WO2018055992A1 - 放射線撮影装置、放射線撮影システム、放射線撮影方法、及びプログラム - Google Patents

放射線撮影装置、放射線撮影システム、放射線撮影方法、及びプログラム Download PDF

Info

Publication number
WO2018055992A1
WO2018055992A1 PCT/JP2017/030834 JP2017030834W WO2018055992A1 WO 2018055992 A1 WO2018055992 A1 WO 2018055992A1 JP 2017030834 W JP2017030834 W JP 2017030834W WO 2018055992 A1 WO2018055992 A1 WO 2018055992A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
value
irradiation dose
average
pixel
Prior art date
Application number
PCT/JP2017/030834
Other languages
English (en)
French (fr)
Inventor
佳士 町田
貴司 岩下
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2018055992A1 publication Critical patent/WO2018055992A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment

Definitions

  • the present invention relates to a radiation imaging apparatus, a radiation imaging system, a radiation imaging method, and a program.
  • a radiation imaging apparatus using a flat detector Flat-Panel-Detector: FPD
  • FPD flat detector
  • Such a radiation imaging apparatus is used, for example, as a digital imaging apparatus for still images and moving images in medical image diagnosis.
  • the FPD for example, there are an integration type sensor and a photon counting type sensor.
  • the integral type sensor measures the total amount of charge generated by the incidence of radiation.
  • the photon counting type sensor identifies the energy (wavelength) of incident radiation and counts the number of times of detection of radiation for each of a plurality of energy levels. Since the photon counting type sensor has energy resolution, it can be expected to be applied to the discrimination of substances, the generation of images when taken with radiation of virtually single energy, and the measurement of bone density.
  • Patent Document 1 proposes a radiation imaging apparatus having energy resolution by estimating the number and average energy of radiation quanta using average pixel value information and pixel value dispersion information for each predetermined region.
  • Patent Document 1 proposes a method for estimating an average energy from a dispersion value and an average value of pixel values.
  • an X-ray irradiation dose irradiated by a radiation generator is not constant but varies according to time. There is a case. This variation in irradiation dose may affect the dispersion value of the pixel values, and the average energy may not be obtained appropriately.
  • the radiation imaging apparatus includes a fluctuation calculating unit that calculates a fluctuation in irradiation dose of the radiation based on a temporal change of a pixel value corresponding to radiation detected in a predetermined region of the radiation detector, and the radiation detector.
  • Energy calculating means for calculating an average energy of the radiation in at least one target pixel based on the irradiation dose variation.
  • the radiation is, for example, X-rays, but may be ⁇ -rays, ⁇ -rays, ⁇ -rays, or the like.
  • FIG. 1 is a diagram illustrating a functional configuration example of the first embodiment of the present invention.
  • the radiation imaging system includes a radiation generation device (radiation generation means) 101, a radiation detector 102, and an average energy estimation unit 103.
  • the radiation generator 101 irradiates the radiation irradiation area of the radiation detector 102 with radiation.
  • the radiation generator 101 irradiates a subject with radiation.
  • the radiation detector 102 detects the radiation that has passed through the subject and outputs an accumulated image.
  • the accumulated image is a digital image having a pixel value proportional to the product of the energy and the number of radiation quanta.
  • the average energy estimation unit 103 which is a radiation imaging apparatus estimates the average energy of the radiation quanta that has reached the radiation detector 102 from the accumulated image and the radiation dose. Moreover, the average energy estimation part 103 is provided with the fluctuation
  • the fluctuation calculation unit 112 includes a variance calculation unit 110 and an average value calculation unit 111. In addition, the process in the average energy estimation part 103 is performed for every pixel (target pixel).
  • the fluctuation calculation unit 112 is configured to detect the radiation dose based on a temporal change (for example, a dispersion value in time series) of a pixel value corresponding to the radiation detected in a predetermined area (variation detection area) of the radiation detector 102. Calculate the variation.
  • the average energy calculation unit 113 calculates the average energy of radiation in at least one target pixel of the radiation detector 102 based on the irradiation dose variation.
  • step S201 the radiation generation apparatus 101 irradiates the subject with radiation.
  • step S202 the radiation detector 102 detects radiation from the radiation generation apparatus 101 (for example, radiation transmitted through the subject from the radiation generation apparatus 101) a plurality of times, generates a plurality of accumulated images, and generates an average energy estimation unit. 103.
  • step S203 the average energy estimation unit 103 uses the variance calculation unit 110 to calculate the pixel values of the respective pixels in time series according to the equation (1) from the pixel values I (t) of the plurality of input stored images.
  • a variance image I var whose variance is calculated is generated.
  • t represents an integer frame number of images acquired in time series.
  • step S204 the average value calculation unit 111 generates I ave that averages the pixel values of each pixel in time series according to the equation (2).
  • step S205 the fluctuation calculating unit 112 generates R var according to Equation (3).
  • I ave is a time series average pixel value of each pixel (target pixel) obtained by averaging a plurality of acquired images in time series (hereinafter referred to as “time series average”).
  • a total is a total average pixel value obtained by averaging the time series average pixel value I ave of each pixel in space (hereinafter referred to as “spatial average”).
  • a var is a time series variance (first variance value) obtained by calculating a variance in a time series for a spatial average of pixel values of a plurality of acquired images.
  • the fluctuation calculation unit 112 calculates the irradiation dose fluctuation by calculating A var (first dispersion value) in time series for the spatial average of the pixel values in the fluctuation detection region.
  • I ave may be a time-series average pixel value of the pixel values of each pixel, or a time-series average pixel value obtained by averaging the values obtained by spatially averaging the pixel values of the peripheral pixels of each pixel in time series. May be.
  • the pixel value I (t) of the target pixel is calculated based on the pixel value of the target pixel or the pixel values of the target pixel and the surrounding pixels of the target pixel.
  • a total may be a total average pixel value obtained by averaging the spatial average of a plurality of acquired images in time series.
  • the variation of the pixel value due to the variation of the radiation irradiation dose of each pixel differs depending on the transmitted dose.
  • the irradiation dose of each pixel is obtained by using the ratio of the time-series average pixel value I ave that is the time-series average of each pixel and the total average pixel value A total used for calculating the fluctuation of the radiation irradiation dose. It is possible to calculate the dispersion of pixel values (irradiation dose fluctuation R var ) due to the fluctuations of.
  • the fluctuation calculation unit 112 calculates I ave (first average value) obtained by time-series averaging of the pixel value I (t) of the target pixel, and A total ( (Second average value) is calculated.
  • the fluctuation calculation unit 112 calculates the irradiation dose fluctuation R var based on the ratio of I ave (first average value) and A total (second average value). Then, as shown in equation (3), variation calculation section 112, the ratio of I ave (first average value) and A total (second average value) A var (first distribution value) By multiplying, the irradiation dose fluctuation R var is calculated.
  • step S206 average energy calculation section 113 generates average energy E ave according to equation (4).
  • the average energy calculation unit 113 calculates I var (second dispersion value) in time series for the pixel value I (t) of the target pixel, and corrects I var (second dispersion value) with the irradiation dose variation R var . Thus, the average energy E ave is calculated.
  • is a coefficient for converting a value calculated from the pixel value and the variance into an energy unit, and can be calculated in advance by photographing an X-ray of known energy in advance.
  • the average energy calculation unit 113 multiplies a value obtained by subtracting the irradiation dose fluctuation R var from I var (second dispersion value) by I ave (third average value) by multiplying by a predetermined coefficient.
  • the average energy E ave is calculated.
  • the average energy E ave can be calculated, and the influence of fluctuations in irradiation dose can be reduced.
  • the present invention can take an embodiment as a system, apparatus, method, program, storage medium, or the like. Specifically, the present invention may be applied to a system composed of a plurality of devices, or may be applied to an apparatus composed of one device.
  • the present invention can also be realized by executing the following processing.
