calculation unit calculates the quantum yield of photosynthesis of the plant as an unknown parameter by applying the calculation algorithm with the measurement data as an input.
- the quantum yield of photosynthesis of the plant is at least one of a maximum quantum yield (Fv / Fm) of an electron transport system of photosynthesis and a quantum yield ( ⁇ PSII) of an electron transport system of photosynthesis.
- Information processing device (4) One or a plurality of the transient models are prepared, The information processing apparatus according to any one of (1) to (3), wherein one or a plurality of the calculation algorithms are prepared according to the transient model. (5) The information processing apparatus according to any one of (1) to (4), further including a storage unit that stores the transient model and the calculation algorithm. (6) The information processing apparatus according to any one of (2) to (5), further including a light emission control unit that controls a light emitting unit that emits light to the plant so that the measurement data is obtained.
- the light emitting unit is an external light emitting device that emits light for growing the plant, An interface connected to the light emitting device; A sensor for sensing the chlorophyll fluorescence of the plant, The information processing device according to (6), wherein the light emission control unit controls the light emitting device through the interface so that the measurement data can be obtained.
- the processing apparatus is a measurement apparatus that measures the measurement data or a recording apparatus that records the measurement data.
- the information processing apparatus is Applying a calculation algorithm according to a transient model indicating a function of the living body to measurement data of a transient response obtained from a living body to be measured, and calculating an unknown parameter among parameters relating to the transient model Information processing method including.
- Computer A calculation unit that calculates an unknown parameter among parameters related to the transient model by applying a calculation algorithm corresponding to the transient model indicating a function of the living body to measurement data of a transient response obtained from a living body to be measured A program for causing an information processing apparatus to function.
- a sensor for sensing a living body to be measured Applying a calculation algorithm corresponding to the transient model indicating the function of the living body to the transient response measurement data obtained from the living body by sensing by the sensor, and calculating an unknown parameter among the parameters related to the transient model
- a sensing device comprising:
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Pathology (AREA)
- Ecology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Botany (AREA)
- Molecular Biology (AREA)
- Forests & Forestry (AREA)
- Environmental Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Optics & Photonics (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
本技術は、生体の内部の状態を判断することができるようにする情報処理装置、情報処理方法、プログラム、及び、センシング装置に関する。 情報処理装置は、測定対象の生体から得られる過渡応答の測定データに対し、生体が有する機能を示す過渡モデルに応じた計算アルゴリズムを適用して、過渡モデルに関するパラメータのうち、未知のパラメータを算出することで、生体の内部の状態を判断することができるようにする。本技術は、例えば、植物の光合成の量子収率を算出する情報処理装置に適用することができる。
Description
本技術は、情報処理装置、情報処理方法、プログラム、及び、センシング装置に関し、特に、生体の内部の状態を判断することができるようにした情報処理装置、情報処理方法、プログラム、及び、センシング装置に関する。
植物の成長は、日照や温度などの環境の状態に影響を受けるが、同じ環境においても、植物の種類や環境への順化状態によって異なる挙動を示すため、植物を良好に育成するには、環境の状態を把握するだけでなく、植物の生育を診断し、その状態に応じて育成環境を整える必要がある。
この種の植物の生育の診断方法としては、例えば、特許文献1に開示された技術が知られている。
ところで、一般的に植物の生育などの生体の内部の状態を、迅速かつ正確に判断することは難しく、そのような判断をできるようにすることが望まれていた。
本技術はこのような状況に鑑みてなされたものであり、生体の内部の状態を判断することができるようにするものである。
本技術の一側面の情報処理装置は、測定対象の生体から得られる過渡応答の測定データに対し、前記生体が有する機能を示す過渡モデルに応じた計算アルゴリズムを適用して、前記過渡モデルに関するパラメータのうち、未知のパラメータを算出する算出部を備える情報処理装置である。
本技術の一側面の情報処理方法又はプログラムは、上述した本技術の一側面の情報処理装置に対応する情報処理方法又はプログラムである。
本技術の一側面の情報処理装置、情報処理方法、及び、プログラムにおいては、測定対象の生体から得られる過渡応答の測定データに対し、前記生体が有する機能を示す過渡モデルに応じた計算アルゴリズムが適用され、前記過渡モデルに関するパラメータのうち、未知のパラメータが算出される。
本技術の一側面のセンシング装置は、測定対象の生体をセンシングするセンサと、前記センサによるセンシングによって前記生体から得られる過渡応答の測定データに対し、前記生体が有する機能を示す過渡モデルに応じた計算アルゴリズムを適用して、前記過渡モデルに関するパラメータのうち、未知のパラメータを算出する算出部とを備えるセンシング装置である。
本技術の一側面のセンシング装置においては、測定対象の生体がセンシングされ、センシングによって前記生体から得られる過渡応答の測定データに対し、前記生体が有する機能を示す過渡モデルに応じた計算アルゴリズムが適用され、前記過渡モデルに関するパラメータのうち、未知のパラメータが算出される。
なお、情報処理装置及びセンシング装置は、独立した装置であってもよいし、1つの装置を構成している内部ブロックであってもよい。
本技術の一側面によれば、生体の内部の状態を判断することができる。
なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
以下、図面を参照しながら本技術の実施の形態について説明する。なお、説明は以下の順序で行うものとする。
1.本技術の概要
2.第1の実施の形態:基本構成
3.第2の実施の形態:レーザ光を用いた構成
4.第3の実施の形態:外部の発光装置を用いた構成
5.第4の実施の形態:環境光の強度変化を用いた構成
6.第5の実施の形態:外部からの測定データを用いた構成
7.変形例
8.コンピュータの構成
2.第1の実施の形態:基本構成
3.第2の実施の形態:レーザ光を用いた構成
4.第3の実施の形態:外部の発光装置を用いた構成
5.第4の実施の形態:環境光の強度変化を用いた構成
6.第5の実施の形態:外部からの測定データを用いた構成
7.変形例
8.コンピュータの構成
<1.本技術の概要>
植物の光合成活動及びそれに伴う植物体の成長は、日照や温度、飽差、二酸化炭素の濃度(CO2濃度)、土壌水分、土壌中の肥料成分といった環境の状態に影響を受けるとともに、同じ環境においても、植物の種類や環境への順化状態によって異なる挙動を示す。従って、植物の良好な育成のためには、環境の状態を把握するだけでなく、植物の種類や育成ステージごとに、時間的変化を伴う植物の内部状態をモニタ(監視)し、その状態に応じて育成環境を制御することが必要となる。
しかしながら、一般的に、植物の内部状態を、迅速にかつ正確にモニタすることは、極めて難しい。例えば、日照は十分であっても、温度が低すぎて光合成が十分に行えない状態にあることは、過去の経験から判断するか、あるいはその状態が一定のまま数日が経過して成長が十分でなかった結果が観測できない限りは、その判別が難しい。また、環境条件が一定ではない野外環境等においては、植物の育成に影響を与えている環境条件の特定や定量化、あるいは状態に応じた対処を行うことは、困難である。
本技術は、このような現状を鑑みて、植物の内部の状態を判断(診断)することができるようにするものであるが、ここでは、まず、本技術を説明する上で前提となる光合成の仕組みや現状の技術などについて説明してから、本技術の具体的な内容について説明する。
(光合成の仕組み)
図1は、植物の光合成の仕組みを説明するための図である。
図1は、植物の光合成の仕組みを説明するための図である。
図1に示すように、光合成は、大別すると、光化学反応(Photochemical System)と炭素還元反応(Calvin-Benson Cycle)から構成される。光化学反応は、光のエネルギーで水(H2O)を分解してエネルギーを得る過程である。炭素還元反応は、前段の光化学反応で得られたエネルギーを用いて、二酸化炭素(CO2)を分解し、糖(CH2O)を生成する過程である。
より具体的には、光化学反応は、受け取る光の波長帯域の違いにより、光化学系I(PSI)と、光化学系II(PSII)に分けられる。図1に示すように、光化学反応は、主に、光を集める集光アンテナ(LHCI,LHCII)と、光のエネルギーで電子を励起させる反応中心(RCI,RCII:図1ではP680,P700と記述)と、電子伝達系に沿って、電子の伝搬や一時貯蔵を行う中間プール(QA,QB,PQ,A0等)により構成される。
そして、この電子伝達系での電子のエネルギー勾配を示すZ機構(Z-scheme)の酸化還元反応により、ニコチンアミドアデニンジヌクレオチドリン酸(NADPH:Nicotinamide Adenine Dinucleotide Phosphate)が合成される。ニコチンアミドアデニンジヌクレオチドリン酸は、生体内のどこにでも存在し、酸化型(NADP+)と還元型(NADPH)の2つの状態があり、電子や水素を運ぶ役割を有している。ただし、酸化型(NADP+)では電子を受け取りやすく、還元型(NADPH)では電子を放出しやすい。
また、光化学反応では、酸素発生複合体(OEC:Oxygen Evolving Complex)によって、水(H2O)が分解され、酸素(CO2)が発生する。このときに得られるプロトン(H+)のエネルギーによって、ATP合成酵素(ATP synthase)が、アデノシン二リン酸(ADP:Adenosine Diphosphate)から、アデノシン三リン酸(ATP:Adenosine Triphosphate)を合成している。
なお、光化学反応には、処理できない余剰のエネルギーを熱(Heat)として発散するために、余剰のエネルギーの大きさに従い、化学組成を変えながら適切な量のエネルギーを熱として放出することができる、キサントフィルサイクル(Xanthophyll Cycle)が存在している。
一方で、炭素還元反応では、光化学反応で作られたニコチンアミドアデニンジヌクレオチドリン酸(NADPH)とアデノシン三リン酸(ATP)を使って、二酸化炭素(CO2)が分解され、糖(CH2O)が作られる。
(クロロフィル蛍光)
クロロフィル蛍光(Chlorophyll Fluorescence)は、植物の光合成に伴い、植物から発せられる蛍光であり、光により電子が励起した反応中心(RC:Reaction Center)から一定時間内にエネルギーが抜き取られないと、高等植物では、680~750nm前後の波長の蛍光としてエネルギーが放出される現象である。なお、放射されるエネルギーは、入射光のエネルギーに対し、0.5~3%とされ、植物の光合成の状態に応じて変動するものである。図2には、植物のクロロフィル蛍光を模式的に表している。
クロロフィル蛍光(Chlorophyll Fluorescence)は、植物の光合成に伴い、植物から発せられる蛍光であり、光により電子が励起した反応中心(RC:Reaction Center)から一定時間内にエネルギーが抜き取られないと、高等植物では、680~750nm前後の波長の蛍光としてエネルギーが放出される現象である。なお、放射されるエネルギーは、入射光のエネルギーに対し、0.5~3%とされ、植物の光合成の状態に応じて変動するものである。図2には、植物のクロロフィル蛍光を模式的に表している。
ここで、電子伝達系の中間プールが酸化状態で、電子を受け入れることが可能な状態である場合を、反応中心(RC)がオープン(Open)であるといい、光により励起した電子は、電子伝達系を通じて流れ出し、励起状態が解消される。これを、光化学消光(PhotoChemicalQuenching)と呼ぶ。一般的に、光合成が効率よく進行している場合、光化学消光の度合いが大きいため、クロロフィル蛍光の強度は小さくなる。
一方、電子伝達系の中間プールが還元状態で、電子を受け入れることができない場合を、反応中心(RC)がクローズ(Close)であるという。すべての反応中心(RC)がクローズしたとき、光化学消光がなくなり(電子伝達系への電子伝達が止まり)、クロロフィル蛍光の強度は最大となる。
光より励起した電子が、クロロフィル蛍光(Fluorescence)又は熱(Heat)として発散されるとき、これを、非化学消光(Non- PhotoChemicalQuenching)と呼ぶ。植物に光化学系で処理しきれない強い光を与えた場合、一時的にクロロフィル蛍光の強度が上昇するが、時間が経過するにつれて、炭素還元反応の活性化や、キサントフィルサイクルの化学組成が変化し、熱を効率よく放出できるようになると、クロロフィル蛍光の強度は減少する。
(電子伝達系の反応速度)
光化学反応において、光の入力に対する電子伝達系の反応速度は、ピコ秒~数十ミリ秒と高速な反応を示し、これを、ショートレスポンス(Short Response)と呼ぶ。図3には、光化学反応における電子伝達系の反応速度が、ピコ秒~数十ミリ秒となることが記述されている。
光化学反応において、光の入力に対する電子伝達系の反応速度は、ピコ秒~数十ミリ秒と高速な反応を示し、これを、ショートレスポンス(Short Response)と呼ぶ。図3には、光化学反応における電子伝達系の反応速度が、ピコ秒~数十ミリ秒となることが記述されている。
一方で、炭素還元反応と、キサントフィルサイクルは、活性化に数秒以上かかり、光の強さなどに応じて数分かけて定常状態に遷移する。このことを、ロングレスポンス(Long Response)と呼ぶ。図3には、炭素還元反応とキサントフィルサイクルの活性化に、数秒~数分かかることが記述されている。なお、図3に示したタイミングパラメータの値は一例である。
(光合成の量子収率)
光合成の量子収率としては、例えば、Fv/Fmと、ΦPSIIがあり、これらの値により、現在の環境条件において、植物がどの程度の効率で光合成を行っているかを、リアルタイムに把握すること可能となる。
光合成の量子収率としては、例えば、Fv/Fmと、ΦPSIIがあり、これらの値により、現在の環境条件において、植物がどの程度の効率で光合成を行っているかを、リアルタイムに把握すること可能となる。
Fv/Fmは、光合成の光化学系II(PSII)の電子伝達系の最大量子収率であり、炭素還元反応やキサントフィルサイクルに律速することのない暗順応状態における光化学系IIの量子収率(入力光子数に対する出力電子数)を表している。
ΦPSIIは、光合成の光化学系II(PSII)の電子伝達系の量子収率であり、一定の強度の光が当たって光合成が行われているときの量子収率を表している。
例えば、図4に示すように、入力光の強度I(PPFD[μmol/m2/s])、植物(群落)の光の吸収率(一般的に0.84がよく用いられる)、入力光の光化学系I(PSI)と光化学系II(PSII)との分配率(一般的に定数0.5がよく用いられる)、光合成の光化学系IIの電子伝達系の量子収率(ΦPSII)を用いると(仮に0.7が計測されたものとする)、電子伝達速度(ETR:Electron Transport Rate)を算出することができる。
例えば、PPFD値が1000[μmol/m2/s]となる場合の電子伝達速度(ETR)は、ETR = 1000×0.84×0.5×0.7 = 294[μmol/m2/s]となる。つまり、ETR = I×0.84×0.5×ΦPSII[μmol/m2/s]となる。電子伝達速度(ETR)は、現在の環境条件や植物の状態において、植物がどのような速度で光を電子に変えているかを、リアルタイムで定量的に表現するパラメータである。
ここで、PPFD値は、光合成光量子密度(PPFD:Photosynthetic Photon Flux Density)の値であって、葉緑素(クロロフィル)の吸収波長である400nmから700nmの波長での光量子が、単位時間、単位面積あたりに入射する個数で表したものである。
さらに、電子伝達系からニコチンアミドアデニンジヌクレオチドリン酸(NADPH)の効率を0.5、炭素還元反応の効率を0.5とした場合、GPP(Gross Primary Production)は、GPP = ETR×0.5×0.5 = 73.5[μmol/m2/s]となる。
なお、炭素還元反応の効率は、温度やCO2濃度により変動するが、炭素還元反応の効率が落ち、受け入れられるエネルギーの上限に制限が生じている場合、電子伝達速度(ETR)が低下することにつながるため、ETRとGPPとの相関が高いことが知られている。
(パルス変調蛍光測定)
ところで、環境や植物の状態に応じた光合成の状態をリアルタイムに計測するための手法として、パルス変調蛍光測定と称される手法がある。このパルス変調蛍光測定の手法を用いた光合成計測器は既に実用化されている。パルス変調蛍光測定は、太陽光の強度を超えるような非常に強い人工光(以下、飽和光という)を植物に照射することで、当該植物の光合成の状態を測定するものである。
ところで、環境や植物の状態に応じた光合成の状態をリアルタイムに計測するための手法として、パルス変調蛍光測定と称される手法がある。このパルス変調蛍光測定の手法を用いた光合成計測器は既に実用化されている。パルス変調蛍光測定は、太陽光の強度を超えるような非常に強い人工光(以下、飽和光という)を植物に照射することで、当該植物の光合成の状態を測定するものである。
図5は、パルス変調蛍光測定を用いた光合成計測装置90の構成を示す図である。
光合成計測装置90は、飽和光を用いて、植物の光合成の量子収率の計測を行う。光合成計測装置90は、中央制御部900、発光部901、発光制御部902、測定光生成部903、合成部904、光学フィルタ905、光センサ906、測定光分離電気的フィルタ907、サンプリング部908、光合成量子収率演算部909、及び結果表示部910から構成される。
発光制御部902は、中央制御部900からの制御に従い、測定光生成部903により生成されるパルス変調された測定光を、合成部904により合成することで、発光部901から、所定の強度の光が発光されるようにする。
発光部901からは、LED(Light Emitting Diode)によって、3種類の強度の光が発光される。3種類の強度の光には、測定光からなる第1の光(以下、「測定光」と記述する)と、定常光と測定光からなる第2の光(以下、「定常光+測定光」と記述する)と、飽和光と測定光からなる第3の光(以下、「飽和光+測定光」と記述する)とが含まれる。
ここで、測定光は、反応中心(RC)が、オープン(Open)の状態のクロロフィル蛍光(F0等)を測定するための非常に弱い光である。飽和光は、反応中心(RC)を完全にクローズ(Close)させた状態のクロロフィル蛍光(Fm,Fm')を測定するための非常に強い光である。この飽和光は、0.5~1秒前後の継続時間を持った光となる。
定常光は、植物1に光合成を定常的に行わせた状態のクロロフィル蛍光(Fs)を測定するための光である。この定常光は、ロングレスポンスを観測するため、植物1の光合成が安定するまで数分間継続して発光させる光となる。
光学フィルタ905は、発光部901からの光や外乱光を除去し、植物1からのクロロフィル蛍光のみを取り出すためのフィルタである。光センサ906は、光学フィルタ905を透過したクロロフィル蛍光の強度を、電気的な信号に変換する。
測定光分離電気的フィルタ907は、光センサ906により変換された電気信号のDC成分を除去して、測定光に対するクロロフィル蛍光の強度を取り出すためのフィルタである。サンプリング部908は、中央制御部900からの制御に従い、測定光分離電気的フィルタ907によるフィルタ処理で得られる電気信号を、アナログ信号からデジタル信号に変換する。
光合成量子収率演算部909は、中央制御部900からの制御に従い、サンプリング部908によりサンプリングされたデジタル信号から、光合成の量子収率を算出する。結果表示部910は、中央制御部900からの制御に従い、光合成量子収率演算部909により算出された光合成の量子収率の演算結果を表示する。ここで、光合成の量子収率としては、Fv/Fmと、ΦPSIIが表示される。
光合成計測装置90は、以上のように構成される。
(発光強度とクロロフィル蛍光強度との関係)
ここで、図5の光合成計測装置90においては、植物1に対して照射する光の種類を変えながら、植物1のクロロフィル蛍光のサンプリングが行われるが、植物1に照射される光の発光強度と、クロロフィル蛍光の強度との関係を表すと、図6に示すような関係となる。
ここで、図5の光合成計測装置90においては、植物1に対して照射する光の種類を変えながら、植物1のクロロフィル蛍光のサンプリングが行われるが、植物1に照射される光の発光強度と、クロロフィル蛍光の強度との関係を表すと、図6に示すような関係となる。
図6において、図6のAは、発光部901から発光される光の強度を示し、図6のBは、発光部901から発光される光を制御することで引き起こされる、植物1のクロロフィル蛍光の強度を示している。また、図6においては、横方向が時間を表し、時間の方向は、図中の左側から右側に向かう方向とされる。
図6のAにおいては、発光部901から発光される光の種類(強度)に応じて、測定光のみが発光される区間と、飽和光と測定光(飽和光+測定光)が発光される区間と、定常光と測定光(定常光+測定光)が発光される区間がある。
ここで、光合成の量子収率として、Fv/Fmの計測を行う場合、当該計測の開始直後の測定光のみを発光している区間で、測定光によるクロロフィル蛍光(F0)が得られ、飽和光+測定光を発光している区間で、飽和光によるクロロフィル蛍光(Fm)が得られる。
そして、このような発光シーケンスで得られるクロロフィル蛍光(F0,Fm)を用い、下記の式(1)を演算することで、光合成の量子収率として、Fv/Fmが求められる。
Fv/Fm = (Fm - F0) / Fm ・・・(1)
また、光合成の量子収率として、ΦPSIIの計測を行う場合、植物1の光合成が定常状態時の定常光+測定光を発光している区間で、定常光によるクロロフィル蛍光(Fs)が得られ、光合成が定常状態時の飽和光+測定光を発光している区間で、飽和光によるクロロフィル蛍光(Fm')が得られる。
そして、このような発光シーケンスで得られるクロロフィル蛍光(Fs,Fm')を用い、下記の式(2)を演算することで、光合成の量子収率として、ΦPSIIが求められる。
ΦPSII = (Fm' - Fs) / Fs ・・・(2)
このように、図5の光合成計測装置90では、短時間(例えば、2~3秒)で電子伝達系を詰まらせるために、非常に強い光である飽和光を与えている。なお、計測の最後には、定常光の照射が停止され、測定光によるクロロフィル蛍光(F0')が得られる。
(電気的なモデル)
図7は、植物1の光合成の量子収率(Fv/Fm)を算出するための計算アルゴリズムを電気的なモデルで表した図である。
図7は、植物1の光合成の量子収率(Fv/Fm)を算出するための計算アルゴリズムを電気的なモデルで表した図である。
図7においては、入力光の大きさをIと表現し、クロロフィル蛍光、熱、光化学反応としてエネルギーが吸収される度合いを、それぞれ、GF,GH,GPと表現した場合に、電気回路的には、Iが電流に相当し、GF,GH,GPが並列に接続されたコンダクタンスに相当することを表している。
特に、反応中心(RC:Reaction Center)がオープン(Open)の状態であるとき、クロロフィル蛍光(F0)は、電気的な等価回路として考えると、図7のAに示した等価回路で表すことができるので、下記の式(3)のように表すことができる。
一方で、反応中心(RC)がクローズ(Close)の状態であるとき、クロロフィル蛍光(Fm)は、電気的な等価回路として考えると、図7のBに示した等価回路で表すことができるので、下記の式(4)のように表すことができる。
そして、上述の式(3)と、式(4)から、光合成の量子収率(Fv/Fm)は、下記の式(5)のように表すことができる。
ただし、式(5)において、右辺は、入力光(I)のうち、反応中心(RC)に分割される比率、すなわち、収率を示している。
(パルス変調蛍光測定に関する補足)
図8は、図5の光合成計測装置90により行われるパルス変調蛍光測定に関する補足を説明するための図である。
図8は、図5の光合成計測装置90により行われるパルス変調蛍光測定に関する補足を説明するための図である。
光合成計測装置90においては、クロロフィル蛍光(F0,Fm)を測定するために、入力光(I)として、測定光と、飽和光+測定光が用いられる。ここで、図8のAに示すように、クロロフィル蛍光(Fm)の測定では、交流の測定光に加えて、飽和光が印加されるため、クロロフィル蛍光の応答も、飽和光に対する応答(DC成分)が重ね合わされたかたちで、測定される。
しかしながら、図8のBに示すように、測定光分離電気的フィルタ907の働きにより、飽和光に対するクロロフィル蛍光の応答(DC成分)は、除去されるため、飽和光は、反応中心(RC)をクローズの状態にさせることで、上述の図7のBに示した電気的なモデルで表現可能な状態にする効果にのみ働いて、サンプリング部908による測定光及びクロロフィル蛍光のサンプリング結果には、影響しないことになる。よって、光合成の量子収率(Fv/Fm)は、上述したアルゴリズムにより演算することができる。
以上のようにして、図5の光合成計測装置90では、パルス変調蛍光測定が行われる。しかしながら、このパルス変調蛍光測定では、太陽光の強度を超えるような非常に強い人工光である飽和光を用いるため、現実的には、限られた領域での測定は可能であるが、例えば、圃場の植物を対象とした場合のような、飽和光を当てることが困難となる広範囲の領域での測定には向いておらず、現時点では実用化には至っていない。
そのため、飽和光を用いずに、光合成の量子収率を求めて、植物の内部の状態を判断(診断)できるようにすることが望まれる。そこで、本技術では、植物の光合成を示す過渡モデルを1又は複数用意し、対象の過渡モデルに応じた計算アルゴリズムを、測定対象の植物から得られるクロロフィル蛍光の過渡応答の測定データに適用することで、当該過渡モデルに関するパラメータのうち、未知のパラメータである光合成の量子収率が推定されるようにする。これにより、飽和光を用いずに、光合成の量子収率を算出することが可能となって、植物の内部の状態を判断(診断)することができる。
(過渡モデルと計算アルゴリズムによるパラメータ推定)
図9は、本技術の過渡モデルと光合成量子収率計算アルゴリズムを用いたパラメータ推定を概念的に表した図である。
図9は、本技術の過渡モデルと光合成量子収率計算アルゴリズムを用いたパラメータ推定を概念的に表した図である。
図9において、入力生成C1は、測定対象植物C3に対し、例えば測定光や育成光などの入力光C2が照射されることを表している。また、入力生成C1は、過渡モデルC5が生成され、あらかじめ用意されることを表している。
クロロフィル蛍光出力C4は、入力光C2が照射された測定対象植物C3をサンプリングすることで得られる、測定対象植物C3のクロロフィル蛍光の過渡応答の測定データである。このクロロフィル蛍光出力C4が、光合成量子収率計算アルゴリズムC6の入力データとなる。
過渡モデルC5は、植物の光合成での光化学反応の電子伝達系を表現したモデルである。過渡モデルC5としては、例えば、パドルモデル(Puddle Model)、レイクモデル(Lake Model)、又はコネクテッドユニットモデル(Connected Unit Model)等の植物生理学上のモデルを用いることができる。なお、過渡モデルC5は、1又は複数用意することができる。
ここで、過渡モデルC5のモデリングの手法としては、グレーボックスモデルが用いられる。グレーボックスモデルとは、ホワイトボックスモデル(第一原理モデル)とブラックボックスモデル(システム同定)の中間に位置づけられるモデルであって、システムの構造の一部が不明なモデルである。
例えば、グレーボックスモデルでは、対象の第一原理モデルを基本として、未知のパラメータを、入出力データ(入力データ)から推定する。このグレーボックスに関する技術としては、例えば、特開2011-137627号に開示されている技術がある。この文献には、建造物における熱伝達を、グレーボックスモデルを用いてモデル化する手法が開示されている。
光合成量子収率計算アルゴリズムC6は、過渡モデルC5を用い、クロロフィル蛍光出力C4から、光合成の量子収率を算出するためのアルゴリズムである。光合成量子収率計算アルゴリズムC6は、例えば、過渡モデルC5の種類や、算出すべき光合成の量子収率(Fv/Fm,ΦPSII)などに応じて、1又は複数用意することができる。
ここで、過渡モデルC5は、グレーボックスモデルに相当し、複数のパラメータのうち、未知のパラメータとして、測定対象植物C3の光合成の量子収率を含んでいる。そのため、クロロフィル蛍光出力C4(測定対象植物C3のクロロフィル蛍光の過渡応答の測定データ)を入力データとして、この過渡モデルC5に応じた光合成量子収率計算アルゴリズムC6を適用することで、未知のパラメータとしての測定対象植物C3の光合成の量子収率を算出することが可能となる。