  • Software (program) for realizing the functions of this embodiment is supplied to the system or apparatus via a network or various storage media. Then, the computer of the system or apparatus (or CPU, MPU, GPU, etc.) reads the program and executes the functions of this embodiment.
  • I ave is the time-series average pixel value of each pixel, as in the first embodiment.
  • ROI total is a total average pixel value obtained by spatially averaging the time-series average pixel value I ave of each pixel of the region of interest ROI in the region of interest ROI.
  • ROI var is a time series variance obtained by calculating a variance in a time series for a spatial average of pixel values in a region of interest ROI of a plurality of acquired images.
  • the ROI total may be a total average pixel value obtained by time-sequentially averaging the spatial average of the pixel values in the region of interest ROI of a plurality of acquired images.
  • the region of interest ROI may be set to a region set in advance for each imaging region, a region where radiation that does not pass through the subject is detected (a region in which no subject exists in the radiation imaging region), or the like.
  • FIG. 3 is a diagram illustrating an example of setting a region of interest.
  • the total average pixel value ROI total and the time-series variance ROI var are calculated using the entire frame as in the first embodiment. If the ROI 302 is used, the total average pixel value ROI total and the time-series variance ROI var are calculated using a predetermined region of interest in the subject. If the ROI 303 is used, the total average pixel value ROI total and the time-series variance ROI var are calculated using the region where the radiation that does not pass through the subject is detected.
  • the analysis of the irradiation dose variation can be stabilized, the appropriate average energy E ave can be calculated, and the calculation speed is increased. You can expect effects such as.
  • time series dispersion A var , ROI var and irradiation dose dispersion M var described later are monitored over the whole or part of one frame, and the time series dispersion A var , ROI var and irradiation dosage dispersion M var are below a predetermined threshold.
  • the ROI may be automatically set in the area.
  • the fluctuation detection region is set to at least one of the entire radiation irradiation region of the radiation detector 102, the predetermined region of interest of the subject in the radiation irradiation region, and the region where the subject in the radiation irradiation region does not exist.
  • the irradiation dose fluctuation R var is calculated from the radiographic image data using the time series variance A var .
  • the irradiation dose fluctuation R var may be calculated using measurement results such as a dosimeter for measuring the irradiation dose and an AEC (Auto Exposure Control) pixel instead of the radiation image data.
  • the irradiation dose variation R var is calculated according to equation (6) instead of equation (3).
  • the fluctuation calculation unit 112 calculates the irradiation dose fluctuation of the radiation based on the temporal change of the irradiation dose of the radiation irradiated to the predetermined region (variation detection region) of the radiation detector 102.
  • the radiation dose is calculated based on at least one of a measurement value of a dosimeter that measures the radiation dose, a pixel value of a pixel that detects radiation at a frame rate higher than the target pixel (AEC pixel), and a radiation irradiation condition. May be.
  • M var is the irradiation dose variance obtained by calculating the irradiation dose variance in time series.
  • is a coefficient for converting the irradiation dose variance M var into a value equivalent to the time series variance ROI var in the equation (5).
  • the fluctuation calculation unit 112 calculates the irradiation dose fluctuation R var by calculating M var (third dispersion value) in time series for the irradiation dose in the fluctuation detection region.
  • the fluctuation calculation unit 112 calculates I ave (first average value) obtained by time-series averaging of the pixel value of the target pixel.
  • the fluctuation calculation unit 112 calculates an ROI total (second average value) obtained by spatially averaging and time-series averaging the pixel values in the fluctuation detection area.
  • the fluctuation calculation unit 112 calculates the irradiation dose fluctuation R var based on the ratio of I ave (first average value) and ROI total (second average value).
  • the fluctuation calculation unit 112 multiplies the ratio of I ave (first average value) and ROI total (second average value) by M var (third dispersion value), thereby calculating the irradiation dose fluctuation R var . calculate.
  • the coefficient ⁇ and the total average pixel value ROI total can be obtained in advance.
  • imaging conditions such as the distance from the radiation generator 101 to the radiation detector 102, tube voltage, tube current, irradiation time, and imaging time are changed, the coefficient ⁇ and the total average pixel value ROI total that are obtained in advance. Can be corrected according to the shooting conditions. This eliminates the need to obtain the coefficient ⁇ and the total average pixel value ROI total in advance under all conditions.
  • irradiation dose information such as a dosimeter and an ACE pixel
  • the average energy calculation unit 113 calculates the average energy E ave of radiation in at least one target pixel of the radiation detector 102 based on the irradiation dose variation R var .
  • the irradiation dose variation R var is calculated from the radiation image data using the time-series variance A var , but instead of the radiation image data, the irradiation dose variation R var is used. May be calculated.
  • the irradiation dose dispersion M var , the coefficient ⁇ , and the total average pixel value ROI total in Expression (6) can be obtained in advance according to the irradiation condition.
  • the irradiation condition of radiation includes at least one of a distance from the radiation generation apparatus 101 to the radiation detector 102, a tube voltage, a tube current, a pulse width, and an irradiation time.
  • the irradiation dose dispersion M var is acquired, and irradiation is performed using the radiation irradiation conditions at the time of imaging the subject.
  • the dose variation R var may be calculated.
  • the radiation irradiation dose may be calculated based on the radiation irradiation conditions.
  • the average energy due to the variation of the irradiation dose is corrected by subtracting the irradiation dose variation R var from the dispersion image I var, which is the variance of the pixel values.
  • the correction amount may be changed according to the magnitude of the fluctuation of the irradiation dose.
  • the average energy E ave is calculated according to the equation (7).
  • the average energy calculation unit 113 adjusts the irradiation dose variation R var based on the function ⁇ (A var ) related to A var (first dispersion value).
  • ⁇ (A var ) is a function for adjusting the correction amount.
  • FIG. 4 shows an example of the function ⁇ (A var ).
  • the function 401 in FIG. 4 is a step function having at least one threshold value.
  • the time series variance A var is less than the threshold value a when beta (A var) becomes zero, the time series variance A var is equal to or larger than the threshold a beta (A var) is 1.
  • ⁇ (A var ) when ⁇ (A var ) is 0 (that is, when the time series variance A var is small and the irradiation dose variation is small), the average energy due to the variation of the irradiation dose is not corrected.
  • the function 402 is a function in which ⁇ (A var ) changes between a plurality of threshold values of the time series variance A var .
  • the time series variance A var is less than the threshold value b when beta (A var) becomes zero
  • the time series variance A var is equal to or larger than the threshold c beta (A var) becomes 1
  • the threshold value b and the threshold value c ⁇ (A var ) increases linearly from 0 to 1.
  • a function such as a sigmoid function may be used as the function ⁇ (A var ) in order to adjust the correction amount of the average energy.
  • the correction amount of the average energy according to the irradiation dose variation is suppressed when the irradiation dose variation is small, and the correction amount is promoted when the irradiation dose variation is large.
  • the average energy E ave is calculated accordingly. Further, in the calculation of the average energy E ave , by changing the correction amount according to the irradiation dose variation, it is possible to perform appropriate correction according to the necessity for correction.
  • a var is used as the irradiation dose variation, but ROI var or M var may be used.
  • the radiation is, for example, X-rays, but may be ⁇ -rays, ⁇ -rays, ⁇ -rays, or the like. Note that the description of the same configuration, function, and operation as in the above embodiment is omitted, and differences from the present embodiment are mainly described.
  • the square of the difference between the pixel value and the pixel value other than the pixel value is used.
  • the pixel value of the pixel is regarded as the average of the pixel value
  • the square of the difference between the pixel value and the pixel value different from the pixel value is regarded as the sample variance of the pixel value
  • the pixel value is regarded as the time-series average pixel value I ave
  • the difference is calculated in the pixel value in time series
  • the square of the difference is regarded as the dispersed image I var to calculate the average energy.
  • the average energy is calculated using pixel values at the same position in a predetermined frame (first frame) and the previous frame (second frame).
  • first frame and the second frame are adjacent in time series, but may not be adjacent.
  • FIG. 5 is a diagram illustrating a functional configuration example of the present embodiment.
  • the radiation generator 501 irradiates the subject with radiation.
  • the radiation detector 502 detects radiation that has passed through the subject and outputs an accumulated image.
  • the accumulated image is a digital image having a pixel value proportional to the product of the energy and the number of radiation quanta.
  • the average energy estimation unit 503 estimates the average energy of the radiation quanta that has reached the radiation detector 502 from the accumulated image. Moreover, the average energy estimation part 503 is provided with the gain calculation part (fluctuation calculation part) 510 and the average energy calculation part (energy calculation part) 512 as the structure.
  • the average energy calculation unit 512 includes a frame average energy calculation unit 511. Note that the processing in the average energy estimation unit 503 is performed for each pixel (target pixel).
  • step S601 the radiation generation apparatus 501 irradiates the subject with radiation.
  • the radiation detector 502 detects radiation from the radiation generation apparatus 501 (for example, radiation transmitted through the subject from the radiation generation apparatus 501) a plurality of times, generates an accumulated image, and outputs the accumulated image to the average energy estimation unit 503. input.
  • the average energy estimation unit 503 uses the gain calculation unit 510 to calculate the input accumulated image and the accumulated image of the previous frame (hereinafter referred to as “previous frame”) according to Equation (8).
  • the gain G is calculated.
  • t represents an integer frame number of images acquired in time series.
  • the gain calculation unit (variation calculation unit) 510 calculates the irradiation dose variation G (t) of the radiation by calculating the ratio in time series for the pixel values in the variation detection region.
  • ROI (t) is a spatial average of the region of interest ROI in the accumulated image of the first frame t.
  • ROI (t-1) is a spatial average of the region of interest ROI in the accumulated image of the previous frame (second frame t-1).
  • the gain calculation unit (variation calculation unit) 510 calculates ROI (t) (fourth average value) obtained by spatially averaging the pixel values of the variation detection region in the first frame t of the radiation image.
  • the gain calculation unit (variation calculation unit) 510 calculates ROI (t ⁇ 1) (fifth average value) obtained by spatially averaging the pixel values of the variation detection region in the second frame t ⁇ 1 of the radiation image.
  • the gain calculation unit (variation calculation unit) 510 is configured to change the radiation exposure dose variation G () based on the ratio of ROI (t) (fourth average value) and ROI (t ⁇ 1) (fifth average value). t) is calculated.
  • the fluctuation detection region includes the entire radiation irradiation region of the radiation detector 102, the predetermined region of interest of the subject in the radiation irradiation region, and the radiation irradiation region. May be set to at least one area in which no subject exists.
  • step S604 the average energy estimation unit 503 uses the frame average energy calculation unit 511 to calculate the frame average energy E (t from the accumulated image, the accumulated image of the previous frame, and the gain G according to Equation (9). ).
  • the frame average energy E (t) can be calculated for each frame by regarding the square of the difference between two adjacent frames in time series as variance.
  • the average energy calculation unit 512 calculates the first pixel value I (t) of the target pixel in the first frame t and the second pixel value I (t ⁇ 1) of the target pixel in the second frame t ⁇ 1. By correcting the difference with the irradiation dose fluctuation G (t), an average energy E ave described later is calculated.
  • the average energy calculation unit 512 calculates a difference by subtracting a value obtained by multiplying the second pixel value I (t ⁇ 1) by the irradiation dose variation G (t) from the first pixel value I (t). To do.
  • the average energy calculation unit 512 calculates an average energy E ave described later by dividing the square of the difference by the first pixel value I (t).
  • the average energy calculation unit 512 calculates the average energy E ave as described later by multiplying a value obtained by dividing the square of the difference by the first pixel value I (t) by a predetermined coefficient ⁇ .
  • the irradiation dose fluctuation G (t) is expressed as a ratio of ROI (t) (fourth average value) and ROI (t ⁇ 1) (fifth average value).
  • the pixel value I (t ⁇ 1) of the previous frame is multiplied by the gain G calculated in step S603, thereby irradiating the region of interest ROI.
  • the error of the pixel value I due to the dose variation is corrected.
  • is a coefficient for converting a value calculated from the pixel value into a unit of energy, and can be calculated in advance by photographing X-rays of known energy in advance.
  • Equation (9) the value obtained by multiplying the pixel value I (t ⁇ 1) of the second frame by the gain G is subtracted from the pixel value I (t) of the first frame, and the subtracted value is squared.
  • the frame average energy E (t) is calculated by dividing the squared value by the pixel value I (t) of the frame and multiplying by the coefficient ⁇ .
  • the average energy estimation unit 503 uses the average energy calculation unit 512 to calculate the average energy from the plurality of frame average energies according to the equation (10).
  • the average energy calculation unit 512 calculates the average energy E ave by performing time series averaging on a value E (t) obtained by dividing the square of the difference by the first pixel value I (t).
  • E ave is the average of the calculated frame average energy E (t). In this way, by calculating the average energy E ave by averaging the plurality of frame average energies E (t), the calculation error can be reduced.
  • step S605 by performing the processing from step S601 to step S605, it is possible to reduce the influence of the irradiation dose fluctuation in the calculation of the average energy E ave .
  • ) is a function for adjusting the correction amount.
  • FIG. 7 shows an example of the function ⁇ (e
  • ) is a step function having at least one threshold value.
  • When less than the threshold value d ⁇ (e
  • a function 702 is a function in which ⁇ (e
  • the gain G is less than the threshold value e ⁇ (e
  • a function such as a sigmoid function may be used as the function ⁇ (e
  • the correction amount of the frame average energy according to the irradiation dose variation is suppressed when the irradiation dose variation is small, and the correction amount is promoted when the irradiation dose variation is large.
  • An average energy E ave is calculated according to the fluctuation. Further, in the calculation of the frame average energy E (t), appropriate correction according to the necessity of correction can be performed by changing the correction amount according to the irradiation dose variation.
  • the average energy calculation unit 512 adjusts the average energy E ave based on the function ⁇ (e
  • the gain G is calculated using the spatial average of the region of interest ROI.
  • measurement results such as a dosimeter for measuring an irradiation dose and an AEC (Auto Exposure Control) pixel are used.
  • the gain G may be calculated.
  • the gain G is calculated according to equation (12) instead of equation (8).
  • the gain calculation unit (variation calculation unit) 510 calculates the irradiation dose fluctuation of the radiation based on the ratio of the irradiation dose in the first frame t and the second frame t ⁇ 1 of the radiographic image.
  • the radiation dose is calculated based on at least one of a measurement value of a dosimeter that measures the radiation dose, a pixel value of a pixel that detects radiation at a frame rate higher than the target pixel (AEC pixel), and a radiation irradiation condition. May be.
  • M (t) is an irradiation dose at the time of imaging of frame number t.
  • M (t-1) is an irradiation dose of frame number t-1 (previous frame).
  • irradiation dose information such as a dosimeter and an ACE pixel
  • the average energy calculation unit 512 includes the first pixel value I (t) of the target pixel in the first frame t and the second pixel of the target pixel in the second frame t ⁇ 1.
  • the difference from the value I (t ⁇ 1) is corrected by the irradiation dose fluctuation G (t).
  • the average energy calculation part 512 calculates average energy Eave .
  • the irradiation dose variation G (t) is represented by the ratio of the irradiation dose in the first frame t and the second frame t ⁇ 1 of the radiation image.
  • an appropriate average energy can be calculated by taking into account the radiation dose fluctuation.
  • the present invention supplies software (programs) for realizing the functions of the above-described embodiments to a system or apparatus via a network or various storage media, and a computer (CPU, MPU, etc.) of the system or apparatus reads the program. May be executed.
  • the present invention can also be realized by a process in which one or more processors in a computer of a system or apparatus read and execute a program, and can also be realized by a circuit (for example, an ASIC) that realizes one or more functions.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Measurement Of Radiation (AREA)