光合成量子収率演算結果C7は、光合成量子収率計算アルゴリズムC6の演算結果として、測定対象植物C3の光合成の量子収率(Fv/Fm,ΦPSII)が算出されることを表している。
以上のように、本技術では、クロロフィル蛍光出力C4に対し、過渡モデルC5に応じた光合成量子収率計算アルゴリズムC6を適用することで、過渡モデルC5に関するパラメータのうち、未知のパラメータとして、測定対象植物C3の光合成の量子収率を推定(算出)することになる。以下、このような過渡モデルC5と光合成量子収率計算アルゴリズムC6を用いたパラメータ推定を実現するための具体的な実施の形態として、第1の実施の形態乃至第5の実施の形態について説明する。
<2.第1の実施の形態>
まず、図10乃至図18を参照して、第1の実施の形態について説明する。
(光合成計測装置の構成例)
図10は、第1の実施の形態の光合成計測装置10の構成例を示す図である。
図10は、第1の実施の形態の光合成計測装置10の構成例を示す図である。
光合成計測装置10は、測定対象の植物1から得られるクロロフィル蛍光の過渡応答の測定データに対し、植物の光合成を示す過渡モデルに応じた計算アルゴリズムを適用して、当該過渡モデルに関するパラメータのうち、未知のパラメータとして、光合成の量子収率を推定(算出)する。
図10において、光合成計測装置10は、中央制御部100、発光部101、発光制御部102、光学フィルタ103、光センサ104、サンプリング部105、過渡モデル保持部106、計算アルゴリズム保持部107、セレクタ108、セレクタ109、光合成量子収率演算部110、及び結果表示部111から構成される。
中央制御部100は、例えば、CPU(Central Processing Unit)やFPGA(Field Programmable Gate Array)等の回路から構成される。中央制御部100は、光合成計測装置10の各部の動作を制御する。例えば、中央制御部100は、発光制御部102による発光制御、サンプリング部105によるサンプリング、セレクタ108による過渡モデルの選択、セレクタ109による計算アルゴリズムの選択、及び結果表示部111による結果の表示を制御する。
発光部101は、例えば、LED(Light Emitting Diode)による光を発光(出射)する発光装置である。発光部101は、発光制御部102からの制御に従い、例えば3種類の強度の光を発光する。発光部101から発光された光は、植物1に照射される。発光制御部102は、中央制御部100からの制御に従い、発光部101から発光される光の発光強度と発光シーケンスを制御する。
光学フィルタ103は、環境光とクロロフィル蛍光を分離するためのフィルタである。例えば、人工的な励起光を植物1に与える場合には、その励起光(可視光)と、クロロフィル蛍光(680~750nm前後の波長)とを分離する波長のバンドパスフィルタ又はローパスフィルタを使用する。また、太陽光の下で測定を行う場合には、太陽光が環境光となるので、太陽暗線(例えば、酸素(O2)、吸収帯687nm)の蛍光を選択的に透過させる、波長の狭いバンドパスフィルタを使用してもよい。
光センサ104は、クロロフィル蛍光の強度を測定(センシング)するために、クロロフィル蛍光の波長に感度を有する1次元又は2次元のセンサである。光センサ104は、光学フィルタ103を透過した光を、センシング素子により検出し、その結果得られるクロロフィル蛍光の測定信号(強度値)を、サンプリング部105に供給する。
ここで、光センサ104としては、1次元のセンシングを目的とする場合には、例えば、フォトダイオードが搭載されたセンシング素子を用いることができる。また、2次元のセンシングを目的とする場合には、光センサ104として、例えば、CMOS(Complementary Metal-Oxide Semiconductor)やCCD(Charge Coupled Device)など、複数の画素が繰り返しパターンで2次元配列されたセンシング素子から構成されるイメージセンサを用いることができる。
なお、センシングとは、測定対象の植物1を測定することを意味する。また、センシングには、測定対象の植物1を撮像するという意味も含まれる。
サンプリング部105は、中央制御部100からの制御に従い、光センサ104からのクロロフィル蛍光の測定信号(強度値)に対するサンプリングを行うことで、クロロフィル蛍光の測定信号を、時間経過の順に、アナログ信号からデジタル信号に変換する。当該サンプリングの結果得られたクロロフィル蛍光の測定データは、光合成量子収率演算部110に供給される。
なお、このサンプリングで得られる測定データは、1次元又は2次元の時系列のクロロフィル蛍光の測定データとされる。また、測定データは、数値データのほか、例えば、画像データなど、各種の形式のデータとすることができる。
過渡モデル保持部106は、1又は複数の過渡モデルを保持する。セレクタ108は、中央制御部100からの制御に従い、過渡モデル保持部106に保持されている過渡モデルの中から、対象の過渡モデルを選択し、光合成量子収率演算部110に供給する。
計算アルゴリズム保持部107は、1又は複数の光合成量子収率計算アルゴリズムを保持する。セレクタ109は、中央制御部100からの制御に従い、計算アルゴリズム保持部107に保持されている光合成量子収率計算アルゴリズムの中から、対象の光合成量子収率計算アルゴリズムを選択し、光合成量子収率演算部110に供給する。
なお、過渡モデル保持部106及び計算アルゴリズム保持部107は、半導体メモリ(例えばRAM(Random Access Memory)等)などから構成される記憶部130として構成される。
光合成量子収率演算部110には、サンプリング部105からのクロロフィル蛍光の測定データと、セレクタ108からの過渡モデルと、セレクタ109からの光合成量子収率計算アルゴリズムが供給される。ただし、サンプリング部105からの測定データには、植物1に対して照射される光を変化させることで得られる、植物1のクロロフィル蛍光の過渡応答の測定データが含まれる。
光合成量子収率演算部110は、植物1のクロロフィル蛍光の過渡応答の測定データに対し、植物の光合成を示す過渡モデルに応じた光合成量子収率計算アルゴリズムを適用することで、当該過渡モデルに関するパラメータのうち、未知のパラメータである光合成の量子収率を算出する。光合成量子収率演算部110は、算出した光合成の量子収率を、結果表示部111に供給する。
この光合成の量子収率としては、例えば、光合成の電子伝達系の最大量子収率(Fv/Fm)及び光合成の電子伝達系の量子収率(ΦPSII)のうち少なくとも一方が算出される。
結果表示部111は、例えば、LCD(Liquid Crystal Display)やOELD(Organic Electroluminescence Display)などのディスプレイにより構成される。結果表示部111は、中央制御部100からの制御に従い、光合成量子収率演算部110から供給される、光合成の量子収率(Fv/Fm,ΦPSII)の演算結果に関するデータ(例えば、数値データや画像データ)を表示する。
なお、図10において、サンプリング部105、セレクタ108、セレクタ109、及び、光合成量子収率演算部110の機能の全部又は一部は、例えば、CPUとして構成される中央制御部100が実行するプログラム(ソフトウェア)により実現されるようにすることができる。
また、図10においては、結果表示部111と記憶部130は、光合成計測装置10の内部に設けられるとして説明したが、表示装置や記憶装置として、光合成計測装置10の外部に設けられるようにしてもよい。この場合、光合成量子収率演算部110は、ネットワークを介して外部の記憶装置から、過渡モデルや計算アルゴリズムを取得することになる。また、中央制御部100は、光合成量子収率演算部110により算出された光合成の量子収率の演算結果のデータを、外部の表示装置に表示させたり、あるいは外部の記憶装置に記憶させたりすることができる。
光合成計測装置10は、以上のように構成される。
(発光強度とクロロフィル蛍光強度との関係)
ここで、図10の光合成計測装置10においては、植物1に対して照射する光の種類を変えながら、植物1のクロロフィル蛍光のサンプリングが行われるが、植物1に照射される光の発光強度と、クロロフィル蛍光の強度との関係を表すと、図11に示すような関係となる。
ここで、図10の光合成計測装置10においては、植物1に対して照射する光の種類を変えながら、植物1のクロロフィル蛍光のサンプリングが行われるが、植物1に照射される光の発光強度と、クロロフィル蛍光の強度との関係を表すと、図11に示すような関係となる。
ただし、図11においては、縦方向が強度のレベルを表し、図中の上側に行くほど、そのレベルが大きくなることを表している。また、図11においては、横方向が時間を表し、時間の方向は、図中の左側から右側に向かう方向とされる。
図11において、図11のAは、発光部101から発光される光の強度を示し、図11のBは、発光部101から発光される光を制御することにより引き起こされる、植物1のクロロフィル蛍光の強度を示している。
図11のAにおいては、発光部101から発光される光の種類(強度)に応じて3つの区間がある。第1区間は、微弱な光である測定光が発光される区間である。この測定光としては、例えば、10[μmol/m2/s]前後の光が発光される。また、第2区間は、第1育成光が発光される区間であり、第3区間は、第1育成光よりも強度が強い光である第2育成光が発光される区間である。育成光は、植物の育成の際に使用される強度の光であり、例えば、最低で、100[μmol/m2/s]程度とされる。ただし、第2育成光のほうが、第1育成光よりも強度が強くなる。
ここで、光合成の量子収率として、Fv/Fmの計測を行う場合、一般的に、植物1を、暗状態に適切な時間(例えば30分以上)おいて、暗順化させた後に、計測を開始する。そして、当該計測が開始されると、第1区間で測定光を照射し、その後に続く第2区間で、第1育成光を照射することで、光の強度を変化させて、クロロフィル蛍光の測定データを取得する。
すなわち、図11のAに示すように、第1区間で測定光が照射され、第1区間の次の第2区間で第1育成光が照射された場合、図11のBに示すように、クロロフィル蛍光の強度は、微弱な光である測定光を照射する第1区間では、レベルがほとんど変化しないが、第2区間で第1育成光が照射された直後に、そのレベルが大きくなっている。
例えば、光合成計測装置10においては、サンプリング部105によって、第1区間(又は第1区間と第2区間の境界)における時刻t0と、第2区間における、第1育成光が照射された直後のクロロフィル蛍光の強度のレベルが上昇したとき(時刻t1,時刻t2,時刻t3)に、クロロフィル蛍光のサンプリングが行われるようにする。なお、時刻t1,時刻t2,時刻t3は、時刻t0を起点として、最低250マイクロ秒で、かつ、最高500ミリ秒の条件を満たすようにする。
このサンプリングによって、植物1に対して照射される光を変化(測定光から第1育成光に変化)させることで得られる、f0の値と、f(t)(t = t1,t2,t3)の値を、植物1のクロロフィル蛍光の過渡応答の測定データとして取得することができる。そして、光合成量子収率演算部110は、このクロロフィル蛍光の過渡応答の測定データ(クロロフィル蛍光の強弱の値)に基づいて、Fv/Fmを算出することができる。つまり、ここでは、光合成の暗順応状態の量子収率(Fv/Fm)が求められる。
また、光合成の量子収率として、ΦPSIIの計測を行う場合、一般的に、植物1を、明状態に適切な時間(例えば5分以上)おいておく必要がある。そのため、第2区間の間は、第1育成光を照射し続けて、その後、第3区間において、第2育成光を照射することで、光の強度を変化させて、クロロフィル蛍光の測定データを取得する。
すなわち、図11のAに示すように、第2区間で第1育成光が照射され続け、第2区間の次の第3区間で第2育成光が照射された場合、図11のBに示すように、クロロフィル蛍光の強度は、第2区間ではレベルがほとんど変化しないが、第3区間で第2育成光が照射された直後に、そのレベルが大きくなっている。
例えば、光合成計測装置10においては、サンプリング部105によって、第2区間(又は第2区間と第3区間の境界)における時刻ts0と、第3区間における、第2育成光が照射された直後のクロロフィル蛍光の強度のレベルが上昇したとき(時刻ts1,時刻ts2,時刻ts3)に、クロロフィル蛍光のサンプリングが行われるようにする。なお、時刻ts1,時刻ts2,時刻ts3は、時刻ts0を起点として、最低250マイクロ秒で、かつ、最高500ミリ秒の条件を満たすようにする。
このサンプリングによって、植物1に対して照射される光を変化(第1育成光から第2育成光に変化)させることで得られる、fsの値と、f(t)(t = ts1,ts2,ts3)の値を、植物1のクロロフィル蛍光の過渡応答の測定データとして取得することができる。そして、光合成量子収率演算部110は、植物1のクロロフィル蛍光の過渡応答の測定データ(クロロフィル蛍光の強弱の値)に基づいて、ΦPSIIを算出することができる。つまり、ここでは、一定の強度の光が当たって光合成が行われているときの量子収率(ΦPSII)が求められる。
なお、図11の発光シーケンスにおいては、光の発光強度を大きく(強く)することで、植物1のクロロフィル蛍光の過渡応答の測定データが取得されるようにしているが、要は、光の発光強度に変化が起きればよく、例えば、光の発光強度を小さく(弱く)することでも、過渡応答の測定データは取得できる。
(光合成計測処理)
次に、図12のフローチャートを参照して、図10の中央制御部100が、光合成計測装置10の各部を制御することにより実現される光合成計測処理の流れについて説明する。
次に、図12のフローチャートを参照して、図10の中央制御部100が、光合成計測装置10の各部を制御することにより実現される光合成計測処理の流れについて説明する。
なお、図12の光合成計測処理を行うに際し、光合成計測装置10による計測可能な位置に、高等植物である植物1が存在するものとする。また、発光部101による発光のタイミングや、サンプリング部105によるサンプリングのタイミングなどについては、適宜、上述した図11を参照しながら説明する。
ステップS101において、中央制御部100は、各部を制御して、植物1に対し、測定光を照射して、図11の時刻t0のタイミングでのクロロフィル蛍光のサンプリングが行われるようにする。
具体的には、中央制御部100は、発光制御部102を制御して、植物1に対し、発光部101からの測定光が照射されるようにする。これにより、サンプリング部105には、光センサ104から、測定光が照射された植物1からのクロロフィル蛍光の測定信号が入力される。
また、中央制御部100は、サンプリング部105を制御して、光センサ104からのクロロフィル蛍光の測定信号のサンプリングが行われるようにする。これにより、図11の時刻t0において、測定光が照射された植物1のクロロフィル蛍光の測定信号が、デジタル信号に変換され、その結果得られる測定データが、光合成量子収率演算部110に出力される。
ステップS102において、中央制御部100は、各部を制御して、植物1に対し、第1育成光を照射して、図11の時刻t1,時刻t2,時刻t3のタイミングでのクロロフィル蛍光のサンプリングが行われるようにする。
具体的には、中央制御部100は、発光制御部102を制御して、植物1に対し、発光部101からの第1育成光が照射されるようにする。これにより、サンプリング部105には、光センサ104から、第1育成光が照射された植物1からのクロロフィル蛍光の測定信号が入力される。
また、中央制御部100は、サンプリング部105を制御して、光センサ104からのクロロフィル蛍光の測定信号のサンプリングが行われるようにする。これにより、図11の時刻t1において、第1育成光が照射された植物1のクロロフィル蛍光の測定信号が、デジタル信号に変換され、その結果得られる測定データが、光合成量子収率演算部110に出力される。図11の時刻t2,時刻t3のタイミングにおいても、時刻t1のタイミングと同様に、サンプリングが行われる。
このようにして、光合成の量子収率(Fv/Fm)を、過渡モデルに対応した光合成量子収率計算アルゴリズムにより算出する場合に、入力データとして必要となる、図11のf0の値と、f(t)(t = t1,t2,t3)の値が、植物1のクロロフィル蛍光の過渡応答の測定データとして得られる。
ステップS103において、中央制御部100は、発光制御部102を制御して、植物1に対し、発光部101からの第1育成光の照射が継続されるようにする。すなわち、ステップS102の処理で、植物1に対し、第1育成光の照射が開始されたが、ステップS103の処理でも、植物1に対する第1育成光の照射が継続される。