Abstract

放射線の照射線量変動を考慮することにより、適切な平均エネルギーを算出することができる放射線撮影装置を提供する。放射線撮影装置は、放射線検出器の所定の領域で検出された放射線に対応する画素値の時間変化に基づいて、放射線の照射線量変動を算出する変動算出手段と、放射線検出器の少なくとも1つの対象画素における放射線の平均エネルギーを、照射線量変動に基づいて算出するエネルギー算出手段と、を備える。

Description

放射線撮影装置、放射線撮影システム、放射線撮影方法、及びプログラム
 本発明は、放射線撮影装置、放射線撮影システム、放射線撮影方法、及びプログラムに関する。
 放射線(X線)による医療画像診断や非破壊検査に用いる撮像装置として、半導体材料によって形成された平面検出器(Flat Panel Detector:FPD)を用いた放射線撮像装置が知られている。このような放射線撮像装置は、例えば、医療画像診断において、静止画や動画などのデジタル撮像装置として用いられている。
 FPDとしては、例えば、積分型のセンサ及びフォトンカウンティング型のセンサがある。積分型のセンサは、放射線の入射により発生した電荷の総量を計測する。フォトンカウンティング型のセンサは、入射した放射線のエネルギー(波長)を識別し、複数のエネルギーレベルの各々について放射線の検出回数をカウントする。フォトンカウンティング型のセンサは、エネルギー分解能を有するため、物質の弁別や仮想的に単一のエネルギーの放射線で撮影した場合の画像の生成や骨密度の測定などへの応用が期待できる。
 特許文献1では、所定領域ごとに平均画素値情報と画素値の分散情報とを用いて、放射線量子の個数や平均エネルギーを推定することにより、エネルギー分解能を有する放射線撮像装置が提案されている。
特開2009-285356号公報
 特許文献1には、画素値の分散値と平均値から平均エネルギーを推定する方法が提案されているが、放射線発生装置で照射されるX線の照射線量は一定ではなく時間に応じて変動する場合がある。この照射線量の変動が、画素値の分散値に影響を与え、平均エネルギーを適切に求めることができない場合がある。
 本発明の放射線撮影装置は、放射線検出器の所定の領域で検出された放射線に対応する画素値の時間変化に基づいて、前記放射線の照射線量変動を算出する変動算出手段と、前記放射線検出器の少なくとも1つの対象画素における前記放射線の平均エネルギーを、前記照射線量変動に基づいて算出するエネルギー算出手段と、を備える。
 本発明のさらなる特徴が、添付の図面を参照して以下の例示的な実施形態の説明から明らかになる。
第1の実施形態の機能構成例を示す図である。 第1の実施形態の手順を示すフローチャートである。 関心領域の設定例を示した図である。 第1の実施形態の調整関数の例を示す図である。 第2の実施形態の機能構成例を示す図である。 第2の実施形態の手順を示すフローチャートである。 第2の実施形態の調整関数の例を示す図である。
(第1の実施形態)
 以下、本発明の第1の実施形態について、添付の図面を参照して具体的に説明する。なお、放射線は、例えば、X線であるが、α線、β線、及びγ線などであってもよい。
 まず、図1及び図2を用いて、第1の実施形態の構成と処理フローを説明する。図1は、本発明の第1の実施形態の機能構成例を示す図である。
 放射線撮影システムは、放射線発生装置(放射線発生手段)101、放射線検出器102、及び平均エネルギー推定部103を備える。放射線発生装置101は、放射線検出器102の放射線照射領域に放射線を照射する。放射線発生装置101は被写体に放射線を照射する。放射線検出器102は、被写体を通過した放射線を検出し蓄積画像を出力する。ここで、蓄積画像は、放射線量子のエネルギーと個数の積に比例した画素値を持つデジタル画像である。
 放射線撮影装置である平均エネルギー推定部103は、蓄積画像及び放射線の照射線量から放射線検出器102に到達した放射線量子の平均エネルギーを推定する。また、平均エネルギー推定部103は、その構成として、変動算出部112(変動算出手段)及び平均エネルギー算出部(エネルギー算出手段)113を備える。変動算出部112は、分散算出部110及び平均値算出部111を備える。なお、平均エネルギー推定部103における処理は、画素(対象画素)ごとに行われる。
 変動算出部112は、放射線検出器102の所定の領域(変動検出領域)で検出された放射線に対応する画素値の時間変化(例えば、時系列での分散値)に基づいて、放射線の照射線量変動を算出する。平均エネルギー算出部113は、放射線検出器102の少なくとも1つの対象画素における放射線の平均エネルギーを、照射線量変動に基づいて算出する。
 次に、図2に示すフローチャートを用いて、第1の実施形態の処理の流れを詳細に説明する。
 ステップS201にて、放射線発生装置101は、被写体に放射線を照射する。ステップS202にて、放射線検出器102は、放射線発生装置101からの放射線(例えば、放射線発生装置101から被写体を透過した放射線)を複数回検出し、複数の蓄積画像を生成し、平均エネルギー推定部103へ入力する。
 ステップS203にて、平均エネルギー推定部103は、分散算出部110を用いて、入力された複数の蓄積画像の画素値I(t)から式(1)に従い、各画素の画素値について時系列で分散を算出した分散画像Ivarを生成する。ここで、tは、整数で時系列に取得された画像のフレーム番号を表す。
Figure JPOXMLDOC01-appb-M000001
 ステップS204にて、平均値算出部111は、式(2)に従い、各画素の画素値を時系列で平均したIaveを生成する。
Figure JPOXMLDOC01-appb-M000002
 ステップS205にて、変動算出部112は、式(3)に従い、Rvarを生成する。
Figure JPOXMLDOC01-appb-M000003
 ここで、Iaveは、複数取得された画像を時系列で平均(以下、「時系列平均」という)した各画素(対象画素)の時系列平均画素値である。Atotalは、各画素の時系列平均画素値Iaveを空間で平均(以下、「空間平均」という)した総平均画素値である。
 Avarは、複数取得された画像の画素値の空間平均について時系列で分散を算出した時系列分散(第1の分散値)である。変動算出部112は、変動検出領域の画素値の空間平均について時系列でAvar(第1の分散値)を算出することにより、照射線量変動を算出する。
 なお、Iaveは、各画素の画素値の時系列平均画素値であってもよいし、各画素の周辺画素の画素値を空間平均した値を時系列で平均した時系列平均画素値であってもよい。この場合、対象画素の画素値I(t)は、対象画素の画素値又は対象画素及び対象画素の周辺画素の画素値に基づいて算出される。また、Atotalは、複数取得された画像の空間平均を時系列平均した総平均画素値であってもよい。
 このように、空間平均の時系列の変動を時系列分散Avarとして算出することで、放射線の照射線量の変動を取得することができる。
 また、各画素の放射線照射線量の変動による画素値の変動は、透過線量によって異なる。このため、各画素の時系列平均である時系列平均画素値Iaveと、放射線の照射線量の変動の算出に用いた総平均画素値Atotalとの比を用いることによって、各画素の照射線量の変動による画素値の分散(照射線量変動Rvar)を算出することができる。
 変動算出部112は、対象画素の画素値I(t)について時系列平均したIave(第1の平均値)を算出し、変動検出領域の画素値について空間平均及び時系列平均したAtotal(第2の平均値)を算出する。変動算出部112は、Iave(第1の平均値)とAtotal(第2の平均値)との比により、照射線量変動Rvarを算出する。そして、式(3)に示すように、変動算出部112は、Iave(第1の平均値)とAtotal(第2の平均値)との比にAvar(第1の分散値)を乗算することにより、照射線量変動Rvarを算出する。
 ステップS206にて、平均エネルギー算出部113は、式(4)に従い、平均エネルギーEaveを生成する。
Figure JPOXMLDOC01-appb-M000004
 このように、画素値の分散である分散画像Ivarから、照射線量の変動による画素値の分散である照射線量変動Rvarを差分することによって、照射線量の変動による平均エネルギーを補正して、適切な平均エネルギーを算出することが可能である。
 平均エネルギー算出部113は、対象画素の画素値I(t)について時系列でIvar(第2の分散値)を算出し、Ivar(第2の分散値)を照射線量変動Rvarで補正することにより、平均エネルギーEaveを算出する。平均エネルギー算出部113は、Ivar(第2の分散値)から照射線量変動Rvarを減算した値を、対象画素の画素値I(t)について時系列平均したIave(第3の平均値)で除算することにより、平均エネルギーEaveを算出する。
 なお、αは、画素値及び分散から計算される値をエネルギーの単位に変換する係数であり、事前に既知のエネルギーのX線を撮影して、予め算出することが可能である。平均エネルギー算出部113は、Ivar(第2の分散値)から照射線量変動Rvarを減算した値をIave(第3の平均値)で除算した値に、所定の係数を乗算することにより、平均エネルギーEaveを算出する。
 以上、ステップS201からステップS206までの処理を行うことにより、平均エネルギーEaveを算出することができ、照射線量の変動の影響を低減することができる。
 また、本発明は、例えば、システム、装置、方法、プログラム若しくは記憶媒体などとしての実施態様を採ることもできる。具体的には、本発明は、複数の機器から構成されるシステムに適用されてもよいし、1つの機器から構成される装置に適用されてもよい。
 また、本発明は、以下の処理を実行することによっても実現される。本実施形態の機能を実現するソフトウェア(プログラム)が、ネットワーク又は各種記憶媒体を介してシステム或いは装置に供給される。そして、そのシステム或いは装置のコンピュータ(又は、CPU、MPU、及びGPUなど)が、プログラムを読み出して本実施形態の機能を実行する。
 (第1の実施形態の第1の変形例)
 第1の実施形態では、変動検出領域の画素値を用いて照射線量変動Rvarを求める際に、時系列平均画素値Iaveをフレーム全体で空間平均した総平均画素値Atotalと、フレーム全体の空間平均について時系列で分散を算出した時系列分散Avarとが算出された。しかし、変動検出領域として1フレーム全体を用いる代わりに、フレームの部分領域である関心領域(ROI)が用いられてもよい。本変形例では、照射線量変動Rvarは、式(3)の代わりに、式(5)に従って算出される。
Figure JPOXMLDOC01-appb-M000005
 ここで、Iaveは、第1の実施形態と同様、各画素の時系列平均画素値である。ROItotalは、関心領域ROIの各画素の時系列平均画素値Iaveを関心領域ROIで空間平均した総平均画素値である。ROIvarは、複数取得された画像の関心領域ROIにおける画素値の空間平均について時系列で分散を算出した時系列分散である。なお、ROItotalは、複数取得された画像の関心領域ROIにおける画素値の空間平均を時系列平均した総平均画素値であってもよい。
 関心領域ROIは、撮影部位ごとに予め設定された領域、被写体を透過していない放射線が検出される領域(放射線撮影領域のうち被写体が存在しない領域)などに設定されればよい。図3は、関心領域の設定例を示した図である。
 図3のROI301を用いれば、第1の実施形態と同様に、1フレーム全体を用いて、総平均画素値ROItotalと時系列分散ROIvarが算出される。ROI302を用いれば、被写体内の所定の関心領域を用いて、総平均画素値ROItotalと時系列分散ROIvarが算出される。ROI303を用いれば、被写体を透過していない放射線が検出される領域を用いて、総平均画素値ROItotalと時系列分散ROIvarが算出される。
 このように、照射線量変動の解析に適した領域に関心領域ROIを設定することで、照射線量変動の解析が安定し、適切な平均エネルギーEaveを算出することができ、計算速度が高速化するなどの効果が期待できる。
 なお、1フレーム全体又は一部における時系列分散Avar,ROIvar及び後述の照射線量分散Mvarを監視し、時系列分散Avar,ROIvar及び照射線量分散Mvarが所定の閾値以下となる領域にROIが自動的に設定されてもよい。
 このように、変動検出領域は、放射線検出器102の放射線照射領域の全領域、放射線照射領域の被写体の所定の関心領域、及び放射線照射領域の被写体が存在しない領域の少なくとも1つの領域に設定される。
(第1の実施形態の第2の変形例)
 第1の実施形態では、放射線画像データから時系列分散Avarを用いて照射線量変動Rvarを算出した。しかし、放射線画像データの代わりに、照射線量を測定する線量計やAEC(Auto Exposure Control)画素などの測定結果を用いて、照射線量変動Rvarが算出されてもよい。この場合、照射線量変動Rvarは、式(3)の代わりに、式(6)に従って算出される。
 変動算出部112は、放射線検出器102の所定の領域(変動検出領域)に照射された放射線の照射線量の時間変化に基づいて、放射線の照射線量変動を算出する。放射線の照射線量は、照射線量を測定する線量計の測定値、対象画素より高いフレームレートで放射線を検出する画素(AEC画素)の画素値、及び放射線の照射条件の少なくとも1つに基づいて算出されてもよい。
Figure JPOXMLDOC01-appb-M000006
 ここで、Mvarは、時系列で照射線量の分散を算出した照射線量分散である。γは、照射線量分散Mvarを、式(5)における時系列分散ROIvar相当の値に変換する係数である。
 変動算出部112は、変動検出領域の照射線量について時系列でMvar(第3の分散値)を算出することにより、照射線量変動Rvarを算出する。変動算出部112は、対象画素の画素値について時系列平均したIave(第1の平均値)を算出する。変動算出部112は、変動検出領域の画素値について空間平均及び時系列平均したROItotal(第2の平均値)を算出する。変動算出部112は、Iave(第1の平均値)とROItotal(第2の平均値)との比により、照射線量変動Rvarを算出する。
変動算出部112は、Iave(第1の平均値)とROItotal(第2の平均値)との比にMvar(第3の分散値)を乗算することにより、照射線量変動Rvarを算出する。
 被写体を透過していない放射線が検出された領域に関心領域ROI303が設定される場合、係数γ及び総平均画素値ROItotalを予め求めておくことが可能である。また、放射線発生装置101から放射線検出器102までの距離、管電圧、管電流、照射時間、及び撮影時間などの撮影条件が変更された場合、予め求められた係数γ及び総平均画素値ROItotalを撮影条件に応じて補正することが可能である。これにより、すべての条件で係数γ及び総平均画素値ROItotalを予め取得する必要がなくなる。
 このように、線量計やACE画素などの照射線量情報を用いることで、画素値を算出するために画像を解析する必要がなくなり、照射線量変動による平均エネルギーの補正を簡便に行うことができる。
 式(4)のように、平均エネルギー算出部113は、放射線検出器102の少なくとも1つの対象画素における放射線の平均エネルギーEaveを、照射線量変動Rvarに基づいて算出する。
(第1の実施形態の第3の変形例)
 第1の実施形態では、放射線画像データから時系列分散Avarを用いて、照射線量変動Rvarを算出したが、放射線画像データの代わりに、放射線の照射条件を用いて、照射線量変動Rvarが算出されてもよい。このとき、予め各照射条件にて、式(6)における照射線量分散Mvar、係数γ、及び総平均画素値ROItotalを照射条件に応じて予め求めておくことが可能である。放射線の照射条件は、放射線発生装置101から放射線検出器102までの距離、管電圧、管電流、パルス幅、及び照射時間などの少なくとも1つを含む。
 また、被写体が撮影範囲に存在する状態で、所定の低線量で発生された放射線を検出することで、照射線量分散Mvarが取得され、被写体の撮影時の放射線の照射条件を用いて、照射線量変動Rvarが算出されてもよい。このように、放射線の照射線量は、放射線の照射条件に基づいて算出されてもよい。
(第1の実施形態の第4の変形例)
 第1の実施形態では、平均エネルギーEaveを算出するときに、画素値の分散である分散画像Ivarから照射線量変動Rvarを減算することによって、照射線量の変動による平均エネルギーを補正するが、照射線量の変動の大きさに応じて、補正量を変更してもよい。この場合、平均エネルギーEaveは、式(7)に従って算出される。平均エネルギー算出部113は、Avar(第1の分散値)に関する関数β(Avar)に基づいて、照射線量変動Rvarを調整する。
Figure JPOXMLDOC01-appb-M000007
 ここで、β(Avar)は、補正量を調整する関数である。図4は、関数β(Avar)の例を示す。図4の関数401は、少なくとも1つの閾値を有するステップ関数である。関数401では、時系列分散Avarが閾値a未満になるとβ(Avar)が0となり、時系列分散Avarが閾値a以上になるとβ(Avar)が1となる。関数401では、β(Avar)が0である場合(つまり、時系列分散Avarが小さく、照射線量変動が小さい場合)は、照射線量の変動による平均エネルギーを補正しない。
 また、関数402は、時系列分散Avarの複数の閾値の間でβ(Avar)が変化する関数である。関数402では、時系列分散Avarが閾値b未満になるとβ(Avar)が0となり、時系列分散Avarが閾値c以上になるとβ(Avar)が1となり、閾値bと閾値cとの間でβ(Avar)が0から1まで線形に増加する。
 なお、関数β(Avar)として、平均エネルギーの補正量を調整するために、シグモイド関数などの関数が用いられてもよい。
 このように、平均エネルギーの補正量を照射線量変動に応じて変更することで、照射線量変動が少ない場合は補正量を抑制し、照射線量変動が大きい場合は補正量を促進し、照射線量変動に応じて平均エネルギーEaveが算出される。また、平均エネルギーEaveの算出において、照射線量変動に応じて補正量を変化させることによって、補正の必要性などに応じた適切な補正を行うことができる。
 なお、本変化例では、照射線量変動としてAvarを用いたが、ROIvarを用いてもよいし、Mvarを用いてもよい。
(第2の実施形態)
 本発明の第2の実施形態について、添付の図面を参照して具体的に説明する。なお、放射線は、例えば、X線であるが、α線、β線、及びγ線などであってもよい。なお、上記の実施形態と同様の構成、機能、及び動作についての説明は省略し、主に本実施形態との差異について説明する。
 本実施形態では、放射線量子の平均エネルギーを推定するに際して、画素値と当該画素値以外の画素値の差分の二乗を用いる。これは、平均エネルギーを推定する際に、画素の画素値を画素値の平均とみなし、画素値と当該画素値とは別の画素値の差分の二乗を画素値の標本分散とみなして、それぞれを近似するという概念に基づく。
 例えば、画素値を時系列平均画素値Iaveとみなし、画素値を時系列で差分を算出し、差分の二乗を分散画像Ivarとみなして、平均エネルギーを算出する。本実施形態では、所定のフレーム(第1のフレーム)とその1つ前のフレーム(第2のフレーム)の同じ位置における画素値を用いて、平均エネルギーを算出する。本実施形態では、第1のフレームと第2のフレームは時系列で隣接しているが、隣接していなくてもよい。
 まず、図5及び図6を用いて、本実施形態の構成と処理フローを説明する。図5は、本実施形態の機能構成例を示す図である。
 放射線発生装置501は、被写体に放射線を照射する。放射線検出器502は、被写体を通過した放射線を検出し蓄積画像を出力する。ここで、蓄積画像とは放射線量子のエネルギーと個数の積に比例した画素値を持つデジタル画像である。
 平均エネルギー推定部503は、蓄積画像から放射線検出器502に到達した放射線量子の平均エネルギーを推定する。また、平均エネルギー推定部503は、その構成として、ゲイン算出部(変動算出部)510及び平均エネルギー算出部(エネルギー算出部)512を備える。平均エネルギー算出部512は、フレーム平均エネルギー算出部511を備える。なお、平均エネルギー推定部503における処理は、画素(対象画素)ごとに行われる。
 次に、図6に示すフローチャートを用いて、第2の実施形態の処理の流れを詳細に説明する。