ステップS104において、中央制御部100は、サンプリング部105を制御して、光センサ104からのクロロフィル蛍光の測定信号のサンプリングが行われるようにする。これにより、図11の時刻ts0において、第1育成光が照射された植物1のクロロフィル蛍光の測定信号が、デジタル信号に変換され、その結果得られる測定データが、光合成量子収率演算部110に出力される。
ステップS105において、中央制御部100は、各部を制御して、植物1に対し、第2育成光を照射して、図11の時刻ts1,時刻ts2,時刻ts3のタイミングでのクロロフィル蛍光のサンプリングが行われるようにする。
具体的には、中央制御部100は、発光制御部102を制御して、植物1に対し、発光部101からの第2育成光が照射されるようにする。これにより、サンプリング部105には、光センサ104から、第2育成光が照射された植物1からのクロロフィル蛍光の測定信号が入力される。
また、中央制御部100は、サンプリング部105を制御して、光センサ104からのクロロフィル蛍光の測定信号のサンプリングを行う。これにより、図11の時刻ts1において、第2育成光が照射された植物1のクロロフィル蛍光の測定信号が、デジタル信号に変換され、その結果得られる測定データが、光合成量子収率演算部110に出力される。また、図11の時刻ts2,時刻ts3のタイミングにおいても、時刻ts1のタイミングと同様に、サンプリングが行われる。
このようにして、光合成の量子収率(ΦPSII)を、過渡モデルに対応した光合成量子収率計算アルゴリズムにより算出する場合に、入力データとして必要となる、図11のfsの値と、f(t)(t = ts1,ts2,ts3)の値が、植物1のクロロフィル蛍光の過渡応答の測定データとして得られる。
ステップS106において、中央制御部100は、セレクタ108を制御して、過渡モデル保持部106に保持されている1又は複数の過渡モデルの中から、光合成の量子収率の計測に用いられる過渡モデルが選択されるようにする。ここでは、例えば、パドルモデル、レイクモデル、及びコネクテッドユニットモデルの過渡モデルが保持されている場合に、パドルモデル(の過渡モデル)を選択することができる。
なお、過渡モデルの詳細については、図13及び図14を参照して後述する。
ステップS107において、中央制御部100は、セレクタ109を制御して、計算アルゴリズム保持部107に保持されている1又は複数の光合成量子収率計算アルゴリズムの中から、ステップS106の処理で選択された過渡モデルに対応する光合成量子収率計算アルゴリズムが選択されるようにする。ここでは、例えば、過渡モデルとしてパドルモデルが選択された場合に、パドルモデル用の光合成量子収率計算アルゴリズムを選択することができる。
ステップS108において、中央制御部100は、光合成量子収率演算部110を制御して、ステップS101乃至S105の処理で得られた過渡応答の測定データに対し、ステップS107の処理で得られた光合成量子収率計算アルゴリズムを適用することで、光合成の量子収率が算出されるようにする。
ここでは、例えば、ステップS101乃至S102の処理で得られた植物1のクロロフィル蛍光の過渡応答の測定データ(例えば、図11のf0の値と、f(t)(t = t1,t2,t3)の値)を入力データとして、パドルモデル用の光合成量子収率計算アルゴリズムに従い、処理することで、光合成の量子収率(Fv/Fm)を算出することができる。
また、例えば、ステップS103乃至S105の処理で得られた植物1のクロロフィル蛍光の過渡応答の測定データ(例えば、図11のfsの値と、f(t)(t = ts1,ts2,ts3)の値)を入力データとして、パドルモデル用の光合成量子収率計算アルゴリズムに従い、処理することで、光合成の量子収率(ΦPSII)を算出することができる。
なお、クロロフィル応答の過渡応答の測定データの測定から、光合成量子収率計算アルゴリズムの適用までの流れについては、図15乃至図17を参照して後述する。
ステップS109において、中央制御部100は、結果表示部111を制御して、ステップS108の処理の演算結果が、結果表示部111に表示されるようにする。これにより、結果表示部111には、光合成の量子収率(Fv/Fm,ΦPSII)の演算結果に関するデータが表示される。
以上、光合成計測処理の流れについて説明した。
なお、図12の光合成計測処理では、光合成の量子収率として、Fv/FmとΦPSIIの両方を算出する場合を説明したが、光合成の量子収率としては、Fv/Fm及びΦPSIIの少なくとも一方が算出されればよく、ステップS108の処理で算出される光合成の量子収率の内容に応じて、ステップS101乃至S105の処理のサンプリングの内容も異なる。
(過渡モデルの構成)
次に、図13及び図14を参照して、過渡モデルの構成について説明する。
次に、図13及び図14を参照して、過渡モデルの構成について説明する。
(反応中心(RC)のモデル)
過渡モデルとしては、例えば、パドルモデルやレイクモデル、コネクテッドユニットモデル等の植物生理学上のモデルを用いることができる。図13のAには、パドルモデルに対応した反応中心(RC)のモデルの構成の例が示されている。
過渡モデルとしては、例えば、パドルモデルやレイクモデル、コネクテッドユニットモデル等の植物生理学上のモデルを用いることができる。図13のAには、パドルモデルに対応した反応中心(RC)のモデルの構成の例が示されている。
図13のAに示すように、パドルモデルは、入力光の大きさ(PPFD値)をIで表した場合に、時間的な要素を考慮すれば、反応中心(RC)が、入力された光子を優先的に取得し(光子を電子に変換し)、反応中心(RC)が取得できなかった光子が、クロロフィル蛍光(Fluorescence)と熱(Heat)側に流れ込むような等価回路により表すことができる。なお、反応中心(RC)は、複数のモジュールから構成される(QA,QB,PQ等)。
すなわち、図13のAの等価回路において、反応中心(RC)は、キャパシタとして表され、優先的に入力された光子に相当する電流(i(t))を、電荷(q(t))として蓄積する。また、反応中心(RC)側に、光子に相当する電流(i(t))が流れ込むことで、反応中心(RC)のキャパシタの最大電荷保持量を超えた場合には、光子に相当する電流(I-i(t))が、蛍光(Fluorescence)と熱(Heat)側に流れ込むことになる。
ここで、図13のAに示した反応中心(RC)の非線形な挙動を、確率演算を用いて記述する。すなわち、反応中心(RC)への吸収は、入力とオープン率との乗算により確率的に決まるとして、その特性を下記の式(6)のように定義する。
ただし、式(6)において、右辺の第1項である(I×PM)は、入力を表し、右辺の第2項である(QM-q(t))/QMは、オープン率を表している。また、PMは、オープン時(q(t)=0)の収率を表し、QMは、反応中心(RC)の最大電荷保持量を表している。
ここで、式(6)について、i(t)を、q(t)で表現すると、下記の式(7)のように表すことができる。
そして、式(7)を解くと、下記の式(8)のように表すことができる。
なお、上述した説明では、図13のAに示した等価回路のような、反応中心(RC)が単体の場合のパドルモデルを一例に説明したが、反応中心(RC)が複数存在する場合も想定される。ここでは、反応中心(RC)が複数存在する場合(一定の葉面積当たりのモデルを考える場合)、下記の式(9)のように表すことができる。
ただし、式(9)において、Nは、反応中心(RC)の個数を表している。また、パドルモデルでは、反応中心(RC)の間のエネルギーを共有しないモデルであるから、式(8)と式(9)とは、数式形状に違いがないため、以下の説明では、反応中心(RC)が複数存在する場合も、式(8)で代用するものとする。
ここで、図14には、本技術の発明者による過渡モデルのシミュレーションの結果の例が示されている。図14では、論理最高性能を持つ光合成が行われた場合におけるモデルごとのクロロフィル応答の波形を表しており、横軸は、時間(単位:秒)とされ、縦軸は、蛍光の強度を表している。
図14において、6つのクロロフィル応答の波形のうち、「0」で表された波形は、パドルモデルに対応している。パドルモデルの場合には、反応中心(RC)の間でのエネルギー伝達がなく、クロロフィル応答の波形は、自然対数の形状となる。
また、「0.2」,「0.4」,「0.6」,「0.8」で表された4つの波形は、コネクテッドユニットモデルに対応している。コネクテッドユニットモデルの場合には、反応中心(RC)の間でのエネルギー伝達が一定の確率で起こり、クロロフィル応答の波形は、自然対数の形状とシグモイド関数の形状が合わさった形状となる。
さらに、「1」で表された波形は、レイクモデルに対応している。レイクモデルの場合には、反応中心(RC)の間のエネルギー伝達が、100%の確率で起こり、クロロフィル応答の波形は、シグモイド関数の形状となる。
(クロロフィル蛍光のモデル)
図13に戻り、図13のBには、パドルモデルに対応したクロロフィル蛍光のモデルの構成の例が示されている。
図13に戻り、図13のBには、パドルモデルに対応したクロロフィル蛍光のモデルの構成の例が示されている。
図13のBに示すように、パドルモデルでは、反応中心(RC)に伝達できなかったエネルギーが、クロロフィル蛍光(Fluorescence)と熱(Heat)となって放出されるとして、モデル化することができる。すなわち、図13のBの等価回路では、クロロフィル蛍光と熱の側に入力される入力光の大きさ(PPFD値)をI-i(t)と表現し、クロロフィル蛍光、熱としてエネルギーが吸収される度合いを、それぞれ、GF,GHと表現した場合に、電気回路的には、I-i(t)が電流に相当し、GF,GHが並列に接続されたコンダクタンスに相当することを表している。
ここで、図13のBに示したクロロフィル蛍光の応答(F(t))は、下記の式(10)により表すことができる。
ここで、先に述べたクロロフィル蛍光の測定(図7等)におけるF0,Fmを、このモデルで表現すると、下記の式(11)と式(12)で表すことができる。
ここで、上述した式(1)より、Fv/Fm = (Fm - F0) / Fmであるから、これを、式(10)と式(11)に代入すると、下記の式(13)が求められる。
Fv/Fm = PM ・・・(13)
すなわち、この式(13)から、このクロロフィル蛍光のモデルにおいて、飽和光を用い、Fv/Fmを求めることと、何らか別の手法で、PMを求めることは等価であると言える。
以上のように、通常の電気回路では、上述したような、反応中心(RC)、クロロフィル蛍光、熱という3つの出力先が存在する場合には、エネルギーは、並列回路として3つの出力素子のパラメータに互いに影響されながら分割される。しかしながら、光合成においては、「励起されたエネルギーの抜き取り時間」という要素があり、反応中心(RC)のほうが、クロロフィル蛍光と熱よりも「抜き取り時間」が早いため、この時間的な優先度によって、反応中心(RC)に、優先的にエネルギーが分配される。そのため、上述のパドルモデルでは、反応中心(RC)で受け取れなかった残りのエネルギーが、独立回路としてクロロフィル蛍光と熱に分配されるものとしている。
なお、上述した説明では、過渡モデルとして、パドルモデルを用いた場合を例示したが、レイクモデル又はコネクテッドユニットモデルを用いるようにしてもよい。また、過渡モデルは、パドルモデルやレイクモデル、コネクテッドユニットモデルに限らず、例えば、植物の葉が大きなダメージを受けたときのモデルであるエクセスモデル(Excess Model)など、植物生理学上の他のモデルを用いることができる。さらに、これらのモデルは、一般的には非線形であるため、本技術の実施の形態で記載しているような解析解を用いたパラメータ同定アルゴリズムではなく、回帰分析を使ったパラメータ同定アルゴリズムを用いてもよい。
(光合成量子収率計算アルゴリズムの詳細:解析解を用いた手法例)
次に、図15乃至図17を参照して、光合成量子収率計算アルゴリズムの詳細について説明する。ここでは、まず、光合成の量子収率として、Fv/Fmを算出する場合の計算アルゴリズムを先に説明し、その後、ΦPSIIを算出する場合についても説明する。ただし、ここでは、上述したパドルモデルに対応した過渡モデルが用いられる場合における、光合成量子収率計算アルゴリズムを説明するものとする。
次に、図15乃至図17を参照して、光合成量子収率計算アルゴリズムの詳細について説明する。ここでは、まず、光合成の量子収率として、Fv/Fmを算出する場合の計算アルゴリズムを先に説明し、その後、ΦPSIIを算出する場合についても説明する。ただし、ここでは、上述したパドルモデルに対応した過渡モデルが用いられる場合における、光合成量子収率計算アルゴリズムを説明するものとする。
(1)Fv/Fmの計算アルゴリズム
(Fv/Fmの計算アルゴリズム)
rFvを、F(t)とF0を用い、下記の式(14)で表すように定義する。
rFvを、F(t)とF0を用い、下記の式(14)で表すように定義する。
ここで、上述した式(10)に対し、上述した式(11)と、式(8)を代入して、整理すると、式(14)は、下記の式(15)のように表すことができる。
そして、式(15)を整理すると、下記の式(16)のように表すことができる。
すなわち、Fv/Fmの計算アルゴリズムでは、「rFv」及び「I×PM/QM」を計測し、式(16)で表される計算アルゴリズム(パドルモデル用の光合成量子収率計算アルゴリズム)に従い、PMを算出することになる。つまり、上述したように、飽和光を用いてFv/Fmを求めることと、何らか別の手法で、PMを求めることは等価であるのだから、ここでは、このパドルモデル用の光合成量子収率計算アルゴリズムに従い、PMを算出することで、光合成の量子収率としてのFv/Fmを求めている。
(時定数計算アルゴリズム)
ここで、上述した式(16)における時定数(k:I×PM/QM)を算出するためのアルゴリズムについて説明する。
ここで、上述した式(16)における時定数(k:I×PM/QM)を算出するためのアルゴリズムについて説明する。
一般的に、R,C,L等価回路の過渡解は、自然対数を用いて表現することができる。ここでは、仮に、解を、下記の式(17)で表した場合を想定する。
そして、この式(17)により解が表される場合に、式(17)に対し、1階微分と2階微分を適用し、その結果得られる値の比をとることで、時定数(k)を求めることができる。すなわち、ここでの1階微分と2階微分は、下記の式(18)と式(19)により表される。
また、式(18)で表される1階微分と、式(19)で表される2階微分との比によって、下記の式(20)で表すように、時定数(k)が求められる。
ここで、式(20)の値は、3点の測定データから求めることができる。例えば、図15に示すように、測定データがf(t)で表される場合に、時刻t1,時刻t2,時刻t3における測定データが、a,b,cであったとき、時刻t1~t2のグラフの傾きと、時刻t2~t3のグラフの傾きは、次のように表される。
すなわち、時刻t1から時刻t2までの時間、及び、時刻t2から時刻t3までの時間が、Δtで表される場合、時刻t1~t2のグラフの傾きは、b-a/Δt=mで表され、時刻t2~t3のグラフの傾きは、c-b/Δt=nで表される。このとき、式(19)で表される2階微分は、n-m/Δt=lと表すことができるので、上述した式(20)は、下記の式(21)のように表すことができる。
このようにして、3点の測定データから、時定数(k)を求めることができる。
(計算アルゴリズムの適用までの流れ)
次に、図16を参照して、Fv/Fmを算出する場合における、測定データの測定から、計算アルゴリズムの適用までの流れについて説明する。
次に、図16を参照して、Fv/Fmを算出する場合における、測定データの測定から、計算アルゴリズムの適用までの流れについて説明する。
光合成計測装置10(図10)では、図16のステップS151乃至S154の処理を実行することで、植物1のクロロフィル蛍光の過渡応答の測定データの測定から、パドルモデル用の光合成量子収率計算アルゴリズムの適用までの処理を行う。なお、ここでは、光合成の量子収率として、Fv/Fmを算出するので、ステップS151に示した発光シーケンスは、上述した図11の発光シーケンスにおける第1区間乃至第2区間の一部の区間に対応している。
まず、サンプリング部105が、時刻t0,時刻t1,時刻t2,時刻t3のタイミングでのサンプリングを行うことで、f0の値と、f(t)(t = t1,t2,t3)の値が、植物1のクロロフィル蛍光の過渡応答の測定データとして得られる(S151)。
次に、光合成量子収率演算部110は、上述した図15に示した手法を用い、サンプリング部105からの過渡応答の測定データ(3点の測定データ)を、式(21)に適用することで、時定数(k)を算出することができる(S152)。
次に、光合成量子収率演算部110は、サンプリング部105からの過渡応答の測定データを、式(14)に適用することで、rFvを算出することができる(S153)。