 ステップS601にて、放射線発生装置501は、被写体に放射線を照射する。ステップS602にて、放射線検出器502は、放射線発生装置501からの放射線(例えば、放射線発生装置501から被写体を透過した放射線)を複数回検出し、蓄積画像を生成し、平均エネルギー推定部503へ入力する。
 ステップS603にて、平均エネルギー推定部503は、ゲイン算出部510を用いて、入力された蓄積画像とその1つ前のフレーム(以下、「前フレーム」という)の蓄積画像から式(8)に従い、ゲインGを算出する。ここで、tは、整数で時系列に取得された画像のフレーム番号を表す。このように、ゲイン算出部(変動算出部)510は、変動検出領域の画素値について時系列で比を算出することにより、放射線の照射線量変動G(t)を算出する。
Figure JPOXMLDOC01-appb-M000008
 ここで、ROI(t)は、第1のフレームtの蓄積画像における関心領域ROIの空間平均である。ROI(t-1)は、前フレーム(第2のフレームt-1)の蓄積画像における関心領域ROIの空間平均である。
 ゲイン算出部(変動算出部)510は、放射線画像の第1のフレームtにおける変動検出領域の画素値を空間平均したROI(t)(第4の平均値)を算出する。ゲイン算出部(変動算出部)510は、放射線画像の第2のフレームt-1における変動検出領域の画素値を空間平均したROI(t-1)(第5の平均値)を算出する。ゲイン算出部(変動算出部)510は、ROI(t)(第4の平均値)とROI(t-1)(第5の平均値)との比に基づいて、放射線の照射線量変動G(t)を算出する。
 ここで、第1の実施形態の第1の変形例と同様に、変動検出領域は、放射線検出器102の放射線照射領域の全領域、放射線照射領域の被写体の所定の関心領域、及び放射線照射領域の被写体が存在しない領域の少なくとも1つの領域に設定されてもよい。
 次に、ステップS604にて、平均エネルギー推定部503は、フレーム平均エネルギー算出部511を用いて、蓄積画像とその前フレームの蓄積画像とゲインGから式(9)に従い、フレーム平均エネルギーE(t)を計算する。
Figure JPOXMLDOC01-appb-M000009
 このように、時系列で隣り合う2つのフレームの差分の二乗を分散とみなすことによって、フレームごとにフレーム平均エネルギーE(t)を算出することが可能である。
 平均エネルギー算出部512は、第1のフレームtにおける対象画素の第1の画素値I(t)と第2のフレームt-1における対象画素の第2の画素値I(t-1)との差分を、照射線量変動G(t)で補正することにより、後述の平均エネルギーEaveを算出する。平均エネルギー算出部512は、第2の画素値I(t-1)に、照射線量変動G(t)を乗算した値を、第1の画素値I(t)から減算することにより差分を算出する。平均エネルギー算出部512は、差分の二乗を第1の画素値I(t)で除算することにより、後述の平均エネルギーEaveを算出する。
 また、平均エネルギー算出部512は、差分の二乗を第1の画素値I(t)で除算した値に、所定の係数αを乗算することにより、後述のように平均エネルギーEaveを算出する。
 照射線量変動G(t)は、ROI(t)(第4の平均値)とROI(t-1)(第5の平均値)との比で表される。
 関心領域ROIの空間平均は、照射線量変動に起因して時系列で変動するものとして、ステップS603で計算されたゲインGを前フレームの画素値I(t-1)に乗算することにより、照射線量変動による画素値Iの誤差を補正している。αは、画素値から計算される値をエネルギーの単位に変換する係数であり、事前に既知のエネルギーのX線を撮影して、予め算出することが可能である。
 式(9)では、第2のフレームの画素値I(t-1)にゲインGが乗算された値を第1のフレームの画素値I(t)から減算し、減算された値が二乗される。二乗された値をフレームの画素値I(t)で除算して、係数αを乗算することで、フレーム平均エネルギーE(t)が算出される。
 このように、ゲインGを算出して、ゲインGを用いて照射線量変動による画素値Iの誤差を補正することにより、照射線量変動による平均エネルギーの誤差を抑制することができる。
 次に、ステップS605にて、平均エネルギー推定部503は、平均エネルギー算出部512を用いて、複数のフレーム平均エネルギーから式(10)に従い、平均エネルギーを算出する。平均エネルギー算出部512は、上記の差分の二乗を第1の画素値I(t)で除算した値E(t)について時系列平均することにより、平均エネルギーEaveを算出する。
Figure JPOXMLDOC01-appb-M000010
 ここで、Tは、平均エネルギーを算出する際に取得したフレーム数である。したがって、Eaveは、算出されたフレーム平均エネルギーE(t)の平均である。このように、複数のフレーム平均エネルギーE(t)を平均して、平均エネルギーEaveを算出することで、計算誤差を小さくすることができる。
 以上、ステップS601からステップS605までの処理を行うことにより、平均エネルギーEaveの算出における照射線量変動の影響を低減することが可能である。
(第2の実施形態の第1の変形例)
 第2の実施形態では、平均エネルギーEaveを算出するときに、前フレームの画素値I(t-1)にゲインGが乗算された値をフレームの画素値I(t)から減算することによって、照射線量の変動によるフレーム平均エネルギーE(t)を補正する。しかし、照射線量の変動の大きさに応じて、補正量が変更されてもよい。この場合、フレーム平均エネルギーE(t)は、式(11)に従って算出される。
Figure JPOXMLDOC01-appb-M000011
 ここで、β(e|lnG(t)|)は、補正量を調整する関数である。図7は、関数β(e|lnG(t)|)の例を示す。関数β(e|lnG(t)|)は、少なくとも1つの閾値を有するステップ関数である。関数701では、e|lnG(t)|が閾値d未満になるとβ(e|lnG(t)|)が0となり、e|lnG(t)|が閾値d以上になるとβ(e|lnG(t)|)が1となる。関数701では、e|lnG(t)|が閾値d未満である場合(つまり、照射線量変動が小さい場合)は、照射線量の変動によるフレーム平均エネルギーE(t)を補正しない。
 また、関数702は、ゲインGの複数の閾値の間でβ(e|lnG(t)|)が変化する関数である。関数702では、ゲインGが閾値e未満になるとβ(e|lnG(t)|)が0となり、ゲインGが閾値f以上になるとβ(e|lnG(t)|)が1となり、閾値eと閾値fとの間でβ(e|lnG(t)|)が0から1まで線形に増加する。
 なお、関数β(e|lnG(t)|)として、フレーム平均エネルギーE(t)の補正量を調整するために、シグモイド関数などの関数が用いられてもよい。
 このように、フレーム平均エネルギーの補正量を照射線量変動に応じて変更することで、照射線量変動が少ない場合は補正量を抑制し、照射線量変動が大きい場合は補正量を促進し、照射線量変動に応じて平均エネルギーEaveが算出される。また、フレーム平均エネルギーE(t)の算出において、照射線量変動に応じて補正量を変化させることによって、補正の必要性などに応じた適切な補正を行うことができる。平均エネルギー算出部512は、照射線量変動G(t)に関する関数β(e|lnG(t)|)に基づいて、平均エネルギーEaveを調整する。
(第2の実施形態の第2の変形例)
 第2の実施形態では、関心領域ROIの空間平均を用いてゲインGを算出したが、放射線画像データの代わりに、照射線量を測定する線量計やAEC(Auto Exposure Control)画素などの測定結果を用いて、ゲインGが算出されてもよい。この場合、ゲインGは、式(8)の代わりに、式(12)に従って算出される。
 ゲイン算出部(変動算出部)510は、放射線画像の第1のフレームt及び第2のフレームt-1における照射線量の比に基づいて、放射線の照射線量変動を算出する。放射線の照射線量は、照射線量を測定する線量計の測定値、対象画素より高いフレームレートで放射線を検出する画素(AEC画素)の画素値、及び放射線の照射条件の少なくとも1つに基づいて算出されてもよい。
Figure JPOXMLDOC01-appb-M000012
 ここで、M(t)は、フレーム番号tの撮影時の照射線量である。M(t-1)は、フレーム番号t-1(前フレーム)の照射線量である。
 このように、線量計やACE画素などの照射線量情報を用いることで、画素値を算出するために画像を解析する必要がなくなり、照射線量変動による平均エネルギーの補正を簡便に行うことができる。
 第2の実施形態と同様に、平均エネルギー算出部512は、第1のフレームtにおける対象画素の第1の画素値I(t)と第2のフレームt-1における対象画素の第2の画素値I(t-1)との差分を、照射線量変動G(t)で補正する。これにより、平均エネルギー算出部512は、平均エネルギーEaveを算出する。本実施形態では、照射線量変動G(t)は、放射線画像の第1のフレームt及び第2のフレームt-1における照射線量の比で表される。
 本発明によれば、放射線の照射線量変動を考慮することにより、適切な平均エネルギーを算出することできる。
 以上、本発明に係る実施形態について説明したが、本発明はこれらに限定されるものではなく、請求項に記載された範囲内において変更・変形することが可能である。
 本発明は、上記の実施形態の機能を実現するソフトウェア(プログラム)をネットワーク又は各種記憶媒体を介してシステム又は装置に供給し、システム又は装置のコンピュータ(CPUやMPUなど)がプログラムを読み出すことにより実行されてもよい。また、本発明は、システム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能であり、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
 この出願は2016年9月23日に出願された日本国特許出願第2016-186319からの優先権を主張するものであり、その内容を引用してこの出願の一部とするものである。
101,501:放射線発生装置、102,502:放射線検出器、103,503:平均エネルギー推定部、110:分散算出部、111:平均値算出部、112:変動算出部、113,512:平均エネルギー算出部(エネルギー算出部)、510:ゲイン算出部(変動算出部)、511:フレーム平均エネルギー算出部