そして、光合成量子収率演算部110は、ステップS152の処理で得られた時定数(k)と、ステップS153の処理で得られたrFvを、パドルモデル用の光合成量子収率計算アルゴリズムとしての下記の式(22)に適用することで、PMを算出することができる(S154)。このようにして求められるPMが、光合成の量子収率としてのFv/Fmに相当することは、先に述べた通りある。
このようにして、光合成の量子収率としてのFv/Fmを求めることができる。なお、この例においては、f0の値と、f(t)(t = t1,t2,t3)の値をサンプリングしているが、原理的には、時刻t0におけるf0と、時刻t1におけるf(t1)との値を共用することも可能である。
(2)ΦPSIIの計算アルゴリズム
光合成の量子収率として、ΦPSIIを算出する場合には、ΦPSIIの計算アルゴリズムが用いられる。また、ΦPSIIを算出する場合にも、時定数(k)を求める必要があるが、上述した図15に示した手法により、時定数(k)を算出することができる。
(計算アルゴリズムの適用までの流れ)
ここで、図17を参照して、ΦPSIIを算出する場合における、測定データの測定から、計算アルゴリズム(パドルモデル用の光合成量子収率計算アルゴリズム)の適用までの流れについて説明する。
ここで、図17を参照して、ΦPSIIを算出する場合における、測定データの測定から、計算アルゴリズム(パドルモデル用の光合成量子収率計算アルゴリズム)の適用までの流れについて説明する。
光合成計測装置10(図10)では、図17のステップS171乃至S174の処理を実行することで、植物1のクロロフィル蛍光の過渡応答の測定データの測定から、パドルモデル用の光合成量子収率計算アルゴリズムの適用までの処理を行う。なお、ここでは、光合成の量子収率として、ΦPSIIを算出するので、ステップS171に示した発光シーケンスは、上述した図11の発光シーケンスにおける第2区間乃至第3区間の一部の区間に対応している。
まず、サンプリング部105が、時刻ts0,時刻ts1,時刻ts2,時刻ts3のタイミングでのサンプリングを行うことで、fsの値と、f(t)(t = ts1,ts2,ts3)の値が、植物1のクロロフィル蛍光の過渡応答の測定データとして得られる(S171)。
次に、光合成量子収率演算部110は、上述した図15に示した手法を用い、サンプリング部105からの過渡応答の測定データ(3点の測定データ)に基づいて、時定数(k)を算出することができる(S172)。
次に、光合成量子収率演算部110は、サンプリング部105からの過渡応答の測定データを基づいて、rFvを算出することができる(S173)。
そして、光合成量子収率演算部110は、ステップS172の処理で得られた時定数(k)と、ステップS173の処理で得られたrFvを、パドルモデル用の光合成量子収率計算アルゴリズムとしての下記の式(24)に適用することで、ΦPSIIを算出することができる(S174)。
このようにして、光合成の量子収率としてのΦPSIIを求めることができる。
以上のように、第1の実施の形態では、植物1に対し、測定光と育成光(定常光)を照射することで、クロロフィル蛍光の過渡応答の測定データを取得し、当該測定データを入力データとして、パドルモデル等の過渡モデルに応じた光合成量子収率計算アルゴリズムに従い、処理することで、飽和光がなくても、光合成の量子収率を算出することができる。
ここで、現状の技術(パルス変調蛍光測定)を採用している光合成計測装置90(図5)と、本技術を採用している光合成計測装置10(図10)での測定に使用される光を比較すれば、図18に示すようになる。すなわち、図18においては、現状と本技術の方式ごとに、計測対象としての光合成の量子収率(Fv/Fm,ΦPSII)を計測する際の測定に使用される光が、強度別に表されている。
現状の方式では、上述した図6の発光シーケンスに示したように、Fv/Fmを計測する場合には、測定光と飽和光の2種類の光が用いられる。ここで用いられる測定光の強度は、10[μmol/m2/s]前後とされる。また、飽和光の強度は、2000[μmol/m2/s]以上とされる。飽和光は、飽和パルス光とも称される。なお、現状の方式で、Fv/Fmを計測する場合、定常光は不要となる。
また、現状の方式で、ΦPSIIを計測する場合には、定常光と飽和光の2種類の光が用いられる。ここで用いられる定常光の強度は、植物1の育成に使う強度であって、最低で100[μmol/m2/s]程度とされる。また、ここでも、飽和光の強度は、2000[μmol/m2/s]以上とされる。なお、現状の方式で、ΦPSIIを計測する場合、測定光は不要となる。
一方で、本技術の方式では、上述した図11の発光シーケンスに示したように、Fv/Fmを計測する場合には、測定光と育成光(第1育成光)の2種類の光が用いられる。ここで用いられる測定光の強度は、10[μmol/m2/s]前後とされる。また、第1育成光の強度は、植物1の育成に使う強度であって、最低で100[μmol/m2/s]程度とされる。第1育成光は、第1定常光とも称される。なお、本技術の方式で、Fv/Fmを計測する場合、飽和光は不要となる。
また、本技術の方式で、ΦPSIIを計測する場合には、2種類の育成光(第1育成光、第2育成光)が用いられる。ここで用いられる、第1育成光と第2育成光の強度は、植物1の育成に使う強度であって、最低で100[μmol/m2/s]程度とされる。ただし、第2育成光の強度は、第1育成光の強度よりも大きくなる(第1育成光 < 第2育成光)。第2育成光は、第2定常光とも称される。なお、本技術の方式で、ΦPSIIを計測する場合、測定光と飽和光は不要となる。
このように、現状の方式においては、Fv/Fmの計測とΦPSIIの計測でともに飽和光が必要になる。一方で、本技術の方式においては、Fv/Fmの計測とΦPSIIの計測でともに飽和光が不要になる。そのため、本技術を採用している光合成計測装置10(図10)では、現状の技術(パルス変調蛍光測定)を採用している光合成計測装置90(図5)と比べて、測定に必要な発光装置(発光部)の単位面積当たりの出力が小さくて済むため、より広範囲の測定が可能となる。
<3.第2の実施の形態>
(光合成計測装置の構成例)
図19は、第2の実施の形態の光合成計測装置20の構成例を示す図である。
図19は、第2の実施の形態の光合成計測装置20の構成例を示す図である。
図19において、光合成計測装置20は、中央制御部200、レーザ発光部201、発光制御部202、光学フィルタ203、光センサ204、サンプリング部205、過渡モデル保持部206、計算アルゴリズム保持部207、セレクタ208、セレクタ209、光合成量子収率演算部210、結果表示部211、アクチュエータ212、及び画像合成部213から構成される。ただし、過渡モデル保持部206と、計算アルゴリズム保持部207は、半導体メモリ等の記憶部230として構成される。
図19の光合成計測装置20は、図10の光合成計測装置10と比べて、発光部101の代わりに、レーザ発光部201が設けられ、アクチュエータ212と、画像合成部213が新たに設けられる点が異なっている。なお、光合成計測装置20において、それ以外の構成については、光合成計測装置10の構成と、基本的に同様とされるため、その説明は適宜省略するものとする。
レーザ発光部201は、発光制御部202からの制御に従い、例えば3種類(測定光、第1育成光、及び第2育成光)の強度のレーザ光を発光(出射)する。アクチュエータ212は、レーザ発光部201から発光されるレーザ光によって、測定対象の植物1の所定の領域を走査する機能を有している。
レーザ光が照射された植物1のクロロフィル蛍光は、光学フィルタ203を介して、2次元のセンサとして構成される光センサ204により検出される。そして、サンプリング部205によって、光センサ204からのクロロフィル蛍光の測定信号(強度値)のサンプリングが行われる。
光合成量子収率演算部210は、植物1のクロロフィル蛍光の過渡応答の測定データに対し、植物の光合成を示す過渡モデルに応じた光合成量子収率計算アルゴリズムを適用することで、当該過渡モデルに関するパラメータのうち、未知のパラメータである光合成の量子収率(Fv/Fm,ΦPSII)を算出する。ただし、光合成量子収率演算部210では、レーザ光による走査ごとに、光合成の量子収率が算出され、画像合成部213に供給される。
画像合成部213は、中央制御部200からの制御に従い、レーザ光による走査ごとに得られる光合成の量子収率を合成して、1枚の画像を生成する。画像合成部213により生成された画像は、結果表示部211に表示される。
光合成計測装置20は、以上のように構成される。
(光合成計測処理)
図19の光合成計測装置20により実行される光合成計測処理は、上述した光合成計測処理(図12)と基本的に同様であるが、植物1に対して照射される光が、レーザ光である点が異なっている。すなわち、図12のステップS101乃至S105の処理でサンプリングを行う際に、発光部101(図10)からのLED等による光の代わりに、レーザ発光部201(図19)からのレーザ光が用いられる。
図19の光合成計測装置20により実行される光合成計測処理は、上述した光合成計測処理(図12)と基本的に同様であるが、植物1に対して照射される光が、レーザ光である点が異なっている。すなわち、図12のステップS101乃至S105の処理でサンプリングを行う際に、発光部101(図10)からのLED等による光の代わりに、レーザ発光部201(図19)からのレーザ光が用いられる。
以上のように、第2の実施の形態では、植物1に対し、レーザ光による走査を行うことで、クロロフィル蛍光の過渡応答の測定データを取得し、当該測定データを入力データとして、パドルモデル等の過渡モデルに応じた光合成量子収率計算アルゴリズムに従い、処理することで、飽和光がなくても、光合成の量子収率を算出することができる。
ここで、レーザ光を用いて、光合成の量子収率を計測する技術としては、特表2006-504956号に開示されている技術がある。この文献には、レーザのビームを動かしてドットごとにカメラでクロロフィル蛍光をスキャンし、光合成の量子収率の2次元計測を行う装置が開示されている。
具体的には、この文献に開示されている技術では、植物材料を、Ffast計測と称される、約1Hz~約10kHz(すなわち、ドットあたり1秒~0.1ミリ秒)のレーザでスキャンし、その後に、Fslow計測と称される、約0.01~約1Hz(すなわち、ドットあたり100秒~1秒)のレーザでスキャンする。そして、光合成活性の量子効率(光合成のイメージング量子効率(IQP))を、下記の式(25)により演算している。
IQP = (Fslow - Ffast) / Fslow ・・・(25)
この文献に開示されている技術においては、1ドットの計測に1秒以上を要するため、解像度を上げようとした場合に計測時時間を要する。例えば、100m2(10m×10m)の圃場の計測を、縦横それぞれ1000ポイントを測定した場合、278時間を要するが、本技術を使用した場合、光センサ104として2次元配列されたセンシング素子を用いれば、一度に1画面分を計測できるため、最大で500ミリ秒以内に計測を終えることができる。
また、この文献によれば、上記の式(25)の計算式で、光合成活性の量子効率を求めるために、Fv/Fm=(Fm-F0)/Fmという計算式が定義されているため、Fmの測定のために飽和光の強度を持つレーザを使用する必要があると考えられるが、本技術を使用した場合、レーザの強度を弱くできるため、レーザの安全規格の観点から優位性があると考えられる。
一方で、第2の実施の形態の光合成計測装置30(図19)においても、植物1に照射するための光としてレーザ光を用いてはいるが、上記の文献に開示されている技術と比べて、飽和光を用いずに測定が可能であることから、レーザ発光部201の単位面積当たりの出力が小さくて済むため、野外での測定の際に安全性が向上するほか、測定にかかる時間を短縮することが可能となる。
<4.第3の実施の形態>
(光合成計測装置の構成例)
図20は、第3の実施の形態の光合成計測装置30の構成例を示す図である。
図20は、第3の実施の形態の光合成計測装置30の構成例を示す図である。
図20において、光合成計測装置30は、中央制御部300、発光制御部302、光学フィルタ303、光センサ304、サンプリング部305、過渡モデル保持部306、計算アルゴリズム保持部307、セレクタ308、セレクタ309、光合成量子収率演算部310、結果表示部311、及びインターフェース312から構成される。ただし、過渡モデル保持部306と、計算アルゴリズム保持部307は、半導体メモリ等の記憶部330として構成される。
図20の光合成計測装置30は、図10の光合成計測装置10と比べて、発光部101の代わりに、外部の装置と接続するためのインターフェース312が設けられる点が異なっている。なお、光合成計測装置30において、それ以外の構成については、光合成計測装置10の構成と、基本的に同様とされるため、その説明は適宜省略するものとする。
インターフェース312は、入出力インターフェース回路などにより構成され、外部の植物育成用発光装置31と接続可能とされる。植物育成用発光装置31は、例えばLEDによる光など、植物の育成のための光を発光する装置である。つまり、環境によっては、植物の日照が不足し、その生育に影響がでる場合があるので、植物育成用発光装置31によって、一定時間LED等による光を照射することで、光合成に必要な波長の光が効率的に照射され、植物の成長を促進することができる。
発光制御部302は、インターフェース312を介して、植物育成用発光装置31から発光される光を制御する。植物育成用発光装置31は、発光制御部302からの制御に従い、例えば3種類(測定光、第1育成光、及び第2育成光)の強度の光を発光(出射)する。
植物育成用発光装置31からの光が照射された植物のクロロフィル蛍光は、光学フィルタ303を介して、光センサ304により検出される。そして、サンプリング部305によって、光センサ304からのクロロフィル蛍光の測定信号(強度値)のサンプリングが行われる。
光合成量子収率演算部310は、植物1のクロロフィル蛍光の過渡応答の測定データに対し、植物の光合成を示す過渡モデルに応じた光合成量子収率計算アルゴリズムを適用することで、当該過渡モデルに関するパラメータのうち、未知のパラメータである光合成の量子収率(Fv/Fm,ΦPSII)を算出する。光合成量子収率演算部310による演算結果は、結果表示部311に表示される。
光合成計測装置30は、以上のように構成される。
(光合成計測処理)
図20の光合成計測装置30により実行される光合成計測処理は、上述した光合成計測処理(図12)と基本的に同様であるが、植物1に対して照射される光が、外部の植物育成用発光装置31により照射される点が異なっている。すなわち、図12のステップS101乃至S105の処理でサンプリングを行う際に、発光部101(図10)からのLED等による光の代わりに、植物育成用発光装置31(図20)からのLED等による光が用いられる。
図20の光合成計測装置30により実行される光合成計測処理は、上述した光合成計測処理(図12)と基本的に同様であるが、植物1に対して照射される光が、外部の植物育成用発光装置31により照射される点が異なっている。すなわち、図12のステップS101乃至S105の処理でサンプリングを行う際に、発光部101(図10)からのLED等による光の代わりに、植物育成用発光装置31(図20)からのLED等による光が用いられる。
以上のように、第3の実施の形態では、植物1に対し、外部の植物育成用発光装置31からの光を照射することで、クロロフィル蛍光の過渡応答の測定データを取得し、当該測定データを入力データとして、パドルモデル等の過渡モデルに応じた光合成量子収率計算アルゴリズムに従い、処理することで、飽和光がなくても、光合成の量子収率を算出することができる。
また、第3の実施の形態では、植物1に照射する光が、外部の植物育成用発光装置31から発光されるようにしているため、光合成計測装置30側では、光合成計測を行うための特別な光源を用意することなく、光合成の量子収率を求めることが可能となる。
<5.第4の実施の形態>
(光合成計測装置の構成例)
図21は、第4の実施の形態の光合成計測装置40の構成例を示す図である。
図21は、第4の実施の形態の光合成計測装置40の構成例を示す図である。
図21において、光合成計測装置40は、中央制御部400、光学フィルタ403、光センサ404、サンプリング部405、過渡モデル保持部406、計算アルゴリズム保持部407、セレクタ408、セレクタ409、光合成量子収率演算部410、結果表示部411、環境光センサ412、サンプリング部413、及び最適変化検出部414から構成される。ただし、過渡モデル保持部406と、計算アルゴリズム保持部407は、半導体メモリ等の記憶部430として構成される。
図21の光合成計測装置40は、図10の光合成計測装置10と比べて、発光部101及び発光制御部102の代わりに、環境光センサ412、サンプリング部413、及び最適変化検出部414が設けられる点が異なっている。なお、光合成計測装置40において、それ以外の構成については、光合成計測装置10の構成と、基本的に同様とされるため、その説明は適宜省略するものとする。
環境光センサ412は、太陽光等の環境光の強度を測定するためのセンサである。環境光センサ412は、環境光の強度に応じた測定信号を、サンプリング部413に供給する。
サンプリング部413は、環境光センサ412からの環境光の測定信号(強度値)に対するサンプリングを行うことで、環境光の測定信号を、時間経過の順に、アナログ信号からデジタル信号に変換する。当該サンプリングの結果得られた環境光の測定データは、最適変化検出部414に供給される。
最適変化検出部414は、サンプリング部413からの環境光の測定データに基づいて、環境光の強度の変化のうち、植物1の光合成計測を行うのに必要な急激な変化を検出し、その検出結果を、中央制御部400に供給する。
すなわち、例えば、光合成の量子収率として、Fv/Fmを算出する場合には、図11に示した発光シーケンスにおける、第1区間の測定光から、第2区間の第1育成光への発光強度の変化に相当する環境光の強度変化が検出される。また、例えば、光合成の量子収率として、ΦPSIIを算出する場合には、図11に示した発光シーケンスにおける、第2区間の第1育成光から、第3区間の第2育成光への発光強度の変化に相当する環境光の強度変化が検出される。
太陽光等の環境光が照射された植物のクロロフィル蛍光は、光学フィルタ403を介して、光センサ404により検出される。サンプリング部405は、中央制御部400からの制御に従い、光センサ404からのクロロフィル蛍光の測定信号(強度値)のサンプリングを行う。ここで、中央制御部400は、最適変化検出部414からの検出結果に基づいて、環境光の強度の変化に応じたサンプリングが行われるようにする。
すなわち、例えば、光合成の量子収率として、Fv/Fmを算出する場合には、図11に示した発光シーケンスにおける、発光強度の変化に相当する環境光の強度変化を検出することで、図11の時刻t0,時刻t1,時刻t2,時刻t3のタイミングに相当する所定のタイミングで、クロロフィル蛍光のサンプリングが行われるようにする。これにより、図11のf0の値とf(t)(t = t1,t2,t3)の値に相当する所定の値が、植物1のクロロフィル蛍光の過渡応答の測定データとして得られる。
また、例えば、光合成の量子収率として、ΦPSIIを算出する場合には、図11に示した発光シーケンスにおける、発光強度の変化に相当する環境光の強度変化を検出することで、図11の時刻ts0,時刻ts1,時刻ts2,時刻ts3のタイミングに相当する所定のタイミングで、クロロフィル蛍光のサンプリングが行われるようにする。これにより、図11のfsの値とf(t)(t = ts1,ts2,ts3)の値に相当する所定の値が、植物1のクロロフィル蛍光の過渡応答の測定データとして得られる。
光合成量子収率演算部410は、植物1のクロロフィル蛍光の過渡応答の測定データに対し、植物の光合成を示す過渡モデルに応じた光合成量子収率計算アルゴリズムを適用することで、当該過渡モデルに関するパラメータのうち、未知のパラメータである光合成の量子収率(Fv/Fm,ΦPSII)を算出する。光合成量子収率演算部410による演算結果は、結果表示部411に表示される。
以上、光合成計測装置40は、以上のように構成される。
(光合成計測処理)
図21の光合成計測装置40により実行される光合成計測処理は、上述した光合成計測処理(図12)と基本的に同様であるが、植物1に対して照射される光が、太陽光等の環境光のみである点と、植物1のクロロフィル蛍光のサンプリングのタイミングが、環境光の強度変化のタイミングに応じて決定される点が異なっている。
図21の光合成計測装置40により実行される光合成計測処理は、上述した光合成計測処理(図12)と基本的に同様であるが、植物1に対して照射される光が、太陽光等の環境光のみである点と、植物1のクロロフィル蛍光のサンプリングのタイミングが、環境光の強度変化のタイミングに応じて決定される点が異なっている。
すなわち、図12のステップS101乃至S105の処理でサンプリングを行う際に、発光部101(図10)からのLED等による光の代わりに、太陽光等の環境光が用いられる。また、時刻t0~t3や、時刻ts0~ts3などのクロロフィル蛍光のサンプリングのタイミングが、発光部101(図10)から発光される光の発光強度の変化ではなく、太陽光等の環境光の強度変化のタイミングに応じて決定される。
以上のように、第4の実施の形態では、植物1に対し、太陽光等の環境光のみが照射されるようにして、当該環境光の強度変化に応じたタイミングでサンプリングされたクロロフィル蛍光の過渡応答の測定データを取得し、当該測定データを入力データとして、パドルモデル等の過渡モデルに応じた光合成量子収率計算アルゴリズムに従い、処理することで、光合成の量子収率を算出することができる。
すなわち、上述した光合成計測装置10(図10)等では、植物1に対し照射される光の強度やタイミングを制御することで、植物1に照射される光が瞬間的に強まるようにし、そのタイミングでサンプリングを行っていた。一方で、第4の実施の形態の光合成計測装置40では、太陽光等の環境光は、その強度変化を制御することはできないので、強度変化のタイミングを検出して、その検出結果に応じたタイミングで、サンプリングが行われるようにしている。
例えば、環境光が太陽光である場合には、雲の通過などによって引き起こされる強度の変化を検出すればよい。換言すれば、第4の実施の形態の光合成計測装置40では、太陽光等の環境光の変化を、環境光センサ412により継続して測定し、たまたま都合のよい環境光の強度変化が起こったときを選択して、光合成の計測が行われることになる。
このように、第4の実施の形態では、飽和光だけでなく、測定光と定常光(育成光)をも用いずに、太陽光等の環境光の強度変化を用いて、光合成の量子収率を算出している。すなわち、太陽光等の環境光の強度変化などを利用する場合には、図11に示した発光シーケンスは、必須とはならない。
なお、第4の実施の形態においては、環境光の強度の変化を測定する手法として、環境光センサ412により環境光の強度を測定する手法を説明したが、例えば、植物1の葉面照度を測定する手法など、他の手法によって、環境光の強度の変化が測定されるようにしてもよい。
<6.第5の実施の形態>
(情報処理装置の構成例)
図22は、第5の実施の形態の情報処理装置50の構成例を示す図である。
図22は、第5の実施の形態の情報処理装置50の構成例を示す図である。
図22において、情報処理装置50は、中央制御部500、過渡モデル保持部506、計算アルゴリズム保持部507、セレクタ508、セレクタ509、光合成量子収率演算部510、及び結果表示部511から構成される。ただし、過渡モデル保持部506と、計算アルゴリズム保持部507は、半導体メモリ等の記憶部530として構成される。
図22の情報処理装置50は、図10の光合成計測装置10と比べて、発光部101乃至サンプリング部105の代わりに、インターフェース512が設けられる点が異なっている。なお、情報処理装置50において、それ以外の構成については、光合成計測装置10の構成と、基本的に同様とされるため、その説明は適宜省略するものとする。
インターフェース512は、入出力インターフェース回路などにより構成され、外部ストレージ51、又はネットワーク53を介して外部クロロフィル蛍光計測装置52と接続可能とされる。
外部ストレージ51は、例えば、ハードディスクや半導体メモリなどの大容量の記録装置である。外部ストレージ51は、植物1のクロロフィル蛍光の過渡応答の測定データのファイル(以下、過渡応答測定ファイルという)を蓄積している。外部ストレージ51は、情報処理装置50からの要求などに応じて、蓄積している過渡応答測定ファイルを、情報処理装置50に提供する。情報処理装置50においては、外部ストレージ51からの過渡応答測定ファイルが、インターフェース512介して、光合成量子収率演算部510に供給される。
外部クロロフィル蛍光計測装置52は、植物1のクロロフィル蛍光を計測(測定)する装置である。例えば、外部クロロフィル蛍光計測装置52は、図10に示した中央制御部100、発光部101、発光制御部102、光学フィルタ103、光センサ104、及びサンプリング部105に相当する機能を有し、測定光や育成光が照射された植物1のクロロフィル蛍光のサンプリングを行うことが可能である。
外部クロロフィル蛍光計測装置52は、情報処理装置50からの要求などに応じて、植物1のクロロフィル蛍光の過渡応答の測定データを、ネットワーク53を介して、情報処理装置50に提供する。情報処理装置50においては、外部クロロフィル蛍光計測装置52からの過渡応答の測定データが、インターフェース512介して、光合成量子収率演算部510に供給される。
なお、ここでは、過渡応答の測定データの代わりに、当該測定データのファイル(過渡応答測定ファイル)が提供されるようにしてもよい。また、例えば、インターネット等のネットワーク53に接続されたサーバ等の情報処理装置が、過渡応答の測定データや過渡応答測定ファイルを、ネットワーク53を介して提供するようにしてもよい。
情報処理装置50において、光合成量子収率演算部510には、外部ストレージ51又は外部クロロフィル蛍光計測装置52から、過渡応答測定ファイル又は過渡応答の測定データが提供される。ただし、過渡応答測定ファイルには、過渡応答の測定データが含まれる。
光合成量子収率演算部510は、外部から提供された過渡応答の測定データに対し、植物の光合成を示す過渡モデルに応じた光合成量子収率計算アルゴリズムを適用することで、当該過渡モデルに関するパラメータのうち、未知のパラメータである光合成の量子収率(Fv/Fm,ΦPSII)を算出する。光合成量子収率演算部510による演算結果は、結果表示部511に表示される。
情報処理装置50は、以上のように構成される。
(情報処理)
図22の情報処理装置50により実行される情報処理は、上述した光合成計測処理(図12)と比べると、前段のステップS101乃至S105の処理が実行されずに、後段のステップS106乃至S109の処理のみが実行される点が異なっている。
図22の情報処理装置50により実行される情報処理は、上述した光合成計測処理(図12)と比べると、前段のステップS101乃至S105の処理が実行されずに、後段のステップS106乃至S109の処理のみが実行される点が異なっている。
すなわち、前段のステップS101乃至S105の処理は、外部クロロフィル蛍光計測装置52により実行されるか、あるいは、前段のステップS101乃至S105の処理で得られた過渡応答測定ファイルが、外部ストレージ51に格納されている。そして、情報処理装置50では、外部ストレージ51又は外部クロロフィル蛍光計測装置52から得られた過渡応答の測定データを用いて、後段のステップS106乃至S109の処理が実行されることになる。
以上のように、第5の実施の形態では、外部から提供された過渡応答の測定データを取得し、当該測定データを入力データとして、パドルモデル等の過渡モデルに応じた光合成量子収率計算アルゴリズムに従い、処理することで、光合成の量子収率を算出することができる。
<7.変形例>
(植物の測定装置の具体例)
図23には、上述した第1の実施の形態乃至第5の実施の形態における、測定対象の植物1の測定を行う測定装置の具体例として、定点観測を行う定点測定装置60Aと、移動観測を行う移動測定装置60Bを例示している。
図23には、上述した第1の実施の形態乃至第5の実施の形態における、測定対象の植物1の測定を行う測定装置の具体例として、定点観測を行う定点測定装置60Aと、移動観測を行う移動測定装置60Bを例示している。
図23のAに示した定点測定装置60Aは、固定脚61Aによって、測定対象の植物1(例えば圃場の植物など)を測定(センシング)することが可能な位置に固定され、そこで測定された植物1のクロロフィル蛍光の過渡応答の測定データを、例えば無線通信等を利用して、情報処理装置50(図22)に送信する。情報処理装置50は、定点測定装置60Aから送信されてくる過渡応答の測定データを処理することで、定点測定装置60Aにより定点観測された植物1の光合成の量子収率を求めることができる。
図23のBに示した移動測定装置60Bは、例えば無人航空機(UAV:Unmanned Aerial Vehicle)であって、プロペラ状の回転翼61Bが回転することで飛行し、上空から、測定対象の植物1(例えば、圃場の植物など)を測定(空撮)する。移動測定装置60Bは、そこで測定された植物1のクロロフィル蛍光の過渡応答の測定データを、例えば無線通信等を利用して、例えば、情報処理装置50(図22)に送信する。情報処理装置50は、移動測定装置60Bから送信されてくる過渡応答の測定データを処理することで、移動測定装置60Bにより移動観測された植物1の光合成の量子収率を求めることができる。
なお、移動測定装置60Bは、無線操縦のほか、例えば、飛行ルートを座標データとしてあらかじめ記憶しておくことで、GPS(Global Positioning System)などの位置情報を用いて自律飛行するようにしてもよい。また、図23のBでは、移動測定装置60Bが、回転翼61Bを有する回転翼機であるとして説明したが、移動測定装置60Bは、固定翼機であってもよい。
また、上述した説明では、定点測定装置60A又は移動測定装置60Bにより測定された過渡応答の測定データが、情報処理装置50(図22)に送信され、情報処理装置50によって、植物1の光合成の量子収率を求めるとして説明したが、定点測定装置60A又は移動測定装置60Bが、光合成計測装置10(図10)や情報処理装置50(図22)などと同様の機能を有することで、植物1の光合成の量子収率を求めるようにしてもよい。
(植物以外の測定対象)
上述した説明では、測定対象を植物とした場合を説明したが、植物に限らず、生体全般を測定対象とすることができる。すなわち、本技術は、上述した図9に示したように、測定対象から得られる過渡応答の測定データを入力として、過渡モデルに応じた計算アルゴリズムを適用することで、当該過渡モデルに関するパラメータのうち、未知のパラメータを推定(算出)することを特徴としており、この原理は、生体全般に適用することができる。
上述した説明では、測定対象を植物とした場合を説明したが、植物に限らず、生体全般を測定対象とすることができる。すなわち、本技術は、上述した図9に示したように、測定対象から得られる過渡応答の測定データを入力として、過渡モデルに応じた計算アルゴリズムを適用することで、当該過渡モデルに関するパラメータのうち、未知のパラメータを推定(算出)することを特徴としており、この原理は、生体全般に適用することができる。
したがって、本技術によれば、測定対象の生体から得られる過渡応答の測定データを入力として、対象の生体が有する機能を示す過渡モデルに応じた計算アルゴリズムを適用することで、当該過渡モデルに関するパラメータのうち、未知のパラメータを算出することができる。
<8.コンピュータの構成>
上述した一連の処理(例えば、図12に示した光合成計測処理の少なくとも一部の処理)は、ハードウェアにより実行することもできるし、ソフトウェアにより実行することもできる。一連の処理をソフトウェアにより実行する場合には、そのソフトウェアを構成するプログラムが、コンピュータにインストールされる。図24は、上述した一連の処理をプログラムにより実行するコンピュータのハードウェアの構成例を示す図である。
コンピュータ1000において、CPU(Central Processing Unit)1001、ROM(Read Only Memory)1002、RAM(Random Access Memory)1003は、バス1004により相互に接続されている。バス1004には、さらに、入出力インターフェース1005が接続されている。入出力インターフェース1005には、入力部1006、出力部1007、記録部1008、通信部1009、及び、ドライブ1010が接続されている。
入力部1006は、キーボード、マウス、マイクロフォンなどよりなる。出力部1007は、ディスプレイ、スピーカなどよりなる。記録部1008は、ハードディスクや不揮発性のメモリなどよりなる。通信部1009は、ネットワークインターフェースなどよりなる。ドライブ1010は、磁気ディスク、光ディスク、光磁気ディスク、又は半導体メモリなどのリムーバブル記憶媒体1011を駆動する。
以上のように構成されるコンピュータ1000では、CPU1001が、ROM1002や記録部1008に記録されているプログラムを、入出力インターフェース1005及びバス1004を介して、RAM1003にロードして実行することにより、上述した一連の処理が行われる。