Claims (20)

  1.  放射線検出器の所定の領域で検出された放射線に対応する画素値の時間変化に基づいて、前記放射線の照射線量変動を算出する変動算出手段と、
     前記放射線検出器の少なくとも1つの対象画素における前記放射線の平均エネルギーを、前記照射線量変動に基づいて算出するエネルギー算出手段と、
    を備える、放射線撮影装置。
  2.  前記変動算出手段は、前記領域の前記画素値の空間平均について時系列で第1の分散値を算出し、前記第1の分散値に基づいて前記照射線量変動を算出する、請求項1に記載の放射線撮影装置。
  3.  前記変動算出手段は、前記対象画素の画素値について時系列平均した第1の平均値を算出し、前記領域の前記画素値について空間平均及び時系列平均した第2の平均値を算出し、前記第1の平均値と前記第2の平均値との比により、前記照射線量変動を算出する、請求項2に記載の放射線撮影装置。
  4.  前記変動算出手段は、前記第1の平均値と前記第2の平均値との比に前記第1の分散値を乗算することにより、前記照射線量変動を算出する、請求項3に記載の放射線撮影装置。
  5.  前記エネルギー算出手段は、前記対象画素の画素値について時系列で第2の分散値を算出し、前記第2の分散値を前記照射線量変動で補正することにより、前記平均エネルギーを算出する、請求項1乃至4の何れか1項に記載の放射線撮影装置。
  6.  前記エネルギー算出手段は、前記第2の分散値から前記照射線量変動を減算した値を、前記対象画素の画素値について時系列平均した第3の平均値で除算することにより、前記平均エネルギーを算出する、請求項5に記載の放射線撮影装置。
  7.  前記エネルギー算出手段は、前記第2の分散値から前記照射線量変動を減算した値を前記第3の平均値で除算した値に、所定の係数を乗算することにより、前記平均エネルギーを算出する、請求項6に記載の放射線撮影装置。
  8.  前記対象画素の画素値は、前記対象画素の画素値又は前記対象画素の周辺画素の画素値に基づいて算出される、請求項3乃至7の何れか1項に記載の放射線撮影装置。
  9.  前記領域は、前記放射線検出器の放射線照射領域の全領域、前記放射線照射領域の被写体の所定の関心領域、及び前記放射線照射領域の被写体が存在しない領域の少なくとも1つの領域に設定される、請求項1乃至8の何れか1項に記載の放射線撮影装置。
  10.  前記エネルギー算出手段は、前記第1の分散値に関する関数に基づいて、前記照射線量変動を調整する、請求項2に記載の放射線撮影装置。
  11.  放射線検出器の所定の領域に照射された放射線の照射線量の時間変化に基づいて、前記放射線の照射線量変動を算出する変動算出手段と、
     前記放射線検出器の少なくとも1つの対象画素における前記放射線の平均エネルギーを、前記照射線量変動に基づいて算出するエネルギー算出手段と、
    を備える、放射線撮影装置。
  12.  前記放射線の照射線量は、前記照射線量を測定する線量計の測定値、前記対象画素より高いフレームレートで前記放射線を検出する画素の画素値、及び前記放射線の照射条件の少なくとも1つに基づいて算出される、請求項11に記載の放射線撮影装置。
  13.  前記変動算出手段は、前記領域の前記照射線量について時系列で第3の分散値を算出することにより、前記照射線量変動を算出する、請求項11又は12に記載の放射線撮影装置。
  14.  前記変動算出手段は、前記対象画素の画素値について時系列平均した第1の平均値を算出し、前記領域の前記画素値について空間平均及び時系列平均した第2の平均値を算出し、前記第1の平均値と前記第2の平均値との比により、前記照射線量変動を算出する、請求項13に記載の放射線撮影装置。
  15.  前記変動算出手段は、前記第1の平均値と前記第2の平均値との比に前記第3の分散値を乗算することにより、前記照射線量変動を算出する、請求項14に記載の放射線撮影装置。
  16.  前記変動算出手段は、前記領域の画素値について時系列で比を算出し、前記比に基づいて前記放射線の照射線量変動を算出する、請求項11に記載の放射線撮影装置。
  17.  前記変動算出手段は、放射線画像の第1のフレーム及び第2のフレームにおける前記照射線量の比に基づいて、前記放射線の照射線量変動を算出する、請求項11又は12に記載の放射線撮影装置。
  18.  放射線検出器に放射線を照射する放射線発生手段と、
     前記放射線検出器の所定の領域で検出された前記放射線に対応する画素値の時間変化に基づいて、前記放射線の照射線量変動を算出する変動算出手段と、
     前記放射線検出器の少なくとも1つの対象画素における前記放射線の平均エネルギーを、前記照射線量変動に基づいて算出するエネルギー算出手段と、
    を備える、放射線撮影システム。
  19.  放射線検出器の所定の領域で検出された放射線に対応する画素値の時間変化に基づいて、前記放射線の照射線量変動を算出する工程と、
     前記放射線検出器の少なくとも1つの対象画素における前記放射線の平均エネルギーを、前記照射線量変動に基づいて算出する工程と、
    を含む、放射線撮影方法。
  20.  プロセッサーによって実行されると、前記プロセッサーに、請求項19に記載の方法の各工程を実行させるプログラム。
PCT/JP2017/030834 2016-09-23 2017-08-29 放射線撮影装置、放射線撮影システム、放射線撮影方法、及びプログラム WO2018055992A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016186319A JP2018047192A (ja) 2016-09-23 2016-09-23 放射線撮影装置、放射線撮影システム、放射線撮影方法、及びプログラム
JP2016-186319 2016-09-23