コンピュータ1000(CPU1001)が実行するプログラムは、例えば、パッケージメディア等としてのリムーバブル記憶媒体1011に記録して提供することができる。また、プログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線又は無線の伝送媒体を介して提供することができる。
コンピュータ1000では、プログラムは、リムーバブル記憶媒体1011をドライブ1010に装着することにより、入出力インターフェース1005を介して、記録部1008にインストールすることができる。また、プログラムは、有線又は無線の伝送媒体を介して、通信部1009で受信し、記録部1008にインストールすることができる。その他、プログラムは、ROM1002や記録部1008に、あらかじめインストールしておくことができる。
ここで、本明細書において、コンピュータがプログラムに従って行う処理は、必ずしもフローチャートとして記載された順序に沿って時系列に行われる必要はない。すなわち、コンピュータがプログラムに従って行う処理は、並列的あるいは個別に実行される処理(例えば、並列処理あるいはオブジェクトによる処理)も含む。また、プログラムは、1のコンピュータ(プロセッサ)により処理されるものであってもよいし、複数のコンピュータによって分散処理されるものであってもよい。
なお、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。例えば、上述した複数の実施の形態の全て又は一部を組み合わせた形態を採用することができる。
なお、本技術は、以下のような構成をとることができる。
(1)
測定対象の生体から得られる過渡応答の測定データに対し、前記生体が有する機能を示す過渡モデルに応じた計算アルゴリズムを適用して、前記過渡モデルに関するパラメータのうち、未知のパラメータを算出する算出部を備える
情報処理装置。
(2)
前記生体は、植物であり、
前記過渡モデルは、前記植物の光合成での光化学反応の電子伝達系を表現したモデルであり、
前記計算アルゴリズムは、前記過渡モデルを用い、前記植物のクロロフィル蛍光の過渡応答から光合成の量子収率を算出するためのアルゴリズムであり、
前記測定データは、前記植物のクロロフィル蛍光の過渡応答の測定データであり、
前記算出部は、前記測定データを入力とし、前記計算アルゴリズムを適用することで、未知のパラメータとして、前記植物の光合成の量子収率を算出する
(1)に記載の情報処理装置。
(3)
前記植物の光合成の量子収率は、光合成の電子伝達系の最大量子収率(Fv/Fm)及び光合成の電子伝達系の量子収率(ΦPSII)のうち少なくとも一方である
(2)に記載の情報処理装置。
(4)
前記過渡モデルは、1又は複数用意され、
前記計算アルゴリズムは、前記過渡モデルに応じて1又は複数用意される
(1)乃至(3)のいずれかに記載の情報処理装置。
(5)
前記過渡モデルと前記計算アルゴリズムを記憶する記憶部をさらに備える
(1)乃至(4)のいずれかに記載の情報処理装置。
(6)
前記植物に対する光を発光する発光部を、前記測定データが得られるように制御する発光制御部をさらに備える
(2)乃至(5)のいずれかに記載の情報処理装置。
(7)
前記発光部と、
前記植物のクロロフィル蛍光をセンシングするセンサと
をさらに備える(6)に記載の情報処理装置。
(8)
レーザ光を発光する前記発光部と、
前記レーザ光を走査するための走査部と、
前記植物のクロロフィル蛍光をセンシングするセンサと
をさらに備える(6)に記載の情報処理装置。
(9)
前記発光部は、前記植物の育成用の光を発光する外部の発光装置であり、
前記発光装置と接続されるインターフェースと、
前記植物のクロロフィル蛍光をセンシングするセンサと
をさらに備え、
前記発光制御部は、前記インターフェースを介して、前記発光装置を、前記測定データが得られるように制御する
(6)に記載の情報処理装置。
(10)
前記植物のクロロフィル蛍光をセンシングする第1のセンサと、
前記第1のセンサによるセンシング時に、環境光をセンシングする第2のセンサと
をさらに備え、
前記算出部は、前記環境光の変化時に得られた前記測定データに基づいて、前記植物の光合成の量子収率を算出する
(2)に記載の情報処理装置。
(11)
前記環境光は、太陽光である
(10)に記載の情報処理装置。
(12)
前記測定データを提供する外部の処理装置と接続されるインターフェースをさらに備え、
前記算出部は、前記インターフェースを介して、前記処理装置から提供される前記測定データに基づいて、前記植物の光合成の量子収率を算出する
(2)に記載の情報処理装置。
(13)
前記処理装置は、前記測定データを計測する計測装置、又は前記測定データを記録する記録装置である
(12)に記載の情報処理装置。
(14)
情報処理装置の情報処理方法において、
前記情報処理装置が、
測定対象の生体から得られる過渡応答の測定データに対し、前記生体が有する機能を示す過渡モデルに応じた計算アルゴリズムを適用して、前記過渡モデルに関するパラメータのうち、未知のパラメータを算出する
ステップを含む情報処理方法。
(15)
コンピュータを、
測定対象の生体から得られる過渡応答の測定データに対し、前記生体が有する機能を示す過渡モデルに応じた計算アルゴリズムを適用して、前記過渡モデルに関するパラメータのうち、未知のパラメータを算出する算出部を備える情報処理装置として
機能させるためのプログラム。
(16)
測定対象の生体をセンシングするセンサと、
前記センサによるセンシングによって前記生体から得られる過渡応答の測定データに対し、前記生体が有する機能を示す過渡モデルに応じた計算アルゴリズムを適用して、前記過渡モデルに関するパラメータのうち、未知のパラメータを算出する算出部と
を備えるセンシング装置。
測定対象の生体から得られる過渡応答の測定データに対し、前記生体が有する機能を示す過渡モデルに応じた計算アルゴリズムを適用して、前記過渡モデルに関するパラメータのうち、未知のパラメータを算出する算出部を備える
情報処理装置。
(2)
前記生体は、植物であり、
前記過渡モデルは、前記植物の光合成での光化学反応の電子伝達系を表現したモデルであり、
前記計算アルゴリズムは、前記過渡モデルを用い、前記植物のクロロフィル蛍光の過渡応答から光合成の量子収率を算出するためのアルゴリズムであり、
前記測定データは、前記植物のクロロフィル蛍光の過渡応答の測定データであり、
前記算出部は、前記測定データを入力とし、前記計算アルゴリズムを適用することで、未知のパラメータとして、前記植物の光合成の量子収率を算出する
(1)に記載の情報処理装置。
(3)
前記植物の光合成の量子収率は、光合成の電子伝達系の最大量子収率(Fv/Fm)及び光合成の電子伝達系の量子収率(ΦPSII)のうち少なくとも一方である
(2)に記載の情報処理装置。
(4)
前記過渡モデルは、1又は複数用意され、
前記計算アルゴリズムは、前記過渡モデルに応じて1又は複数用意される
(1)乃至(3)のいずれかに記載の情報処理装置。
(5)
前記過渡モデルと前記計算アルゴリズムを記憶する記憶部をさらに備える
(1)乃至(4)のいずれかに記載の情報処理装置。
(6)
前記植物に対する光を発光する発光部を、前記測定データが得られるように制御する発光制御部をさらに備える
(2)乃至(5)のいずれかに記載の情報処理装置。
(7)
前記発光部と、
前記植物のクロロフィル蛍光をセンシングするセンサと
をさらに備える(6)に記載の情報処理装置。
(8)
レーザ光を発光する前記発光部と、
前記レーザ光を走査するための走査部と、
前記植物のクロロフィル蛍光をセンシングするセンサと
をさらに備える(6)に記載の情報処理装置。
(9)
前記発光部は、前記植物の育成用の光を発光する外部の発光装置であり、
前記発光装置と接続されるインターフェースと、
前記植物のクロロフィル蛍光をセンシングするセンサと
をさらに備え、
前記発光制御部は、前記インターフェースを介して、前記発光装置を、前記測定データが得られるように制御する
(6)に記載の情報処理装置。
(10)
前記植物のクロロフィル蛍光をセンシングする第1のセンサと、
前記第1のセンサによるセンシング時に、環境光をセンシングする第2のセンサと
をさらに備え、
前記算出部は、前記環境光の変化時に得られた前記測定データに基づいて、前記植物の光合成の量子収率を算出する
(2)に記載の情報処理装置。
(11)
前記環境光は、太陽光である
(10)に記載の情報処理装置。
(12)
前記測定データを提供する外部の処理装置と接続されるインターフェースをさらに備え、
前記算出部は、前記インターフェースを介して、前記処理装置から提供される前記測定データに基づいて、前記植物の光合成の量子収率を算出する
(2)に記載の情報処理装置。
(13)
前記処理装置は、前記測定データを計測する計測装置、又は前記測定データを記録する記録装置である
(12)に記載の情報処理装置。
(14)
情報処理装置の情報処理方法において、
前記情報処理装置が、
測定対象の生体から得られる過渡応答の測定データに対し、前記生体が有する機能を示す過渡モデルに応じた計算アルゴリズムを適用して、前記過渡モデルに関するパラメータのうち、未知のパラメータを算出する
ステップを含む情報処理方法。
(15)
コンピュータを、
測定対象の生体から得られる過渡応答の測定データに対し、前記生体が有する機能を示す過渡モデルに応じた計算アルゴリズムを適用して、前記過渡モデルに関するパラメータのうち、未知のパラメータを算出する算出部を備える情報処理装置として
機能させるためのプログラム。
(16)
測定対象の生体をセンシングするセンサと、
前記センサによるセンシングによって前記生体から得られる過渡応答の測定データに対し、前記生体が有する機能を示す過渡モデルに応じた計算アルゴリズムを適用して、前記過渡モデルに関するパラメータのうち、未知のパラメータを算出する算出部と
を備えるセンシング装置。
1 植物, 10,20,30,40 光合成計測装置, 31 植物育成用発光装置, 50 情報処理装置, 51 外部ストレージ, 52 外部クロロフィル蛍光計測装置, 53 ネットワーク, 100,200,300,400,500 中央制御部, 101 発光部, 102,202,302 発光制御部, 103,203,303,403 光学フィルタ, 104,204,304,404 光センサ, 105,205,305,405 サンプリング部, 106,206,306,406,506 過渡モデル保持部, 107,207,307,407,507 計算アルゴリズム保持部, 108,208,308,408,508 セレクタ, 109,209,309,409,509 セレクタ, 110,210,310,410,510 光合成量子収率演算部, 111,211,311,411,511 結果表示部, 130,230,330,430,530 記憶部, 201 レーザ発光部, 212 アクチュエータ, 213 画像合成部, 312 インターフェース, 412 環境光センサ, 413 サンプリング部, 414 最適変化検出部, 512 インターフェース, 1000 コンピュータ, 1001 CPU
Claims (16)
- 測定対象の生体から得られる過渡応答の測定データに対し、前記生体が有する機能を示す過渡モデルに応じた計算アルゴリズムを適用して、前記過渡モデルに関するパラメータのうち、未知のパラメータを算出する算出部を備える
情報処理装置。 - 前記生体は、植物であり、
前記過渡モデルは、前記植物の光合成での光化学反応の電子伝達系を表現したモデルであり、
前記計算アルゴリズムは、前記過渡モデルを用い、前記植物のクロロフィル蛍光の過渡応答から光合成の量子収率を算出するためのアルゴリズムであり、
前記測定データは、前記植物のクロロフィル蛍光の過渡応答の測定データであり、
前記算出部は、前記測定データを入力とし、前記計算アルゴリズムを適用することで、未知のパラメータとして、前記植物の光合成の量子収率を算出する
請求項1に記載の情報処理装置。 - 前記植物の光合成の量子収率は、光合成の電子伝達系の最大量子収率(Fv/Fm)及び光合成の電子伝達系の量子収率(ΦPSII)のうち少なくとも一方である
請求項2に記載の情報処理装置。 - 前記過渡モデルは、1又は複数用意され、
前記計算アルゴリズムは、前記過渡モデルに応じて1又は複数用意される
請求項1に記載の情報処理装置。 - 前記過渡モデルと前記計算アルゴリズムを記憶する記憶部をさらに備える
請求項1に記載の情報処理装置。 - 前記植物に対する光を発光する発光部を、前記測定データが得られるように制御する発光制御部をさらに備える
請求項2に記載の情報処理装置。 - 前記発光部と、
前記植物のクロロフィル蛍光をセンシングするセンサと
をさらに備える請求項6に記載の情報処理装置。 - レーザ光を発光する前記発光部と、
前記レーザ光を走査するための走査部と、
前記植物のクロロフィル蛍光をセンシングするセンサと
をさらに備える請求項6に記載の情報処理装置。 - 前記発光部は、前記植物の育成用の光を発光する外部の発光装置であり、
前記発光装置と接続されるインターフェースと、
前記植物のクロロフィル蛍光をセンシングするセンサと
をさらに備え、
前記発光制御部は、前記インターフェースを介して、前記発光装置を、前記測定データが得られるように制御する
請求項6に記載の情報処理装置。 - 前記植物のクロロフィル蛍光をセンシングする第1のセンサと、
前記第1のセンサによるセンシング時に、環境光をセンシングする第2のセンサと
をさらに備え、
前記算出部は、前記環境光の変化時に得られた前記測定データに基づいて、前記植物の光合成の量子収率を算出する
請求項2に記載の情報処理装置。 - 前記環境光は、太陽光である
請求項10に記載の情報処理装置。 - 前記測定データを提供する外部の処理装置と接続されるインターフェースをさらに備え、
前記算出部は、前記インターフェースを介して、前記処理装置から提供される前記測定データに基づいて、前記植物の光合成の量子収率を算出する
請求項2に記載の情報処理装置。 - 前記処理装置は、前記測定データを計測する計測装置、又は前記測定データを記録する記録装置である
請求項12に記載の情報処理装置。 - 情報処理装置の情報処理方法において、
前記情報処理装置が、
測定対象の生体から得られる過渡応答の測定データに対し、前記生体が有する機能を示す過渡モデルに応じた計算アルゴリズムを適用して、前記過渡モデルに関するパラメータのうち、未知のパラメータを算出する
ステップを含む情報処理方法。 - コンピュータを、
測定対象の生体から得られる過渡応答の測定データに対し、前記生体が有する機能を示す過渡モデルに応じた計算アルゴリズムを適用して、前記過渡モデルに関するパラメータのうち、未知のパラメータを算出する算出部を備える情報処理装置として
機能させるためのプログラム。 - 測定対象の生体をセンシングするセンサと、
前記センサによるセンシングによって前記生体から得られる過渡応答の測定データに対し、前記生体が有する機能を示す過渡モデルに応じた計算アルゴリズムを適用して、前記過渡モデルに関するパラメータのうち、未知のパラメータを算出する算出部と
を備えるセンシング装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/331,719 US11231367B2 (en) | 2016-09-26 | 2017-09-12 | Information processing apparatus, information processing method, program, and sensing apparatus |
CN201780057538.8A CN109714949B (zh) | 2016-09-26 | 2017-09-12 | 信息处理装置、信息处理方法、程序和传感装置 |
JP2018540974A JP7014170B2 (ja) | 2016-09-26 | 2017-09-12 | 情報処理装置、情報処理方法、及び、プログラム |
EP17852879.0A EP3516948B1 (en) | 2016-09-26 | 2017-09-12 | Information processing apparatus for calculating a quantum yield of photosynthesis of a plant |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-186478 | 2016-09-26 | ||
JP2016186478 | 2016-09-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018056102A1 true WO2018056102A1 (ja) | 2018-03-29 |
Family
ID=61690355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/032747 WO2018056102A1 (ja) | 2016-09-26 | 2017-09-12 | 情報処理装置、情報処理方法、プログラム、及び、センシング装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11231367B2 (ja) |
EP (1) | EP3516948B1 (ja) |
JP (1) | JP7014170B2 (ja) |
CN (1) | CN109714949B (ja) |
WO (1) | WO2018056102A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021014991A (ja) * | 2019-07-10 | 2021-02-12 | 国立研究開発法人農業・食品産業技術総合研究機構 | クロロフィル含有量の測定方法及び果実の熟度判定方法 |
WO2022136243A1 (en) | 2020-12-21 | 2022-06-30 | Boehringer Ingelheim Vetmedica Gmbh | Cartridge and analysis system for testing a sample |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3473081A4 (en) * | 2016-06-16 | 2019-06-19 | Sony Corporation | INFORMATION PROCESSING DEVICE, INFORMATION PROCESSING PROCESS AND PROGRAM |
DE102019131650A1 (de) * | 2019-11-22 | 2021-05-27 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zum Ermitteln und Optimieren des Gehalts von wenigstens einem Pflanzeninhaltsstoff von wenigstens einem Teil einer Pflanze |
EP4145112A1 (en) * | 2021-09-01 | 2023-03-08 | Gardin Ltd | System and method for measuring chlorophyll fluorescence |
IT202200017880A1 (it) * | 2022-08-31 | 2024-03-02 | Rem Tec S R L | Sistema per monitorare la crescita delle coltivazioni in un terreno agricolo basato su metodi ottici. |
EP4368970A1 (en) * | 2022-11-08 | 2024-05-15 | Gardin Ltd | Method of measuring chlorophyll fluorescence |
EP4385316A1 (en) * | 2022-12-14 | 2024-06-19 | Gardin Ltd | Light control method for plant growth |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11332375A (ja) * | 1998-05-21 | 1999-12-07 | Shinryo Corp | 植物の生育診断方法 |
JP2001352849A (ja) * | 2000-06-12 | 2001-12-25 | Nisshinbo Ind Inc | 胚様組織を用いた植物の生産方法 |
JP2006504956A (ja) * | 2002-10-31 | 2006-02-09 | プラント リサーチ インターナショナル ベスローテン フェンノートシャップ | 植物材料の質を決定するための光合成系の量子効率のイメージ作製方法及び装置並びに植物材料を計測、分類、及びソートするための方法及び装置 |
JP2010246488A (ja) * | 2009-04-17 | 2010-11-04 | Ehime Univ | 光合成活性評価プログラムおよび光合成活性評価装置 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL1021476C2 (nl) * | 2002-09-17 | 2004-03-18 | Plant Res Int Bv | Werkwijze en inrichting voor het bepalen van de kwaliteit van plantaardig materiaal en werkwijze en inrichting voor het sorteren van plantaardig materiaal. |
US7970461B2 (en) * | 2004-06-18 | 2011-06-28 | Andres Kink | Method and apparatus for determining conditions of a biological tissue |
RU2354958C2 (ru) * | 2006-09-13 | 2009-05-10 | ООО "Генная и клеточная терапия" | Способ флуорометрического определения параметров фотосинтеза фотоавтотрофных организмов, устройство для его осуществления и измерительная камера |
CN101953299B (zh) * | 2010-08-26 | 2012-12-12 | 中国科学院地球化学研究所 | 测定植物组培苗光合能力的方法 |
US20120310540A1 (en) * | 2011-05-31 | 2012-12-06 | Li-Cor, Inc. | Systems and methods for estimating photosynthetic carbon assimlation |
US20140210448A1 (en) * | 2013-01-25 | 2014-07-31 | Daniel D. Brunda | System and method for determining radiation absorption |
CN103234947B (zh) * | 2013-04-11 | 2015-06-17 | 南京林业大学 | 一种用叶绿素荧光验证植物化感作用的方法 |
EP3289336A1 (en) * | 2015-04-29 | 2018-03-07 | Board Of Trustees Of Michigan State University | Methods for estimating photosynthetic characteristics in plant canopies and systems and apparatus related thereto |
CN104819968A (zh) * | 2015-05-07 | 2015-08-05 | 中国科学院合肥物质科学研究院 | 基于叶绿素荧光的浮游植物光合作用检测装置与方法 |
CN105588921A (zh) * | 2016-01-29 | 2016-05-18 | 浙江农林大学 | 多胺对盐胁迫下北美冬青叶绿素荧光特性的影响研究方法 |
-
2017
- 2017-09-12 JP JP2018540974A patent/JP7014170B2/ja active Active
- 2017-09-12 US US16/331,719 patent/US11231367B2/en active Active
- 2017-09-12 EP EP17852879.0A patent/EP3516948B1/en active Active
- 2017-09-12 WO PCT/JP2017/032747 patent/WO2018056102A1/ja active Application Filing
- 2017-09-12 CN CN201780057538.8A patent/CN109714949B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11332375A (ja) * | 1998-05-21 | 1999-12-07 | Shinryo Corp | 植物の生育診断方法 |
JP2001352849A (ja) * | 2000-06-12 | 2001-12-25 | Nisshinbo Ind Inc | 胚様組織を用いた植物の生産方法 |
JP2006504956A (ja) * | 2002-10-31 | 2006-02-09 | プラント リサーチ インターナショナル ベスローテン フェンノートシャップ | 植物材料の質を決定するための光合成系の量子効率のイメージ作製方法及び装置並びに植物材料を計測、分類、及びソートするための方法及び装置 |
JP2010246488A (ja) * | 2009-04-17 | 2010-11-04 | Ehime Univ | 光合成活性評価プログラムおよび光合成活性評価装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3516948A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021014991A (ja) * | 2019-07-10 | 2021-02-12 | 国立研究開発法人農業・食品産業技術総合研究機構 | クロロフィル含有量の測定方法及び果実の熟度判定方法 |
JP7360649B2 (ja) | 2019-07-10 | 2023-10-13 | 国立研究開発法人農業・食品産業技術総合研究機構 | クロロフィル含有量の測定方法及び果実の熟度判定方法 |
WO2022136243A1 (en) | 2020-12-21 | 2022-06-30 | Boehringer Ingelheim Vetmedica Gmbh | Cartridge and analysis system for testing a sample |
Also Published As
Publication number | Publication date |
---|---|
US20190204228A1 (en) | 2019-07-04 |
EP3516948A4 (en) | 2019-10-09 |
EP3516948A1 (en) | 2019-07-31 |
CN109714949A (zh) | 2019-05-03 |
CN109714949B (zh) | 2023-02-17 |
JP7014170B2 (ja) | 2022-02-01 |
US11231367B2 (en) | 2022-01-25 |
JPWO2018056102A1 (ja) | 2019-07-11 |
EP3516948B1 (en) | 2024-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018056102A1 (ja) | 情報処理装置、情報処理方法、プログラム、及び、センシング装置 | |
Mohammed et al. | Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress | |
Porcar-Castell et al. | Chlorophyll a fluorescence illuminates a path connecting plant molecular biology to Earth-system science | |
Bai et al. | A multi-sensor system for high throughput field phenotyping in soybean and wheat breeding | |
Pauli et al. | The quest for understanding phenotypic variation via integrated approaches in the field environment | |
Walter et al. | Plant phenotyping: from bean weighing to image analysis | |
Atherton et al. | Using spectral chlorophyll fluorescence and the photochemical reflectance index to predict physiological dynamics | |
EP2638797B1 (en) | Plant health diagnostic method and plant health diagnostic device | |
Bian et al. | Closing the gap between phenotyping and genotyping: review of advanced, image-based phenotyping technologies in forestry | |
Estapa et al. | Autonomous, high-resolution observations of particle flux in the oligotrophic ocean | |
US11965869B2 (en) | Plant fluorometer for remote detection of growth dynamics | |
Browne et al. | Predicting responses of geo-ecological carbonate reef systems to climate change: a conceptual model and review | |
CN109069008A (zh) | 光学设备和信息处理方法 | |
Zhou et al. | Imaging analysis of chlorophyll fluorescence induction for monitoring plant water and nitrogen treatments | |
Pennisi | Getting the big picture of biodiversity | |
Bochtis et al. | Information and Communication Technologies for Agriculture-Theme I: Sensors | |
Kar et al. | Improving data management and decision-making in precision agriculture | |
Liu et al. | Monitoring crop biomass accumulation using multi-temporal hyperspectral remote sensing data | |
KR101584041B1 (ko) | 광합성과 광보호 양자 수율 지도 형성 방법 | |
Zhou et al. | High-throughput crop phenotyping systems for controlled environments | |
Jansen et al. | Image processing for bioassays | |
Alony et al. | Development of a laser-induced fluorescence imaging system for root activity and rhizosphere visualisation | |
KR101556647B1 (ko) | 광합성과 광보호 양자 수율 지도 형성 방법 | |
Rana | AI Based Precision and Intelligent Farming System | |
Westman | Monitoring the environment by remote sensing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17852879 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018540974 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017852879 Country of ref document: EP |