Publications (1)

Publication Number Publication Date
WO2018055992A1 true WO2018055992A1 (ja) 2018-03-29

Family

ID=61690363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030834 WO2018055992A1 (ja) 2016-09-23 2017-08-29 放射線撮影装置、放射線撮影システム、放射線撮影方法、及びプログラム

Country Status (2)

Country Link
JP (1) JP2018047192A (ja)
WO (1) WO2018055992A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7147507B2 (ja) * 2018-11-22 2022-10-05 コニカミノルタ株式会社 画像処理装置及びプログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009285356A (ja) * 2008-05-30 2009-12-10 Institute Of National Colleges Of Technology Japan 医療用撮影システム、画像処理装置、画像処理方法、およびプログラム
JP2014014445A (ja) * 2012-07-06 2014-01-30 Toshiba Corp X線コンピュータ断層撮影装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009285356A (ja) * 2008-05-30 2009-12-10 Institute Of National Colleges Of Technology Japan 医療用撮影システム、画像処理装置、画像処理方法、およびプログラム
JP2014014445A (ja) * 2012-07-06 2014-01-30 Toshiba Corp X線コンピュータ断層撮影装置

Also Published As

Publication number Publication date
JP2018047192A (ja) 2018-03-29

Similar Documents

Publication Publication Date Title
US10045746B2 (en) Radiation image processing apparatus, method, and medium
JP7073380B2 (ja) 自己較正ct検出器、自己較正を行うためのシステムおよび方法
US20160354052A1 (en) Radiographic image processing device, method, and recording medium
JP6076363B2 (ja) オフセット決定を伴う光子検出装置、該検出装置を有する撮像装置、光子検出方法、該方法を利用した撮像方法ならびに該検出方法・撮像方法に関するコンピュータプログラム
JP6491545B2 (ja) 画像処理装置、放射線撮影装置、画像処理方法、プログラム、および記憶媒体
US10713784B2 (en) Radiation imaging system, information processing apparatus for irradiation image, image processing method for radiation image, and program
JP2019030386A (ja) 放射線撮像装置および放射線撮像システム
US10634799B2 (en) Radiography system, radiography method, and radiography program storage medium
US11350894B2 (en) Radiation imaging system for estimating thickness and mixing ratio of substances based on average pixel value and average radiation quantum energy value
WO2018055992A1 (ja) 放射線撮影装置、放射線撮影システム、放射線撮影方法、及びプログラム
US8611625B2 (en) Tomographic apparatus
WO2020149253A1 (ja) 放射線撮像装置、放射線撮像システムおよび放射線撮像装置の制御方法
KR101443051B1 (ko) 산란선 제거 방법 및 이를 이용한 디지털 방사선 시스템
JP7246281B2 (ja) 画像処理装置およびその制御方法、放射線撮影装置、プログラム
JP6700737B2 (ja) 放射線撮像システム、信号処理装置、及び、放射線画像の信号処理方法
JP2017164374A (ja) 放射線検出装置及び放射線検査装置
WO2019092981A1 (ja) 画像処理装置、画像処理方法、放射線撮影装置、放射線撮影装置の制御方法、およびプログラム
KR101347254B1 (ko) 방사선 검출기의 불균일성 보정 방법
JP2019084158A5 (ja)
US10638992B2 (en) Image processing apparatus, radiography system, image processing method, and image processing program
JP2008237836A (ja) 放射線撮像装置及び方法
US10709402B2 (en) Radiography system, radiography method, radiography program, and derivation apparatus
JP6560990B2 (ja) 放射線計測方法、放射線計測装置、x線透過像撮影装置及びx線ct装置
US20180120457A1 (en) Radiographing system, radiation display method, and storage medium
JP2009201637A (ja) 放射線画像撮影装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17852771

Country of ref document: EP

Kind code of ref document: A1